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1. Introduction

Let G be a finite group and @ be a complete discrete valuation ring, with the
maximal ideal (n) and residue field k= /(rn) of characteristic p>0. R will be used
to denote either ® or k. Let ® be a connected component of the stable
Auslander-Reiten quiver I's(RG) of the group algebra RG and set V(®)={vx(M)|M
is an indecomposable RG-module in ®}, where vx(M) denotes the vertex of M. Due
to Kawata ([4, Proposition 3.2]), we know that there is a minimal element Q in
M(®) with respect to the partial order <, which is uniquely determined up to
G-conjugation. We call Q a vertex of O.

Let N=NgQ) and f be the Green correspondence with respect to
(G,Q,N). Choose an indecomposable RG-module M, in ® with Q as its vertex. Let
A be the connected component of I's(RN) containing fM,=L,. In the case R=k,
Kawata has shown the following theorem, which extends the Green correspondence,
in his paper [4]:

There is a graph monomorphism from ® to A which preserves edge-multiplicity
and direction.

The purpose of this note is to ensure that the above result also holds for
0G-lattices (i.e., finitely generated O-free @G-modules). The important tools used
here can be found in [4], indeed the whole argument in [4] is also valid for @G-lattices
with some modifications. In this note, we shall provide a slightly simple proof
by examining the middle terms of Auslander-Reiten sequences (see Theorem 2.5
and Corollary 2.6 below). Our approach is valid for both OG and kG, and will
make it clearer that Kawata’s graph morphism is an extension of the Green
correspondence. The graph morphism stated above is not always isomorphic. In
Section 3, we shall give an example of (OG-lattices such that the graph morphism
is actually not isomorphism on the component containing them.

The notation is almost standard. We shall work over the group ring RG. All
the modules considered here are finitely generated free over R. We write W|W’
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for RG-modules Wand W', if Wis a direct summand of W’. For an indecomposable
non-projective RG-module M, we denote by «/(M) the Auslander-Reiten (abbreviated
to AR-) sequence terminating at M. Concerning some basic facts and terminologies
used here, we refer to [1], [6] and [7], for example.

The authors would like to thank Professor T. Okuyama and Doctor S. Kawata
for their helpful advice.

2, The middle terms of AR-sequences

For later use, we shall exhibit some results on the AR-sequences for RG-modules,
which are well-known or proved in [4] for kG-modules. We can easily see that
they are also valid for OG-lattices.

Lemma 2.1 ([4, Lemma 2.3]). Let M be an indecomposable non-projective
RG-module and H be a subgroup of G. Then the restricted exact sequence </(M)y
does not split if and only if vx(M)< H.

Lemma 2.2 ([4, Lemma 24]). Let H be a subgroup of G. Let M and L
be indecomposable non-projective modules for G and H respectively. Assume that
L is a dirct summand of LS with multiplicity one, and that M is a direct summand
of L® such that L\My. Then o (L)°~(M)®E, where & is a split sequence.

Let H and K be subgroups of G. By a direct computation, we can see that
the Mackey decomposition theorem holds for short exact sequnces. Let ¢:
a B
0— A4 - B—- C—0 be an exact sequnce of RH-modules. Then the exact sequnce
0% of RK-modules have the following form:

D (0 Uip ) > (Bigen) > (Cher)® 0},
teH\G/K
where «, and f, denote RK-homomorphisms a%/(=res§ o indf(«)) and p%, restricted
to the appropriate submodules, respectively. For short exact sequences, we shall
also use the notation @%@ .mex(@u.x)X. In particular, ¢|p% holds as
RH-sequences.

Lemma 2.3 (see [4, Lemma 2.5]). Let P be a non-trivial p-subgroup of G. Let
L be an indecomposable non-projective module for No(P). Assume that P < y_pvx(L).
The following hold.

(1) A(L)Sgpy= A (L)DE, where & is a P-split sequence.

(2) Assume further that o/(L)°~of(M)DE', where M is an indecomposable
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non-projective RG-module and &' is a split sequence. Then (M) py~ A (L)DE”,
where 8" is a P-split sequence.

Proof. (1) For simplicity, put N=NgP) and &/ =s/(L). By the Mackey
decomposition, %=~ D{® o .en(@yenn)}. We shall show that ()"
is a P-split sequence for t¢ N. Again, by the Mackey decomposition, (. y)"p =~
D genenm WP s nnp)'-  Thus, for our purpose, it is enough to show that o y.p
splits for t¢ N. If this sequence does not split, we have that P'< yvx(L)<y.
(N'n N~ P), by the assumption and Lemma 2.1. So, P=P", but this contradicts
the choices of .

(2) By (1) and Krull-Schmidt theorem for the category of morphisms. [

As we have mentioned in the introduction, every connected component of
I's(RG) has a vertex. More precisely, the following holds.

Lemma 2.4 ([4, Lemma 3.1]). Let E be a connected subgraph of
I's(RG). Take any Qe V(E) with the smallest order among those p-subgroups in
V(B). Then for any indecomposable RG-module M eE, M, has an indecomposable
direct summand whose vertex is Q.

Now we return to the situation in the introduction. Let Q be a vertex of
O, put N=Ng4Q). Let A be a subquiver of A consisting of L,=fM, and all the
RN-modules L in A with the property: There exist RN-modules L,,L,,L,,---,L,,=L
such that L, and L, , are connected by an irreducible map for all n with 0<n<m—1
and Q< vx(L,) for all n.

ReMARK ([4, Lemma 4.1]). For any indecomposable RN-module L in A,
Q0 <vx(L) holds by Lemma 2.4.

We shall show that ® ~A as graphs. Theorem 2.5 below is essential.

Let X be the set of all p-subgroups of N whose orders are smaller than |Q|. Let
L be an indecomposable RN-module in A, and M be an indecomposable RG-module
in ®. Assume that L and M satisfy the following two conditions:

(1) L°~M@W, where W is a X-projective RG-module.
(2) My~L®Z, where Z, is a X-projective RQ-module.

Now we examine the relation of the middle terms of /(L) and o/(M). Let Y be
the set of all indecomposable direct summands of the middle term of /(L) whose
vertices contain (a G-conjugation of) Q. Let X be the set of all indecomposable
direct summands of the middle term of o/(M). Then the modules in ¥ and X inherit
the above conditions (1) and (2). More presisely, the following holds:
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Theorem 2.5. Use the above notations. For each Y;eY, (Y))° has a unique
indecomposable direct summand, say X;=Y(Y)), such that Q<;vx(X)). The map ¥
gives a bijection from Y to X satisfying the following two conditions:

(1) (Y)°~X,@U, where U, is a X-projective RG-module.
(2) (XY, @V, where (V)q is a X-projective RQ-module.
Moreover, X;~ X holds if and only if Y;~ Y holds, when ¥(Y})= X; and ¥(Y)) = X .

Proof. Let Y, be an element of Y. First, we prove that (Y))%,~ Y@ Y/, where
(Y})o is X-projective. In particular, Y|(Y;)% with multiplicity one by Lemma
24. By the conditions (1) and (2), LS ~L@L', where (L), is X-projective. Let
Y be the middle term of «/(L). By Lemma 2.3, Y~ Y®Y’, where Y’ is the
middle term of a Q-split sequence terminating at L. Thus, (Y})ol(L'@1(L"), and
(Y?)g is X-projective, where t denotes the Auslander-Reiten translation.

Next we prove that (¥;)¢ has a unique indecomposable direct summand whose
vertex contains Q. By Lemma 2.2, o/(L)° ~o/(M)@®&, where & is a split sequence
termination at W. So, Y°~X@(X-projective RG-modules), where X is the middle
term of o/(M). Let Y, be an indecomposable direct summand of Y. If (¥,)° and
X have the same indecomposable direct summand, then Q<gvx(Y,). So, if
Y,¢Y, (Y)¢ is X-projective. On the other hand, for Y;eY, (Y)° has a unique
indecomposable direct summand, say X, satisfying Y;|(X;)y, because Y;|(¥;)% with
multiplicity one. Moreover, the condition Y;|(X;)y implies that Q<;vx(X;) and
X;eX. Now we have to show the uniqueness of X;. Let X; be an indecomposable
summand of (¥;)¢ such that Q <gvx(X;). Because X;|(Y;)¢, we have that (X])y| Y;® Y}
and (X))ol(Y;®Y;). We know that (Y;), is X-projective, and that (X7), and
(Y:)o have indecomposable direct summands whose vertices are Q by Lemma
2.4. This implies that Yj|(X{)y and X;~JX;.

Thus, for any Y;e Y, we have that (Y,)¢ ~ X,®(X-projective RG-modules), where
X,eX, and that @Z(Y,)® ~X@(X-projective RG-modules), where the left-side sum
runs over all Y;e Y. Moreover, (X))y=~ Y;®(some direct summands of Y;). Hence,
the correspondence W: Y; - X; gives a bijective mapping from Y to X and we
see that (1) and (2') hold. The last statement of the theorem is straightforward
by (1Y and (2). W

REMARK FOR THEOREM 2.5. Assume that Le A and M € O satisfy the conditions
(1) and (2). Then the middle terms of «/(t~!(L)) and «/(t~!(M)) have also the
properties which are satisfied by /(L) and /(M) in the above theorem.

Corollary 2.6 ([4, Theorem 4.6]). For any RN-module Le A,L¢ has a unique
indecomposable direct summand M such that Q < gvx(M). The correspondence L - M
gives rise to a graph isomorphism from A to ©, which preserves edge-multiplicity and
direction. And the corresponding modules satisfy the conditions (1) and (2).
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Proof. First, we recall that (L)€ has a unique indecomposable direct summand
M, such that Q <gvx(M,), and that L, and M, satisfy (1) and (2). By successive
use of Theorem 2.5 and its remark, the proof will be done. W

3. An Example

As we have seen in Corollary 2.6, there is a graph monomorphism from @ to
A. But this morphism is not always isomorphic (i.e., The case A $ A may
occur). In this section, we shall provide an example of this type. (See Example 3.12.)

Throughout this seciton, we assume that p=2, O is of rank one (i.e., (n)=(p))
and has all the 3rd root of unity, and that P and V denote the cyclic group of
order 2 and the Klein four group respectively, unless otherwise specified. Set
G=U;x P, N=U, x P and Q=V x P, where U, is the alternating group of degree
n. G and N have the common Sylow 2-subgroup Q and N=N4(Q).

Let M be an (not necessarily indecomposable) ¢G-lattice. By abuse of the
notations, we use the symbol I'g(M) to denote the union of all the connected
components of which contain some direct summand of M. (If M is indecomposable,
I'¢(M) is just the connected component of I'g(@G) which contains M.) The map
from the connected component @ of I'g(0,°) to A of I's(®,"), in the notations (3.6)
and (3.7) below, is a desired one. (Example 3.12) We proceed in several steps to
achieve our purpose.

Step 1. In this step, p is an arbitrary prime and we do not assume
(r)=(p). Let G be a p-group and P be a non-trivial normal subgroup of G.
Following [9, §6], we construct the AR-sequence terminating at ¢,°~ P0G,

where P=3__,xe0G. Let Endys(0;°) be the sublattice of End,g(0,°) consisting of
all homomorphisms which factor through some projective (@G-lattice. Put

Endye(0°) = Endyg(05°) | Endog(05°).  Since the 0G-map 0G — POG - 0(1+— P)isa

projective cover of POG, we have that Endyg(0;°)~0(G/P), Endes(0;°)~{fe
Endoo(POG) f(P)e|PIPOG}~|P|O(G | P) and Endo(0p°)=~(0/|PIOXG/P). Endeg
(0:°) ~ Ext(€0;°),0,°)) has the simple socle. Put p=|Pln g€ Endog(OF%)—

End,(0;°). Then p+ Endyg(0,°) is a generator of the simple socle of Endg(O%).
Thus, we can obtain the AR-sequence o/(0p°) as a pull-back diagram of a
projective cover of O,° along p, that is,

0O > M - 0,5-0
(3.1) l | PB.|?
0-QYO%) = 0G - 0,0
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where the first row is &/(0;°) and the second one is a projective cover of ©°.

For the middle term M of &/(0,°), the following holds.
Proposition 3.2.

(1) M is indecomposable.

1, if|G|=p and(n)=(p)

G, otherwise

2) w(M)=

Proof. (1) Write M=(|P|n~ l2,,6,,\c;a,f’) 0G+Z, p(x—1,0)0G c 0G @ POG.
First, we prove that 0,°)={me MmP=0}. Put X={me MmP=0}. It is clear
that Q(0,°) = X. Take an element m=(|P|7r"‘ZaE,,\Ga,f’)a+ B of X(c M), where
®e®G and BeZ p(x—1,000G. The equation mP=0 implies that |P|Pa=0, so,
Pa=0. Hence, we have that meQ(0,°) by the definition of M.

Next, we shall prove that M is indecomposable. Take any idempotent
feEndyg(M) and fix it. Then f induces idempotents g and 4 of End,g(X) and
Endyg(0,°) respectively, which satisfy the following commutative diagram with two
A (0°)s as its rows;

(@1): 05 X 5> M- 0,5 - 0(~=H(0;°)
(33) A N
(©2): 05 X 5> M- 0,5 -0 (~L(0°).

Then g and 4 are 0 or 1 by the indecomposability of X and ¢,°. Note that
neither the case g=1 and A=0 nor g=0 and A=1 happens; otherwise the sequence
(p1) or (¢2) splits. If g=h=0, then f(M) < X and f(M)=f*M) < f(X)=0, so,
f=0. Ifg=h=1,wehavef=1 by the five lemma. Now, the proof of (1) is done.

(2) We prepare the following claim;

Let Q be a subgroup of G which contains P. If M is Q-projective, then 0=G.

Proof of the claim. We proceed by induction on |G: Q|, so we may assume
Q<G and |G:Q|=p or 1. To derive a contradiction, we assume that 0<G. By
[9, Proposition 4.10] and [3, Proposition 7.9 (ii)] for (¢'G-lattices (we can verify that
the latter proposition holds for (G-lattices by considering @-length instead of
k-dimension), we have

A (0%) g~ (0D (p— 1) non-zero split sequences).

By the mackey decomposition, My|S% = @ ,.0,cS% Where S is a Q-source of M. On
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the other hand, (0,%)~|G:Q|0;2. But this contradicts that =/(0,°), has non-zero
split part. Now the proof of the claim is complete.

We return to the proof of (2). It is well-known that either P<vx(M) or
vx(M) P occurs [2, (2.3) Lemma]. Thanks to the above claim, we know that
the first case implies that vx(M)=G. To examine the second case, let’s consider
the diagram (3.1) modulo (n). Recall that POG~0,°. 1If |Plr~"! is not a unit of
0, the induced kG-map j:PkG — PkG is the zero map. So M~X@®PkG and
P=vx(PkG)<vx(M). Thus |Plz~! must be a unit of 0. This fact yields that
|P|=p,(n)=(p) and vx(M)=1. Moreover, we have P=G by making use of our
claim. Indeed, if |G|=p and (n)=(p), the map p in (3.1) is just an identity map
and a projective cover of 07 is already /(0p°). Now, the proof of (2) is done. W

In the rest of this section, let p=2 and (n)=(2), P denote the cyclic group
of order 2.

Step 2. In this step, set G=V x P.

Let (0;°):0 - Q0,5 - M — 0,° -0 be the AR-sequence terminating at
0,°. By Proposition 3.2, we know that M is indecomposable and vx(M)=G. Let
A, be the connected component of I'g(®;°). Then Aog~ZA_/(2) since Op° is
periodic with period 2 (see [1, (2.31.6) and (2.31.11)], for example). And Op° lies
at the end of A, by the indecomposability of M. Moreover, we have

Proposition 3.4.  Apart from O,° and QO°), all the indecomposable OG-lattices
in Ay have G as their vertices.

Proof. By the shape of A,, we know that /(M) has the form;
0- QM) - QUOLYDS > M - 0,

where S is an indecomposable (G-lattice.

First we shall prove that vx(S)=G. Itis clear that vx(S)> P by Lemma 2.4. It
is well-known, or follows by applying Proposition 3.2 (1), (2) to OP, that OP has
three isomorphism classes of indecomposable ¢ P-lattices, that is, {0p,Q(0),OP}. If
vx(S)= P, then the P-source of S must be Op or YOp), s0, S= O or S=QYO°). But
this is impossible. Hence, vx(S)> P.

Put t=(123)x 1,e W, x P. Then, ¢ acts on G by conjugation. So, ¢ acts on
the set of OG-lattices. By the successive use of the uniqueness of AR-sequence,
we have that (0,°) ~0,°, M'~M and finally S'~S. Since vx(S) is t-invariant and
vx(S)z P, we get vx(S)=G as desired. For all the other indecomposable (G-lattices
in A,, we can ensure that their vertices equal G by a way to similar to thatfor S. Wl
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From now on, we need the assumption that @ has all the 3rd root of unity.
Step 3. In this step, set G=W,x P and Q=Vx P.

Note that Q is a normal Sylow 2-subgroup of G and 0,°~(0, holds. We
shall examine the connected components of I's(¢¥p°) by making use of the results
of Step 2. ,° has just three isomorphism classes of primitive idempotents, say
ene, and e,. 0,5 ~POG=e,POG®e, POGDe,POG holds OG-lattices.

For each primitive idempotent ee {eje,,e,}, the OG-map e0G — ePOG - 0
(e—eP) is a projective cover of ePOG and the OG-map ePOG — ePOG (e eV)
gives a generator of the simple socle of @lm(ef’wG) modulo projectives. Then
the following holds.

Proposition 3.5. The connected component of T'(ePOG), say A, is isomorphic
to that of Ts(POQ). In other words, A~ZA_/(2). Moreover, apart from ePOG
and QUePOG), all the OG-lattices in A has Q as their vertices.

Proof. It is easy to see that (ePOG)y~POQ and (POQ)°~0,°. So, vx(ePOG)= ;P
and ePOG has period 2. Moreover, .ﬂ(eﬁCOG)Q:M(f’@Q) holds, by [9, Proposition
4.10] and that Q is a normal Sylow 2-subgroup of G. Therefore, the middle term
of #(ePOG), say L, is indecomposable, vx(L) = ;Q and ePOG lies at the end of A.

Using this argument repeatedly, we can show that the restriction of the
AR-sequence of each module in A to Q is still an AR-sequence, and consequently,
we have a vertex preserving isomorphism A~A, by restricting the modules in A
to Q0. Now the proof is complete by Proposition 3.4. W

Step 4. In this step, set G=WU;x PLN=W, x P and Q=Vx P.

Note that Q is a common Sylow 2-subgroup of G and N, and N=N4(Q). For
simplicity we put Q;=e,PON for i=1,1,2. In Proposition 3.5, we have determined
the connected component A(~ZA /(2)) which contains Q, as the following;

O« L « Ly « L, « o

(3.6) A: N LN LN
AQy) « QAUL) « QL) « -,

where vx(Q,)=P,vx(L)=0Q and vx(L,)=Q for i=1,2,---.
Let M be the Green correspondent of L with respect to (G,Q,N) and ® be
the connected component which contains M. M has period 2, so @~ZA_ /(2).
The rest of this section is devoted to proving that ® has the following form;
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MM, « M, « M; « ...
3.7 Q: LN LN LN
QM) « QM) « QM,) « -

b

where M, is the Green correspondent of L; for i=1,2,---, and all the indecomposable
0G-lattices in ® have Q as their vertices.

Kawata’s result ([5, Theorem]) guarantees that .«/(M,) has the form just as in
(3.7) for i=1,2,---. (Kawata’s theorem in [5] is valid for OG-lattices.) So, for our
purpose, it is enough to prove:

Proposition 3.8. The middle term of /(M) is just M,.

To derive a contradiction, we assume to the contrary that the middle term
of o/(M) is not indecomposable. Let Q(U) be the diret summand of it which is not
M. By[5, Theorem] and the Green correspondence, vx(U)<P. If vx(U)=1, there
is nothing to prove, so 'we may assume that vx(U)=P. The isomorphism classes
of indecomposable (G-lattices with vertex P are {P,P,,P,,P;,Q(P)),QP,),P,),
Q(P,)}, where each P; is projective as O-lattice and P acts trivially on it, and
they have ranks 12, 8, 8 and 4 in turn for i=1,1,2,3. We shall eliminate the
possibility that U might be isomorphic to any of them. Before doing so, we
prepare the following lemma.

Lemma 3.9. The following holds.
(1) There are exact sequences of the forms ;
@) 0—-QP,) > MBX— P, -0 and
@@ 0->QP)>MBX > P, >0,
where X and X' are some P-projective OG-lattices. (X and X' may be zero.)
(2) A(Q)°~A(P)DA(P5)D (a split sequece).

Proof. (1) The proofs for the sequences (i) and (ii) are given in entirely the
same way. Here we refer to sequence (ii) only. Let’s consider the diagram induced
to OG from the following pull-back diagram of (N-lattices:

0-QQ)~> L - ;-0
I | PB.|™
0-9Q,)-P(Qy) » 010,

where the first row is ./(Q,), the second one is a projective cover of O, and the
map ¢,: Q, » Q, is given by e,»e, V. Note that the induced diagram is also
a pull-back and (Q,)°=P,®P,®P;.
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We shall examine o%: (Q,)¢ - (Q,)°. Following [6, p.77 and p.185] (and
keeping his notations), OG-lattices P, P, and Im(c$) has the following Loewy series;

2, 2,
I I 2,

P2, , Py 2, , ImcS): I
1 1 2,
21 22

Thus, we may regard P, as an injective hull of Im(c¥) as OUs-lattices. Let
a§lp,: Py — Im(cf) be a projective cover of Im(c§) as OUs-lattices. By composing
suitable isomorphisms to ¢, we may assume P,=P, by which the diagram is
still pull-back. Therefore, we can conclude that ¢§: (Q,)¢ - (Q,)¢ is the sum of
a projective cover o§|p,: P, — Im(c§)< P,) as OUs-lattices and two zero maps
P, -0, P;—>0. On the other hand, the projective cover of @, is induced
to a direct sum of three projective covers of P,, P, and P;. Now, we have that

#(0,)¢~(0 - QP,) > MOX' - P, - 0)®(two split sequences)

and X' is a P-projective (G-lattice, since X'|LC.

(2) Next, we shall induce the pull-back diagram of «/(Q;) to OG. Let o, be the
ON-map Q, - Q; (e;— e, V). Note that (Q))°=P,®P,®P; and Im(¢$)~IPPs,
where I is the simple socle of P;. By the same argument as in (1), we have that
6% (0)° = (Q))¢ is the sum of a projective cover k: P; — I(< P;) as OUs-lattices,
identity map P; — P; and zero map P; — 0, and that the projective cover of Q;
is induced to a direct sum of three projective covers of P, P; and P;. Since k

is (left-)annihilated by any non-automorphism in End,g(P;), =k + Endys(P;)€
Soc(Endyg(P;)) and we have (2). (&/(P5) is just a projective cover of P;.) H

Now, we return to the proof of Proposition 3.8. By the Brauer’s third main
theorem and [7, Corollary 3.11 on p.325], U belongs to the principal block of G,
so, we have that U P,. If P, is connected to M, then Q; and L are connected by
the Green correspondence and Lemma 3.9(2). But this does not happen since Q,
and Q, belong to the different components (see Proposition 3.5). So, U# P,.

Next we shall prove U% P,. We assume by way of contradiction that 2/(P,) is
of the form;

(3.10) 0 Q(P,) > MOQ(Y) - P, -0,

where Y is an indecomposable (G-lattice (possibly Y=0). We shall compare two
sequences (3.10) and (3.9) (1)(i). We need to consider the following two cases.
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Case 1. Let Y=0.

Then we have that rankeM =16 and X=0 by Lemma 39 (1)i. For
simplicity, put H=%U;. Recall that Q(P)y~(P)y holds for i=1,2. Since the
restrictions of (3.10) and (3.9X1)Xi) to OH split, we have that My~(P,)y®(P,)y
and My ~(P)y®(P,)y. This is a contradiction.

Case 2. Let Y#0.

Then X#0 and M#0. The P-projectivity of X implies that X is
indecomposable and rank,X =38, since the ranks of projective (resp. P-projective)
indecomposable modules which may occur are 24 or 16 (resp. 12 or 8). So, we
have rank,M =8 and rank,(Y)=8. Moreover,

Lemma 3.11.

(1) rank,(M)= 8.
(2) rank,Y=38.

Proof. First we note that rank,(X)=8 since X~P,,P,,Q(P,), or Q(P,).

(1) The tensor product of the sequence (3.9 1)(i) with Q(0O) is a direct sum of
0- P, > UM)DONX)D(projective) - Q(P,) - 0 and a split sequence. The argu-
ment over the ranks tells us that the above (projective)=0 and rank,(M)=38.

(2) This follows immediately from #(Q(P,)) and (1). W

Now let the tree class of ® be ---—Y,-Y,—Y—-P,—M-—-M,—M,—---.

Let o/(Y) be 0 - Q(Y) - P, ®Q(Y,)®(projective) » Y — 0. Since the ranks of
Y,P,,QY) and Q(P,) are 8, we have that (a) (projective)=0, (b) Q(Y,)#0 and its
rank is 8, and from /(UY)), (¢) rank,Y,)=8. Similarly, for «/(Y,), we
have that (a,) its middle term has no projective modules, (b,) Q(Y,)#0 and its
rank is 8, and (c,) ranke(Y,)=8, since the ranks of Y,,Y,Q(Y,) and (Y) are
8. This inductive argument can be continued for Y;(i=2,3,---). But this contradicts
that @ has tree class 4.

In both cases, (3.10) gives a contradiction. So we have that U#P,. In the
same way, we have that Uz P,, using the sequence (ii) in Lemma 3.9(1).

Finally, it is easy to see that UxQ(P) (i=1,1,2,3) by virtue of the above
argument for P(i=1,1,2,3). Hence, such a U does not exist. Now, the proof
of Proposition 3.8 is done and we are ready to exhibit the example that we have
mentioned;

ExampLE 3.12. With the above notations. Put M =M, and L=L, Let
A be the subquiver of A obtained by removing @, and Q(Q,) from A. Then
A~® holds by Corollary 2.6. That is, Kawata’s morphism from ©(3.7) to A(3.6)
is not isomorphic.
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ReMARK. In the case R=k, an example similar to ours has already given

by Okuyama in [8].

(1]
(2]
31
4]

(5]
(6]

(7]
(8]
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