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ABSTRACT

With the rapid advancement of technology, the scale of application markets is expand-

ing, leading to an increasing diversity of applications (apps). In this highly competitive

environment, developers must accurately grasp user requirements and timeously imple-

ment unique features to gain an advantage over competitors. Consequently, user reviews

submitted on app platforms are gradually becoming a crucial resource to help developers

understand user requirements and optimize their products.

User reviews include suggestions for improving existing features and requirements for

new ones while also revealing the actual usage scenarios, reasons for use, and the users’

requirements, thereby, guiding developers toward new product iterations. However, as

the number of users increases, the volume of reviews grows significantly, with only a

small portion containing information about user requirements. This makes it exceedingly

difficult for developers to analyze and filter requirements manually from so many reviews.

In this context, extracting useful information efficiently is a significant challenge.

Several studies, each with its own limitations, have proposed automating the extrac-

tion of relevant data from user reviews. Some failed to visualize the relationships between

the extracted requirements, hindering developers from identifying priorities and conflict-

ing requirements. Others cannot handle large volumes of reviews, rendering them imprac-

tical for development. To overcome these problems, this dissertation proposes a method

to analyze large-scale reviews and visualize their requirements. It extracts requirements
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ii ABSTRACT

from reviews and visualizes them by generating goal models. A goal model is a type

of requirements model that treats requirements as goals to be achieved, aiding develop-

ers in understanding the hierarchical relationships and dependencies between these goals.

Additionally, by utilizing unsupervised learning and clustering algorithms, the proposed

method extracts requirements from a multitude of reviews, making it applicable for de-

velopment. Furthermore, to ensure the generated goal models are both accurate and easy

to understand, large language models (LLMs) are utilized.

The goal model generation method proposed in this dissertation consists of three com-

ponents: the Latent Dirichlet Allocation (LDA) topic model, the distance-based clustering

method, and the goal model generation method based on LLMs. This method adopts a

top-down approach, starting with a root goal and progressively generating a complete

goal model layer by layer. The root goal is associated with all user reviews, which are

then refined step by step to generate more specific sub-goals. In refining the parent goals

and generating sub-goals, the method selects the refinement method based on the number

of reviews associated with the parent goal. Specifically, the LDA topic model, distance-

based methods, and LLMs each excel at handling different scales of review sets. There-

fore, when the number of reviews for a parent goal is large, the LDA topic model or

clustering methods is used to identify potential sub-goals. Conversely, when the num-

ber of reviews is small or requires more nuanced semantic understanding, LLM-based

methods can be used to provide more precise goal generation.

This study undertook four experiments. The first demonstrated changes in the LDA

topic model and the distance-based clustering method’s accuracy in goal generation as

the volume of reviews increased. The second experiment confirmed that the goal models

generated by the proposed method had accuracy superior to the existing method. The

third experiment demonstrated that the proposed method accurately extracts requirements

from user reviews. The fourth experiment demonstrated the practicality of the goal model
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generated by the proposed method.

In summary, this dissertation presents a goal model generation method that automat-

ically extracts requirements and generates goal models from user reviews by combining

the LDA topic model, distance-based clustering method, and LLMs. This method will

help developers better understand user requirements, thereby optimizing the app develop-

ment and iteration process.
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SECTION 1.1 INTRODUCTION 1

CHAPTER 1

INTRODUCTION

1.1 Background

In contemporary society, mobile apps play an essential role in our everyday activi-

ties. Platforms like the App Store and Google Play are more than just places to download

apps; they are spaces where users and developers interact. These platforms invite users

to submit reviews, their requirements for new features, and report bugs, which are cru-

cial for developers to gain insights and improve their products [47] [40] [55] [37]. The

reviews help developers spot trends and common issues, effectively guiding their up-

dates. By analyzing these invaluable review data, developers can better understand user

requirements, offer insights into user preferences, desirable features, and areas for im-

provement [48] [26] [63]. In the requirements-analysis domain, the goal model stands out

as one of the most frequently employed models because it can be employed to analyze the

requirements extracted from user reviews.

Compared to directly analyzing user reviews, creating goal models helps ensure that

user reviews match the app’s goals. Connecting reviews with goals can facilitate un-

derstanding which goals users care about and whether the new features they want may
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conflict with current goals. This helps developers identify which user requirements are

most urgent and helps them make better updates.

While there are numerous advantages to employing a goal model for analyzing user

reviews, the manual construction of a goal model presents a significant challenge. This

challenge mainly arises from the vast number of reviews, with only a small proportion

containing requirements or bug reports [36] [48] [10]. Consequently, the process of man-

ually reading and summarizing reviews becomes a labor-intensive and time-consuming

task. The rapid growth of apps and the quick spread of app stores have led to a sig-

nificant increase in user reviews. For popular apps, there might be thousands or even

millions of reviews. Consequently, it becomes unfeasible for developers to check each

review manually to extract informative reviews. Furthermore, a significant portion of

user reviews may contain general feedback, opinions, or discussions unrelated to specific

requirements. This makes it harder to extract requirements from the reviews.

1.2 Requirements Analysis

Requirements analysis is a crucial phase in software development where the require-

ments, expectations, and constraints of users and stakeholders are identified and docu-

mented. This process ensures that the software product being developed aligns with the

business objectives and meets the users’ requirements. It involves understanding the func-

tional and non-functional requirements that the system must fulfill, often serving as the

foundation for the design and development phases.

The primary benefit of requirements analysis is that it helps prevent costly mistakes

later in the development process. By thoroughly analyzing requirements early on, teams

can identify potential issues, ambiguities, and inconsistencies, thereby reducing the risk of

project delays, budget overruns, and unsatisfactory outcomes. Furthermore, it facilitates
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better communication between stakeholders and developers, ensuring that everyone has a

clear understanding of what the project aims to achieve.

Several models are commonly used in requirements analysis to capture and visual-

ize the requirements effectively: Goal Models are used to capture high-level goals and

break them down into sub-goals. They help ensure that all system functionalities are

aligned with business objectives. Use Case Diagrams illustrate the interactions between

users and the system, highlighting the system’s functionalities. Entity-Relationship Dia-

grams (ERDs) are used to model the data and relationships within the system, essential for

database design. Data Flow Diagrams (DFDs) represent the flow of information within

the system, showing how data moves between processes and data stores. State Diagrams

depict the different states of the system and the transitions between these states, which is

useful for understanding the system’s behavior.

Requirements analysis relies on particular materials and tools to gather, document,

and analyze requirements: Requirements Documentation includes formal documents like

Software Requirements Specifications (SRS) that detail the system’s functional and non-

functional requirements. App Descriptions, for mobile or web applications, from app plat-

forms (e.g., The App Store, Google Play) can provide valuable insights into user require-

ments and expectations. Specialized Languages, like the Unified Modeling Language

(UML), are often used to create visual models that help understand and communicate

requirements.

By systematically analyzing requirements using these models and materials, teams

can ensure that the final product is well-aligned with stakeholder expectations and is tech-

nically feasible.
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1.3 The Dissertation: Its Contribution

This dissertation presents a method for requirement analysis using user reviews. This

method extracts requirements from reviews and generates goal models, enabling the vi-

sualization of requirements and the interrelationships among these requirements. The

proposed method utilizes LDA topic modeling, the distance-based clustering method, and

LLMs. The method dynamically selects which goal model generation method should

be appropriate based on the number of reviews to ensure that the generated goal models

are accurate. Introducing the LDA topic modeling and distance-based clustering method

allows the proposed method to leverage a large volume of reviews for goal model gen-

eration. Additionally, introducing LLMs helps elucidate the generated goal models for

developers.

The experimental results demonstrate that the proposed method outperforms the ex-

isting methods’ accuracy and closely aligns with manually created goal models.

1.4 The Dissertation: An Overview

The remainder of the dissertation is organized as follows:

Chapter 2 introduces the study’s essential concepts and methods. The chapter begins

by examining the characteristics of user reviews. Then, this chapter introduces related

research on analyzing requirements from reviews. Finally, the chapter provides an intro-

duction to the goal model, including its concepts and key components.

Chapter 3 outlines the proposed method’s workflow. It begins by describing the top-

down method for refining goals and generating goal models, starting from the root and

progressing to leaf goals. The chapter introduces the three key components: the LDA

topic model, the distance-based clustering method, and the LLM method. It highlights

their functions and the dynamic selection process based on review volume. Finally, the
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overall workflow is presented, illustrating how the methods are applied in practice when

handling numerous reviews.

Chapter 4 discusses how to generate goal models using the LDA topic model and the

process of selecting the appropriate number of topics.

Chapter 5 introduces a distance-based clustering method, which utilizes Ward’s method

to cluster reviews and treats clusters as goals. The parent-child relationships among goals

are determined based on differences in the distance of clusters.

Chapter 6 discusses the use of LLMs. The first LLM-based method generates goal

models by clustering a given set of reviews such that each cluster represents a require-

ment. This method allows for the association of each generated goal with its relevant

reviews. The second method provides supplementary information about the requirement

represented by a goal, thereby aiding the requirements analysis.

Chapter 7 evaluates the accuracy of the proposed methods in generating models. First,

the LDA and the distance-based clustering method’s accuracy are assessed as the number

of reviews varies. Next, the proposed methods and the existing method are compared

regarding goal model generation accuracy. Following this, the requirement coverage rate

of the generated goals is analyzed. Finally, the practicality of the generated goal model is

demonstrated.

Chapter 8 discusses the research findings and the characteristics of the proposed

method, while also addressing potential limitations.

Chapter 9 summarizes related work.

Chapter 10 concludes this dissertation.
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CHAPTER 2

PRELIMINARIES

2.1 User Reviews

In recent years, extensive research has highlighted the potential value embedded within

user reviews, particularly in uncovering user requirements. These reviews contain insights

that can guide product development and improve user experiences [15, 21, 28, 33]. How-

ever, the overwhelming quantity of user reviews presents a significant challenge. Table 2.1

shows the number of user reviews on the North American App Store from Q1 2021 to Q2

2022, with data sourced from Statista [9]. In the game category alone, on average, over

8,000 reviews are uploaded to the platform every day. While user reviews are abundant,

studies indicate that only approximately 30% to 35% of these reviews contain informa-

tion that is relevant to user requirements [10,42,51]. This low signal-to-noise ratio makes

it difficult for developers to sift through the data manually and identify requirements.

To address this issue, automated analysis techniques have increasingly been employed.

However, the unique characteristics of user reviews complicate this process.

One major issue is the diversity and lack of structure in user reviews. Unlike the

standardized and organized nature of requirement documents, user reviews can range from
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Table 2.1: Number of reviews posted on the Apple App Store from users in the United

States from the 1st quarter of 2021 to the 2nd quarter of 2022, by category.

Characteristic Q1 2021 Q2 2021 Q3 2021 Q4 2021 Q1 2022 Q2 2022
Books 31,279 37,379 22,579 18,899 19,662 23,538
Business 50,211 53,567 42,454 47,036 45,921 44,045
Developer Tools 789 916 805 683 696 743
Education 70,690 56,615 57,712 53,589 55,346 54,291
Entertainment 225,971 176,012 142,252 138,737 147,812 150,397
Finance 358,653 183,578 156,701 154,739 150,956 126,627
Food & Drink 81,158 77,116 67,494 59,228 61,798 59,180
Games 852,931 770,262 674,578 706,429 668,326 731,830
Graphics & Design 16,216 16,456 16,078 15,569 15,200 17,572
Health & Fitness 136,805 101,746 91,377 84,555 94,917 101,945
Lifestyle 140,267 127,924 112,262 108,354 95,826 99,178
Medical 22,980 18,989 22,374 23,931 25,694 24,077
Music 62,614 51,705 45,240 50,247 53,484 46,441

brief, one-sentence comments to detailed, multi-paragraph feedback. The variation makes

it difficult to group similar content automatically and effectively. For example, two re-

views may both discuss similar issues with a product, but one may do so concisely while

the other provides a detailed narrative, leading to challenges in clustering them accurately.

Errors and language variants further complicate the analysis. User reviews often

contain spelling mistakes, grammatical errors, and the use of regional dialects or informal

language. These factors introduce noise into the data, making it harder to parse the content

accurately.

Semantic ambiguity in user reviews also poses a challenge. Reviews often contain

words or phrases that are ambiguous or have multiple meanings. Different users may use

the same words to mean different things, (homonymy) or different words to express the

same concept (synonymy). This ambiguity can confuse automated analysis tools, leading

to incorrect interpretations. In contrast, requirement documents tend to use precise lan-
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guage, as they are usually drafted by professionals who carefully choose their words to

avoid confusion.

Context dependence is another area where user reviews differ markedly from re-

quirement documents. User reviews often lack sufficient context, as they may refer to

specific experiences or issues without providing the necessary background information.

This lack of context can make it difficult for automated analysis tools to understand fully

the intent or meaning behind a review. Conversely, requirement documents are usually

comprehensive, including the necessary context and logical relationships that make them

easier to interpret.

Another factor contributing to the complexity of analyzing user reviews is that differ-

ent requirements can be reflected by changes in just a few key words. For example,

consider these two reviews:

(1) I want to chat with foreigners, but LINE doesn’t have a translator.

(2) I want to chat with foreigners, but LINE has regional restrictions.

While both reviews express a requirement to communicate with foreign users, the specific

issues highlighted are entirely different—one focuses on the lack of a translation feature,

while the other points out regional restrictions. The similarities and differences in wording

reflect partially distinct user requirements and such nuances can be difficult for automated

analysis tools to capture and distinguish accurately. This variability adds another layer

of complexity since small changes in language can signify substantially different user

requirements, which may be easily overlooked in automated analysis.

Finally, noise in the data is a common problem in user reviews. Reviews often con-

tain a significant amount of irrelevant information or noise, such as advertisements, emo-

jis, or repeated content. This noise can interfere with the analysis, making it difficult to

extract requirements. Requirement documents, however, are usually curated and filtered
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to ensure that the information they contain is relevant and high-quality, with minimal

noise.

The diversity and lack of structure, the prevalence of errors and language variants,

semantic ambiguity, context dependency, subtle differences in key wording, and the pres-

ence of noise in user reviews all contribute to the inherent challenges and reduced ac-

curacy of automated analysis. These factors starkly contrast with the standardized and

curated nature of requirement documents. Consequently, analyzing user reviews requires

adaptable approaches to capture the nuances accurately and extract meaningful insights

from the often messy and unstructured data they present.

Notably, the problems mentioned above are found in user reviews for business-to-

consumer (B2C) apps. This dissertation focuses on analyzing these reviews and extract-

ing requirements from them. Although business-to-business (B2B) apps also include user

reviews, they differ in characteristics from B2C reviews. For example, B2B reviews tend

to be more complex, more comprehensive, and involve more industry-specific terminol-

ogy and expertise. Therefore, handling and analyzing B2B reviews may require different

methods and techniques. Currently, this research is limited to B2C reviews. Future work

may explore how to extend the research methods to B2B reviews, but this exceeds the

present study’s scope.

2.2 Leveraging Reviews for Requirement Analysis

Recognizing that valuable insights can be found in user reviews, numerous studies

have focused on analyzing and utilizing this resource to improve requirements engi-

neering and app development. These studies emphasize that user feedback can provide

critical information about desired features, usability issues, and areas for improvement.

By systematically extracting, categorizing, and prioritizing information from reviews, re-
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searchers have developed various frameworks and tools to support developers in under-

standing user needs and planning effective updates.

Requirements engineering is pivotal in software development, as underscored by Bourque

et al. [7]. Extensive prior research, as articulated by Begel and Zimmermann [3], demon-

strates the criticality of extracting requirements from user reviews for successful require-

ment analysis. Gu and Kim [22] proposed a review summarization framework named

SUR-Miner, which categorizes reviews into five types and uses a pattern-based parser

to extract and evaluate software aspects. The summaries are then visualized using in-

teractive diagrams. Feedback from developers showed that 88% found the summaries

generated by SUR-Miner to be useful. Similar to this, Scalabrino et al. [54] developed

CLAP (Crowd Listener for releAse Planning), a tool that can automatically categorize

and cluster user reviews, and prioritize them to plan subsequent app releases. The ex-

periment demonstrated that CLAP exhibits high accuracy in categorizing and clustering

reviews, and the prioritizations it recommends are practically valuable in industrial set-

tings. Jiang et al. [30] proposed a new method called SAFER, aimed at assisting de-

velopers in identifying and recommending new features by analyzing the descriptions of

similar applications. This method first developed a tool that automatically extracts fea-

tures from app descriptions. Then, by leveraging a topic model, the method identifies

similar apps based on the extracted features and API names and uses a feature recom-

mendation algorithm to recommend the features of these similar apps to the target app.

In an experimental evaluation involving 533 features from 100 apps, SAFER achieved a

Hit@15 score of 78.68%, meaning that in 78.68% of cases, the recommended features

for a target app included the correct feature within the top 15 results. This represents an

average improvement of 17.23% over the baseline method KNN+. Wu et al. [61] pro-

posed a method named KEFE, which identifies key features highly correlated with app

ratings by leveraging app descriptions and user reviews. The method combines natural



SECTION 2.3LEVERAGING REVIEWS FOR REQUIREMENT ANALYSIS 11

language processing, machine learning, and regression analysis techniques. It extracts

feature descriptions, matches them with relevant user reviews, and builds a regression

model to identify features that significantly impact an app’s success. Malik et al. [41]

proposed a method that uses machine learning to extract app features automatically from

user reviews. This method also helps users compare the features of multiple applications

based on the sentiments expressed in the relevant reviews. This proposed method can be

used to understand the users’ preferences for a particular mobile application and reveal

why users prefer one application over another.

The outputs of these studies vary in form: SUR-Miner generates categorized sum-

maries for interactive visualization, CLAP provides prioritized lists of reviews for release

planning, SAFER recommends features based on similar applications, KEFE identifies

key features impacting app ratings, and Malik et al.’s method compares app features

based on user sentiment. While each of these outputs provides valuable insights, they

lack a comprehensive view of how individual user needs and requirements relate to one

another. This limitation restricts developers from fully understanding the interdependen-

cies and hierarchical structure among user requirements, which is essential for developing

a cohesive and user-centered application.

In software development, a goal model within a requirements model is essential for

illustrating the interrelationships among user needs. To visualize these interconnections,

this study employs a goal model that represents the extracted requirements from user re-

views. This approach generates a structured goal model that captures individual require-

ments and reveals how they relate to one another, supporting a more holistic understanding

of user needs in the development process.
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2.3 Goal Model

A goal model is a structured representation used in requirements engineering to cap-

ture and describe the objectives that a system or project needs to achieve. This model

provides a clear and hierarchical view of the goals, sub-goals, and the relationships be-

tween them, allowing stakeholders to understand the overarching purposes of a system.

Goal models include functional goals—what the system is supposed to do—and non-

functional goals, such as performance, security, and usability. By mapping out these

goals, a goal model serves to align the development process with the strategic aims of an

organization or project.

In a goal model, the requirements that must be satisfied are treated as goals. These

goals are organized in a hierarchical structure, comprising parent goals and sub-goals. A

parent goal represents an abstract objective, while sub-goals are more detailed and spe-

cific. When all the sub-goals under a parent goal are achieved, the parent goal is consid-

ered satisfied. Figure 2.1 illustrates a portion of the goal model for the chat app LINE. In

this model, the abstract goal "Ensure reliable connection" depends on its sub-goals, which

refine the parent goal and provide detailed requirements. Once the two sub-goals, "Recon-

nect dropped calls" and "Switch between Wi-Fi and cellular," are satisfied, the parent goal

"Ensure reliable connection" is considered achieved. Numerous notational approaches are

employed in the domain of software development for the representation of goal models.

These notations are adopted by KAOS [13], i* [62], NFR [43], AGORA [32], and UML

Use Case diagrams [18]. The goal model notation presented here and used throughout the

dissertation is based on KAOS.

The use of a goal model offers some advantages throughout the requirements engi-

neering process. By defining goals and sub-goals, a goal model helps teams prioritize

objectives and identify potential conflicts or dependencies between different goals early



SECTION 2.3 GOAL MODEL 13

Provide high-quality 

voice communication

Allow 

voice calls
Manage 

call settings

Ensure reliable 

connection

Reconnect 

dropped calls

Switch between Wi-Fi 

and cellular

Figure 2.1: Partial goal model for LINE.

in the development process. This structured approach ensures that all stakeholders—such

as business analysts, developers, and project managers—share a common understanding

of the project’s aims, thereby improving communication and reducing the risk of mis-

understandings. When analyzing user reviews, using a goal model constructed from the

reviews for analysis offers several advantages compared to simply analyzing the reviews

alone.

Better Identification of Conflicts: A goal model allows for a more structured ap-

proach to identifying potential conflicts among user requirements. For example, in the

case of a mobile app, one group of users might request more robust security features,

while another group might prioritize ease of access and user-friendly design. These re-

quirements can be conflicting, as stronger security measures may make the app less user-

friendly. A goal model can help make these conflicts explicit, enabling developers to
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address them early in the design process by finding a balanced solution that satisfies both

groups.

Uncovering the Common Purpose of Multiple Requirements: A goal model helps

to group various user requirements under a common parent goal, revealing the underlying

purpose that drives these requirements. For instance, if users express the requirement

for features like faster loading, simplified navigation, and more intuitive design, these

can all be grouped under the parent goal of improving the overall user experience. By

organizing these requests under a single parent goal, developers can better understand

that the primary objective is to enhance user satisfaction, guiding them to focus their

efforts on optimizing the system’s usability.

Supporting Developer Trade-offs and Prioritization: When different user require-

ments are aligned with the same parent goal, a goal model provides a framework for

developers to prioritize and make trade-offs. For example, if a software receives a user

review requesting enhanced security (e.g., multi-factor authentication) while also empha-

sizing ease of use (e.g., avoiding frequent password inputs), these can be grouped under

the parent goal of improving user experience. The goal model helps developers prioritize

which features to address first based on their impact on the primary goal. This structured

approach enables the team to allocate resources efficiently, ensuring that the final design

better aligns with users’ core requirements. By focusing on the parent goals, developers

can balance competing requirements, such as implementing robust security measures ver-

sus streamlining authentication processes, to deliver a system that meets the most critical

user expectations.

Tracking and Tracing: Goal models offer the capability to track and trace the is-

sues and requirements referenced in user reviews. Mapping the reviews to corresponding

goals within the model guarantees that each goal’s solutions and improvements receive

the requisite attention and follow-up. This tracking and tracing mechanism elevates user
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satisfaction and bolsters trust in the development team.

Due to these advantages, this dissertation presents a method for automatically creat-

ing goal models from a given collection of user reviews. This method comprises three

components dynamically selected to cluster reviews, enabling the top-down generation of

a goal model.
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CHAPTER 3

THE PROPOSED METHOD: AN

OVERVIEW

This dissertation proposes a method for extracting requirements from user reviews and

visualizing these requirements. The method begins with user reviews as its input. From

these reviews, the proposed method extracts requirements. These requirements are then

treated as goals, serving as the foundation for constructing a goal model. This goal model

describes the extracted requirements and visualizes their relationships. The method’s

output is a goal model designed to help developers understand user requirements.

The following introduces the overall workflow of the proposed method. First, as pre-

processing, the words in the reviews are lemmatized and stop words are removed. Stop

words include common terms such as "a," "an," and "the," as well as words that do not

describe user requirements, such as "app," "like," and "use." Finally, reviews with fewer

than five words are removed, since short reviews often lack sufficient information and

may provide insufficient context or detail. Afterward, the remaining reviews are used as

input for generating goal models with the proposed method. The proposed method starts

from the root and progressively refines the goals, generating goal models in a top-down
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manner. The root is considered the goal containing all reviews, and the reviews within

this goal are further refined into multiple review sets, with each review set representing a

sub-goal. This refinement continues iteratively until the leaf goals are generated.

There are three refinement methods, which correspond to the proposed method’s com-

ponents: the LDA topic model, the distance-based clustering method, and the LLM

method. Among these, the LLM method is the most accurate in generating goal mod-

els and produces the most comprehensible models, but it can not handle a large volume

of reviews. The LDA topic model and the distance-based clustering method can process

a large number of reviews, although their accuracy may vary depending on the volume of

reviews. Therefore, the method used for refinement is dynamically selected based on the

number of reviews contained within the goal needing refinement.

Generating the goal model proceeds as follows. Initially, when a large number of

reviews are included in the root, the LDA topic model is applied to divide the reviews

into several topics. These topics are considered as sub-goals of the root. As the goals

are refined, the number of reviews contained in each goal decreases. The number of re-

views impacts the accuracy of goal generation. When the number of reviews decreases to

a certain extent, as shown in Chapter 7, LDA accuracy drops below that of the distance-

based clustering method. At this point, the distance-based clustering method continues

generating the goal model. This method groups the reviews into clusters, with each clus-

ter considered a goal. Compared the LDA and distance-based clustering methods, LLMs

offer more understandable goals. However, due to token limits, generating goal models

from a large number of reviews is unfeasible. This study used GPT-4 as the LLM. Gen-

erally, when the input exceeds 100 reviews, the token limit is reached, resulting in output

rejection. Therefore, GPT-4 was used for refinement when the number of reviews in a

goal is fewer than 100.

Algorithm 1 outlines the overall process for goal generation and sub-goal identifi-
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cation. This algorithm takes user reviews as its input, along with three parameters: a

threshold for the number of reviews T , a review count limit L, and a reduction rate R.

The output is a goal model. First, an empty goal model is initialized (Line 3), and a root

goal containing all the input reviews is created (Line 4). The root goal is added to the goal

model, marking the beginning of the goal generation (Line 5).

This algorithm processes each goal by recursively evaluating the number of included

reviews. If the review count exceeds the threshold T , LDA topic modeling is applied

to identify topics within the reviews (Line 9). These topics are treated as sub-goals of

the input goal (Lines 10–12). The sub-goals are then recursively processed to ensure all

goals are addressed. If the review count is below T but exceeds the review count limit L,

distance-based clustering is used to avoid exceeding the LLM’s token limit (Lines 14–15).

The clustering process generates a sub-tree of goals, which is added to the goal model.

Each leaf goal of the sub-tree is then recursively processed to refine the goal hierarchy

further (Lines 16–18). For goals with a review count below the limit L, an LLM-based

method is used to generate sub-goals (Lines 20–21).

Descriptive labels explaining the intent of the generated goals are automatically pro-

vided for all goals. The method for generating labels depends on the method used to

generate the goals. For goals generated by the LDA and distance-based clustering meth-

ods, a subset of reviews within the goal is randomly selected. These reviews are then

summarized by GPT-4, and the resulting summary forms the goal label (Lines 23-25).

Each goal generated using GPT-4 (the LLM method) is labeled during goal generation.

Finally, the labeled goal model is returned as the output.

Each of these methods is discussed in detail in the later chapters. Chapter 4 introduces

the LDA topic model, which serves as a goal-generation method for handling a large

number of reviews. This method assigns topics to reviews contained in the goals and

treats these topics as sub-goals of the original goal. The LDA topic model is then applied
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to each sub-goal to generate topics, thereby refining the goals. This chapter also discusses

certain of the LDA topic model’s limitations, such as the need to predefine the number of

topics, and variations precisely and proposes appropriate solutions.

Chapter 5 presents the distance-based clustering method, which is used when the

LDA’s precision decreases. This method calculates the distance between reviews using

Ward’s method and generates a dendrogram with its clusters treated as goals.

Chapter 6 presents the LLM method. Due to the input token limitation of LLMs, this

method can only be applied to a small number of reviews. However, the goals obtained

by the method are highly accurate. This method generates a goal model by repeatedly

classifying a given set of reviews into different clusters, each representing a distinct re-

quirement. Additionally, while this method generates a goal model, it generates the goal

descriptions by extracting supplementary information about the requirements the goals

represented.
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Algorithm 1 Goal Generation Overview
1: Input: reviews, review threshold T , review count limit L, reduction rate R

2: Output: goal_model

3: goal_model← create_empty_goal_model() ▷ Initialize an empty goal model

4: root_goal← create_goal(reviews) ▷ Create the root goal

5: add_goal_to_model(goal_model, root_goal)

6: function PROCESS_GOAL(goal_model, goal)

7: review_count← get_review_count(goal)

8: if review_count > T then

9: sub_goals← LDA_Topic_modeling(goal)

10: for all sub_goal in sub_goals do

11: add_sub_goal_to_model(goal_model, goal, sub_goal)

12: PROCESS_GOAL(goal_model, sub_goal)

13: else if review_count > L then ▷ Use distance-clustering to avoid excessive

reviews exceeding LLM’s token limit

14: sub_tree← Distance-based_Clustering_for_Goal_Generation(goal, L, R)

15: add_subtree_to_model(goal_model, goal, sub_tree)

16: leaf_goals← get_leaf_goals(sub_tree)

17: for all leaf_goal in leaf_goals do

18: PROCESS_GOAL(goal_model, leaf_goal) ▷ Recursively process leaf

goals

19: else

20: sub_tree← LLM-based_Goal_Model_Generation(goal)

21: add_subtree_to_model(goal_model, goal, sub_tree)

22: PROCESS_GOAL(goal_model, root_goal) ▷ Start processing the root goal

23: for all goal in goal_model do ▷ Labeling goals generated by LDA and clustering

24: if goal is generated by LDA or Distance-based Clustering then

25: goal.label← LLM-based Label Generation(goal.reviews)
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CHAPTER 4

GOAL MODEL GENERATION VIA LDA

Topic models are statistical tools used to uncover hidden semantic structures within

documents [49]. Topic modeling is an unsupervised method that identifies or extracts

topics by recognizing patterns in the data. By analyzing these patterns, including word

clusters and word frequency, various topics present in the documents can be identified.

Topic models like Latent Dirichlet Allocation (LDA) [6], PLST [27], and the Pachinko

allocation model [34] are widely used for classifying and clustering reviews. In this study,

the LDA model was selected, as it is among the most commonly used algorithms for topic

modeling [6]. The term "latent" refers to something hidden, unrealized, or not directly

observable, while "Dirichlet" relates to the assumption that topics and words in the doc-

uments follow a Dirichlet distribution. The word "allocation" refers to the assignment

of topics, meaning that each document may encompass multiple topics, with each word

being generated by a specific topic. In addition, compared to other topic models, LDA

excels in several areas for the following reasons [1]. Firstly, LDA effectively captures

the latent topic structure within reviews and performs well in both accuracy and stabil-

ity. Second, LDA is computationally efficient, often requiring less computation time than

other complex topic models, which allows it to provide results speedily when handling
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large-scale datasets. Additionally, LDA excels regarding interpretability. The topics and

word distributions generated by LDA offer a clear thematic structure, making it easier for

analysts to understand the components of each topic and their function in the reviews.

4.1 LDA: Goal Modeling

To generate goal models, the LDA model is utilized for analyzing the reviews con-

tained within each goal in a top-down approach. This involves applying LDA to the

reviews for a parent goal to refine sub-goals, with each sub-goal corresponding to one

of the identified topics. By predefining the number of topics, denoted by K, the model

generates K topics, each representing a sub-goal under the parent goal.

During sub-goal generation, LDA assumes that all reviews comprise a mixture of

topics, each defined by a specific distribution of words. These reflect the underlying

themes present in the reviews. Each review is assigned a probability distribution over

the topics based on the word distributions of the topics. Based on this distribution, the

most probable topic for a review is considered the representative topic. This probabilistic

framework allows LDA to model the hidden thematic structure within the text data.

The LDA-based goal model generation proceeds as follows. LDA is first applied to

the root goal, which contains all the reviews, with the number of topics predefined. Each

review is then assigned to the topic with the highest probability, and these topics become

the sub-goals of the root goal. Since many reviews do not provide useful information,

due to their limited vocabulary, these uninformative reviews, often cluster into specific

topics. For example, some topics may consist only of praise, while others may contain

only criticism. Filtering out these topics helps reduce noise and improve modeling ac-

curacy. Therefore, after applying LDA to model the root goal, all topics are manually

checked to identify those that include many reviews lacking useful information. These
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topics typically contain a large proportion of reviews, with 80% to 90% providing little

to no valuable content. Removing such topics helps eliminate noise, resulting in a more

accurate goal model. Once these topics are removed, the remaining topics are used to

continue generating the goal model.

By applying LDA to the reviews contained in each remaining sub-goal of the root

goals, the topics of these sub-goals are generated and treated as sub-goals of those sub-

goals. This process is repeated until the number of reviews within the goals decreases to a

certain level, at which point the accuracy of the LDA method becomes lower than that of

the distance-based clustering method. At this stage, the distance-based clustering method

is more suitable for further refining the goals. The relationship between the number of

reviews and the accuracy of both methods will be discussed in Chapter 7.

4.2 LDA: Limitations and Solutions

Despite its utility, the LDA topic model has some notable drawbacks that can limit its

effectiveness in goal modeling.

4.2.1 Predefining the Number of Topics

A limitation of the LDA model is having to predefine the number of topics. Review-

ing all the reviews manually to determine the optimal number of topics is impractical

and inefficient. To address this issue, this study utilized a coherence score. The coher-

ence score can be used to assess the interpretability of a generated topic by measuring

the co-occurrence of the most probable words in the reviews associated with that topic.

For instance, a topic containing words like "chat," "voice," "app," "friend," and "send" is

easily understood as relating to a chat application, leading to a high coherence score. Con-

versely, a topic with words such as "review," "undated," "receive," "teacher," and "clients"
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may be more challenging to interpret, resulting in a lower coherence score. Among the

several methods available to calculate coherence scores, this study adopted the CV metric

due to its extreme accuracy [53]. The CV metric is also the default in the Gensim topic

coherence pipeline module [50].

The coherence score calculation works as follows. Suppose that LDA has already

been applied and that a predefined number of topics have been obtained. This means that

for each topic, the set of keywords with probabilities and the set of reviews have been

determined. In the proposed method’s current implementation, the coherence score is

calculated for each topic by providing as input to GenSim, the top-N keywords and the

topic reviews. This produces in a coherence score for each topic.

When processing the reviews associated with a goal, LDA topic modeling and coher-

ence score calculation are repeatedly performed by varying the number of topics from

small to large. Finally, the optimal number of topics is selected based on the coherence

score. Figure 4.1 shows the changes in coherence score during LDA topic modeling on

1000 reviews for LINE. Starting with 5 topics and in increments of 5 increasing to 40

topics, coherence scores were computed at each increment. For example, when the num-

ber of topics was set to 5, LDA generated 5 topics using the 1000 reviews from LINE.

The coherence score for each of these 5 topics was then calculated individually. The av-

erage of the coherence scores for these 5 topics represents the coherence score for this

number of topics. When the gain in the coherence score becomes marginal or negative,

the process is stopped and the final number of topics is decided. Selecting the number of

topics with a high coherence score is likely to yield subgoals that correspond to individual

requirements.

Note that the number of requirements can vary depending on the number of reviews

and the app’s characteristics. A larger number of reviews often indicates a broader range

of requirements, necessitating more topics. Additionally, the genre of the app can in-
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fluence the number of requirements. For example, with 1,000 reviews, the requirements

for LINE may cover areas such as video calls, group chats, translation, and stickers. In

contrast, for YouTube, the requirements are mainly focused on ads, thus needing fewer

topics. Selecting the number of topics using the coherence score produces appropriate

subgoals regardless of the apps’ characteristics.

By repeatedly analyzing the reviews using LDA topic modeling, the upper part of the

goal model, including, for example, the root node and its subgoals, is generated.

Algorithm 2 outlines the process of applying LDA topic modeling to generate sub-

goals from a given goal. The algorithm takes goal G, which contains a set of associated

reviews, as the input and outputs a list of sub-goals. First, the LDA model is applied

to the reviews within G with an increasing number of topics set to 5, 10, 15, and so on

(Line 3). The resulting topics are generated (Line 4). Next, coherence scores for these

topics are calculated (Line 5). If the average coherence score does not increase, the topics

and number of topics from the previous step are restored (Lines 6–8), and the loop is

terminated (Line 9). An empty list is initialized to store the generated sub-goals (Line

10). For each identified topic, a sub-goal is created, and reviews related to the topic are

assigned to the corresponding sub-goal (Lines 11-14). These sub-goals are added to the

list of sub-goals.

If the input goal G is the root goal, the algorithm evaluates the reviews within each

sub-goal. Sub-goals containing mostly uninformative reviews are removed to improve the

relevance and clarity of the goal model (Lines 16-18). Finally, the algorithm returns the

list of generated sub-goals.

4.2.2 LDA: Performance Instability

The LDA topic model’s performance can be unstable, particularly when dealing with

varying amounts of reviews. As the number of reviews fluctuates, the precision of the
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Figure 4.1: Choosing the optimal number of topics with coherence scores.

topic modeling results can vary. This variability can lead to less reliable outcomes, partic-

ularly when the number of reviews is limited. As explained in the previous chapter, to ad-

dress this limitation and improve the precision of the proposed goal modeling method, the

proposed method uses two other methods, namely, the distance-based clustering method

and the LLM-based method. These help to reduce the LDA’s instability by providing

alternatives when dealing with smaller datasets.

As shown in a later section, experiments revealed that LDA performs more consis-

tently when applied to a larger dataset. Consequently, to ensure accuracy, it was decided

to apply the LDA topic model only, when sufficient reviews were available. In the cases

of smaller datasets, the distance-based clustering method and LLMs were relied upon to

maintain high accuracy in goal modeling. This combined method allowed us to harness

the strengths of each method, optimizing performance across different scenarios.
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Algorithm 2 LDA Topic Modeling
1: Input: goal G

2: Output: subgoals

3: for num_topics ∈ {5, 10, 15, . . . } do

4: topics← apply_LDA(G.reviews, num_topics)

5: coherence_scores← calculate_coherence_scores()

6: if average coherence score does not increase then

7: topics← previous topics

8: num_topics← previous num_topics

9: break

10: subgoals← [] ▷ Initialize an empty list for subgoals

11: for topic in topics do

12: Create sub-goal sub_goal ▷ Generate sub-goal for the topic

13: sub_goal.reviews← reviews related to topic ▷ Assign topic-related reviews to

the sub-goal

14: Add sub_goal to subgoals

15: if goal G is root goal then

16: for sub_goal in subgoals do

17: if reviews in sub_goal are mostly uninformative then

18: Delete sub_goal ▷ Delete sub-goals that are uninformative
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CHAPTER 5

DISTANCE-BASED CLUSTERING

ALGORITHM

The LDA topic modeling requires the number of topics to be predefined, which poses

a challenge for automating the process. Additionally, the model’s accuracy can vary de-

pending on the volume of reviews. To address these issues, a distance-based clustering

method was introduced. This approach vectorizes reviews and clusters the vectors to form

a hierarchical tree structure, which serves as the framework of the goal model. Clusters

represent goals, and the hierarchical structure reflects the relationships between sub-goals

and parent goals.

Algorithm 3 illustrates a simple method for generating a goal model by clustering

reviews. The resulting clusters are considered goals, and their aggregation can be regarded

as inverting the refinement process in goal modeling. First, reviews are split into words.

Next, the words are added to a dictionary, and a list representing the Bag of Words (BoW)

[38] is generated from the dictionary. The BoW represents the words in the reviews and

their occurrence frequency. Then, the generated BoW list is stored in a matrix in vector

form. For example, suppose the following two one-sentence reviews:
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Algorithm 3 Clustering method for Goal Model Generation
1: Input: user reviews

2: Output: goal_model

3: for review in reviews do

4: sentencelist← divided sentences in review ▷ segment reviews with commas,

periods, exclamation marks, and question marks

5: bows← bag-of-words (BoW) of sentencelist ▷ generate BoW

6: for {word_id, frequency} in bows do

7: array[review][word_id]← array[review][word_id]+frequency

8: dendrogram← apply Ward’s method to array ▷ generate dendrogram

9: Generate goal_model from dendrogram

(1) I cannot delete any documents from my company on the web now.

(2) It does not allow me to delete any documents.

After lemmatization and filtering, the BoW lists are ["delete": 1, "document": 1, "com-

pany": 1, "web": 1] and ["delete": 1, "document": 1]. These lists are then stored in a

matrix.

Ward’s method [59] (employing hierarchical clustering) is applied to the matrix, and

the result is the clustering of reviews. These clusters are treated as goals, and through a

bottom-up clustering process, they progressively form the goal model. The next section

provides a detailed explanation of the clustering process in Ward’s method and discusses

its limitation.
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5.1 Ward’s Method

Ward’s method, introduced by Joe H. Ward, Jr., is applied to cluster reviews and gen-

erates goal models. It is particularly favored in disciplines like linguistics because it can

create compact and well-balanced clusters [57]. Ward’s method is a type of hierarchical

clustering. It starts by treating each individual review as its own cluster and then iter-

atively merges the closest pair of clusters, continuing this process until all reviews are

grouped into a single cluster.

Ward’s method implements the steps below. Initialization: At the outset, each review

is assigned to its own cluster. The squared Euclidean distance between each pair of clus-

ters is then calculated. Merging Clusters: In each subsequent step, the two clusters that

are closest to each other—i.e., those with the smallest distance—are merged into a single

cluster. This process reduces the total number of clusters by one. Iteration: The merging

process is repeated iteratively. After each merge, the distances between the new cluster

and the remaining clusters are recalculated, and the two closest clusters are again merged.

This continues until all reviews are consolidated into one cluster.

During the merging process, clusters are combined based on the minimum variance

criterion. Specifically, the distance between clusters is determined by the change in the

error sum of squares (ESS) resulting from their merger, as expressed in the following

equation:

∆E =
∑

i∈A∪B

(xi − µA∪B)
2 −

(∑
i∈A

(xi − µA)
2 +

∑
i∈B

(xi − µB)
2

)
(5.1)

In this formula, xi represents the feature vector corresponding to review i, µA and µB

are the centroids of clusters A and B, respectively, and µA∪B is the centroid of the com-

bined cluster. ∆E represents the reduction in the error sum of squares (ESS) resulting

from merging clusters A and B. A smaller ∆E indicates a more cohesive cluster, as

it minimizes the variance within the cluster. Using this criterion, Ward’s method itera-
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tively identifies and merges the most compatible clusters. For instance, if two clusters

are characterized by similar terms, such as "edit" and "save," merging them reduces ∆E,

suggesting that they belong to the same higher-level goal.

Figure 5.1 illustrates the application of Ward’s method in clustering 10 reviews. Ini-

tially, 10 clusters are created, one for each review, and the distances between them are

computed. The closest pair of clusters, {0} and {6}, are first merged to form a new clus-

ter {0, 6}, reducing the total number of clusters to nine. Next, the newly formed cluster

{0, 6} is merged with the closest remaining cluster, {8}, resulting in a cluster {0, 6, 8}

and reducing the number of clusters to eight. This iterative merging continues until all

reviews are combined into a single cluster.
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Figure 5.1: Clustering 10 reviews using Ward’s method.

The advantage of Ward’s method is its ability to automatically cluster reviews, making

it an effective tool for generating goal models. However, this method also has a limita-

tion that hinders its application to large-scale review datasets, as explained in the next
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subsection.

5.1.1 Ward’s Method: Limitation

code, 

account,login, 

sign, verifcation

account, sign,login, 

back, number

code, account,login, 

sign, verifcation

verifcation, 

recover,via, 

text, frustrating

dont, send,whats, 

wrong, facebook

receive, 

unable,login, 

account, havent

code, im,recover, 

via, frustrating

back, number,tried, 

open, emai

call, receive,im, 

recover, via

11 19

9

6

7 receive, 

code,sign, 

im, past

12 15

16
verifcation, code,call, 

recover, via

0 3

lack, detail,correct, 

instruction, set

back, number,email, 

phone, verify

41
log, keep,load, 

nowhere, line

verify, 

receive,verifcation, 

sm, call

5
sign, login,line, 

dont, back 14
back, 

account,number, 

verify, receive

2 8
sign, login,line, 

dont, back

sign, 

back,account, 

whats, add

17

10

13 18

Figure 5.2: Goal model generated using Ward’s method.

Figure 5.2 shows a portion of the goal model generated by Ward’s method using 20

reviews of LINE. In this figure, the numbered circles represent singleton clusters, where

each cluster contains only a single review, identified by its corresponding number. These

singleton clusters serve as the initial state in the hierarchical clustering process. The nodes

indicate goals derived from reviews, with each goal described by keywords extracted from

the reviews. This figure demonstrates a limitation of Ward’s method as follows.

Ward’s method, prior to clustering, first generates a cluster for each review and treats

these clusters as leaf goals. This means that in the initial phase, every single review is
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assigned its own goal, creating a large number of initial goals. Then, Ward’s method

allows only two clusters to be merged when generating parent goals, meaning that each

goal’s sub-goals are limited to two. With a large number of initial goals, this merging

process must be repeated many times, significantly increasing the number of goals. As

the number of goals increases, the requirements can become obscured within the vast

pool of generated goals. The high volume of goals makes it harder for developers to

extract requirements from reviews, as the requirements may be hidden among numerous

redundant or irrelevant goals.

Root

Goal 1 Req.1

Root

Req.3

Ideal

Ward method

Goal 2 Req.2 Goal 3 Req.3 Goal 1 Req.1

Req.2

Goal 2 Req.2 Goal 3 Req.3

Meaningless goal

Figure 5.3: Limitation of Ward’s method.

Figure 5.3 illustrates the differences between the ideal goal model and the goal model

generated using Ward’s method. Ideally, three goals (Goal 1, Goal 2, and Goal 3) cor-

respond to three requirements (Requirement 1, Requirement 2, and Requirement 3), en-

suring a clear mapping. However, Ward’s method, constrained by its binary hierarchical

structure, can only generate two goals: one meaningful goal (Goal 1) and another mean-

ingless goal. This redundant goal is then further broken down into two sub-goals (Goal 2

and Goal 3). This limitation leads to the creation of redundant goals.
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When generating goal models for a large volume of reviews, the number of redundant

goals increases significantly. This both inflates the complexity of the generated model

and hinders developers’ ability to comprehend and analyze user requirements effectively.

This weakness indicates the need for further development of alternative methods to handle

large datasets better and produce more accurate goal models.

5.2 Dendrogram-Based Goal Model Refinement

Although the clustering steps are similar to Ward’s method, the proposed distance-

based clustering method goes further by evaluating the hierarchical relationships of goals

based on the differences in distance values between clusters within the dendrogram. The

distance value measures the similarity between two clusters in clustering. It reflects the

change in the total within-cluster sum of squares when two clusters are merged. Specifi-

cally, it is calculated as

d =
√
2∆E,

where ∆E is derived from Equation 5.1. A smaller difference in distance values between

a cluster and its parent cluster indicates that the requirements they describe are similar.

Therefore, these clusters are not treated as independent goals; instead, the cluster with

the largest distance value is selected as the goal. This method significantly reduces the

number of goals in the goal model while accurately distinguishing different requirements.

In the distance-based clustering method, clusters with similar distance values are

grouped under the same parent goal. This method creates boundaries from the top down.

Clusters located above these boundaries are designated as parent goals, while those below

are categorized as sub-goals. The determination of boundary values takes into account the

distances between clusters and an artificially set reduction rate, R (0<R<1). The parame-

ter R is crucial in defining both the number of goal model layers and the total number of



SECTION 5.2 DENDROGRAM-BASED GOAL MODEL REFINEMENT 35

goals. Generally, a higher R value produces fewer goals.

Specifically, the distance-based clustering method begins by establishing a root for

the cluster that includes all the reviews, which is recognized as the largest cluster. A

borderline is established by multiplying the distance of the largest cluster by a factor

denoted as R. This borderline acts as a threshold, separating clusters based on distance,

thereby determining the parent-child relationships between the goals during goal model

generation. The distance-based clustering method examines clusters that fall below this

threshold during the subsequent traversal. Specifically, this method identifies clusters

that have parent clusters positioned above the borderline. For these identified clusters,

goals are identified. Given that these clusters are subsets of the largest cluster, the goals

identified in this process serve as sub-goals of the root goal. The clustering method then

proceeds by generating new borderlines based on the distances of these identified clusters,

again multiplying the distance by the factor R. This iterative process of traversing clusters,

identifying goals, and generating subsequent borderlines continues, with each iteration

further refining the goals. This cycle repeats until the number of reviews in a cluster falls

below the limit set for the proposed LLM method, since the LLM method excels with a

smaller number of reviews. The distance-based clustering method breaks down the largest

cluster into smaller clusters, each with its own set of refined goals, by iteratively applying

the borderline calculation and goal identification process.

Algorithm 4 outlines the distance-based clustering process for goal generation. This

algorithm takes a goal G, a review count limit L, and a reduction rate R as inputs, and

outputs a sub-tree representing the goal structure. First, a sub-tree is initialized with the

input goal G as its root (Line 3). Then, the reviews included in the goal G are vectorized,

and a dendrogram is generated using Ward’s method (Lines 4-9). This step is the same

as in Algorithm 3. The function GENERATE_SUB_GOALS operates recursively to iden-

tify sub-goals and construct the hierarchical structure. For each input goal, the function
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retrieves the cluster corresponding to the goal and calculates its distance (Lines 11-12).

A threshold is set by multiplying the cluster distance with the reduction rate R (Line 13).

Clusters that meet the threshold criteria—having distances below the threshold but with

parent clusters that exceed the threshold—are identified as valid sub-clusters (Line 14).

Each valid sub-cluster is processed as follows: if the number of reviews in the sub-

cluster exceeds the review count limit L, a sub-goal is created with the sub-cluster’s re-

views and added to the sub-tree as a child of the input goal (Lines 16-18). The function

is then called recursively to process the new sub-goal (Line 19). The process continues

until no further valid sub-clusters can be identified or the review count limit is not met.

Finally, the constructed sub-tree, representing the goal structure, is returned as the output

of the algorithm).

Figure 5.4: Clustering reviews by distance.

Figure 5.4 illustrates an example of a dendrogram resulting from clustering 50 reviews

within a goal using Ward’s method. The horizontal axis represents the review IDs. The

numbers indicate the square root of twice the increase in the total within-cluster sum of

squares after merging two clusters, i.e.,
√
2∆E, where ∆E is derived from Equation 5.1.
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Figure 5.5: Goal model generated by the distance-based clustering algorithm.

The reduction rate was set to 0.7 based on the results of preliminary experiments, where

several reduction rates were tested, including 0.5, 0.6, 0.7, and 0.8. The goal model

generated with a reduction rate of 0.7 is the most similar to the manually generated model.

The root node represents all reviews, with a distance value of 13.7. Thus, the boundary

value becomes 9.59, corresponding to 70% of the distance value of the root cluster. The

proposed distance-based method then traverses the clusters and identifies those that have

a greater distance value than the boundary. In this case, no clusters have a lager distance

value. Consequently, only the root cluster constitutes the root goal, and the two child

clusters constitute two sub-goals, goals 2 and 3. These child clusters are highlighted in

blue and purple. For Goals 2 and 3, boundaries are generated separately. For each goal,

the descendant clusters above the boundary line are merged to form the same goal. For

Goal 2, the identified clusters are green and cyan, while for Goal 3, the identified clusters

are orange, pink, and red. Finally, the process stops when the number of reviews included

in a goal becomes too small. The resulting goal model is depicted in Figure 5.5. In this

example, for illustrative purposes, the LLM was not used. Instead, the descriptions of the
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goals were manually added after checking all the reviews within each goal.
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Algorithm 4 Distance-based Clustering for Goal Generation
1: Input: goal G, review count limit L, reduction rate R

2: Output: sub_tree ▷ Return the constructed sub-tree

3: sub_tree← initialize_tree(G) ▷ Initialize a sub-tree with root as G

4: for review in G.reviews do

5: sentencelist← divided sentences in review ▷ segment reviews with commas,

periods, exclamation marks, and question marks

6: bows← bag-of-words (BoW) of sentencelist ▷ generate BoW

7: for {word_id, frequency} in bows do

8: array[review][word_id]← array[review][word_id]+frequency

9: dendrogram← ward_method(G.reviews) ▷ Generate dendrogram using Ward’s

method based on reviews in G

10: function GENERATE_SUB_GOALS(dendrogram, goal, L, R)

11: cluster ← get_cluster(dendrogram, goal) ▷ Get the cluster corresponding to

goal

12: cluster_distance← get_distance(cluster) ▷ Get distance of the cluster

13: threshold← cluster_distance ∗R ▷ Set threshold based on reduction rate

14: sub_clusters← find_valid_clusters(dendrogram, threshold) ▷

Identify clusters whose distances are below the threshold but whose parent clusters

have distances above the threshold.

15: for sub_cluster in sub_clusters do

16: if review_count(sub_cluster) > L then

17: sub_goal← create_sub_goal(sub_cluster) ▷ Create a sub-goal

containing the reviews from the cluster

18: add_to_tree(sub_tree, goal, sub_goal) ▷ Add sub-goal as a child of goal

in the sub-tree

19: GENERATE_SUB_GOALS(dendrogram, sub_goal, L, R) ▷ Recursively

process sub-goal

20: GENERATE_SUB_GOALS(dendrogram, G, L, R)
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CHAPTER 6

TWO METHODS FOR LEVERAGING

LLM CONVERSATIONS

The proposed LDA topic modeling and distance-based clustering method can handle a

large volume of reviews. However, the resulting goal models sometimes remain difficult

to interpret. To enhance interpretability, the potential of using LLMs to generate goal

models has been explored. By leveraging the natural language understanding capabilities

of LLMs, more comprehensible goal models can be generated.

To generate goal models, this study used the cutting-edge Generative Pre-trained

Transformer 4 (GPT-4), an LLM developed by OpenAI. Its main purpose is to engage

in interactive conversations with users, providing responses that are contextually appro-

priate across a vast array of prompts and queries. This advanced language model exhibits

exceptional capabilities in a variety of tasks, including chatbots, language translation, text

generation, and summarization.

GPT-4 can be directly used for generating goal models. When provided with user

reviews and prompts such as “If I give you a certain number of user reviews, can you

generate a multi-level structured goal model, even if it is incomplete?”, GPT-4 outputs
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(1) Multi-Device Support

(a) Seamless Account Retrieval

(b) Synchronization of Emails and Surprises across Devices

(2) Account Transfer and Device Upgrades

(a) Easy Transfer of Data and Contacts

i. Transfer Contacts

Figure 6.1: List generated directly by GPT-4.

a list of items. Figure 6.1 illustrates the results of goal model generation using 70 user

reviews of LINE. Based on this list, a goal model could be manually created. Each item

in the list is considered a goal. The description text for each item is treated as the label

for the corresponding goal. The refinement relationships between items are regarded as

parent-child relationships among the goals.

Despite the potential for generating goal models, the direct use of GPT-4 shown above

does not sufficiently harness its capabilities. The following sections discuss better ways

to use GPT-4 for goal modeling.

6.1 Obtaining Goals with Relevant Reviews

One limitation of solely using GPT-4 to generate goal models based on user reviews

is the difficulty in clearly representing the relationship between the reviews and the cor-

responding goals. More specifically, unlike the goals produced by the other two methods,

the goals generated by GPT-4 do not come with relevant reviews. One may be able to

understand the requirement from the goal description (i.e., label). However, the generated
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goal descriptions are often simplified, possibly omitting details of the requirements and

their context within the reviews. Consequently, the information developers derive from

these goals is insufficient for a comprehensive understanding of user requirements. Even

if developers request a complete display of all relevant reviews, GPT-4 typically provides

only a limited selection, making it difficult to grasp the full scope of user requirements.

The proposed goal model generation method solves the challenge of establishing re-

lationships between goals and reviews. In this method, the task of generating goal models

is redefined as the task of classifying reviews into clusters, where each cluster represents

a distinct goal. GPT-4 is utilized to determine the appropriate cluster for each review,

thereby establishing the relationship between goals and their corresponding reviews. This

allows developers to identify and easily refine specific goals based on various factors,

such as the number of associated reviews or the content within those reviews. For in-

stance, developers could decide to refine goals with more related reviews, as a larger

volume of reviews typically indicates greater user interest or more complex requirements.

Conversely, goals associated with only a few reviews may not require significant refine-

ment, which could reduce GPT-4’s processing time and enhance the goal analysis process

for developers.

The process is divided into two key steps. The first involves using GPT-4 to cluster

reviews, with each resulting cluster being interpreted as a goal. The prompt for this step

is:

Prompt 1: Can you cluster the following reviews?

The second step occurs after developers analyze the generated goals and decide which

goals to refine. GPT-4 is then employed to refine the selected goals. For example, if the

first cluster is selected for refinement, the prompt for this step is:
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Prompt 2: Can the first category be refined, and if so, what would the relevant reviews

in the subdivided categories look like? By "relevant reviews," I mean the reviews I

provided earlier. Cannot generate reviews; all reviews should belong to the first

category classified earlier. Each comment should belong to only one subcategory,

and each subcategory should be akin to a goal in the goal model in the requirement

model.

It is essential to include the phrase "Cannot generate reviews" in the prompt to prevent

the model from producing inaccurate outputs. Additionally, it is important to clearly state

that each review should be associated with only one goal.

Figure 6.2 shows the list of goals generated using this method, with the input consist-

ing of user reviews within a parent goal. Note that this parent goal has been generated

using the distance-based clustering method. The output includes categories 1 and 2, re-

garded as two sub-goals of the parent goal. The relevant reviews listed under each cate-

gory are considered reviews belonging to the sub-goal. For the two categories, the LLM

provides a summary sentence for each, which becomes the label for the corresponding

sub-goals: "Seamless Account Transfer" and "Effective Account Recovery." Meanwhile,

these labels are recorded to determine whether any goals are redundant and to decide

when to terminate the goal-generation process.

For the reviews within each sub-goal, the LLM method repeats the above steps to gen-

erate sub-goals for these goals. This iterative process gradually constructs the hierarchical

structure of the goal model. After each sub-goal is generated, the LLM method compares

its label with the previously recorded labels. If a similar label is found, it indicates that

the generated goal does not describe a new requirement. In such cases, the goal is deleted,

and no further sub-goals are generated for it.

By using this method, developers can leverage the strengths of GPT-4 in generating

goal models while simultaneously visualizing the connections between user reviews and
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Category 1: Seamless Account Transfer

Relevant Reviews: "Multi device support is a joke."

"This has got to be one of the worst account transfer experience ever. Why do you

need to make logging in to a new device so hard?"

...

Category 2: Effective Account Recovery

Relevant Reviews: "So LINE blocks you if you don’t change your account over

when you get a new phone. This is about the dumbest thing ever."

"I lost all my chat history because I changed my phone and forgot my password."

...

Figure 6.2: List of goals generated by GPT-4 using user reviews of LINE

corresponding goals.

6.2 Requirement-Extraction: the LLM Method

This section proposes how GPT-4 can be used to produce supplementary information

that explains the requirement represented by a specific goal. This extra information can be

annotated with the goal node, providing helpful insights to system developers. This infor-

mation extraction process is performed by supplying GPT-4 with the reviews associated

with the goal. However, when simply asked to extract requirements from user reviews,

GPT-4 often identifies features instead. In the context of requirement engineering, while

requirements and features are closely related, they represent distinct concepts. The fun-

damental difference between requirements and features lies in the former referring to the

problem domain, while the latter refers to the implementation domain.

A requirement refers to the essential characteristics, performance criteria, or services
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that a system must fulfill. It encapsulates the expectations of users, conditions that the

system must satisfy, or functionalities to be implemented. Requirements are typically

categorized into functional and non-functional requirements. Functional requirements

outline what the system should accomplish, such as specific tasks or operations it must

perform. Conversely, non-functional requirements detail how the system should operate,

covering aspects like performance, reliability, security, and user experience.

In contrast, a feature is a specific operation or task that the system can perform, rep-

resenting a concrete capability or behavior identified during the requirement analysis and

definition process. Features focus on the specific ways in which a system can meet its

requirements, often representing how those requirements are realized in practice. While

requirements are generally proposed by users, features are defined and implemented by

developers.

Although user reviews include both requirements and features, it is important to rec-

ognize that users are not developers. While their expressed requirements should be con-

sidered seriously, the features they describe are not always essential for implementation.

For instance, some features could be too difficult to implement, or their requirements

could be met through alternative solutions. Consequently, the features extracted by GPT-

4 from these reviews may not be sufficient to guide software development. This highlights

the challenge of accurately extracting requirements from user review, a task that remains

crucial in continued development.

Therefore, a prompt was added to help GPT-4 differentiate between requirements and

features. This prompt includes an example with a review and the corresponding require-

ment that should be extracted. The example defines what qualifies as a requirement,

thereby improving the accuracy of requirement extraction. The prompt content is as fol-

lows:
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Prompt: I will give you some app reviews, and can you extract the requirements

from them? By requirements, I mean the reasons why a certain feature is needed.

For example: I want a dark mode because I often work at night. The requirement in

this sentence is that the user often works at night. The extracted requirements are in

a tree structure.

Typically, training an LLM to extract requirements requires only a single example.

Once the training is complete, the LLM can extract requirements from reviews of various

apps. For instance, the previously mentioned example “I want a dark mode, because I

often work at night” comes from Google Docs. An LLM pre-trained with this example

can also extract requirements from reviews of other apps, such as LINE or YouTube.

Thus, the LLM can automatically extract requirements from reviews across different apps

after pre-training with a single example.

Algorithm 5 outlines the process of generating a goal model using an LLM-based ap-

proach. This algorithm takes a single goal G as input and outputs a goal sub-tree. First, an

empty sub-tree is initialized with the input goal G as its root (Line 3). Additionally, a label

library is created to store the labels of sub-goals and avoid redundancy (Line 4). The func-

tion LLM_GENERATE_GOAL_MODEL begins by clustering the reviews included with the

current goal using an LLM (Line 6). These clusters represent sub-goals, each with a set

of related reviews and a descriptive label.

For each generated cluster, this algorithm checks whether its label addresses a new

requirement by comparing it against the label library (Line 8). If the label is unique, a

new sub-goal is created using the cluster’s reviews and label (Line 9). This sub-goal is

then added to the sub-tree as a child of the input goal, and the label library is updated

with the new label (Lines 10-11). The process is applied recursively to all sub-goals of

the input goal (Line 13).

After processing all goals in the sub-tree, an LLM is used to generate requirement
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1. Improve User Experience and App Functionality

- requirement: General improvement of the app’s interface and features.

- reason: To make the app more intuitive and efficient for users, leading to increased

satisfaction and usage.

1.1 Enhance Multi-Device Support

- requirement: Seamless synchronization and operation across multiple devices.

- reason: Users often switch between devices and expect a consistent experience

without loss of functionality or data.

...

Figure 6.3: Requirements and their explanations generated by GPT-4 using the example-

based prompt.

descriptions for each goal based on its included reviews (Lines 16-17). This step ensures

that each goal is clearly described in terms of its underlying requirements.

Figure 6.3 illustrates the requirements and their explanations generated using the

example-based prompt. The input consists of the goals generated using the method in-

troduced in the previous section and the reviews included within each goal. The output

provides detailed explanations for the requirements, including an introduction to each

requirement and the rationale behind it. This ensures a better understanding of the re-

quirement and its context.

In the proposed approach, an LLM is also used to produce the labels of goals. The

LDA and distance-based clustering methods utilize GPT once to generate labels for the

identified goals after the goal model structure has already been established. In contrast,

the LLM method requires two calls: the first is to treat goal generation as a clustering

problem and produce a hierarchical relationship among goals, and the second is to create
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detailed requirement descriptions for each goal based on its reviews, ensuring developers

gain a deeper understanding of user requirements.
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Algorithm 5 LLM-based Goal Model Generation
1: Input: goal G

2: Output: sub_tree ▷ Return the refined goal sub-tree

3: sub_tree← initialize_tree(G) ▷ Initialize a sub-tree with G as the root

4: label_library ← ∅ ▷ Initialize an empty label library

5: function LLM_GENERATE_GOAL_MODEL(goal)

6: clusters← LLM_generate_clusters(goal.reviews) ▷ Generate clusters based

on the goal’s reviews

7: for each cluster in clusters do

8: if not is_already_described(cluster.label, label_library) then ▷ Check if the

cluster’s label describes an unaddressed requirement

9: sub_goal← create_sub_goal(cluster.reviews, cluster.label) ▷ Create a

sub-goal from cluster

10: add_to_tree(sub_tree, goal, sub_goal) ▷ Add sub-goal to the sub-tree

11: label_library ← label_library ∪ {cluster.label} ▷ Update label library

with the new requirement

12: for each sub_goal in children(goal, sub_tree) do

13: LLM_GENERATE_GOAL_MODEL(sub_goal) ▷ Recursively generate goal

models for sub-goals

14: LLM_GENERATE_GOAL_MODEL(G) ▷ Generate goal model starting from G

15: for each goal in sub_tree do

16: goal.description← LLM_generate_req_desc(goal.reviews) ▷ Generate

requirement description for each goal
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CHAPTER 7

EXPERIMENTS

7.1 Experiments: Objectives and Research Questions

This chapter shows the results of experiments using the proposed approach. The pro-

posed approach was implemented as follows. The LDA model, together with the calcula-

tion of coherence scores, was implemented in the Python language. The Python Gensim

library [58] was used for coherence score calculation. As for the distance-based method, a

Python program was written to derive a dendrogram from a set of user reviews associated

with a topic. Obtaining a goal model from a dendrogram was performed manually. The

LLM-based method was executed using the browser-based interface of GPT-4.

To conduct the experiments, 1,000 reviews were collected from the App Store for

LINE, YouTube, and Google Docs. Preprocessing for the collected reviews was per-

formed before generating the goal models, including stop word removal and lemmatiza-

tion. The stop words included those provided by NLTK [5] and additional words that

do not describe requirements, such as ’app,’ ’love,’ and ’useful.’ The experiments were

performed using the preprocessed reviews.

A total of five experiments were conducted. The first experiment evaluated the ex-
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ecution time of the three methods used in the proposed approach, namely, LDA topic

modeling, the distance-based clustering method, and the LLM-based method.

The remaining experiments concern the quality of the goal models generated by the

proposed approach. The experiments used the method formulated by Shimada et al. [56]

as a baseline, with the goal models created manually serving as the ground truth.

The following research questions were defined to guide the experiments and analysis.

RQ1: How does the number of reviews affect the performance of LDA topic modeling

and distance-based clustering?

RQ2: Does the proposed method generate goal models with higher precision and recall

compared to the existing method?

RQ3: Have the requirements been successfully extracted?

RQ4: Can the goal model generated by the proposed method practically assist developers

in analyzing user requirements?

Each research question corresponds to each of the remaining four types of experiments.

To answer RQ1, the precision and recall of the LDA topic modeling method and the

distance-based clustering method were evaluated as the number of reviews varied. The

result was used to identify the appropriate circumstances for applying each method.

To answer RQ2, the quality of the goal model generated by the proposed method was

compared with that generated by the existing method in the next experiment.

RQ3 concerned the practical applicability of the proposed approach. This was an-

swered by comparing the requirements represented by the goal models generated by the

proposed method and the ground truth.

Finally, RQ4 was addressed by checking whether the requirements extracted by the

proposed approach were actually implemented later using the update log of the LINE app.
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7.2 Execution Time Analysis of Methods
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Figure 7.1: Execution time for topic generation using the LDA method.

The execution times of LDA topic modeling, distance-based clustering, and the LLM-

based method were evaluated. The measurement was performed on an Apple MacBook

Pro with a 3.5 GHz M2 Max processor and 32 GB of RAM. For the LDA modeling

method, the execution time was tested across datasets with varying numbers of user re-

views to measure the time required to generate topics. The number of topics for each

LDA test was set to 10, and the time required from inputting the reviews to assigning

topics to them all was recorded. As shown in Figure 7.1, the time required for LDA topic

generation increased linearly with the number of reviews.

The distance-based clustering method was similarly tested using the same datasets as

the LDA modeling method to measure the time required to generate the dendrogram. The

results show that the dendrogram generation time increases non-linearly as the number of
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Figure 7.2: Execution time for the dendrogram generation using distance-based cluster-

ing.

reviews grows, as illustrated in Figure 7.2. The relationship suggests a significant rise in

processing time with larger datasets.

The LLM-based method was assessed by measuring the time required to conduct one

calculation for goal model generation. Figure 7.3 illustrates the time taken by GPT to

generate a goal model with different review counts. Due to the randomness of GPT-

generated content, each dataset was tested ten times, with results presented as the box

plot to show the range of time required. The results indicate that the time GPT requires

to generate goal models does not increase proportionally with the number of reviews.

Instead, substantial variability in time was observed when generating goal models from

the same dataset, which is attributed to the randomness in GPT’s output. The execution

time depended more on the generated content’s length than the volume of reviews.
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Figure 7.3: GPT method: Execution time for goal model generation.

7.3 Comparison: LDA and Clustering

7.3.1 Experimental Settings

The experiment described in this section is designed to evaluate the performance of the

LDA goal model and distance-based clustering method as the number of reviews varies.

The experiment tested the effectiveness of these two methods across different sample

sizes, ranging from 100 to 400 reviews. The LINE app reviews were used for the ex-

periment. The test data were constructed by selecting 400 of these reviews as follows.

First, four representative requirements were selected. Then, for each of the requirements,

a collection of reviews describing the requirement were manually selected. A dataset of

a particular size was compiled by combining reviews from some of the four collections.

Table 7.1 provides a detailed breakdown of how the reviews were allocated.

The two methods were applied to each data set. As the purpose of this experiment

was to compare the basic characteristics of the LDA and distance-based clustering meth-

ods, the proposed techniques were not utilized. Specifically, 1) for the LDA method, the
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Table 7.1: Number of reviews assigned to each requirement across different test rounds.

Req. represents the number of reviews associated with each specific requirement.

Test Round Req. 1 Req. 2 Req. 3 Req. 4 Total

Round 1 50 50 - - 100

Round 2 50 50 50 - 150

Round 3 100 100 - - 200

Round 4 100 100 50 - 250

Round 5 150 100 50 - 300

Round 6 150 100 100 - 350

Round 7 160 100 100 40 400

number of topics was set to the number of requirements (i.e., 2 to 4) a priori, resulting in

as many goals as the requirements, and 2) for the distance-based clustering method, the

proposed technique for aggregating intermediate goals was not applied.

The outcomes of the two methods were evaluated with respect to precision, recall, and

F1-score. The measures were calculated for each of the requirements as follows: First, a

goal that best describes the requirement was selected. This was done by selecting the goal

with the greatest number of reviews describing that requirement. Then, all the reviews

associated with that goal were subjected to the evaluation.

The evaluation was performed based on a confusion matrix, as shown in Table 7.2.

TP (True Positive) indicates the reviews present in the goal that describe the correct re-

quirement. FP (False Positive) represents reviews that are present in the goal but do not

describe the requirement. FN (False Negative) signifies the reviews describing the re-

quirement but not present in the goal. For example, if reviews 1.1, 1.2, and 1.3 describe a

particular requirement but the reviews present in the selected goal are reviews 1.1 and 2.1,
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Table 7.2: Confusion Matrix

True Condition

Positive Negative

Predicted

Condition

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

then the precision is 0.5, and the recall is 0.33. The F1-score is defined as the harmonic

mean of precision and recall, providing a single metric as follows.

F1-score = 2× Precision× Recall
Precision + Recall

7.3.2 Experimental Results

Figure 7.4 presents the F1-score, precision, and recall for the LDA and clustering

method across different numbers of user reviews. The x-axis represents the number of

reviews, ranging from 100 to 400, while the y-axis indicates the score values for preci-

sion, recall, and the F1-score. For the LDA method, a noticeable decrease in precision

and recall is observed as the number of reviews increases from 100 to 400. This decline

is reflected in the corresponding F1-scores, with a marked drop in performance particu-

larly between 100 and 200 reviews. Despite this, the LDA method maintains a relatively

stable trend after 250 reviews, with F1-scores leveling off around 65. In contrast, the

clustering method shows higher precision and recall scores at lower review counts (100

to 200), but these metrics decline more sharply as the review count increases beyond 300.

The clustering method’s F1-scores also decrease significantly as the number of reviews

approaches 400, indicating a potential decrease in clustering performance under higher

review volumes. Overall, the figure illustrates that both methods experience a decline in

performance with increasing review counts, but the LDA method shows a more consis-
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Figure 7.4: F1-Score, precision, and recall for LDA and distance-based clustering meth-

ods.
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tent decline, while the clustering method exhibits a sharper drop in effectiveness at higher

review counts.

7.3.3 Answer to RQ 1

When comparing the performance of LDA and clustering methods across varying

numbers of reviews, both methods showed a decrease in effectiveness as the number

of reviews increased. However, the clustering method exhibits a more pronounced de-

cline in performance, whereas the LDA method demonstrates a more gradual reduction in

accuracy. Notably, both methods perform similarly to datasets containing 250 and 300 re-

views. Therefore, the proposed method switches the three methods as follows. The LDA

topic modeling method is employed for goals with more than 300 reviews; the distance-

based clustering method is used for goals with more than 100 but fewer than 300 reviews;

and the LLM method is chosen for goals with fewer than 100 reviews.

7.4 Comparison: Proposed and Existing Methods

7.4.1 Experimental Settings

This experiment evaluated the accuracy of goal model generation using the proposed

method in comparison to the existing method. For the study, 3000 user reviews were

collected from three different apps. The proposed method was used to generate three goal

models, one for each app. The existing method was similarly applied to generate three

goal models from the same set of reviews. Figures 7.5, 7.6, and 7.7 illustrate the goal

models generated using the proposed method. In these models, the orange goals were

generated by the LDA topic model, the green goals were generated by a distance-based

clustering method, and the pink goals were generated by GPT-4. Each goal in the goal
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Requirement: Improve the login verification process, especially when logging in from a new device.

Reason: Users face frustration due to a verification process that sends a passcode to aninaccessible or 

non-operational old device.

-----------------------------------------------------------------------------------------------------------------------------

Reviews: “I cant register or login my account because the text message never comes”“LINE isnt working I 

thought Id uninstall and reinstall it But I cant get past the verification page Iwanna log into my account But it 

wont send me a verification text”

Figure 7.5: Goal model generated by the proposed method using LINE user reviews.

model generated by the proposed method was evaluated as follows: First, each goal node

was manually mapped to a node in the ground truth goal model with the most similar

characteristics, including their positions in the hierarchical structures and the reviews

associated with them. Then, the goal was evaluated by comparing its associated reviews

with those of the mapped ground truth goal, using precision, recall, and F1 measures. The

goals generated by the existing method were similarly evaluated.

7.4.2 Experimental Results

Figures 7.8, 7.9, and 7.10 display the precision, recall, and F1 scores for goals gener-

ated from reviews of three different apps: LINE, GoogleDocs, and YouTube, respectively.

In these figures, the horizontal axis represents precision, while the vertical axis represents

recall. Overlaying the scatter plot are F1 score contours, represented by black lines indi-



60 EXPERIMENTS CHAPTER 7.

Requirements 

for Youtube

Reduce

ad frequency
Improve content 

accessibility and 

reduce 

censorship

Improve content 

recommendations 

Reduce 

ad length

Limit ads 

during 

videos

Remove 

unskippable

ads

Time ads based 

on video length

Allow 

skipping 

earlier

Improve 

video 

recommen

dation 

accuracy

Fix video 

issues

Fix video loading 

issues

Enable playing 

videos with 

minimized app

Reduce repetitive 

content 

recommendations

Enhance content 

discovery for 

users' preferences

Fix app stability 

and content 

controls

Maintain 

app's 

quality and 

reliability

Fix black screen 

issue promptly

Reduce 

interruptions 

from ads

Improve ad 

relevance

Improve 

ad control 

options

Offer 

affordable ad-

free options

Reduce 

battery 

usage during 

uploads

Fix video 

playback for 

subscribers

Reduce time 

dismissing 

watched videos

Limit ads in 

YouTube 

Shorts

Enhance 

video 

content 

accessibility 

globally

Improve app 

speed and user 

interface

Figure 7.6: Goal model generated by the proposed method using user reviews of YouTube.

cating regions of constant F1 scores. These contours help visualize how the combination

of Precision and Recall influences the F1 score, with higher contours closer to the top-

right corner of the plot. Each dot represents a goal, with the blue dots corresponding to

goals generated by the proposed method and red dots representing goals generated by

the existing method. The coordinates of each dot indicate the precision and recall of the

reviews included in that goal.

7.4.3 Answer to RQ 2

The results indicate that the goal model generated by the proposed method demon-

strates higher accuracy, while the goal model produced by the existing method struggles

to achieve high scores in both precision and recall simultaneously. The existing method

employs Ward’s method, which couples clusters based on distances. This method can

lead to issues where a cluster with very few reviews is combined with one that has a sig-

nificantly larger number of reviews. Consequently, one cluster may exhibit high precision

and low accuracy, while the other shows high recall and low precision.



SECTION 7.5 COMPARISON: PROPOSED AND EXISTING METHODS 61

Requirements 

for GoogleDocs

Optimize 

Performance

Improve 

User 

Experience

Enhance App 

Reliability

Ensure 

background 

stability

Fix Update 

Issues Enhance 

Stability

Boost 

Responsiveness

Fix 

functionality 

regressions 

post-update

Improve 

update 

download 

speed

Address 

Syncing 

Problems

Fix 

Crashing 

Issues

Optimize 

Document 

Handling

Ensure reliable 

device 

synchronization

Fix shared 

document 

access issues

Fix offline 

save issues

Resolve 

frequent app 

crashes

Enhance 

Compatibility

Improve 

Collaboration 

Features

Improve voice-

assist editing 

compatibility

Allow direct 

drawing on 

documents

Support paragraph 

indentation

Reduce 

performance 

delays

Fix crashes caused by 

device rotation

Optimize 

document 

editing 

speed

Reduce app 

memory 

usage

Support Older 

Devices and 

Systems

Provide 

Cross-

Platform 

Support

Simplify 

Document 

Sharing 

Permissions

Enhance 

Version 

Control

Enhance 

Usability

Expand 

Feature 

Support

Simplify 

formatting tool 

accessibility

Provide clear 

operational 

tutorials

Optimize 

Real-Time 

Collaboration

Improve File 

Search 

Functionality

Reduce delays in 

long document 

navigation

Improve large 

document loading 

speed

Figure 7.7: Goal model generated by the proposed method using user reviews of Google-

Docs.

The accuracy and performance of the model are not solely dependent on the clustering

algorithm but are also influenced by the content of the reviews themselves. For example,

on platforms like YouTube, user reviews often revolve around a limited set of topics,

with a repetitive use of language. In such cases, the existing method tends to perform

better, as with the increased frequency of keywords, it becomes easier to cluster reviews

that describe similar requirements, thereby improving accuracy. However, even for the

YouTube app, the proposed method showed better performance.
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Figure 7.8: Precision, recall, and F1 scores for goals generated from LINE reviews.

7.5 Effectiveness of Requirements Extraction

7.5.1 Experimental Settings

This experiment evaluated the proposed method’s ability to extract requirements from

reviews. The following steps were applied to a set of 1000 reviews for each of the three

apps. The first step involved gathering all the requirements from the ground truth and

compiling them into a list. Although the requirements derived had a wide granularity

spectrum, only the finest ones were selected. Each of these requirements corresponded

to each leaf goal. Figure 7.11 shows a portion of the requirements extracted from the

ground truth. Next, the requirements included in the goals generated by the proposed

method were collected and also compiled into a list. The labels or descriptions generated

by GPT-4 for the goals were used to extract the requirements. Finally, a comparison was

made between the two lists to calculate the coverage rate of the requirements. Here, the

coverage rate is the ratio of requirements derived from the generated goal model to the
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Figure 7.9: Precision, recall, and F1 scores for goals generated from GoogleDocs reviews.

ground-truth requirements.

7.5.2 Experimental Results

Table 7.3 summarizes the results of this experiment. The table presents the number

of requirements extracted by the proposed method, the ground-truth requirements, and

the corresponding coverage rates for three apps: LINE, Google Docs, and YouTube. For

LINE, the proposed method extracted 15 requirements out of 16 ground-truth require-

ments, resulting in a coverage rate of 0.94. Google Docs achieved a slightly lower cov-

erage rate of 0.86, with 18 out of 21 ground-truth requirements identified. In contrast,

YouTube had only 10 requirements in both the extracted and ground-truth sets, yielding a

coverage rate of 1. This lower number of requirements for YouTube is due to the context

of its reviews, which predominantly focus on a single issue—advertisements—making

the requirements fewer and easier to capture.
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Figure 7.10: Precision, recall, and F1 scores for goals generated from YouTube reviews.

Table 7.3: The numbers of extracted and ground-truth requirements.

Proposed method Ground truth Coverage rate

LINE 15 16 0.94

Google Docs 18 21 0.86

YouTube 10 10 1

7.5.3 Answer to RQ 3

The generated goal model successfully covered about 90% of the requirements. Based

on the results, it can be concluded that the goal models generated by the proposed method

can capture most of the requirements.
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1. Login Requirement: Enhanced Verification Process Ensures that the login system

includes a robust verification process to secure user access.

2. Login Requirement: Removal of Regional Restrictions Implement a feature that

allows users to log in from any region without geographical limitations.

3. Login Requirement: Support for Multiple Devices Enable users to log in and ac-

cess their accounts simultaneously on multiple devices.

4. Login Requirement: Email Integration for Login Notifications Provide users with

the ability to receive login notifications and support via email to enhance security

and user experience.

5. Notification Requirement: Customizable Reminder Settings Allow users to cus-

tomize the method and frequency of reminders according to their preferences.

6. Notification Requirement: Continuous Reminders Without Interruption Ensure

that reminder notifications continue without interruption until acknowledged by the

user.

...

Figure 7.11: List of extracted requirements.
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7.6 The Proposed Method: Practical Utility

7.6.1 Experimental Settings

To evaluate the practical utility of the proposed method, a comparison was conducted

between the goal model generated from user reviews for LINE and the app’s actual up-

date logs. By examining the correspondence between the requirements described in the

goal model and the features or improvements implemented in the app updates, we can

assess whether the requirements in the generated model reflect those that developers aim

to fulfill. If such alignment is observed, it indicates that the goal model is consistent

with the developers’ thought process, demonstrating its practical relevance to application

development. Furthermore, this suggests that in future app updates, the automatically

generated goal model could provide guidance for developers, serving as a tool to help the

development process.

The reviews used to generate the goal model were collected in 2020, providing a

snapshot of user requirements from that period. Meanwhile, a comprehensive set of 173

update records from LINE, covering a period from January 2020 to October 2024, was

collected. These records were then filtered to exclude updates that lacked requirement-

specific information, such as “We’ve fixed some bugs and improved features to make

LINE even better.”, leaving 50 updates that contained clear references to modifications

relevant to user requirements.

7.6.2 Experimental Results

Figure 7.12 illustrates the update heatmap for LINE, where goals marked in red indi-

cate frequent updates addressing the requirements described by these goals, while those

marked in blue represent requirements that received less attention from developers. Among

the 29 goals in the goal model, 21 were mentioned at least once in the update logs, high-
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Figure 7.12: Requirement update frequency in LINE.

lighting that most goals garnered focus from developers. Of 50 update logs, 46 referenced

requirements were described in the goal model, demonstrating that the requirements ex-

tracted through the goal model had high coverage.

As shown in Figure 7.12, the requirement "Improving interface and customer service"

emerged as the requirement that developers focused on the most, with its sub-goals also

being frequently mentioned in updates, particularly those related to data backup and trans-

fer, such as the update log item "You can now set up regular automatic backups of your

chat history," which corresponds to the goal "Improve backup and recovery mechanisms."

This indicates significant attention to this aspect. Meanwhile, some goals were mentioned

in updates, but their sub-goals, such as specific suggestions regarding stickers, were not

implemented. In this case, the issues regarding stickers were addressed differently from

the one mentioned in the user reviews.
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7.6.3 Answer to RQ 4

The goal model generated from user reviews shows a high overlap between the identi-

fied requirements and the subsequent app update logs. This indicates that the requirements

captured by the goal model align closely with the areas developers aim to improve. Con-

sequently, the generated goal model proved valuable both in identifying user requirements

and guiding developers toward improvements.

Additionally, by analyzing the "popularity" of different goals within the goal model,

it becomes evident which aspects of the app developers prioritize. This insight enables

development teams to focus on the most critical areas, optimizing resource allocation and

enhancing user satisfaction.
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CHAPTER 8

DISCUSSION

Structurally, the goal models generated by the proposed method are similar to the

ground truth. The goal models generated by the existing method have greater depth but

limited width. This is due to Ward’s method, which restricts the number of sub-goals,

affecting the width of the generated goal models. In contrast, the proposed method gener-

ates goal models with greater width and less depth, similar to the structure of the ground

truth. The nature of user reviews influences this structural characteristic. Most reviewers

use brief statements to express their requirements rather than providing systematic ex-

planations, producing goal models with little depth. Additionally, independent reviews

usually have no clear connection, and their app usage contexts differ, leading to diverse

requirements that cover various aspects of the app, contributing to the generated goal

models’ greater width. The LDA topic model used in the proposed method effectively

captures this diversity of requirements by categorizing reviews describing different re-

quirements into separate topics, which are treated as sub-goals of the same goal. Given

the diversity of requirements, the number of sub-goals is higher, resulting in a goal model

with greater width.

Regarding the generated models’ accuracy, the goal model generated using the pro-
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posed method demonstrates superior performance in precision and recall when compared

to the existing method. In the goal model generated by the existing method, the low clus-

tering accuracy causes reviews that describe the same requirement to be scattered across

multiple goals. When a large number of reviews pertain to a particular requirement, these

dispersed reviews may still dominate the content of a goal. This situation makes it chal-

lenging for less frequently mentioned requirements to be adequately captured by a goal.

As such, multiple goals ultimately describe the same requirement in models generated by

the existing method, which significantly diminishes the goal model’s overall accuracy.

The existing method’s unsatisfactory performance is primarily attributed to the inher-

ent complexities of user reviews, which are diverse, covering a wide array of topics such

as product functionality, user experience, and customer service. This necessitates lan-

guage models that can handle diverse topics and vocabularies. Reviews are typically un-

structured, lacking a consistent format or template, which means language models must

decipher information and intentions in these unformatted texts. Furthermore, reviews

often feature colloquial language, including slang, abbreviations, and emoticons, all of

which require language models to adeptly interpret casual expressions and informal lan-

guage. Emotions like satisfaction, frustration, or excitement are commonly expressed in

reviews, making it essential for language models to understand these emotional cues to

evaluate user attitudes and prioritize their requirements. Additionally, user reviews may

contain spelling errors, grammar mistakes, or unconventional language, challenging lan-

guage models to either correct these issues or comprehend the intended meaning through

context. Finally, the brevity of some reviews, which can succinctly convey complex needs

or issues with just a few words, demands that language models make precise inferences

from minimal data. These factors contribute to the challenges faced by language models in

effectively extracting requirements, causing the existing method’s perceived inadequacy.

Additionally, the existing method relies on the distance-based clustering method, namely,
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Ward’s method, which converts reviews into vectors and measures the similarity of re-

views through vector distance. However, as emphasized by Peter et al. [14], vector simi-

larity does not always indicate similarity to the requirements expressed in reviews. Even

if reviews share the same keywords, it does not mean they share the same requirements.

For instance, consider the following:

• Thanks to the app’s automatic translation feature, I can communicate with people

from other countries.

• Why am I unable to log in when I travel to other countries?

Despite both sentences referencing "other countries" and being clustered together, they

represent distinct requirements. This situation can result in decreased clustering accuracy

and pose challenges in generating precise goal models. In comparison, GPT-4 can accu-

rately identify the requirements within user reviews. Thanks to its extensive pre-training

on various text datasets, including web pages, books, and articles, it has been exposed to a

vast array of language patterns, styles, and topics. This exposure enables it to understand

complex content, including slang, domain-specific terminology, and the unconventional

expressions often found in user reviews. GPT-4 interprets the underlying intentions and

information from complex user reviews, allowing it to generate precise goal models even

when faced with incomplete or non-standard user reviews.

The proposed method is designed to extract requirements from reviews. Other types of

data, such as requirement documents, have different characteristics from reviews, making

the goal models generated using this proposed method potentially less effective. Require-

ment documents are typically fewer in number but describe more complex and systematic

requirements. This makes methods designed for handling large volumes of reviews, such

as LDA or distance-based clustering, unsuitable. Additionally, the LLM-based method

is constrained by token limitations, making it challenging to fully describe all require-
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ments. Therefore, using non-review data to generate goal models often fails to accurately

represent the requirements contained within.

Although this study has offered some new insights, the limitations of the proposed

methods must be acknowledged. One of the limitations is the difficulty in extracting

all requirements. Some reviews describe multiple requirements. In such cases, the pro-

posed method can extract only one requirement, leaving the others unextracted. These

additional requirements can only be extracted from other reviews. To address this issue,

future considerations include dividing reviews into sentences during preprocessing and

using sentences as input. By splitting reviews into sentences, the requirements can be

extracted from each sentence more accurately, thereby enhancing the accuracy of require-

ment extraction. This approach aims to handle reviews that contain multiple requirements

appropriately.

The goal model generated by the proposed method does not represent a full range of

logical relationships between goals. For example, the sub-goals under the same parent

goal are only connected by AND relationships, meaning the parent goal is considered

fulfilled only when all sub-goals are completed. However, in goal models used in actual

development, the relationships between sub-goals include not just AND but also OR. De-

velopment specifications systematically describe the relationships between goals, clearly

defining which are mandatory and which are optional. In contrast, the goals in the model

generated by the proposed method are derived from user reviews. Individual users each

believe their particular requirements should be included, making it difficult to determine

the relationships between goals.

Issues common to LLMs emerge when using GPT-4 to generate goal models. For

instance, due to LLM’s varying randomness, caused by the temperature settings and ran-

dom sampling strategies, the results of classifying user reviews may differ significantly.

Each processing of the same reviews yields different goals in terms of quantity and con-
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tent. Sometimes, the LLM categorizes reviews based on user sentiment rather than actual

requirements, which affects the accuracy of the generated models. To obtain precise goal

models, it often requires multiple generations and manual verification thus, complicating

automation.

Token limitation is a common constraint in LLMs due to their architecture and compu-

tational demands, restricting the number of tokens (words, punctuation marks, or subword

units) the model can handle simultaneously. This limitation affects the length of input and

output; if the combined number of tokens exceeds the model’s maximum capacity, the in-

put will be truncated, or the output may be incomplete. For GPT-4, processing more than

100 reviews at a time is generally unfeasible. To address this issue, LDA and cluster-

ing methods are initially used to categorize reviews into topics and clusters, reducing the

burden on GPT-4 by limiting the number of reviews processed together.

Given these limitations, further improvements and adaptations are necessary to realize

the potential fully of using LLMs in review analysis. Beyond improving the LLMs or how

they are applied, refining the goal model interactively is a realistic solution. For this, an

interactive goal modeling tool [45] and an editor [60] have been developed. Combining

LLM-based elicitation and interactive tools can reduce the burden of analysis and improve

the goal model’s precision.

I now address the threats to the validity of the evaluation results. The ground truth

for this study was generated by a single researcher manually checking all the reviews and

extracting the requirements. Since the reviewers are not professionals and their descrip-

tions of requirements may be imprecise, different individuals may have extracted slightly

different requirements. Consequently, the created goal model, as the ground truth, may

differ if constructed by another researcher. Furthermore, due to the LLM method’s inher-

ent randomness, there are limitations in the proposed method’s reproducibility.
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RELATED WORK

Requirements engineering assumes a pivotal role in the domain of software develop-

ment, as underscored by Bourque et al. [7]. Many studies, e.g., [2, 4, 11, 14, 19, 20, 35]

have leveraged natural language processing and sentiment analysis techniques to extract

user requirements from reviews. However, they have not focused on the relationships

between requirements. For instance, Licorish et al. focus on identifying key attributes

contributing to the success of an application, rather than analyzing how these attributes

are interrelated [35]. Gao et al.’s two studies emphasize identifying patterns and trends

in user reviews and assessing the quality of reviews to extract requirements but do not

delve into the hierarchical or interdependent relationships among requirements [19, 20].

Dkabrowski et al. highlight the extraction of information from user feedback to sup-

port software maintenance and evolution but do not explore how requirements interact

to drive system improvements [11]. Astegher et al. propose a framework that integrates

user feedback into requirements engineering, primarily focusing on requirement elicita-

tion and prioritization, without addressing the logical relationships or the construction

of sub-goals [2]. Bettenburg et al. define the characteristics of good bug reports, yet

these characteristics are not directly linked to the upstream or downstream relationships
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of requirements [4]. Devine et al.’s social media mining framework provides a new per-

spective for requirement elicitation but does not consider how requirements collectively

form a coherent goal structure [14]. Therefore, while these studies concentrate on re-

quirement extraction and classification, they lack systematic modeling and analysis of the

relationships between requirements.

Studies [23, 24, 29, 46, 52] employed similar clustering techniques, but their research

subjects were not user reviews. Instead, they focused on software artifacts, such as

code snippets, design documents, and development-related communication. For instance,

Iqbal et al. focused on clustering software artifacts to aid in software maintenance and

reuse [29]. Guzman et al. explored emotions and useful information in software reposi-

tories, such as developer communications in issues and pull requests [23, 24]. Robeer et

al. applied clustering techniques to software requirements documents [52], while Ni et al.

introduced a tool for clustering software artifacts to improve code reuse [46]. Unlike soft-

ware artifacts dealt with in these studies, which aimed to enhance software development

processes, user reviews often contain informal, varied, and unstructured content, posing

unique challenges for clustering and requirement extraction.

Many researchers have evaluated existing review analysis methods. Maalej and Nabil [39]

present a spectrum of techniques for categorizing application reviews into four distinct

types. These techniques have been methodically evaluated through experiments to as-

certain their accuracy. Notably, the Naive Bayes classifier emerged as the most effective

technique among these machine learning methods. In a related fashion, Dkabrowski et

al. [12] compare three opinion mining methods: GuMa [25], SAFE [31], and ReUS [17].

They conducted two empirical studies to evaluate the performance of these methods. The

first study focuses on opinion-mining methods aimed at extracting features and identify-

ing associated sentiments from app reviews, while the second concentrates on searching

for user feedback related to specific features. The results show that the actual effectiveness
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of these methods was lower than initially reported, raising concerns about their practical

use. It must be emphasized that the aforementioned studies primarily concern review

analysis, and not goal model identification.

Notably, several researchers believe that LLMs could potentially revolutionize exist-

ing software development practices. This has led to numerous methods being proposed

that leverage LLMs for software modeling. Nakagawa and Honiden [44] introduce a semi-

automated process for goal model generation that employs generative AI founded on the

MAPEK loop mechanism. Their two case studies demonstrate that this process, based

on the MAPEK loop mechanism, is efficacious in goal model construction without omit-

ting any goal descriptions. Additionally, Cámara et al. [8] comprehensively investigate

ChatGPT’s performance and utility in modeling tasks, while simultaneously identifying

its principal limitations. Their research findings underscore that the current iteration of

ChatGPT exhibits limited efficacy in software modeling, especially when compared to

its code-generation capabilities. It exhibits variegated syntax and semantic defects, lacks

response consistency, and faces scalability challenges. Ding and Ito [16] introduce a

Self-Agreement framework, where the model generates multiple opinions. They employ

another model to evaluate the consistency among these opinions, ultimately selecting the

candidate with the highest agreement score. This method fine-tunes a pre-trained LLM

using a dataset of question-opinion-agreement pairs, demonstrating that the model can

effectively identify and achieve agreement among diverse opinions without relying on

human-annotated data. Their experimental results show that the fine-tuned model, despite

having significantly fewer parameters than existing large models, achieves comparable

performance, highlighting the effectiveness and innovation of this approach in automat-

ing the discovery of opinion agreement. Their research focuses on finding consensus

among diverse opinions, whereas this dissertation centers on analyzing the consistency of

reviews and generating goal models.
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CHAPTER 10

CONCLUSION

10.1 Conclusion

This dissertation presents a method for generating goal models using user reviews.

The proposed method comprises three components: the LDA topic model, the distance-

based clustering method, and the large language model (LLM) method. Depending on

the volume of user reviews, the method dynamically selects one of these components to

generate the goal model.

Since LDA is suited for processing large volumes of reviews, the proposed approach

uses it to generate the root goal and its close subgoals. Since LDA’s precision may decline

as the number of reviews increases, the distance-based clustering method is applied next.

When dealing with even fewer reviews, the LLM-based method is utilized, enabling a

more nuanced analysis of reviews.

The experimental results demonstrated that the proposed method improves accuracy

compared to the existing method. Additionally, it effectively extracts requirements from

a large number of reviews and visualizes these requirements by generating goal models.

This is achieved by dynamically selecting the three methods, as shown in the experimental
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results.

The proposed method entails using an LLM-based method for obtaining goal descrip-

tions from user reviews. The experimental results indicate that the method can produce

goal descriptions that are easy to understand by effectively extracting requirements from

user reviews.

10.2 Future Work

There are four potential future research directions for improving the proposed method;

One and two focus on extending the method’s capabilities, thus enhancing its functional-

ity while three and four emphasize exploring broader contexts for applying the method,

aiming to expand its utility in diverse scenarios.

Extending the proposed approach to capture more complex goal relationships: The

proposed method identifies basic goal relationships but does not comprehensively address

complex interactions such as dependencies, conflicts, and logical connections (e.g., and/or

relationships). To enhance the expressiveness and practicality of the goal models, future

research could explore the use of LLM techniques or customized prompts to identify these

relationships. By detecting and representing these elements, the resulting goal models

could better reflect requirements and provide developers with a more robust framework

for decision-making and implementation.

Incorporating sentiment analysis to prioritize goals based on review ratings and the

number of reviewers: Future research could enhance the proposed method by integrating

sentiment analysis to prioritize goals in the generated goal model. By analyzing the re-

view scores and considering the number of reviewers, priority levels could be assigned to

goals to reflect user sentiment and requirements. This prioritization would help develop-

ers focus on the most critical or widely requested features, improving the goal model’s
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practicality.

Extending the proposed approach to analyze requirement documents for automatic

goal model generation: The current method focuses on generating goal models from user

reviews, representing user requirements. Future research could extend this approach to

include analyzing requirement documents and enabling automatic goal model generation

from more formalized inputs. This extension would increase the method’s flexibility and

applicability across various stages of the software development lifecycle, from initial re-

quirements gathering to iterative refinement.

Comparing goal models of similar apps to identify factors contributing to their pop-

ularity: Future research could involve generating and comparing goal models for similar

apps to analyze the factors contributing to their popularity. This approach could reveal

insights into user preferences and competitive advantages by examining the differences in

identified goals, features, and priorities. Such comparisons could help developers under-

stand which features or goals resonate more with users, providing valuable guidance for

strategic improvements and feature prioritization.
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