
Title 大規模ソフトウェアの保守支援を目的とした類似性分
析と費用対効果見積りの研究

Author(s) 横井, 一輝

Citation 大阪大学, 2025, 博士論文

Version Type VoR

URL https://doi.org/10.18910/101755

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

大規模ソフトウェアの保守支援を目的とした
類似性分析と費用対効果見積りの研究

提出先　大阪大学大学院情報科学研究科
提出年月　 2025年 1月

横井　一輝

論文一覧

主要論文
1. 横井 一輝，崔 恩瀞，吉田 則裕，井上 克郎，“情報検索技術に基づく細粒度ブ
ロッククローン検出”，コンピュータソフトウェア，Vol. 35，No. 4，pp. 16-36，
2018年 10月．（学術論文）

2. 横井 一輝，崔 恩瀞，吉田 則裕，松下 誠，井上 克郎，“情報検索技術と深層学習
を用いたコード片類似性判定法の比較調査”，電子情報通信学会論文誌 D，Vol.

J106-D，No. 4，pp. 231-243，2023年 4月．（学術論文）
3. Kazuki Yokoi, Eunjong Choi, Norihiro Yoshida, Joji Okada, Yoshiki Higo,

“Cost-Benefit Analysis for Modernizing a Large-Scale Industrial System”,

Proceedings of the 30th Asia-Pacific Software Engineering Conference

(APSEC 2023), pp. 441-449, December 2023.（国際会議録）

関連論文
1. 太田 悠希，吉田 則裕，崔 恩瀞，槇原 絵里奈，横井 一輝，“マイクロサービス
におけるコードクローンの言語間分析”，日本ソフトウェア科学会 第 31回ソフ
トウェア工学の基礎ワークショップ，2024年 11月．（国内会議録）

iii

内容梗概

社会におけるソフトウェアの重要性が高まってきた現在では，特に社会基盤や企業
の基幹業務を支える大規模かつ複雑なソフトウェアを保守し，品質を保つことが重要
である．ソフトウェア保守は，ソフトウェアの全ライフサイクルにおいて多くのコス
トを占めるため，その支援が必要不可欠である．また，長年にわたり保守を繰り返し
て老朽化したレガシーシステムでは，ソフトウェアの変更や修正に多大な時間とコス
トがかかり，ビジネスニーズに対応しきれなくなる．そのため，ソフトウェア保守よ
りも広範囲な変更を伴うモダナイゼーションを実施し，ソフトウェアシステムを進化
させる必要がある．
ソフトウェア保守やモダナイゼーションを効率的に進めるには，開発者がソフト

ウェアの性質や振る舞いを十分に理解することが求められる．しかし，ソフトウェア
の規模や複雑さが増大するにつれて，手作業による十分な理解が難しくなる．そのた
め，近年のコンピュータの計算能力向上を背景に，ソフトウェア保守を支援するため
のソースコード静的解析が盛んに研究されている．
本論文では，ソフトウェア保守の効率を低下させる要因の 1つであるコードクロー

ンの把握を支援する目的で 2つの研究を，モダナイゼーションの推進を妨げる要因の
1つである費用対効果の試算を支援する目的で 1つの研究を実施した．

1. コードクローンの把握を支援
（a）情報検索技術に基づく細粒度ブロッククローン検出
（b）情報検索技術と深層学習を用いたコード片類似性判定法の比較調査

2. モダナイゼーションの費用対効果の試算を支援
（a）段階的再構築における依存関係分析を用いた費用対効果の試算

1-(a)については，構文解析によりコードブロックを抽出し，情報検索技術を利用し
て，意味的に処理が類似したブロッククローンの検出手法を提案した．これにより，
既存のコードクローン検出手法よりも高精度でコードクローンを検出でき，さらに保
守作業を行いやすいコードクローンを検出することが可能となった．また，クラスタ
リング手法や特徴ベクトルのデータ構造を工夫することで，既存手法よりも高速かつ
低メモリ消費で検出できた．
1-(b)については，コード片の処理内容の意味的な類似性を高精度かつ高速に判定す

v

るため，情報検索技術と深層学習の効果的な組み合わせを調査した．調査の結果，情
報検索技術の一種である LSI（Latent Semantic Indexing）と深層学習モデルの組み
合わせが高精度で判定可能であり，さらに実行速度も最も速いことが確認された．
2-(a)については，過去に段階的再構築を実施した大規模な金融システムを対象に，
依存関係分析を用いた費用対効果試算手法を適用し，その妥当性を検証した．モダナ
イゼーションの失敗リスクを軽減するためには，システムの一部を切り出す段階的再
構築が有効とされる．しかし，段階的再構築の費用対効果を試算することは難しく，
著者が所属する企業においても計画当初の見積りと実績値に乖離が生じた事例がある．
そこで本研究では，システムの規模と依存関係の情報を活用し，費用として段階的再
構築に必要な工数を，効果として削減可能な保守開発工数を試算し，実績値との乖離
を比較した．また，プロジェクトの関係者にヒアリングを行い，適用手法の妥当性を
定性評価した．評価の結果，費用試算は実績値との乖離が小さい一方で，効果試算は
実績値との乖離が大きかった．関係者ヒアリングの結果では，費用試算の結果に対し
てはやや妥当との意見が得られたが，効果試算の結果に対しては妥当性に疑問を持つ
意見が多かった．また，試算モデルに対する納得感は中立的な意見が多く，今後の適
用可能性については肯定派と否定派に分かれた．
これらの研究により，大規模ソフトウェアの保守およびモダナイゼーションという
社会基盤を維持するうえで欠かせない活動に対し，一定の効率化を果たすことができ
たと考える．

vi

謝辞

本研究を行うにあたり，日頃から様々なご指導を賜りました，大阪大学大学院情報
科学研究科コンピュータサイエンス専攻 肥後芳樹教授に，心から感謝申し上げます．
本論文を執筆するにあたり，様々なご指導ご助言を頂きました，大阪大学大学院情

報科学研究科コンピュータサイエンス専攻 楠本真二教授，ならびに増澤利光教授に感
謝申し上げます．
本研究を行うにあたり，研究方針など様々なご指導ご助言を頂きました，立命館大

学情報理工学部 吉田則裕教授，ならびに京都工芸繊維大学情報工学・人間科学系 崔恩
瀞准教授に，心から感謝申し上げます．
本研究を行うにあたり，様々なご指導を頂きました，南山大学理工学部 井上克郎教

授，ならびに大阪大学大学院情報科学研究科コンピュータサイエンス専攻 松下誠准教
授に感謝申し上げます．
本研究を行うにあたり，研究活動の中でご助言を頂きました，ノートルダム清心女

子大学情報デザイン学部情報デザイン学科 神田哲也准教授，奈良先端科学技術大学院
大学先端科学技術研究科情報科学領域 嶋利一真助教に感謝申し上げます．
また，本研究の実施にあたり，株式会社 NTTデータグループの皆様には研究の機

会や実践の場を与えていただきましたことを感謝いたします．その中でも直接研究を
支援し，様々なご助言を頂いた，株式会社 NTTデータグループ 岡田譲二氏にこの場
で御礼を述べさせていただきます．研究についてのご支援やご助言を頂きました株式
会社 NTTデータグループ 竹之内啓太氏，ならびに上田永樹氏にはこの場で御礼申し
上げます．
最後に，日々の研究生活の中でご助言，ご協力を頂いた，大阪大学大学院情報科学

研究科コンピュータサイエンス専攻ソフトウェア工学講座の皆様に厚く御礼申し上げ
ます．

vii

目次

第 1章 はじめに 1

1.1 ソフトウェア保守とその課題 . 1

1.2 モダナイゼーションとその課題 . 3

1.3 ソフトウェア保守とモダナイゼーションの関係 5

1.4 ソースコード静的解析 . 6

1.4.1 コンピュータを用いたソースコードの分析 6

1.4.2 ソースコード解析 . 8

1.4.3 ソースコード静的解析によるソフトウェア保守支援 10

1.5 本研究の概要 . 11

1.5.1 ソフトウェア保守におけるコードクローンの把握 11

1.5.2 モダナイゼーションにおける費用対効果の見積りの難しさ . . 13

1.6 各章の構成 . 14

第 2章 情報検索技術に基づく細粒度ブロッククローン検出 15

2.1 まえがき . 15

2.2 コードクローン . 17

2.2.1 関数クローン検出法 . 17

2.2.2 関数クローン検出法の問題点 17

2.3 提案する検出手法 . 18

2.3.1 用語の定義 . 20

2.3.2 コードブロックとワードの抽出 22

2.3.3 特徴ベクトルの計算 . 22

2.3.4 特徴ベクトルのクラスタリング 23

2.3.5 特徴ベクトルの類似度の計算 25

2.4 評価実験 . 25

2.4.1 関数クローン検出法と CCFinderXとの比較 26

2.4.2 保守対象と判定されなかったコードクローンの調査 30

2.4.3 コードクローンに対する保守作業の調査 31

2.4.4 検出時間とスケーラビリティの評価 33

ix

2.4.5 ブロッククローンの実例 . 34

2.4.6 関数クローン検出法と CCFinderX と比較したときの本手法
の特徴 . 39

2.4.7 粗粒度なコードクローン検出法と比較したときの本手法の特徴 39

2.5 考察 . 42

2.5.1 本手法の拡張性 . 42

2.5.2 評価実験の妥当性 . 42

2.6 関連研究 . 43

2.7 まとめと今後の課題 . 44

第 3章 情報検索技術と深層学習を用いたコード片類似性判定法の比較調査 47

3.1 まえがき . 47

3.2 背景 . 49

3.2.1 情報検索技術に基づくコードクローン検出法 49

3.2.2 深層学習を用いたコード片類似性判定法 49

3.3 調査手法 . 50

3.3.1 調査目的とリサーチクエスチョン 50

3.3.2 調査に用いるコード片類似性判定法 50

3.3.3 比較調査対象 . 53

3.3.4 対象データセット . 54

3.3.5 リサーチクエスチョンの調査方法 55

3.4 調査結果 . 57

3.4.1 精度の調査結果 . 57

3.4.2 実行時間の調査結果 . 58

3.5 考察 . 60

3.5.1 調査結果 1:精度の比較 . 60

3.5.2 調査結果 2：実行時間の比較 61

3.5.3 情報検索技術と深層学習の組み合わせの比較 61

3.5.4 情報検索技術と深層学習を用いたコード片類似性判定法と既
存手法の比較 . 61

3.5.5 コード片類似性判定の実例 62

3.5.6 妥当性の脅威 . 66

3.6 関連研究 . 67

3.7 まとめと今後の課題 . 68

第 4章 段階的再構築における依存関係分析を用いた費用対効果の試算 69

4.1 まえがき . 69

x

4.2 背景 . 71

4.2.1 モダナイゼーション . 71

4.2.2 費用見積り . 72

4.2.3 見積りの時期と誤差 . 72

4.3 適用対象 . 73

4.3.1 対象プロジェクトの説明 . 74

4.3.2 適用の動機 . 75

4.4 適用手法 . 75

4.4.1 依存グラフ . 76

4.4.2 費用試算 . 76

4.4.3 効果試算 . 78

4.5 調査 . 81

4.5.1 調査目的とリサーチクエスチョン 81

4.5.2 調査 1：費用試算の妥当性 82

4.5.3 調査 2：効果試算の妥当性 83

4.5.4 プロジェクト関係者ヒアリング 85

4.5.5 妥当性への脅威 . 87

4.6 関連研究 . 88

4.7 まとめと今後の課題 . 89

第 5章 おわりに 91

5.1 まとめ . 91

5.2 今後の研究方針 . 92

参考文献 95

xi

図目次

1.1 ソフトウェア保守の分類 . 2

1.2 ソフトウェア保守からモダナイゼーションへのライフサイクル 6

2.1 長い関数内の一部にコードクローンを含む例 17

2.2 提案手法の概要 . 18

2.3 入れ子構造において親子関係にあるコードブロック 21

2.4 極大コードブロックペアと重複したコードブロックペア 22

2.5 ベンチマークに含まれたコードクローンに対する保守作業 32

2.6 本手法のタイプ別の保守作業 . 33

2.7 同じ関数内に存在するブロッククローン（タイプ 1） 36

2.8 文の挿入が行われたブロッククローン（タイプ 3） 37

2.9 ファイルの出力処理を行うブロッククローン（タイプ 4） 38

3.1 DeepSimの概要 . 49

3.2 調査に用いるコード片類似性判定法の概要 49

3.3 コード片類似性判定モデルのアーキテクチャ 52

3.4 コード片 1:ファイルをコピーする処理（1） 63

3.5 コード片 2：ファイルをコピーする処理（2） 63

3.6 コード片 3：圧縮ファイルを展開する処理 64

3.7 コード片 4：WEBページを取得する処理（1） 64

3.8 コード片 5：WEBページを取得する処理（2） 65

4.1 ビッグバンアプローチと段階的再構築 70

4.2 見積りの時期と誤差 . 73

4.3 適用する費用対効果試算の概要 . 75

4.4 依存グラフの例 . 76

4.5 段階的再構築後の関数とテーブルの例 78

4.6 効果試算に用いるモジュールの例 80

xiii

表目次

2.1 検出対象プロジェクト . 26

2.2 検出精度の評価 . 28

2.3 検出時間の比較 . 29

2.4 ベンチマークに含まれたコードクローンのタイプ別内訳 30

2.5 ベンチマークに含まれたコードクローンの内訳（検出対象ごと） . . 30

2.6 保守対象と判定されなかったコードクローン 31

2.7 検出規模ごとの検出時間 . 33

2.8 粗粒度なコードクローン検出法の検出精度の評価 40

2.9 粗粒度なコードクローン検出法の検出時間 40

2.10 粗粒度なコードクローン検出法の検出したコードクローンのタイプ別
内訳 . 41

2.11 粗粒度なコードクローン検出法の検出規模ごとの検出時間 41

3.1 コードクローンの各タイプの個数と割合（BCB） 55

3.2 意味表現生成の時間評価に用いた対象プロジェクト 56

3.3 GCJと BCBを用いた精度評価 . 57

3.4 BCBにおけるクローンタイプごとの F値 58

3.5 GCJを用いた実行時間評価（秒） 59

3.6 意味表現生成過程の実行時間（秒） 59

4.1 対象システムの概要 . 74

4.2 対象プロジェクトの段階的再構築前後の開発実績の統計値 74

4.3 依存関係ごとの工数見積りの例 . 77

4.4 段階的再構築前の影響範囲の例 . 80

4.5 段階的再構築後の影響範囲の例 . 80

4.6 費用試算：対象プロジェクトの開発規模 83

4.7 効果試算：段階的再構築前後の比較 83

4.8 プロジェクト関係者ヒアリングの結果 86

xv

第 1章

はじめに

1.1 ソフトウェア保守とその課題
現代社会において，ソフトウェアは様々な場所や用途で利用され，社会基盤や大企
業の基幹業務を支える役割を担うなど，その社会的役割は大きくなっている．特に，
高い信頼性と品質が求められる一方で，開発にかけられる時間や人的，計算機資源が
限られているため，効率的かつ高品質なソフトウェアの開発および保守の重要性が増
している．また，社会の変化やニーズに迅速に対応するためには，高い生産性でソフ
トウェアの開発および保守ができることも求められている．こうした背景から，ソフ
トウェア工学の分野でも，ソフトウェア開発と保守の品質向上や生産性向上のための
支援が重要となっている．
ソフトウェア工学における重要な課題の 1つとして，保守作業の効率化が挙げられ
る．ソフトウェアの保守作業とは，“ソフトウェアの納入後，ソフトウェアに対して加
えられる，欠陥の修正，性能などの改善，変更された環境に適合させるための修正”の
ことを指す [1]．また，ソフトウェア保守は，その目的により以下の 4つに分類されて
いる [2, 3]．修正の分類とソフトウェア保守の分類の関係は図 1.1に示す．

是正保守 (corrective maintenance) ソフトウェア製品の引渡し後に発見された問題を
訂正するために行う受身の修正．この修正によって，要求事項を満たすように
ソフトウェア製品を修復する．なお，是正保守の一部として，是正保守実施ま
でシステム運用を確保するための，計画外で一時的な修正として，「緊急保守
（emergency maintenance）」がある．

予防保守 (preventive maintenance) 引渡し後のソフトウェア製品の潜在的な障害が
運用障害となる前に発見し，是正するための修正

適応保守 (adaptive maintenance) 引渡し後変化した，または変化している環境にお
いて，ソフトウェア製品を使用できるように保ち続けるために実施するソフト
ウェア製品の修正．適応保守は，必須運用ソフトウェア製品の運用環境変化へ
順応するために必要な改良を提供する．これらの変更は，環境の変化に歩調を

1

����

��

����

	
��

��

���

�����

�����
���	
��

���

図 1.1 ソフトウェア保守の分類

合わせて実施する必要がある．例えば，オペレーティングシステムの更新が必
要になったとき，新オペレーティングシステムに適応するためには，幾つかの
変更が必要な可能性がある．これは，アプリケーションの全体機能要件は変わ
らないにも関わらず，オペレーティングシステムやミドルウェアの変更，ハー
ドウェアの変更，法改正などに伴ってアプリケーションソフトウェアに影響す
る部分の改良が必要になるようなケースである．

完全化保守 (perfective maintenance) 引渡し後のソフトウェア製品の性能または保守
性を改善するための修正．完全化保守は，利用者のための改良，プログラム文
書の改善を提供し，ソフトウェアの性能強化，保守性などのソフトウェア属性
の改善に向けての記録を提供する．

ソフトウェア保守は，ソフトウェア開発に比べて長期間実施されることが多い．そ
のため，ソフトウェア保守にかかるコストはソフトウェアの全ライフサイクルにかか
るコストの 3分の 2を占めており，保守作業にかかるコストは大きいことが知られて
いる [4, 5, 6]．また，日本情報システム・ユーザー協会（JUAS）によると，21年以上
前に構築された基幹系システムの存在が報告されている [7]．これらのことから，まず
はソフトウェアの保守をより効率的に行うことが重要である．
ソフトウェア保守を困難にする要因のひとつとして考えられているのが，コードク
ローンの存在である [8, 9]．コードクローンとは，互いに一致または類似したコード
片のことである [10]．とりわけ実務におけるソフトウェア開発では，コードクローン
をリファクタリングなどで除去するだけでなく，コードクローンの適切な管理が重要
視されている [11, 12, 13]．例えば，あるコード片に欠陥が存在することを確認した場
合，そのコード片のコードクローンにも欠陥が存在する可能性が高い．そのため，ソ
フトウェア保守の担当者は，欠陥が存在するコード片を修正した後，そのコード片の
コードクローンを全て確認し，同様の修正をする必要がある．しかし，大規模ソフト
ウェアを保守する場合，全てのコードクローンを手作業で見つけることは困難である．

2

そのため，コードクローンの存在がソフトウェア保守のコスト増大につながっている．
また，コードクローンの中でも，処理内容が類似しているが構文的に類似していな

いコードクローンを検出し，適切に管理することの重要性も指摘されている [14]．実
務においても，長年にわたって修正が繰り返された結果，類似しているが構文的に類
似していないコードクローンが増えている．しかし，構文的に類似していないコード
クローンは全く異なる書き方がされていることが多いため，既存のコードクローン検
出法の多くは検出が難しい [15, 16]．したがって，構文的に類似していないコードク
ローンを検出することは，ソフトウェア保守の効率化において重要である．

1.2 モダナイゼーションとその課題
レガシーシステムとは，ビジネス上は重要だが，保守の継続が困難な巨大なメイン

フレーム上の基幹システムのことである [17]．レガシーシステムは企業の中核をなす
システムのため，その企業に現在でも多くの収益をもたらしており，その障害は日常
業務に深刻な影響を与える．また，長期間正常に動作し続けてきた信頼性の高いシス
テムでもある．その一方で，レガシーシステムの多くは，20から 30年以上前に作られ
た古いシステムであり，時代遅れの技術を用いて長年保守し続けられたため，その変
更には多くの期間とコストが必要になるという問題がある [18]．レガシーシステムは，
ビジネスのコアなシステムが故に，新たなビジネス要求によって頻繁に変更され続け
ており，その結果，保守が困難な構造化されていないソースコードになっている．ま
た，長年保守されているため，もともとのプログラマーが退職していたり，文書が古い
ままになっていたりする．これらの理由から，変更時にソースコードの調査や意図し
ない場所への影響調査が必要となり，その変更や修正には多くの期間とコストが必要
になる．現在の急速に変化するビジネス環境では，組織内外の変化，法律や規制の変化
など，様々な変化に迅速に対応しなければならない．レガシーシステムも同様にそう
いったビジネス環境の変化に追随して変更を迅速に行われる必要がある．こういった
状況において，レガシーシステムの変更や修正に多くの期間とコストが必要になるの
は，企業において致命的な問題である．このような問題があるにもかかわらず，1800

億行以上のレガシーコードが依然として使用されていると推定されている [19, 20]．
レガシーシステムの変更や修正に多くの期間とコストがかかる問題を解決するため

に，レガシーシステムのモダナイゼーションがしばしば行われる．レガシーシステム
のモダナイゼーションとは，保守コストの削減と柔軟性の向上を目的に，ソフトウェア
のコンポーネントやプラットフォームを交換，再開発，移行することで，既存のソフト
ウェアシステムを進化させるプロセスである．ソフトウェア保守を繰り返し，システ
ムが古くなり最終的にソフトウェア保守がビジネスニーズに追い付かなくなった場合，
ソフトウェア保守よりも広範囲な変更を伴うモダナイゼーションが必要になる．レガ
シーシステムがいまだに多くの企業で利用されているため，レガシーシステムのモダ

3

ナイゼーションは多くの企業の IT戦略上重要な課題であり，レガシーシステムのモダ
ナイゼーションサービスを提供する IT企業も多い．調査会社のMarketsandMarkets

社によると，レガシーシステムのモダナイゼーションサービスの市場は 2024年に 198

億米ドルとなり，2029年には 396億米ドルまで成長すると予測している [21]．
しかし，産業界においてレガシーシステムのモダナイゼーションは十分に進んでい
ない．モダナイゼーションの推進を困難にする要因として，以下の点が指摘されてい
る [18]．

時間的制約 有識者やドキュメント不足などの影響を受け，計画通りの予算および期
間で完了することが困難．

費用対効果の見積り 経営陣は，一度投資した際はその回収を優先し，モダナイゼー
ションの費用対効果の説明を求める．しかし，システム開発の初期段階で，モ
ダナイゼーションの費用および効果を見積もるのは難しい．

データ移行 レガシーシステムの多くはリレーショナルデータベースを使用しておら
ず，最新のシステムへのデータ移行に失敗する可能性が高い．

システムの複雑化 その場限りの保守開発が繰り返された結果，レガシーシステムが
複雑化しており，モダナイゼーションを難しくしている．

知識不足 技術知識として，レガシーシステム特有のデータベース，OS，ミドルウェ
アなどの専門的な知識が求められる．また業務知識として，レガシーシステム
が担っている業務を理解している必要がある．しかし，ドキュメント不足がこ
れらの問題を一層深刻にしている．

テストの困難さ システムの複雑化および知識不足により，テストケースの抽出が困
難になり，モダナイゼーション前後のシステム機能を比較するテストに多くの
時間がかかる．

業務ロジックの特定と優先順位付け 業務の有識者不足により，レガシーシステムの
中からモダナイゼーション対象の業務ロジックを特定し，優先順位を付けるこ
とが困難．

組織からの抵抗 レガシーシステムの専門知識を持った技術者が不要になることを恐
れるシステム開発者から協力を得にくい．また，変化を好まないシステム利用
者も，新しい技術やユーザーインターフェースへの適応を嫌がる．

このように，モダナイゼーションの推進には技術面のみならずビジネス面にも課題
があり，不具合が顕在化していないシステムを最新化する動機は生まれにくい．特に，
時間的制約や費用対効果の見積りの難しさは，モダナイゼーションが進まない大きな
課題である [18]．そのため，レガシーシステムには保守コストの増加，開発生産性の
悪化，有識者不足といった問題があるにもかかわらず，モダナイゼーションは進んで
いない現状がある．

4

1.3 ソフトウェア保守とモダナイゼーションの関係
モダナイゼーションはソフトウェア保守の一部として位置づけられ，「モダナイゼー
ション以外のソフトウェア保守」（以下，単に「ソフトウェア保守」と呼ぶ）と「モダ
ナイゼーション」は密接に関連している．ソフトウェア保守は，ソフトウェア納入後
の運用フェーズにおける反復的なソフトウェアの変更を指し，主に欠陥の修正や小規
模な機能強化などが中心となる．本節では，ソフトウェア保守とモダナイゼーション
の関係について述べる．
最初に 1.1節で述べたとおり，ソフトウェア保守とは “ソフトウェアの納入後，ソフ

トウェアに対して加えられる，欠陥の修正，性能などの改善，変更された環境に適合
させるための修正”を指す [1]．これは，ソフトウェアに対して小さな変更を繰り返し
加えていく増分的かつ反復的なプロセスである．多くの場合，保守作業の大半は欠陥
の修正や大きな構造変更を伴わない小さな機能強化で占められている [22]．また，独
立行政法人情報処理推進機構では，「改修・保守」という用語を用いて，ソフトウェア
保守を “納入後のシステムの運用フェーズで，ベースとなるシステムが存在し，機能追
加など改修を伴う開発” と定義している [23]．このように，ソフトウェア保守は欠陥
の修正や機能強化を目的とした，運用フェーズで継続的に実施される小規模な変更を
含む作業と位置付けられる．
次に 1.2 節で述べたとおり，モダナイゼーションとは “保守コストの削減と柔軟性

の向上を目的に，ソフトウェアのコンポーネントやプラットフォームを交換，再開発，
移行することで，既存のソフトウェアシステムを進化させるプロセス”を指す [18]．ソ
フトウェア保守を継続することで，ある程度の期間はビジネスニーズに対応できるが，
システムの老朽化が進むにつれて保守だけではビジネスニーズの増加に追随できなく
なる．その際には，ソフトウェア保守よりも広範囲な変更を伴い，多くの時間と労力
を要するモダナイゼーションが必要になる [22]．また，独立行政法人情報処理推進機
構の定義では，このモダナイゼーションに相当する作業を「再開発」と呼び，“既存シ
ステムが存在し，機能仕様を殆ど変更する事無く，作り直す開発”としている [23]．す
なわち，モダナイゼーションは保守コストの削減や柔軟性の向上を目的とした，ソフ
トウェアおよびシステム全般を大規模に更新する作業として位置付けられる．
図 1.2にソフトウェア保守からモダナイゼーションへのライフサイクルを示す．こ

の図では，縦軸をソフトウェアの機能量，横軸が時間の経過とし，破線は時間の経過
とともに機能要求が増えていくことを，実線は実装されたソフトウェアの機能量を表
している．図 1.2の左側に示される開発フェーズでは，機能要求が満たされるまでソ
フトウェアが開発され，納入後は保守フェーズへと移行する．保守フェーズでは，増
え続ける機能要求に対応するため，欠陥修正や機能追加などのソフトウェア保守が繰
り返し行われる．しかし，時間の経過とともに保守性が悪化すると，ソフトウェアの

5

ソ
フ
ト
ウ
ェ
ア
機
能
量

時間

開発

保守

モダナイゼーション

保守

保守効率悪化

図 1.2 ソフトウェア保守からモダナイゼーションへのライフサイクル

（注） 文献 [22]の図 1-3に基づき作成

保守のみでは増大する機能要求に追随できなくなる．そこで，より広範囲な変更を伴
い，多くの時間と労力を要するモダナイゼーションが行われる．このように，ソフト
ウェア保守からモダナイゼーションへのフェーズの移行は連続的なものであり，厳密
な境界の設定は困難である．しかし，変更の規模や目的に着目することで，両者を概
念的に区別できる．

1.4 ソースコード静的解析
1.4.1 コンピュータを用いたソースコードの分析
1.1節でも述べたとおり，長期間運用されるソフトウェアの開発において，保守作業
にかかるコストが大きい．そのため，保守作業を支援する手法やツールの研究・開発
が盛んに行われている．保守作業を支援する手法やツールの中には，コンピュータを
用いてソースコードを分析し，保守作業に有用な情報を自動的に抽出するものが多い．
開発者は，ソースコードのどこをどのように変更するか，また変更後にどのようなテ
ストを行うべきかを決定するため，ソフトウェアを実際に動作させたり，ソースコー
ドを読み込んだりすることで，ソフトウェアの振る舞いや呼び出し関係を分析する必
要がある．しかし，ソフトウェアの規模が大きくなるにつれて，手動での分析は困難
になる．そのため，コンピュータを用いたソースコードの分析手法が求められている．
これらの手法やツールのうち，代表的なものを以下に示す．

リバースエンジニアリング リバースエンジニアリングとは，システムの構成要素
(component)および構成要素間の関係を特定し，そのシステムを別の形式，も
しくはより高い抽象度で表現することである [24]．ソフトウェア開発環境の
中には，Imagix 4D[25] 等のようにソースコードからフローチャートやコール

6

グラフ（関数間の呼び出し関係を表すグラフ）を生成する機能を持つものや，
Rational Software Modeler[26]等のようにソースコードからクラス階層情報を
抽出し，可視化する機能を持つものが存在する．また，リバースエンジニアリン
グを行う手法の一種として，設計の復元 (Design Recovery)[27]を行う手法が研
究されている．設計の復元とは，設計に関する抽象概念 (Design Abstraction)

をソースコードおよび他の情報（設計書や開発者の経験，対象とする問題とド
メインに関する一般的な知識）から再現することである [27]．設計を復元する
代表的なツールとして，ソースコード中からデザインパターン [28] の実装部
分を自動的に特定するツール [29, 30]をいくつか挙げることができる．これら
は，ツールの開発者もしくは使用者がデザインパターンに関する一般的な知識
（デザインパターンが実装されている部分の構文的特徴など）をあらかじめ与え
ておくと，その知識に基づいてデザインパターンの実装部分を対象ソースコー
ド中から特定する．このように，デザインパターンの実装部分を特定すること
は，保守作業を行ううえで有益であるとされている．例えば，保守対象のソー
スコード内で実装されているデザインパターンを明示すると，保守作業にかか
る時間と混入する欠陥の数が減少したという実験結果が報告されている [31]．

回帰テスト 保守作業を困難にする要因の 1つとして，ソースコードの一部を変更す
ると，変更部分だけでなく他の部分の振る舞いも変化する可能性が指摘されて
いる [32]．
そのため，回帰テスト（変更後の振る舞いが要求を満たしているかを確認する
ためのテスト）では，変更部分のテストだけでなく，他の部分についてもテス
トを検討する必要が生じる．このことから，必要十分なテストの組み合わせを
算出するための手法が数多く提案されている [32, 33]．
保守対象がオブジェクト指向プログラムの場合，Dynamic Dispatch（同じ型の
参照型変数であっても，実行時におけるインスタンスの型に依存して呼び出さ
れる手続きが変化すること）が原因で，開発者にとって波及効果を理解するこ
とが難しくなる [32]．よって，一般的な手続き型プログラムと比較して，オブ
ジェクト指向プログラムの方が，回帰テストにおいて実行すべきテストを適切
に特定することが難しいと言える．この問題を解決するために，Chianti とい
うツールが開発されている [32]．Chiantiに，Java言語で記述された変更前と
変更後のソースコードおよび変更前のソースコード用に作られたテストコード
の集合を与えると，入力したテストコードの中で，再度動作させるべきものの
みを提示する．Chaintiは，まず，変更前と変更後のソースコードについて，仮
想メソッド（子クラスのメソッドがオーバライドできるメソッド）をオーバラ
イドするメソッドの集合のそれぞれ算出する．そして，それらの差分を求める
ことで Dynamic Dispatchの変化を特定し，Dynamic Dispatch が変化する可
能性のあるテストコードを提示する．

7

ソースコード解析 ソースコード解析とは，ソースコードの中身や動作を解析する技
術の総称である．ソースコード解析の例として，メトリクス計測がある．ソー
スコードの保守性（保守しやすさ）を評価するメトリクスの代表的なものとし
て，CKメトリクス [34]が挙げられる．CKメトリクスは，オブジェクト指向
プログラムに含まれるクラスを対象とした 5つの複雑度メトリクスから構成さ
れている．CK メトリクスとして，複雑度メトリクスが満たすべき数学的性質
[35] をおおむね満足していること [34]，加えて，他のメトリクスの組み合わせ
よりも欠陥の発生を予測に有用であること [36]が確認されていることが挙げら
れる．
プログラムスライシングの結果を利用したメトリクスがいくつか提案されてい
る [37]．例えば，メトリクス Tightness[37]は，C言語における関数中の文のう
ち，全てのスライスに共通して含まれる文の割合であり，ほとんど文が返値や
大域変数の値に影響与えていると高い値になる．直観的には，単一の目的で作
成された関数は Tightnessの値が高くなる．このようなプログラムスライシン
グに基づくメトリクスを用いることで，オープンソースソフトウェアに含まれ
る関数の凝集性が低下していることを定量化できることが確認されている [38]．
Kataokaらは，リファクタリングの効果を計測する 3つのメトリクスを提案し
ている [39]．リファクタリング [40, 41] とは，保守性の改善を目的とした変更
作業のことである．これらメトリクスは，メソッド間の結合に基づいてリファ
クタリングの効果を計測する．具体的には，1つ目は返値を介した結合，2つ目
は引数を介した結合，3 つ目は変数の共有に基づく結合を計測する．リファク
タリングを行う開発者は，これらメトリクスを用いることで，リファクタリン
グによりメソッド間に存在する結合がどのように変化したかを調査できる．

このように，ソフトウェア保守の技術は多数存在する．本論文では，昨今のコン
ピュータの処理能力の向上を受けて，解析可能な事象が増えてきたことでさかんに研
究されているソースコード解析技術に注目し，ソフトウェア保守の支援をおこなう．

1.4.2 ソースコード解析
ソースコード解析は，静的解析と動的解析に分類できる．まず，本節ではソース
コード静的解析とソースコード動的解析の各々について説明し，その関係について考
察する．

ソースコード静的解析 ソースコードを実際に動作することなく解析することで，ソー
スコードからその性質や振る舞いを抽出し，それを開発者に提供する技術であ
る．ソースコードの中身を扱うため，網羅性の高い解析ができる．

ソースコード動的解析 ソースコードを実際もしくは仮想的な動作環境上で実際にテ

8

ストケースを与えてプログラムを動作させ，その動作結果や動作中のログなど
を解析することで性質や振る舞いに関する情報を開発者に提供する技術である．
マルチスレッド処理など，ソースコード静的解析で発見しづらい振る舞いを解
析できるが，網羅的な振る舞いを調べるには大量のテストケースが必要となる．

ソースコード静的解析とソースコード動的解析は解析しやすい性質や振る舞いが異
なるため，お互いに補完する技術であるといえる．ただし，ソースコード動的解析は
ソースコードを実際に動作させる必要があるため，開発途中や修正途中の未完全な
ソースコードに対して利用できない．さらに，ソースコード動的解析するためには解
析目的に則した十分な量のテストケースを準備する必要があるため，適用に対する初
期コストがソースコード静的解析に比べて大きい．そこで，本論文では実際のソフト
ウェア保守の現場で適用しやすいソースコード静的解析に注目する．
ソースコード静的解析におけるグラフ化は，解析対象に存在する個々の部品間の関
係を抽出し，抽象化し表現することを目的とした場合が多い．グラフ化の代表的な例
として，以下を挙げる．

• プログラムのソースコードを木構造で表現した抽象構文木
• 手続き，メソッドなどの呼び出し関係をグラフ化した CFG(Call Flow Graph)

• クラスの継承関係をグラフ化したクラス階層構造
• プログラム間のデータフローや制御構造をグラフ化したプログラム依存グラフ

グラフ化によって個々の部品間の関係が明確になるため，構文木からプログラム依
存グラフを作成する場合のように，グラフ化された情報を用いてより高度なプログラ
ム解析が行われることも多い．例としては，エイリアス関係（同一メモリ空間を指す
可能性のある式間の同値関係）にある変数の対の情報をもとに，より正確なデータフ
ロー関係の解析などが挙げられる．一般的に複数の解析を組み合わせた場合，解析コ
ストが上がるが，得られる情報の精度の向上が知られている．グラフの解析方法の例
として代表的なものを以下に挙げる．

• グラフ上の辺の探索による，到達可能な節点の計算
• グラフの比較による，同一部分の検出
• クラスの階層構造の深さ，手続き（メソッド）の数などの数値化
• 利用関係などの関係の行列化

一方で，メトリクス計測を用いたソースコード解析は，解析対象における個々を抽
象化し個々の性質を取り出すことを目的としている．メトリクスを用いた解析の代表
的な例として以下を挙げる．

• クラス数，メソッド数，コード行数（LOC）などのメトリクス
• トークンの抽象化を目的とした記号化

9

• プログラムの品質や再利用性の評価値
• ソフトウェア間の類似性

メトリクスとして計測された情報は個々の性質をある観点から観測したもので，こ
れらの情報を複数組み合わせることで，より多面的な観点から個々の解析対象を観測
できる．そのため，これらの数値を組み合わせることで，部品を評価するための新た
な評価基準を生み出すができることも多い．数値化された情報の多くは，統計的手法
を用いた評価に利用されることが多い．また，記号化された情報は個々の性質をある
観点から観測したものであるが，配列化や行列化を行うことで，解析対象全体の特徴
を示すことができる．そのため，統計的手法を用いた評価が行われることもあるが，
単に比較するために利用されることも多い．

1.4.3 ソースコード静的解析によるソフトウェア保守支援
ソースコード静的解析技術を利用してプログラムから抽出された情報をもとに，ソ
フトウェア保守の支援を目的として様々な解析が行われている．グラフ化した情報を
用いたソースコード静的解析の代表的な例を以下に示す．

最適化コードの生成 コンパイル時に必要のない命令を削除する
テストデータの自動生成 テストを行いたい実行経路を通るような入力データを実行

履歴から生成する
プログラムの結合 似た部分を結合することで，ただ単に結合した場合よりも高速化

を計る
デバッグ支援 プログラムスライス [37]を用いることで，デバッグ対象を限定する
影響波及解析 再テストすべきテストケースを限定することで，テスト工程を効率化

する
モデルチェック プログラムの正当性や安全性の検証
情報漏洩解析 プログラムの中で，セキュリティポリシーを満たさない文を検出する
プログラム理解支援 解析結果情報を提示することで，保守およびデバッグ作業を支

援する

次に，メトリクス計測を用いたソースコード静的解析の代表的な例を以下に示す．

ソフトウェア部品の評価 メトリクス値化された部品の性質から再利用性や品質を
評価

コードクローンの把握 コピーされたソースコードの検出する
コピー部品の把握 メトリクス計測された情報を配列化し，解析効率を上げる
ソフトウェア（部品）のクラスタリング メトリクス値等を比較し，同じ傾向にある

ソフトウェア (部品)を分類する

10

理解支援 解析結果情報を選別の基準とし，大量の部品からの選別作業を支援する

なお，ここで挙げる例は一部で，抽出されるプログラム解析情報および利用目的は
これら以外にも多く存在する．さらに，ここで挙げたいくつかのプログラム解析情報
を組み合わせることで，新たな解析をする手法も考案されている．

1.5 本研究の概要
1.3節では，ソフトウェア保守とモダナイゼーションの関係について述べた．本研究

では，運用フェーズで繰り返し行われるソフトウェア保守だけでなく，広範囲な変更
を伴うモダナイゼーションも含めたソフトウェア保守全般を研究対象とする．具体的
には，ソフトウェア保守およびモダナイゼーションにおいて発生する以下の課題につ
いて，ソースコード静的解析を用いて解決を試みる．

ソフトウェア保守におけるコードクローンの把握 　
• 情報検索技術に基づく細粒度ブロッククローン検出
• 情報検索技術と深層学習を用いたコード片類似性判定法の比較調査

モダナイゼーションにおける費用対効果の見積り 　
• 段階的再構築における依存関係分析を用いた費用対効果の試算

1.5.1 ソフトウェア保守におけるコードクローンの把握
1.1節でも述べたとおり，ソフトウェアの保守における問題のひとつとして，コード

クローンが指摘されている [8, 9]．コードクローンに対する様々な保守や管理の方法
が提案されているが，ソースコードの規模が大きくなるとソースコード中に含まれる
コードクローンも膨大な量となり，手作業でそれらを管理することは困難となる．そ
こで，コードクローンを自動的に検出することを目的とした様々なコードクローン検
出手法が提案されている [8, 42]．
Royらはコードクローンの定義として，コードクローン間の違いの度合いに基づき

以下の 4つのタイプに分類している [43]．

タイプ 1 空白やタブの有無，コーディングスタイル，コメントの有無などの違いを
除き完全に一致するコードクローン．

タイプ 2 タイプ 1 の違いに加えて，変数名などのユーザー定義名，変数の型などが
異なるコードクローン．

タイプ 3 タイプ 2の違いに加えて，文の挿入や削除，変更などが行われているコー
ドクローン．

タイプ 4 類似した処理を実行するが，構文上の実装が異なるコードクローン

11

タイプ 4のコードクローンは，構文的に類似していないが処理内容の意味的に類似し
たコード片であり，具体的には以下のような差異が挙げられる．

• 条件分岐処理や繰り返し処理などの制御構造の実装が異なる．
• 中間媒介変数の利用の有無が存在している．
• 文の並び替えが発生している．

構文的に類似していないタイプ 4のコードクローンは，全く異なる書き方がされてい
ることが多い．そのため，既存のコードクローン検出法の多くはタイプ 4のクローン
検出が難しい [15, 16]．
本研究では，情報検索という技術を活用し，タイプ 1からタイプ 4までのコードク
ローンを検出する手法について研究する．情報検索とは，コンピュータを用いて大量
のデータ群から目的に合致した情報を取り出す技術であり，自然言語で記述された文
書のみならず，ソースコードを含む多様な情報を対象とすることが可能である [44]．
情報検索の分野において，ベクトル空間モデルを用いて意味的に類似した文書を検索
する手法が広く知られている．ベクトル空間モデルを用いる手法では，文書を多次元
の特徴ベクトルで表現し，文書間の意味的な類似性の判定をベクトル間の類似度計算
に帰着させる [45]．このベクトル空間モデルで使用されるベクトル表現を，情報検索
技術に基づくベクトル表現と呼ぶ．本研究では，ソースコードを情報検索技術に基づ
くベクトル表現へと変換し，ベクトル表現間の類似度を計算することでコードクロー
ンを検出する．この手法は，構文的類似性に限らず，意味的類似性も捉えられる可能性
があるため，タイプ 1からタイプ 4までの幅広いコードクローンの検出が期待できる．
そこで本研究では，ソフトウェア保守におけるコードクローンの把握に関する以下
の 2つの研究課題に取り組む．

■情報検索技術に基づく細粒度ブロッククローン検出 最初に，情報検索技術に基づ
く細粒度ブロッククローン（コードブロック単位のクローン）の検出手法を提案する．
既存研究として，山中らは情報検索技術の一種である TF-IDF[44]を利用し，関数単
位でコードクローンを検出する手法（関数クローン検出法）を提案した [46]．関数ク
ローン検出法はタイプ 1からタイプ 4までのコードクローンを検出できる一方で，検
出粒度が大きいために検出漏れが起きるという課題があった．特に長年保守されたソ
フトウェアの場合，1つの関数内で多様な処理が実装されていることが多く，関数単位
の検出ではコードクローンを検出できないことがある．このような検出漏れを減らす
ために，本研究では関数単位よりも検出粒度の細かいブロッククローン（コードブロッ
ク単位のクローン）を検出する手法を提案する．本手法では，構文解析によりコード
ブロックを抽出し，TF-IDFを利用してコードブロックをベクトル表現に変換し，ベ
クトル表現間のコサイン類似度を計算することによって，タイプ 1からタイプ 4のブ
ロッククローンを検出する．また，クラスタリングの手法やベクトル表現のデータ構

12

造を工夫することにより，高速かつ低メモリ使用量の検出法を目指す．評価実験では，
提案手法の精度および検出速度を評価し，既存手法と比較する．

■情報検索技術と深層学習を用いたコード片類似性判定法の比較調査 次に，情報検
索技術と深層学習を用いたコード片の類似性判定法について調査する．コード片の
類似性判定法はソフトウェア工学における重要な基礎技術であり，コードクローン
検出やコード片検索などで使用される．コード片の類似性判定法では，構文的な類似
性だけでなく，処理内容の意味的な類似性も判定することが重要である．前述した，
TF-IDFを利用したベクトル表現とコサイン類似度を組み合わせた類似性判定法では，
処理内容の意味的な類似性を高速に判定できる一方で，検出漏れが多いという課題が
あった．また一方で，深層学習を用いた類似性判定法も提案されているが，この手法
は意味的な類似性を高い精度で判定できる反面，実行速度が遅いという課題があった．
そこで本研究では，判定精度と実行速度の 2つの観点から，情報検索技術に基づくベ
クトル表現と深層学習の効果的な組み合わせについて調査する．調査実験では，5種
類のベクトル表現間での比較と，深層学習を用いた既存手法との比較をする．

1.5.2 モダナイゼーションにおける費用対効果の見積りの難しさ
ビジネス上の変化への迅速な対応や保守開発工数の削減の観点から，レガシーシス

テムのモダナイゼーションに対する企業の需要は大きい [18]．特に，企業でモダナイ
ゼーションを実施するシステムはビジネス上重要である場合が多いため，失敗リスク
を最小限に抑えることが求められる．この失敗リスクを軽減する戦略として，システ
ムの一部を切り出す段階的再構築が提案されている [47, 48]．
しかし，レガシーシステムのモダナイゼーションに対する企業の需要は大きい一方

で，1.2節でも述べたとおり，モダナイゼーションの費用対効果の見積りの難しさが指
摘されている [18]．企業の経営陣は短期的な投資収益率を重視する傾向があり，一度
投資が決定されると，その投資回収が優先される [18]．そのため，企業においては要件
定義の前工程で行われるシステム化計画 [49]において，モダナイゼーションの費用対
効果を見積もり，ユーザー企業とベンダー企業の間で合意を形成することが重要であ
る [50]．特に，システム化計画工程において行われる見積りは，試算とよばれる [50]．
モダナイゼーションの失敗リスクを軽減する段階的再構築においても，費用対効果

の試算は難しい．実際，著者が所属する企業で段階的再構築を実施した事例では，計
画当初の見積りと実績値に乖離が生じている．そこで本研究では，モダナイゼーショ
ンにおける費用対効果の見積りに関する以下の研究課題に取り組む．

■段階的再構築における依存関係分析を用いた費用対効果の試算 本研究では，シス
テムの依存関係分析を用いて段階的再構築の費用対効果を試算する手法を調査する．
具体的には，過去に段階的再構築を実施した大規模な金融システムを対象にこの手法

13

を適用し，試算の妥当性を検証する．本研究では，システムの規模と依存関係の情報
を活用し，費用として段階的再構築に必要な工数を，効果として削減可能な保守開発
工数を試算し，実績値との乖離を比較する．また，プロジェクトの関係者にヒアリン
グを行い，適用手法の妥当性を定性評価する．

1.6 各章の構成
以降，第 2章では情報検索技術に基づいて細粒度ブロッククローンを検出する手法
について述べる．第 3章では情報検索技術と深層学習を用いてコード片の類似性を判
定する手法の比較調査について述べる．第 4章では段階的再構築における依存関係分
析を用いた費用対効果の試算を産業システムに適用し調査した結果について述べる．
最後に，第 5章では本論文のまとめと将来の研究方針について述べる．

14

第 2章

情報検索技術に基づく細粒度ブ
ロッククローン検出

2.1 まえがき
ソフトウェアの保守における問題のひとつとして，コードクローンが指摘されてい
る [51]．コードクローンとは，ソースコード中に含まれる互いに一致または類似した
部分を持つコード片のことであり，一般的に，コードクローンの存在はソフトウェア
の保守を困難にすると言われている．コードクローンに対する様々な保守や管理の方
法が提案されているが，ソースコードの規模が大きくなるとソースコード中に含まれ
るコードクローンも膨大な量となり，手作業でそれらを管理することは困難となる．
そこで，コードクローンを自動的に検出することを目的とした様々なコードクローン
検出手法が提案されている [8, 42]．
山中らは TF-IDF[44] と LSH[52] を利用することによって，意味的に処理が類似
した関数単位のコードクローンを検出する手法（関数クローン検出法）を提案した
[46]．コード片単位で検出を行う場合，構文の不完全な部分で終了するコード片など，
集約を行うことが困難なコードクローンが多く検出されることがある [53]．一方，関
数クローンは処理の内容がまとまっているため，開発者にとって集約の対象になり
やすいコードクローンを検出できる．山中らの手法では，情報検索技術の一種である
TF-IDF[44] を用いて，ソースコード中の識別子や予約語に利用される単語に対して
重み付けを行う．そして，重み付けに基づいて各関数を特徴ベクトルに変換し，特徴
ベクトル間の類似度を計算することによって，関数クローンの検出を行う．また，近
似最近傍探索アルゴリズムの一種である LSH（Locality-Sensitive Hashing）[52] を
用いて，特徴ベクトルをクラスタリングすることにより，検出の高速化を行っている．
しかし，山中らの手法では検出粒度が関数単位のため，長い関数内の一部にコードク
ローンが含まれた場合，検出漏れが生じる可能性がある．このような検出漏れを減ら
すためには，関数単位より小さい粒度で構文上のまとまりがあるコードクローンの検

15

出を行うべきである．
そこで，本研究ではコードブロック単位のコードクローン（ブロッククローン）を
検出する手法を提案する．関数単位より小さい粒度であるコードブロック単位で検出
を行うことで，関数単位では検出できなかったようなコードクローンが検出でき，検
出精度が向上する．本研究ではコードブロックを，関数と，関数内部の if，for，while

文などの中括弧で囲まれた部分と定義する．本手法では，まずソースコードに対して
構文解析を行い，コードブロックの抽出を行う．その後，抽出した各コードブロック
に対して TF-IDFを用いて特徴ベクトルに変換し，特徴ベクトル間の類似度を計算す
ることでブロッククローンの検出を行う．また本手法でも山中らの手法と同様，LSH

を用いた特徴ベクトルのクラスタリングを行い，検出の高速化を行う．
しかし，関数単位より小さい粒度で検出を行うため，検出時間とメモリ使用量が増
大する問題が発生する．この問題に対応するため，以下の 2点の工夫を行った．1点
目は，クラスタリング手法の LSHの変更である．LSHは様々な応用手法が研究され
ており，本研究では提案手法に適した LSHの検討を行った．その結果，multi-probe

LSH [54]と cross-polytope LSH [55, 56] を組み合わせた手法 [55]を用いて特徴ベク
トルのクラスタリングを行うことを選択した．multi-probe LSHは，従来の LSHが抱
えるメモリ使用量の問題点を改良したアルゴリズムである [57]．また，cross-polytope
LSH は TF-IDF を用いた特徴ベクトルのクラスタリングに適したアルゴリズムであ
る [55]．これらを組み合わせた手法を用いることで少ないメモリで高速なクラスタリ
ングが可能となった．2 点目は，特徴ベクトルを表現するデータ構造の変更である．
TF-IDFを用いた特徴ベクトルが疎（ほとんどの要素が 0）である性質に着目し，0以
外の要素のみを保持するデータ構造として実装した．これにより，メモリ使用量や入
出力時間の削減を実現した．上記の工夫を行うことで，山中らの関数クローン検出手
法より検出粒度が小さいにもかかわらず，より高速な検出を実現し，さらに大規模な
検出対象に対しても適用可能となった．
評価実験では，関数クローン検出法 [46]と，字句単位のコードクローン検出ツール
である CCFinderX [58] の，2つの手法を検出精度と検出時間の観点から比較を行っ
た．3つの C言語のプロジェクトに対して適用した結果，本手法が総合的に高い精度
でより多くのコードクローンを検出することができた．また，本手法は関数クローン
検出法や CCFinderXと比較して高速にコードクローンを検出することができた．ま
た，スケーラビリティの評価を行い，1KLOC から 10MLOC までの検出対象におい
て線形的に検出時間が増加することを確認した．
以降，2.2章では，本研究の背景として関数クローン検出法について述べる．2.3章
では，本研究で提案するブロッククローン検出法について述べる．2.4章では，本手法
の評価実験について述べる．2.5 章では，本研究の考察について述べる．2.6 章では，
関連研究について述べる．最後に，2.7章でまとめと今後の課題について述べる．

16

���������	�

�������� ���

	�
���

�
���

�

�

�����������

�������� ���

	�
���

�
���

�

�

����

�
�

�
�

図 2.1 長い関数内の一部にコードクローンを含む例

2.2 コードクローン
本章では，本研究の背景として山中らの関数クローン検出法と，その問題点につい

て述べる．

2.2.1 関数クローン検出法
山中らは TF-IDFと LSHを利用することによって，意味的に処理が類似した関数

クローンを検出する手法を提案した [46]．コード片単位でコードクローンの検出を行
う場合，構文の不完全な部分で終了するコード片など，集約を行うことが困難である
コードクローンが多く検出される恐れがある [53]．一方，関数クローンは処理の内容
がまとまっているため，開発者にとって集約の対象になりやすいコードクローンが検
出できる．また関数クローン検出法は，1.5.1項で説明したタイプ 1からタイプ 4まで
のコードクローンを検出可能である．この手法は，まず，入力されたソースコード中
のワード（例：予約語，識別子名）に基づいて各関数を特徴ベクトルに変換する．そ
して，特徴ベクトル間の類似度を求めることによってクローンペア（互いに処理が類
似したクローンの対）の集合をリストとして出力する．また，類似度の計算の直前に
LSH [52]を利用し，特徴ベクトルのクラスタリングを行うことによって，検出の高速
化を行っている．

2.2.2 関数クローン検出法の問題点
関数クローン検出法に対して以下の 2つの問題点が挙げられる．
1つ目は，関数単位の検出による問題点である．この手法は，関数全体ではなく，一

部のみがコードクローンになっている場合に検出することができない．例えば図 2.1

のように，長い関数内の一部にコードクローンが含まれる場合，検出漏れが生じる可
能性がある．

17

��
�

, �
�

, �
�

, ⊃�

�����

�����

�����

�����

�����

���� �

���� �

���� �

���� �

����� ����� ����� �����

������

������ 	
���

����

��������	

��� �������	

����
�����

�
�����

����
����

�����

����
����

�����

����
�����

�
�����

� � �

�������

����	

��
�

, �
�

, �
�

, ⊃�

��
�

, �
�

, �
�

, ⊃�

��� ��

��� �

��� 	

��� ��

��� �

��� 	

���� �

���� �

���� �

���� �

���� �

���� �

���� �

��� ��

�

 �

��� ��

��� ��

��� �

��� 	

���� �

��� ��

��� �

��� 	

���� �

���� �

���� �

���� �

���� �

��
�

, �
�

, �
�

, ⊃�

�	
�

, 	
�

, 	
�

, ⊃�

図 2.2 提案手法の概要

2 つ目は，メモリ使用量が多いという問題点である．関数を特徴ベクトルに変換す
る方法として関数クローン検出法は TF-IDFを用いているが，TF-IDFでは全関数で
出現したワードの種類数が次元数となるため，特徴ベクトルの次元数が非常に大きく
なる傾向にある．特徴ベクトルは各関数に 1個ずつ与えるため，次元数の大きい特徴
ベクトルを多数保持することになり，メモリ使用量が大きくなる．また，高速に検出
を行うために LSHを用いてクラスタリングを行っているが，LSHは精度を上げると
メモリ使用量が大きくなる特徴がある．よって，大規模プロジェクト（Linux Kernel

など）に対してコードクローンの検出を行う場合，メモリ不足で検出を完了できない
恐れがある．

2.3 提案する検出手法
2.2.2 節で述べた 2 つの問題点を踏まえ，新たなコードクローン検出法の必要性が
考えられる．そこで，本研究では関数単位より検出粒度を小さくした，コードブロッ
ク単位のコードクローン検出法（ブロッククローン検出法）を提案する．ブロックク
ローン検出法では，関数クローン単位では検出できなかったコードクローンの検出が
可能になる．例えば図 2.1のように，長い関数内の一部にコードクローンが含まれる
場合も，提案手法では検出が可能である．また，字句単位の検出より処理の内容がま
とまっているため，開発者にとって集約などの保守作業の対象となりやすい．以上の
観点から本手法には有用性があると考えられる．
本研究では，2.2.1 節で説明した山中らの関数クローン検出法を基に，タイプ 1 か

18

らタイプ 4すべてに対応したブロッククローン検出法を提案する．本手法の概要を図
2.2に示す．本手法は主に以下の 5つのステップで実行される．

STEP 1 ソースコードから抽象構文木を生成し，生成した抽象構文木からコードブ
ロック（2.3.1節参照）を取り出す．

STEP 2 STEP 1で抽出した各コードブロックから，ワード（2.3.1節参照）の抽出
を行う．

STEP 3 TF-IDFを利用し，STEP 2で抽出したワードに重み付けを行い，各コード
ブロックを特徴ベクトルに変換する．

STEP 4 LSHを利用し，STEP 3 で求めた各コードブロックに対する特徴ベクトル
のクラスタリングを行う．

STEP 5 STEP 4で求めたコードブロックの各クラスタの中で，特徴ベクトル間の類
似度の計算を行い，ブロッククローン（2.3.1節参照）を検出する．

本手法と関数クローン検出法の相違点は，以下の 3点である．

• コードクローンの検出粒度
• 特徴ベクトルをクラスタリングする手法の選択と実装
• 特徴ベクトルを表現するデータ構造の選択と実装

主な相違点はコードクローンの検出粒度を小さくした点である．本手法では関数単
位だけでなく，関数内のコードブロック単位の両方のコードクローンを検出する．検
出粒度を関数より小さくすることで，検出精度の向上を実現した（2.4.1節参照）．し
かし，検出粒度を小さくすると検出対象数が増加し，それに伴い検出時間とメモリ使
用量が増大する問題が新たに発生する．この問題に対処するため，さらに 2つの変更
を適用した．
まず，特徴ベクトルのクラスタリングを行う LSHを変更した．関数クローン検出法
でも LSHを用いて特徴ベクトルのクラスタリングを行われており，これにより高速な
検出を実現している．しかし，近年 LSHは様々な応用手法が研究されており，関数ク
ローン検出法では LSHの応用手法の検討まではされていない．また，LSHによるクラ
スタリングが占める時間の割合が大きく無視できないため [59]，本手法に適した LSH

の検討を行った．その結果，multi-probe LSH [54] と cross-polytope LSH [55, 56]

の 2 つの既存手法を組み合わせる手法 [55] に変更した．multi-probe LSH とは，空
間計算量の改良を行った LSHである．また，cross-polytope LSHとは，角度距離に
基づいてハッシュ化を行う LSHである．角度距離に基づいた cross-polytope LSHは
TF-IDFを用いた特徴ベクトルのクラスタリングが高速に行える．multi-probe LSH

を cross-polytope LSH に組み合わせることで，より少ない空間計算量でより高速に
クラスタリングが可能なることが示されている [55]．
さらに，特徴ベクトルを表現するデータ構造を変更した．特徴ベクトルは，検出対

19

象数の増加に伴いベクトルの次元が高次元になる性質があり，次元が高次元になるほ
どメモリ使用量とベクトルの計算時間が増大する．関数クローン検出法では，特徴ベ
クトルのすべての要素の値を保持するデータ構造をしている．関数単位の検出では問
題がないが，検出粒度を小さくしコードブロック単位で検出を行うには，上記の高次
元の問題が無視できなくなる．そこで，本手法のように TF-IDFを用いた特徴ベクト
ルでは，ほとんどの要素が 0である疎なベクトルとなる性質に着目し，非 0要素のみ
を保持するデータ構造を選択した．データ構造を疎なベクトルとして実装することで，
メモリ使用量や計算時間，さらに入出力時間の削減を行った．
以上の変更により，関数クローン検出法と比較して検出粒度は小さくなったにもか
かわらず，より高速な検出を実現し，さらに大規模な検出対象に対しても適用可能と
なった．

2.3.1 用語の定義
コードブロック
本研究では，プログラミング言語において，複数の命令文を一括りにまとめたもの
をコードブロックという．多くのプログラミング言語では，コードブロックを入れ子
構造にすることができ，変数のスコープとしての意味を持つことがある．
本手法では，以下の 2つの条件のいずれかを満たすコードブロックを検出対象とす
る．対象言語は C言語と Java言語とする．

条件 1-1 関数の ‘{ }’で囲まれた範囲
条件 1-2 if，else，for，while，do-while，switch文の ‘{ }’で囲まれた範囲

ただし，後に ‘{ }’が現れない単文の命令文はコードブロックとしての纏まりがないた
め検出対象としない．また図 2.3の Block Aに対する Block Bや Block Cのように，
入れ子構造における親を持つコードブロックを検出可能であり，検出対象を再帰的に
探索する．

ワード
本手法では以下の条件 2-1，2-2のいずれかを満たすものをワードとして定義する．

条件 2-1 予約語
条件 2-2 識別子名を構成する単語

識別子名が複数の単語から構成される場合，以下の方法でワード単位に分割する．

• ハイフンやアンダースコアなどの区切り記号による分割
• 識別子名中の大文字になっているアルファベットによる分割

20

���������	�

�������

���������

����

�

����

�

�

�������

�������

�������

図 2.3 入れ子構造において親子関係にあるコードブロック

また，2 文字以下の識別子は，それらをまとめて同一のメタワードとして扱う．例え
ば，繰り返し文などでよく利用される iや jといった変数は，意味情報が込められてい
ない変数として扱うためである．さらに，条件分岐に用いられる if や while，繰り返し
に用いられる forや whileなどの予約語もワードとして扱う．なお，各ワードの大文字
と小文字による区別はつけず，同一のワードとして扱う．

ブロッククローン
本手法におけるブロッククローンについて説明する．最初にブロッククローンペア

について定義する．本手法では，以下の条件 3-1，3-2の両方を満たすコードブロック
対を，ブロッククローンペアと呼ぶ．

条件 3-1 コードブロック間の類似度が閾値以上

sim(CB1, CB2) ≥ p (0 ≤ p ≤ 1)

条件 3-2 入れ子構造において，CB1 が CB2 の親でなく，かつ CB2 が CB1 の親で
ない

次に極大ブロッククローンについて定義する．CB1，CB2 がブロッククローンペアで
あり，かつ CB1，CB2 それぞれを真に包含する如何なるコードブロックもブロック
クローンペアでないとき，CB1，CB2 を極大ブロッククローンと呼ぶ．本手法では，
極大ブロッククローンをブロッククローンと定義する．条件 3-2で示したように，ブ
ロッククローンペアはコードブロック間に入れ子構造における親子関係がないことが
条件である．コードブロック間に入れ子構造における親子関係が存在する場合，一方
のコードブロックが他方を包含していることを示している．例えば，図 2.3のコード
ブロック A と B は親子関係が存在し，包含関係にあるためブロッククローンペアで
ない．
また，極大ブロッククローンをブロッククローンと定義するとは，言い換えるとそ
れぞれ入れ子関係にあるコードブロックの類似度が閾値以上の場合，最も外側のコー

21

���������	�

�������

���������

����

�

����

�

�

����� �

����� �

�����������

�������

���������

����

�

����

�

�

����� �

����� �

図 2.4 極大コードブロックペアと重複したコードブロックペア

ドブロックペアをブロッククローンとするという意味である．例えば，図 2.4のコー
ドブロック Aと C，Bと D それぞれの類似度が閾値以上となる場合，最も外側のコー
ドブロック Aと Cをブロッククローンとする．

2.3.2 コードブロックとワードの抽出
本手法でのコードブロックとワードの抽出について説明する．最初にソースコード
に対して構文解析を行い，抽象構文木を生成する．本手法では，構文解析にはANTLR

v4*1を利用する．次に生成した抽象構文木に対して深さ優先探索で検索する．抽象構
文木から関数（2.3.1節の条件 1-1を満たすコードブロック）の部分木を取り出し，コー
ドブロックとして抽出する．そして，取り出した部分木から，コードブロック（2.3.1

節の条件 1-2を満たすコードブロック）の部分木を取り出し，関数の内側に存在する
コードブロックを抽出する．コードブロックの抽出後，各コードブロック内に含まれ
るワードの抽出を行う．

2.3.3 特徴ベクトルの計算
特徴ベクトルの計算では，ワードに対し TF-IDF[44] を利用して重みを計算し，そ
の値を特徴量として各コードブロックを特徴ベクトルに変換する．よって，各コード
ブロックの特徴ベクトルの次元数はソースコード中に存在する全ワードの種類数とな
る．本手法では，tf値はコードブロック中のワードの出現頻度を，idf値はソースコー
ド中のワードの希少さを表している．tf値は式 (2.1)，idf値は式 (2.2)で与えられる．

tf i,j =
ni,j∑

k∈bj
nk,j

(2.1)

*1 http://www.antlr.org/

22

idf i = log
|F |

|{f : f ∋ wi}|
(2.2)

ここでは，ni,j はコードブロック bj 内におけるワード wi の出現回数，
∑

k∈bj
nk,j は

コードブロック bj における全ワードの出現回数の和，|F |は全関数の数，|{f : f ∋ wi}|
はワード wi が出現する関数の数を示している．
関数クローン検出法と比較して，tf値の求め方をコードブロック単位に変更したが，

idf 値の求め方はコードブロック単位に変更せず関数単位のままである．なぜなら，
コードブロック単位で idf 値を求めるとワードの重み付けに偏りが生じてしまうから
である．あるワードがいくつのコードブロックに含まれるかは出現場所によって異な
る．例えば，図 2.3の関数内の変数 aはブロック Aと Bの 2個のコードブロックに含
まれるが，変数 bはブロック Aのみにしか含まれない．そのため，ソースコード中の
出現回数は同じにもかかわらず，出現するコードブロックの数が異なってしまう．idf

値はワードの希少性に基づいて重み付けを行っているため，偏りを無くすために関数
単位で求めた．
また，TF-IDF を用いた特徴ベクトルは，非常に高次元かつ疎となる特性がある．

そのため，非 0要素のみを保持する疎ベクトルとして実装することでメモリ使用量の
効率を改善した．さらに，特徴ベクトルの外部記憶装置への入出力処理の時間を高速
化した．

2.3.4 特徴ベクトルのクラスタリング
特徴ベクトルのクラスタリングとして，近似最近傍探索の一種である LSH[52]を用

いた．LSHとは，高次元なデータを確率的にハッシュ化し，近似的に近傍点を見つけ
るアルゴリズムである．クローンペアとなる特徴ベクトルは近傍点で表されるため，
LSHを用いてクラスタリングすることで類似した特徴ベクトルを高速に絞り込むこと
ができ，クローン検出の高速化を実現している．
最初に，LSH の一般的な説明を述べる．LSH は，(c, r)-Approximate Nearest

Neighbor(ANN) と，(r, cr, p1, p2)-sensitive hash を用いて表される．(c, r)-ANN と
は，近似最近傍探索の問題定義であり，(r, cr, p1, p2)-sensitive hash とは，空間的に
距離が近い点が同じハッシュ値を取る確率が高くなる確率的ハッシュ関数である．
(c, r)-ANNと，(r, cr, p1, p2)-sensitive hashの定義を以下に示す．
Rd 上に距離関数 D を定義する．

(c, r)-ANN 実数 c > 1，実数 r > 0，任意のクエリ q ∈ Rdが与えられたとき，p ∈ Rd

を q の正解最近傍点とし，D(p, q) < r ならば，

P ′ =
{
p′ ∈ Rd : D(p′, q) < cr

}
で定義される Rd の部分集合 P ′ を求める問題を (c, r)-ANNと呼ぶ．

23

(r, cr, p1, p2)-sensitive hash 任意の点 p，q ∈ Rd が与えられたとき，
• if D(p, q) < r then Pr[h(p) = h(q)] ≥ p1

• if D(p, q) > cr then Pr[h(p) = h(q)] ≤ p2

を満たすハッシュ関数 h を (r, cr, p1, p2)-sensitive hash と呼ぶ．Pr は条件式
が真となる確率を表している．

ここでは一般的な LSH で用いられる定義を示したが，上記のハッシュ関数 h を変
更するなど様々な LSH の応用手法が提案されている．関数クローン検出法ではユー
クリッド空間に対する LSH を実装した E2LSH[60]*2を用いてクラスタリングを行い
検出の高速化を実現しているが，他の LSHの検討までは行われていない [46]．そこで
本研究では，本手法により適した LSHの検討を行った．
一般的に LSHを用いて大規模のデータセットを高い精度で求めようとすると，メモ
リ使用量が非常に大きくなるという問題点がある [57, 54]. そこで，メモリ使用量を改
良するためmulti-probe LSH[54]という手法が提案されている．LSHのアルゴリズム
は，空間的に距離が近い 2点が同じハッシュ値になる確率が高くなるようなハッシュ
関数を用い，同じハッシュ値を取る点を同じバケットに入れることで近傍点の検索を
行う．しかし LSH は確率的手法であるため，近い 2 点が偶然に別のバケットに入る
可能性が存在する．従来の LSH では複数のハッシュテーブルを用いることで確率的
な誤差を少なくし精度を上げている．そのため，大規模なデータセットに対してはよ
り多数のハッシュテーブルが必要となり，LSHのメモリ使用量の増大につながってい
る．multi-probe LSHは，ある点が入るバケットだけでなく，空間的に距離が近いバ
ケット群も調べるという手法である．これにより，少ないハッシュテーブルでも偶然
別のバケットに入った点の見落としを防いでいる．実際に，192次元のデータセット
に対して同じ再現率 (0.90)を得るために，従来の LSHは 49個のハッシュテーブルが
必要だったのに対し，multi-probe LSHは 3個のハッシュテーブルで検索時間をほぼ
落とさずに達成したという結果が示されている [54]．
本手法では，TF-IDFを用いた特徴ベクトルに対し，コサイン類似度によって類似
したベクトルの検索を行うが（2.3.5節参照），これらは情報検索の分野でよく用いられ
る手法であり，上記のようなベクトル空間に対する LSHがいくつかある．その中で，
角度距離に基づいてハッシュ化を行う cross-polytope LSH[55, 56]が，理論的に保証
されており計算時間の観点から実用的な手法として提案されている．cross-polytope

LSH は，実用性の面で優れているとして既に提案されていた hyperplane LSH[61]と
比較し，1.2倍から 4.0倍高速に同じ精度で検索できるという結果が示されており，さ
らに TF-IDFを用いた特徴ベクトルの場合は少なくとも 3倍高速になるという結果も
示されている [55]．
Andoniらは multi-probe LSHを cross-polytope LSHに組み合わせた手法 [55]を

*2 http://www.mit.edu/ andoni/LSH/

24

提案しており，この 2つの LSHを組み合わせた手法を本研究では選択した．なお，2

つの手法の組み合わせの実装として FALCONN [55]*3 ライブラリを利用した．

2.3.5 特徴ベクトルの類似度の計算
本手法ではコサイン類似度を用いてクローンペアの判定を行う．コサイン類似度は
多次元ベクトルの類似度を表す尺度であり，次元が Vである 2つの特徴ベクトル a⃗, b⃗

間の類似度は以下の式 (2.3)で与えられる．

sim(⃗a, b⃗) = cos(⃗a, b⃗) =

∑|V |
i=1 aibi√∑|V |

i=1 ai
2

√∑|V |
i=1 bi

2
(2.3)

TF-IDFの計算式より，特徴量は常に正の値を取るため，コサイン類似度は 0から
1の範囲となる．コサイン類似度が閾値以上であれば，それら 2つのコードブロック
はクローンペアであると判定する．閾値は実行時の引数によって与えられる．

2.4 評価実験
本章では，本研究で提案したブロッククローン検出法の評価実験について述べる．
評価実験では，検出精度，検出時間，スケーラビリティの 3つの観点から，本手法と
既存手法の比較を行い評価した．また，保守対象とならないコードクローンと，コー
ドクローンに対する保守作業の調査も行った．最後にブロッククローンの実例を示し，
本手法の特徴について考察する．
2.4.1節の本手法と既存手法の検出精度の評価では，本手法の拡張元であり検出粒度
が異なる関数クローン検出法と，高速かつスケーラビリティの高い字句単位の検出法
の中で代表的である CCFinderX [58]を比較対象として選び評価した．2.4.4節の検出
時間とスケーラビリティの評価では，本手法の有用性を確認するため，上記の 2つに
加えて，抽象構文木を用いた検出法の Deckard[62]，プログラム依存グラフを用いた検
出法の Scorpio [63, 64]の 2つを比較対象として追加して評価した．さらに 2.4.7節で
は，同じコードブロック単位の検出手法として，粗粒度なコードクローン検出法 [65]

を対象とした比較実験も行った．*4 なおブロッククローンを検出する閾値は，本実験

*3 https://falconn-lib.org/
*4 本実験において，本手法では最小一致トークン数を 30，類似度を 0.9に，関数クローン検出法では最
小一致トークン数を 30，類似度を 0.9に，CCFinderXでは最小一致トークン数を 50，最小トーク
ンタイプ数は 12に，Deckardでは最小一致トークン数を 50，類似度を 0.85，トークンストライド
を 2に，Scorpioでは最小一致ノード数を 7に，粗粒度なコードクローン検出法では最小一致トーク
ン数を 50 と設定した．本手法と関数クローン検出法の各パラメータは既存研究で信頼性が高いと示
された値を採用した [46]. CCFinderX，Deckardの各パラメータは既存の実験で実際に用いられた
値を採用した [66]. Scorpioのパラメータは既存研究を参考に設定した [64]．粗粒度なコードクロー
ン検出法のパラメータは CCFinderXを参考に設定した．

25

では関数クローン検出法の論文に基づき，0.9と設定し検出を行った [46]．
2.4.1 節の評価実験においては，複数の手法の検出結果からクローンペアをサンプ
リングし，検出結果が正しくコードクローンであるか目視で判断するだけでなく，実
際に保守対象となり得るかコードクローンの研究者にアンケートを行うことで検出精
度を評価した．したがって，単にコード片が外見上類似しているだけでなく，ソフト
ウェアを保守管理するという観点から実際に有用なコードクローンの評価方法となっ
ている．検出されたコードクローンがどの程度保守の対象になるのかは実際の開発で
利用する際に非常に重要となる．既存の研究ではあまり評価されていなかったが，本
研究ではこの面についても評価した．
このように，複数の手法の検出結果からクローンペアをサンプリングし，人手でコー
ドクローンか否かを判断して精度を評価する方法は，コードクローン検出手法の比較
評価で一般的に用いられる [67]．コードクローンには明確な定義がなく曖昧であるた
め，人間の判断が重要となる．また，膨大なコードクローンの検出結果をすべて人手
で判断することは困難であるため，サンプリングにより判断対象を絞り込む必要があ
る．本研究では，ブロック単位，関数単位，字句単位といった検出粒度の異なる代表
的なクローン検出ツールを選定し，これらの検出結果からクローンペアをサンプリン
グした．そのため，サンプリングされたクローンペアには，異なる粒度のクローンペ
アが偏りなく含まれている．

2.4.1 関数クローン検出法と CCFinderXとの比較
本節では関数クローン検出法と CCFinderXの 2つの既存手法との比較実験につい
て述べる．コードクローンに対する保守作業として，集約や同時修正が挙げられる．
そのため，今回は集約または同時修正の保守対象となるコードクローンを検出できる
かという観点で検出精度を評価した．本実験では，対象プロジェクトから作成したベ
ンチマークに対する検出精度と検出時間の観点から比較を行う．本実験で検出対象と
したプロジェクトの一覧を表 2.1に示す．

表 2.1 検出対象プロジェクト

プロジェクト バージョン 言語 規模
Apache HTTPD*5 2.2.14 C/C++ 343 KLOC

PostgreSQL*6 8.5.1 C/C++ 937 KLOC

Python*7 2.5.1 C/C++ 435 KLOC

*5 http://httpd.apache.org/
*6 http://www.postgresql.org/
*7 http://www.python.org/

26

ベンチマークの作成方法
ベンチマークの作成は以下の 3ステップで行った．

1. 表 2.1のプロジェクトに対し，本手法，関数クローン検出法，CCFinderXの 3

つの手法でコードクローンを検出．
2. 各手法が各プロジェクトから検出したクローンペアから，30個のクローンペア
をランダムサンプリングし，合計 270個のクローンペア集合を作成．

3. (2) で作成した 270 個のクローンペアに対し，目視で集約または同時修正の保
守対象となるコードクローンかの判断を行い，ベンチマークを作成．

なお，ベンチマークに客観性を持たせるため，アンケートにより第三者にコードク
ローンの判断を依頼した．アンケートの概要を以下に示す．

調査対象 以下の 3名に依頼
• コードクローンの研究者 1名
• コードクローンの研究に従事している大学院生 2名

質問内容 集約または同時修正の保守対象となるか
回答方式 二択（はい/いいえ）

上記の質問を，検出結果からサンプリングした 270個のクローンペアに対して行った．
そして，過半数である 2人以上が保守対象と回答したクローンペアを正解とし，本実
験で用いる正解クローンペア集合としてベンチマークを作成した．これはアンケート
の結果が個人の判断に依存しないようにするためである. 本実験では，各プロジェクト
の正解クローンペア数は，Apache HTTPDが 74個，PostgreSQLが 46個，Python

が 62個となった．

比較結果
本節では，関数クローン検出法と CCFinderXとの比較実験の結果について述べる．

本実験では，ベンチマークを用いた検出精度と検出時間の観点から比較を行った．検
出精度の指標として，適合率，再現率，F値の 3つの指標を用いた．本実験における
3 つの指標を表 2.2 に示す．それぞれの手法と比較して，最も高い値を太字で示して
いる．

適合率
適合率とは，検出結果に対して真に正しかった割合を指し，正確性に関する指標と

して用いられる．本実験では，各手法が検出したクローンペアから，それぞれ 30個ず
つランダムサンプリングした．そして，サンプリングしたクローンペアについてアン
ケートを実施し，保守対象と判断された割合によって適合率を求めた．今回は過半数

27

である 2人以上がコードクローンと判断した場合を正解としている．この適合率の求
め方は，Bellonらの評価方法 [67]に基づいている．
本手法では，Apache HTTPDと Pythonにおいて，関数クローン検出法やCCFind-

erXより高い適合率が得られた．また，PostgreSQLにおいては，CCFinderXよりは
高い適合率が得られたが，関数クローン検出法より低い適合率となった．3つのすべ
てのプロジェクトの合計では適合率は 0.68であり，関数クローン検出法と同程度の適
合率，CCFinderXより高い適合率であることが確認できた．
本手法が PostgreSQL において適合率が低くなった原因として，出力処理の連続，
同じ識別子の多用，2文字以下の変数の多用，if文の連続のクローンが多数あることが
確認できた．

再現率
再現率とは，正解集合に対して実際に検出された割合を指し，網羅性に関する指標
として用いられる．本実験では，アンケートによって作成したベンチマークの正解集
合に対し，各手法が検出したクローンペアの割合によって再現率を求める．この再現
率の求め方は，Bellonらの評価方法 [67]に基づいている．
本手法では，Apache HTTPD，PostgreSQL において，関数クローン検出法や

CCFinderX より高い再現率が得られた．また，Python においては，関数クローン
検出法よりは高い再現率が得られたが，CCFinderX より低い再現率となった．3 つ
のすべてのプロジェクトの合計では，再現率は 0.70 であり，関数クローン検出法と
CCFinderXより再現率が高いことが確認できた．

表 2.2 検出精度の評価

検出手法 検出対象 適合率 再現率 F値
Apache HTTPD 0.90 0.74 0.81

本手法 PostgreSQL 0.57 0.87 0.69

Python 0.90 0.53 0.67

合計 0.68 0.70 0.69

Apache HTTPD 0.87 0.53 0.66

関数クローン PostgreSQL 0.83 0.74 0.78

検出法 Python 0.30 0.21 0.25

合計 0.67 0.47 0.55

Apache HTTPD 0.70 0.55 0.62

CCFinderX PostgreSQL 0.13 0.33 0.19

Python 0.87 0.63 0.73

合計 0.57 0.52 0.54

28

Python において再現率が低くなった原因として，Python にタイプ 2 のコードク
ローンが多く含まれることが確認できた（表 2.5参照）．表 2.5は，検出対象ごとのタ
イプ別の正解クローン数を示している．本手法は識別子名に基づいて検出を行うため，
識別子名の変更を伴うタイプ 2のコードクローンの検出は不得手である．

F値
F値とは，適合率と再現率の総合的な評価として用いられ，適合率と再現率の調和
平均によって求められる．
本手法では，Apache HTTPDにおいて F値が 0.81であり，関数クローン検出法や

CCFinderXより高い F値が得られた．PostgreSQLにおいては F値が 0.69であり，
CCFinderXよりは高い F値が得られたが，関数クローン検出法より低い F値となっ
た．また，Pythonにおいては F値が 0.67であり，関数クローン検出法よりは高い F

値が得られたが，CCFinderX より低い F 値となった．3 つのすべてのプロジェクト
の合計の F値は 0.69であり，関数クローン検出法と CCFinderXより F値が高いこ
とが確認できた．

検出時間
検出時間の比較では，表 2.1 の 3 つのプロジェクトに対する検出時間を測定した．
本実験の実行環境は，CPU Intel Xeon 2.80GHz 4core，メモリ 16GB，ハードディス
クドライブ，OS Windows 10 64bitである．
検出時間の比較結果を表 2.3に示す．本手法では，検出対象すべてのプロジェクト
に対して 3分以下でコードクローンを検出ができた．また，関数クローン検出法に対
して 3∼4割程度，CCFinderXに対して 4∼8割程度と，他の手法よりも短時間で検出
することが確認できた．

ベンチマークに含まれたコードクローンのタイプ
本節では，ベンチマークにおいて保守対象と回答されたコードクローンのタイプ別
の個数について説明する．2.4.1節で実施した，各ツールの検出結果からサンプリング
したコードクローンに対するアンケートにて，保守対象と回答したコードクローンの
タイプ（タイプ 1からタイプ 4）の調査を各回答者に行った．その結果に基づき，各手

表 2.3 検出時間の比較

検出対象 本手法 関数クローン検出法 CCFinderX

Apache HTTPD 1m 39s 4m 7s 2m 1s

PostgreSQL 2m 27s 8m 47s 5m 30s

Python 1m 15s 3m 33s 3m 10s

29

法が検出した正解クローンのタイプ別の個数と誤検出数を表 2.4に示す．今回は，保
守対象と回答された検出を正解クローン，保守対象と回答されなかった検出を誤検出
とする．なお，回答者によって回答が異なる場合，第 1著者が最終的な判断を行った．
これより，本手法と関数クローン検出法が実際にタイプ 1から 4まで検出可能であ
ることが確認できた．また，CCFinderX はタイプ 1と 2が検出可能であり，タイプ
3と 4は検出できないことが確認できた．表 2.4は各ツールの検出結果から 90個ずつ
抽出した結果の内訳であり，各タイプの検出数は母集団（各ツールの検出結果）に含
まれる絶対数ではないことに注意されたい．例えば，表 2.4において，CCFinderXの
タイプ 1より本手法のタイプ 1の数が多いが，CCFinderX と比べて本手法がより多
くのタイプ 1を検出結果に含んでいることを表していない．

2.4.2 保守対象と判定されなかったコードクローンの調査
本節では，2.4.1 節で実施したアンケートにて，ツールによって検出されたが保守
対象とならないと回答されたコードクローンについて説明する．今回はアンケートに
て，3人中 1人以下が保守対象となると回答した検出を誤検出とする．本手法，関数
クローン検出法，CCFinderXの 3つの手法にて誤検出した 88個のコードクローンを
調査し，原因を考察した．その結果を表 2.6に示す．今回は複数回出現した原因を手
法ごとに掲載している．
本手法では「2文字以下の変数の多用」，「if文の連続」，「同じ識別子の多用」，「出力
処理の連続」が原因として確認できた．特に「2文字以下の変数の多用」と「同じ識別
子の多用」は，本手法の識別子名に基づいた検出に起因する．本手法では 2文字以下
の変数を同一のメタワードに置換している．そのため，2文字以下の変数が多用され

表 2.4 ベンチマークに含まれたコードクローンのタイプ別内訳

検出手法 T1 T2 T3 T4 誤検出 合計
本手法 9 34 27 1 19 90

関数クローン検出法 5 29 25 1 30 90

CCFinderX 4 47 0 0 39 90

表 2.5 ベンチマークに含まれたコードクローンの内訳（検出対象ごと）

Apache HTTPD PostgreSQL Python

検出手法 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

本手法 4 14 8 1 4 10 3 0 1 10 16 0

関数クローン検出法 1 14 11 0 3 12 10 0 1 3 4 1

CCFinderX 2 19 0 0 2 2 0 0 0 26 0 0

30

ている場合，同一のワードが頻出していると判断し，誤検出の原因となる．また，一
般的によく使用される識別子名の場合，処理内容が異なっていても同じ識別子名が用
いられる傾向がある点も，誤検出の原因になる．
関数クローン検出法では「ツールの不具合」が原因として多く確認できた．これは

C言語のマクロの処理が適切に行われていない点に起因する．本手法ではマクロの処
理を適切に行えているため，ツールの不具合を原因とした誤検出は今回出現しなかっ
た．また，処理の内容は異なるが，二重の繰り返し構文の構造を内部に持つ関数も誤
検出として見られた．
CCFinderXでは case節やコードの断片，if文や代入文の連続の原因による誤検出

の例が目立ち，これらは Higoらの指摘と同様の結果が得られた [68]．本手法ではコー
ドブロック単位での検出を行うため，case節やコードの断片といった保守作業の対象
となりにくい誤検出は今回出現しなかった．
また，太字で表記した「if文の連続」は 3つの手法で共通して確認できた．

2.4.3 コードクローンに対する保守作業の調査
本節では，コードクローンと実際に適用する保守作業の関連性について，本手法，関

数クローン検出法，CCFinderXの 3つの手法との比較を行う．今回は，2.4.1節で実
施したアンケートにて 3人中 2人以上が保守対象となると判定したコードクローンに
対し，どのような保守作業を適用できるかについて以下のアンケートを行った．

調査対象 2.4.1節で実施したアンケートと同様
質問内容 どのような保守作業の対象となるか
回答方式 三択（複数回答可）

• 集約
• 同時修正
• その他（自由回答形式）

結果を手法ごとに分けて図 2.5に示す．なお，回答者によって異なる保守作業が適用
された場合，両方の保守作業を適用できることとする．また，その他の保守対象と判

表 2.6 保守対象と判定されなかったコードクローン

本手法 関数クローン検出法 CCFinderX

2文字以下の変数の多用 if文の連続 case節の断片
if文の連続 同じ識別子の多用 if文の連続
出力処理の連続 処理内容が異なる繰り返し構文 コードの断片
同じ識別子の多用 ツールの不具合 代入文の連続

31

��

����

��

��

��

��
��

��

�

��

��

��

��

��

��

��

	�

�

�����������������	
�	

�
�����

����

�������

図 2.5 ベンチマークに含まれたコードクローンに対する保守作業

断されたクローンペアについては，回答者と相談し同時修正の対象に含めた．
本手法では 90 個中 71 個のクローンペアが保守対象と判断された．その内，36 個
が同時修正の対象，35個が集約と同時修正の対象となった．関数クローン検出法では
90個中 60個のクローンペアが保守対象と判断された．その内，29個が同時修正の対
象，31個が集約と同時修正の対象となった．CCFinderXでは 90個中 51個のクロー
ンペアが保守対象と判断された．その内，35個が同時修正の対象，16個が集約と同時
修正の対象となった．また，いずれの手法においても集約のみの対象と判断されたク
ローンペアは 0個であった．
関数クローン検出法と比較して，保守作業の割合は同じであるが，保守対象となる
検出数が増加している．関数単位の検出法では集約の対象となりやすい点が長所とし
て挙げられている．本手法では検出粒度をコードブロック単位に小さくしたが，関数
単位の検出と保守作業の割合は変わらず，さらに保守作業の対象となりやすい傾向に
あることが確認できた．また CCFinderXと比較して，同時修正の対象数は同程度で
あるが，集約と同時修正両方の対象数は増加している．字句単位の検出法では集約を
行うことが困難なクローンが多く検出される点が指摘されていた．本手法では処理内
容にまとまりを持ったコードブロック単位の検出を行うため，字句単位の検出法より
集約の対象となりやすい傾向にあることが確認できた．以上より字句単位の検出法よ
り集約の対象となりやすく，また関数単位の検出法より保守作業の対象となりやすい
と言える．
さらに，本手法においてタイプ別に適用される保守作業の調査を行った．結果を図

2.6に示す．これより，タイプ 1は集約と同時修正のどちらの対象にもなりやすく，タ
イプが上がるにつれて集約の対象にはなりにくいことが分かった．

32

�

��

�

��

��

�

�

�

��

��

��

��

��

��

���� ���� ���� ����

�	
�

�
��	
�

図 2.6 本手法のタイプ別の保守作業

2.4.4 検出時間とスケーラビリティの評価
本節では，提案手法の検出規模ごとの検出時間とスケーラビリティの評価につい

て述べる．検出対象の規模の指標にはコメントや空行を除いた LOC を用いること
とした．LOC の計測には cloc*8を用いた．検出対象は，IJaDataset 2.0*9からラン
ダムにファイルを選択し，表 2.7 に示した LOC ごとのサブセットシステムを作成し
た．IJaDatasetとは，2万以上の Javaプロジェクトから成る，365MLOCのビッグ
データセットである．本実験の実行環境は，CPU Intel Xeon 2.80GHz 4core，メモリ
32GB，ソリッドステートドライブ，OS Windows 10 64bitである．また，Java仮想
マシンのスタック領域を 1GB，ヒープ領域を 15GBと設定して実行した．
検出時間の評価結果を表 2.7 に示す．これにより，10MLOC 規模の検出対象に対

して CCFinderX は検出に約 2 時間かかり，関数クローン検出法ではメモリ不足で

表 2.7 検出規模ごとの検出時間

LOC 本手法 CCFinderX 関数クローン検出法
1K 1s 4s 11s

10K 2s 8s 15s

100K 16s 1m 18s 2m 25s

1M 3m 1s 12m 24s 20m 4s

10M 29m 9s 2h 4m 55s メモリ不足で停止

*8 http://cloc.sourceforge.net
*9 http://secold.org/projects/seclone

33

終了したのに対し，本手法では約 30 分で検出可能であることが確認できた．また，
1KLOC から 10MLOC の検出規模に応じて線形的に検出時間が増加することも確認
できた．
表 2.7より，本手法は関数クローン検出法や CCFinderX より高速に検出できるこ
とが確認できた．また，10MLOC規模のプロジェクトに対して約 30分で検出できる
ことも確認できた．特徴ベクトルの次元を d，特徴ベクトル集合の大きさを nとした
時，クローン検出にかかる時間は O(dn2) である．しかし，LSH を用いてクラスタ
リングを行うことで，クローン検出時間は O(dnρ+1) となる．ρ は LSH の鋭敏性を
示す値で，LSHに適切なパラメータを与えることで，ρ ≤ 0.2に抑えることができる
[55]．よって O(dnρ+1) < O(dn2)となり，時間計算量は少なくなる．関数クローン検
出法と比較して本手法は検出粒度を下げているため n が大きくなるが，LSH を用い
ることで検出にかかる時間計算量の増加を抑えている．さらに，LSHの実装に用いた
FALCONNは高速に LSHを計算できるように実装されたツールであり，クラスタリ
ングを行うツールの変更が検出の高速化の主な要因であると考えられる．また，特徴
ベクトルを表現するデータ構造を疎ベクトルとして実装したことにより入出力時間の
短縮につながった．入出力時間が検出全体で占める割合も大きいため，特徴ベクトル
のデータ構造の変更も検出の高速化に貢献している．
また表 2.7 より，検出規模に応じて線形的に検出時間が増加することも確認でき
た．これに関しては，本手法や関数クローン検出法ではコードブロック，関数の抽出，
CCFinderX では字句の抽出にかかる時間の割合が全ステップ中で多いため，検出規
模に応じて線形的に時間が増加すると考えられる．CCFinderX は字句の抽出にかか
る時間が長いため，本手法の方が高速に検出することができた．
さらに，関数クローン検出法では 10MLOCの検出中にヒープ領域不足で検出を終
了した．ヒープ領域不足は特徴ベクトルの生成中に起こったため，特徴ベクトルを疎
ベクトルとして実装していないためメモリの使用効率が悪いためであると考えられる．
さらに，抽象構文木を用いた検出法の Deckardと，我々の知る限り，プログラム依
存グラフに基づくクローン検出ツールの中で唯一公開されている Scorpioの 2つの手
法を 10MLOCの検出規模で実験を行った．その結果，7日間経過しても検出が完了し
なかった．そのため現実的な時間内での検出は完了しないとして実験を終了した．こ
のことより，抽象構文木を用いた検出法やプログラム依存グラフを用いた検出法と比
較しても，本手法はスケーラビリティの観点から優位性があると言える．

2.4.5 ブロッククローンの実例
本節では，2.4.1節で実施したアンケートにて保守対象のコードクローンと回答され
たクローンペアの中から，本手法が検出したブロッククローンの実例を示す．赤色の
コード片と緑色のコード片がブロッククローンを表している．

34

図 2.7は同じ関数内に存在するタイプ 1のブロッククローンである．関数クローン
検出法では関数単位の検出のため，同じ関数内でコピーアンドペーストを行うことで
発生したコードクローンを検出できなかった．
図 2.8は，図 2.8(a)の 708行目と 712行目に文の挿入が行われたタイプ 3のブロッ

ククローンである．関数単位では，図 2.8(a)の 697から 699行目，719から 723行目
のコード片に対応する部分が図 2.8(b)にない．よって，関数単位では類似していない
ため関数クローン検出法では検出できなかった．
図 2.9は，ファイルの出力処理を行うタイプ 4のブロッククローンである．どちら

もファイルの入出力関連の処理を行う関数だが，図 2.9(b)の 364から 366行目にて個
別の処理を行うため，関数クローン検出法では検出できなかった．
また，字句単位の検出である CCFinderX では，図 2.7のコードクローンを検出で

きる．図 2.8は文の挿入が行われていない部分の検出はできるが，それではコード断
片のクローンとなってしまう．よって集約などの保守対象となりづらい．図 2.9はタ
イプ 4のクローンであり，CCFinderX はタイプ 2のクローンまでしか対応していな
いため検出することができない．さらに，Deckardでは，図 2.7のコードクローンを
検出できるが，図 2.8，図 2.9は検出することができなかった．なお，唯一公開されて
いるプログラム依存グラフに基づく検出ツールである Scorpioは，C言語に対応して
いないため適用できなかった．
ブロッククローンの実例より，関数単位より検出粒度を小さくすることで，関数単
位では検出できないが本手法で検出できるクローンを示すことができた．また，コー
ドブロック単位でまとまっているため，集約などの保守対象となりやすいことも実例
から確認できた．また，実際に本手法はタイプ 1から 4の検出に対応しており，さら
に他の手法では検出できなかったコードクローンの検出も可能であった．以上の観点
から本手法の有用性が確認できた．

35

��������	
��
�������	������	������	���	�����������	���	� �����

������

�� ���������	������	� �!"

��#���������	$%�&'	� �$%'"

�����

��(������)*����! +����	�,-
.�/	
.�/�0���12%�&'���3+����	4����44���

������������������5��!"

���������6

��7������8��9%����)���%%�111 5��:�)5:�$�&'�����8

��;������)*�����12$���12*)����������

����������������	���	�**	� �<)��+����12$���12*)�������"

�����������������

�7 ��������������$%' +�����	$%�&'	� ����&<�������12$����=��<)��"

�7#���������������<)��+�$%'125�>�"

�7���������������$%'125�>��+�$%'12���! +� "

�7(����������6�?<)%����<)��"

�7��������������12$���12*)������� +� "

�7�������6

�77������)*�����12$���12*)���*������

�7;�������������	���	�**	� �<)��+����12$���12*)���*���"

�7���������������

�7���������������$%' +�����	$%�&'	� ����&<�������12$����=��<)��"

�; ���������������<)��+�$%'125�>�"

�;#��������������$%'125�>��+�$%'12���! +� "

�;�����������6�?<)%����<)��"

�;(�������������12$���12*)���*��� +� "

�;�������6

�;����������12$���12�$��)@� +� "

�;7���������12�)@��+� "

�;;��

�;������������5����	�,-
.�/	�,
.�/�0���12%�&'�"

�;���6

Apache HTTPD: /srclib/apr-util/misc/apr rmm.c

図 2.7 同じ関数内に存在するブロッククローン（タイプ 1）

36

��������	
���

�
����������� ��������������� �
����

������

����� ��
��������� ��!

��"�� �����#$��� #�� !

��%�� �������� � �����!

��&�� # � ��
 ��'!

�����

��(��)*+,!

��-�� #�����.��# ��*�.��# �* '.#$��
�����/���/ ��

����� ���0� �,122!

(���� ����� 3���.��# ��4�	5.��# �* '.#$��,122�� �!

(���� #��� ����� 33�,122�

(���� ���0� �,122!

(�"�� �� �� 3���.��# ��*�.��# �� ������!

(�%�� ��
 ��'�3��!

(�&�� �	���# 3��!�# 6� !�#77���

(���� # � ��3����89*+:*.;���77�!

(�(�� #���#��	���������

(�-�� ��
 ��'�3��!

(���� ��� �� 3��	0

�����!

(���� <

(���� �����#���#�0

��������

(���� ��
 ��'�3��!

(�"�� ��� �� 3��	�	������!

(�%�� <

(�&�� ����

(���� ��� �� 3��!

(�(�� �� ��77!

(�-�� <

(���� #���=��
 ��'���

(���� ���>?8+?4� ������!

(���� ���@,8+?4�
����!

(���� ���0� �
���!

(�"�� <

(�%�� ���0� � �����!

(�&��<

(a) Python: /Modules/stropmodule.c

��������	
��
�������������	
�������� ������

�������

�� ��� �!�	����"�����	
��
#�
�$%&'(������)���
���*

�� �� ��
��
+�
�
)���"�����	
��
(,$
�&-,������*

�� ��� �������� ����.��*

�� ���

�� /�� ���.�� "�����	
��
0	.1��	
��#�2�
+��'344)���*

�� 5��
������.�� ""�'344�

�� 6�� 	��7	��'344*

�� 8�� �
��� "�����	
��
#���	
������.���*

�� ��� �.	��
 "��*�
 9��*�
::���

�� ���
�� ��"���
;<#%=#�>���::�*

������
���
��.��	������

��� �� ��
��� "��.7���	���*

������ ?

������ �����
���
�7���	������

���/�� ��
��� "��.�.��	���*

���5�� ?

���6�� ����

���8�� ��
��� "��*

������ �
���::*

������ ?

������ 	��7	�����.��*

��� ��?

(b) Python: /Objects/stringobject.c

図 2.8 文の挿入が行われたブロッククローン（タイプ 3）

37

���������	
����

����������������������������
���������� ���������

������

��������������������� �� ������ !��
 "

��#��

��$���������
�������%&'������(���

��)����������������*+,
��������"

��-������������ ������������������*+,�(
��������"

��.����������������/�*+,
��������"

��0������1

���������2��

��������������������

�����������2

��������������/���"

��#��1

(a) Apache HTTPD: /srclib/apr/file io/unix/readwrite.c

��������	
��
�������	������	������	����	��������	����	� ���������

�� ��!

��"���������	������	� �# $����	%&���%%'

��(��

�������������	�)�*���������'

�����

��������������������+,-������.��!

��/�����������# $����	����	�����	�)�*�.���������'

��0��

��1���������������# 2$����	%&���%%��!

���������������������	���)�*���������'

�/ ����������������������#'

�/"����������3

�/(������3

�/���

�/������������������������+,����.�����!

�/������������# $����	4��)�	���)���'

�//������3

�/0��

�/1����������	���)�*���������'

�/���

�0 ��������������#'

�0"��3

(b) Apache HTTPD: /srclib/apr/file io/unix/readwrite.c

図 2.9 ファイルの出力処理を行うブロッククローン（タイプ 4）

38

2.4.6 関数クローン検出法と CCFinderX と比較したときの本手法の
特徴

評価実験の結果から，本手法が関数クローン検出法や CCFinderXより優れた点は
以下の点であると考えられる．

• 保守対象となりにくいブロックの一部をコードクローンとして検出することが
なく，また関数よりも小さい単位の検出が可能であるため，字句単位の手法や
関数クローン検出手法と比べて，保守（集約や同時修正）対象のコードクロー
ンを多く検出可能である．

• 字句単位の手法や関数クローン検出手法だけでなく，抽象構文木やプログラム
依存グラフを用いた手法と比べてもスケーラビリティが高いことから，大規模
なソースコード集合に対して適用可能

これらの点から，大規模なソースコード集合に対して，保守対象のコードクローンを
検出する場合に本手法が最も適していると考えられる．
一方で，本手法はコードブロック単位で検出を行うため，コードブロックよりも細

かい粒度のコードクローンの検出漏れは避けられない．特に，同時修正が必要となる
場面では，検出漏れを避けるためにより細かい粒度での検出が適している可能性があ
る．評価実験の結果では，コードブロック単位での検出のほうが字句単位の検出と比
べて，開発者が保守対象として判断しやすいことが示された．これにより，本手法は
検出粒度のバランスに優れているといえる．ただし，検出漏れの最小化が最も重要な
プロジェクトにおいては，より細かい粒度でクローンを検出する手法や，grepなどの
文字列検索ツールの利用も検討してもよい．その場合，検出されるクローンの数が増
大するため，すべての検出結果の確認を疎かにしないよう注意が必要である．
また，評価実験の結果から，短い変数名が多く出現するなど，変数名に処理内容が反

映されてないソースコードに対して本手法は不向きであり，そのようなソースコード
に対しては他の手法の利用を検討すべきである．また，時間が十分にあり，かつ 100

万行未満のソースコード集合が対象であれば，本手法に加えて抽象構文木やプログラ
ム依存グラフを用いた手法の利用も合わせて検討すべきである．

2.4.7 粗粒度なコードクローン検出法と比較したときの本手法の特徴
同じコードブロック単位の検出手法として，粗粒度なコードクローン検出法 [65]を

対象として比較実験を行った．粗粒度なコードクローン検出法とは，タイプ 1と 2の
ブロック単位のコードクローンを検出する手法である．本節ではその実験結果につい
て述べる．
最初に，粗粒度なコードクローン検出法の検出精度を比較した．本実験では，2.4.1

39

節で作成したベンチマークを用いて適合率，再現率，F値を求めた．ここでは，ベン
チマークにて保守対象と判定されたクローンペアを正解クローン，判定されなかった
クローンペアを誤検出と定義する．また，粗粒度なコードクローン検出法が検出した
クローンペアを検出クローンと定義する．適合率は，検出クローンの中から，正解ク
ローンと一致した集合と誤検出と一致した集合の和集合の内，正解クローンと一致し
た集合の割合によって求める．再現率は，正解クローン集合の内，検出クローンの中
で正解クローンと一致した集合の割合によって求める．F値は適合率と再現率の調和
平均によって求める．実験の結果，粗粒度なコードクローン検出法の検出精度は表 2.8

のとおりとなった．粗粒度なクローン検出法はタイプ 1と 2のコードクローンしか検
出しないため，保守対象となりやすく適合率は高い値となった．しかし，タイプ 3や
4を検出することができず検出数が少ないため再現率は低い値となり，総合的な評価
の F値は低い値となることが確認できた．
また，粗粒度なコードクローン検出法の検出時間も求めた．実験の結果を表 2.9に
示す．これにより粗粒度なコードクローン検出法は高速に検出ができることが確認で
きた．粗粒度なコードクローン検出法は，各コードブロックに対して，正規化後（変数
名の置換など）の文字列からハッシュ値を求め，同じハッシュ値を持つコードブロッ
クをコードクローンとして検出する．ハッシュ値を用いた比較を行うことで，文字列
を用いた比較を行う場合と比べて，小さいコストで 2つのブロックの比較を行うこと
ができる [65]．

表 2.8 粗粒度なコードクローン検出法の検出精度の評価

検出手法 検出対象 適合率 再現率 F値
Apache HTTPD 0.91 0.14 0.24

粗粒度クローン PostgreSQL 0.87 0.28 0.43

検出法 Python 0.95 0.32 0.48

合計 0.91 0.24 0.38

Apache HTTPD 0.90 0.74 0.81

本手法 PostgreSQL 0.57 0.87 0.69

Python 0.90 0.53 0.67

合計 0.68 0.70 0.69

表 2.9 粗粒度なコードクローン検出法の検出時間

検出対象 粗粒度クローン検出法 本手法
Apache HTTPD 8s 1m 39s

PostgreSQL 16s 2m 27s

Python 8s 1m 15s

40

次に，粗粒度なコードクローン検出法が検出したコードクローンのタイプ別の個数
について調査した．本実験では，CCFinderXが検出したクローンペア集合に対して，
2.4.1節のアンケートにより得られたコードクローンのタイプ情報を基に，タイプ別の
個数を検出対象ごとに算出した．結果を表 2.10に示す．これにより，粗粒度なコード
クローン検出法はタイプ 2のクローンのみ検出することが分かった．検出法の理論上
ではタイプ 1のコードクローンも検出可能であるが，今回はタイプ 1のコードクロー
ンは確認できなかった．これは，元々検出対象となっている CCFinderXが検出した
コードクローンにタイプ 1 のコードクローンが少なかったことが原因として挙げら
れる．
さらに，粗粒度なコードクローン検出法の検出規模ごとの検出時間とスケーラビ

リティについても述べる．本実験では 2.4.4 節と同一のデータセットを用いて実験を
行った．実験の結果を表 2.11 に示す．これにより，検出規模に比例して線形的に検
出時間が増加することも確認できた．これは，検出時間においてファイル読み込みと
コードブロックの抽出に最も時間を占めていることが原因として挙げられる．
最後に，粗粒度なコードクローン検出法の検出したコードクローンに対する保守作

業の調査を行った．本実験では，CCFinderXが検出したクローンペア集合に対して，
2.4.3節のアンケートにより得られた保守作業の調査結果をもとに，実際に適用される
保守作業の割合と，保守対象と判定されなかった原因を求めた．実際に適用される保
守作業は，同時修正の対象となるクローンペアが 15，集約と同時修正の対象となるク
ローンペアが 3となった．また，保守対象と判定されなかった原因として，出力処理
の連続，代入文の連続，単調な関数呼び出しの 3例が挙げられた．

表 2.10 粗粒度なコードクローン検出法の検出したコードクローンのタイプ別内訳

検出対象 T1 T2 T1, T2 合計
Apache HTTPD 0 4 4

PostgreSQL 0 1 1

Python 0 13 13

合計 0 18 18

表 2.11 粗粒度なコードクローン検出法の検出規模ごとの検出時間

LOC 粗粒度クローン検出法 本手法
1K 0s 1s

10K 1s 2s

100K 8s 16s

1M 1m 15s 3m 1s

10M 12m 38s 29m 9s

41

以上の結果から，タイプ 1や 2だけでなく，3と 4のコードクローンも検出可能で網
羅性が高く，検出の正確性と網羅性の総合評価でも高い点が本手法の方が優れている
ことが確認できた．ただし，粗粒度なコードクローン検出法はコードブロック単位の
検出を行うため，トークン単位の検出法である CCFinderXで確認されたようなコー
ド片の断片を検出することはなく，検出の正確性が高くなっている．また，タイプ 1

と 2のコードクローンのみを検出するため，高速な検出が可能となっている．今回の
評価実験から，本手法の補完的な検出方法として粗粒度なコードクローン検出法の利
用も検討できる．

2.5 考察
2.5.1 本手法の拡張性
本手法の実装は，現在 C言語と Java言語にのみ対応している．しかし，本手法で
は ANTLRを用いて構文解析を行っており，ANTLRにて構文解析を行うための文法
ファイルが 100種類以上用意されていることから，他の言語への拡張が容易に可能で
ある．

2.5.2 評価実験の妥当性
適合率，再現率，F値で示される検出精度に関して，本実験では 3つの C言語のプ
ロジェクトに対して関数クローン検出法と CCFinderXとの比較を行うことによって，
本手法の有用性を示した．しかし，今後は他の言語で実装されたプロジェクトに対し
て適用したり，他のツールとの比較を行ったりするなど，一般性を示す必要性がある．
また，本実験で用いたパラメータの値によって実験結果は変わってくる．特に

CCFinderX の実験結果は最小一致トークン数の値が影響している可能性があるが，
最小一致トークン数を下げると再現率は上昇するが適合率が低下する．しかし一方で，
検出粒度を細かくすると，検出されるコードクローンの数が増え，検出結果の利用が
困難になることも報告されている [65]．大規模なソフトウェアに対しては，ある程度
まとまったコード片を検出するほうが有用であると著者は考える．
特徴ベクトルの計算方法として本手法では TF-IDF を用いているが，他にも LSI

（Latent Semantic Indexing）[44]や，LDA（Latent Dirichlet Allocation）[69]など
次元圧縮を行い計算時間の短縮を行った手法がある．またワードの共起頻度に基づい
て次元圧縮を行うことで，ワードの類義性も計算可能となる．これらと TF-IDFを比
較することで，検出速度と検出精度の観点から比較を行う必要がある．
そして，LSIや LDAを用いて特徴ベクトルを計算する場合，特徴ベクトルの生成や
類似度の計算にかかる時間が変化する．たとえば，次元圧縮を行うため特徴ベクトル
生成に時間が増加するが，次元削減により類似度計算の時間が減少するなどが考えら

42

れる．したがって，LSI や LDA などを用いた場合に各ステップにかかる時間を詳細
に調査する必要がある．
また本研究では我々が作成したコードクローンベンチマークを対象に検出精度の評

価実験を行ったが，他にも大規模なベンチマーク [70]も提案されている．このような
他のベンチマークに対しても本手法の有用性が確認できるのか評価する必要がある．
さらに今回比較を行っていない手法との比較も行い，本手法の検出結果の特徴につい
てより詳細に分析する必要もある．

2.6 関連研究
構文の類似性に着目した手法として，字句単位の検出手法や，抽象構文木（ソース

コードの構文構造を木構造で表したグラフ）を用いた検出手法が存在する．字句単位
の検出手法では，ソースコードをトークン列に変換し，共通トークン列をコードクロー
ンとして検出する [58, 71]．また，抽象構文木を用いた検出手法では，ソースコードを
抽象構文木に変換し，類似した部分木をコードクローンとして検出する [62, 51]．本
研究では，提案手法と字句単位の検出ツールである CCFinderXと比較し，提案手法
が適合率や再現率，スケーラビリティにおいて優れていることを確認した．また，ス
ケーラビリティの実験において，抽象構文木を用いた検出ツールである Deckard が
10MLOC のソースコード集合を対象とした実験において現実的な時間で検出処理を
終えることができなかったこと，および Deckardが検出できないが提案手法が検出で
きるコードクローンの実例を確認した．
また，プログラムの処理の類似性に着目した手法として，プログラム依存グラフ（プ

ログラム内の要素間に存在する依存関係を表した有効グラフ）を用いた検出手法が存
在する．この手法では，ソースコードからプログラム依存グラフを構築し，類似した
部分グラフを探索することによって，タイプ 3や 4のコードクローンを検出すること
が可能である [63, 64, 72]．しかし，プログラム依存グラフの比較の計算コストが高
く，検出に時間がかかってしまうという問題点がある．また，プログラム言語毎にプ
ログラム依存グラフを構築する機構を用意する必要性がある．本研究では，プログラ
ム依存グラフを用いた検出ツールである Scorpio [63, 64] が 10MLOC のソースコー
ド集合を対象とした実験において現実的な時間で検出処理を終えることができなかっ
たことを確認した．
LCS (Longest Common Subsequence) アルゴリズムを利用した検出手法として

NiCadが存在する [73, 74]．NiCadは，ソースコードの各行を要素とする列に対して
LCSアルゴリズムを適用して，固有の行の割合がしきい値以下であればコードクロー
ンとして検出する．しきい値未満であれば，固有の行を許容するため，タイプ 3 の
コードクローンを検出できる一方で，タイプ 4のコードクローン検出については課題
が指摘されている [75]．NiCadは文献により実装方法に差異があり，またチューニン

43

グにより検出速度が大きく異なる [76, 73, 74]．今後，本研究が提案する手法と比較を
行う必要があるが，各実装に応じたチューニングを適切に行いながら，比較実験を行
う必要があると考えられる．
山中らのツール [46] 以外の関数クローン検出ツールとして MeCC [77] がある．

MeCCは，記号実行を行うことによって，ソースコード中の各関数が終了した時点に
おける抽象的なメモリの状態の予測を行う．そして，メモリの状態が類似した関数を
コードクローンとして検出する．山中らの論文 [46]において，山中らの関数クローン
検出ツールの方が MeCC より正確に関数クローンを検出できることが確認されてい
る．本論文の実験では，山中らの関数クローン検出ツールと比較して，提案手法の方
が適合率や再現率，スケーラビリティにおいて優れている点が多いことを示した．
Marcus らは，クエリとして与えられたソースファイルと類似した部分を，LSI

（Latent Semantic Indexing）[44]を用いてソースコード全体から検索する手法を提案
している [78]．彼らが提案する手法はクエリを与える必要があるため，本研究の提案
手法とは目的が異なる．しかし，提案手法においても LSIを利用し識別子間の潜在的
意味を解析することで，再現性を向上させることができる可能性がある．
我々の研究グループでは，トークン列が等価なファイルを高速に検出するツール

FCFinder の開発を行った [79]．本研究では，識別子や予約語の類似性に着目し，ブ
ロック単位のコードクローンを検出する手法を提案した．本研究が提案する手法は，2

つのブロックに含まれるトークン列が異なっていても，識別子や予約語の集合が類似
していれば，それらブロックはブロッククローンとして検出される．
Duala-Ekoko らは，クローン領域を抽象的に記述し，バージョン間でのクローン
の移動を追跡し管理する手法を提案している [80]．ソフトウェアの開発過程において
コードクローンの変更管理を行う場合，ソースコードの編集により行情報は変更され
るため，従来の行情報を用いたクローン領域の記述方法ではコードクローンを追跡で
きない．そこで彼らは，クローン領域を抽象的に記述する手法を提案した．彼らの提
案手法はコードクローン追跡のための手法であり，コードクローン検出を目的とする
本研究とは目的が異なる．彼らの手法では，構文，構造，語彙の情報を組み合わせて
クローン領域を抽象的に記述することでクローン追跡を可能にしている．しかし，本
手法はクローン追跡の必要性がないためファイルと行の情報で記述されたクローン領
域をコードブロックとして扱っている．

2.7 まとめと今後の課題
本研究では，TF-IDF と LSH を利用したブロッククローン検出手法の提案を行っ
た．本手法では，構文解析を行いコードブロックの抽出を行い，コードブロック中の
識別子や予約語に利用されている単語からワードを抽出する．そして，TF-IDFを利
用して各ワードに対する重みを計算し，その重みを特徴量として各コードブロックを

44

特徴ベクトルに変換する．その後，特徴ベクトル間の類似度を計算することによって，
意味的に処理が類似したブロッククローンの検出を行う．また，multi-probe LSHを
cross-polytope LSHに組み合わせた手法を用いてあらかじめ特徴ベクトルのクラスタ
リングを行うことによって，高速なブロッククローンの検出を実現した．
評価実験では，3つの Cプロジェクトに対し，検出精度と検出時間の観点から，関

数クローン検出法と CCFinderXの 2つの手法と比較を行った．比較した結果，本手
法が高い精度かつ高速にコードクローンを検出することが確認できた．また，スケー
ラビリティの評価では，1KLOC から 10MLOC の検出規模に応じて，線形的に検出
時間が増加することを確認できた．
今後の課題として，2.5.2節にて述べたように以下が挙げられる．

• 今回は特徴ベクトルの計算に TF-IDF を用いたが，LSI（Latent Semantic

Indexing）[44]や，LDA（Latent Dirichlet Allocation）[69]といった次元圧縮
を行う手法がある．これら次元圧縮を用いた手法との比較を行う必要がある．

• LSI や LDA などを用いた場合，検出の各ステップにかかる時間を詳細に調査
する必要がある．

• 他の大規模プロジェクトに対して適用し，本手法の有用性を評価する必要があ
る．さらに，他の検出手法との比較を行う必要がある．

45

第 3章

情報検索技術と深層学習を用いた
コード片類似性判定法の比較調査

3.1 まえがき
コード片の類似性判定法はソフトウェア工学における重要な基礎技術である．類似
したコード片を見つける作業はソフトウェア開発や保守において重要であり，コード
クローン検出 [43]やコード片検索 [81, 82]などではコード片の類似性判定法が使用さ
れる．コードクローンとはソースコード中に含まれる互いに一致または類似した部分
を持つコード片である．一般的に，コードクローンの存在はソフトウェアの保守を困
難にすると言われている．膨大な量のコードクローンを目視で見つけることは困難で
あり，コードクローンを自動的に検出する手法が提案されている [8, 42]．またコード
片検索は，再利用可能なコード片を特定するために使用する [83]．既存のコード片を
再利用することで，ソフトウェア開発の生産性および信頼性の向上が期待できる．さ
らにコード片検索を用いて，再利用元のライセンス記述を調べたり，より優れた脆弱
性対策がされているコード片を探したりでき，再利用の安全性を高めることができる．
コード片の類似性判定法では，構文的な類似性に基づく判定法と，意味的な類似性
に基づく判定法の 2 種類がある [84]．既存研究の多くはコード片の構文的な類似性
に基づいて判定する [58, 85, 66]．一方で，意味的な類似性に基づいた判定法は少な
く，様々な課題が残されている．コード片の意味的な類似性判定法として Zhaoらは
DeepSim という手法を提案した [84]．DeepSim は制御フローグラフとデータフロー
グラフの情報をもとに，深層学習モデルを用いてコード片を判定する．DeepSimは類
似したコード片を高い精度で判定できる一方で，実行速度が遅いという課題もある．
また我々は既存研究で，情報検索技術に基づくコードクローン検出法を提案し
た [86]．この手法は情報検索技術の一種である TF-IDF（Term Frequency-Inverse

Document Frequency）[44]を用いてコード片をベクトル化し，ベクトル空間上で距離
が近いコード片をコードクローンとして検出する．ベクトル空間上の距離尺度はコサ

47

イン類似度を用いる．コードクローン検出にベクトル表現を用いることで，構文や字
句単位で類似していなくてもベクトル空間で距離が近ければコードクローンとして検
出できる．この手法は高速に検出できる一方で，構文的な類似性が低いコードクロー
ンの検出漏れが多い課題がある [87, 88]．
構文的な類似性が低くても意味的に類似しているコード片を，高い精度で高速に判
定できるコード片の類似性判定が望ましい．コード片の類似性判定法では，情報検出
技術や深層学習が広く使われている．藤原らは深層学習を用いたソースコード検索に
おいて情報検索技術の一種である BoW（Bag of Words）と Doc2Vec[89] の精度の
比較を行っているが，他の情報検索技術について評価していない [90]．また，再帰型
ニューラルネットワークを用いてコード片をベクトル化してコード片の類似性を判定
する手法はあるが [91, 92]，本研究の目的である情報検索技術を用いたコード片のベ
クトル化は網羅的に調査されていない．これらの研究では本研究と目的が異なるため，
判定精度が高く実行速度が速い，情報検出技術と深層学習の組み合わせは明らかに
なっていない．そこで本研究では，意味的なコード片の類似性判定において，判定精
度と実行速度の観点から有効な情報検索技術と深層学習の組み合わせを調査する．本
調査では，情報検索技術に基づきコード片をベクトル表現に変換し，変換したベクト
ル表現を深層学習モデルに入力することで，コード片が類似しているか否かを判定す
る．これにより，情報検索技術と深層学習を組み合わせたコード片の類似性判定法を
実現する．また本調査で使用する情報検索技術と深層学習の組み合わせを，深層学習
を用いた既存手法と比較する．
本調査では，データセットとして Google Code Jam（以降 GCJ）*1 と Big-

CloneBench（以降 BCB）[70]を用いて調査する．GCJは Googleが開催している競
技プログラミングコンテストであり，同じ問題に正解したソースコードは類似コード
とみなす．BCBはコードクローンの大規模ベンチマークであり，600万以上のクロー
ンペア（処理内容が類似しているコードクローンの対）と 26万以上の非クローンペア
が登録されている．これらのデータセットについて調査した結果，情報検索技術の一
種である LSI（Latent Semantic Indexing）[44]と深層学習モデルを組み合わせた手
法が，適合率，再現率，F値においてより高い値となった．また，この組み合わせは
実行速度が最も速いことも確認した．
以降，3.2章では，本研究の背景について述べる．3.3章では，本研究の調査手法に
ついて述べる．3.4 章では，本研究の調査結果について述べる．3.5 章では，調査結
果から得られた考察について述べる．3.6章では，関連研究について述べる．最後に，
3.7章でまとめと今後の課題について述べる．

*1 https://codingcompetitions.withgoogle.com/codejam/

48

類似 性判定

CFG

D FG

特徴

行列

列

意味表現生成

バイト

コード

解析器

エン

コーダ

自己符

号化器

類似性

判定

モデル

ベクト

ル表現

図 3.1 DeepSimの概要

類似 性判定

意味表現 生 成

字句

解析器
前処理 単語

情報検

索 技術

類似性

判定

モデル

ベクト

ル表現

トー

クン

STEP 1 STEP 2 STEP 3

図 3.2 調査に用いるコード片類似性判定法の概要

3.2 背景
3.2.1 情報検索技術に基づくコードクローン検出法
コード片の類似性判定法が用いられる場面の 1 つに，コードクローン検出がある

[8]．コードクローンとは，ソースコード中に含まれる互いに一致または類似した部分
を持つコード片である．
コードクローンを自動的に検出する手法は，これまでにも数多く提案されてい

る [8, 42]．我々は先行研究において，情報検索技術に基づくコードクローン検出法
CCVolti*2を提案した [86]．CCVoltiはまず，情報検索技術の一種の TF-IDFを用い
てコード片をベクトル化する．そして，与えられた 2つのベクトル表現間のコサイン
類似度を求める．これによりコード片の処理内容が意味的に類似しているか判定し，
1.5.1項で説明したタイプ 4までのコードクローンを検出する．この手法は高速に検出
できる一方で，構文的な類似性の低いコードクローンの検出漏れが多い課題が指摘さ
れている [87, 88]．

3.2.2 深層学習を用いたコード片類似性判定法
深層学習を用いたコード片の類似性判定法として，Zhaoらは DeepSim[84] を提案

した．DeepSim の概要を図 3.1 に示す．この図が示すように，DeepSim は前半の意
味表現生成過程と後半の類似性判定過程に分かれる．意味表現生成過程では，制御フ
ローグラフ（以降 CFG）とデータフローグラフ（以降 DFG）を解析し，特徴行列に

*2 https://github.com/k-yokoi/CCVolti

49

変換することでコード片の意味表現を生成する．また，類似性判定過程では，ニュー
ラルネットワークの一種である自己符号化器 [93]を用いて，特徴行列の情報を最もよ
く表すベクトル表現に変換する．その後，ベクトル表現を類似性判定モデルに入力し，
2つのコード片が類似しているか否かの二値分類を行う．DeepSimは高い精度でコー
ド片の類似性を判定する．一方で DeepSim はモデルの学習に時間がかかるという課
題がある [84]．

3.3 調査手法
本研究では，コード片類似性判定法に用いる情報検索技術と深層学習の組み合わせ
について調査する．また，情報検索技術と深層学習の組み合わせについて，深層学習
を用いた既存手法である DeepSim[84] と FA-AST[94] の 2 つの結果と比較する．本
章ではその調査手法について述べる．

3.3.1 調査目的とリサーチクエスチョン
3.2.1節で述べた情報検索技術に基づくコードクローン検出法 [86]は高速な検出が可
能だが，構文的な類似性が低いコードクローンの検出漏れが多い課題がある [87, 88]．
一方で，3.2.2節で述べた深層学習を用いた類似性判定法は高い精度でコード片の類似
性を判定するが，モデルの学習に時間がかかる課題がある [84]．コード片の類似性判
定はソフトウェア開発や保守において広く使われており，判定精度が高く実行速度が
速い手法が望ましい．しかし，判定精度と実行速度の観点でどの情報検出技術と深層
学習の組み合わせが，判定精度が高く実行速度が速い手法かが明らかになっていない．
そこで，本調査では 2つのリサーチクエスチョンを設定した．

RQ1 高い精度で類似性を判定する情報検索技術と深層学習の組み合わせは何か？
RQ2 短時間で類似性を判定する情報検索技術と深層学習の組み合わせは何か？

この 2つのリサーチクエスチョンを解くことで，精度と実行速度の 2つの観点から有
用な情報検索技術と深層学習の組み合わせを明らかにする．

3.3.2 調査に用いるコード片類似性判定法
本調査で用いるコード片類似性判定法は以下の 3つのステップで実行する．手法の
概要を図 3.2に示す．

STEP 1 ソースコード解析を用いた前処理を行い，コード片を単語列に変換する
STEP 2 情報検索技術に基づき単語列をベクトル表現に変換する
STEP 3 ベクトル表現を類似性判定モデルに入力し，深層学習によりコード片の類似

50

性を判定する

STEP 1：ソースコード解析を用いた前処理
最初に，入力コード片に対して字句解析を行いトークン列に変換する．字句解析に
は構文解析器生成系 ANTLR*3が生成した字句解析器を用いる．
次にトークン列に対して前処理を行い単語列に変換する．本調査では以下の前処理
を行う．

• 予約語と識別子以外を除去
• 識別子名をキャメルケースやスネークケースを基に分割
• 分割後の識別子をすべて小文字に正規化

これらの前処理は既存研究と同じ方法を用いる [86]．識別子分割や正規化は，情報検
索技術によりソースコードを解析する際に有用な手法として用いられる [95]．

STEP 2：情報検索技術に基づくベクトル化
次に STEP1で生成した単語列に対して，情報検索技術に基づくベクトル化により

ベクトル表現に変換する．情報検索技術に基づくベクトル化には Pythonライブラリ
gensimを用いる [96]．
本研究では情報検索技術に基づくベクトル表現として，LSI（Latent Semantic

Indexing），LDA（Latent Dirichlet Allocation），Doc2Vec，WV-avg（Word2Vec

average）の 4つのベクトル表現を調査対象として選択した．WV-avgは単語ベクトル
Word2Vec[97, 98] の平均ベクトルを意味する．調査対象のベクトル表現は，先行研究
[87]において採用されたベクトル表現を参考に選択した．また，先行研究で使用され
ているベクトルの表現のうち，BoW（Bag of Words）と TF-IDFはベクトルの次元
数が変動するため，FT-avg はWV-avgより再現率が低く計算速度も遅い [87]ため，
本調査では使用しない．ただし Doc2Vecの実装として PV-DBoW（Distributed Bag

of Words version of Paragraph Vector）と PV-DM（Distributed Memory version

of Paragraph Vector）の 2つの異なるアルゴリズムが提案されている [89]ため，本調
査ではこの 2 つのアルゴリズムを別個のベクトル表現として使用する．したがって，
LSI，LDA，PV-DBoW，PV-DM，WV-avg の 5 つのベクトル表現を調査対象とす
る．なおWord2Vecの実装としても複数のアルゴリズムが提案されているが，本研究
では SGNS（skip-gram algorithm with negative sampling）[98]を用いる．
本研究で対象とするベクトル表現と，そのベクトル表現に与える主なハイパーパラ

メータを付録 1に示す．ハイパーパラメータは Python ライブラリ gensim のデフォ
ルト値を参考に決定した．ハイパーパラメータのチューニングにより判定精度が上昇

*3 https://www.antlr.org/

51

w1

w2

Va Vb

[Va,Vb] [Vb,Va]

平均
プーリング

ロジスティック関数

S(Va, Vb)

w1

第1層

第2層

第3層

第4層

図 3.3 コード片類似性判定モデルのアーキテクチャ

する可能性がある一方で，実行速度が遅くなる懸念もある．また，ハイパーパラメー
タチューニングは多くの計算リソースと時間を必要とし，チューニングプロセスに膨
大な時間がかかる．ソフトウェア開発に適用する際，ハイパーパラメータチューニン
グにかかる計算リソースおよび時間と得られる精度向上のバランスを考慮し，実用性
の観点からチューニングを行わないと判断される場合がある．そこで本調査では，ハ
イパーパラメータチューニングを行わずにライブラリのデフォルト値における判定精
度と実行速度を調査する方針とした．

STEP 3：深層学習を用いた類似性判定モデル
最後に，STEP2で生成したベクトル表現に対して，深層学習モデルを用いてコード
片の類似性を判定する．本研究では順伝播型ニューラルネットワークを基にコード片
類似性判定モデルを設計した．コード片類似性判定モデルのアーキテクチャを図 3.3

に示す．図 3.3が示すように，2つのコード片から得られたベクトル表現 Va と Vb を
第 1層に入力する．第 2層では，入力した 2つのベクトルを [Va, Vb]，[Vb, Va]と異な
る順序で連結する．このとき 2 つの連結ベクトルは重み w1 を共有して計算される．
第 3層は平均プーリング層である．2つの層からなる第 2層の出力値の平均値を第 3

層への入力として計算する．2つの異なる順序でベクトルを連結し平均プーリングを
行うことは，2つのベクトルの対称性を成立させる役割を果たしている．最後は，出力
層としてロジスティック関数を用いてコード片の類似性を出力する．ロジスティック
関数は入力を uとして次の関数であらわされる（f(u) = 1

1+e−u ）．出力値は 0から 1

の間であり，出力値が 0.5以上であれば類似している，0.5未満であれば類似していな
いと判定する．活性化関数は ReLU，損失関数は CrossEntropy，最適化アルゴリズム
は Adamを用いる．このニューラルネットワークアーキテクチャを実現するために，

52

本研究では TensorFlow*4と Keras*5を用いて実装した．

3.3.3 比較調査対象
本調査では，情報検索技術と深層学習の組み合わせの 5種類と 3.2.2 節で説明した

DeepSimの，合計 6種類を比較調査対象とする．

情報検索技術と深層学習の組み合わせ
3.3.1節で説明した 2つの RQに答えるため，3.3.2節で説明した 5種類のベクトル
表現と 3.3.2 節で説明した深層学習モデルの組み合わせを比較調査対象とする．本論
文では，深層学習モデルに入力した 5種のベクトル表現を区別するために以下の表記
を用いる．NNはニューラルネット（Neural Network）の略である．

• LSI+NN (Latent Semantic Indexing + Neural Network)

• LDA+NN (Latent Dirichlet Allocation + Neural Network)

• PV-DBoW+NN (Distributed Bag of Words version of Paragraph Vector +

Neural Network)

• PV-DM+NN (Distributed Memory of Words version of Paragraph Vector

+ Neural Network)

• WV-avg+NN (Word2Vec average vector + Neural Network)

深層学習モデルで用いたハイパーパラメータは付録 2に示す．ハイパーパラメータは
Python ライブラリ gensim のデフォルト値を参考に決定した．

深層学習を用いた既存手法
情報検索技術と深層学習の組み合わせを，深層学習を用いた既存手法とも比較した．
本調査では Zhaoらの DeepSim[84]とWangらの FA-AST+GMN[94]の 2つの既存
手法を比較調査対象とする．DeepSimは CFGと DFGを解析して得た意味表現から
自己符号化器を用いてベクトル表現を生成し，深層学習モデルを用いてコード片の類
似性を判定する．また FA-AST+GMN は抽象構文木に CFG と DFG の情報を加え
て拡張したグラフ表現からグラフニューラルネットワークを用いてベクトル表現を生
成し，コサイン類似度を用いてコード片の類似性を判定する．
DeepSim と FA-AST+GMN は 3.3.4 節で説明する Google Code Jam と

BigCloneBench[70] をデータセットして評価を行っている．そのため，深層学習を
用いたコード片類似性判定法の中からこの 2 つの既存手法を採用した．なお，Wang

らは論文中 FA-AST+GGNN と FA-AST+GMN の 2 つの手法を評価しているが，

*4 https://www.tensorflow.org/
*5 https://keras.io/

53

FA-AST+GMNの方が F値が高かった [94]ため，本調査では FA-AST+GMNのみ
を比較調査対象とする．DeepSimと FA-AST+GMNで用いたハイパーパラメータは
付録 2に示す．

3.3.4 対象データセット
本調査では，オンラインジャッジサイトと広く使われているベンチマークの 2 種
類のデータセットを用いて調査する．オンラインジャッジサイトは意味的な類似性判
定のベンチマークとして信頼性がある [84]．また広く使われているベンチマークと比
較することは，他の手法と比較しやすいことから重要である．これら 2 種類のデー
タセットを用いることで，より網羅的な調査が可能となる．さらに本調査においては
データセットが広く公開されているという観点から，オンラインジャッジサイトとし
て Google Code Jam（以降 GCJ）を，ベンチマークとして BigCloneBench（以降
BCB）[70]を用いて調査した．
GCJ は Google*6が実施している競技プログラミングコンテストであり，提出され
たソースコードは Google によって挙動を検証されている．これにより，異なるプロ
グラマが提出したソースコードも同一の挙動をすることを保証されており，これらは
意味的に類似したソースコードとみなせる．本研究では 12種の問題から集めた 1,669

個の提出コードを用いて実験した [84]．同一問題に対して提出されたソースコードは
類似コード，異なる問題に対して提出されたソースコードは非類似コードとみなすこ
とができる．なお，実際に提出されたソースコードによって関数分割の粒度に差があ
る．例えば 1つの関数にまとめて処理を記述したソースコードもあれば，複数の関数
に分割して記述したソースコードもある．そのため本研究では提出されたソースコー
ドを main関数にインライン展開し，展開後の main関数を実験の対象とした．
BCB は大規模なコードクローンベンチマークである [70]．BCBでは約 6万のコー
ド片に対して，クローンペア（処理内容が類似しているコードクローンの対）または
非クローンペアとしてタグ付けされおり，600万以上のクローンペアと約 26万の非ク
ローンペアが登録されている．ただし BCB は更新されており，この研究で使用した
最新データセットのクローンペア総数は，BCB の原著で報告された数値と若干異な
る．本研究では DeepSim の評価実験と条件を揃えるため，クローンペアまたは非ク
ローンペアとタグ付けされていないコード片と，5行未満のコード片をデータセット
から除去した．除去した理由は，行数の小さいコード片はコードクローンとして保守
対象になりにくく，コードクローンの評価実験において対象外にされることが多いか
らである [99]．この除去により，クローンペアまたは非クローンペアにタグ付けされ
たコード片は，約 5万に減少した．除去後のデータセットには，約 594万のクローン
ペアと約 18万の非クローンペアが含まれている．BCBではコードクローンを 5つの

*6 https://about.google/

54

タイプに分類する [70]．BCBで用いる分類では，Royらが提案したコードクローンの
4つタイプ分類 [43]のうち，タイプ 3とタイプ 4のコードクローンを定量的に分類す
る．BCBに登録されているクローンペアのほとんどは構文的類似性が低いWT3/T4

である．コードクローン各タイプの個数と割合を表 3.1に示す．

3.3.5 リサーチクエスチョンの調査方法
調査 1：精度の調査
RQ1に回答するため，本調査では GCJと BCBの両方のデータセットに対しての
精度を調査した．本研究では再現率，適合率，F値を精度評価指標とする．再現率と
は正解集合に対して実際に正しく正解と推定された割合を指し，網羅性を示す指標で
ある．また適合率とは正解として推定された集合に対して真に正しい割合を指し，正
確性を示す指標である．一般的に再現率と適合率はトレードオフの関係にあり，一方
の値が高くなるともう一方の値が低くなる．そこで，再現率と適合率の総合的な評価
指標として F値が用いられる．F値は再現率と適合率の調和平均により求められる．
さらに情報検索技術と深層学習の組み合わせで意味的な類似性の判定精度が向上す
ることを確認するため，BCBのデータセットに対してタイプ別の調査を行った．精度
は F 値を用いて比較する．なお情報検索技術のみを用いた手法では，3.3.2 項で説明
した 5種類のベクトル表現に対して，コサイン類似度 0.9の閾値以上になるコード片
を類似していると判定した．閾値を 0.9とした理由は既存研究においてコードクロー
ンの検出精度の観点から優れた値だったからである [46]．
本研究では 10 分割交差検証を用いて調査対象の類似性判定モデルの精度を推定す
る．10分割交差検証ではデータセットを 10分割し，1つをテスト用データ，残りの 9

つを学習用データとして検証する．この手順をテスト用データと学習用データの組み
合わせを変えて 10 回繰り返す．こうして得られた結果を平均し，類似性判定モデル
の精度を推定する．ただし FA-AST+GMNは 10分割交差検証を行っておらず，学習
データ:検証データ:テストデータの比を 8:1:1の割合でデータセットを分割して評価
している．またクローンペアと非クローンペアの数が 1:1になるよう，クローンペア
を減らす調整も行っている [94]．FA-AST+GMNの評価方法が本調査と異なるため，
参考記録として表に掲載する．

表 3.1 コードクローンの各タイプの個数と割合（BCB）

タイプ T1 T2 ST3 MT3 WT3/T4

個数（個） 17,398 3,734 12,032 53,616 5,860,619

割合（%） 0.3 0.1 0.2 0.9 98.5

55

調査 2：実行時間の調査
RQ2に回答するため，本調査では GCJのデータセットを用いて実行時間を調査し
た*7．実行時間として，類似性判定モデルの学習にかかる時間と，類似性判定モデル
による類似性の推定にかかる時間の 2つを調査する．本調査では GCJの 9割を学習
し，1割を推定するために所要した時間を測定した*8．
さらに意味表現生成過程の実行時間を測定した*9．図 3.1が示すように，DeepSim

は意味表現生成過程においてバイトコード解析を用いてソースコードから CFG と
DFG を生成し，その後エンコーダを用いて特徴行列を生成する．一方で図 3.2 の
ように調査で用いるコード片類似性判定法の意味表現生成過程では，字句解析によ
るトークン分割後に前処理によって単語列を生成する．生成方法の違いによる実行
時間の差を明らかにするため，表 3.2 に示す 6 つのオープンソースソフトウェアプ
ロジェクトを用いて意味表現生成に要する時間を測定した．6 つのプロジェクトは
MvnRepository*10に含まれており，ソースコードとバイトコードの両方が公開され
ている．なお調査で用いるコード片類似性判定法はソースコードを解析対象とし，
DeepSimはコンパイル後のバイトコードを解析対象とした．意味表現生成過程の実行
時間の測定は LSI+NNの 5回平均より求めた．

表 3.2 意味表現生成の時間評価に用いた対象プロジェクト

プロジェクト バージョン ファイル数 LOC

ANTLR 4.7.2 233 96,043

Apache Ant 1.10.5 787 92,219

Apache Commons Lang 3.8.1 153 27,646

Apache Log4j 1.2.17 213 21,050

JUnit 4.12 195 9,317

Guava 27.0.1 573 86,542

*7 BCB は関数単位のコードクローンのベンチマークとして作られており，ソースコードのコンパイル
ができない．DeepSim のバイトコード解析器ではソースコードのコンパイルが必要なため，BCB

を用いた実行時間調査は比較していない．
*8 実験環境は Intel Xeon E5 2.7GHz 4 コア CPU，NVIDIA Quadro 5000 GPU，32GB メモリ
のワークステーション

*9 実験環境は Intel Xeon E5 2.7GHz 4コア CPU，32GB メモリのワークステーション
*10 https://mvnrepository.com/

56

3.4 調査結果
3.4.1 精度の調査結果
GCJ を用いた精度評価の結果を表 3.3 の左側に示す*11．表 3.3 が示すように，

LSI+NNの再現率 93%，適合率 96%，F値 0.94と情報検索技術と深層学習の組み合
わせの中で最も高い精度を示した．LDA+NNは再現率 54%，適合率 61%，F値 0.55

と最も低い精度となった．また DeepSimの再現率 81%，適合率 71%，F値 0.76と比
較して，LSI+NN，PV-DBoW+NN，WV-avg+NN の 3 つの組み合わせが再現率，
適合率，F値ともに DeepSimの結果を上回った．PV-DM+NNの再現率は DeepSim

を上回ったが，適合率と F値は DeepSimより低い値となった．LDA+NNは再現率，
適合率，F値ともに DeepSimより低い値となった．一方で FA-AST+GMNは再現率
97%，適合率 99%，F値 0.98と，LSI+NNよりも高い精度となった．
BCB を用いた精度評価の結果を表 3.3 の右側に示す*11．なお DeepSim の値は有
効桁数 2桁までしか掲載されていないため，本調査で調べた組み合わせとは表中の有
効桁数が異なる．再現率に関しては 5 つの組み合わせのすべてが 99.9% と高い値と
なった．適合率に関しては 5つの組み合わせの中では PV-DBoWが 99.9%と最も高
く，他の 4つの手法も 99.5%以上の値が得られた．また DeepSimは再現率 97%，適
合率 98%，F値 0.98，FA-AST+GMNは再現率 94%，適合率 96%，F値 0.95となっ
た．これらと比較して，5 つの組み合わせのすべてが再現率，適合率，F 値いずれも

表 3.3 GCJと BCBを用いた精度評価

GCJ BCB

手法 再現率 適合率 F値 再現率 適合率 F値
LSI+NN 0.93 0.96 0.94 0.999 0.995 0.997

LDA+NN 0.54 0.61 0.55 0.999 0.995 0.997

PV-DBoW+NN 0.88 0.86 0.86 0.999 0.999 0.999

PV-DM+NN 0.89 0.68 0.75 0.999 0.998 0.998

WV-avg+NN 0.91 0.90 0.88 0.999 0.998 0.998

DeepSim 0.82 0.71 0.76 0.98 0.97 0.98

FA-AST+GMN 0.97 0.99 0.98 0.94 0.96 0.95

（注）：FA-AST+GMNの論文における精度評価の条件設定 [94]が本調査と異なるた
め，参考記録として掲載する．

*11 DeepSimと FA-AST+GMN の再現率，適合率，F 値は各論文より引用した．本調査と DeepSim

は同じ条件設定 [7]で調査しているが，FA-AST+GMNは条件設定が異なる [21]ため参考記録とし
て掲載する．

57

DeepSimと FA-AST+GMNの結果を上回った．
さらに BCBにおけるクローンタイプごとの F値の調査結果を表 3.4に示す．この
表より，特にWT3/T4 において，情報検索技術と深層学習の組み合わせた手法の F

値が向上していることが確認できた．これにより，情報検索技術と深層学習の組み合
わせることで，構文的類似性が低いクローンも高い精度で判定できることが分かった．

RQ1への回答� �
情報検索技術と深層学習を用いたコード片類似性判定法の中で LSI+NN の精度
が最も高い� �

3.4.2 実行時間の調査結果
GCJ を用いた実行時間の評価結果を表 3.5 に示す．また情報検索技術に基づく
ベクトル化に要する時間を明らかにするため，学習時間の内訳も表 3.5 に示す．表
3.5 より，学習時間に関して LSI+NN が 210 秒と最も高速だった．一方で PV-DM

が 533 秒と最も遅く，LSI+NN と比較して約 2.6 倍の時間がかかっている．学習
時間の内訳では，ベクトル化に所要する時間は LSI+NN が 0.6 秒と最も高速であ
り，類似性判定に所要する時間は LDA+NN が 201 秒と最も高速であった．一方で
ベクトル化に所要する時間は PV-DM が 318 秒と最も遅く，類似性判定に所要する
時間は PV-DBoW+NN と WV-avg+NN が 216 秒と最も遅かった．推定時間に関

表 3.4 BCBにおけるクローンタイプごとの F値

クローンタイプ T1 T2 ST3 MT3 WT3/T4

LSI+NN 1.00 1.00 0.999 0.997 0.996

LDA+NN 1.00 1.00 0.999 0.997 0.997

PV-DBoW+NN 1.00 1.00 0.999 0.997 0.996

PV-DM+NN 0.999 0.999 0.997 0.996 0.992

WV-avg+NN 1.00 1.00 0.999 0.997 0.998

LSI 0.999 0.988 0.833 0.216 0.003

LDA 0.999 0.986 0.889 0.624 0.108

PV-DBoW 0.999 0.987 0.702 0.056 0.000

PV-DM 0.685 0.832 0.310 0.021 0.000

WV-avg 0.999 0.994 0.938 0.762 0.144

DeepSim 0.81 0.71 0.76 0.97 0.98

FA-AST+GMN 1.00 1.00 0.998 0.982 0.946

（注）：FA-AST+GMNの論文における精度評価の条件設定 [94]が本調査と異なるた
め，参考記録として掲載する．

58

しては LSI+NN と LDA+NN が 21 秒と最も高速だった．一方で PV-DBoW+NN，
PV-DM+NN，WV-avg+NN の 3 つの組み合わせが 25 秒と最も遅く，LSI+NN や
LDA+NNと比較して約 1.2倍の時間がかかっている．
また DeepSimの学習時間に関しては 70,503秒と，約 20時間かかった*12．最も高

速な LSI+NNと比較して約 336倍の時間がかかっている．なお DeepSimはベクトル
化を行わないため，学習時間の内訳の記載は無い．また DeepSimの推定時間 27秒と
比較し，5つの組み合わせのすべてが短時間で推定が完了した．
図 3.1，図 3.2 の左枠で囲われた意味表現生成過程の実行時間の調査結果を表 3.6

に示す．この表より，LSI+NNは DeepSimの 27˜44%の実行時間で意味表現を生成
できた．さらに DeepSim による ANTLR の解析時には，Java 仮想マシンのヒープ
領域不足により意味表現の生成を完了できなかった．なお，Java 仮想マシンの最大
ヒープサイズを初期値の 8GBから 16GBまで増やして再度実行したが結果は変わら
なかった．

表 3.5 GCJを用いた実行時間評価（秒）

手法 学習時間 推定時間 学習時間内訳
ベクトル化 類似性判定

LSI+NN 210秒 21秒 0.6秒 209秒
LDA+NN 228秒 21秒 27秒 201秒
PV-DBoW+NN 224秒 25秒 8秒 216秒
PV-DM+NN 533秒 25秒 318秒 215秒
WV-avg+NN 256秒 25秒 40秒 216秒
DeepSim 70503秒 27秒 - -

表 3.6 意味表現生成過程の実行時間（秒）

プロジェクト DeepSim LSI+NN

ANTLR メモリ不足 13 秒
Apache Ant 42 秒 12 秒
Apache Commons Lang 20 秒 6 秒
Apache Log4j 15 秒 4 秒
JUnit 9 秒 4 秒
Guava 29 秒 12 秒

*12 DeepSimの論文に掲載されている学習時間の 13525秒 [84]と比較し，本調査では約 5.2倍の学習
時間を要している．実験環境の性能差により学習時間に差が生じた．

59

RQ2への回答� �
情報検索技術と深層学習を用いたコード片類似性判定法の中で LSI+NN の実行
時間が最も短い� �

3.5 考察
3.5.1 調査結果 1:精度の比較
情報検索技術に基づくベクトル表現を用いた 5種類の類似性判定法の中では，3.4.1

節の表 3.3より LSI+NNが再現率，適合率，F値ともに最も高く，次いでWV-avg+NN

が高かった．その反面，LDA+NN は再現率 54%，適合率 61% と両者とも最も低い
値となった．LDAはベイズ統計に基づく確率的トピック生成モデルによってコード片
のベクトル表現を求めるが，プログラミング言語は自然言語と比べてトピック数が少
ないため，コード片のベクトル表現を求める上で LDAは効果的でない可能性がある．
また，PV-DBoW+NN，PV-DM+NN，WV-avg+NN が LSI+NN より再現率と適
合率ともに低い値となった．これらの 3つの類似性判定法は，機械学習を用いてベク
トル表現を生成する．しかし，3.3.2節で述べたとおり，精度と実行速度のトレードオ
フの観点から本調査では Pythonライブラリのデフォルト値を参考にしてベクトル表
現を生成する際のハイパーパラメータを設定した．本調査ではハイパーパラメータを
調整しなかったことが，上記の 3つの類似性判定法が LSI+NNより低い精度となった
原因の可能性がある．ただし，精度と実行速度はトレードオフの関係にあること，ま
たハイパーパラメータのチューニングにかかる時間と精度向上の効果のバランスを考
慮すると，デフォルト値での精度評価はベクトル表現の素の性質を評価する上で有用
である．
BCBを用いた精度評価では，5種類全ての組み合わせにおいて再現率，適合率，F

値ともに 0.99以上と大きな差はなかった．さらに BCBにおけるクローンタイプごと
の判定精度の比較も行った．情報検索技術と深層学習を組み合わせた手法は，構文的
類似性が低いクローンも高い精度で判定できることを示した．情報検索技術を用いた
手法は検出漏れが多い課題があったが，この調査結果より情報検索技術と深層学習を
組み合わせることの有用性が明らかになった．
GCJ と BCB の精度結果を比較すると，BCB の方が精度が高い傾向にある．これ
はデータセットを構成するクローンの特徴が，精度の差に繋がっている．BCB に含
まれるWT3/T4クローンは，一致する行数が 50%以下であるものの，同様の構造を
しているクローンが多く含まれている [84]．一方で，GCJはさまざまなプログラマが
開発したソースコードが提出されており，さまざまな構造のコード片の類似性を求め
る必要がある．また，提出の速度が求められる競技プログラミングにおいて，ソース
コードの理解のしやすさは二の次にされることが多く，同一問題に提出されたソース

60

コードもプログラマによって異なる識別子名をつけられる可能性がある．したがって
GCJの方が類似性を判定することが難しく，BCBの方が GCJに比べて F値が高く
なる傾向にある．

3.5.2 調査結果 2：実行時間の比較
情報検索技術に基づくベクトル表現を用いた 5種類の類似判定法の中では，3.4.2節

の表 3.5より学習時間にばらつきがあるのに対し，推定時間の差は少なかった．さら
に学習時間の内訳をみると，ベクトル化に所要する時間が学習時間の差に寄与してい
ることが分かった．
ベクトル化に所要する時間に関しては，LSI+NN が 0.6 秒と非常に短時間であっ

た．2 番目の PV-DBoW+NN も 8 秒であり，残りの手法は 20 秒以上であることか
ら，LSI+NN がベクトル化の観点から非常に高速であることがわかる．これらによ
り，LSI+NN が最も有用性の高い手法であることが確認できた．また，付録 2 が示
すように PV-DBoW+NN，PV-DM+NN，WV-avg+NNのベクトル生成のためのエ
ポック数は全て 20 に固定し，ベクトル化にかかる時間を公平に比較した．しかしベ
クトル化のアルゴリズムによって，ベクトル化に所要する時間は大きく異なる結果と
なった．
LSI+NNが高速である理由として，LSIは主成分分析を用いてベクトルの次元圧縮

を行うことが挙げられる．特に，主成分分析は行列計算に置き換えることで高速に計
算可能なアルゴリズムが提案されており [100]，高速にベクトル化を行える．

3.5.3 情報検索技術と深層学習の組み合わせの比較
GCJ を用いた精度評価では LSI+NN が再現率，適合率，F 値ともに最も精度が

高かった．また BCB を用いた精度評価では大きな差はないため，精度の観点から
LSI+NNがコード片の類似性判定法に適していると言える．さらに学習時間と推定時
間のいずれにおいても LSI+NNが最も高速であり，実行時間の観点からも LSI+NN

がコード片の類似性判定法に適している．
以上の精度と実行速度の 2つの観点から，LSI+NNが最もコード片の類似性判定法

に適していることが判明した．したがって情報検索技術の一種である LSIと深層学習
の組み合わせが，コード片類似性判定法として最も効果的な組み合わせである．

3.5.4 情報検索技術と深層学習を用いたコード片類似性判定法と既存
手法の比較

DeepSim と比較したところ，適合率，再現率，F 値の精度の観点と，学習や推定
に所要する実行速度の観点から，LSI+NN の有用性が明らかになった．また FA-

61

AST+GMNと比較したところ，GCJにおける精度評価に関して LSI+NNより高い
精度となった．これは，Wangらの論文と本調査の評価方法が異なることが理由とし
て挙げられる．Wangらは 10分割交差検証を行っておらず，さらにクローンペアの数
を減らして非クローンペアと数を揃えるなどの調整を行っており，本調査と条件設定
が異なるため参考記録として掲載している．
調査で用いたコード片類似性判定法が高い精度を得られた理由として，人間はコー
ドを書く際にソースコードに処理の意味を持たせることが挙げられる．特にソフト
ウェアの保守性を高めるために，他人が読んでも理解しやすいソースコードを記述す
ることが求められ，その処理内容を理解できるようにソースコードを記述する．本研
究の実験により，人間がソースコードに持たせた処理内容の意味を情報検索技術に基
づくベクトル表現が充分に表現できることが分かった．
DeepSimは CFGと DFGを解析した特徴行列から自己符号化器を用いてコード片
のベクトル表現を求める．一方で調査で用いたコード片類似性判定法はコード片中の
出現単語から，情報検索技術を用いてベクトル表現を求める．つまりベクトル表現を
求めるまでの過程の違いにより，調査で用いたコード片類似性判定法は高速な学習が
可能になった．特に情報検索技術の一種である LSIにて用いられる主成分分析は，行
列計算に置き換えて高速に計算するアルゴリズムが提案されており，ネットワークの
学習のために反復計算が必要な自己符号化器と比較して高速に学習ができる．

3.5.5 コード片類似性判定の実例
ここでは，BCB上で正しく類似性判定できたクローンおよび正しく判定できなかっ
たクローンの具体例を示し，その差異を定性的に述べる．
最初に，本調査で用いた 5つの類似性判定法で正しくクローンと判定した例を示す．
図 3.4と図 3.5のコード片は，ファイルをコピーする処理を行うコードクローンであ
る．“File”，“Input”，“Output”，“Stream”，“src”，“dest”など共通してあらわれる
文字が多く，情報検索技術を用いた手法でクローンと判定しやすい．
次に偽陽性の例を示す．図 3.4 は単にファイルをコピーする処理に対し，図 3.6 は
圧縮ファイルを展開する処理を行う．これらは BCB上で非クローンペアとして登録
されているが，本調査で用いた 5 つの類似性判定法はクローンと判定した．“File”，
“Input”，“Output”，“Stream”，“src”などが共通して出現するため，類似している
と誤って判定された可能性がある．
最後に偽陰性の例を示す．図 3.7 と図 3.8 はWeb ページを取得する処理を行うク
ローンとして BCBに登録されている．しかし，本調査で用いた 5つの類似性判定法
はクローンでないと判定した．これらには共通してあらわれる文字が少ないため，情
報検索技術を用いた手法では類似性を判定できない可能性がある．
以上のように，本調査で用いた類似性判定法は情報検索技術を用いているため，構

62

��������	
	������
������������������������������
��	�����

	�������������	��� �

����	�	��
� ��� �������������	�	��
����������!

��	��	�	��
� ��	� �����������	��	�	��
��
��	�����!

��	�"#���$ �������	�"%&'(#!

��	����!

����������� ����)��

���$���*�&���

��)���	����$��&������!

+����)�������!

��)�������!

+

図 3.4 コード片 1:ファイルをコピーする処理（1）

����������	���
��
�����������
������	����

�������������
���� �

�������
 ����������������

�������
 �����������	�����

������
 ��������������������

����������������
�����

!�����"!�#���� #�!"�	�������������!��

$

������
%�
����& ��� ������������
%�
����&���
��

�����%�
%�
����& ��� �����������%�
%�
����&���
��

'���()�'�������'���(*+,-)�

�������	.�����

�����������	.���� ����� ���	�'���/�+�

��� ������'��+�����	.������

��� ��������

��� ��������

$

図 3.5 コード片 2：ファイルをコピーする処理（2）

文的に類似性が低いコードクローンの類似性を判定できる．一方で，共通した文字列
に影響を受けて誤ってコードクローンと判定したり，共通した文字列が少ないことに
より誤ってコードクローンでないと判定したりする欠点がある．

63

��������	�
�����
��������	������������	� �

���������
��������	�� ������ ���
��	���!����

����
������������	���"�

��#�	�������
#�
"$�"����"�%

 �������&�� ��!���
�!��&�� �����%

�����'���
� ��������� ��������'���
�����&���%

�(����)
�*����&����

���������+	������'���
������$�)�,-.+�/.,��'�%

�		��
� �
������ ��(
���%

�����

&�������'���
� 0���� �

����&�������'���
������,�((���
�����'���
��������%

&������� �%

������������0�����!��1������������2���������

�
������ ������%

�(��2����������	�������

'����!�(����
�������!��1
����%

 ����(������� ��������
��������	��$�(����
���%

�(��(����
�����
���(�343��2��#5�

(�!��)
���� �������*
�����%

 ���6������	�� ����0����$�(�%

(����7
��8	
�(��
���!���������%

9

9

9�(��
�����

 ���6������
(���:�	��������%

9

�(��2�
�����������	������&���������	��"1	��
��
��
�&�)�

(���;�"�<����&���%

9

図 3.6 コード片 3：圧縮ファイルを展開する処理

��������	
	����	��
�����
��
�����
�����	��
��
�������

	����������
	���	���������	��
���������	��
 �

 		�����
	 ����
	�!� 		�����
	"������#���
	���#�������$

 		�%�	 ��&���	�!�
��� 		�%�	�
�������$

 		�'����
�� �����
���!�����
	#�����	����&���	�$

"�((����'�
��� �� !�
���"�((����'�
����

����
��	�	��
)'�
����

�����
��#��	�
	�	*��#��	��
	�
	����$

�	��
����
�$

�	��
���
���!�++$

����������
��!���#��
�,�
�����-!�
������

�
���.!���
��.�+/
+$

0

��#�������$

��	��
��
��$

0

図 3.7 コード片 4：WEBページを取得する処理（1）

64

�����������	
� ��	��
��

�����

������� ���	�������	�����	
�

�������������	�����	������
�

������	������	�	��	
�	��

�	����������	
 �	
�	�������!	���������	
 �

�

"��
��#��$
���� 	����%&�	����� 	
��

����	 �������������

'�
��	 �������	������('�)��	�����	
�

�	������
��	�

"��
��#���*%&�	����� 	
��

����	 �������������

'�*%&	����� �#	������	����!�������'�)��	�����	
�

�	������
��	�

"

�	��������	�

"

図 3.8 コード片 5：WEBページを取得する処理（2）

65

3.5.6 妥当性の脅威
本研究では交差検証によりモデルが過学習していないことを確認しているが，学習
とテストを同じデータセット内にて行っている．学習したデータセット以外でも高い
精度が得られる，より汎化性能が高い類似性判定モデルの作成は課題である．本研究
では，学習とテストで異なるデータセットを使用した精度調査も行った．BCB で学
習し GCJでテストした結果は，再現率 0.95，適合率 0.21，F値 0.34となった．また
GCJで学習し BCBでテストした結果は，再現率 0.63，適合率 0.97，F値 0.76となっ
た．これらは表 3.3の結果より F値が低い．つまり学習したデータセット以外では精
度が低くなることが分かる．これは，データセット内のコード片には偏りが存在する
ことが理由として挙げられる．実際に BCBは 10種類の機能のコード片しか含まれて
おらず [70]，また GCJのデータセットには 12種類の問題しか含まれていない．しか
しすべての機能を持つコード片のデータセットの作成は困難である．学習したデータ
セット以外でも高い精度が得られる，より汎化性能が高いモデルの作成は課題である．
またハイパーパラメータに関する懸念もある．3.4.1 節にて PV-DBoW+NN と

PV-DM+NN の適合率は 86%，68% と，PV-DM の方が適合率が低い．ハイパーパ
ラメータのエポック数を PV-DMは PV-DBoW より増やす場合が多いが，本調査で
は 20に揃えた．そのためコード片の意味を充分に学習できず，PV-DMの適合率が低
下した可能性がある．上記以外の手法においても，ハイパーパラメータを調整するこ
とにより精度が向上する可能性がある．
さらには，本研究で調査したベクトル表現と深層学習モデル以外に，より有用性の
高い組み合わせがある可能性がある．本研究では，gensim ライブラリに採用されてい
るベクトル表現から調査対象を選択した．本研究の調査対象外のベクトル表現も調査
対象に加えることで，さらに有用性の高い組み合わせを見つけられる可能性がある．
本調査では FA-AST+GMN の精度評価結果を論文より引用したが，調査実験の条
件設定が異なる [21]ため参考記録として掲載した．FA-AST+GMNらは 10分割交差
検証を行っておらず，さらにクローンペアの数を減らして非クローンペアと数を揃え
るなどの調整を行っており，本調査と条件設定が異なる．今後，本調査と条件設定を
揃えて FA-AST+GMN の精度を評価することで，また異なる結果が得られる可能性
がある．
本調査では，5 行未満のコード片をデータセットから除去した．除去した理由は，

Choiらの報告によると，行数の小さいコード片はコードクローンとして保守対象にな
りにくく，コードクローンの評価実験において対象外にされることが多いからである
[99]．しかし，Choiらの報告では，保守作業としてリファクタリングを想定しており，
保守作業として同時修正を行う場合は，5行未満のコード片も対象となる可能性があ
る．また，コード片の検出粒度を細かくすることで，再現率が向上し，保守対象とし

66

ての有用性が高まる可能性がある．しかし一方で，検出粒度を細かくすると，検出さ
れるコードクローンの数が増え，検出結果の利用が困難になることも報告されている
[65]．大規模なソフトウェアに対しては，まとまった行のクローンを検出するほうが
有用であると著者は考える．

3.6 関連研究
深層学習を用いたコード片類似性判定法としてWhite らの手法とWei らの手法が
ある．White らは RtvNN というコード片類似性判定法を提案した [91]．RtvNN は
トークン列と抽象構文木の情報から再帰型ニューラルネットワーク [101] を用いてベ
クトル表現を求め，ユークリッド距離を用いてベクトル表現の類似性を判定する．ま
た，Weiらは CDLHというコード片類似性判定法を提案した [15]．CDLHは字句と
構文の情報から抽象構文木ベースの LSTM（Long Short-Term Memory）を用いて
ハッシュコードを求め，高速に類似性を学習する．コード片の類似性判定にはハッ
シュコードのハミング距離を用いる．RtvNNと CDLHは，深層学習を用いてベクト
ル表現を求めるが，類似性判定には深層学習モデルを使用しない．さらに BCB を対
象に上記の 2つの手法と DeepSimの精度評価を比較した結果，DeepSimより再現率
と適合率ともに低かった [84]．
我々は情報検索技術に基づく様々なベクトル表現をソースコードに適用し，コード
クローン検出における各ベクトル表現の特徴を調査した [87, 88]．これらのベクトル
表現を用いて BCB[70]に対してコードクローン検出を行い，その再現率を比較するこ
とで，よりコード片の意味を表すベクトル表現を調査した．また，コード片の類似性
を判定する距離尺度として，コサイン類似度とWord Mover’s Distance[102] の 2つ
の距離尺度を比較した．一方で本研究では，コード片の類似性を判定するために深層
学習モデルを用いている．本研究は，情報検索技術と深層学習の効果的な組み合わせ
を調査した点で先行研究と異なる．
我々の研究グループでは深層学習を用いたソースコード分類手法を比較調査した

[103]．入力された 1つのソースコードを機能に応じて分類するタスクを設定し，その
タスクを高い精度で解く深層学習モデルを明らかにした．一方，本研究では入力され
た 2つのソースコードが類似しているか否かの判定を深層学習モデルのタスクとして
設定した．深層学習モデルが解くタスクの観点で，先行研究と本研究は異なる．
また同じく我々の研究グループでは，深層学習モデルとして回帰モデルを用いた
コードクローン検出法を提案した [104]．深層学習を用いた既存のコードクローン検出
法に対し，深層学習モデルを回帰モデルに変更し汎化性能が高くなることを明らかに
した．深層学習モデルへの入力は，既存のコードクローン検出法に則りソースコード
メトリクスを用いている．一方，本研究では情報検索技術に基づくベクトル表現を深
層学習モデルの入力として用いる．深層学習モデルへの入力の観点で，先行研究と本

67

研究は異なる．

3.7 まとめと今後の課題
本研究では，情報検索技術に基づくベクトル表現と深層学習の効果的な組み合わせ
について，判定精度と実行速度の観点から調査した．調査実験では，5種類のベクトル
表現間での比較と，深層学習を用いた既存手法との比較を行った．調査の結果，情報
検索技術に基づくベクトル表現として LSIを用いた手法が，最も高精度かつ高速であ
ることが分かった．また既存手法の DeepSim と比較して，LSI を用いた手法が再現
率，適合率，F値ともに高く，学習時間も約 350倍高速であることが確認できた．既
存手法の FA-AST+GMNと比較して，GCJを用いた精度評価において LSIを用いた
手法より FA-AST+GMN の方が再現率，適合率，F値ともに高かった．ただし調査
実験の条件設定が異なるため FA-AST+GMNの精度は参考記録として扱う．
今後の課題として，以下の 3点が挙げられる．

• 学習したデータセット以外でも高い精度が得られる，より汎化性能が高いモデ
ルの作成

• 本研究で用いたベクトル表現以外の調査
• FA-AST+GMNの精度を，本研究の調査と条件設定を合わせて評価

68

第 4章

段階的再構築における依存関係分
析を用いた費用対効果の試算

4.1 まえがき
モダナイゼーションとは，長年にわたって稼働してきたレガシーシステムを最新の
技術やアーキテクチャを用いて刷新することを指す．ビジネス上の変化への迅速な対
応や保守開発工数の削減のため，レガシーシステムのモダナイゼーションに対する企
業の需要は大きい．モダナイゼーションにはいくつかの課題があるが，その 1つが失
敗のリスクの高さである．実際に，多くの時間と費用を費やしても，モダナイゼーショ
ンが完了しなかったり，失敗したりする事例が報告されている [47]．特に，企業でモ
ダナイゼーションを実施するシステムはビジネス上重要である場合が多いため，失敗
リスクを最小限に抑える必要がある．この失敗リスクを軽減する戦略として，システ
ムの一部を切り出す段階的再構築が提案されている [47, 48]．段階的再構築では，旧シ
ステムを新システムに段階的に置き換える．これにより，移行に失敗した場合，最初
からやり直す必要はなく，失敗した時点からやり直せばよいため，移行失敗のリスク
を抑えながらモダナイゼーションを行える．
モダナイゼーションのもうひとつの課題として，費用対効果の試算の難しさがある

[18]．企業の経営陣は短期的な投資収益率を重視する傾向があり，一度モダナイゼー
ションの投資が決定されると，その投資回収が優先される [18]．また，人間は将来の
利益よりも目先の損失を避ける傾向があることを知られており，ソフトウェア開発に
関する意思決定でも同様であることが示されている [105]．そのため，企業においては
要件定義の前工程で行われるシステム化計画 [49]において，モダナイゼーションの費
用対効果を見積もり，ユーザー企業とベンダー企業の間で合意を形成することが重要
である [50]．特に，システム化計画工程において行われる見積りは，試算とよばれる
[50]．近年では，レガシーシステムのモダナイゼーションの研究では，技術的な側面だ
けでなくビジネスの側面を考慮することにも重点が置かれている [106, 107]．

69

�����

�����

�����

��	

	�

����������

�����

�����

��	

	�

��������	
 ��
���

図 4.1 ビッグバンアプローチと段階的再構築

モダナイゼーションの失敗リスクを軽減する段階的再構築においても，費用対効
果の試算は難しい．我々の知る限り，段階的再構築を実施するための費用や開発工
数，またその後の効果を統計的に集計したデータは公開されていないため，段階的再
構築における費用対効果を見積もることは困難である．実際，著者が所属する企業
で段階的再構築を実施した事例では，計画当初の見積りと実績値に乖離が生じてい
る．またリファクタリング [40]の費用対効果を見積もるための研究は複数存在するが
[108, 109, 110, 111, 112]，我々の知る限り，段階的再構築における費用対効果を見積
もるための研究は行われていない．
そこで本研究では，システムの依存関係分析を用いて段階的再構築の費用対効果を
試算する手法を調査する．具体的には，過去に段階的再構築を実施した大規模な金融
システムを対象にこの手法を適用し，試算の妥当性を検証する．本研究では，システ
ムの規模と依存関係の情報を活用し，費用として段階的再構築に必要な工数を，効果
として削減可能な保守開発工数を試算し，実績値との乖離を比較する．また，対象シ
ステムの関係者にヒアリングを行い，適用手法の妥当性を定性評価する．本研究の主
な貢献は，以下のとおりである．

• 大規模な産業システムに対して，段階的再構築の費用対効果を試算した．
• 費用対効果の実績値と試算値を比較し，結果を考察した．
• 対象システムの関係者にヒアリングを行い，費用対効果試算手法の妥当性を考
察した．

以降，4.2章では，本研究の背景について述べる．4.3章では，本研究で適用対象と
した段階的再構築を実施したプロジェクトおよびシステムについて述べる．4.4 章で
は，3章で述べたプロジェクトに適用した費用対効果試算手法について述べる．4.5章
では，試算結果と実績値の調査について述べる．4.6 章では，関連研究について述べ
る．最後に，4.7章でまとめと今後の課題について述べる．

70

4.2 背景
4.2.1 モダナイゼーション
モダナイゼーションとは，数十年にわたって稼働してきたレガシーシステムを最新

の技術やアーキテクチャを用いて刷新することを指す．ビッグバンアプローチ [113]

や段階的再構築 [48]など，長年にわたっていくつかのモダナイゼーション手法が提案
されてきた．図 4.1はビッグバンアプローチと段階的再構築の概要を示す．図 4.1の
左側が示すように，ビッグバンアプローチはシステム全体を一度に新システムへ移行
するため，移行失敗のリスクが高い．ビッグバンアプローチの移行失敗のリスクを回
避するため，段階的再構築という戦略が提案されている [47, 48]．図 4.1の右側に示さ
れているように，段階的再構築の中心的な考え方は，旧システムと新システムから複
合システムを構築することである．段階的再構築では，旧システムを新システムに段
階的に置き換えるため，移行失敗のリスクを軽減する．しかし，その一方で，複合シ
ステムとしての複雑性に伴い，以下の課題が増大する．

1. 旧システムと新システム間の通信制御が複雑になる．
2. 旧システムと新システムのデータ整合性の維持が困難になる．

旧システムから新システムを切り出す場合，新システムと旧システム間の依存関係が
分断される．この分断により，切り出し前は関数呼び出しでつながっていた処理が，
切り出し後は遠隔手続き呼び出しを行うこととなる．しかし，旧システムで採用され
ている技術の多くは新システムとは大きく異なる可能性がある．そのため，新旧のシ
ステム間で遠隔手続き呼び出しをする際に，古い通信プロトコルのサポートが必要と
なり，通信制御が複雑になる．また，新旧システムの間でデータの整合性を維持でき
ない場合，システムの破損リスクが生じる．
これらの課題を解決するために，新旧システム間の通信を変換するためのグルー

コードを配置することで，新旧システムを切り離す必要がある．グルーコードとは，
異なるソフトウェアコンポーネントやシステム間での連携を可能にするコード片やス
クリプトを指す．これにより，異なるプログラミング言語や OS，ハードウェアを持
つ旧システムと新システム間での通信制御やデータ整合性が確保される．この設計パ
ターンを腐敗防止層 [114]ともいう．
グルーコードを介して旧システムと新システムを連携した後は，旧システムから新

システムに置き換えられる割合を徐々に増やしていくことで，新システムへの段階的
な移行が実現する．このように段階的再構築は移行失敗のリスクを軽減する一方で，
通信方式を変換するためにグルーコードを導入する必要があり，グルーコードを追加
で開発する工数が発生する．

71

4.2.2 費用見積り
見積り作業では，規模，工数，工期，品質（信頼性，性能など），費用などのさまざ
まな要素を見積もる [115]．
見積りは，類推法，積み上げ法，パラメトリック法の 3つに大きく分類される．類
推法とは，過去の類似プロジェクトの実績を基礎に見積もる方法である．類推法は簡
便で計画初期の見積りに適している一方，過去の実績プロジェクトの背景や制約，特
徴などが明らかでないと適用が困難である．独立行政法人情報処理推進機構が公開し
ている開発規模や工数などの実績値 [116]を使用し，類推法を適用できる．しかし，情
報処理推進機構が集計した開発プロジェクトには，新規開発や再開発などの種別が示
されている一方で，段階的再構築を実施したかどうかの情報が含まれてないため，段
階的再構築の見積りに使用することは難しい．
積み上げ法は，プロジェクトの成果物の構成要素を洗い出し，それぞれに必要な工
数などを見積もって積み上げる方法である．積み上げ法は見積りの精度が高い一方，
プロジェクトの構成要素としての作業項目をWBS（Work Breakdown Structure），
成果物の構成要素としてのサブシステムやコンポーネントなどを事前に洗い出してお
く必要がある．したがって，不確実なものが多い計画段階での見積りでは使用するこ
とが難しい．
パラメトリック法は，工数などを目的変数として，説明変数に規模や要因などを設定
し，数学的な関数として定式化する方法である．パラメトリック法では，工数と規模が
正比例（工数 = α×規模）するものや，工数と規模の累乗が比例（工数 = α×規模β）
するものが主に利用されている．工数と規模の累乗が比例する関係式は，COCOMO

法 [117] でも採用されている．情報処理推進機構は，工数と規模が正比例するパラメ
トリック法に基づいてソフトウェア開発の定量データを収集，分析したデータを公開
している [116]．本研究では，パラメトリック法の考え方に基づいて工数を見積もる．

4.2.3 見積りの時期と誤差
見積り時期によっては，見積り結果と最終的な実績値との間で誤差が発生する．特
に，早期の段階の見積りになればなるほどプロジェクト全体に不確実な点が多くなる
ため，誤差が大きくなる傾向にある．しかし，ユーザー企業ではシステム開発の予算
確保や計画実行の可否を判断するために，早期の段階での見積りが必要である．その
結果，不確実性が大きい段階での見積りが最後までベンダー企業の束縛となり，プロ
ジェクト成功の阻害要因になっているという課題がある．そこで，不確実性のある段
階での見積りで確定せずに，工程ごとに多段階での見積りを実施し，段階的に見積り
の精度を上げていくことが推奨されている [50]．図 4.2は見積りと時期の誤差を示す．
この図が示すように，システム化の方向性検討では仮試算，システム化計画では試算，

72

�����

���	

����

�
�

�
�� �
 ��

��� �� �� �����

��
����

� !

����

��

"��	#$%&

'(#$%&

"��	#)*&

'(#)*&

図 4.2 見積りの時期と誤差

（注） 文献 [50, 118]の図に基づき作成

要件定義では概算と呼ばれる見積りを行い，設計を終えた段階で確定見積りとする
[50]．
一般的に，多段階での見積りにより見積り結果と実績値の誤差が発生するリスクは

抑えられると言われているが，著者は，早期の見積りと実績値の乖離について下記の
ような事例を経験している．

• 要件定義工程に入ってから，費用対効果の見積りが不十分であることが発覚し，
システム化の方向性検討まで後戻りした事例

• 費用の見積りと実績値の乖離が大きいことを過度に危惧し，システム化の方向
性検討から先に進めない事例

• モダナイゼーションの効果を適切に見積もれないことから，システム化方向性
検討から先に進めない事例

このような事例から，システム化の方向性検討やシステム化計画において費用対効果
の見積り精度の向上が重要であることを示している．そこで本研究では，システム化
計画の工程で使用することを想定した試算手法について調査する．

4.3 適用対象
本章では，依存関係分析を用いた費用対効果の試算手法を適用した対象プロジェク

トについて説明する．

73

4.3.1 対象プロジェクトの説明
対象システムは，著者が現在勤める企業が保守開発を担当していた金融機関の基幹
システムである．対象プロジェクトの概要を表 4.1に示す．段階的再構築を実施時点
での対象プロジェクトの規模は，約 4.6MLOCであった．
対象システムの保守性向上を目的として，対象プロジェクトが計画された．対象プ
ロジェクトでは，最終的に対象システムの一部機能を約 870KLOCの Javaプログラ
ムとして切り出す段階的再構築が実施された．段階的再構築のための実際の開発工数
は，確定見積りによる開発工数を 27.5%超過した．超過した原因を社内で分析した結
果，設計段階で，4.2.1節で述べた段階的再構築による複雑性の課題を充分に考慮され
ていなかったことが大きな原因の 1つであると判明した．また，対象プロジェクト前
後の開発実績を比較すると，充分な保守性向上の効果を確認できなかった．
対象プロジェクトの段階的再構築前後の開発実績の統計値を表 4.2 に示す．表 4.2

の案件数は，段階的再構築前では COBOL の基幹システム，段階的再構築後では切り
出された新システムを対象にした保守開発案件のうち，製造規模，テスト規模，開発
生産性が正しく記録されていた案件のみの数を示す．また，表 4.2は，以下の平均値
と中央値を示している．

結合テスト 1規模 1 回目の結合テストでテスト対象となるソースコード規模．1 回
目は 2回目よりレベルが小さく，単体テストに近い．

結合テスト 2規模 2 回目の結合テストでテスト対象となるソースコード規模．2 回

表 4.1 対象システムの概要

システム概要 金融系基幹システム
システム区分 バッチシステムおよびオンラインシステム
言語区分 オープン COBOL

表 4.2 対象プロジェクトの段階的再構築前後の開発実績の統計値

段階的再構築前 段階的再構築後 増減率
案件数 21件 10件 -

平均値 結合テスト 1規模 [KLOC] 22.75 21.24 -7%

結合テスト 2規模 [KLOC] 24.04 23.28 -3%

開発生産性 [KLOC/人月] 0.27 0.19 -30%

中央値 結合テスト 1規模 [KLOC] 14.78 13.53 -8%

結合テスト 2規模 [KLOC] 17.77 21.49 +21%

開発生産性 [KLOC/人月] 0.24 0.19 -21%

74

ソース
コード

費用試算モデル

効果試算モデル

依存関係分析

依存グラフ

費用対効果試算

費用対効果

図 4.3 適用する費用対効果試算の概要

目は 1回目よりレベルが大きく，システムテストに近い．
開発生産性 1 人月あたりの製造規模．単位は KLOC/人月．開発工数は基本設計か

らシステムテストまでの工数の合計．

結合テスト 1規模と結合テスト 2規模の値が小さいほど影響範囲が狭くなり，保守
性が向上していることを示す．一方，開発生産性は値が大きいほど一人月あたりの実
装行数が多くなり，保守性が向上していることを示す．表 4.2の結合テスト 2規模の
中央値は段階的再構築の前後で増減率が正であるのに対し，開発生産性の平均値およ
び中央値の増減率はどちらも負となっている．これらの結果は，段階的再構築が必ず
しも保守性の向上に繋がったとは言えないことを示している．

4.3.2 適用の動機
対象プロジェクトにおいて，最終的に要した開発工数が計画段階で見積もった開発

工数を超過したことや，段階的再構築による保守性向上への効果が充分でなかったこ
とは，実際の開発現場における計画段階での段階的再構築の費用や効果を正確に見積
もることが難しいことを示している．しかし，情報処理推進機構などの公開情報を調
査しても，段階的再構築の開発事例が公開されていないため，類推法を適用できない．
また，見積り手法やリファクタリングの費用対効果試算に関する既存研究はいくつか
あるが [108, 109, 110, 111, 112]，段階的再構築における費用対効果試算の研究は我々
の知る限り行われていない．そこで本研究では，現行システムのソースコードの依存
関係分析を用いて費用対効果を試算する手法を採用した．

4.4 適用手法
本章では，4.3.1節で説明した対象プロジェクトに適用する費用対効果を試算する手

法（以降，本手法）について説明する．本手法は，4.2.3節で述べたシステム化計画の

75

関数 B

関数 A

関数 C

テーブル 1

テーブル 2

テーブル 3

データ依存

コール依存

図 4.4 依存グラフの例

工程における試算として利用することを想定している．図 4.3は，本手法の概要を示
す．図 4.3が示すように，本手法ではソースコードの依存関係分析に基づいてプログ
ラム間の依存グラフを作成し，そのグラフをもとに段階的再構築の費用と効果を試算
する．本章では最初に依存グラフについて説明し，費用試算，効果試算について説明
する．

4.4.1 依存グラフ
まず本研究で使用する依存グラフについて述べる．本研究では，ソフトウェアの構
成要素であるコードエンティティ（例：メソッドや関数など）やデータエンティティ
（例：データベースのテーブルやグローバル変数など）をノードとし，ノード間の依存
関係を辺（本研究では，辺はすべて有向辺）とするグラフ構造で表した依存グラフを
使用する [119]．依存関係にはコール依存やデータ依存など様々な種類があり，この種
類を本研究では「関係タイプ」と呼ぶ．
図 4.4は本研究で使用する依存グラフの例を示している．この図では，ノードは関
数とデータベースのテーブルを表し，辺はコール依存とデータ依存を表している．

4.4.2 費用試算
本節では，本手法における費用試算について説明する．費用試算では，段階的再構
築にかかる開発工数を試算し，その結果に人月単価を掛け合わせることで金額に換算
できる．
システム全体を一度で移行する場合，変更対象の規模に対して再開発の生産性を掛
けることでパラメトリック法に従い開発工数を試算する [115]．しかし，著者は実際の
開発現場で，システムの一部を切り出して段階的再構築する際，変更規模に生産性を

76

掛けただけでは，試算した工数が実績値より過少となる事例を経験した．そこで本研
究では，新システム，旧システム，グルーコードの開発工数の合計によって段階的再
構築の開発工数を求める手法を適用する．
新システムと旧システムの開発工数は，切り出し前のシステムの変更規模と開発生

産性を掛けるパラメトリック法に基づいて計算される．一方で，グルーコードの開発
工数を見積もるためには，依存グラフを用いる．ここでは，グルーコードの開発工数
の試算モデルに絞り説明する．

費用試算モデル
ここでは，グルーコードの開発工数を算出するための費用試算モデルについて説明

する．グルーコードの開発工数 E は次の式で求める．

E = α×
∑
d∈D

NdLd (4.1)

式 (4.1)では，αは生産性（人月/規模），D は依存関係のタイプの集合，dは D に
含まれるある依存関係のタイプを意味する．また，Nd は新システムと旧システムを
またがる依存関係 dの本数，Ld は依存関係 dの 1本あたりのコードの実装行数を意
味しており，Nd と Ld を依存関係のタイプ dごとに合計し，生産性を掛けることでグ
ルーコードの開発工数を求める．
式 (4.1)の Ld と αは，旧システムと新システムのアーキテクチャにより変動する．
そのため，これらの数値は過去の開発実績に基づいて試算するか，予備調査としてグ
ルーコードを小規模に開発して開発工数を測定することによって試算する必要がある．

費用試算の例
図 4.5 は図 4.4の例に対して段階的再構築を実施した後の関数とテーブルの例を示

している．図 4.5 が示すように，関数 Bが新システムへ切り出されたため，段階的再
構築後は，関数 Aと関数 B，関数 Bと関数 C，関数 Bとテーブル 1の間の通信はすべ
てグルーコードを介して行われる．したがって段階的再構築には，新しいグルーコー
ドの開発が必要である．表 4.3は図 4.5 の費用試算した例を示している．この例では，

表 4.3 依存関係ごとの工数見積りの例

関係タイプ d Nd Ld 生産性 α 開発工数 E

コール 20 40 855 0.93

データ 10 100 855 1.17

工数の合計 2.10

（注 1） 依存関係ごとの LOCと生産性は暫定値．
（注 2） 生産性の単位は LOC/人月．開発工数の単位は人月．

77

関数B

関数A

関数C

テーブル1

テーブル2

テーブル3

データ依存

コール依存

グルーコード

新システム

旧システム

遠隔手続き依存

図 4.5 段階的再構築後の関数とテーブルの例

段階的再構築後にグルーコードを介した遠隔手続き依存に置き換えられるコール依存
とデータ依存の数を，それぞれ 20および 10と仮定する．また，グルーコードで 1つ
のコール依存を置き換えるために必要なソースコードの開発規模は 40 LOC，1 つの
データ依存の場合は 100 LOC と仮定する．したがって，表 4.3 に示されている依存
関係の数と依存関係ごとの開発 LOC，生産性の逆数を掛けることで，コール依存の
グルーコードの開発工数は 0.94 人月，データ依存のグルーコードの開発工数は 1.17

と試算できる．最後に，依存関係ごとのグルーコードの開発工数を合計して，グルー
コード全体の開発工数は 2.11 人月と試算される．

4.4.3 効果試算
本節では，本手法における効果試算について説明する．本研究では段階的再構築後
の保守開発工数の削減率を効果として試算する．モダナイゼーションにはさまざまな
効果があるが，保守開発工数の削減率に着目する理由は，工数を減少することで開発
アジリティが向上し，他の IT分野への投資がしやすくなるためである．
本研究の効果試算では，影響範囲の削減率に基づいて保守開発工数の削減率を求め
る．ここで，影響範囲とは，一部のプログラムを変更した場合にその変更が他のプロ
グラムにも影響を及ぼす範囲を意味する．影響範囲が広いほど，プログラムを理解し
テストする範囲が広がるため，保守開発工数も増大する．一般に，ソフトウェア保守
においてプログラム理解とテストにかかる工数割合が大きいため [120, 121, 122]，保

78

守開発工数の削減率は影響範囲の削減率から大きな影響を受ける [123, 124]．そこで
本研究では，システムを切り出すことにより影響範囲を局所化できることから，それ
に伴う保守開発工数の削減率を段階的再構築の効果として見積もる．

効果試算モデル
ここでは，保守開発工数の削減率を求める効果試算モデルについて説明する．保守

開発工数の削減率 Rは，次の式で求める．

R = 1−
∑

m∈M PmCI ′m∑
m∈M PmCIm

(4.2)

式 (4.2)では，M はシステム全体のモジュール集合，Pm はモジュール集合M に含
まれるあるモジュール mが 1回の保守開発で変更される確率，CIm は段階的再構築
前のモジュールmの影響範囲，CI ′m は段階的再構築後のモジュールmの影響範囲を
意味する．各モジュールに対する影響範囲は，そのモジュールが変更されたときにテ
ストされるコード行数によって測定される．
式 (4.2) において，各モジュールが変更される確率とそのモジュールの影響範囲を

掛け合わせた値を重み付き影響範囲という．そして，重み付き影響範囲の総和を取る
ことでシステム全体での影響範囲の期待値を計算する．実際のシステム開発において，
1回の保守開発ですべてのモジュールが平等に変更されることはない．また頻繁に変
更されるモジュールは影響範囲を小さくする効果が高く，一方でめったに変更され
ないモジュールは影響範囲を小さくする効果が少ない．そのため，式 (4.2) では各モ
ジュールの変更確率を考慮した重み付き影響範囲を基に効果を試算する．本研究では
変更確率 P (m) をモジュール m の規模がシステム全体の規模の中で占める割合によ
り算出する．これは，規模が大きいモジュールは変更される確率が高く，規模が小さ
いモジュールは変更される確率が低いという仮定に基づいている．さらに，影響範囲
CIm は，モジュール m とモジュール m に依存するすべてのモジュールのコード行
数を合計することで計算される．これは，変更されたモジュールに依存するモジュー
ルも変更の影響を受けるため，再テストが必要になるためである．本研究で提案する
影響範囲の計算手法は既存研究 [110] の研究結果に基づいている．段階的再構築後の
影響範囲の期待値は，新システムと旧システムをまたがる依存関係がなくなるものと
して試算する．例えば，切り出し前は関数呼び出しで依存関係のあったモジュールが，
切り出し後には遠隔手続き呼び出しに変わる場合，一般的にモジュール間の結合度が
低下し，テストが容易になるため，影響範囲の期待値は小さくなる．

効果試算の例
図 4.6は効果試算に用いる段階的再構築前後のモジュールの例を示している．また，
表 4.4と表 4.5は，段階的再構築前後における影響範囲を示している．

79

�����

�

�����

�

�����

�

�����

	

�����

�

�����

�

�����

�

�����

	

���

���

������� �������

�����

�����

図 4.6 効果試算に用いるモジュールの例

最初に，段階的再構築前の影響範囲の期待値の算出例について説明する．この例で
は，図 4.6の左側で示されたモジュール Dが保守開発で変更される場合を考える．モ
ジュール D が変更される確率 PD は，全モジュールのコード行数の合計に対するモ
ジュール Dのコード行数の割合から，40%と算出される．そしてモジュール Dを変
更した場合，依存しているモジュール A，B，Cにも変更の影響が及ぶため，モジュー

表 4.4 段階的再構築前の影響範囲の例

重み付き
モジュール LOC Pm CIm 影響範囲

A 10 10% 10 1

B 20 20% 30 6

C 30 30% 60 18

D 40 40% 100 40

影響範囲の推定値 65

表 4.5 段階的再構築後の影響範囲の例

重み付き
モジュール LOC Pm CI ′m 影響範囲

A 10 10% 10 1

B 20 20% 30 6

C 30 30% 30 9

D 40 40% 70 28

影響範囲の期待値 44

80

ル Dの影響範囲 CID はモジュール A，B，C，Dのコード行数を合計して 100とな
る．モジュール Dは 40%の確率で変更され，変更された際の影響範囲は 100である
ことから，重み付き影響範囲は 40となる．モジュール D以外についても同様に重み
付き影響範囲を算出して総和をとることで，段階的再構築前の影響範囲の期待値は 65

となる．
次に，段階的再構築後にモジュール Cと Dが新システムとして切り出され，グルー

コードによってモジュール Bと Cが連携された場合の影響範囲の期待値の算出例につ
いて説明する．この例では，図 4.6の右側で示されたモジュール Dが保守開発で変更
される場合を考える．まず，段階的再構築前と同様に，モジュール Dの変更確率 PD

は 40%となる．しかし，モジュール Dの影響範囲 CI ′D は 100から 70に減少する．
その理由は，モジュール Dが変更された場合，モジュール D自身と Cには段階的再
構築前と同様に変更の影響が及ぶが，グルーコードによってモジュール Cと Bの間の
依存関係が解消されたため，モジュール B および A には変更の影響が及ばないため
である．これにより，モジュール Dの重み付き影響範囲は 40から 28に減少する．ま
た，モジュール Cの影響範囲 CI ′C も 60から 30に減少し，重み付き影響範囲は 18か
ら 9 に減少する．一方でモジュール A と B については，段階的再構築前後で影響範
囲は変化しない．この結果，全モジュールの重み付き影響範囲の総和を取ると，段階
的再構築後の影響範囲の期待値は 65から 44に減少し，保守開発工数の削減率は 32%

に達すると推定する．

4.5 調査
4.5.1 調査目的とリサーチクエスチョン
本調査では，4.3.1節で説明した対象システムを対象に，段階的再構築において 4.4

章で説明した本手法の妥当性を調査する．
そこで，本調査では次の 2つのリサーチクエスチョンを設定した．

RQ1 費用試算結果と実績値の乖離はどれくらいか？
RQ2 効果試算結果と実績値の乖離はどれくらいか？

この 2つのリサーチクエスチョンを解くことで，費用試算モデルと効果試算モデルの
妥当性を評価する．
さらに，プロジェクト関係者にヒアリングを行うことで，提案した試算モデルおよ

び試算結果に対する定性的評価を行う．

81

4.5.2 調査 1：費用試算の妥当性
調査方法
RQ1に回答するため，本調査では 4.4.2節で説明した費用試算モデルを対象システ
ムに適用し，試算した開発規模と実績値との乖離を比較した．
まず，対象システムに対して依存関係分析を行い，依存グラフの頂点はファイル，辺
は呼び出し関係である依存グラフを作成する．COBOLプログラムでは，ファイル単
位でプログラムにコンパイルされ，CALL文を使って他プログラムを呼び出す．
次に，新システムとして切り出して段階的再構築するプログラムと，旧システム
として残すプログラムを分類する．対象プロジェクトにおいて実際に切り出された
COBOLプログラムを，本研究でも切り出し対象として選定した．そして，新システ
ムとして切り出し対象のプログラムと，旧システムに残すプログラム間で跨る依存関
係の本数を依存関係グラフに基づいて集計した．
最後に，新システム，旧システム，グルーコードの開発規模をそれぞれ計算し，そ
れらを合計することで，システム全体の開発規模を算出した．新システムおよび旧シ
ステムの開発規模は，対象プロジェクトの計画段階において試算された値を再利用し
た．ただし，計画段階ではグルーコードの開発が必要になるとは想定されていなかっ
たため，新システムの旧システムの開発規模のみが試算対象であった．グルーコード
の開発工数は，4.4.2節で述べた式 (4.1)に基づき算出した．ただし，本調査は工数見
積りではなく規模見積りで評価するため，生産性 αは計算に含めない．
本調査では，実際の開発規模（3,691KLOC）と，費用試算結果との乖離を定量的に
比較した．さらに，計画段階での試算値（2,675KLOC）と比較し，費用試算モデルの
妥当性を調査した．
費用試算結果の乖離率は次の式で求める．

乖離率 =
試算値−実績値

実績値 (4.3)

調査結果
対象システムでは，新システムから旧システムへの呼び出し関係は 3,431個，旧シ
ステムから新システムへのよびだし関係は 80 個であった．したがってシステム間を
跨る呼び出し関係は 3,511個となる．依存関係 1本あたりのグルーコードの実装行数
は，システム内の 1ファイルあたりの平均 LOCから算出し，343.3LOCだった．こ
れらの結果から，グルーコードの開発規模は，1,205LOCと試算できる．この試算結
果と，グルーコードを含んでいない計画段階の試算 2,675KLOC を合計することで，
システム全体の開発規模は 3,880KLOCという試算結果が得られた．
対象プロジェクトの開発規模として，費用試算モデルの試算結果，対象プロジェク

82

トの計画段階の試算結果および実績値を表 4.6に示す．この表から費用試算モデルの
試算値は 3,880KLOCと算出され，実際の開発規模の実績値である 3,691KLOCと比
較して，乖離率が 5.1% であったことがわかる．一方で対象プロジェクトの計画段階
の試算値と実績値との乖離が-27.5%である．これらの結果から，費用試算モデルを用
いることで，実績値との乖離が小さく，より正確に費用を試算できることが示唆され
る．これは本手法における費用試算がグルーコードの開発規模を考慮しているためと
考えられる．

RQ1への回答� �
本手法の費用試算結果と実績値の乖離は +5.1% で，費用試算モデルを使用する
ことで対象プロジェクト計画段階の試算結果より乖離の少ない試算ができた．� �

4.5.3 調査 2：効果試算の妥当性
調査方法
RQ2に回答するため，本調査では 4.4.3節で説明した効果試算モデルを対象システ
ムに適用し，試算したテスト規模の削減量と実績値との乖離を比較した．テスト工程
は開発工程の中で大きな割合を占め，開発工程全体に大きな影響を与えるため，本調
査ではテスト規模に比例してテスト工程の工数も増減するという仮定のもと，テスト
規模の削減量を試算する．

表 4.6 費用試算：対象プロジェクトの開発規模

値 乖離率
費用試算モデルの試算値 3,880KLOC +5.1%

計画段階の試算値 2,675KLOC -27.5%

実績値 3,691KLOC -

表 4.7 効果試算：段階的再構築前後の比較

段階的再構築後 効果試算モデル
の実績値 の試算値 乖離率

平均値 結合テスト 1規模 [KLOC] 21.24 19.79 -7%

結合テスト 2規模 [KLOC] 23.28 20.91 -10%

開発生産性 [KLOC/人月] 0.19 0.32 +68%

中央値　 結合テスト 1規模 [KLOC] 13.53 12.86 -5%

結合テスト 2規模 [KLOC] 21.49 15.46 -28%

開発生産性 [KLOC/人月] 0.19 0.27 +42%

83

まず，調査 1 と同様に，対象システムの依存関係を分析して依存グラフを作成し，
新システムとして切り出して段階的再構築するプログラムと，旧システムとして残す
プログラムに分類する．その後，4.4.3節で述べた式 (4.2)を用いて，段階的再構築前
後の保守開発工数の削減率を算出した．
次に，表 4.2で示した対象プロジェクトの段階的再構築前の開発実績の統計値に対
して，上記で算出した削減率を乗算し，段階的再構築後の値を試算する．最後に，段
階的再構築後の各開発実績と試算結果を比較し，本手法による試算結果の乖離を評価
する．効果試算結果の乖離率も，費用試算の乖離率と同様の式で求める．

調査結果
対象システムでは，段階的再構築前の影響範囲の期待値（∑

m∈M PmCIm）は
7.99KLOC，段階的再構築後の影響範囲の期待値（∑

m∈M PmCI ′m）は 6.99KLOCであ
った．この結果から，式 (4.2)より，保守開発工数の削減率R = 1−(6.99/7.99) = 0.125

となり，13%削減可能という結果が得られた．
段階的再構築後の実績値と，段階的再構築前の実績値に対して 13% 削減した試算
結果の比較を表 4.7に示す．この表から，効果試算の結果は，段階的再構築後の実績
値と比較して-28%～+68%乖離していることがわかる．乖離の程度はさまざまである
が，テスト規模は実績値が大きく，開発生産性は実績値が小さいため，すべてにおい
て試算結果ほど効果を得ることはできなかった．
表 4.2 において段階的再構築後にテスト規模が小さくなった結合テスト 1（平均値
と中央値）および結合テスト 2（平均値）では，段階的再構築後の実績値と効果試算の
結果の乖離率が-10%～-5%と小さかった．一方，段階的再構築後にテスト規模が大き
くなった結合テスト 2（中央値）では，乖離率が-28%と乖離が大きくなる傾向が見ら
れた．これにより，段階的再構築前後の開発実績の増減が，効果試算の結果との乖離
に影響を与えている可能性が考えられる．
また，段階的再構築後に開発生産性が悪化した理由として，次の 2つの要因が考え
られる．1つ目の要因は，言語の違いである．対象プロジェクトでは，COBOLから
Javaに再構築されたが，言語の違いによりテスト規模や開発生産性の値が悪化した可
能性がある．テスト規模および開発生産性とは異なる尺度を用いることで，保守性向
上効果を定量的に可視化できる可能性がある．2 つ目の要因は，段階的再構築の中で
機能追加が行われたことである．モダナイゼーションプロジェクトの期間が長くなる
と，その間のビジネス状況の変化も大きくなり，その変化に対応するために機能追加
が入る傾向がある．段階的再構築の中での機能追加は，システムの保守性を悪化させ，
開発生産性の悪化に繋がっている可能性がある．

84

RQ2への回答� �
本手法の効果試算結果と実績値の乖離は-28%～+68% となった．ただし一部比
較項目において，段階的再構築前後の開発実績が悪化しており，テスト規模削減
および生産性向上が前提である効果試算モデルの正確性の評価が難しい．� �

4.5.4 プロジェクト関係者ヒアリング
本調査では，5.2節と 5.3節で定量的に評価した費用試算モデルおよび効果試算モデ

ルの妥当性を定性評価するため，対象プロジェクトの関係者に対して次の 3つのヒア
リング調査を実施した．

質問 1 試算結果は妥当感があるか
質問 2 試算モデルは納得感があるか
質問 3 試算モデルは今後プロジェクトに適用可能か

質問 1「試算結果は妥当感があるか」では，4.5.2節で説明した調査 1と 4.5.3節で
説明した調査 2の試算結果を関係者に説明することで，試算結果の妥当性を調査した．
質問 2「試算モデルは納得感があるか」では，式 (4.1) と式 (4.2) を関係者に説明し，
これらの試算モデルが実際のシステムの関係者にとって納得できるものであるかを調
査した．最後に質問 3「試算モデルは今後プロジェクトに適用可能か」では，説明した
試算結果と試算モデルをふまえて，今後プロジェクトにこの試算モデルを適用可能か
（適用したいと思うか）調査した．
本調査は企業でモダナイゼーションの経験を持つプロジェクトマネージャー，PMO

エキスパート，開発者の計 3名を対象に調査を実施した．弊社では，ユーザー企業の経
営層に対してモダナイゼーションの費用対効果を説明し，経営層から合意を得る活動
を継続的に行っている．本調査においては，費用対効果の説明責任を持ったプロジェ
クトマネージャーと，実際に試算したメンバーに対しヒアリング実施した．これらの
回答者には，ユーザー企業の立場を踏まえた観点から回答してもらうよう依頼した．
回答形式は，各質問に対して費用試算モデルと効果試算モデルのそれぞれについて

5段階評価を行い，その理由を自由記述形式で回答してもらった．

調査結果
プロジェクト関係者ヒアリングの調査結果を表 4.8に示す．この表で示されている

ように，質問 1「試算結果は妥当感があるか」については，費用試算は「妥当」，「やや
妥当」，「どちらでもない」と回答した人が 1人ずつおり，妥当と感じた人の方が比較
的に多かった．自由記述のコメントによると，「製造規模だけでなくグルーコード規模
を含めて試算することに対して，納得感を感じる」という意見があった．一方，効果
試算については，3人のうち 2人が「どちらでもない」，1人が「やや妥当でない」と

85

回答し，妥当性を感じていない人が比較的に多いという結果となった．自由記述のコ
メントによると，「効果試算モデルではソースコードに対しての変更影響のみを考慮し
ているが，ソースコードだけでなくデータベーステーブルへの変更影響も考慮したほ
うが，効果の体感と近くなるのではないか」という意見があった．
次に，質問 2「試算モデルは納得感があるか」という質問については，費用試算では

3人のうち 1人が「納得感がある」，2人が「どちらでもない」と回答した．自由記述の
コメントでは，「システム間を連携するために必要な部品の見積り式としての納得感が
あるが，部品の必要性は一般的ではなくシステム特性に依存する」という意見があっ
た．また効果試算については，3人のうち 1人が「やや納得感がある」，2人が「どち
らでもない」と回答した．自由記述のコメントでは，「プロジェクト特性や適用可能な
工程など，前提条件があるように思うことと一般性が低い」という意見があった．費
用試算と効果試算の双方において，中立的な意見が多数を占める一方，若干の納得傾
向が確認できた．ただし，どちらの式も理解が難しいという意見があった．
最後に，質問 3「試算モデルは今後プロジェクトに適用可能か」という質問につい
ては，費用試算，効果試算の双方において，肯定的な意見と否定的な意見に分かれた．
費用試算ついては，3人のうち 1人が「適用できる」，1人が「やや適用できる」，1人
が「やや適用が難しい」と回答した．肯定的な意見として，「自身が担当するプロジェ
クトをもとにした試算モデルのため適用しやすい」という意見が得られた．一方で否

表 4.8 プロジェクト関係者ヒアリングの結果

質問 回答: 費用試算 （人） 回答: 効果試算 （人）

質問 1: 試算結果は
妥当感があるか？

妥当 1

やや妥当 1

どちらでもない 1

やや妥当でない 0

妥当でない 0

妥当 0

やや妥当 0

どちらでもない 2

やや妥当でない 1

妥当でない 0

質問 2: 試算モデルは
納得感があるか？

納得感がある 1

やや納得感がある 0

どちらでもない 2

やや納得感がない 0

納得感がない 0

納得感がある 0

やや納得感がある 1

どちらでもない 2

やや納得感がない 0

納得感がない 0

質問 3: 試算モデルは
今後プロジェクトに
適用可能か？

適用できる 1

やや適用できる 1

どちらでもない 0

やや適用が難しい 1

適用が難しい 0

適用できる 1

やや適用できる 0

どちらでもない 1

やや適用が難しい 1

適用が難しい 0

86

定的な意見として，「対象プロジェクトで発生した問題はグルーコードだけではなく，
この試算モデルがカバーしない範囲の検討の必要」という懸念点が指摘された．効果
試算ついては，3 人のうち 1 人が「適用できる」，1 人が「どちらでもない」，1 人が
「やや適用が難しい」と回答した．肯定的な意見として，「次のプロジェクトの刷新時
には，この試算モデルも活用しつつ効果を定量評価して顧客に訴求したい」という意
見が得られた一方で，否定的な意見として，「効果は生産性向上だけではなく，品質，
費用，納期のバランスが重要であること．この試算だけでは顧客満足に繋がりにくい」
という点が指摘された．
プロジェクト関係者ヒアリングの結論� �
試算結果の妥当感については，費用試算は比較的肯定的，効果試算は比較的否定
的な傾向がみられた．試算モデルの納得感については，費用試算と効果試算とも
に中立的な意見が多かった．試算モデルの今後の適用可能性については，費用試
算と効果試算ともに肯定的な意見と否定的な意見に分かれた．� �

4.5.5 妥当性への脅威
費用試算において，本調査では依存関係 1本あたりの実装行数を，プログラム 1個
あたりの平均行数から試算した．実際には事前検証などを実施することで依存関係 1

本あたりの実装行数をより精緻に求めることができる．しかし，一般的な実開発にお
いて計画段階で事前検証の実施は難しい．表 4.6より，本実験の計算方法でも計画段
階の試算より乖離率が小さいことから，プログラム 1個あたりの平均行数を使った試
算精度であっても許容できる．また，本調査では工数見積りではなく規模見積りで評
価したため，生産性 αは計算に含めていない．ただし，生産性 αはプロジェクトごと
に定められる定数値であり，対象プロジェクトにおいても生産性ではなく規模の見積
り誤差に起因して工数見積りが乖離したため，本調査では規模見積りで評価した．
効果試算において，乖離率の閾値を決める基準値がないため，効果試算結果が正確
であると判断できる乖離率の上限値および下限値はない．したがって，効果試算モデ
ルが正確であるか否かの判断が難しい．
さらに，見積りの正確性の評価指標として乖離率以外の指標も存在する．本研究で
は実績値との乖離率をもって調査の結論としたが，別の指標を採用することでことな
る結果となる可能性がある．
また本調査では，段階的再構築によりテストされるコード行数が減少し，開発生産
性が向上するという前提のもと，保守性向上効果を試算した．しかし，表 4.2より，結
合テスト 2 規模（中央値）の増減率が正に，また開発生産性（平均値と中央値）の増
減率が負になっており，むしろ段階的再構築前より悪化している．したがって，段階
的再構築によりテスト規模の削減および保守開発工数の削減効果を得られない懸念が

87

ある．段階的再構築の別の効果として，修正が必要なテーブル数の削減による保守性
の向上がある．本調査とは別の依存タイプを分析し，新たな前提をもとに検証するこ
とは今後の課題である．
本調査では，弊社でモダナイゼーションの経験を有するメンバーを対象にヒアリン
グを実施した．しかしながら，弊社はベンダー企業であるため，ユーザー企業の視点
に基づく直接の回答を得ることはできなかった．費用対効果の見積りは，ユーザー企
業の経営層が納得できるか否かが重要である．したがって，ユーザー企業を対象にヒ
アリングを実施することで，より客観的な評価を得られる可能性がある．しかし，弊
社はこれまで，ユーザー企業の経営層に対してモダナイゼーションの費用対効果を説
明し，経営層から合意を得る活動を継続的に行っている．本調査においては，費用対
効果の説明責任を担うプロジェクトマネージャーと，実際に試算したメンバーに対し
ヒアリングを実施した．これらの回答者には，ユーザー企業の立場を踏まえた観点か
ら回答してもらうよう依頼している．そのため，本調査はユーザー企業の視点を一定
程度反映していると考えられる．

4.6 関連研究
Leitch らは，リファクタリングにおける依存関係分析を用いて費用対効果を試算
する手法を提案した [110]．Leitch らの手法では，制御依存とデータ依存の依存関係
からリファクタリングにより削減可能なシステムの保守開発工数を試算する．また
COCOMO II を用いてリファクタリングの実施工数を試算する．しかし，Leitch ら
の手法ではシステム内のリファクタリングにおける費用対効果の算出しかできず，段
階的再構築の費用対効果を試算する点で適用手法と異なる．
Cuiらは，依存関係の修正方法と修正作業工数の相関関係を調査した [109]．これに
より，依存関係の種類ごとに修正作業工数を見積もることができる．ただし，依存関
係の修正方法にシステム切り出しがない点において，適用手法の費用試算とは異なる．
Rebêlらは，アスペクト指向切り出しにより，オブジェクト指向設計と比較して，設
計上の安定性と保守作業の関係性を調査した [111]．これにより，アスペクト指向切り
出しによる保守開発工数の削減効果を試算できる．ただし，アスペクト指向切り出し
ではなく，別システムに切り出す点で，適用手法の効果試算とは異なる．
Caiらは，ソースコード，アーキテクチャ情報，バージョン履歴をもとに，リファク
タリングの費用対効果を判断するフレームワークを開発した [108]．費用対効果を判断
するフレームワークとして，提案手法と類似している．一方で具体的な費用を試算す
る手法は示されていない．また効果試算は影響範囲に着目しておらず，過去のリファ
クタリング作業との相関関係により試算する点で，適用手法とは異なる．
Xiao らは，アーキテクチャの技術的負債と保守開発工数との相関関係を調査した

[112]．これにより，技術的負債の存在による保守開発工数の増加量を試算できる．た

88

だし，システム切り出しによって保守開発工数の削減量を試算しない点で，適用手法
とは異なる．
小林らは，システム障害予測の精度向上を目的として，変更の影響波及量を定量化
するメトリクスを提案した [119]．依存グラフを用いて変更の影響範囲を見極める点
で，提案手法と類似しているが，障害予測の精度向上を目的としており開発工数の削
減量試算を目的としていない点で，適用手法と異なる．
早瀬らは，保守開発作業の労力見積りに用いることを目的として，影響波及解析を
使ったメトリクスを提案した [125]．依存グラフを用いて変更の影響範囲を見極める点
で，提案手法と類似している．しかし早瀬らの手法は，特定のプログラムの保守開発
工数の試算のみ実施しており，システム全体での保守開発工数の削減率を試算する適
用手法と異なる．

4.7 まとめと今後の課題
段階的再構築はモダナイゼーション失敗リスクを軽減できる一方，計画段階で段階
的再構築の費用対効果を正確に見積もることは困難である．実際に第 1 著者および第
4 著者が所属する企業で段階的再構築を実施した事例では，計画段階で見積もった値
と実績値の乖離が発生していた．そこで本研究では，過去に段階的再構築を実施した
大規模な金融システムに対して，依存関係分析を用いた費用対効果試算を適用し，実
績値との乖離率を比較した．また，プロジェクトの関係者にヒアリングを行い，適用
手法の妥当性を定性評価した．評価の結果，費用試算は実績値と乖離率が小さかった
のに対し，効果試算は実績値との乖離が大きかった．プロジェクト関係者ヒアリング
の結果からは，費用試算結果はやや妥当だが，効果試算結果はやや妥当でないという
意見が得られた．また費用試算と効果試算ともに，試算モデルの納得感については中
立的な意見が多く，今後の適用可能性については肯定派と否定派に分かれた．
今後の課題として，以下の 3点が挙げられる．

評価結果の信頼性向上 現時点では 1つの案件でのみ評価を行なった．評価対象のシ
ステムを増やして交差検証を行うなど，評価結果の信頼性を向上させることは
今後の課題である．

依存関係の拡充 本研究ではプログラムの呼び出し関係のみを依存関係として解析し
た．他にもデータベースアクセスなど，依存関係のタイプは存在する．タイプ
の種類を増やし，新たなタイプをもとにした試算結果の精度検証は今後の課題
である．

他言語への適用 本研究では，COBOL言語を対象に試算を行った．COBOL以外の
言語でも提案手法を適用して試算結果が得られるのか，今後の課題である．

89

第 5章

おわりに

5.1 まとめ
本論文では，コードクローンの把握を支援する目的で 2つの研究を，モダナイゼー
ションの費用対効果の試算を支援する目的で 1つの研究を実施した．

1. コードクローンの把握を支援
（a）情報検索技術に基づく細粒度ブロッククローン検出
（b）情報検索技術と深層学習を用いたコード片類似性判定法の比較調査

2. モダナイゼーションの費用対効果の試算を支援
（a）段階的再構築における依存関係分析を用いた費用対効果の試算

1-(a)については，情報検索技術の一種である TF-IDFと LSHを利用したブロック
クローン検出手法を提案した．本手法では，構文解析によりコードブロックを抽出し，
TF-IDFを利用してコードブロックを特徴ベクトルに変換した後，特徴ベクトル間の
類似度を計算することで，意味的に処理が類似したブロッククローンを検出する．ま
た，クラスタリング手法の一種である LSHを用いることで，高速なブロッククローン
検出を実現した．これにより，既存のコードクローン検出手法よりも高精度でコード
クローンを検出し，さらに保守作業を行いやすいコードクローンを検出が可能となっ
た．また，クラスタリング手法や特徴ベクトルのデータ構造を工夫することで，既存
手法より高速かつ低メモリ消費での検出が可能となった．
1-(b)については，コード片の処理内容の意味的な類似性を高精度かつ高速に判定す

るため，情報検索技術と深層学習の効果的な組み合わせを調査した．調査では，5種類
のベクトル表現間での比較と，深層学習を用いた既存手法との比較を実施した．調査
の結果，情報検索技術に基づくベクトル表現として LSI（Latent Semantic Indexing）
を用いた手法が，最も高精度かつ高速であることが明らかになった．また，既存手法
である DeepSim と比較して，LSI（Latent Semantic Indexing）を用いた手法は再現
率，適合率，F 値のいずれも高く，学習時間においても約 350 倍高速であることが確

91

認できた．
2-(a)については，過去に段階的再構築を実施した大規模な金融システムを対象に，
依存関係分析を用いた費用対効果試算手法を適用し，その妥当性を検証した．本研究
では，システムの規模と依存関係の情報を活用し，費用として段階的再構築に必要な
工数を，効果として削減可能な保守開発工数を試算し，実績値との乖離度合いを比較
した．また，プロジェクトの有識者にヒアリングを行い，適用手法の妥当性を定性評
価した．評価の結果，費用試算は実績値との乖離が小さい一方で，効果試算は実績値
との乖離が大きいことが明らかになった．有識者ヒアリングの結果からは，費用試算
結果については「やや妥当」との意見が得られたものの，効果試算結果については「や
や妥当でない」との意見が多かった．また，試算モデルの納得感については中立的な
意見が多く，今後の適用可能性については肯定派と否定派に分かれる結果となった．

5.2 今後の研究方針
今後，本論文で述べた研究成果を応用し，ソフトウェア保守およびモダナイゼーショ
ンの作業をより容易なものにしていきたいと考えている．具体的には，本論文で提案
したコードクローン検出手法とモダナイゼーションの費用対効果試算手法を実際の大
規模プロジェクトに適用し，開発者からフィードバックを得ることで，手法の有用性
を評価したい．
さらに，本論文で扱ったコードクローン検出およびモダナイゼーションの研究分野
において，大規模言語モデル（以降，LLMという）の活用を試みたいと考えている．
LLMは主に自然言語処理の分野で高い成果を上げており，現在ではソフトウェア工学
の研究分野においても注目を集めている [126, 127]．
コードクローン検出の分野では，構文的な類似度の低いコードクローンを高精度で
検出することが課題として残されている [16]．本論文では，情報検索技術と深層学習
を組み合わせることで，既存研究より高速かつ高精度に構文的な類似度の低いコード
クローンを検出できることを示した．近年では，LLMを用いたコードクローン検出手
法も提案されており，従来の手法よりも高い精度での検出を実現している [128]．しか
し，構文的な類似度の低いコードクローンに対する検出精度はまだ十分とはいえず，
さらなる改善の余地がある．そこで，情報検索技術や深層学習に加えて LLMを組み
合わせることで，より高精度で高速なコードクローンの検出手法を提案したいと考え
ている．
またモダナイゼーションの分野では，レガシーシステムの知識不足の課題が指摘さ
れている [18]．本論文では，モダナイゼーションのシステム化計画工程における費用
対効果の見積りの難しさに着目し，段階的再構築の費用対効果試算について研究した．
システム化計画を終え，次の要件定義以降の工程に進む際には，レガシーシステムに
関する知識不足という課題に直面することが多い．この課題は，レガシーシステム特

92

有の技術的な専門知識のみならず，ドキュメント不足など起因して欠落してしまった
業務知識にも及ぶ．これらの知識不足は，モダナイゼーションを進める上で重要な課
題である．近年，LLMを活用してレガシーシステムの知識不足を解消する研究や取り
組みが進められている [129, 130, 131]．今後，ソースコード静的解析と LLMを活用
し，ソースコードから設計に関する抽象概念を復元するリバースエンジニアリング手
法を提案したいと考えている．

93

参考文献

[1] IEEE Std 1219, Standard for Software Maintenance.

[2] ISO/IEC 14764:2006, Software Engineering ― Software Life Cycle Processes

― Maintenance.

[3] JIS X 0161:2008, ソフトウェア技術－ソフトウェアライフサイクルプロセス－
保守.

[4] M. Page-Jones, The practical guide to structured systems design, Yourdon

Press, 1988.

[5] S. Yip, T. Lam, A software maintenance survey, in: Proceedings of the 1st

Asia-Pacific Software Engineering Conference, 1994, pp. 70–79.

[6] A. April, A. Abran, Software Maintenance Management: Evaluation and

Continuous Improvement, John Wiley & Sons, 2008.

[7] 日本情報システム・ユーザー協会, 企業 IT動向調査報告書 2019, 2019.

[8] 肥後芳樹, 楠本真二, 井上克郎, コードクローン検出とその関連技術, 電子情報通
信学会論文誌 J91-D (6) (2008) 1465–1481.

[9] K. Inoue, C. K. Roy, Code Clone Analysis: Research, Tools, and Practices,

Springer, 2021.

[10] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach, Science of Computer

Programming 74 (7) (2009) 470–495.

[11] 山中裕樹, 崔恩瀞, 吉田則裕, 井上克郎, 佐野建樹, コードクローン変更管理シ
ステムの開発と実プロジェクトへの適用, 情報処理学会論文誌 54 (2) (2013)

883–893.

[12] 堀田圭佑, 肥後芳樹, 楠本真二, 生成抑止，分析効率化，不具合検出を中心とし
たコードクローン管理支援技術に関する研究動向, コンピュータソフトウェア
31 (1) (2014) 14–29.

[13] 三木聡, 大歳始, 浅原明広, 大澤俊晴, 千葉滋, 実務で使われるコードクローン検
出・追跡システムをめざして, in: 日本ソフトウェア科学会第 40回大会講演論文
集, 2023.

[14] 佐野真夢, 吉田則裕, 春名修介, 井上克郎, 情報検索技術に基づく関数クローン

95

検出を用いた変更管理システムの開発, 情報処理学会研究報告 2015-SE-190 (4)

(2015) 1–8.

[15] H. Wei, M. Li, Supervised deep features for software functional clone de-

tection by exploiting lexical and syntactical information in source code, in:

Proceedings of the 26th International Joint Conference on Artificial Intelli-

gence, 2017, pp. 3034–3040.

[16] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, B. Maqbool, A systematic

review on code clone detection, IEEE Access 7 (2019) 86121–86144.

[17] K. Bennett, Legacy systems: Coping with success, IEEE Software 12 (1)

(1995) 19–23.

[18] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, J. Hage, How do

professionals perceive legacy systems and software modernization?, in: Pro-

ceedings of the 36th International Conference on Software Engineering, 2014,

p. 36–47.

[19] E. Arranga, F. Coyle, Cobol: perception and reality, Computer 30 (3) (1997)

126–128.

[20] N. Veerman, Revitalizing modifiability of legacy assets, Journal of Software

Maintenance and Evolution: Research and Practice 16 (4-5) (2004) 219–254.

[21] MarketsandMarkets, Application Modernization Services Market by Service

Type (Cloud Application Migration, Application Re-Platforming, Post Mod-

ernization), Application Type (Legacy, Cloud-hosted, Cloud-native) - Global

Forecast to 2029.

[22] R. C. seacord, D. Plakosh, G. A. Lewis, Modernizing Legacy Systems: Soft-

ware Technologies, Engineering Process and Business Practices, Addison-

Wesley Longman Publishing Co., Inc., 2003.

[23] 独立行政法人情報処理推進機構, ソフトウェア開発データ白書 2018-2019

(2018).

[24] E. Chikofsky, J. Cross, Reverse engineering and design recovery: a taxonomy,

IEEE Software 7 (1) (1990) 13–17.

[25] Imagix Corporation, Imagix 4D, http://www.imagix.com/products/

products.html.

[26] IBM, Rational software modeler, http://www-01.ibm.com/software/

awdtools/modeler/swmodeler/.

[27] T. Biggerstaff, Design recovery for maintenance and reuse, Computer 22 (7)

(1989) 36–49.

[28] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, Addison Wesley, 1995.

96

[29] N. Shi, R. A. Olsson, Reverse engineering of design patterns from Java source

code, in: Proceedings of the 21st IEEE/ACM International Conference on

Automated Software Engineering, 2006, p. 123–134.

[30] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis, Design

pattern detection using similarity scoring, IEEE Trans.Softw. Eng. 32 (11)

(2006) 896–909.

[31] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, W. Tichy, Two controlled

experiments assessing the usefulness of design pattern documentation in pro-

gram maintenance, IEEE Trans.Softw. Eng. 28 (6) (2002) 595–606.

[32] X. Ren, B. Ryder, M. Stoerzer, F. Tip, Chianti: a change impact analysis

tool for java programs, in: Proceedings of the 19th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, 2004, pp. 432–448.

[33] G. Rothermel, M. Harrold, A safe, efficient regression test selection tech-

nique, ACM Trans. Softw. Eng. Methodol. 6 (2) (1997) 173–210.

[34] S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE

Trans. Softw. Eng. 20 (6) (1994) 476–493.

[35] E. J. Weyuker, Evaluating software complexity measures, IEEE Trans.

Softw. Eng. 14 (9) (1988) 1357–1365.

[36] V. Basili, L. Briand, W. Melo, A validation of object-oriented design metrics

as quality indicators, IEEE Trans. Softw. Eng. 22 (10) (1996) 751–761.

[37] M. Weiser, Program slicing, in: Proceedings of the 5th International Con-

ference on Software Engineering, 1981, p. 439–449.

[38] T. M. Meyers, D. Binkley, An empirical study of slice-based cohesion and

coupling metrics, ACM Trans. Softw. Eng. Methodol. 17 (1).

[39] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, A quantitative evaluation of

maintainability enhancement by refactoring, in: Proceedings of the Interna-

tional Conference on Software Maintenance, 2002, pp. 576–585.

[40] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: improv-

ing the design of existing code, Addison-Wesley Longman Publishing Co.,

Inc., 1999.

[41] W. F. Opdyke, Refactoring object-oriented frameworks, Ph.D. thesis, Uni-

versity of Illinois at Urbana-Champaign (1992).

[42] D. Rattan, R. Bhatia, M. Singh, Software clone detection: A systematic

review, Information and Software Technology 55 (7) (2013) 1165–1199.

[43] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach, Science of Computer

97

Programming 74 (7) (2009) 470–495.

[44] R. Baeza-Yates, B. Ribeiro-Neto, Modern information retrieval: The con-

cepts and technology behind search, Addison-Wesley, 2011.

[45] 北. 研二, 津. 和彦, 獅. 堀正幹, 情報検索アルゴリズム, 共立出版, 2002.

[46] 山中裕樹, 崔恩瀞, 吉田則裕, 井上克郎, 情報検索技術に基づく高速な関数クロー
ン検出, 情報処理学会論文誌 55 (10) (2014) 2245–2255.

[47] M. L. Brodie, M. Stonebraker, Darwin: On the incremental migration of

legacy information systems, Tech. rep., GTE Laboratories, Inc (1993).

[48] S. Comella-Dorda, G. Lewis, P. Place, D. Plakosh, R. Seacord, Incremental

modernization of legacy systems, Tech. rep., Carnegie Mellon University,

Software Engineering Institute’s Digital Library (2001).

[49] 独立行政法人情報処理推進機構, 共通フレーム 2013, SEC BOOKS, 2013.

[50] 独立行政法人情報処理推進機構, 経営者が参画する要求品質の確保, SEC

BOOKS, 2006.

[51] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, L. Bier, Clone detection

using abstract syntax trees, in: Proceedings of the International Conference

on Software Maintenance, 1998, pp. 368–377.

[52] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing

the curse of dimensionality, in: Proceedings of the Thirtieth Annual ACM

Symposium on Theory of Computing, 1998, pp. 604–613.

[53] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, T. Sano, Applying clone change

notification system into an industrial development process, in: Proceed-

ings of the 21th IEEE International Conference on Program Comprehension,

2013, pp. 199–206.

[54] Q. Lv, W. Josephson, Z. Wang, M. Charikar, K. Li, Multi-probe lsh: efficient

indexing for high-dimensional similarity search, in: Proceedings of the 33rd

International Conference on Very Large Data Bases, 2007, pp. 950–961.

[55] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, L. Schmidt, Practical

and optimal lsh for angular distance, in: Proceedings of the 28th Inter-

national Conference on Neural Information Processing Systems, 2015, pp.

1225–1233.

[56] K. Terasawa, Y. Tanaka, Spherical lsh for approximate nearest neighbor

search on unit hypersphere, in: Proceedings of the 10th International Con-

ference on Algorithms and Data Structures, 2007, pp. 27–38.

[57] 古賀久志, ハッシュを用いた類似検索技術とその応用, 電子情報通信学会 基礎・
境界ソサイエティ Fundamentals Review 7 (3) (2014) 256–268.

[58] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: a multilinguistic token-based

98

code clone detection system for large scale source code, IEEE Trans. Softw.

Eng. 28 (7) (2002) 654–670.

[59] 徳井翔梧, 吉田則裕, 崔恩瀞, 井上克郎, 局所性鋭敏型ハッシュを用いたコードク
ローン検出のためのパラメータ決定手法, in: 電子情報通信学会技術研究報告,

Vol. 117, 2018, pp. 57–62.

[60] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate near-

est neighbor in high dimensions, in: 2006 47th Annual IEEE Symposium on

Foundations of Computer ScienceS, 2006, pp. 459–468.

[61] M. S. Charikar, Similarity estimation techniques from rounding algorithms,

in: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of

Computing, 2002, pp. 380–388.

[62] L. Jiang, G. Misherghi, Z. Su, S. Glondu, Deckard: Scalable and accurate

tree-based detection of code clones, in: Proceedings of the 29th International

Conference on Software Engineering, 2007, pp. 96–105.

[63] 肥後芳樹, 楠本真二, プログラム依存グラフを用いたコードクローン検出法の改
善と評価, 情報処理学会論文誌 51 (12) (2010) 2149–2168.

[64] Y. Higo, S. Kusumoto, Enhancing quality of code clone detection with pro-

gram dependency graph, in: Proceedings of the 16th Working Conference

on Reverse Engineering, 2009, pp. 315–316.

[65] 堀田圭佑, 楊嘉晨, 肥後芳樹, 楠本真二, 粗粒度なコードクローン検出手法の精度
に関する調査, 情報処理学会論文誌 56 (2) (2015) 580–592.

[66] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, C. V. Lopes, Sourcerercc:

Scaling code clone detection to big-code, in: Proceedings of the 38th Inter-

national Conference on Software Engineering, 2016, pp. 1157–1168.

[67] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and

evaluation of clone detection tools, IEEE Trans. Softw. Eng. 33 (9) (2007)

577–591.

[68] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, Method and implementation

for investigating code clones in a software system, Information and Software

Technology 49 (9) (2007) 985–998.

[69] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of

machine Learning research 3 (Jan) (2003) 993–1022.

[70] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, M. M. Mia, Towards a

big data curated benchmark of inter-project code clones, in: Proceedings of

the International Conference on Software Maintenance and Evolution, 2014,

pp. 476–480.

[71] Z. Li, S. Lu, S. Myagmar, Y. Zhou, Cp-miner: finding copy-paste and related

99

bugs in large-scale software code, IEEE Trans. Softw. Eng. 32 (3) (2006)

176–192.

[72] R. Komondoor, S. Horwitz, Using slicing to identify duplication in source

code, in: Proceedings of the 8th International Symposium on Static Analysis,

2001, pp. 40–56.

[73] C. K. Roy, J. R. Cordy, An empirical study of function clones in open source

software, in: Proceedings of the 15th Working Conference on Reverse Engi-

neering, 2008, pp. 81–90.

[74] C. K. Roy, J. R. Cordy, NICAD: Accurate detection of near-miss intentional

clones using flexible pretty-printing and code normalization, in: Proceed-

ings of the 16th IEEE International Conference on Program Comprehension,

2008, pp. 172–181.

[75] B. van Bladel, S. Demeyer, A novel approach for detecting type-iv clones in

test code, in: Proceedings of the 13th International Workshop on Software

Clones, 2019, pp. 8–12.

[76] J. R. Cordy, C. K. Roy, Tuning research tools for scalability and performance:

The nicad experience, Science of Computer Programming 79 (2014) 158–171.

[77] H. Kim, Y. Jung, S. Kim, K. Yi, Mecc: memory comparison-based clone

detector, in: Proceedings of the 33rd International Conference on Software

Engineering, 2011, pp. 301–310.

[78] A. Marcus, J. I. Maletic, Identification of high-level concept clones in source

code, in: Proceedings of the 16th IEEE International Conference on Auto-

mated Software Engineering, 2001, pp. 107–114.

[79] 佐々木裕介, 山本哲男, 早瀬康裕, 井上克郎, 大規模ソフトウェアシステムを対
象としたファイルクローンの検出, 電子情報通信学会論文誌 J94-D (8) (2011)

1423–1433.

[80] E. Duala-Ekoko, M. P. Robillard, Clone region descriptors: Representing

and tracking duplication in source code, ACM Trans. Softw. Eng. Methodol.

20 (1) (2010) 3:1–3:31.

[81] R. Holmes, G. C. Murphy, Using structural context to recommend source

code examples, in: Proceedings of the 27th International Conference on

Software Engineering, 2005, pp. 117–125.

[82] I. Keivanloo, J. Rilling, Y. Zou, Spotting working code examples, in: Pro-

ceedings of the 36th International Conference on Software Engineering, 2014,

pp. 664–675.

[83] K. Inoue, Y. Sasaki, P. Xia, Y. Manabe, Where does this code come from

and where does it go? ― integrated code history tracker for open source

100

systems, in: Proceedings of the 34th International Conference on Software

Engineering, 2012, pp. 331–341.

[84] G. Zhao, J. Huang, Deepsim: Deep learning code functional similarity, in:

Proceedings of the 26th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering,

2018, pp. 141–151.

[85] Z. Li, S. Lu, S. Myagmar, Y. Zhou, Cp-miner: finding copy-paste and related

bugs in large-scale software code, IEEE Trans. Softw. Eng. 32 (3) (2006)

176–192.

[86] 横井一輝, 崔恩瀞, 吉田則裕, 井. 克郎, 情報検索技術に基づく細粒度ブロックク
ローン検出, コンピュータ ソフトウェア 35 (4) (2018) 16–36.

[87] 横井一輝, 崔恩瀞, 吉田則裕, 井. 克郎, コード片のベクトル表現に基づく大規模
コードクローン集合の特徴調査, in: ソフトウェアエンジニアリングシンポジウ
ム 2018論文集, 2018, pp. 192–199.

[88] K. Yokoi, E. Choi, N. Yoshida, K. Inoue, Investigating vector-based detection

of code clones using bigclonebench, in: Proceedings of the 25th Asia-Pacific

Software Engineering Conference, 2018, pp. 699–700.

[89] Q. Le, T. Mikolov, Distributed representations of sentences and documents,

in: Proceedings of the 31st International Conference on International Con-

ference on Machine Learning, 2014, pp. 1188–1196.

[90] 藤原裕士, 崔恩瀞, 吉田則裕, 井上克郎, 順伝播型ニューラルネットワークを用い
た類似コードブロック検索の試み, in: ソフトウェアエンジニアリングシンポジ
ウム 2018論文集, 2018, pp. 24–33.

[91] M. White, M. Tufano, C. Vendome, D. Poshyvanyk, Deep learning code

fragments for code clone detection, in: Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, 2016, pp. 87–

98.

[92] W. Hua, Y. Sui, Y. Wan, G. Liu, G. Xu, Fcca: Hybrid code representation

for functional clone detection using attention networks, IEEE Transactions

on Reliability 70 (1) (2021) 304–318.

[93] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data

with neural networks, Science 313 (5786) (2006) 504–507.

[94] W. Wang, G. Li, B. Ma, X. Xia, Z. Jin, Detecting code clones with graph

neural network and flow-augmented abstract syntax tree, in: Proceedings

of the 27th International Conference on Software Analysis, Evolution and

Reengineering, 2020, pp. 261–271.

[95] E. Enslen, E. Hill, L. Pollock, K. Vijay-Shanker, Mining source code to

101

automatically split identifiers for software analysis, in: Proceedings of the 6th

IEEE International Working Conference on Mining Software Repositories,

2009, pp. 71–80.

[96] R. Řeh̊uřek, P. Sojka, Software Framework for Topic Modelling with Large

Corpora, in: Proceedings of the LREC 2010 Workshop on New Challenges

for NLP Frameworks, 2010, pp. 45–50.

[97] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word

representations in vector space, arXiv preprint arXiv:1301.3781.

[98] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed repre-

sentations of words and phrases and their compositionality, Proceedings of

the 26th International Conference on Neural Information Processing Systems

(2013) 3111–3119.

[99] E. Choi, N. Yoshida, T. Ishio, K. Inoue, T. Sano, Extracting code clones for

refactoring using combinations of clone metrics, in: Proceedings of the 5th

International Workshop on Software Clones, 2011, p. 7–13.

[100] M. Brand, Fast low-rank modifications of the thin singular value decompo-

sition, Linear Algebra and its Applications 415 (1) (2006) 20–30.

[101] R. Socher, C. C.-Y. Lin, A. Y. Ng, C. D. Manning, Parsing natural scenes

and natural language with recursive neural networks, in: Proceedings of

the 28th International Conference on International Conference on Machine

Learning, 2011, pp. 129–136.

[102] M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger, From word em-

beddings to document distances, in: Proceedings of the 32nd International

Conference on International Conference on Machine Learning, Vol. 37, 2015,

pp. 957–966.

[103] 藤原裕士, 崔恩瀞, 吉田則裕, 井上克郎, 深層学習を用いたソースコード分類手法
の比較調査, 電子情報通信学会論文誌 J104-D (8) (2021) 622–635.

[104] 藤原裕士, 森彰, 井上克郎, 回帰モデルを用いたコードクローン検出手法の提案
と汎化性能の評価, 電子情報通信学会論文誌 J104-D (9) (2021) 678–689.

[105] C. Becker, F. Fagerholm, R. Mohanani, A. Chatzigeorgiou, Temporal dis-

counting in technical debt: How do software practitioners discount the fu-

ture?, in: Proceedings of the Second International Conference on Technical

Debt, 2019, pp. 23–32.

[106] S. Murer, B. Bonati, Managed evolution: a strategy for very large informa-

tion systems, Springer Science & Business Media, 2010.

[107] K. A. Nasr, H.-G. Gross, A. van Deursen, Realizing service migration in

industry―lessons learned, Journal of Software: Evolution and Process 25 (6)

102

(2013) 639–661.

[108] Y. Cai, R. Kazman, C. V. Silva, L. Xiao, H.-M. Chen, Chapter 6 - a decision-

support system approach to economics-driven modularity evaluation, in:

Economics-Driven Software Architecture, Morgan Kaufmann, 2014, pp. 105–

128.

[109] D. Cui, L. Fan, S. Chen, Y. Cai, Q. Zheng, Y. Liu, T. Liu, Towards char-

acterizing bug fixes through dependency-level changes in apache java open

source projects, Science China Information Sciences 65.

[110] R. Leitch, E. Stroulia, Assessing the maintainability benefits of design re-

structuring using dependency analysis, in: Proceedings of the 5th Interna-

tional Workshop on Enterprise Networking and Computing in Healthcare

Industry, 2003, p. 309.

[111] H. Rebêl, R. M. F. Lima, U. Kulesza, M. Ribeiro, Y. Cai, R. Coelho,

C. Sant’Anna, A. Mota, Quantifying the effects of aspectual decompositions

on design by contract modularization: a maintenance study, Int. J. Softw.

Eng. Knowl. Eng. 23 (7) (2013) 913–942.

[112] L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng, Detecting the locations and

predicting the maintenance costs of compound architectural debts, IEEE

Trans. Softw. Eng. 48 (9) (2022) 3686–3715.

[113] J. Bisbal, D. Lawless, R. Richardson, D. O’Sullivan, B. Wu, J. B. Grimson,

V. P. Wade, A survey of research into legacy system migration (2007).

[114] E. Evans, Domain-driven design: tackling complexity in the heart of soft-

ware, Addison-Wesley Professional, 2004.

[115] 独立行政法人情報処理推進機構, ソフトウェア開発見積りガイドブック, SEC

BOOKS, 2006.

[116] 独立行政法人情報処理推進機構, ソフトウェア開発分析データ集 2022 (2022).

[117] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz,

R. Madachy, D. J. Reifer, B. Steece, Software Cost Estimation with CO-

COMO II, Prentice Hall, 2000.

[118] B. W. Boehm, Software engineering economics, IEEE Trans. Softw. Eng.

SE-10 (1) (1984) 4–21.

[119] 小林健一, 松尾明彦, 井上克郎, 早瀬康裕, 上村学, 吉野利明, 大規模ソフトウェ
ア保守のための影響波及量尺度インパクトスケール, 情報処理学会論文誌 54 (2)

(2013) 870–882.

[120] T. A. Corbi, Program understanding: Challenge for the 1990s, IBM Syst.J.

28 (2) (1989) 294–306.

[121] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,

103

S. A. Spoon, A. Gujarathi, Regression test selection for java software, in:

Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, 2001, p.

312–326.

[122] C. L. McClure, The three Rs of software automation : re-engineering, repos-

itory, reusability, Prentice Hall, 1992.

[123] A. Ko, H. H. Aung, B. Myers, Eliciting design requirements for maintenance-

oriented ides: a detailed study of corrective and perfective maintenance

tasks, in: Proceedings of the 27th International Conference on Software

Engineering, 2005, pp. 126–135.

[124] L. Briand, Y. Labiche, G. Soccar, Automating impact analysis and regression

test selection based on uml designs, in: Proceedings of the International

Conference on Software Maintenance, 2002, pp. 252–261.

[125] 早瀬康裕, 松下誠, 楠本真二, 井上克郎, 小林健一, 吉野利明, 影響波及解析を利
用した保守作業の労力見積りに用いるメトリックスの提案, 電子情報通信学会論
文誌 D J90-D (10) (2007) 2736–2745.

[126] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, J. M.

Zhang, Large language models for software engineering: Survey and open

problems, in: Proceedings of International Conference on Software Engi-

neering: Future of Software Engineering, 2023, pp. 31–53.

[127] H. Jin, L. Huang, H. Cai, J. Yan, B. Li, H. Chen, From llms to llm-based

agents for software engineering: A survey of current, challenges and future,

arXiv preprint arXiv:2408.02479.

[128] S. Dou, J. Shan, H. Jia, W. Deng, Z. Xi, W. He, Y. Wu, T. Gui, Y. Liu,

X. Huang, Towards understanding the capability of large language models

on code clone detection: a survey, arXiv preprint arXiv:2308.01191.

[129] A. T. V. Dau, H. T. Dao, A. T. Nguyen, H. T. Tran, P. X. Nguyen, N. D. Q.

Bui, Xmainframe: A large language model for mainframe modernization,

arXiv preprint arXiv:2408.04660.

[130] C. Diggs, M. Doyle, A. Madan, S. Scott, E. Escamilla, J. Zimmer, N. Nekoo,

P. Ursino, M. Bartholf, Z. Robin, et al., Leveraging llms for legacy code mod-

ernization: Challenges and opportunities for llm-generated documentation,

arXiv preprint arXiv:2411.14971.

[131] A. Ferri, T. Coggrave, S. Sheth, Legacy Modernization meets GenAI, https:

//martinfowler.com/articles/legacy-modernization-gen-ai.html.

104

付録

付録 1: ベクトル表現とハイパーパラメータ

ベクトル表現 ハイパーパラメータ
LSI トピック数:200

LDA トピック数:100

PV-DBoW ベクトルサイズ:300，ウィンドウサイズ:15，
エポック数:20

PV-DM ベクトルサイズ:300，ウィンドウサイズ:5，
エポック数:20

WV-avg ベクトルサイズ:300，ウィンドウサイズ:5，
エポック数:20

105

付録 2: 手法ごとのハイパーパラメータ設定

手法 ハイパーパラメータ
LSI+NN トピック数:200, レイヤーサイズ:200-100,

エポック数:4, 初期学習率:0.001,

L2正則化のλ:0.00003

LDA+NN トピック数:100, レイヤーサイズ:100-100,

エポック数:4, 初期学習率:0.001,

L2正則化のλ:0.00003

PV-DBoW+NN ベクトルサイズ:300，ウィンドウサイズ:15，
エポック数（PV-DBoW）:20,

レイヤーサイズ:300-100, エポック数:4,

初期学習率:0.001, L2正則化のλ:0.00003

PV-DM+NN ベクトルサイズ:300, ウィンドウサイズ:5,

エポック数（PV-DM）:20,

レイヤーサイズ:300-100, エポック数:4,

初期学習率:0.001, L2正則化のλ:0.00003

WV-avg+NN ベクトルサイズ:300, ウィンドウサイズ:5,

エポック数（Word2Vec）:20,

レイヤーサイズ:300-100, エポック数:4,

初期学習率:0.001, L2正則化のλ:0.00003

DeepSim レイヤーサイズ:88-6, (128x6-256-64)-128-32,

エポック数:4, 初期学習率:0.001,

L2正則化のλ:0.00003, ドロップアウト:0.75

FA-AST+GMN レイヤーサイズ:100, ベクトル次元数:100,

エポック数:4, 初期学習率:0.001,

バッチサイズ:32

106

