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1. Introduction

Let G be a finite group and Θ be a complete discrete valuation ring, with the
maximal ideal (π) and residue field k = Θ /(π) of characteristic/?>0. R will be used
to denote either Θ or k. Let Θ be a connected component of the stable

Auslander-Reiten quiver ΓS(RG) of the group algebra RG and set V(&) = {vx(M)\M
is an indecomposable RG-modu\e in Θ}, where vx(M) denotes the vertex of M. Due
to Kawata ([4, Proposition 3.2]), we know that there is a minimal element Q in

F(Θ) with respect to the partial order <G which is uniquely determined up to
G-conjugation. We call Q a vertex of Θ.

Let N=NG(Q) and / be the Green correspondence with respect to
(G, Q,N). Choose an indecomposable RG-modu\e M0 in Θ with Q as its vertex. Let
Δ be the connected component of ΓS(RN) containing/M0 = L0. In the case R=k,
Kawata has shown the following theorem, which extends the Green correspondence,

in his paper [4]:

There is a graph monomorphism from Θ to Δ which preserves edge-multiplicity

and direction.

The purpose of this note is to ensure that the above result also holds for

0G-lattices (i.e., finitely generated $-free (PG-modules). The important tools used
here can be found in [4], indeed the whole argument in [4] is also valid for (PG-lattices
with some modifications. In this note, we shall provide a slightly simple proof
by examining the middle terms of Auslander-Reiten sequences (see Theorem 2.5

and Corollary 2.6 below). Our approach is valid for both ΘG and kG, and will

make it clearer that Kawata's graph morphism is an extension of the Green

correspondence. The graph morphism stated above is not always isomorphic. In

Section 3, we shall give an example of (PG-lattices such that the graph morphism

is actually not isomorphism on the component containing them.

The notation is almost standard. We shall work over the group ring RG. All

the modules considered here are finitely generated free over R. We write W\W
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for ^G-modules W and W, if W is a direct summand of W. For an indecomposable
non-projective RG-module M, we denote by s/(M) the Auslander-Reiten (abbreviated
to AR-) sequence terminating at M. Concerning some basic facts and terminologies
used here, we refer to [1], [6] and [7], for example.

The authors would like to thank Professor T. Okuyama and Doctor S. Kawata
for their helpful advice.

2. The middle terms of AR-sequences

For later use, we shall exhibit some results on the AR-sequences for ΛG-modules,
which are well-known or proved in [4] for fcG-modules. We can easily see that
they are also valid for 0G-lattices.

Lemma 2.1 ([4, Lemma 2.3]). Let M be an indecomposable non-projective
RG-module and H be a subgroup of G. Then the restricted exact sequence s0(M)H

does not split if and only if vx(M) < GH.

Lemma 2.2 ([4, Lemma 2.4]). Let H be a subgroup of G. Let M and L
be indecomposable non-projective modules for G and H respectively. Assume that
L is a dirct summand of LG

H with multiplicity one, and that M is a direct summand
of LG such that L\MH. Then <tf(L)G~<tf(M)®£, where S is a split sequence.

Let H and K be subgroups of G. By a direct computation, we can see that
the Mackey decomposition theorem holds for short exact sequnces. Let φ:

Λ β

0->Λ-»j ί?->C->Obean exact sequnce of 7?//-modules. Then the exact sequnce

φ°κ of ΛΛΓ-modules have the following form:

Θ {0 -> (A^κ)
κ * (B<H^K)K * (Q.n*f -> 0},

teH\G/K

where α, and βt denote ΛΛMiomomorphisms aG^ = resκ°ίndjfo)) and βG

κ, restricted
to the appropriate submodules, respectively. For short exact sequences, we shall

also use the notation φG

κ-®teH\G/κ(φH*nκ)K In particular, φ\φG

H holds as
/^//-sequences.

Lemma 2.3 (see [4, Lemma 2.5]). Let Pbea non-trivial p-subgroup ofG. Let
L be an indecomposable non-projective module for NG(P). Assume that P < No(P)vx(L).
The following hold.

(1) j^(L)G

NG(P)~j/(L)φ<ί, where £ is a P-split sequence.

(2) Assume further that j/(L)G^j3/(M)φ^r, where M is an indecomposable



AUSLANDER-REITEN QUIVERS FOR INTEGRAL GROUP RINGS 485

non-projective RG-module and $' is a split sequence. Then
where $" is a P-split sequence.

Proof. (1) For simplicity, put N=NG(P) and sf = d(L\ By the Mackey

decomposition, ^G

N^^®{®^j^G,K^J^^Y}' We shall show that (^ΌN)"
is a P-split sequence for tφN. Again, by the Mackey decomposition, (d^tnί^p —

®ge(N*nN)\N/p(^N**nNnp)P' T^US, for OUΓ pUΓpOSC, it IS βttOUgh tO Show that -fi/knNnp

splits for tφN. If this sequence does not split, we have that P^^v^Z/)^^
(TVnWnP), by the assumption and Lemma 2.1. So, P=P\ but this contradicts
the choices of t.

(2) By (1) and Krull-Schmidt theorem for the category of morphisms.

As we have mentioned in the introduction, every connected component of
ΓS(RG) has a vertex. More precisely, the following holds.

Lemma 2.4 ([4, Lemma 3.1]). Let Ξ be a connected subgraph of
YS(RG). Take any Qe F(Ξ) with the smallest order among those p-subgroups in
F(Ξ). Then for any indecomposable RG-module MeΞ, MQ has an indecomposable
direct summand whose vertex is Q.

Now we return to the situation in the introduction. Let Q be a vertex of
Θ, put N=NG(Q). Let A be a subquiver of A consisting of L0=/M0 and all the
&/V-modules L in A with the property: There exist /W-modules L&L^L2,'-,Lm = L
such that Ln and Ln + 1 are connected by an irreducible map for all n with 0 < n < m — 1

and Q<Gvχ(Ln) for all n.

REMARK ([4, Lemma 4.1]). For any indecomposable 7W-module L in A,

Q<vx(L) holds by Lemma 2.4.

We shall show that Θ~Λ as graphs. Theorem 2.5 below is essential.

Let 3E be the set of all /7-subgroups of N whose orders are smaller than \Q\. Let

L be an indecomposable Λ/V-module in A, and M be an indecomposable PG-module
in Θ. Assume that L and M satisfy the following two conditions:

(1) LG~M®W, where W is a X-projective PG-module.

(2) MN~L@Z, where ZQ is a 3E-projective Pg-module.

Now we examine the relation of the middle terms of jaf(L) and j/(M). Let F be
the set of all indecomposable direct summands of the middle term of <s/(L) whose
vertices contain (a G-conjugation of) Q. Let X be the set of all indecomposable
direct summands of the middle term of j/(M). Then the modules in F and X inherit

the above conditions (1) and (2). More presisely, the following holds:
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Theorem 2.5. Use the above notations. For each F feF, (Yjf has a unique

indecomposable direct summand, say Xi = Ψ(Yi)9 such that Q<Gvx(^i)- The map Ψ
gives a bijection from Y to X satisfying the following two conditions:

(Γ) (Yjp^XiΦUi, where U{ is a £-projective RG-module.

(2') (X^^Yl®Vi, where (Vt)Q is a %-projective RQ-module.

Moreover, Xt ~ Xj holds if and only if F< ~ Yj holds, when Ψ( F<) = Xt and Ψ( Yj) = Xj.

Proof. Let Ft be an element of F. First, we prove that (Yt)
G

N^ F,-0 F/, where
(F/)Q is 3E-projective. In particular, F^F^ with multiplicity one by Lemma
2.4. By the conditions (1) and (2), LG

N~L®L', where (L')Q is S-projective. Let
F be the middle term of j/(L). By Lemma 2.3, Y°N~Y®Y'9 where Y is the
middle term of a β-split sequence terminating at L'. Thus, (Y )Q\(L'®τ(L'))Q and
(F/)β is 3E-projective, where τ denotes the Auslander-Reiten translation.

Next we prove that (Ff)
G has a unique indecomposable direct summand whose

vertex contains Q. By Lemma 2.2, j2/(L)G~j/(M)0(ί, where $ is a split sequence
termination at W. So, YG~X®(X-projective RG-modules\ where Jf is the middle
term of j/(M). Let Fr be an indecomposable direct summand of F. If (F,)G and
X have the same indecomposable direct summand, then Q<Gvx(Yt). So, if
YtφY9 (F,)G is £-projective. On the other hand, for YteY9 (Ff)

G has a unique
indecomposable direct summand, say Xi9 satisfying F KΛ^)^, because Ff|(Ff)

G

N with

multiplicity one. Moreover, the condition Y^X^ implies that Q<G

vx(^i) and
Xt e X. Now we have to show the uniqueness of X{. Let X{ be an indecomposable
summand of ( Ff)

G such that Q < Gvx(X'i). Because X(\( Yt)
G

9 we have that (X[)N\ Yt 0 F/

and (XDQ\(Yi®Yί)Q. We know that (Y )Q is ΐ-projective, and that (AΓ/)Q and
(Ff)Q have indecomposable direct summands whose vertices are Q by Lemma
2.4. This implies that YA(X!)N and JT/^Λ^.

Thus, for any F fe F, we have that (Y?f^Xi®(X-projective RG-modules\ where
XieXy and that ©Σ(Fί)

Gc±Arφ(3E-/7rc|/^cί/ve RG-modules\ where the left-side sum
runs over all Yi e Y. Moreover, (Xι)N^ Yi®(some direct summands of F/). Hence,
the correspondence Ψ: Ff -*• Xt gives a bijective mapping from F to A" and we
see that (Γ) and (2') hold. The last statement of the theorem is straightforward
by (10 and (2').

REMARK FOR THEOREM 2.5. Assume that L e A and Me Θ satisfy the conditions

(1) and (2). Then the middle terms of j*(τ~l(L)) and st(τ~l(M)) have also the
properties which are satisfied by j/(L) and s#(M) in the above theorem.

Corollary 2.6 ([4, Theorem 4.6]). For any RN -module LeΛ,LG has a unique
indecomposable direct summand M such that Q < Gvx(M). The correspondence L — * M
gives rise to a graph isomorphism from Λ to Θ, which preserves edge-multiplicity and
direction. And the corresponding modules satisfy the conditions (1) and (2).
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Proof. First, we recall that (L0)
G has a unique indecomposable direct summand

MO such that Q<Gvx(M0\ and that L0 and M0 satisfy (1) and (2). By successive
use of Theorem 2.5 and its remark, the proof will be done.

3. An Example

As we have seen in Corollary 2.6, there is a graph monomorphism from Θ to
Δ. But this morphism is not always isomorphic (i.e., The case A £ Δ may
occur). In this section, we shall provide an example of this type. (See Example 3.12.)

Throughout this seciton, we assume that/? = 2, Θ is of rank one (i.e., (n)=(p))
and has all the 3rd root of unity, and that P and V denote the cyclic group of
order 2 and the Klein four group respectively, unless otherwise specified. Set
G=2I5 x Λ W=214 x P and Q= Vx P, where 2In is the alternating group of degree
n. G and TV have the common Sylow 2-subgroup Q and N=NG(Q).

Let M be an (not necessarily indecomposable) 0G-lattice. By abuse of the
notations, we use the symbol ΓS(M) to denote the union of all the connected
components of which contain some direct summand of M. (If M is indecomposable,
ΓS(M) is just the connected component of ΓS((9G) which contains M.) The map
from the connected component Θ of ΓS(ΘP

G) to Δ of ΓS(ΘP

N), in the notations (3.6)
and (3.7) below, is a desired one. (Example 3.12.) We proceed in several steps to
achieve our purpose.

Step 1. In this step, p is an arbitrary prime and we do not assume
(n) = (p). Let G be a /?-group and P be a non-trivial normal subgroup of G.

Following [9, §6], we construct the AR-sequence terminating at ΘP

G~PΘG,

where P = ΣxePxeΦG. Let Έή3ΘG((9P

G) be the sublattice of EndGG(0P

G) consisting of
all homomorphisms which factor through some projective (PG-lattice. Put

EndeG(φG} = EndGG(ΘP

G) / ΈndeG(Gf). Since the ΘG-map ΘG -> PθG -> 0 (1 h-> P) is a

projective cover of PΘG, we have that EndΦG(ΘP

G)^Θ(G/ P), Ett^G(0P

G) ~ {/e
End,G(PΘG)\f(P)e\P\PΘG}^\P\Θ(G/P) and EndΦG(0G)^(V/\P\&)(G/P). End,G

(ΘP

G)(~Ext^Ω(ΦpG)9ΘpG)) has the simple socle. Put p = \P\π-G

ί

IPeEnd(!)G(Cθp

G)-

En3f)G((9P

G). Then p + ~EnάeG((9p} is a generator of the simple socle of EndGG(ΘG\
Thus, we can obtain the AR-sequence jtf(ΘP

G) as a pull-back diagram of a
projective cover of &P

G along p, that is,

)-» M ->

(3.1) II 1 P.B.
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where the first row is ^(&P

G) and the second one is a projective cover of @P

G

For the middle term M of jtf(&P

G)9 the following holds.

Proposition 3.2.

(1) M is indecomposable.

(2) vX(M)=

G, otherwise

Proof. (1) Write M=(|P|π-1ΣαepyGβ,P)(PG + ΣJC6p(Λ:-l,0)(PG c GG®PΘG.

First, we prove that Ω((PP

G) = {meM|mJP=0}. Put X={meM\mP=Q}. It is clear

that Ω(0P

G)c: JT. Take an element w = (|/>|π~1ΣαeP\G0,JP)α + β of A"(c M), where

ocG&G and /JeΣX6p(;c-l,0)0(j. The equation mP = Q implies that |P|Pα = 0, so,

Pα = 0. Hence, we have that weΩ(0P

G) by the definition of M.

Next, we shall prove that M is indecomposable. Take any idempotent

/e EndeG(M) and fix it. Then / induces idempotents g and A of EndeG(X) and

EndeG(ΘP

G) respectively, which satisfy the following commutative diagram with two

j/(0pσ)'s as its rows;

(3.3) n i/ ιΛ

(φ2): Q-+X-+M->0P

G->Q(

Then g and h are 0 or 1 by the indecomposability of X and 0P

G. Note that

neither the case g= 1 and /z = 0 nor g = 0 and h = 1 happens; otherwise the sequence

(<pl) or (φ2) splits. If g = A = 0, then /(M) c JT and /(M)=/2(M) c/(JQ = 0, so,

/=0. If ̂  = A = 1, we have/= 1 by the five lemma. Now, the proof of (1) is done.

(2) We prepare the following claim;

Let β be a subgroup of G which contains P. If M is β-projective, then Q — G.

Proof of the claim. We proceed by induction on |G:<2|, so we may assume

Q<\G and \G:Q\=p or 1. To derive a contradiction, we assume that Q^G. By

[9, Proposition 4.10] and [3, Proposition 7.9 (ii)] for 0G-lattices (we can verify that

the latter proposition holds for ^G-lattices by considering 0-length instead of

^-dimension), we have

7-l) non-zero split sequences).

By the mackey decomposition, MQ\SG

Q = ®geQ\GS
9, where S is a β-source of M. On
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the other hand, (&P

G)Q^\G: Q\&P

Q. But this contradicts that ^(&P

G)Q has non-zero
split part. Now the proof of the claim is complete.

We return to the proof of (2). It is well-known that either P<vx(M) or

vx(M)^P occurs [2, (2.3) Lemma]. Thanks to the above claim, we know that

the first case implies that vx(M) = G. To examine the second case, let's consider

the diagram (3.1) modulo (π). Recall that PΘG^ΘP

G. If \P\n~ -1 is not a unit of

0, the induced kG-map ρ:PkG^PkG is the zero map. So M~X®PkG and

P=vx(PkG)<vx(M). Thus \P\π~l must be a unit of Θ. This fact yields that

\P\—p,(π) = (p) and vx(M)=\. Moreover, we have P = G by making use of our

claim. Indeed, if \G\=p and (π) = (p), the map p in (3.1) is just an identity map

and a project! ve cover of ΦP

G is already jtf((9P

G). Now, the proof of (2) is done.

In the rest of this section, let p = 2 and (π) = (2), P denote the cyclic group

of order 2.

Step 2. In this step, set G=VxP.

Let j^(0pG):O^Ω(<PP

G)^M^$p

G_>0 be the AR-sequence terminating at

(PP

G. By Proposition 3.2, we know that M is indecomposable and vx(M) = G. Let

Δ0 be the connected component of Γ^((9P

G). Then Δ0c±Zy400/(2) since &P

G is

periodic with period 2 (see [1, (2.31.6) and (2.31.11)], for example). And (PP

G lies

at the end of Δ0 by the indecomposability of M. Moreover, we have

Proposition 3.4. Apart from ΘP

G and Ω($pG), all the indecomposable ΘG-laίtices

in Δ0 have G as their vertices.

Proof. By the shape of Δ0, we know that s#(M) has the form;

0 -> Ω(M) -> Ω(0pG)® S -» M -> 0,

where S is an indecomposable (PC-lattice.

First we shall prove that vx(S) = G. It is clear that vx(S) > P by Lemma 2.4. It

is well-known, or follows by applying Proposition 3.2 (1), (2) to OP, that ΦP has

three isomorphism classes of indecomposable 0P-lattices, that is, {&P9Ω((9P),ΦP}. If

VX(S ) = P, then the P-source of S must be ΦP or Ω(0P), so, S = ΘP

G or S = Ω(ΘP

G). But

this is impossible. Hence, vx(S)^P.

Put / = (123)x lPe2I4xP. Then, t acts on G by conjugation. So, / acts on

the set of (PG-lattices. By the successive use of the uniqueness of AR-sequence,

we have that (ΘfJ^O^, Kf~M and finally S*~S. Since vx(S) is /-invariant and

vx(S) ^ P, we get vx(S) = G as desired. For all the other indecomposable ^G-lattices

in Δ0, we can ensure that their vertices equal G by a way to similar to that for S.
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From now on, we need the assumption that ΰ has all the 3rd root of unity.

Step 3. In this step, set G=2l 4xP and Q=VxP.

Note that Q is a normal Sylow 2-subgrouρ of G and 0P

G~0?I4 holds. We
shall examine the connected components of ΓS(ΘP

G) by making use of the results
of Step 2. ΘP

G has just three isomorphism classes of primitive idempotents, say
ej,eγ and e2. (9P

G ^PΘG = eJPΘG®elP(9G®e2POG holds tfG-lattices.
For each primitive idempotent ee{eI,eΐ,e2}, the 0G-map e@G-*ePΘG^>Q

(e\-+eP) is a projective cover of ePΘG and the ΘG-map ePΘG^ePCG (e\-+eV)
gives a generator of the simple socle of EndGG(ePΘG) modulo projectives. Then
the following holds.

Proposition 3.5. The connected component of Γs(eP&G), say Δ, is isomorphic
to that ofYs(PΘQ\ In other words, k~ZA^/(2). Moreover, apart from ePΦG
and Ω(eP&G), all the ΘG-lattices in Δ has Q as their vertices.

Proof. It is easy to see that (ePΘG)Q ~PΘQ and (PΦQ)G ~ &P

G. So, vx(ePOG) = GP
and ePOG has period 2. Moreover, ttf(ePΘG)Q~<tf(P&Q) holds, by [9, Proposition
4.10] and that Q is a normal Sylow 2-subgroup of G. Therefore, the middle term
of ja/(d%G), say L, is indecomposable, vx(L) = GQ and ePΘG lies at the end of Δ.

Using this argument repeatedly, we can show that the restriction of the
AR-sequence of each module in Δ to Q is still an AR-sequence, and consequently,
we have a vertex preserving isomorphism Δ~Δ0 by restricting the modules in Δ
to Q. Now the proof is complete by Proposition 3.4.

Step 4. In this step, set G = 2I5 xP,N=M4xP and Q=VxP.

Note that Q is a common Sylow 2-subgroup of G and N, and N=NG(Q). For
simplicity we put Q^efΦN ίov /=/, 1,2. In Proposition 3.5, we have determined
the connected component Δ(~Zv400/(2)) which contains Qv as the following;

Qί 4- L <— L^ <- L2

(3.6) Δ: \ \ \

+- Ω(L) «-

where vx(Q1) = P,vx(L) = Q and vx(L^ = Q for ι'=l,2, .
Let M be the Green correspondent of L with respect to (G,β,7V) and Θ be

the connected component which contains M. M has period 2, so Θ^Zy400/(2).
The rest of this section is devoted to proving that Θ has the following form;
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M<- M! ^ M2 4- M3 4- ......

(3.7) Θ: \ \ \

Ω(M) «- Ω(MO 4- Ω(M2) <--..,

where M{ is the Green correspondent of L{ for /= 1,2, , and all the indecomposable
$G-lattices in Θ have Q as their vertices.

Kawata's result ([5, Theorem]) guarantees that j/(M,) has the form just as in
(3.7) for ι'=l,2, . (Kawata's theorem in [5] is valid for (PC-lattices.) So, for our
purpose, it is enough to prove:

Proposition 3.8. The middle term of s/(M ) is just M±.

To derive a contradiction, we assume to the contrary that the middle term
of s#(M) is not indecomposable. Let Ω(C7) be the diret summand of it which is not
Mv By [5, Theorem] and the Green correspondence, vx(U) < P. If vx(U) = 1, there
is nothing to prove, so we may assume that vx(U) = P. The isomorphism classes
of indecomposable (PG-lattices with vertex P are {P/,P1,P2,JP3,Ω(P/),Ω(P1),Ω(P2),
Ω(P3)}, where each Pi is projective as 02I5-lattice and P acts trivially on it, and
they have ranks 12, 8, 8 and 4 in turn for ι = 7,1,2,3. We shall eliminate the
possibility that U might be isomorphic to any of them. Before doing so, we
prepare the following lemma.

Lemma 3.9. The following holds.
(1) There are exact sequences of the forms

(0 0 -» Ω(P2) -» M®X-> P! -> 0 and
(ii) 0 -> Ω(Λ) -> M0 X' -> P2 -» 0,

where X and X' are some P-projective ΦG-lattices. (X and X' may be zero.)

(2) J/(β/)
G^J/(P/)Θ^r(P3)Θ (a split sequece}.

Proof. (1) The proofs for the sequences (i) and (ii) are given in entirely the
same way. Here we refer to sequence (ii) only. Let's consider the diagram induced
to ΦG from the following pull-back diagram of 6W-lattices:

where the first row is jtf(Qι), the second one is a projective cover of Ql and the

map fft: βi -* βi is given by eji-^ejF. Note that the induced diagram is also

a pull-back and (Qι)G =
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We shall examine σG: (βι)G-> (d)G. Following [6, p.77 and p.185] (and
keeping his notations), (PG-lattices 7>

1,7
>

2 and Im(σG) has the following Loewy series;

2, 22

/ 7 22

PI'. 22 , 7*2* 2j , Im(o\)\ I

I I 2i

2ι 22

Thus, we may regard P^ as an injective hull of 7w(σG) as 05I5-lattices. Let
σ<ϊ\p2

: P2 -* ^w(σG) be a projective cover of 7w(σG) as ΘM5-lattices. By composing
suitable isomorphisms to σG, we may assume P2 = P2 by which the diagram is

still pull-back. Therefore, we can conclude that σG: (βι)G ~»(δι)G is the sum of
a projective cover σG\P2: P2 ->7w(σG)(c= PJ as 02I5-lattices and two zero maps
P! -> 0, P3 -»0. On the other hand, the projective cover of Qί is induced
to a direct sum of three projective covers of Pί9 P2 and 7^3. Now, we have that

<^(βι)G-(0 -» Ω(Pj) -̂  M0^ -̂  P2 -+ 0)φ(two split sequences)

and X' is a 7)-projective 0G-lattice, since X'\LG.

(2) Next, we shall induce the pull-back diagram of £#(Qj) to ΘG. Let σl be the

^,/V-map Qj-tQj (ej\-+ejV). Note that (β/)G = 7>

707)

307>

3 and 7m(σ?)^707>

3,
where 7 is the simple socle of T*/. By the same argument as in (1), we have that
σ?' (Qι)G -»(β/)G is the sum of a projective cover κ\ F/-^7(c: P/) as $2I5-lattices,
identity map P3 -> 7*3 and zero map 7>

3 -»0, and that the projective cover of Qr

is induced to a direct sum of three projective covers of Pl9 P3 and P3. Since K

is (left-)annihilated by any non-automorphism in EndΘG(Pj\ κ = κ + ΈήdΦG(Pj)E

Soc(EndgG(PT)) and we have (2). (^(P3) is just a projective cover of 7>3.)

Now, we return to the proof of Proposition 3.8. By the Brauer's third main
theorem and [7, Corollary 3.11 on p.325], U belongs to the principal block of G,
so, we have that UfiP3. If Pl is connected to Af, then Qj and L are connected by
the Green correspondence and Lemma 3.9(2). But this does not happen since Qr

and βj belong to the different components (see Proposition 3.5). So, UfiPj.
Next we shall prove U£PV. We assume by way of contradiction that <tf(Pι) is

of the form;

(3.10) 0 -> Ω(PJ -> MφΩ(7) -> Pl -+ 0,

where Y is an indecomposable ^G-lattice (possibly 7=0). We shall compare two
sequences (3.10) and (3.9) (l)(i). We need to consider the following two cases.
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Case 1. Let 7=0.
Then we have that rankeM=\6 and ^=0 by Lemma 3.9 (l)(i). For

simplicity, put //=315. Recall that Ω(P^π-(pi)H holds for ι = l,2. Since the
restrictions of (3.10) and (3.9)(iχi) to &H split, we have that MH^(Pί)Hφ(Pi)H

and MH~(Pl)H®(P2)H This is a contradiction.

Case 2. Let Γ^O.

Then AVO and M/0. The P-projectivity of X implies that X is
indecomposable and rankφX=%, since the ranks of projective (resp. P-projective)
indecomposable modules which may occur are 24 or 16 (resp. 12 or 8). So, we
have rankΘM=$ and rank0Ω,(Y) = 8. Moreover,

Lemma 3.11.

(1) rank^(M)= 8.

(2)

Proof. First we note that rank^( X) = 8 since X^Pl9P29Ω(P1)9 or Ω(P2).
(1) The tensor product of the sequence (3.9χi)(i) with Ω($) is a direct sum of

0 -> P2 -» Ω(Λf )®Ω(X)®(projectίve) -> Ω^) -> 0 and a split sequence. The argu-
ment over the ranks tells us that the above (projective) = 0 and rank(SΩ,(M) = S.

(2) This follows immediately from jtf(Ω(Pι)) and (1).

Now let the tree class of Θ be ---- Y2-Yί-Y-Pί-M-Mi-M2 ---- .
Let jtf(Y) be 0 -> Ω(F) -> PjLφΩίyOΘ^rcyecί/ve) -> 7-» 0. Since the ranks of

Y,Pί9Ω(Y) and ΩίPJ are 8, we have that (a) (projective) = 0, (i) 0(^)^0 and its
rank is 8, and from J/(Ω(Γ)), (c) rα«fcc,(r1) = 8. Similarly, for ^/(Y^ we
have that (at) its middle term has no projective modules, (b^) Ω(Γ2)τ^O and its
rank is 8, and (cj rank&(Y2) = ̂  since the ranks of Yl9Y9Q(Y^ and Ω(Γ) are
8. This inductive argument can be continued for Yt (i — 2, 3, •). But this contradicts
that Θ has tree class A^.

In both cases, (3.10) gives a contradiction. So we have that Uψ.Pv In the
same way, we have that U^P2, using the sequence (ii) in Lemma 3.9(1).

Finally, it is easy to see that U^Ω(P^ (/=/,!, 2,3) by virtue of the above
argument for P$=/,l,2,3). Hence, such a U does not exist. Now, the proof
of Proposition 3.8 is done and we are ready to exhibit the example that we have
mentioned;

EXAMPLE 3.12. With the above notations. Put M=M0 and L=L0. Let
Λ be the subquiver of Δ obtained by removing Q\ and Ω(Qt) from Δ. Then
Λ^Θ holds by Corollary 2.6. That is, Kawata's morphism from Θ(3.7) to Δ(3.6)
is not isomorphic.
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REMARK. In the case R=k, an example similar to ours has already given
by Okuyama in [8].
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