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Preface

In recent years, many services have been provided through cloud computing. However, cloud com-
puting faces high communication delays. Edge computing addresses this problem. This technology
deploys small-scale data centers (hereafter called micro data centers) near the users. However, mi-
cro data centers have fewer resources (e.g., central processing units (CPUs), and graphic processing
units (GPUs)) than those with larger cloud data centers. To execute many service tasks, efficient

resource utilization is key.

One approach to enable efficient resource usage is resource disaggregation. Resource disaggre-
gation is the architecture constructed from resources that are connected by a network. In resource
disaggregation, resources can be flexibly used by allocating only the required number of resources
to each task. Therefore, we configure a micro data center applying resource disaggregation (here-

after called micro disaggregated data center (uDDC)) to execute many tasks simultaneously.

When tasks are executed in a xDDC, communication between allocated resources occurs when-
ever data are exchanged, which is handled by the motherboard in traditional data centers. Because
the frequency of such communication is high, communication delays have a significant impact on
service performance. Therefore, communication between resources must be sufficiently low latency
to satisfy the performance requirements of tasks. To achieve this, an interconnect using low-latency
transmission technology is required. A low-latency interconnect can be achieved by an optical in-
terconnect that enables high-bandwidth communication at the speed of light with negligible jitter.
However, if allocated resources are far from each other on the network, communication delays be-
come larger even in a low-latency interconnect. Resources must be allocated to ensure low-latency

communication that can satisfy performance requirements. Furthermore, if the resources are far
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apart on network topology, it forces establishing a communication path with high latency, regard-
less of resource allocation method. A network topology to enable resource allocation that can satisfy
performance requirements is required. In this thesis, we propose resource allocation methods and
network topology in a pDDC with an optical network.

First, to execute many tasks simultaneously, we propose a resource allocation method to pre-
serve resources required for future tasks while satisfying the performance requirements. We call
this method RA-CNP. First, we model the impact of the network on the performance of tasks and
verify whether the resource allocation can satisfy the performance requirements. We also define re-
source allocation costs for each resource based on whether it is necessary for future task execution.
RA-CNP allocates resources to minimize costs while satisfying performance requirements. We
demonstrate that RA-CNP can reduce task blocking to 0 even in environments where task blocking
occurs in conventional methods.

Next, we propose an optical network topology that enables flexible resource allocation. First,
we define a metric for evaluating an optical uDDC network called the capability of simultaneous
task execution (CSTE). CSTE represents the ratio of resources that could be used as a resource
communicating with other resources without violating the performance requirements in a situation
where tasks up to the maximum number of executable tasks are executed. We formulate an optical
topology design problem aimed at generating an optical network topology capable of maximizing
the number of tasks that can be executed simultaneously based on CSTE. We demonstrate that
an optimal network topology based on CSTE reduces task blockages by over 50% compared to
conventional topologies.

Finally, we extend RA-CNP to estimate the suitable resources for each task. We focus on the
deep learning-based tasks that can be partitioned and executed in parallel and extend the RA-CNP
so that it optimizes the number of resources allocated to each task by optimizing the partitioning.
We call this extended version of RA-CNP the resource aware model partitioning and allocation
(RAMPA). First, we extend the model of the impact of the network on performance to consider
the impact of model partitioning on performance. We also extend the resource allocation in RA-
CNP to determine the combination of model partitioning and resource allocation that minimizes the

resource allocation costs while satisfying the service performance requirements. We demonstrate
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that RAMPA can execute more tasks in any environment and improve the number of executed tasks

by up to 30% compared to conventional methods.
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Chapter 1

Introduction

1.1 Background

In recent years, numerous services have been provided through cloud computing. However, cloud
computing faces several problems such as high communication delays and increased network traf-
fic. These problems are severe for time-sensitive services and processing data close to service users
is important. Edge computing is a solution to address these problems [1]. In edge computing, small-
scale data centers (hereafter called micro data centers) are deployed near service users. Micro data
centers provide edge service providers with computing environments that include computing, stor-
age, networking equipment, and management systems such as power supply and cooling. Their
scale ranges from installations of 1 rack to installations of container type consisting of about 10
racks [2—4]. In this thesis, we focus on a micro data center with up to 16 racks considering increas-

ing demand for edge services in the future.

In micro data centers, multi-tenancy, where service providers share resources in a data center for
service delivery, is required because it is costly to manage their own edge infrastructures [5]. To pro-
vide each service, a series of associated internal processes (hereafter called tasks) must be executed
in the micro data center. Thus, multiple tasks must be executed simultaneously for multi-tenancy.
However, micro data centers are small-scale, and available resources (e.g., central processing units

(CPUs), graphic processing units (GPUs) and memory) are limited compared to larger cloud data
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1.1 Background

centers. To execute many service tasks simultaneously in a micro data center, limited resources must
be fully utilized. Unfortunately, efficient use of limited resources is impossible in today’s common
data center architectures (hereafter called traditional data centers). Traditional data centers consist
of multiple servers. Within each server, resources are tightly connected. Due to this architecture,
whether the resource is available for tasks depends on other resources in the same server. For ex-
ample, we consider the case where tasks requiring 2 CPU cores and 3 GB of memory are executed
in a traditional data center configured by two servers with an 8-core CPU and 8 GB memory. In
this traditional data center, only 2 tasks can be executed on a server because it does not have the
necessary memory to execute 3 or more tasks. Therefore, the maximum number of tasks that can
be executed in this data center is 4 even though all the resources that this data center possesses are

sufficient to execute more tasks. An architecture that enables efficient use of resources is required.

To address this problem, resource disaggregation has been proposed [6]. In resource disag-
gregation, resources are decoupled from each server and connected by a network, as shown in
Fig. 1.1. Therefore, we can flexibly allocate only the resources required for each task without con-
sidering other resources and achieve higher resource utilization than traditional data centers [7, 8].
To execute many service tasks simultaneously, we configure a micro data center applying resource

disaggregation (hereafter referred to as a micro disaggregated data center (uDDC)).

[RAM] [@PU][cPu] [RAM ]

T ek 53

Server Decouple resources

in th m
Rack1 Rack2 Rack n in the server
Traditional data center Micro disaggregated data center

Figure 1.1: Transition from traditional data center to micro disaggregated data center.

While ©DDCs have the advantage of efficient resource use, there are several challenges. Be-
cause resources are connected via a network, communication between allocated resources is re-
quired to execute tasks. Communication between allocated resources occurs whenever data are
exchanged, which is handled by the motherboard in traditional architectures. Because the fre-

quency of such communication is high, communication delays have a significant impact on service
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Chapter 1. Introduction

performance. Gao et al. demonstrated that communication in a few microseconds is necessary for
resource disaggregation [9]. The communication delay between resources depends on the technol-
ogy used for the interconnect and the location of the allocated resources in the network. Therefore,
these must be considered for uDDCs to execute many tasks simultaneously.

Optical interconnects are one promising technology for achieving low latency communica-
tion [10-12]. These studies have proposed interconnects using optical circuit switches and optical
packet switches and demonstrated that communication between resources in the order of nanosec-
onds can be achieved.

However, low latency communication between resources cannot be achieved by only optical
interconnect. If allocated resources are far from each other on the network, communication delays
become larger even in low-latency networks. Furthermore, if many resources are allocated for tasks
and only far apart resources are available for newly requested tasks, it forces communicating with
high latency. Therefore, a resource allocation method to execute many tasks while satisfying perfor-
mance requirements is required. Several resource allocation methods for resource disaggregation
architecture have been proposed [7, 13, 14]. These methods aimed to minimize communication
delays regardless of the performance requirements of the task. However, their objectives are insuf-
ficient to execute many tasks simultaneously. For example, tasks with short time constraints are
requested after resources are allocated for tasks with long time constraints. They allocate resources
that can communicate in fewer hops even for tasks with long time constraints. As a result, resources
for future tasks with short time constraints may be forced to communicate with larger latency. To
address this problem, we focus on whether the resource allocation satisfies the performance re-
quirements, that have been overlooked in conventional methods. If the performance requirements
are satisfied, the performance degradation of the task is not a problem. By expanding the solution
space through this consideration, we optimize the allocated resources to execute many tasks simul-
taneously. In this thesis, we allocate resources to preserve resources required by future tasks while
satisfying the performance requirements.

Resource allocation depends on the network topology. If the resources are far apart on network
topology, it forces establishing a communication path with high latency, regardless of resource al-

location method. A network topology that enables resource allocation to execute many tasks while
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1.2 Outline of thesis

satisfying performance requirements is required. Several network topologies for resource disag-
gregation architecture have also been proposed [10, 15]. These topologies also aimed to minimize
communication delays between allocated resources. However, they do not consider the number of
resources that can establish a communication path that can satisfy the performance requirements.
Resources that can establish a communication path with low latency may be exhausted in these
topologies. To address this problem, we focus on whether resource allocation that can satisfy the
performance requirements can be achieved in the network topology. By this consideration, we can
optimize network topology based on objectives other than minimizing communication delays. In
this thesis, we design an optical network topology with many resource pairs that can simultaneously

establish communication paths that satisfy performance requirements.

1.2 Outline of thesis

Fig. 1.2 shows the overview of this thesis. To execute many tasks simultaneously, we need to allo-
cate suitable resources to each task. That is, we need to estimate the required amount of resources
and allocate physical resources to each task. In addition to the resource allocation method, the
network topology is also important because resource allocation depends on the network topology.
In this thesis, we construct a uDDC that can execute many tasks simultaneously by developing

resource estimation and allocation methods and a suitable network topology.

. ) Resource allocation process
Optimize deep learning model
partitioning and allocation. (1) Estimate the required
L (Chapter 4) ) amount of resources.
Extend
(3) Network topology.
Preserve resources required (2) Allocate physical resources. ‘ Optical network topology that enables
for future tasks. flexible resource allocation.
(Chapter 2) (Chapter 3)

[RAM] [@Pu ] [cPu] [RAM]

Micro disaggregated data center

Figure 1.2: Overview of this thesis.



Chapter 1. Introduction

Resource Allocation Considering Impact of Network on Performance in Micro Dis-

aggregated Data Center [16-19]

We first propose a resource allocation method for a uDDC in Chapter 2. We call this method
RA-CNP. RA-CNP preserves resources required for future tasks while satisfying the performance
requirements of requested tasks. First, we model the impact of the network on the performance
of tasks and verify whether the resource allocation can satisfy performance requirements. Further-
more, we define resource allocation costs for each resource based on whether it is necessary for
future task execution. Based on these, RA-CNP allocates resources that minimize resource allo-
cation costs while satisfying the performance requirements. We evaluate the effectiveness of our
method by simulating various pDDC networks. The results demonstrate that RA-CNP can reduce

task blocking to 0 even in environments where task blocking occurs in conventional methods.

Optical Network Topology Design to Execute Many Tasks Simultaneously in Micro
Disaggregated Data Center [20]

In Chapter 3, we address a suitable network structure for a uDDC. In this chapter, we propose an
optical network topology that enables flexible resource allocation. First, we define a metric for
evaluating an optical uDDC network called the capability of simultaneous task execution (CSTE).
CSTE represents the ratio of resources that could be used as a resource communicating with other
resources without violating the performance requirements in a situation where tasks up to the max-
imum number of executable tasks are executed. uDDC with high CSTE can have a large number
of resource pairs capable of communicating satisfying task performance requirements and flexible
resource allocation is possible. We formulate an optical topology design problem aimed at gener-
ating an optical network topology capable of maximizing the number of tasks that can be executed
simultaneously based on CSTE. By solving this problem, we generate optical network topologies
and validate their effectiveness via resource allocation simulations. We evaluate the effectiveness
of the proposed network topology design by resource allocation based on RA-CNP. The results
demonstrate that an optimal network topology based on CSTE reduces task blockages by over 50%

compared to conventional topologies.



1.2 Outline of thesis

Resource Aware Deep Learning Model Partitioning and Allocation to Execute Many

Deep Learning Tasks

Finally, we extend RA-CNP to estimate the suitable resources for each task in Chapter 4. In this
chapter, we focus on the deep learning-based tasks that can be partitioned and executed in parallel
and extend the RA-CNP so that it optimizes the number of resources allocated to each task by
optimizing the partitioning. We call this extended version of RA-CNP the resource aware model
partitioning and allocation (RAMPA). First, we extend the model of the impact of the network
on performance to consider the impact of model partitioning on performance. We also extend the
resource allocation in RA-CNP to determine the combination of model partitioning and resource
allocation that minimizes the resource allocation costs while satisfying the service performance
requirements. By these extensions, RAMPA can minimize the allocation of resources required
for future tasks. We evaluate the effectiveness of RAMPA by simulating the deep learning tasks
execution. The results demonstrate that RAMPA can execute more tasks in any environment and

improve the number of executed tasks by up to 30% compared to conventional methods.



Chapter 2

Resource Allocation Considering Impact
of Network on Performance in Micro

Disaggregated Data Center

2.1 Introduction

In recent years, numerous services provided via cloud computing have emerged. However, cloud-
based services are associated with problems such as latency and dense network traffic. Edge com-
puting addresses these problems [1]. This technology deploys micro data centers near the users.
Because these data centers are located near the user and can process data locally, they are effec-
tive for time-sensitive services such as automated driving and face recognition [21]. The number
of edge devices is expected to increase further in the future, and a data center on the edge must
execute more service tasks [21]. Nevertheless, micro data centers have fewer resources than those

with larger cloud data centers. Therefore, optimal resource utilization for each task is key [22].

Flexible resource allocation via infrastructure virtualization and optimization of resource uti-
lization have been considered potential ways to achieve this goal [23]. However, in traditional

architectures where resources such as CPU and memory are aggregated on a server, per-resource
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2.1 Introduction

flexible management is limited [24]. For example, if four tasks requiring 2 cores and 4 GB of mem-
ory are allocated to a server with a 16-core CPU and 16 GB of memory, 8§ CPU cores are unavailable
for other tasks owing to the absence of available memory resources. One approach to solving such
inefficient resource usage is resource disaggregation [6]. Resource disaggregation refers to the use
of an architecture constructed from resources such as CPUs and memory that are connected by a
network. The resources in this architecture can be easily upgraded and flexibly used by allocating
only the required number of resources to each task. This can be done because each resource is
independent, in contrast to the case of a traditional data center where resources are aggregated into
servers [9]. Owing to these advantages, resource disaggregation has been considered in various
areas, such as serverless computing, big data processing, and database processing [25-27]. There-
fore, we focused on a micro data center applying resource disaggregation (hereafter referred to as
a micro disaggregated data center (uDDC)) and aim to configure a uDDC that can execute many

service tasks simultaneously.

When a task for a service is executed in a data center applying resource disaggregation (DDC),
after the required resources to execute the task are selected, the task must be executed via com-
munication between the selected resources. Because resources are connected by a network, the
task execution time increases with the duration of the communication delay between resources. In
particular, communication delay between the CPU and memory has a significant effect on task ex-
ecution time [9]. A DDC may not be able to provide the service in the required time because of
this problem. Therefore, a DDC consisting of an optical network that has been configured with op-
tical circuit switches and optical packet switches and that enables communication with low latency
and high bandwidth has been proposed [10, 12]. In this DDC, resource disaggregation has been
demonstrated to be more effective than traditional architectures in terms of resource utilization and
energy consumption. Furthermore, in [28], resource disaggregation via optical interconnects was
evaluated using actual equipment. Resource disaggregation is a feasible approach for improving

resource utilization.

However, achieving efficient resource utilization in a DDC only by improving network per-

formance is difficult. Communication delay between resources also depends on routing between

_8—



Chapter 2. Resource Allocation Considering Impact of Network on Performance

resources [7]. The resource allocation method, which determines the CPUs and memories that ex-
ecute tasks and the network links that constitute the communication path, is also important for a
DDC. In particular, allocation of path has a significant impact on the performance of tasks [13].
If the path between the CPU and memory to execute a task has many hops, it takes more time for
the CPU to retrieve data from memory. Furthermore, if a communication path with high traffic is
allocated as a path between resources, congestion may occur. In these cases, the time required to
complete a task increases, and the performance requirements of tasks may no longer be satisfied.
As a result, the execution of many tasks becomes more difficult. Because this problem can occur
in any network configuration, an efficient resource allocation method considering the impact of the

network on the performance of tasks is required for a DDC.

However, only considering the impact of the network on the performance of tasks is not suf-
ficient to execute many tasks. For example, we assume a case where low latency communication
paths are allocated regardless of the performance requirements of tasks to minimize performance
degradation. Because available network links are not infinite, available paths for tasks with strict
time constraints may be exhausted even if there are available resources for task execution. If tasks
with long time constraints avoided using communication path with low latency, this situation could
have been prevented. Preserving the resources required by future tasks considering the impact of

the network on the performance of tasks and performance requirements is important.

We emphasize that resource allocation methods for a traditional data center are insufficient for
resource allocation in a DDC. In a DDC, communication delays can occur just as a computational
resource, such as a CPU or GPU, reads data from memory, resulting in increased task execution
time. By contrast, because resources are connected on the motherboard in traditional data centers,
network communication is absent between resources involved in task execution. Because of this
difference, a resource allocation method for a DDC is required. Resource allocation methods have
been proposed for a DDC [7,13,14,29], but these methods do not consider the impact of the network
on the performance of each task and future tasks. Instead, they allocate communication path to
minimize performance degradation. Because it is important to preserve the resources required for

future tasks, these methods are not sufficient to execute many tasks in a uDDC.



2.1 Introduction

We propose a resource allocation method that considers the impact of the network on perfor-
mance (hereafter called RA-CNP). We model the impact of the allocated resources on the time
required to complete a task based on the communication delay between execution resources. In
addition, when multiple candidate resources exist, we avoid allocating high-performance and low-
latency communication path that may be requested in the future to execute more tasks. We define
the resource allocation cost in terms of resource importance; moreover, we formulate a resource al-
location problem to satisfy the performance requirements of a task and to select the candidate with
the smallest cost. By not using resources with high costs, a uDDC preserves those that can be used
in future task requests, thereby executing more tasks. Then, we evaluated the effectiveness of RA-
CNP by comparing it with other methods in networks configured by circuit and packet switches.
Moreover, to verify optimal solution to the defined resource allocation problem, we also evaluated
the optimal solution for RA-CNP. Finally, we investigated whether RA-CNP can allocate resources

within a practical computation time.

The main contributions of this chapter are as follows:

* We modeled the impact of network on task performance in a general form.

* We proposed a resource allocation method to execute many tasks simultaneously, RA-CNP,

based on our model and the resource allocation problem.

* We demonstrated that RA-CNP can enable the completion of many tasks within their accept-

able time and can allocate resources in a practical computation time.

The remainder of this chapter is organized as follows: Section 2.2 discusses related work. Sec-
tion 2.3 examines the impact of the network on the performance of tasks in a uDDC. Section 2.4
provides an overview of the resource allocation method. Section 2.5 discusses the simulations used
to evaluate the effectiveness of RA-CNP and the computational time. Finally, Section 2.6 concludes

this chapter.
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2.2 Related work

A DDC is constructed using resources such as a CPU, a GPU, and memory connected by a network.
Resource disaggregation improves resource utilization and scaling flexibility [30]. After the neces-
sary execution resources are determined, a task executed in a DDC is processed via communication
between the selected resources.

A DDC architecture must consider the following aspects: (1) processing tasks in a DDC, (2)
connection of resources, and (3) allocation of resources. In the remainder of this section, we discuss

existing reports on DDC architectures.

2.2.1 Processing system

In a DDC, resources are distributed. A system is required to manage these resources and execute
tasks.

LegoOS has been proposed as an operating system for resource disaggregation [31]. This sys-
tem divides operating system functions according to each disaggregated resource and manages
them in a decentralized manner. Furthermore, the operating system demonstrates compatibility
with Linux and the feasibility of application deployment. This system can be used to run existing

applications and feasibly implement a DDC.

2.2.2 Resource connection

In a DDC, performance degradation due to communication delays between resources is significant,
and nanosecond resource communication is required [9]. Therefore, DDCs require high-bandwidth
and low-latency switches to reduce performance degradation.

Optical switching has been proposed to enable high-bandwidth and low-latency communica-
tion [10-12,32]. Zervas et al. proposed a network architecture for a DDC using optical circuit
switches [10]. Owing to the configuration of the optical circuit switches, the resources could com-
municate at low latency. The researchers demonstrated that the blocking rate for resource requests

was lower than that of traditional data centers. Yan et al. also proposed a disaggregated architecture
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configured by an optical circuit switch for machine learning and demonstrated that optical intercon-
nection can improve the utilization of disaggregated resources [32]. Optical circuit switches must
establish a direct connection between input and output ports for communication between resources.
Because of this characteristic, the path between resources is dedicated to that resource pair. DDC
configured by optical packet switches as well as optical circuit switches has been studied [11, 12].
Terzenidis et al. proposed a network for a DDC configured by optical packet switches [11]. Switch-
ing delays were reduced to nanoseconds, demonstrating the feasibility of resource disaggregation
using packet switches. Guo et al. proposed a DDC architecture based on hybrid switches, including
an optical circuit switch with many ports and an optical packet switch with few ports, and they
achieved efficient resource utilization [12]. Because packet switches can route data to the appropri-
ate port based on the destination address of the packets, the connection between input and output
ports is not fixed. Therefore, the path between resources is not dedicated, and a network link can
be used for communication between multiple resources. However, the latency between resources is
greater than that in optical circuit switch networks.

Resources connected via optical networks can communicate with low latency, thereby reducing
performance degradation. However, if resource allocation is inefficient, the number of tasks that
can be executed is limited, even on an optical network. Fig. 2.1 shows examples of inefficient
and efficient resource allocation. This example assumes that tasks with short time constraints are
requested after resources are allocated for tasks with long time constraints. In the case of inefficient
resource allocation, resource pairs that can communicate in fewer hops are allocated for tasks with
long time constraints. Because of this, the next requested task is forced to use resource pairs that
require many hops to communicate. As a result, all the requested tasks cannot be executed. In the
case of efficient resource allocation, avoid allocating resource pairs that can communicate in fewer
hops because tasks with long time constraints do not necessarily require minimizing performance
degradation due to communication between resources. As a result, tasks with short time constraints
can also be executed because resource pairs that can communicate at the lowest hop exist. Thus,
when available resources are severely limited due to inefficient resource allocation, future tasks may
be forced to utilize resource pairs that cannot satisfy performance requirements. We emphasize that

this can occur regardless of network architecture. This is because available resources and network
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links are finite, regardless of network architecture. Individual execution resources can only handle
a limited number of tasks. Then, available network links are not also infinite due to bandwidth
constraints or dedicated network links (in the case of a network with optical circuit switches).
Therefore, when many tasks are executed, available resources are reduced, and flexible selection of
execution resources becomes difficult in any network. This can create a situation where inefficient
allocation of a task inhibits the allocation of other tasks, as shown in Fig. 2.1. An efficient resource
allocation method considering the impact of the network on performance and future tasks is required

to execute many tasks simultaneously for a DDC.

Requested two tasks with long time constraint Requested task with short time constraint
(required one CPU and memory) (required one CPU and memory)

Have only resource pairs that require
many hops for communication

Example of inefficient resource allocation

Allocate resource pairs that can Requested task cannot be executed to
communicate in fewer hops satisfy the performance requirements

Have resource pairs that can
communicate at the lowest hop

Example of efficient resource allocation

Avoid allocating resource pairs that can Capable of executing all tasks to satisfy
communicate in fewer hops performance requirements
[ Allocated memory [@ Allocated cPU —— Link ([E) Switch
[M] Available memory [C] Available CPU —— Allocated link

Figure 2.1: Example of inefficient resource allocation and efficient resource allocation.

2.2.3 Resource allocation

To execute a service task, the resources that will be used to run the task and the paths that will be
used to communicate between those resources must be determined. Although resource allocation
methods have been proposed for traditional data centers, they are not suitable for DDCs. Because
resources are connected on the motherboard in traditional data centers, network communication

is lacking between resources involved in task execution. On the other hand, in a DDC, network
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Table 2.1: Objective and approach of each resource allocation method for disaggregated data center.

Author Objective Approach
Papaioannou et | Minimize performance of impact of net- | Minimize latency between resources for re-
al. [13] work latency in requested task quested task based on bandwidth, hops, delay
of link
Zervas et al. [7] Minimize round trip latency between exe- | Minimize latency between resources for re-
cution resources in requested task quested task based on bandwidth and link dis-
tance

Amaral et al. [14] | Minimize execution time of requested task | Minimize performance interference of run-
while avoiding performance degradation | ning tasks and requested task considering the

of running tasks execution time calculated based on network
load
Guo et al. [29] Maximize requests that satisfy the failure | Minimize resources used as backup in case

probability requirement of allocated re- | of failure of resources considering the failure
sources in a given set of resource alloca- | probability requirement of requests

tion requests
Ikoma et al. (RA- | Minimize use of resources required for fu- | Avoid allocating resources and path required
CNP) ture requested tasks for future tasks considering the impact of the
network on performance based on communi-
cation delay between execution resources

communication between resources occurs when tasks are executed. Because task execution time is
affected by the communication delay between resources, a resource allocation method for a DDC

considering this aspect is required [14].

Several resource allocation methods have been proposed for a DDC [7,13, 14,29]. The charac-
teristics of each method, in terms of objective and approach, are shown in Table 2.1. We analyze
whether existing studies are sufficient to execute many tasks while satisfying performance require-
ments based on Table 2.1. Papaioannou et al. proposed a resource allocation to minimize the
performance degradation of requested tasks by minimizing a metric based on the bandwidth and
latency of paths [13]. The authors demonstrated that this method can improve resource utilization
without affecting task performance in a DDC configured by an optical circuit switch and an elec-
trical packet switch. Zervas et al. proposed a resource allocation method to minimize round-trip
latency between execution resources in requested tasks by minimizing a metric based on bandwidth
and link distance [7]. The authors demonstrated that this method can improve resource utilization
in a DDC configured with optical circuit switches. These methods [7, 13] consider only the task
requested at that time and preferentially allocate resources that can communicate with low latency
regardless of the performance requirements of the task. Resources required for tasks with strict

performance requirements, where low-latency communication is essential, may soon be depleted.
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As a result, many tasks cannot be executed. Amaral et al. proposed a resource allocation method
to minimize the execution time of requested tasks while avoiding performance degradation of run-
ning tasks [14]. This method prevents performance interference between running tasks and the
requested task, considering the execution time calculated based on network load. In this method,
resources are allocated to minimize the execution time of the requested task at that time. Therefore,
it does not also consider future tasks. Furthermore, this method calculates execution time directly
from network load by using statistical data. Therefore, this method cannot consider the impact of
communication delays between resources on performance. It is not possible to optimize routing
between resources while considering task performance. Guo et al. proposed a resource allocation
method to maximize requests that satisfy the failure probability requirement of allocated resources
in a given set of resource allocation requests [29]. This method enables higher resource utilization
while guaranteeing the reliability of tasks. However, this method assumes that all resource allo-
cation requests are given in advance. When new tasks are requested in a situation where multiple
tasks are executed, there may be no available resources for those tasks. Furthermore, this method
does not consider performance degradation due to communication between resources. It is difficult
to execute many tasks while satisfying performance requirements.

To execute many tasks simultaneously, consideration for future tasks is essential. If resources
are allocated without considering whether future tasks can be executed with the required perfor-
mance, available resources to satisfy the requirements of new tasks may be exhausted soon. In
reality, allocating resources to ensure the best performance of running tasks or requested tasks is
not always necessary, as in the efficient allocation in Fig. 2.1. Any resources are sufficient if the
performance requirements of the task are satisfied. By avoiding unnecessarily allocating resources
and network links required for future tasks, more tasks can be executed. Note that we must consider
whether the performance requirements of tasks are satisfied. Existing methods did not sufficiently
consider it. Instead, they simply allocate resources to maximize the performance of tasks. In this
chapter, we propose a resource allocation method for a uDDC to execute many tasks simultaneously
while satisfying performance requirements. This method allocates resources to minimize the use of
resources required for future requested tasks. Furthermore, it models the impact of the network on

performance based on the communication delay between execution resources. Thus, this method
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can allocate resources and network links, considering both task performance and future tasks. The
major difference from existing methods is the consideration of future resource allocation based on
the impact of the network on performance rather than simply minimizing performance degradation

to execute many tasks simultaneously.

2.3 Impact of network on performance of tasks in micro disaggre-

gated data center

In this section, we examine the impact of the network on the performance of tasks in a uDDC. We

emulate the execution of tasks by CPUs and memories connected via a network.

2.3.1 Experimental Settings

We assume a uDDC that CPU and memory are connected by a network. Each CPU has a small
cache and executes tasks using the data in the cache. When the required data don’t exist in the
cache, the CPU obtains the data from memory. Furthermore, we assume that the uDDC uses a
paging technique. That is, if required data cannot be found in the cache, the CPU obtains the page
that contains the required data from the memory. We examine the impact of the communication that

occurs at this time on the execution task performance.

Experimental environment

We implement an environment for emulating a uDDC. This environment contains a CPU with a
cache and a memory. Although they are implemented in a single computer, we add communication
delays when the CPU accesses memory, to emulate a 4DDC where communication delays occur
when accessing memory. This environment is constructed by creating a swap device that acts as a
disaggregated memory based on the program proposed by Gao et al. [9]. This swap device makes
a process wait for the communication delay and then handles the request. In this experiment, this
swap device is created by using the memory installed in the computer. We allocate 200 MB of

memory as the cache attached to the CPU and the rest of the memory is used as a swap device.
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A computer with an Intel(R) Xeon(R) CPU E5-2687W and 64 GB DDR3 SDRAM is used for

emulation and the page size is set to 4 KB.

Execution tasks

We use ResNet and Inception-v3, and execute their inference step by using TensorFlow. We execute
each of these processes 10 times and measure the time from inputting one image to obtaining the

output as the processing time.

Metrics

We measure the performance degradation rate as a metric for the impact of network performance.

. . disaggregated __traditional
The performance degradation rate is L Ttraditiojr:al , where

Tdisageregated jq the process time

of uDDC and 7Ttraditional j¢ the process time of the traditional computer. We obtain 7'disaggregated
by executing the process in the experimental environment and 7'*2ditional by executing the process

on the same computer without adding communication delay.

2.3.2 Results

We first investigate the impact of bandwidth by setting the bandwidth to 40 Gbps and 100 Gbps
with the latency set to 8 us. We next investigate the impact of the latency. We set the latency to 0.2
us, 2 us, and 8 ps with the bandwidth set to 100 Gbps.

Impact of bandwidth on performance

Figure 2.2 shows the impact of the network bandwidth on the performance of uDDC. This figure
shows all performance degradation rates monitored in our experiment. The median values of the
performance degradation rates are also shown as a bar graph.

ResNet-50 is a relatively small model and the number of page faults is small. As a result, the
impact of the communication delay is small. However, the communication delay has a large impact
on the other models. The median of the performance degradation rates is over 10 % for all models

except ResNet-50. We can discuss the impact of the bandwidth by comparing the performance
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degradation rates in the cases of 40 Gbps and 100 Gbps. Fig. 2.2 shows increasing the bandwidth
from 40 Gbps to 100 Gbps does not reduce the performance degradation rate. That is, the bandwidth

has only a small impact on the performance of the task.
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Figure 2.2: Impact of network bandwidth on performance.

Impact of latency on performance

Fig. 2.3 shows the impact of the latency on the performance of the DDC. Like Fig. 2.2, all perfor-
mance degradation rates monitored in our experiment are shown in this figure. The median values

of the performance degradation rates are also shown as a bar graph.

Fig. 2.3 shows that the performance degradation rate decreases as the latency decreases. In all
models, we can decrease the performance degradation rate by half by reducing the latency from
8 us to 0.2 us. That is, unlike the bandwidth, the latency has a large impact on the performance.
Fig.2.3 also indicates that the performance degradation rate depends on the model. The performance
degradation rate of a small model like ResNet-50 is small, while the performance degradation rate

of a relatively large model like ResNet-152 is large.
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Figure 2.3: Impact of latency on performance.

2.3.3 Discussion

We showed that communication delay to obtain the data from the memory degrades task perfor-
mance in a uDDC. Therefore, we verify the proportion of time to obtain the data from the memory
in the total execution time of a task. Table 2.2 compares the ratio of the total time used to obtain
the data from the memory. This shows that more than double the time is required to obtain the data
when the latency is 8 us, compared with the case of 0.2 us. This comparison correlates well with
the comparison of the performance degradation rates. That is, the time to obtain the required data is
the cause of the performance degradation. Furthermore, our results indicate that the computational
resources are also important. Even in the worst case, 3/4 of the process time is consumed by the
CPU while the memory access only consumes 1/4 of the process time. The execution time of a
task in a uDDC is dominated by the execution time in the computational resources and the time to

obtain data from memory.
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Table 2.2: Ratio of total time spent reading from memory to execution time for each model.

0.2us 2us 8us
ResNet-50 | 7.94% | 10.15% | 18.44%
ResNet-101 | 10.96% | 14.94% | 27.73%
ResNet-152 | 12.50% | 16.16% | 27.31%
Inception-v3 | 9.93% | 12.31% | 22.24%

2.4 Resource allocation considering impact of network on performance

(RA-CNP)

In this section, we model the impact of the network on performance. Thereafter, we formulate the

resource allocation problem and present an example of a method for addressing it.

2.4.1 Overview of micro disaggregated data center

We show the assumed ©DDC in this section.

Components of micro disaggregated data center

We assume a uDDC in which the memory and computational resources (CPUs and GPUs) are
connected by a network, as shown in Fig. 2.4. This uDDC includes resource pools, in which
several resources of the same type are collected. Each resource pool is connected via packet or

circuit switches. The components of a uDDC are as follows:
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Requested resources

uDDC Network

Task execution

A computational and
memory resource
are required to execute task

m Memory resource pool Computational resource pool (CPU) Computational resource pool (GPU)

(&) switch

Link Available computational resource Available memory resource

Figure 2.4: Overview of micro disaggregated data center.

Memory resources A memory resource is a device that stores the data required by computational
resources. We divide memory into blocks and treat each block as a memory resource. Data in

memory are managed via paging.

Computational resources (CPUs and GPUs) A computational resource has a small cache. When
the data required to execute a process do not exist in the cache and a page fault occurs, the compu-
tational resource obtains the data from the memory resource. Data are transmitted at the granularity
of a page. In a uDDC, the data read time from disaggregated memory resources is longer than the
data read time from the cache. Therefore, the impact of the latter on performance is negligible.
In this chapter, cache levels and the latency between a cache and computational resources are not

considered. Each CPU core, or GPU, is treated as a single computational resource.

Network The network consists of resource pools and switches that connect them. Links connect
pools to switches and one switch to another.
A resource pool holds multiple resources of the same type. A computational resource pool holds

multiple computational resources, and a memory resource pool holds multiple memory resources.
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Each resource in the pool connects to a switch via a common link between the pool and the switch.

Optical circuit switches, or optical packet switches, are used in the uDDC. In a network con-
figured with optical circuit switches, once a path for optical signals is established to execute a task,
the path is occupied by the task. Therefore, each optical circuit switch can immediately relay data
to the next port without blocking, according to prior routing. In a network configured with optical
packet switches, each switch has a buffer. If the next port is available, the switch immediately relays
the packet to it before the entire packet is received. If the next port is busy, the switch stores the
packet in its buffer to prevent communication that exceeds the bandwidth. The switch then waits
for the next port to become available. We allow the construction of an aggregated virtual link from
multiple links between the same nodes. Aggregating the links can reduce the delay, even if some
links in the aggregated link are busy. The switch can still relay the packet without storing it in the

buffer, as long as it has at least one link available.

Execute task in micro disaggregated data center

We assume that users randomly request the execution of tasks for services provided by a uDDC.
When a uDDC receives a task execution request, it allocates the computational and memory re-
sources required to execute the task from among the available resources in the resource pool shown
in Fig. 2.4. Thereafter, it determines the communication path between the allocated resources. We
treat this process as resource allocation. In this thesis, one resource can execute up to one task, and

each resource runs in parallel. The waiting time for task execution does not occur.

Multiple types of processing with different resource requirements may be required to complete a
task. In this chapter, we divide tasks into processes according to the need to use resources flexibly.
A task utilizes a set of processes that are allocated by selecting the necessary resources for each

process.

2.4.2 Modeling micro disaggregated data center and resource allocation request

The notations used for modeling a ©uDDC and resource allocation request are listed in Table 2.3.
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Symbols ‘ Definition
uDDC network

N? Set of nodes
E?® Set of links
N¢ Set of computational resource pools
N™ Set of memory resource pools
cs Number of available resources in the computational resource pool ¢
M, Number of available resources in the memory resource pool m
R? Number of resource pools
K. Performance metric (FLOPS) of resources

in the computational resource pool ¢ € N¢
F, Clock frequency of resources

in the computational resource pool ¢ € N¢
Ve Page size of resources in the computational resource pool ¢ € N¢
R;; Set of configurable paths between nodes ¢, j € N*
B Bandwidth of uDDC link
TTJLV Delay to send the entire packet in node n € N*
T! Delay to process I/O in node n € N°®
TR Delay of memory processing in a memory resource m € M?
N¢ Number of links existing between adjacent nodes of link e € E*
Tr Propagation delay of link e € E*
Ao Arrival rate of packets from node n € N® inlink e € E*

Resource graph
NV Set of resource graph nodes
EY Set of resource graph links
cv Set of nodes corresponding to computational resources
MY Set of nodes corresponding to memory resources
Process graph

N? Set of process graph nodes in task ¢
E? Set of process graph links in task ¢
a{,c Number of page faults of a process p € NP
oy Pages per a page fault of process p € N?
o, Clock counts of process p € NP
Ap Arrival rate of packets from the memory of process p € NP
Ay Arrival rate of packets to the memory of process p € NP
S Set of tasks
NP Set of processes required for task t € .S
T Acceptable time of task t € §
P, Set of paths of the process graph in task ¢ € .S
p Set of computational resources required to run the process p € NP
my Set of memory resources to run process p € N”
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Modeling micro disggregated data center network

A pDDC network is represented as a graph G*(N®, E®), where N* and E* denote sets of nodes and
undirected links, respectively. Three types of nodes exist: computational resource pools, memory
resource pools, and switches. N¢and N are the sets of computational and memory resource pools,
respectively. C; and M, represent the number of available computational and memory resources
in the computational and memory resource pools corresponding to node n € N°, respectively. For
each resource in the computational resource pool ¢ € N¢, we define K. > 0 as the number of
floating-point operations per second, F,. > 0 as the clock frequency, and V. > 0 as the page size.
For each resource in the memory resource pool m € M?, we define 7% > 0 as the delay in reading
data in one memory access. Then, let R* be the number of resource pools. We also define 7V > 0
as the processing delay until a packet is relayed to the next port in node n € N*. If node n does not
have switching capability, T is infinite. In addition, we define the I/O processing delay 7)) > 0
that occurs during communication at each node n € N*.

For each link e € E°, we define NJ > 0 as the number of links existing between adjacent
nodes, 7X > 0 as the propagation delay, and Ain 2> 0 as the arrival rate of packets from node
n € N®. We define I?; ; as the set of configurable paths between nodes i, j € N® on the DDC.

r € R; ; denotes the set of links on path . The bandwidth of all links is B > 0.

Modeling resource allocation request

Resources required for a task are requested before running the task. We model a resource request
using two graphs, where one indicates the relationships between the required resources (resource
graph) and the other indicates the relationships between the processes required to execute the task
(process graph). An example request is shown in Fig. 2.5.

A resource graph is given a graph structure GY(N?, EV), where NV and EV denote the sets of
nodes and undirected links, respectively. Each node corresponds to the requested computational or
memory resource. C¥ and M" denote the sets of requested computational and memory resources,
respectively. Links are added between computational and memory resources that execute the same

process.
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o Memory resource

e Computational resource  ~ _____ , Link Indicating the resource
to run the process

Resource graph

Link between resources
that exchange data

Directed link indicating
SN the order of process execution

2,

Node property

* Execution resource
* Process execution data

Process graph

Figure 2.5: Example of resource and process graphs.

Process graphs are provided for each task. We define a set of tasks as S. For task ¢t € S, a
process graph is defined as a directed graph structure GY(N?, EY), where N} and E} denote the
sets of nodes and directed links, respectively. Each node p € NY represents the process required to
execute the requested task. Node p € N has a set of resource graph nodes ¢, and m,) corresponding
to the computational and memory resources required to run the process corresponding to node p.

For each node p € N’, we define the number of page faults (O’I]: > 0), the number of pages
transmitted per page fault (ag > 0), and the clock counts required to execute a process (Gg > 0).
For a process corresponding to node p € NP, A > 0 denotes the arrival rate of packets from
the memory, and A’ > 0 denotes the arrival rate of packets to the memory. Arrival rates were
obtained in advance by monitoring the task in the test environment. Note that if multiple resources
run a process, the amount of communication and the number of clock counts for a resource pair
will be reduced. However, in this chapter, we set the same value as the worst-case value. Each
link e € EY is a directed link that indicates the process order. Each path from the first to the final
process provides the sequence of processes required to complete a particular task. We define the set
of paths in the process graph for task ¢t € S as P;.

In addition, for each task ¢ € .S, acceptable time T} is defined as a performance requirement.

All tasks should be completed within an acceptable time.

2.4.3 Relationship between resource allocation and task execution time

In a uDDC, resource allocation defines the performance of a task. Here, we model the relationship

between resource allocation and task execution time.
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Mapping resources

(55\’] denotes the mapping between the requested resources and those in the pDDC. (521\9 = 1 when

resource graph node 7 € NV is mapped to the uDDC network node 7 € N® and 51]\; = 0 otherwise.

Mapping network links

55 , denotes the mapping between the resource graph links and paths in the uDDC. 55 y = 1 when
the resource graph links x € E are mapped to path y € Ry ; between nodes k,t € N¥ in the
uDDC and 5£y = 0 otherwise.

Modeling task execution time

The execution time of task ¢ € .S is the sum of the times required to complete all processes in task
t. Furthermore, as shown in Section 2.3, task execution time depends on the processing time of
the computational resources and the processing time required to read the data from the memory
resource. Therefore, the execution time for each process is estimated as the sum of the processing
time of the computational resources and the processing time required to read the data from the
memory resource. In this chapter, we compare the worst-case execution time with the acceptable
time to allocate resources that satisfy the requirements of the request. The worst-case execution

time 77 for task ¢ € S is obtained as follows:

Te = maXx max TC Tm
¢ yeajjt I%:y cecy S’Em” dp + cdm/;p) - (2.1)
D’ D

where TCC,J) denotes the processing time of process p € N} in the computational resource

mapped to ¢ € NV, and T » denotes the processing time to read the data for process p from the

memory resource mapped to m’ € NV in the computational resource mapped to ¢ € NV.

Processing time in a computational resource The processing time 7' » for a process p € N? in
a computational resource mapped to ¢’ € NV is calculated by dividing the clock count o, required
to complete process p by the clock frequency F); of a resource in the computational resource pool

j € N€ as follows:
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TS, =Y en: (5N]ﬁ§) . 2.2)

17 , denotes the processing time of the computational resource mapped to ¢ € NV because 0 ; =

1 only if ¢’ is mapped onto j € N°*.

Processing time required to read the data from the memory resource A computational re-
source accesses a memory resource via I/O interfaces such as PCle and must perform address
processing on the access data. Then, read processing is performed in the memory resource, and
the data are transferred to the computational resource. Therefore, the processing time required to
read the data from the memory resource is the sum of the I/O processing time 7/ of the resource in
computational resource pool ¢ € N, processing time 77 of the resource in memory resource pool
m € N™, and communication delay 7' g7m,7p required to transmit the data from a memory resource

mapped to m’ € NV to a computational resource mapped to ¢ € NV in process p € NP.

Ty = Tomp+ 23 (00 T+ 0 T 2.3)
j S

where ¢ and m? denote the computational resource and memory resource on node j € NN*, respec-
tively. The communication delay Tg mlp is the sum of the time required to obtain the head of the
page and the transmission delay. In process p € NP, the communication delay Tj mp required to

transmit the data from a memory resource mapped to m’ € NV to a computational resource mapped

to ¢ € NV is obtained as follows:

. 5N Vi
d _ ZJENS g n l f
Tc/,mlyp - { ( B > Up + Terl m/zp} " Op

where e, ,,, denotes the link between nodes d,m' e NY. Y JENS 5(]){ e V; denotes the page size
of the computational resource mapped to ¢ € NV because d; = 1 only if ¢’ is mapped to a
computational resource in node j € N°. Téz/ P denotes the latency in the path mapped to ey, .,
in process p € NP. In a resource graph link ¢/ € EV and process p € NP, T 61, p 1s obtained as

follows:
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- ¥ Y (me1s,,)]

1,JENS yeR; ecy

where 1 denotes the source node of link e € E* when reading data from memory. 772 denotes

the propagation delay in link e, and 773 denotes the switching and buffering delay in transferring

e%hep
the data of process p from node n3° to link e.

The switching and buffering delays depend on the type of switch. For a packet switch, buffering
is required to avoid packet collisions if the link is busy. Therefore, we model it as the sum of the
switching process delay and the buffering delay. For a circuit switch, we consider only the switching
delay because buffering does not occur. The switching and buffering delay 777 . , is obtained as

follows:

N if nis circuit switch

TNATE(NE,, ., NO,TN) if nis packet switch

€7n7p7

TS —

n767p_
where A, ., denotes an estimate of the packet rate to link e after resource allocation in node

n. Agnp 18 the sum of the current packet rate A, on link e € E° occurring from node n € N*

and the packet rate A}, from the memory to a computational resource in process p € NP, that is,

Nomp = Aot AL.

e7n7p

TE(x

enpr Ve TN) is a function that returns the buffering time in node n € N* based on three

e

arguments: an estimate of the packet rate A , ,

to link e at node n, the number of links forwarding
packets N2, and the switching delay 7'V at the node. We estimate the buffering time by using the
M/D/C queuing model. This is because the communication of each resource pair occurs randomly
and the size of the packet processed by a switch does not change. We assume buffering as a situation
where packets arriving according to the Poisson process are waiting to be processed until one of the
C links that can process them in a fixed time D is ready to forward them. However, obtaining
an accurate response time using the M/D/C queuing model is difficult. We use the approximation
from [33]. T.F()\, J, D) is obtained as follows:
{1492\, J,D)g?(\,J,D) }hP (A, J,D)

TE(X, J,D) = 5 :
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where

1-22)(J-1)(Va+5T-2
2, J, D) = W)U D(VEST2)

. J—1
g\, J,D) =1~ exp{—m} ’

J—1 -
0 _ _D-(D)’ (AD)’ (D)’
PO D) = ey {Zo IRRCEON

2.44 Resource allocation problem

At the edge, task execution requests are made continuously, and resources are allocated.

To execute many tasks in such an environment, the resources required for future task requests
must remain available at the appropriate time. Therefore, we avoid allocating important resources
that may be required by future requests. In this chapter, to avoid the allocation of important re-
sources, we define the resource allocation cost based on the importance of the resources to future
resource requests and minimize the costs of the allocated resources under the constraint that the
performance requirements are satisfied.

In the remainder of this section, we first define the allocation costs. Thereafter, we define the
resource allocation problem based on the defined costs and the execution time model of the task

defined in Section 2.4.3.

Resource allocation costs

Here, we define resource allocation costs for computational resources, memory resources, and net-
work links.

Computational resources that can execute tasks with the minimum acceptable processing times
are important. In addition, computational resources in resource pools that accommodate numer-
ous resources are important because they can execute tasks that demand substantial computational

resources. Therefore, we define the cost as the product of the available computational resources
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and FLOPS. The allocation cost WS of computational resources in the computational resource pool

¢ € N€ is obtained as follows:

We=Cs- K. (2.4)

A memory unit with several available memory blocks can execute tasks that require extensive
memory resources. The allocation cost W' of a memory resource in the memory resource pool
m € N™ is obtained as follows:

W = MS. (2.5)

Network links that are likely to be used as paths between important resources are important.
In addition, finding the shortest path is important to satisfy performance requirements because it
minimizes communication delays between resources. Therefore, we increase the cost of network

links which are possibly the shortest paths between critical resource pairs.

We define the possibility to be a network link on the shortest path as the ratio of the number
of shortest paths between resources to the number of shortest paths through that network link.
The larger this value, the higher the probability that it is the shortest path. When a resource in
computational resource ¢ € N° and a resource in memory resource m € N are paired, the

possibility of being a network link on the shortest path between resources in resource pool ¢ and m
Uem(€) 1S
Uc m(e) = Ng,m(e) :
gl Ng;m
where N_,,, denotes the number of shortest paths between resources in resource pools ¢ and m, and

N{ . (e) denotes the number of shortest paths between resources in resource pools ¢ and m passing

through network link e.

If the resources are close to each other and are of high cost, they are an important resource pair.
Therefore, when a resource in computational resource ¢ € N¢ and a resource in memory resource
m € N™ are paired, the importance of the resource pair v, is

we. wm

Vem = H
cm

)
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where H. ,, denotes the smallest hop count between resources in resource pool ¢ and m.

The allocation cost WS of link e is obtained as follows:

> Uem(€) - Ve € ¢ Edle
We = ceNemeN™ 7 (2.6)

€ e € Fale

where E%¢ denotes the set of network links that are already allocated. € is a small cost defined for

the links used by previously started tasks. By using € instead of 0, we avoid allocating large paths.

Defining resource allocation problem

We define a resource allocation problem to avoid allocating resources required by tasks in the future.
In this problem, the network information of the uDDC and resource allocation request is given;
this outputs the mapping 6%, §¥ between the requested resource and allocated resource defined in

Sections 2.4.3 and 2.4.3.

Resource mapping constraints A request graph node is mapped as a node, and a request graph

link is mapped as a path in the uDDC network as follows:

Vie NY, Yicns0l5=1" 2.7

Vx € EV,Vk,s € N®,
> Oy = 5%%’6 O

n¥d.s
yeRk,s T

(2.8)

where n2° and n? denote the source and destination nodes of link z € EV from memory to com-

putational resources.

Resources other than those available in the resource pool cannot be allocated, which can be

represented as follows:

Vee N C8 =3 e 0, >0 - (2.9)
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VYm e N™, M5 =3 cne 0N, >0 . (2.10)

m/m =

Time constraints All tasks in provided services must be executed within an acceptable time;

therefore,

vte S, T <T¢ (2.11)
Objective In this method, resources are allocated to minimize the costs, that is,

minimize Y cne dgeow 5(];\/70(ch)+
Y omenm Somrenre oot m (W) + (2.12)
Zz’,jENS ZyERi,j 1ZzeE“ 6£,>0 <Ze€y Ws)} ’

where 121613‘” 5E >0 is1when)  _po (5£y > 0 and 0 otherwise.

Solving this problem enables a uDDC to avoid allocating resources required by future tasks
while satisfying the performance requirements of the tasks: this is a binary combinatorial optimiza-
tion problem. A resource allocation problem based on a binary combinatorial optimization problem
has been proven to be NP-hard and metaheuristic methods have been used to solve such prob-
lems [34]. We solve this problem using ant colony optimization (ACO). ACO can respond flexibly
to changes in the environment [35]. ACO is suitable in DDCs where flexible resource utilization is
available and a network is likely to change. However, any method that can find a solution can be

used.

2.4.5 Resource allocation based on ant colony optimization

We solve the resource allocation problem defined in Section 2.4.4 based on ACO; however, any
method that can find a solution can be used.

ACO is a population-based metaheuristic method in which multiple agents probabilistically
search for a solution. First, pheromone values are assigned to candidate resources. The higher the
pheromone value of a resource, the more likely it is to be selected by the agent. After multiple

agents probabilistically search for a solution based on pheromones, the optimal solution is selected
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from among the searched solutions. Finally, the pheromone value of the resource in the optimal

solution is increased. These processes are repeated multiple times.

A resource allocation method based on ACO (VNE-AC) has already been proposed [34]. How-
ever, VNE-AC targets traditional architectures and does not target uDDC. In traditional architec-
tures, there is no need to consider performance degradation due to communication delays between
resources, unlike pDDC. Therefore, VNE-AC does not consider the impact of the network on the
performance of tasks. From this difference, we arrange and use VNE-AC in terms of network link
allocation to solve our resource allocation problem. Note that VNE-AC allocates network links by
solving the shortest path problem. Because the impact of the network on performance is nonlinear,
it is difficult to make optimal allocations based only on the shortest path. We use ACO for network
link allocation as well as to consider the impact of the network on performance. The processing
steps for each agent include the (1) resource search, (2) network link search, (3) execution time
calculation, and (4) pheromone update phases. These steps are repeated " times. To reduce un-
necessary searching, if the allocation cost is greater than the current best solution during the search,
the resource allocation of the agent is rejected at that time. The notation used in the following

equations is listed in Table 2.4.

Table 2.4: Notation of resource allocation based on ant colony optimization.

Symbols Definition
T Pheromone of resource r

o} Pheromone weight

I} Resource allocation cost weight
p Pheromone decrease rate
¢

H

Pheromone increase rate
Maximum number of network link search

titr Number of search iterations

ce Set of candidate computational resources

Med Set of candidate memory resources

Bl Set of all candidate links adjacent to node n

c? Set of computational resources in current best solution
MPb Set of memory resources in current best solution

Eb Set of links in current best solution
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Resource search phase

In this phase, an agent probabilistically allocates the resources corresponding to the nodes in the
resource graph from the available resources. Because we aim to find a low-cost solution, we set
a high allocation probability for a low-cost resource. We define the allocation probabilities pS and
piv for computational resources in the resource pool ¢ € C* and memory resources in the resource

pool m € M? as follows:

wrlap) . _crlz)

wé)s (Wi)B

pe= —T» Pm = ’

2 eced {(TI)QW 2 penred (Tz)“W

where o > 0 and 3 > 0 denote the weight of the pheromone and the cost, respectively. C

and M denote the sets of candidate computational and memory resources, respectively. 7., T,

and 7,,, denote the pheromone of the resource z, ¢, m, respectively.

Network link search phase

In this phase, the agent searches for paths between the resources selected in the resource search
phase. To search for these paths, the agent generates subagents. Each subagent probabilistically
allocates paths corresponding to links in the resource graph from the links in the pDDC. The search
is performed starting with the source resource. First, the link from the source resource is selected.
The next link from the destination node of the first link is then selected. This process continues until
a link to the destination resource is identified. At each step of this process, a link e € E*° is selected
based on the probabilities p.,, in node n € N°. Note that if a route between resources cannot be
determined in the Hth search, the search is terminated because the communication delay increases

as the route length increases.

@ 1
(re)” twere

ZzeE%d {(Tx)a W}

Pen =

Here, o > 0 and 8 > 0 denote the relative importance of the pheromone and the cost, respectively.

Efld denotes the set of candidate links adjacent to node n, and 7, and 7, denote the pheromones of
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the links z, e, respectively.

Execution time calculation phase

After finding the resources, the agent determines the predicted execution time for tasks whose
performance is affected by latency due to network link allocation. This value is derived from the
equation presented in Section 2.4.3. If the predicted execution time is less than or equal to the
acceptable time, this may be a solution. When one task is allocated, communication occurs between
the newly allocated resources, which may increase communication delays between other resources.
This calculation is performed for the requested task and all other executing tasks whose performance
is affected by resource allocation because all tasks allocated to the ©uDDC must be able to complete

processing within an acceptable time.

Pheromone update phase

After obtaining the resources, the agent updates the pheromone based on the pheromone decrease
rate, p (0 < p < 1). The pheromones of the resources and links of the best solution for each
iteration are enhanced based on the pheromone increase rate ¢ and resource allocation cost. The

pheromone-enhanced value h is obtained as follows:

h = .
Zcecb WCC+Z'rrLEA/Ib W$+266Eb Wg

where C?, M?, and E® denote the sets of computational resources, memory resources, and links,

respectively, in the resource allocation with the smallest cost.

Using these values, we update the pheromones for each resource in the computational and

memory resource pools ¢ € N¢ m € N™, and each network link e as follows:

Te = pTe+h, T =pTm +h, 7e=pre+h
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2.5 Evaluation

We evaluated RA-CNP by simulating the puDDC networks. First, we discuss the effectiveness of
the resource allocation problem defined in Section 2.4.4 by evaluating the optimal solution in a
small network. Thereafter, we discuss the evaluation of RA-CNP in the networks of the scale that
we envisioned. Finally, to demonstrate the practicality of RA-CNP, we investigate whether the

resource allocation problem can be solved within a feasible computational time.

2.5.1 Environment

Here, we describe the evaluation networks, resource requests, and comparative methods used to

evaluate RA-CNP.

Network

In this chapter, we considered uDDCs with 20-552 computational resources. This scope is similar

to the number of servers in the data center we assumed.

Fig. 2.6 shows the network structures used in the performance evaluation. These networks
are composed of resource pools containing multiple resources and switches. Each CPU pool had
16 computational resources, and each memory pool had 24 memory resources. We assumed a 2D
torus interconnect because this topology is widely used and can be configured at various scales.
We connected each resource pool to a switch. When connecting the resource pools, we avoided
adjacent switches connected to the same resource type, such that many types of resources could be

connected with a short path.

Optical packet switches and optical circuit switches have been proposed for resource disaggre-
gation networks [7, 11]. In this chapter, we evaluated two cases: one configured with optical packet
switches (packet switch network) and the other configured with optical circuit switches (circuit

switch network).
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Figure 2.6: Networks used in evaluation.

We set the parameters of the 4DDC network as listed in Table 2.5. CPU_A represents an Intel®
Xeon® W-3335 processor, CPU_B represents an Intel® Xeon® Silver 4314 processor, and GPU
represents an NVIDIA GeForce RTX 3090. We used these values to calculate the execution time
of the task and the resource allocation cost. We referred to the I/O latency and memory latency
measured in [7]. In addition, we referred to the optical circuit switch proposed in [7] and the optical
packet switch proposed in [11]. The bandwidth of each link was set to 10 Gbps based on these
studies. Each link length was assumed to be 5 m, and the propagation delay was set to 0.025 us.

The page size was set to a default size of 4 KB.

Table 2.5: Parameter settings for network.

Parameters Value
CPU_A FLOPS 108.8 GFLOPS
CPU_A clock speed per core 3.4 GHz
CPU_B FLOPS 76.8 GFLOPS
CPU_B clock speed per core 2.4 GHz
GPU FLOPS 35.7 TFLOPS
GPU clock speed per core 1.7 GHz
Memory processing time 50 ns
I/O processing time 350 ns
Propagation delay 0.025 ps
Switch latency of the optical circuit switch 5 ns
Switch latency of the optical packet switch 550 ns
Page size 4 KB
The bandwidth of each link 10 Gbps
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Resource allocation request

Resources are requested when a task execution request arrives at the yDDC. In this chapter, we
assumed that tasks for two services are executed. One is image classification for face recognition
using ResNet [36] (service 1) and the other is real-time object identification for automated driving
using YOLO [37] (service 2). YOLO and ResNet are commonly used machine learning models for
real-time object identification and image classification, respectively. In addition, these are typical
of services running at the edge [21], making them prime candidates for being offered as services by

a data center located at the edge [38].

All tasks include three processes: Process 1 selects the resource to execute the task, Process
2 loads the required data, and Process 3 executes the main process in the task. Considering the
roles of the processes, we allocate the same memory resources to Processes 1 and 2 and the same
computational resources to Processes 2 and 3. In addition, Processes 1 and 2 use small amounts of
data and do not cause page faults. The parameters for each process, such as clock count and number
of page faults, were set on the basis of values obtained by running the task using an Intel(R) Xeon(R)
CPU E5-2687W. The parameters for each task are shown in Table 2.6. We generate four types of

resource requests for each task, with different acceptable times and required resources.

* Request type 1: Resource request for service 1 with a long acceptable time

* Request type 2: Resource request for service 2 with a medium acceptable time

* Request type 3: Resource request for service 2 with a short acceptable time

* Request type 4: Request for service 2 that requires a GPU with a very short acceptable time

All resource request types have the same structure, shown in Fig. 2.5. We demonstrate the effec-
tiveness of RA-CNP in various cases by changing the required resources and acceptable time. Table
2.7 shows the pattern of the number of resources required for evaluation. Acceptable time values

are shown in Table 2.8.
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Table 2.6: Parameter settings for task.

Service 1 | Service 2
Process 1
Clock count 0.035 0.035
Packet rate to memory (/ms) 0.00033 0.0020
Packet rate from memory (/ms) | 0.00033 0.0020
Process 2
Clock count 0.054 0.054
Packet rate to memory (/ms) 0 0
Packet rate from memory (/ms) | 0.00033 0.0020
Process 3
Clock count 2371.33 1960.36
Packet rate to memory (/ms) 1.87 1.90
Packet rate from memory (/ms) 3.71 343
Number of page faults 67543.25 | 56661.29
Number of pages per page fault 5.27 4.84

Table 2.7: Number of resources required for each request type.

Process1(Request type 1/2/3/4)

1717111

1/1/1/1

1717111

1/1/1/1

1717111

171717171

1/1/1/1

Pattern A Pattern B Pattern C Pattern D
computational | memory | computational | memory | computational | memory | computational | memory
resources resources resources resources resources resources resources resources
Total(Request type 1/2/3/4) 212212 2/2/2/3 4/4/4/2 4/4/4/3 7111712 7111713 10/10/10/2 10/10/10/3

1/1/1/1/1

Process2(Request type 1/2/3/4) | 1/1/1/1(GPU) | 1/1/1/1 | 3/3/3/1(GPU) | 1/1/1/1 | 6/6/6/1(GPU) | 1/1/1/1 | 9/9/9/1(GPU) | 1/1/1/1
Process3(Request type 1/2/3/4) | 1/1/1/1(GPU) | 1/1/1/2 | 3/3/3/1(GPU) | 3/3/3/2 | 6/6/6/1(GPU) | 6/6/6/2 | 9/9/9/1(GPU) | 9/9/9/2
Table 2.8: Acceptable time for each request type.
Request type 1 | Request type 2 | Request type 3 | Request type 4
Pattern 1 1000 ms 500 ms 250 ms 200 ms
Pattern 2 500 ms 300 ms 200 ms 180 ms
Pattern 3 500 ms 250 ms 150 ms 100 ms

Compared methods

We compared RA-CNP with two resource allocation methods. The results of these methods were
obtained using ACO, the parameters of which are shown in Table 2.9. The two compared methods

are described below.

Resource allocation using the shortest path (SP) This method allocates resources based on the

shortest path between them. To achieve this allocation, the link cost is defined as WS
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This method is extremely simple, and we used it to evaluate whether simple routing is sufficient

for DDC resource allocation.

Resource allocation by considering network performance (NP) This method allocates paths
based on low traffic volumes and short path lengths between computational and memory resources.
It allocates resources by focusing on performance and corresponds to the resource allocation policy
proposed by Zervas et al. [7] and Amaral et al. [14]. The NP solution is obtained by identifying the
solution with the minimum cost by setting the cost of link e € E® with node n € N*® as the source
as follows:

Aen

s
we = Ngere + Dij
e,n —  )\max Dmazx

where \"*** denotes the maximum traffic volume, D; ; denotes the SP length from node i € N* to

node j € NY, and D" denotes the maximum path length between any two resources in a uDDC.

Table 2.9: Parameter settings for ant colony optimization.

Parameters Value
Number of agents 20
Number of agent generations | 20
Pheromone decrease rate 0.1
Pheromone increase rate 100
Pheromone weight 2
Allocation cost weight 1
Initial pheromone value 1000

2.5.2 Optimal solution of RA-CNP

We determined the optimal solution of RA-CNP by finding the solution among all solutions (here-
after called BFS) with the solutions of other allocation methods to demonstrate the effectiveness of
RA-CNP. In a uDDC, the ability to execute many tasks simultaneously using limited resources is
desired. Therefore, we investigated how many resources were ultimately allocated by generating

resource requests up to the limit of allocation.
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In addition, we investigated whether the solution of RA-CNP could be derived using ACO. We

compared the solutions obtained using ACO and BFS.

Network

We used a small uDDC network, as shown in Fig. 2.6a, because of the significant computational
time required to obtain the solutions of BFS. Furthermore, if the number of resources in the re-
source pool is large, a significant amount of time is required to obtain the solutions of BFS. In this
evaluation, we reduced the number of resources in the resource pool. Each CPU pool had six com-
putational resources, and each memory pool had six memory resources. Note that for the packet
switch network, the number of links between a given pair of nodes was set to one; for the circuit
switch network, the number of links between a given pair of nodes was set to three to allocate more

tasks.

Resource allocation request

In this evaluation, the acceptable time for each request corresponded to Pattern 1 in Table 2.8. The
number of computational and memory resources required for each request per process was set as
listed in Pattern A of Table 2.7. We generated resource requests up to the number of tasks that could
be executed in the uDDC. The number of generated resource requests were the two patterns listed

in Table 2.10. The order in which the requests arrived in each case was uniformly random.

Table 2.10: Number of requests generated in each pattern.

Request type 1 | Request type 2 | Request type 3 | Request type 4 | Total
Generated pattern 1 4 2 2 2 10
Generated pattern 2 2 2 4 2 10
Metrics

We measured the worst-case resource utilization and total allocation cost.
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Worst-case resource utilization We investigated whether RA-CNP could allocate resources to a
limit. Therefore, we measured resource utilization after the allocation of resource requests in Table

2.10.

Memory resource utilization u© and computational resource utilization v’ are defined as fol-

alc alc .
lows: v = “om and u® = 7. ¢ and m® denote the computational and memory resources

ale and m®¢ denote the allocated computational and memory re-

in a uDDC, respectively, and ¢
sources, respectively. We assumed that a request is blocked if the resources required to satisfy the
performance requirements cannot be allocated; that is, if some of the requests are dropped, resource
utilization becomes small. In this evaluation, the number of requested computational resources
is the same as the number of computational resources in the network. Therefore, if all requests

are accepted, the computational resource utilization becomes 100% and no more requests can be

accepted.

Total allocation cost To compare the solutions obtained using ACO and BFS, we measured the
total allocation cost. If the total cost of the solution obtained using ACO was the same as that

obtained using BFS, we concluded that ACO derived the optimal solution for RA-CNP.

The total allocation cost is the sum of the costs of the resources allocated to all generated

T

requests. The total allocation cost W is defined as follows: W = Y reRrea Wale, Rred is the

set of generated requests, and W%/ is the resource allocation cost for request 7.

Result

Fig. 2.7 shows the worst-case resource utilization according to 10 measurements in two cases: the
packet and circuit switch networks. In this evaluation, when all generated requests were allocated,
the resource utilization of computational resources was 100% and it was impossible to allocate
more resources. Fig. 2.8 shows a comparison between the allocation costs of the solutions obtained

using ACO and BFS.
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Figure 2.7: Worst-case resource utilization and number of blocked requests in each pattern.
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Figure 2.8: Total allocated cost per request sequence in BFS and RA-CNP.

As shown in Fig. 2.7, RA-CNP had 100% worst-case computational resource utilization without
blocking resource requests in the packet switch network and the circuit switch network. By contrast,
SP and NP did not have 100% worst-case computational resource utilization because they caused
blocking in some cases. This is because the resources and paths required to execute the task have
been exhausted as a result of not considering future requests. RA-CNP derived the optimal solution
in a situation in which other methods caused blocking, regardless of the switch type.

In addition, Fig. 2.8 shows that allocation costs similar to those in the solution obtained using
BFS can be achieved using ACO. Hence, ACO can identify one of the best solutions to the resource
allocation problem. In the following evaluation, we compared RA-CNP derived using ACO with

that of other methods.

2.5.3 Effectiveness of RA-CNP

We demonstrated that RA-CNP could execute many tasks from the current network information,

regardless of the switch type composing the network. Therefore, we compared RA-CNP with the
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two resource allocation methods in two cases: the circuit and packet switch networks.

Network

We used two uDDC networks of different scales: 6 x 6 and 8 x 8 2D torus networks, as shown
in Fig. 2.6b and Fig. 2.6¢, respectively. Each CPU pool had 16 computational resources, and each

memory pool had 24 memory resources.

In this chapter, we used multicore optical fibers. For this evaluation, the nodes were connected
via multicore optical fibers with four optical fiber cores, i.e., the number of links between a pair of

nodes was four.

Resource request

We continuously generated the requests listed in Table 2.6 for 300 min. The lifetime of each task
was 90 min. In this evaluation, we set the probability that request types 1, 2, 3, and 4 were generated
to 0.3, 0.3, 0.3, and 0.1, respectively. We evaluated RA-CNP in four cases to demonstrate its

effectiveness in various situations. Each case is shown below.

* Case 1: Neutral case for comparison.

* Case 2: Case in which many resources are required per resource request.

* Case 3: Case in which the performance requirements of requests are strict.

* Case 4: Case in which requests arrive frequently.

The combination of generated requests, required resources, and performance requirements for
each case is shown in Table 2.11. Because the 8 x 8 2D torus network holds more resources, we

allocated more resources to compare the methods.
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Table 2.11: Combination of generated requests, required resources, and performance requirements
for each case.

6 x 6 2D torus network 8 x 8 2D torus network
Generated | Required resources | Performance requirements | Generated | Required resources | Performance requirements
requests (Table 2.7) (Table 2.8) requests (Table 2.7) (Table 2.8)
Case 1 120 Pattern B Pattern 1 150 Pattern C Pattern 1
Case 2 120 Pattern C Pattern 1 150 Pattern D Pattern 1
Case 3 120 Pattern B Pattern 3 150 Pattern C Pattern 3
Case 4 170 Pattern B Pattern 1 200 Pattern C Pattern 1

Metrics

We defined blocked requests as a metric to evaluate whether RA-CNP could allocate many tasks,
which refers to the number of requests that could not find resources to satisfy their performance

requirements. A larger number of blocked requests implies that resource allocation is insufficient

to accommodate many requests.

Result

We measured the blocked requests for the five request sequences for each case in two networks: the

packet switch network and the circuit switch network. Fig. 2.9 illustrates the blocked requests for

each allocation method.
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RA-CNP had fewer blocked requests than the other methods, regardless of network and case.
By contrast, blocking occurred in SP and NP, even in environments where blocking did not occur
in RA-CNP (case 4 of Fig. 2.9a). This difference is attributed to the availability of resources when
requests require several resources. SP does not consider future requests and cannot accommodate
requests with strict performance requirements. As shown in case 4 in Fig. 2.9a and Fig. 2.9c,
Request type 4, which had the strictest performance requirement, was blocked. NP preferentially
allocated paths between resources with low communication delays, regardless of the performance
requirements of the request. Consequently, resource pairs that can satisfy performance requirements
were depleted. In particular, NP caused more blocking in the packet switch network for cases 1, 2,
and 4 than did the other methods. These blocks are attributed to packet switch processing delays
being large and the likely depletion of resource pairs with small communication delays. RA-CNP
can allocate more tasks than other methods in various environments by allocating resources in

consideration of future requests. At the assumed uDDC scale, RA-CNP was effective.

A comparison of Fig. 2.9a and Fig. 2.9b in RA-CNP shows that the packet switch network
was superior in cases 2 and 4 and that the circuit switch network was superior in case 3. In cases
2 and 4, because many resources were requested, many resource pairs existed for communication.
Therefore, in the circuit switch network, where network links are occupied, the paths between
resources are depleted. In case three, the processing delay of the packet switch was too large to
satisfy the performance requirements of the tasks. By contrast, a comparison of Fig. 2.9¢ and
Fig. 2.9d shows that the circuit switch network could allocate more tasks in all cases because more
resources were held than requested. In such cases, the circuit switch network, which can reduce
communication delays between resources, has more resource pairs that can satisfy the performance

requirements.

2.5.4 Computational time for resource allocation by RA-CNP

For practical resource allocation, RA-CNP must allocate resources within a practical computational

time at various uDDC scales. We have presented an example solution based on ACO in Section
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2.4.5. We evaluated the computation time when solving using ACO. We investigated the relation-
ship between the computation time and the factors involved in the computational complexity of each

step, as shown in Section 2.4.5, as the computational time depends on computational complexity.

Computational complexity of Resource allocation based on ant colony optimization

The resource allocation process is divided into four steps. The computational complexity for each

step is shown below. Note that each symbol is based on Tables 2.3 and 2.4.

Resource search phase This phase continues until resources are found for all nodes in the re-
source graph. For each requested resource, one agent selects resources from each resource pool.
Therefore, the computational complexity per agent in this phase is the product O(R*(|C?|+ |M"]))

of the number of requested resources |C"| 4 | M| and number of resource pools R*.

Network link search phase In this chapter, because the resource graph connected all memory and
computational resources in the same process, the number of allocated paths was O(|C"||M"|). As
described in Section 2.4.5, the network link search is repeated a maximum of H times for each link
in the resource graph. However, H is a constant parameter for ACO. Therefore, the computational

complexity per agent in this phase is O(|C"||M"|).

Execution time calculation phase This calculation is performed for the requested task and tasks
whose performance is affected by resource allocation. Let A%9 be the number of tasks affected by

resource allocation. The computational complexity per agent in this phase was O(A%9).

Pheromone update phase Pheromones are updated on all resource pools and network links in
the uDDC. Therefore, the computational complexity is the sum O(R® + |E®|) of the number of
resource pools R® and network links | E*|.

We summarize the computational complexity of each step in Table 2.12. This series of phases is
iterated t*" times. However, " is a parameter for ACO. This value is constant and does not affect

the computational time. R® and E° depend on the network scale, whereas C¥ and M depend on
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the number of requested resources. A9 increases as more tasks are allocated. We investigated
whether computational time can be practical for the number of required resources, the number of

accommodated requests, and the uDDC network scale.

Table 2.12: Computational complexity in each phase.

Step computational complexity
Resource search phase O(R*(|C"| +|M"]))
Network link search phase o(|C"||M”))
Execution time calculation phase | O(A%9)
Pheromone update phase O(R® + |E?|)

Impact of the number of required resources on allocation time

Environment We used the DDC network shown in Fig. 2.6b. The number of resources for request
types 1, 2, and 3 shown in Table 2.7 was changed to five patterns, as shown in Table 2.13. In each

measurement, 100 requests were randomly generated within 300 min.

Table 2.13: Number of resources required in resource allocation request.

Resource request pattern 112345

Required computational resources | 2 |4 | 6 | 8 | 10
Required memory resources 21416810

Result Fig. 2.10 shows the relationship between the required resources and allocation time in the
packet switch and circuit switch networks. The 95% confidence interval is included in Fig. 2.10.

In both networks, the allocation time increased almost linearly with the product of the required
number of computational and memory resources. This result matches the computational complexity
of the network link search phase O(|C"||M"|). RA-CNP required less than 10 s, even when 10
CPUs and 10 memory blocks were requested, which is considered acceptable for resource allocation
before task execution.

In addition, the rate of increase in the allocation time differed between the circuit and packet
switch networks. Each agent stops searching for resources if the currently selected resource alloca-
tion cost becomes greater than the current best solution. This means that if a low-cost solution can

be found, the search time can be significantly reduced. In packet networks, the number of candidate
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network link is greater than the number of circuits because link sharing and aggregation are also

possible. Consequently, the increase in computational time is high in the packet switch network.

=
o

—— Packet switch network
|l —— Circuit switch network
—— 95% confidence interval

[ee]

Pattern 5

Pattern 3

Pattern 2
Pattern 1

Average allocation time (s)

0 20 40 60 80 100
Product of required computational and
memory resources

Figure 2.10: Number of required resources and allocation time.

Impact of the number of accommodated requests on allocation time

Environment We used the uDDC network, as shown in Fig. 2.6b. In this evaluation, the number
of resources required for each request was set according to Pattern 2 in Table 2.7. We changed the
number of generated requests to investigate the effect of the number of accommodated requests.

Table 2.14 lists the number of generated requests. Resource requests were generated randomly.

Table 2.14: Number of generated resource allocation requests.

Generated request pattern | 1 2 3 4 5
Generated requests 150 | 180 | 210 | 240 | 270

Result Fig. 2.11 shows the relationship between the number of accommodated requests and allo-
cation time. The 95% confidence interval is included in Fig. 2.11.

Fig. 2.11 shows that there was no significant difference in the allocation time in each case.
First, because links are not shared in the circuit switch network, they are not affected by an increase
in the number of requests. In addition, the number of requests sharing the same link is limited to
prevent incurring a large latency between resources in the packet switch network. The number of

accommodated requests only has a limited impact on computational time.

—50 -



Chapter 2. Resource Allocation Considering Impact of Network on Performance

=
o

—— Packet switch network
—— Circuit switch network
— 95% confidence interval

T

T
1

Pattern1  Pattern2  PatteM 3 patfern 4 pattern s

Average allocation Time (s)

0 } } } } | }
80 100 120 140 160 180 200 220
Number of generated requests

Figure 2.11: Number of resource allocation requests and allocation time.

Impact of DDC network scale on allocation time

Environment We used 5 X 5,6 x 6,7 x 7, and 8 x 8 2D torus networks. The parameters for
each structure are listed in Table 2.15. In this evaluation, the number of resources required for
each request was set according to Pattern B in Table 2.7. In each measurement, 100 requests were

generated within 300 min.

Table 2.15: Parameter settings for each network.

2D torus network S5X5|6x6|7x7|8x8
Switches 25 36 49 64
CPU pools 12 18 24 34
GPU pools 5 6 7 8
Memory resource pools 8 12 18 22
Links 75 108 | 147 | 192

Result Fig. 2.12 shows the impact of the scale of the uDDC network on the allocation time. The

95% confidence interval is included in Fig. 2.12.
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Figure 2.12: Network scale and allocation time.

Fig. 2.12 shows that the allocation time quadratically increased with the number of resource
pools and links R® + | E*|. This result does not match the computational complexity of the resource
search and pheromone update phases in Table 2.12. Because the scales of the 5 x 5 and 6 x 6
2D torus networks are small, the number of candidate resources is small. Therefore, RA-CNP can
find the solution quickly, thereby reducing the computational time. Conversely, as the scale of
the network increases, the reduction in computational time may be slight. Consequently, a large
difference occurs in the computational time. However, even in the case of an 8 x 8 2D torus, the

computational time is less than 6 s.

2.6 Conclusion

uDDCs improve resource utilization and scaling flexibility. However, network significantly influ-
ence task performance, and an efficient resource allocation method is required. We modeled the
impact of allocated resources on task performance and defined the resource allocation cost, con-
sidering future resource requests. We then defined the resource allocation problem and resource
allocation based on this model and costs RA-CNP. In RA-CNP, by avoiding unnecessary allocation
of important resources, we can preserve these resources to fulfill future requests and execute more
tasks simultaneously.

We conducted simulations to evaluate the effectiveness of RA-CNP. The results demonstrated
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that RA-CNP could allocate more tasks than other methods in various environments. This method
enables the execution of many tasks in a uDDC and the evaluation of architectures. Finally, we
measured the allocation time of RA-CNP and demonstrated that this method can allocate resources

within a practical time.
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Chapter 3

Optical Network Topology Design to
Execute Many Tasks Simultaneously in

Micro Disaggregated Data Center

3.1 Introduction

In recent years, cloud computing has enabled a plethora of services. Despite its benefits, cloud
computing faces problems (e.g., communication delays to users and increased network traffic).
Edge computing has emerged as a solution to these problems [1]. We employ micro data centers
located at the network’s edge to mitigate latency and traffic concerns [4,39]. However, micro data
centers often have fewer CPUs, GPUs, and memory, compared to their cloud data centers. Thus,
efficient resource use is crucial for delivering many services at the edge.

Flexibility in resource management per task is important for efficiency. Conventional data cen-
ter architectures aggregate multiple resources within each server. This hinders flexible resource
management [24]. For example, allocating four tasks, each requiring two cores and 4 GB of mem-
ory, to a server with a 16-core CPU and 16 GB of memory renders half of the CPU cores unusable
owing to memory constraints. Resource disaggregation offers a solution for such inefficient re-

source use [6]. In resource disaggregation, by decoupling resources (e.g., CPU and memory) into
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independent units connected via a network. In such micro disaggregated data centers (#DDCs), re-
sources are no longer confined to servers, allowing tasks to use only the necessary resources. This
approach improves resource utilization [8]. Therefore, we configure a uDDC that could execute
many tasks simultaneously.

In uDDCs, after resources are selected to execute a task, the task is executed via communication
between the execution resources. Because resources are connected by a network, the task execution
time increases owing to communication delay between resources. Communication delay occurs
whenever data are exchanged, which is conventionally handled by the motherboard. These types of
communications frequently occur, and network latency has a significant impact on task execution
time. According to measurements, resource communication delays in certain networks can increase
task execution time by a factor of two or more [9]. Therefore, if the network architecture is not
appropriate, resource allocation for a task is constrained due to the inability to satisfy performance
requirements. We aimed to construct an optical network topology for a uDDC that prevents resource
allocation from being constrained by the network even if many tasks are executed simultaneously.

Because the communication delay can impact task execution time, maintaining low-latency
communications is vital to satisfy task performance requirements. Networks based on optical circuit
switches (OCS) are particularly effective for achieving low latency. They establish direct end-to-end
paths for optical signals. Thus allowing high-bandwidth communication at the speed of light with
negligible jitter [40]. Several DDC networks using OCS technology have been proposed [7,15,41].
However, OCS lacks packet switching functionality. This implies that the number of resource pairs
that can simultaneously establish end-to-end paths for optical signals (i.e., optical paths) is limited,
as transmission paths are dedicated to these optical connections. Optical packet switches (OPS)
have been proposed as a solution for DDCs offering a compromise between delay and switching
speed [11, 12]. Although OPS incurs higher delay compared to OCS, it achieves faster switching
than conventional electrical packet switches (EPS). Therefore, enhancing resource allocation flexi-
bility without significantly reducing performance. Furthermore, networks that integrate both OCS
and packet switches (PS), such as OPS and EPS, have been developed [42]. These hybrid networks
combine the low-latency communication benefits of optical networks with the flexibility of packet

switching, crucial for efficient resource management in a DDC.

— 56 —



Chapter 3. Optical Network Topology Design

The network topology plays a pivotal role in task execution within a DDC. In OCS-based net-
works, where optical paths monopolize transmission paths, a topology that enables communication
between resources without being hindered by path dedication is required. Conversely, in networks
using PS, where the traffic capacity of each PS port is a limiting factor, a topology that prevents traf-
fic concentration in specific locations is required. To satisfy the performance requirements of tasks,
each pair of communicating resources must be proximately located within the network topology,
ensuring efficient task execution. An efficient network topology is crucial for managing multiple
tasks effectively in a DDC.

Such a topology should ensure ample transmission paths for routing between resources, while
also positioning resource pairs close enough to satisfy performance requirements. While there are
existing network topology designs tailored for conventional data centers, these are insufficient for
the unique demands of a DDC. In a DDC, every task requires network communication between
resources, introducing additional latency and increasing network traffic compared to conventional
data centers [10, 15]. Consequently, a DDC demands networks with both higher bandwidth and
lower latency to overcome these challenges. Several studies have proposed optical network topolo-
gies specifically for DDCs [10, 15,41]. In these studies, the main focus is on minimizing resource
latency. Therefore, these studies often overlook the critical aspects of transmission path availability
and the impact of task performance requirements on network delays.

We propose a physical optical network topology design incorporating OCS and PS to facili-
tate the execution of numerous tasks simultaneously in a uDDC. Our approach begins with the
introduction of a metric for evaluating the ©DDC network topology’s capability for simultaneous
task execution. We name this metric as capability of simultaneous task execution (CSTE). CSTE
represents the ratio of the resources that can be used as a resource communicating with the other
resources without violating the performance requirements in a situation where tasks up to the max-
imum number of executable tasks are executed. A high CSTE value indicates a large number of
resource pairs capable of communicating satisfying task performance requirements even if many
tasks are executed. Therefore, resource allocation for each task is unlikely to be constrained. That
is, the simultaneous execution of many tasks is enabled by flexible resource allocation. We define

an optimization problem aimed at configuring an optical network topology that maximizes CSTE.
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By comparing topologies generated through this optimization with existing topologies, using our
previously proposed resource allocation method RA-CNP [19], we validate the effectiveness of
CSTE. Furthermore, we explore important considerations for uDDC physical topology design, em-

phasizing the combined use of OCS and PS. Our primary contributions are as follows:

* The introduction of CSTE, a metric to evaluate a uDDC optical network topology’s ability to

execute many tasks simultaneously.

* The definition of an optimization problem to design an optical network topology that maxi-

mizes CSTE.

* A demonstration of the effectiveness of optical network topology design based on CSTE

through resource allocation simulations.

This chapter is structured as follows: Section 3.2 outlines related work. Section 3.3 provides
an overview of CSTE and the physical topology design based on CSTE. Section 3.4 validates the
physical topology design’s effectiveness based on CSTE and discusses the optimal optical network
topology for a uDDC. Section 3.5 discusses on the effective use of OCS and PS, the number of opti-
cal fiber cables on physical topology design and, CSTE’s limitations. Finally, Section 3.6 concludes

the chapter.

3.2 Related work

In a DDC, tasks are executed through communicating between allocated resources. The commu-
nication delay, which depends on the path and network between resources, must be decreased to
satisfy the performance requirements of tasks. This necessitates a network design that addresses
these considerations because communication between resources depends on the network.

In DDC, the impact of communication delays between resources is significant, necessitating
resource communication in the order of nanoseconds [9]. Optical networks, known for their low-
latency and high-bandwidth communication capabilities, have been proposed to address this chal-

lenge. Saljoghei et al. demonstrated the feasibility of nanosecond-level communication between
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resources in a DDC network configured with OCS [28]. Similarly, Yan et al. proposed a resource
disaggregation architecture using OCS for machine learning applications, showcasing improve-
ments in resource utilization [32]. However, networks configured solely with OCS face challenges
in flexible resource allocation due to the absence of packet switching functionality and lengthy re-
configuration times, which can reach up to milliseconds [12]. Therefore, the potential of OPS for
DDCs has been studied [11,12,43]. Terzenidis et al. proposed a high-port OPS capable of support-
ing up to 256 ports [11]. It achieved nanoseconds switching latency and high throughput. Guo et
al. proposed a DDC architecture based on nanosecond buffer-less OPS [44], which included high-
speed switching and optical flow control, achieving rapid reconfiguration [43]. In addition, Guo et
al. proposed a hybrid architecture combining OCS with multiple ports and OPS with fewer ports,
which led to efficient resource utilization and flexible resource reallocation [12].

Despite these advancements, current studies primarily showcase specific network architectures
without conclusively determining the appropriateness of OCS or PS connections. Furthermore,
there is a lack of discussion regarding the optimal placement of each resource within the network.
Therefore, in networks utilizing OCS, the availability of optical fibers for establishing communi-
cation paths might become a limiting factor. Meanwhile, networks relying on PS may experience
concentrated communication in certain areas, resulting in bandwidth shortages. Therefore, a com-
prehensive network topology design that addresses these issues is essential for DDCs.

Several physical topology designs have been proposed for DDCs aiming to optimize commu-
nication efficiency and resource allocation [10, 15,41]. Mishra et al. proposed a network topology
named MONet, which employs a parallelized spine-leaf topology [10]. In MONet, resources are ag-
gregated into trays, with a two-tier spine-leaf architecture facilitating both inter-tray and intra-tray
communications. This design ensures that any two resources can communicate within a maximum
of three hops, offering low-latency communication. However, the physical topology does not specif-
ically address the challenge of enabling simultaneous communication across multiple resources. A
critical aspect considering the limitation of available transmission paths as the number of communi-
cating resources increases. The availability of optical fiber may become a limiting factor, making it
challenging to establish routes between multiple resources simultaneously for the execution of nu-

merous tasks. Ajibola et al. presented NetCoD, a topology for DDCs that integrates both OCS and
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EPS [15]. In this design, resources within a rack are disaggregated. Resources are connected via
OCS for low-latency in intra-rack communication. While inter-rack communication is facilitated
through a spine-leaf architecture connected to an EPS for more flexible routing. The discussion
does not cover the simultaneous execution of multiple tasks. When a large number of resources
are allocated, communication may need to occur between resources across racks, potentially failing
to satisfy the performance requirements of tasks. Shan et al. proposed another physical topology
using both OCS and EPS [41]. In this topology, multiple resources are aggregated by either OCS
or EPS. These aggregated resources are interconnected via a spine-leaf architecture, where the leaf
switch can be either EPS or OCS. This consolidation enables low-latency communication among
the aggregated resources. Furthermore, the spine-leaf configuration ensures that any resource can
communicate with all other resources in the data center within a predefined number of hops. How-
ever, these work does not address the challenge of executing multiple tasks simultaneously. The
availability of resource pairs facilitating low-latency communication might become limited as more

resources are allocated and additional communication routes are required.

Previous research has introduced and validated the effectiveness of network topologies using
OCS and PS. However, these studies often overlooked the availability of transmission paths and
resource pairs for communication, especially critical for satisfying task performance requirements
during high task volumes. Consequently, a shortage of necessary transmission paths for establish-
ing communication paths that satisfy task performance requirements may result. The resources
may also be forced to communicate over longer, less efficient paths that require multiple hops. As
a result, flexible resource allocation becomes more challenging, constraining the tasks that can be
executed are constrained. A topology that supports flexible resource allocation without exhausting
available resources and paths for task execution is required. To effectively design a DDC topology
capable of handling numerous tasks, it is essential to assess the feasibility of establishing commu-
nication paths between resources that satisfy task performance requirements, even under the load
of multiple ongoing tasks. We propose an optical network topology design tailored for uDDC, with
a focus on this critical aspect. We base our design on a hybrid network using both OCS and PS,

building on the proven effectiveness of such configurations in preceding research.
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3.3 Optical network topology design for micro disaggregated data cen-

ter

In this section, we propose an evaluation metric to identify a suitable optical network topology for

a uDDC and a method for designing such a topology based on the evaluation metric.

3.3.1 Overview of micro disaggregated data center

The structure of the uDDC under consideration is shown in Figure 3.1. A uDDC consists of com-
putational and memory resources interconnected by an optical network. A uDDC network employs
OCS and PS. As shown in Figure 3.1, a PS aggregates multiple same-type resources, similarly to
that in the architecture proposed by Zervas et al [7]. Hereafter, we refer to the set of aggregated
resources as a resource board. Further, the set of resource boards connected to the same OCS is
reffred to as a resource pool. Each resource board connects to OCS via PS. In this chapter, we
design the puDDC physical topology design to execute many tasks simultaneously. To this end, we
determine the connections between among the switches and the, resource pools, and as well as the

number of optical fibers required for these connections.

The key components of a uDDC are as follows:

Details of OCS

ory resource pool

Connected other OCS \;"\

uDDC network topology

(@ Memory resource pool
@ Computational resource pool
@ocs @Ps

([ Memory resource — Optical fiber

Memory resource board

Figure 3.1: Overview of micro disaggregated data center.
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Optical circuit switch (OCS) OCS: Serving as the foundational element of the uDDC network,
the OCS facilitates connections to other OCS, PS, and resource boards. During task execution, the
OCS establishes a direct connection between input and output ports, creating a dedicated commu-
nication path through the optical path. We assume the optical path remains active for the duration

of the task.

Packet switch (PS) PS: The PS routes data to the appropriate port based on the destination address
of the packets. Unlike OCS, PS ports are not pre-assigned to specific input or output lines, allowing
traffic from multiple ports to be combined and sent through a single port. This flexibility enables
the PS to consolidate traffic from multiple optical paths onto one path. Therefore, establishing
optical paths between ports of a PS pair reduces dedicated optical fibers. However, if traffic through
a PS port becomes too heavy, packet loss may occur due to congestion. DDC performance with
zero packet loss is required to ensure stable operation [45]. We incorporate PS units equipped
with buffers, despite the potential for increased delay. This setup aims to maintain consistent task

execution within the uDDC.

Optical fiber In this chapter, all connections between switches and between resources and switches
are facilitated by optical fiber. Additionally, it is permissible to connect multiple optical fibers be-
tween the same pairs of switches or between a switch and a resource, provided there are available
ports. When an optical path is established, the optical fiber allocated for that path is exclusively

used for communications over that path.

Resource pool A resource pool is a set of resource boards connected to the same OCS. Each
resource board aggregates multiple resources of the same type by PS. The total number of resources
in each resource pool can be changed by adjusting the number of resource boards connected to
OCS. For resources aggregated by OCS, optical paths must be individually established for each
resource’s communication within the pool. However, because optical paths monopolize the ports of
the OCS, a significant number of ports are required, thus limiting the number of resources that can

be connected. Therefore, this chapter primarily examined the use of PS for aggregation. Resource
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pools are categorized based on the type of resources they aggregate: computational resource pools

and memory resource pools.

Computational resource Computational resources, which include CPUs and GPUs, are desig-
nated for task execution.

They are equipped with a small cache. If the required data is not in the cache, the computational
resource retrieves it from a memory resource. This chapter does not focus on cache levels or latency
between the cache and computational resource due to the relatively minor impact of cache read

times compared to memory resource read times.

Memory resource Memory resources are responsible for storing the data required by computa-
tional resources. It encompasses memory and storage components. For the purposes of this chapter,
memory space is divided into blocks of a certain size, with each block representing a single memory

resource.

Modeling of micro disaggregated data center

In this chapter, we constructed a model of a uDDC. Table 3.1 shows the notations used in this

modeling.

Table 3.1: Notation of micro disaggregated data center network topology.

Definition

N Set of nodes

E Set of adjacent node pairs
S(

Set of OCS
ns Available port count in a OCS s € S°¢
St Set of PS
s Available port count in a PS s € SP

|4 Set of PS pairs
Kg Threshold of traffic flows in optical path established of a PS pairg € V'

Je Set of resources corresponding to resource type ¢

T Adjacency matrix representing node connection

T Set of execution task types

Ry Set of pairs of resource types requiring communication in task type t € T’

Ay Proportion of type ¢ € T tasks to total execution tasks

HZb,c Maximum number of passed OCS in resource type pair b, ¢ € R, for task type t € T’
H f b | Maximum number of passed PS in resource type pair b, ¢ € R; for task type t € T'
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The uDDC optical network topology is represented as a graph G(N, E'), where N denotes the
set of nodes and E represents the set of pairs of adjacent nodes. The network consists of three types
of nodes: OCS, PS, and resource pools. S¢ and SP denote the sets of OCS and PS, respectively.
n¢ and 775’ represent the available port counts for OCS ¢ € S° and PS j € SP, respectively. J.
represents the set of resources corresponding to resource type c. Different performance resources
are considered as different resource types, even if they have the same functionality (e.g., CPU
and GPU are both computational resources, but are treated as different resource types). This is
because task performance is affected by resource performance. Each resource is associated with a

corresponding resource pool.

Physical node connections are represented by the adjacency matrix . x indicates the physi-
cal connections and the number of optical fibers between nodes. If adjacent nodes ¢,j € FE are

connected by two optical fibers, z; ; = 2. Conversely, if nodes 7, j € E are not connected, z; ; = 0.

V' denotes the set of pairs of PSs including PSs in resource boards. Each port of a PS has capac-
ity, and high utilization of a port causes a large queuing delay. Therefore, we keep the utilization of
each port below a certain level to ensure small delay. In this thesis, we define the threshold to flow
between resources instead of using the threshold to the utilization for simplicity. We denote 4 as
the threshold of traffic flows on optical paths connecting each port in a PS pair g € V. If the traffic
flows of resource pairs communicating on the optical path exceeds 4, a new optical path must be

established in the PS pair.

To derive a metric shown in Section 3.3.2, we assume a situation in which tasks up to the max-
imum number of executable tasks are executed. In this situation, all computational resources are
allocated for task execution. Execution tasks in this situation are categorized by performance re-
quirements. We represent the set of task types as T'. The proportion of type t € T tasks to total
execution tasks in the assuming situation is denoted by A; and ), Ay is 1. Ry is the set of pairs
of resource types requiring communication for task type ¢ execution. In a uDDC, resources for each
task are allocated so that the process can be completed within the acceptable time. Task execution
time depends on the processing time within the execution resource and the communication delay to

exchange data between resources. Of these, the physical topology affects only the communication
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delay between resources. Therefore, we consider performance requirements focusing on the com-
munication among resources. The communication delay between resources depends on the number
of optical fibers and switches passed through and the queuing delay in PS. We set the maximum
numbers of passed OCS and PS in each connection between resources, considering the average
queuing delay in each PS when the utilization of the port is k4. Note that this value can be derived
based on a communication delay that is small enough to satisfy the performance requirement of a
task considering the processing time within the resource. In addition, we can consider traffic due to
the execution of the task to set this constraint. This prevents high-traffic tasks from passing through
the PS and causing overloading in the PS. 4}, . and H E b, denote the maximum number of OCS

and PS passed for task type ¢ € T by the resource pairs b, c € R;.

3.3.2 Capability of simultaneous task execution (CSTE)

We aim to design a uDDC optical network topology capable of executing numerous tasks simul-
taneously. To design such an optical network topology, it is essential to assess the capability of

simultaneous task execution. We define a metric to evaluate it.

Overview of metric

In a uDDC, network topology affects the communication performance between resources and pre-
vents resource allocation to satisfy the performance requirements of the task. Therefore, we define a
metric focusing on communication between task execution resources. To execute many tasks simul-
taneously, resource allocation must be less constrained by the communication between resources.
We assume a situation in which many tasks are executed simultaneously to evaluate whether the
topology can execute many tasks simultaneously. We evaluate the network topology in terms of
whether resource allocation is constrained in such a situation.

We define the evaluation metric for a uDDC optical network topology capability of simulta-
neous task execution (CSTE). CSTE is the ratio of the resources that can be used as a resource
communicating with each resources without violating the performance requirements. To derive

CSTE, we assume a situation wherein tasks up to the maximum number of executable tasks are
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executed as a situation many task are executed simultaneously. The optical network topology with
higher CSTE values has a large number of resource pairs capable of satisfying task performance
requirements even if many tasks are executed simultaneously. Resource pairs that can satisfy task
performance requirements are unlikely to be depleted, even under the load of multiple ongoing
tasks. Therefore, resource allocation for each task is unlikely to be constrained. As a result, flexi-
ble resource allocation is possible, and many tasks can be executed simultaneously in the physical
topology. In the topology wherein CSTE is 0, resource allocation to use all resources while sat-
isfying the performance requirements is impossible. However, if the number of execution tasks is

small, it may be possible to allocate resources to satisfy the performance requirements.

Derivation of capability of simultaneous task execution (CSTE)

We calculate the CSTE, denoted as CST E(x,T'), at node connection x and for the set of execution
task types T'. Two resources are defined as a pair for explaining CSTE derivation: target resource
and candidate resource. A pair of target and candidate resources represents resources requiring
communication to execute a task. Each target resource communicates with only resources within a
certain hop range (HR) to derive CSTE. If each target resource communicates solely within HR with
candidate resources, all resource pairs determined based on this assumption can establish routes
simultaneously.

First, for each task type ¢ € T and pair of resource type b, c € R; communicating to execute
task type ¢, we determine the number of candidate resources corresponding to resource type ¢ within
hops to satisfy the maximum number of passed OCS and PS Hp, . and H{j b and the maximum
value of HR from each target resource corresponding to resource type b. This value is normalized
by the total number of candidate resources. Subsequently, the total product of this value for each
combination of target resource and candidate resource is derived. The weighted average based on
the proportion of tasks of each type to total tasks yields the CSTE. Therefore, CST E(x,T) in node

connection x and set of execution task types 7' is obtained as follows:

CSTE(z,T) =) Ay ( 11 Vb(tew) (3.1)

teT b,ceR; |Sel
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where 6(z,T") denotes the maximum HR in node connection = and set of execution task types 7.
Vie(t,60(x,T)) represents the minimum number of candidate resources corresponding to resource
type ¢ within hops to satisfy the maximum number of passed OCS and PS HY, . and H}, ., and

within 6(x, T') hops for each target resource corresponding to resource type b.

Maximum HR To determine the maximum HR, we assess the number of optical paths passing
through adjacent nodes 7, j € F when each target resource communicates with any candidate re-
source within k hops (k is a natural number). If adjacent node pairs possess a sufficient number of
optical fibers to establish routes, each route between resource pairs can be established simultane-
ously. The maximum 6(x,T') is the highest value of k& where the estimated optical path count does
not exceed the number of optical fibers x; ; for each pair of adjacent nodes ¢, j € . The maximum

HR 6(x,T) is obtained as follows:

0(z,T) =max (ke N|Vi,j € E, D; j(z,k,T) < x;;), (3.2)

where D; j(x,k,T) represents the estimated number of optical paths passing through adjacent
nodes i, 7 € E when the target resource communicates with any candidate resource within k£ hops

in node connection x. N denotes the set of natural numbers.

Estimated number of optical paths that pass through adjacent nodes Optical paths are es-
tablished between PS pairs when a resource pair communicates. First, we estimate the number of
resource pairs passing through adjacent nodes ¢, 7 € E on the optical path for each PS pairg € V
when communicating a pair of resource type b, c € R; to execute task type { € T'. To estimate the
number of optical paths passing through adjacent nodes ¢, 7 within the optical paths established in
PS pair g, we divide the estimated number of resource pairs by the threshold «, in PS pair g. The
sum of these values across all PS pairs yields the estimated total number of optical paths passing
through the adjacent nodes. The estimation of the number of optical paths D; ;(z, k,T') passing
through adjacent node pairs ¢, j € E, when each target resource communicates only within k& hops

from the candidate resource in node connection x and set of execution task types 7', is obtained as
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follows:

Z doteT Db eer, Qigo(T, K, t,b,0)

Kg

D; i(z,k,T) = ) (3.3)

gev
where Q); j 4(x, k,t,b, c) represents the estimated number of resource pairs corresponding to re-
source types b,c € R, communicating on the optical path of PS pair g € V in adjacent nodes

1,7 € E when task type ¢ is executed.

Estimated number of resource pairs communicating on the optical path of the PS pair in
the adjacent node pair For task type ¢ € T" and node connection x, we calculate the estimated
number of resource pairs, corresponding to resource types b, ¢ € R;, communicating via the optical
path of PS pair g € V through adjacent nodes ¢, ;7 € E. This estimation is the sum of probabilities
that each target and candidate resource pair communicate through these adjacent nodes i,j € F.

The probability Q; j 4(x, k,t,b, ) is determined by:

Qi,j,g(zak7tab7 C) = Z Z Pic,j,g(x?katasapa C)? (34)

s€Jy peCs c(t,k)
where Jj, represents the set of resources for resource type b, and C; .(t, k) is the set of resources
for resource type c that the target resource s can communicate with within k£ hops. The probabil-

ity P¢

i, g(m, k,t,s,p,c) represents the probability that the target resource s € Sy, corresponding to

resource type b communicates with a candidate resource p corresponding to resource type c on the
optical path established by PS pair g during the execution of task type t. It is calculated as the total
product of the following probabilities: (1) P(t): Probability that task type ¢ is executed, which
is equivalent to the proportion of type t tasks to total tasks A;. (2) P;.(t, k): Probability that the
target resource s selects the candidate resource p as the communication partner from resources cor-
responding to resource type c within & hops, (3) Py ; ,(t, g): Probability that the target resource s

and candidate resource p communicate via a path passing through PS pair g, (4) PY

)

¢(1,7): Proba-

bility that an optical path established at PS pair g passes through the adjacent nodes i, j. Therefore,
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the probability Pf; g(x, k,t,s,p,c) is obtained as follows:

Pt 5,p,¢) = PE) - Pl (1, ) 9) - PLy(i ). (3.5)

xsp(

The explanations for the individual probabilities P*(t), Py .(t, k), Po ,(t,g), Prg(i,j) are ex-
plained below.
The probability P!(t), indicating the likelihood of task type ¢ being executed, is equivalent to

the proportion of type ¢ tasks to total tasks A;. Therefore,
PH(t) = A (3.6)

Subsequently, we calculate the probability P, (t k), which represents the chance that the tar-
get resource s selects the candidate resource p as its communication partner from the resources
corresponding to resource type c. This probability is determined by the decision policy of the re-
source pair. We assume each target resource randomly selects one communication partner from the
candidate resources satisfying the task’s performance requirements. The resource pairs determined
by this process are sufficiently close to satisfy the performance requirements. This allows for the
creation of a situation where each resource pair can establish a route that satisfies the performance
requirements. The probability P .(t, k) is the inverse of the set C; (¢, k), representing resources

of type c that the target resource s can communicate within £ hops. Therefore,

\ 1
P (t,k) = TEERTIE (3.7)

Subsequently, we derive the probability P ; (Z, g), which represents the chance that the target
resource s and candidate resource p communicates on a path through the PS pair g. This probability
depends on the routing between resources. Routes are established to minimize the number of optical
fibers used. If multiple routes satisfy the policy, one is randomly selected. This routing policy helps
prevent the depletion of optical fiber required for establishing optical paths. Considering this aspect

is crucial execute many tasks, it is appropriate to derive CSTE. This probability represents randomly

selecting one of the switch combinations passing through PS pair g as a route between resources
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s, p. Therefore,
wx757p(t, g)

x,8,p

w7s7p

; (3.8)

where w;, s (%, g) denotes the number of switch combinations passing through PS pair g as a
route between resources s, p satisfying the maximum number of passed OCS and PS H/, . and
H 5 p,c Of task t. This considers whether task ¢ can set a route through PS. w; s, (¢, g) represents the

total number of such combinations.

The probability PZ 4(4, j) represents the likelihood that an optical path established at PS pair g
will pass through adjacent nodes 7, 7. This probability is determined by the optical path establish-
ment policy. We assume the shortest path between PS is chosen. If multiple shortest paths satisfy
this policy, one is randomly selected. Similar to the routing policy, this policy prevents optical fiber
depletion. The probability is calculated as the likelihood of randomly selecting one of the paths

passing through adjacent nodes i, j among the shortest paths of PS pair g. Therefore,

V4
PP (i,j) = —2—, (3.9)
,g( ) Z:c,g(za])

where z, , denotes the total number of shortest paths of PS pair g, and 2, 4(i, j) represents the

number of paths passing through adjacent nodes ¢, j among those.

3.3.3 Optical network topology design
Definition of optical network topology design problem

We define an optical network topology design problem to maximize CSTE and generate an optical
network topology capable of executing numerous tasks simultaneously. This problem takes input
parameters such as network information on the DDC topology, performance requirements, and
communication resources for task execution, and outputs the adjacency matrix x representing the
connections between each adjacent node. This matrix corresponds to the physical topology. Tasks

are executed simultaneously by allocating resources in the physical topology.
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Constraints on available ports of OCS The number of optical fibers connected to OCS s € S°¢
must be less than or equal to the number of available ports 7S on the OCS s. The number of optical

fibers connected to the OCS s1is ) Zsn. Therefore,

Vs €8¢ Y cnTan < 1S (3.10)

Constraints on available ports of PS The number of optical fibers connected to PS s € SP must
be less than or equal to the number of available ports 1% on the PS s. The number of optical fibers

connected to the PS sis ) s . Therefore,

Vs €SP 3 cnTon <18 (3.11)

Objective In this problem, the optical network topology is generated to maximize the CSTE, that
18,

mazximize CSTE(x,T) (3.12)

By addressing this problem, we can generate an optimal network topology for a uDDC. How-
ever, physical topology design is an NP-hard optimization problem [46]. Therefore, several meta-
heuristic methods have been employed to solve such a problem [47]. In this chapter, we address

this problem using a genetic algorithm (GA) as an exemplar.

Optical network topology configuration by genetic algorithm

While we focus on the physical topology design problem based on the GA, it was noteworthy that
it could be solved using various methods. GA is a metaheuristic method leveraging biologically
inspired operators (e.g., mutation and crossover). Notably, GA facilitated rapid convergence to
near-optimal solutions and adeptly solved discrete problems [46]. We explored GA-based methods
for designing an optical network topology [46,48].

In this chapter, we explored a optical network topology comprising OCS and PS. However, in
a network that exclusively used an OCS, PS use was unnecessary if sufficient transmission paths

existed. Therefore, we configured a topology optimizing the CSTE solely with OCS, subsequently
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integrating PS into this topology. All topologies at each phase were devised using GA. Should
a topology attain the maximum CSTE (C'STE = 1) with only an OCS, we designate this OCS-
exclusive configuration as the solution. Our GA methodology unfolded in four phases: (1) Genera-
tion of the initial topology phase; (2) Encoding phase; (3) Selection, crossover, and mutation phase;
and (4) Evaluation phase. Following the creation of the initial topologies, we aim to maximize
CSTE by cycling through steps (2) to (4) for a predetermined number of iterations. This chapter
focuses on generating a topology based on the number of optical fibers between adjacent nodes.
However, to streamline the procedure in Phases (1) to (3), we consider only the presence or absence
of node connections during encoding. Subsequently, in Phase (4), we ascertained the number of
optical fibers between the nodes. Upon achieving a topology with an optimal CSTE or concluding

the iterative process, the optical network topology with the highest CSTE is the solution.

Generate initial topology configured with OCS only Any initial topology was applicable. In
this chapter, we constructed the initial topology through the following steps. First, we established
the connection between the resource pool and the OCS. For each resource pool, we randomly se-
lected one OCS from those with the fewest connected resource pools and connected it to the re-
source pool. This procedure was applied to all resource pools. Second, we determined the con-
nections between the OCS units. We linked each OCS in a ring topology to enable communication
among all resources. The pairing of adjacent OCS units was performed randomly. The initial topol-
ogy was generated using this method. It was important to note that the number of optical fibers
connecting each adjacent node was not considered in this phase. These details were determined in

the evaluation phase.

Generate initial topology configured with OCS and PS  After generating topologies with only
OCS, we proceeded to generate topologies configured with both OCS and PS. The initial topologies
were based on those generated exclusively with OCS. For each PS, we randomly selected an OCS to
connect to and proceeded to generate the initial topologies. Similar to the initial topology generation

with only OCS, the number of optical fibers connecting each adjacent node was not set in this phase.
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Encoding We uniquely encoded each topology for crossover and mutation. For every topology,
we created a binary adjacency matrix to represent the connections between nodes. In this adjacency
matrix, 1 represented the presence of optical fibers at that node, and 0 represented the absence. The
code for each topology was formed by concatenating each row of the upper triangular portion of

this adjacency matrix. For example, when, the adjacency matrix was as follows:

]

OoO—OO
OoO—OO

O
OoO—OO

the code for this topology was 010101.

Selection In this process, we did not modify the codes themselves; rather, we selected the physical
topology code to be used for the next round of mutations and crossovers. Selection was made
probabilistically based on the CSTE of each topology. The selection probability of a topology was
%, where X represented the set of connections in the current physical topology and

x979¢ was the connection in the target topology. This approach prioritized superior topologies for

subsequent iterations, thereby expediting convergence.

Crossover In this phase, we randomly chose two topologies from the encoded topologies. Then,
we swapped the values at any position in the codes of the two topologies. This action generated two

new topologies. Table 3.2 presents an example.

Table 3.2: Example of crossover when replacing the third, fifth, and sixth values.

Number 01 2 3 45 6 7
Code 1 1 000 01 01
Code 2 1 01 1 0 0 1 0
generatedCode 1 |1 0O O I 0 0 1 1
generated Code2 |1 0 1 0 0 I 0 O

Mutation During mutation, a topology is randomly selected from a pool of encoded topologies.
The value at any position in the physical topology code was inverted; a 0 became a 1; if 1, it was

set to 0. Table 3.3 presented an example of this process.
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Table 3.3: Example of mutation when replacing the third, fifth, and sixth values.

Number 01 2 3 4 5 6 7
Code 1 000 01 01
generatedCode | 1 0 O I 0 0 1 1

Evaluation In this phase, the CSTE for each topology was calculated based on the formula de-
scribed in Section 3.3.2. However, immediately following a crossover or mutation, the exact number
of optical fibers between nodes was unknown. The optical fiber numbers between the nodes were
determined in this phase. First, we estimated the number of optical paths crossing each adjacent
node pair using equation 3.3. If the node pair had more available ports than the estimated number
of optical paths, the optical fibers were connected accordingly. This step was repeated until it was
no longer possible to connect additional optical fibers between nodes, considering the limits of the

available ports. Finally, the CSTE for each topology was derived.

3.4 Evaluation

We evaluate physical topology design for a uDDC focusing on CSTE through simulations of pDDC

networks and resource allocation.

3.4.1 Environment

Network

We assumed resource disaggregation within an edge data center. For evaluation, we considered a
uDDC with 16 resource pools interconnected by an optical network with OCS and OPS. This scope

was similar to that of an edge data center comprising 16 racks.

We detail the resources and switches integral to the physical topology formation. Table 3.4 lists
the network parameters. These values facilitated the generation of optical network topology and the

computation of task execution times within the resource allocation framework.
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Table 3.4: Parameter settings for micro disaggregated data center network.

Parameters Value

Clock speed of computational resource 3.4 GHz
FLOPS of computational resource 76.8 GFLOPS
Memory processing delay 0.125ps

/O delay 0.101ps

Page size 4 KB

Total computational resource pools 14

Total memory resource pools 2

Switching latency in EPS 1.11 ps

Ports of EPS used to connect to other switch | 20
Threshold of traffic flows in each EPS port 140
Switching latency in OCS 0.03 pus
Ports of OCS used to connect to other switch | 80
Threshold of traffic flows in each OPS port 140

Switching latency in OPS 0.55 ps
Ports of OPS used to connect to other switch | 64
Propagation delay (Switch - Switch) 0.5 pus
Propagation delay (Resource - Switch) 0.05 ps
The bandwidth of each optical fiber 10 Gbps

Resource We treated each core of the CPU as a single computational resource. We set the perfor-
mance of computational resources based on the datasheet of the Intel Xeon Silver 4314 Processor.
Because this CPU has 16 cores, each CPU included 16 computational resources. We treated mem-
ory blocks of 2GB as a single memory resource. We set the performance of memory resources
based on a study of the uDDC architecture [12]. Because each memory device had 256 GB of

memory space, each memory device included 128 memory resources.

Resource pool A resource board comprising a resource pool was assumed to aggregate resources
by EPS, given that OPS aggregation would be prohibitively expensive and impractical. For the
parameter settings, we referenced the S5860-20SQ switch [49]. Using four ports for resource con-
nections and the remaining 20 for inter-switch links. In the EPS, we limited the traffic that could be
handled in each port to 70% of the capacity. On this basis, the threshold of traffic flows in each EPS
port was set at 140. Within each computational resource board, three CPUs were connected per
EPS. This equates to 48 computational resources connected to each computational resource board.
Within each memory resource board, three memory devices were connected per EPS. This equated
to 384 memory resources connected to each memory resource board. By changing the number of

resource boards in a resource pool, we changed the number of resources in the resource pool. We
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set the number of computational resource pools to 14 and the number of memory resource pools to

2 out of 16 to minimize the difference between the number of computational and memory resources.

OCS Referencing CALIENT ’ s optical circuit switch [50], we established a switching delay of
0.03 ps. The switch features 320 ports. In this chapter, we used 80 ports to connect to other

switches, and the remaining 240 ports were used to connect the resource boards.

OPS Networking between resource pools predominantly uses OPS owing to its faster switching
capabilities, without presupposing the use of a large number of OPS units. OPS was proposed
in [11]. In OPS, we limit the traffic that can be handled in each port to 70% of the capacity. On this
basis, the threshold of traffic flows in each OPS port is set at 140. Following [50], a switching delay

of 0.55 ps was set, with 64 ports available for simulation purposes.

Optical fiber In our evaluation, we assumed the interconnection of the resource pool and OCS/OPS
via 10 m optical fiber cables, while switches were interconnected by 100 m optical fiber cables.
These lengths represented the maximum cable distances intra- and inter-racks, respectively. Data
transfer was presumed to occur at the speed of light. Therefore, resulting in a propagation delay
of 0.5 us between switches and 0.05 ps between the resource pool and switch. In addition, the

bandwidth of each cable was configured to be 10 Gbps.

Execution task

Resource requests are initiated upon the arrival of a task execution request for a service being
offered by the uDDC. In this chapter, we consider the provision of an image classification service
using ResNet [36]. It is a common application for edge computing scenarios [21].

Each task for this service includes three processes: Process 1 involves selecting the resource for
task execution, Process 2 entails loading the required data, and Process 3 consists of executing the
task’s main processing. Given the distinct functions of these processes, we allocate identical mem-
ory resources to Processes 1 and 2, and the same computational resources are shared by Processes 2

and 3. In addition, Processes 1 and 2 are designed to use minimal data and are configured to avoid
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causing page faults. The parameters for each process, including clock count and page fault num-
bers, are determined based on empirical data obtained from experiments run on an Intel(R) Xeon(R)
CPU E5-2687W. To evaluate the topology’s adaptability in resource allocation, we introduce two
scenarios characterized by varying resource demand patterns. The parameters defining the execuion
service are shown in Table 3.5. These values inform the physical topology generation and derive
the calculation of task execution times in simulation-based resource allocation scenarios. Task ex-
ecution necessitates communication between computational and memory resources. We designate
the computational resources as the target and the memory resources as the candidate. Therefore,
we derive CSTE based on the availability of memory resources within a specified HR and the hop

count required to satisfy the performance requirement for each computational resource.

Table 3.5: Parameter settings for task.

Parameter Process 1 | Process 2 | Process 3
Clock count 0.035 0.054 2371.33
Packet rate to memory (/ms) 0.00033 0 1.87
Packet rate from memory (/ms) | 0.00033 0.00033 3.71
Number of page faults 0 0 67543.25
Number of pages per page fault | 0 0 5.27
Memory resources 1 4or6 4or6
Computational resources 1 1 4or6

Settings of resource allocation request

We simulate an environment receiving three types of resource allocation requests, each with dif-
ferent performance requirement thresholds. This chapter introduces two hypothetical scenarios to

evaluate optical network topology performance under various conditions:

* Casel Scenarios where requests with longer acceptable completion times occur more fre-

quently.

* Case2 Scenarios characterized by a higher frequency of requests with shorter acceptable com-

pletion times.

In Table 3.6, the ratio of each request generated to all requests in each case is shown.
We set the acceptable time for each request type of task as shown in Table 3.6. Based on this

acceptable time, we set the maximum number of passed OCS and OPS by each connection between
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resources by the following steps:

Phase 1: Determine the maximum number of OPS

» Step 1-1: Initialize the maximum number of OPS to the maximum number.

» Step 1-2: Estimate the process time required by the application if the communication between

the resources passes the maximum number of OPS.

» Step 1-3: If the process time estimated in Stepl-2 exceeds the acceptable time, reduce the

number of OPS. Otherwise, end.

Phase 2: Determine the maximum number of OCS

* Step 2-1: Initialize the maximum number of OCS to 1.

 Step 2-2: Estimate the process time required by the application if the communication between
the resources passes the maximum number of OCS and the maximum number of OPS defined

by the Phase 1

» Step 2-3: If the process time estimated in Step2-2 is less than the acceptable time, increase

the number of OCS. Otherwise, decrease the number of OCS and end.

By the above steps, we estimate the process time by using the model of a uDDC we proposed in
Chapter 2, assuming that the utilization of each port of the EPS and OPS is 70 %. In this evaluation,
because the number of used OPS to generate optical network topology is 1, the maximum number

in Step 1-1is 1.

Table 3.6: Parameter settings for each request type.

Request type 1 | Request type 2 | Request type 3

Acceptable time 400 ms 300 ms 200 ms
Maximum number of passed OCS | 6 3 3
Maximum number of passed OPS | 1 1 0

Proportion of each request

generated to all requests (Casel/2) 0.6/02 0.2/02 0.2/06
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Comparative optical network topology

To evaluate our network topology design, we conducted a comparative analysis against three es-
tablished topologies alongside our generative approach. The prevalent network topology proposed
for a uDDC was tree topology, as highlighted in several studies [10, 15,41]. Therefore, we used
the fat-tree architecture, a quintessential tree topology, as a benchmark. In addition, torus topology
represented another conventional data center structure. Our comparison included both 2D and 3D
torus topologies. It was important to note that all switches, except those within the resource pool,

were configured as OCS.

Table 3.4 shows that our hypothetical uDDC comprises 16 connected resource pools. In the fat-
tree configuration, each resource pool was connected to an edge switch. This results in a structure
with 16 edge switches connected to a resource pool complemented by eight core switches. For
the torus topology, a resource pool was connected to each OCS. Therefore, using 16 OCS, we
established a 4 x 4 2D torus and a 4 X 2 x 2 3D torus configuration. The placement of each
resource pool was optimized to maximize the CSTE value. Should it prove impossible to achieve
a network topology with C'STE > 0, we strove to position as many computational resource pools
in proximity to the memory resource pools as possible. This proximity facilitated task constraint
satisfaction for each resource pair. (Figure 3.2) shows the visual representations of each optical
network topology. It was noted that 10, 20, and 13 optical fibers connected each adjacent node in

the fat-tree, 2D torus, and 3D torus topologies, respectively.
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(a) Fat-Tree. (b) 2D Torus. (c) 3D Torus.

Figure 3.2: Comparative optical network topologies.
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Settings for optical network topology generation

We evaluate generated topology in a case wherein the resource boards are connected to each OCS
to use all ports of the OCS. Each OCS uses 80 ports to connect to other switches, the remaining
240 ports are used to connect the resource boards. Assuming that each resource board uses 20
ports, 12 resource boards are connected to each OCS. In this case, the number of resource pairs that
can communicate simultaneously is the largest, because the number of connected resources is the
maximum. This environment demonstrates that CSTE can generate an optical network topology
that can satisfy task performance requirements even when the network load increases. However,
we cannot generate an optical network topology whose CSTE is higher than 0 without OPS. To
evaluate the generated topology without OPS, we also evaluate the generated topology in a case
where 10 resource boards are connected to each OCS. The parameters in each case are shown in the
table 3.7.

Table 3.7: Parameter settings for number of connected resources.

Resource boards connected to each OCS 12 10
Computational resources connected to each OCS | 576 | 480
Memory resources connected to each OCS 4608 | 3840
Total computational resources 8064 | 6720
Total memory resources 9216 | 7680

Furthermore, the comparative topology shown in Section 3.4.1 exhibits a variation in the num-
ber of OCS between the Fat-Tree topology using 24 OCS and other considered topologies using 16
OCS. To compare these topologies, we use the same number of OCS to generate topology. We gen-
erate and evaluate topologies in four environments with different number of connected resources

and the number of used OCS.

* Environment 1: 12 resource boards connected to each OCS and using 16 OCS
* Environment 2: 12 resource boards connected to each OCS and using 24 OCS
* Environment 3: 10 resource boards connected to each OCS and using 16 OCS

* Environment 4: 10 resource boards connected to each OCS and using 24 OCS
In addition, the parameters governing the GA utilized in chapter are shown in Table 3.8.
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Table 3.8: Parameter settings for genetic algorithm.

Parameter Value
Iterations to generate physical topology with only OCS 2000
Iterations to generate physical topology with OCS and OPS | 2000
Topologies generated in each iteration 400
Proportions of select 0.1
Proportions of crossover 0.1
Proportions of mutation 0.8

3.4.2 Generated optical network topology

We generated the optimal network topology for each case and environment, as shown in Sections

3.4.1 and 3.4.1. These topologies are shown (Figure 3.3).

(a) GT_env1 (16 OCS + 1 (b) GT_env1 (16 OCS + 1 (¢) GT_env2 (24 OCS + 1 (d) GT_env2 (24 OCS + 1
PS) in Case 1. PS) in Case 2. PS) in Case 1. PS) in Case 2.

(e) GT_env3 (16 OCS) in (f) GT_env3 (16 OCS) in (g) GT_env4 (24 OCS) in (h) GT_env4 (24 OCS) in
Case 1. Case 2. Case 1. Case 2.

Figure 3.3: Generated optical network topologies.

In Environments 1 and 2, achieving an optical network topology with a CSTE of 1 using only
OCS was not feasible. Therefore, we generated topologies incorporating both OCS and OPS, which
achieved a CSTE of 1. Conversely, in Environments 3 and 4, the topologies we generated using only
OCS achieved a CSTE of 1 across all cases. We refer to the resulting topologies for environments 1,
2,3,and 4 as GT _envl, GT _env2, GT_env3, and GT _env4, respectively. The comparative topologies

were configured exclusively with OCS. Because they were inappropriate for direct comparison, we
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compared our network topology against these comparative topologies by connecting one OPS to
maximize the CSTE in Environments 1 and 2. In addition, we used topologies that were in the pro-
cess of being generated to facilitate a comparison between GT across various CSTE values. These
interim topologies are referred to as GPT_envl, GPT_env2, GPT_env3, and GPT_env4. Table 3.9

presents the CSTE values for the topologies in each environment.

Table 3.9: CSTE of each optical network topology.

Case 1 | Case 2
2D Torus (16 OCS + 1 PS) 0.5 0.5
3D Torus (16 OCS + 1 PS) 0.5 0.5
GT_envl (16 OCS + 1 PS) 1 1
GPT_envl (16 OCS + 1 PS) 0.8 04
Fat-Tree (24 OCS + 1 PS) 1 1
GT_env2 (24 OCS + 1 PS) 1 1
GPT_env2 (24 OCS + 1 PS) 0.9 0.7
2D Torus (16 OCS) 0.9 0.7
3D Torus (16 OCS) 0 0
GT_env3 (16 OCS) 1 1
GPT_env3 (16 OCS) 0.5 04
Fat-Tree (24 OCS) 1 1
GT_env4 (24 OCS) 1 1
GPT_env4 (24 OCS) 0.8 0.7

3.4.3 Characteristics of optical network topology design based on CSTE

To describe the characteristics of the physical topology design predicated on CSTE, we analyzed
the hop counts between computational and memory resources and the number of optical fibers con-
necting adjacent nodes. These factors are crucial for satisfying the performance requirements and
establishing communication routes between resources, which are important for executing numer-
ous tasks efficiently. Table 3.10 details the average and maximum hops between the computational
and memory resources across each network topology. Figure 3.4 shows the correlation between the
estimated number of optical paths when each computing resource communicates with any memory
resource, as calculated using Equation 3.3, and the actual number of optical fibers for each adjacent
node pair. Figure 3.4 shows that each point represents an adjacent node pair, with the black line
indicating the equilibrium point where the number of optical fibers matches the estimated number
of optical paths. If a point is located above the black line, it signifies that the adjacent node pair has

the optical fibers necessary to establish the required optical paths.
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Table 3.10: Average and maximum hops between all resources in each optical network topology.

Case 1 Case 2

Average | Max | Average | Max
2D Torus(16 OCS + 1PS) 4 5 4 5
3D Torus(16 OCS + 1PS) 4.07 6 4.07 6
GT_env1(16 OCS + 1PS) 3.57 4 3.50 4
GPT_env1(16 OCS + 1PS) 3.71 5 3.79 5
FatTree(24 OCS + 1PS) 4 4 4 4
GT_env2(24 OCS + 1PS) 3.68 4 3.46 4
GPT_env2(24 OCS + 1PS) 3.75 5 3.89 5
2D Torus(16 OCS) 4 5 4 5
3D Torus(16 OCS) 4.07 6 4.07 6
GT_env3(16 OCS) 3.57 4 3.64 4
GPT_env3(16 OCS) 4.07 6 3.57 5
FatTree(24 OCS) 4 4 4 4
GT_env4(24 OCS) 3.57 4 3.46 4
GPT_env4(24 OCS) 3.89 5 3.86 5
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Topologies achieving a CSTE of 1, e.g. GT_envl, and Fat-Tree exhibit a maximum hop count
of 4 (Table 3.10). This is the minimum value in the evaluated topologies. Thus, any pair of com-
putational and memory resources can communicate within lower hops, provided that routing is not
constrained by a shortage of available optical fibers. Therefore, the selection of resource pairs
for task execution is not constrained by the number of hops between them. Conversely, certain
topologies, e.g. GPT_envl and GPT_env2 display small average hop counts but larger maximum
hops. The CSTE of these topologies is lower than that of topologies with smaller maximum hops
(Table 3.11). Thus, minimizing the maximum hop count is crucial.

Topologies with a CSTE of 1 exhibit no points below the black line (Figure 3.4). This indi-
cates a lower likelihood of optical fiber depletion when establishing optical paths compared with
other topologies. However, although there are several points significantly above the black line, the
2D and 3D torus topologies have points below it. This suggests that optical fibers may be overly
abundant between nodes that communicate infrequently. This underscores the importance of al-
locating transmission paths judiciously, considering the communication needs between resources.
Furthermore, it is shown that even GT _env1 and GT _env3 with 16 OCS can ensure an adequate
number of optical fibers between each adjacent node for the establishment of optical paths, similar

to topologies utilizing 24 OCS.

3.4.4 Relationship between optical network topology design based on CSTE and

number of tasks that can be executed simultaneously

The effectiveness of the physical topology design based on CSTE is validated through a resource
allocation simulation. In this evaluation, we generated requests up to the number of tasks that could

be executed in the uDDC, assessing the simultaneous execution capability of tasks.

Resource allocation method used for evaluation

We utilized the cost-based resource allocation method RA-CNP for a uDDC in Chapter 2. This
method enhances the capacity to execute multiple tasks simultaneously by prioritizing the preser-

vation of important resources for future task requests. In RA-CNP, the resource allocation cost for
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each computational and memory resource, as well as for optical fibers between adjacent node pairs,
is determined based on their importance to impending tasks. RA-CNP aims to allocate resources
and transmission paths to minimize their total associated costs. In RA-CNP, the resource allocation
cost for each computational and memory resource, as well as for optical fibers between adjacent
node pairs, is determined based on their importance in impending tasks. RA-CNP aims to allocate
resources and transmission paths to minimize their total associated costs. In RA-CNP, the objectives

are as follows.

minimize Y coa WE+ Y ene Wil + > cepa WE (3.13)

where C'%, M®, and E“ represent the sets of allocated computational resources, memory resources,
and optical fibers, respectively. The allocation costs for a computational resource ¢, a memory re-
source m, and an optical fiber e are denoted by WS, W', and W¢, respectively. Resource allocation
proceeds to satisfy the objective defined in Equation 3.13. However, RA-CNP does not inherently
account for a network comprising both OCS and PS, as considered in this chapter. Therefore, we
adjusted the allocation cost metrics for computational and memory resources from those defined
in RA-CNP [19]. In RA-CNP [19], the allocation costs for computational resource ¢ and memory
resource m were represented as WiandW)!, respectively. The cost W correlates with the com-
putational resource’s FLOPS multiplied by the number of available resources in the resource pool.
Similarly, W) is derived from the number of available resources in the memory-resource pool. The
revised allocation costs W and W' for the computational and memory resources c, m are obtained
as follows:
L _L

c= LW, Wi = . 14
We =3 We, Wil = 2 - W (3.14)

The costs are adjusted based on L, the total number of allowable connections between resources
along optical paths from the resource pool, and A, the number of resources already allocated within
that pool. Resources within a pool that have already established optical paths capable of supporting
extensive communication between many resource pairs are believed to incur higher costs. This
approach aims to prevent the unnecessary establishment of new optical paths.

In addition, for the cost of each optical fiber, fibers that are likely to constitute the shortest

path between proximate resources with high costs are assigned higher costs. To reduce the usage
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of optical fibers, those already allocated as routes for other resource pairs are assigned a minimal

value €. The allocation cost W for an optical fiber e is obtained as follows:

uc,m(e) *Vem € ¢ Ealc
We ={ ceNemeN™ , (3.15)

€ e € Eale

N¢ and N™ are the sets of computation and memory resources, respectively. E%¢ represents the
set of transmission paths allocated as a route to any resource pair. ., (€) is the ratio of the number
of shortest paths between resources ¢, m to the number of shortest paths through optical fiber e.
Ve,m 18 the product of the cost of computational and memory resources, divided by the shortest hop

between resources ¢, m.

Metrics

We utilized the blocking rate and computational and memory resource utilization as metrics to eval-
uate the topology’s capability to execute numerous tasks simultaneously. In scenarios where a task
cannot be completed within an acceptable time, the request is considered blocked. The execution
time for tasks was calculated based on the network performance impact model defined in Chapter 2.
The blocking rate represents the ratio of blocked requests to the total number of generated requests.
A higher blocking rate indicates a reduced capacity for simultaneous task execution. Computational
and memory resource utilization measures the proportion of the total allocated resources to the over-
all available resources following the resource allocation simulation. A higher utilization signifies
that more resource pairs are simultaneously engaged in communication. Resource utilization was

derived for the memory and computational resources.

Relationship between optical network topology design based on CSTE and blocking rate

Figure 3.5 shows the blocking rate for each type of execution request in the resource allocation
simulation. In addition, for Environments 1 and 2, we include the results for GT_env3 and GT_env4

to facilitate comparison with the OCS-only case.
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Figure 3.5: Blocking rate in each optical network topology.

Across both environments, the generated topologies (GT_envl, GT_env2, GT env3, GT _env4)
and the fat-tree configuration exhibited lower blocking rates compared to other topologies. This
difference was particularly pronounced in Environments 1 and 2, where communication demands
between resources were greater, with these topologies reducing blocking by over 50%. GT_envl,

GT_env2, GT_env3, and GT_env4 achieved a CSTE of 1 in their respective generative environments
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(Table 3.9). By designing a topology based on CSTE, we can create configurations that support a
higher concurrency of task execution. In addition, when the CSTE values are identical, the block-
ing rates are similar, regardless of the number of OCS involved (e.g., GT_envl (160CS + 1PS)
and GT_env2 (240CS + 1PS), as depicted in Figure 3.5a to 3.5d). This observation suggests that
the simultaneous execution of numerous tasks is feasible, even within smaller-scale networks. Fur-
thermore, in Environments 1 and 2, GT_env3 and GT_env4 experience more blockings than other
topologies that incorporate OPS. This result indicates that the combined use of PS and OCS fa-
cilitates the establishment of flexible optical paths, thereby enabling a higher number of tasks to
be executed concurrently. In Case 1, the blocking rate for Request 1, which allowed the longest
acceptable time, was relatively high. This phenomenon is attributed to the depletion of available
optical fibers and resources. Therefore, factors beyond communication delays, e.g. the number of

resource pairs to establish routes, are important for the execution of numerous tasks.

Relationship between CSTE and resource utilization

Figure 3.6 shows the correlation between CSTE and computational and memory resource utiliza-
tion. Across each environment, a higher CSTE correlates with increased utilization regardless of
the resource type. Indicating that topologies with a CSTE closer to 1 enable more resource pairs to
communicate simultaneously. The ability for many resource pairs to engage in simultaneous com-
munication is essential for the simultaneous execution of numerous tasks. Therefore, making CSTE
a valuable metric for evaluating a pDDC network topology’s efficiency in this regard. The network
topology where CSTE is 0 achieves a resource utilization up to about 0.9. When CSTE is 0, this
only means resource allocation to use all resources while satisfying the performance requirements is
impossible in the network topology. If the number of execution tasks is small, it may be possible to
allocate resources to satisfy the performance requirements. Several requests can be allocated. How-
ever, it is noteworthy that not all computational and memory resources were successfully allocated
even in scenarios with a high CSTE. This discrepancy may be attributed to the resource allocation
method employed. Developing more efficient resource allocation methods tailored to topologies

generated based on CSTE could potentially improve these results.
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Figure 3.6: Relationship between CSTE and computational and memory resource utilization.

3.5 Discussion

3.5.1 Comparison of number of tasks that can be executed simultaneously in tradi-

tional data center and micro disaggregated data center

To demonstrate that a uDDC can execute more tasks than a traditional data center, we compare

#DDC and traditional data centers on the number of tasks that can be executed simultaneously.

Settings of micro disaggregated data center

We set the bandwidth and propagation delay to three patterns each. The bandwidth is set to 10Gbps,
100Gbps, and 1Tbps. Propagation delays are set to 0.025us, 0.05us, and 0.5us, assuming Sm, 10m,
and 100m lengths for each optical fiber.

Each parameter for network topology is the same as the environment 3 in Section 3.4. To ac-
commodate tasks with strict performance requirements, we use the uDDC with the optimal network
topology in Case 2 shown in Section 3.4. The parameters for the network performance are the same
as those in Table 3.4.

In this uDDC, the resource allocation method is the same as that shown in Section 3.4.4.

Settings of traditional data center

We assume a traditional data center consists of 240 servers that have computational and memory

resources. Each server has 28 computational resources and 32 memory resources. The total number
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of computational resources and total number of memory resources are 6720 and 7680, respectively.

This number is equal to the total number of resources that the uDDC has.

Each resource can only exchange data with resources in the same server. The latency for ex-
changes between computational and memory resources within the same server is negligible com-
pared to communication delay between resources in a uDDC. Delays in data transfer between com-

putational and memory resources are ignored.

In this traditional data center, we preferentially allocate resources in servers with fewer available

resources for requested tasks. All resources allocated for each task must be in the same server.

Execution task

We execute the service task shown in Table 3.5. In this evaluation, we compare three patterns with
different performance requirements for the requested tasks. Therefore, we set the acceptable time
for tasks to 400 ms, 300 ms, and 200 ms, which correspond to request type 1, 2, and 3 in Table 3.6.

Note that the performance requirements of tasks requested in each pattern are all the same.

Metric

We measure the blocking rate to evaluate whether many tasks are executed simultaneously. In this
evaluation, if a task cannot be completed within an acceptable time, the request is blocked. The
blocking rate represents the ratio of blocked requests to the total number of generated requests. The

smaller the blocking rate, the more tasks can be executed simultaneously.

Result

Fig. 3.7 shows the blocking rate of traditional data center and xDDC in each network performance.
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Figure 3.7: Blocking rate of traditional data center and micro disaggregated data center in each

network performance.

The ¢DDC exhibited lower blocking rates compared to traditional data centers except for the
case of allocating tasks with the acceptable time of 200 ms in the uDDC with a propagation delay
of 0.5us. Especially, in uDDC where the propagation delay was 0.05 us or less and bandwidth
was 100 Gbps or higher, the blocking rate of the uDDC was 0. In contrast, the blocking rate of
the traditional data center was 8.4% in all cases. By configuring an appropriate xDDC network

architecture, it is possible to execute more tasks simultaneously than traditional data centers.
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3.5.2 Discussion on effective use of optical circuit switches and packet switches

Previous research has proposed networks using both OCS and PS, yet a quantitative demonstration
of their efficacy remains unexplored. Through the evaluation and generation of topologies based
on CSTE, we shed light on the optimized use of both OPS and OCS. In Environment 1, where the
deployment of OPS is necessary, we generate multiple topologies featuring different numbers of
OCS and OPS. Each parameter for network topology generation is the same as that in Section 3.4.
We compared CSTE for these topologies. Table 3.11 shows the correlation between CSTE and the
distribution of switch types across different cases. Note that the total number of switches used in

any topology was 17.

Table 3.11: Relationship between CSTE and number of each switch type.

OCS 17116 | 1514 |13 |12 |11 10|98 | 7 | 6 | 5|4 |3 |2 |10
OPS Oy 1 12|34 |5]6 /|7 |8/9]10|11|1213]14|15|16 17
CSTE (Casel) | 0 | 1 1 1 1 1 1 L1711 1 11001 0]0]0
CSTE (Case2) | 0 | 1 1 1 1 1 1 I |1)1]1 100 ]0|0]0]|O

A topology exhibiting a CSTE greater than zero is unachievable when relying solely on either
OCS or OPS. This underscores the challenge of designing a suitable xDDC topology using only one
type of switch. OCS facilitates high-speed communication. However, it faces limitations owing to
the potential depletion of available optical fibers as communication demands among resource pairs
increase. Conversely, the OPS provides greater flexibility in resource allocation. However, its
higher switching delay compared to OCS reduces the number of resource pairs that can satisfy task

performance requirements. A mixed-switch configuration has emerged as a practical solution.

Furthermore, topologies predominantly composed of OPS failed to achieve a CSTE greater
than zero. Therefore, it reflects the limitations imposed on performance-satisfying communications.
Communication tends to be localized because only proximate resources can satisfy the performance
requirements. Complicating the establishment of optical paths. This issue is mitigated in topologies
with a higher proportion of OCS. Based on these considerations, it is advisable to rely primarily on

OCS and use PS as necessary.
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3.5.3 Discussion on number of optical fiber cables on physical topology design

In the topologies generated, connecting nodes with numerous optical fibers is crucial for estab-
lishing optical paths for the simultaneous execution of tasks. This increases the complexity of the
topology. A viable solution to mitigate this complexity is the use of multi-core optical fiber (MCF)
technology. Proposals for DDC architectures using MCF have been made, highlighting MCF’s ca-
pability of MCF to aggregate multiple optical fiber cores within a single cable. This integration
does not require stringent wavelength control or additional components, as noted in previous stud-
ies [51]. Utilizing MCF allows for a greater number of communication paths per cable, potentially
simplifying the overall network architecture. We explored topologies using a single-core optical
fiber, a 4-core MCEF, and an 8-core MCF. The CSTE and requisite number of cables for each physi-
cal topology variant are listed (Table 3.12). Each parameter for network topology generation is the

same as in Section 3.4.

Table 3.12: Relationship between CSTE and number of cables for each optical network topology.

Case 1 Case 2
1 core ‘ 4 cores ‘ 8 cores | 1 core ‘ 4 cores ‘ 8 cores
Environment 1(16 OCS + 1PS)

Cables | 1244 318 150 1284 312 118

CSTE 1 1 0.5 1 1 0.5
Environment 3(16 OCS)

Cables | 1156 308 114 1170 278 106

CSTE 1 1 1 1 1 1

Employing MCF with an increased count of optical fiber cores effectively reduces the number
of cables required for the optical network topology. However, the CSTE for the optical network
topology utilizing an 8-core MCF drops 0.5 in Environment 2. This value is half of the CSTE
observed in other physical topology configurations. The 8-core MCF network topology demands
eight ports per cable connection. This limits the possible number of switch connections compared
to the other cases. It is crucial to balance the aggregation of optical fibers to avoid restricting switch

interconnectivity.
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3.6 Conclusion

We proposed a physical topology evaluation metric named CSTE, designed to account for resource
allocation flexibility and the performance requirements of execution tasks. CSTE quantifies the
ability of resources to satisfy performance requirements without exhausting the optical path during
communication between target resources. In addition, we defined a physical topology design prob-
lem based on CSTE. We generated optimal topologies for the simultaneous execution of multiple
tasks. Simulations results demonstrated that topologies optimized based on CSTE could signifi-

cantly reduce task blocking, reducing it by more than 50% compared to conventional topologies.
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Chapter 4

Resource Aware Deep Learning Model
Partitioning and Allocation to Execute

Many Deep Learning Tasks

4.1 Introduction

In recent years, several deep learning (DL) services such as computer vision, natural language
processing, and streaming video processing have emerged [52]. Accordingly, the DL models used
by DL services are rapidly evolving. Large language models with up to 100 billion parameters [53]
and vision models with over 10 billion parameters [54] have emerged. In this regard, DL services
are diversifying in terms of both service characteristics and DL model scale [55].

Service providers construct graphics processing unit (GPU) clusters to deliver DL services. In
GPU clusters, multiple GPUs are interconnected through a network. Through cooperation among
multiple GPUs, GPU clusters enable the execution of DL services using a large-scale DL model
that cannot be executed on a single GPU. The scale of GPU clusters varies from large-scale GPU
clusters provided by large artificial intelligence (Al) companies to accommodate any DL model
to limited-scale GPU clusters [56]. Currently, owing to the fast release cycle of GPU products,

enterprise-provided GPU clusters are equipped with GPUs with various performances [57]. A GPU
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cluster is typically multitenant [58] and multiple services are executed simultaneously. In particular,
clusters in edge infrastructures such as micro data centers are small and do not have plentiful GPUs,
the efficient use of GPUs to deliver many service tasks is required. Resource disaggregation is
effective for the flexible cooperation of multiple GPUs [59]. By resource disaggregation, any GPUs
in the cluster, regardless of the rack or server, can work together to process by abstracting the
GPUs. Therefore, we target GPU clusters with heterogeneous GPUs in a micro data center applying
resource disaggregation (micro disaggregated data center (uDDC)).

When allocating the execution resources for DL services in a cluster with heterogeneous GPUs,
a GPU with sufficient performance is allocated to satisfy the following three performance require-

ments:

* Throughput requirement: Sufficient throughput to complete all requested DL service tasks.

* Execution time requirement: Completion of service tasks within an acceptable time for the

service users.

¢ Memory requirement: Sufficient memory capacity of GPU to execute the DL model.

However, if the memory and computing capacity of the GPUs in the cluster are insufficient for the
DL model size and computational complexity, DL services cannot satisfy the listed performance
requirements. Pipeline parallelism is used to address this issue [60]. In pipeline parallelism, a
DL model is partitioned and a GPU is allocated for each partition. Hereinafter, this partitioning is
referred to as the pipeline stage. Throughput increases because the input data for DL service can be
processed in parallel at each pipeline stage. Furthermore, larger DL models can be executed by the
cooperation of multiple GPUs. Therefore, pipeline parallelism is an important technique to satisfy
the throughput and memory requirements of services that provide inference for streaming data and
inference using a large-scale DL model.
Although pipeline parallelism is an important technique, communication delays between pipeline

stages can cause an increase in execution time [61]. Furthermore, when the execution resource for
the next pipeline stage is processed, the input data from the previous stage wait until the resource

becomes available. Therefore, if the execution time of one pipeline stage is excessively large,
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the overall execution time will be larger, even if the execution time of the other pipeline stages
is smaller. Therefore, efficient model partitioning and allocation methods are required for pipeline
parallelism. DL model partitioning and allocation methods for pipeline parallelism have been previ-
ously proposed [60—63]. The objective of these methods is to run large-scale DL models, maximize
the throughput, or both. These methods improve DL service performance and enable it to operate

in environments where GPU performance is constrained.

Conventional methods aim to maximize the performance of DL services requested at that time.
However, in GPU clusters where multiple DL services are executed simultaneously, resource man-
agement capable of simultaneously executing the maximum number of services while satisfying the
performance requirements is required. To execute many service tasks, the required resources must
be available when a service is requested. Therefore, considering not only the services requested
at that time but also the execution of services requested in the future is required. Owing to these
differences, the following points must be considered: (1) a specific and number of GPUs currently
available in GPU clusters, and (2) the specific GPUs allocated for requested services. For instance,
if a sufficient number of GPUs with large memory and/or high computing capacity are available, DL
service tasks can be executed with fewer pipeline stages, even on larger-scale DL models. There-
fore, the performance requirements of the requested service can be satisfied using fewer GPUs.
The lack of consideration for a specific and number of GPUs currently available in GPU clusters
can lead to excess GPU allocations for each service. Consequently, GPUs for executing future ser-
vices may be rapidly depleted, and the number of services that can be executed simultaneously is

constrained.

Owing to these problems, conventional methods are constrained by the number of services
that can be executed simultaneously. Model partitioning and allocation method to execute several
DL services are required. We previously proposed a resource allocation method to execute more
services simultaneously while satisfying performance requirements [19]. However, this method
does not target DL service task execution using pipeline parallelism in GPU clusters. In this chapter,
we comprehensively consider resource allocation and model partitioning to execute a many DL

services in a GPU cluster.
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We propose resource aware model partitioning and allocation(RAMPA). RAMPA aims to min-
imize the allocation of important resources for future DL service task execution to avoid inhibiting
future DL service task execution. We define the resource allocation cost for GPU and network links
in terms of the resource importance. Furthermore, we formulate the impact of model partitioning,
allocated GPUs, and paths on execution time and throughput. Then, to comprehensively consider
resource allocation and model partitioning, we define an optimization problem to minimize the re-
source allocation costs while satisfying the service performance requirements. By optimizing the
model partitioning strategy and resource allocation based on the optimization problem, we pre-
serve the required GPUs to satisfy the performance requirements of future services. This allows
more DL services to operate simultaneously. By comparing other model partitioning and allocation
methods, we demonstrate that RAMPA can run more DL services while satisfying performance
requirements. Furthermore, we compare the execution performances of the services allocated by
RAMPA with those allocated by the conventional method. Finally, we investigate whether RAMPA

could allocate DL services within a practical computation time.

The main contributions of this chapter are as follows:

* We formulated the impact of model partitioning, allocated GPUs, and paths on execution

time and throughput.

* We defined an optimization problem to execute more DL services simultaneously.

* We demonstrated that RAMPA can run more DL services while satisfying the performance

requirements.

The remainder of this chapter is organized as follows: Section 4.2 discusses the related work.
Section 4.3 provides an overview of clusters with heterogeneous GPUs. Section 4.4 provides an
overview of RAMPA. Section 4.5 validates that more DL services can be executed by RAMPA
and discusses DL service task execution performance and computational time. Finally, Section 4.6

concludes the chapter.
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4.2 Related Work

In GPU clusters, when the memory and computing capacity of the GPUs are insufficient for the DL
model size and computational complexity, pipeline parallelism is used. In pipeline parallelism, a
DL model is partitioned into multiple pipeline stages and each pipeline stage is allocated to a GPU.
Larger size DL models can be executed by the cooperation of multiple GPUs. Each pipeline stage
is processed in parallel. The throughput increases because the amount of data that can be processed
simultaneously increases. However, the execution time and throughput change depending on the
process of the DL model that is executed by the GPU at each pipeline stage. An appropriate model

partitioning and allocation method is required to exploit pipeline parallelism.

Several model partitioning and allocation methods are proposed [60-62]. Huang et al. pro-
posed a pipeline parallelism method, GPipe, to achieve the fast training of large models [60]. Gpipe
maximizes the efficiency of the pipeline parallelism by minimizing the variance in the estimated
computational cost of each pipeline stage. Narayanan et al. proposed a pipeline parallelism method,
PipeDream, to minimize the large model training time [62]. PipeDream partitions the DL model
to minimize the maximum execution time for each pipeline stage by estimating the execution time
of each pipeline stage and the communication time between the stages based on the DL model.
Zhuohan et al. proposed a model partitioning method, AlpaServe, to execute the maximum num-
ber of DL services to satisfy the execution time requirements of a requested set of services [61].
AlpaServe partitions DL models to minimize the maximum execution time for each pipeline stage
and selects a combination that maximizes the number of services that satisfy the performance re-
quirements of services. These methods achieve a high-performance DL model execution. However,
they do not consider the impact of the performance of allocated resources on service task execu-
tion performance because they are targeted for execution on homogeneous architectures. Therefore,
these methods cannot achieve proper model partitioning and resource allocation to satisfy the per-

formance requirements of clusters with heterogeneous GPUs.

A method that considers the impact of the performance of allocated resources on the service

task execution performance was proposed [63]. Hu et al. proposed a pipeline parallelism method,
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PipeEdge, for fast inference of large DL models in a heterogeneous device-connected environ-
ment [63]. This method maximizes the throughput by model partitioning and resource allocation
to minimize the maximum execution time for each pipeline stage, considering the resource perfor-

mance and communication delays.

Conventional methods aim to maximize DL service performance requested at a given time and
do not consider the resources allocated to future services. Consequently, the number of DL ser-
vices that can be executed is limited. Fig. 4.1 shows three examples of DL model partitioning and
allocation in GPU cluster comprising three GPU pools with eight GPUs. In each example, three
services with long execution time requirements using model_A and three services with short exe-
cution time requirements using model_B are allocated. In Fig. 4.1a, a DL model is partitioned to
maximize throughput and allocate GPUs within the same GPU pool to minimize execution time.
Consequently, GPUs for newly allocated tasks are forced to communicate with longer delays. In
Fig. 4.1b, allocation of GPUs in pools with numerous available resources is avoided. Under this
policy, GPUs on different pools can be used for services that use model_A, which accepts longer
delays. Consequently, some GPUs are available for running services with shorter execution time
requirements. In Fig. 4.1c, in addition to the resource allocation policy in Fig. 4.1b, the number of
model partitions should be the lowest possible to reduce allocated GPUs. In this policy, the perfor-
mance is not maximized; however, the performance requirements can be satisfied. Consequently,
all GPUs on one pool are available. Therefore, additional services can be provided. In this manner,
model partitioning and resource allocation must be performed considering the resources to be used

for services and the resource allocation situation to execute more DL services.
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Figure 4.1: Example of deep learning model partitioning and allocation.

4.3 Cluster with heterogeneous GPUs

4.3.1 Overview of cluster with heterogeneous GPUs

In this chapter, we assume that DL services are executed in a GPU cluster with multiple types of
GPUs. For the flexible cooperation of multiple GPUs, we assume GPU clusters in a uDDC. Any
GPUs in a p center, regardless of the rack or server, can work together to process by abstracting the
GPUs. In this uDDC, multiple same-type GPUs is aggregated as a GPU pool by a network switch.
Network switches are connected to form a network between GPUs.

Fig. 4.2 shows DL service task execution process. We assume that resource allocation requests
for tasks are sent to a cluster at any time. After a resource allocation request for DL service task is
sent to the cluster, the corresponding DL model is partitioned into multiple pipeline stages. Sub-
sequently, the execution GPU for each pipeline stage and the communication paths between GPUs
are allocated. After resource allocation, the allocated GPUs load the corresponding model partition
into the memory of the GPU from the storage devices in the GPU cluster. After completing these
processes, the DL service is executed. In this chapter, we assume DL services that perform infer-
ence processing on the input data. After allocation, the data for inference are sent to the allocated
service task. Note that each GPU does not communicate with any storage device during execu-

tion. Therefore, communication with a storage device does not affect the service task execution
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Figure 4.2: Overview of task processing.

4.3.2 Information considered for model partitioning and allocation

The notations for the information considered for DL. model partitioning and allocation are listed in

Table 4.1.
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Table 4.1: Notation of the GPU cluster and task execution.

Symbols ‘

Definition

Notation of GPU cluster

TIITTTQ

Set of available GPUs

Set of network links
Set of switches

Performance metric (FLOPS) of GPU g € G
Memory capacity of GPU g € G

Set of available paths

Bandwidth of network link [ € L
Bandwidth of propagation delay e € L
Switching delay of switch s € S

between GPUs

Notation of DL task execution information

Set of execution service

Throughput requirement of service k € K

Acceptable time of service k € K

DL model used for service k € K

Set of operations of DL model a

Set of edges indicating the correspondence of operations in DL model a
Set of paths between operations v, v’ € V, in DL model a

Memory consumption for operation v € V,

Computation time for

Output data size between operations corresponding to edge e € E,
Source node in operation graph edge e
Target node in operation graph edge e

operationv € V,onGPU g € G

Notation of mapping of tasks to GPU clusters

x(v,9)
v(e,r)

Mapping of operation v to GPU g
Mapping of edge indicating the correspondence of operations e to path r

GPU cluster information

We represent the sets of available GPUs, network links, and switches as G, L, and S, respectively.

For each GPU g € G, we define the floating-point operations per second (FLOPS) f, and GPU

memory capacity m,. We define the set of paths that can be established between any GPU pair as

R. Each path is a subset of the set L of network links. For each network link [ € L, we define

the bandwidth b; and the propagation delay tf . For each switch s € S, we define the switching

S s
processing time t?.

Task execution information

In this chapter, we represent a set of execution services as K. For each service, we denote ay,

using the DL model used for each service ¥ € K. As the execution information of a service
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k € K, operation graph G(V,, , E,, ) representing the relationship between the operations required
to execute DL model ay, throughput requirement ~y;,, and execution time requirement dy, is provided.
An operation corresponds to the layer of the DL model and can be a single pipeline stage in pipeline
parallelism. In this chapter, we only target inferences using the DL model in DL service task.
Therefore, the operation graph is constructed without considering training processes such as back
propagation. Model partitioning and allocation for training is future work.

In the operation graph of DL model a, each node v € V|, corresponds to the operation, and
each edge e € F, represents the relationships between operations. For each operation v € V,, we
define the amount of memory consumed to execute the operation as w;,. In addition, we define ¢ 4
as the execution time for executing operation v € V, on GPU g € G. For each operation graph
edge e € E,, the intermediate data size transferred between the corresponding operations is defined
as d.. These are set by prior profiles. Furthermore, for the operation graph edge e, we define the
source node v: and target node v:. We define the set of paths between operations v,v’ € V, as

R? .. This is a subset of the set of operation graph edges.

a,v,v

4.3.3 Mapping task to GPU clusters

To represent DL model partitioning and allocation, we map the nodes and edges of the operation
graph to the GPUs and paths in the cluster, respectively. Fig. 4.3 shows the mapping of the operation
graph and the GPU cluster when the DL model is partitioned by four pipeline stages. Each GPU
executes all the operations mapped to the GPU. The number of GPUs to which the operation graph
nodes are mapped corresponds to the number of pipeline stages. In addition, communication occurs
between GPUs to send data to the next pipeline stage. To determine the path in this communication,
the mapping between an operation graph edge and a path between GPUs to which the operations
are mapped.

X(v, g) denotes the mapping between an operation and a GPU. When an operation v € V, of
model a is executed on GPU ¢ € G, x(v,g) = 1 and x(v, g) = 0 otherwise.

v(e,r) denotes the mapping between an operation graph edge and the path between GPUs.

When an operation graph edge e € E, of model a is mapped to a path r € R ;2 between GPU
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pairs g, g> € G, v(e,r) = 1 and v(e,r) = 0 otherwise.
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Figure 4.3: Example of mapping of operation graph to GPU cluster.

4.4 Resource aware model partitioning and allocation (RAMPA)

In this chapter, we propose RAMPA to run several DL services while satisfying performance
requirements. RAMPA determines (1) the number of pipeline stages, (2) GPUs executing each
pipeline stage and the path between GPUs, and (3) operations corresponding to each pipeline stage.
First, we formulate the impact of model partitioning, allocated GPUs, and paths on execution time
and throughput. Next, we define the allocation costs for GPUs and network links in the cluster
to avoid the allocation of resources required for future requested services. Finally, we define an
optimization problem to determine the model partitioning and allocation that can minimize the
allocation cost while satisfying the performance requirements to execute numerous DL services

simultaneously.

4.4.1 Impact of model partitioning and resource allocation on execution time and

throughput

We formulate the impact of model partitioning and resource allocation on throughput and execution

time.

- 107 -



4.4 Resource aware model partitioning and allocation (RAMPA)

Throughput of task

In pipeline parallelism, when the execution GPU for the next pipeline stage is processed, the input
data from the previous stage wait until the GPU becomes available. Therefore, data are sent to the
next stage in a cycle that does not cause data conflicts. We call this cycle the pipeline cycle. Because
the pipeline stages can be processed in parallel, the throughput is the inverse of the pipeline cycle.

Throughput P, of service k € K is obtained as follows:

1
P, = T (4.1)

where T7' denotes the pipeline cycle of service k.

Execution time of task

The execution time of the service is the time from the data input to the first pipeline stage until the
completion of execution in the last pipeline stage. Because data are sent to the next stage of every
pipeline cycle, the execution time of the service is the sum of the pipeline cycle and communication
delay between the pipeline stages in the flow of input data. In pipeline parallelism, execution time
depends on the processing of the pipeline stage with the highest latency. Therefore, the execution
time of a service is the maximum value of the execution time when the input data passes through
the corresponding pipeline stage in each path of the operation graph. Execution time 77, of service

k € K is obtained as follows:

T/ = max {T,ﬁ + Z Z v(e,r) (T + T(fk,e)} (4.2)

epP
v v}:,v,i €€y reR

where T} denotes the pipeline cycle of service k and T, . denotes the communication delay in the
path mapped to operation graph edge e. v,J: and v}, represent operations that receive data first and

output data last, respectively.
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Pipeline cycle

In pipeline parallelism, the input data from the previous stage are processed until a GPU is available.
In addition, communication between pipeline stages and pipeline stage processing can overlap [63].
Therefore, to complete processing without data conflicts in pipeline parallelism, where data transi-
tion is only forward, the pipeline cycle is the maximum execution time of each pipeline stage and
the communication delay between stages. However, if the operation graph has backward edges and
the operations are repeated, the data sent from a later stage to the previous stage must also be con-
sidered. In this case, the pipeline cycle is the maximum execution time of the set of pipeline stages
to be repeated, in addition to the time mentioned above. Therefore, pipeline cycle T} for service

k € K is obtained as follows:

Ty = max ) v(e,r):

c€F ,cR
max (T;hvg, Tg) e is forward (4.3)
b c ;
max (Tak,vg,vgv Te> e 18 backward

. T . . . s -
where 77, s denotes the execution time in a pipeline stage corresponding to operation vg and T

denotes the communication delay in the path mapped to the operation graph edge e. Té’k ot s

denotes the execution time from the pipeline stage corresponding to operation v’ to the pipeline

stage corresponding to operation v_.

Execution time in pipeline stage

The execution time of the pipeline stage corresponding to operation v is the sum of the execution
latencies of all operations mapped GPUs that operation v is mapped to. Execution time 77, of the

pipeline stage corresponding to operation v for model a is obtained as follows:

To, =Y xw9) | Y x,9)t, (4.4)

geG v eV,
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Communication delay between pipeline stages

The communication delay in the path mapped to operation graph edge e is the sum of the time
required to obtain the head of the intermediate output data corresponding to operation graph edge
e and the transmission delay. The transmission delay is the sum of propagation delay ¢} of each
network link [ € r and switching delay ¢ of switch s € S on path » € R to which operation graph
edge e is mapped. Communication delay 7 required to transfer data on the path that operation
graph edge e is mapped to is obtained as follows:

Tie= % vlen) S, (74T, + %) (4.5)
'

where Cé—‘; denotes the time required to obtain the head of intermediate output data. n;, denotes the

source switch when passing through link / on path r.

Execution time from one pipeline stage to another pipeline stage

The execution time from the pipeline stages corresponding to operation v to the pipeline stage cor-
responding to operation v’ is the sum of the execution time in the pipeline stages and the commu-
nication delay between the pipeline stages. Therefore, the execution time from the pipeline stages
corresponding to operation v to the pipeline stage corresponding to operation v’ for DL model a is

obtained as follows:

b p—
a,v,v’
(4.6)
2 {wa X 3 vlen) (T + Tcie)}
V.V T

4.4.2 Model partitioning and resource allocation problem

We aim to execute several services simultaneously in a cluster with heterogeneous GPUs. To
achieve this objective, we avoid allocating important GPUs and network links that may be required
for future tasks. This policy is similar to that of RA-CNP shown in Chapter 2. However, this

method does not target DL service task execution using pipeline parallelism in GPU clusters. In
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this chapter, we define an optimization problem for model partitioning and resource allocation to
execute numerous services simultaneously. We define the allocation costs for GPUs and network
links based on the importance of future service task execution and minimize the costs of the al-
located GPUs and network links. Thereafter, we define an optimization problem to determine the
optimal model partitioning and resource allocation to execute numerous DL services while satis-
fying the performance requirements of the services based on the allocation cost and the impact of

model partitioning, allocated GPUs, and paths on the execution time and throughput.

Allocation cost

We define the allocation costs for GPUs and network links in the GPU cluster.

GPU allocation cost GPUs with higher computational and memory capacities are more capa-
ble of satisfying performance requirements. Furthermore, GPUs in the pools with more available
GPUs have more GPUs in close proximity. This implies that low latency communication between
pipelines is probable. Therefore, GPUs with high computing and memory capacities, and several
available GPUs in the corresponding pool are important. We define GPU allocation cost as the

product of these factors. GPU allocation cost Cj for GPU g € G is obtained as follows:

Cl=fg-mg-qq 4.7)

where g, denotes the number of available GPUs in the pool with GPU g.

Network link allocation cost Network links used as paths between important GPUs are essential.
Furthermore, the path length must be short for low latency communication. Therefore, the network
links, which may be the shortest paths between important GPU pairs, are essential. This policy is
similar to that in our previously proposed resource allocation method [19]. We set the network link
allocation cost using the same policy as that used in this chapter.

First, for network link [ € L, we define the potential to be on the shortest path for the GPU pair

g%, g% € G. The larger the proportion of the number of shortest paths through link [ to the number
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of shortest paths for GPU pair ¢', g2, the more likely is the network link to be on the path of the
GPU pair. Therefore, the potential for link [ € L to be the link on the shortest path for the GPU pair

g', g? is obtained as follows:
N L)
g9'9

NT‘
gt,9?

ugn g2 (1) = (4.8)

where N;'l 2 (1) denotes the number of shortest paths through link [ and N;"l 42 denotes the number
of shortest paths for GPU pair g!, g2. The importance of a GPU pair is the sum of the costs of
the two GPUs divided by the shortest number of hops between them because more distant GPUs
have a larger communication latency. The network link allocation cost Cll for network link [ € L is
obtained as follows:

= Y ey 2

2
gl,g%2eG 9,9

4.9)

where Hg1 ;o denotes the shortest hop between GPU pair gt g* €q.

Optimization problem

We define an optimization problem that outputs mappings between operations and executing GPUs,
and between operation graph edges and paths based on information about the GPU cluster and DL

service task execution.

Objective

The objective is to minimize the sum of the allocation costs of GPUs and network links allocated to

the DL service, that is,

. . . g
minimize Y cq 1ZU€V% (0,9)>0Cg +

ZT’GR ZeEEak U(e’ T) ZZET‘ CYll

(4.10)

where 12uevak (v,9)>01S 1 when ZveVuk X(v,g) > 0 and O otherwise.
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Constraints

Mapping constraint These operations must be mapped to an available GPU. The operation graph
edge must be mapped to the path between the two GPUs mapped to operations corresponding to the

adjacent nodes of that operation graph edge, that is,

Vo € Vo, Y x(v,9)=1 .11
geG

Ve € E,,,
Z Z U(G,T) = X(Ug,gl) : X(vzaQQ)

1,2
gl.g°eG TERQ1’92

(4.12)

where v¥ and v}, denote the source and target nodes of operation graph edge e € F,, , respectively.

Rg1 g2 denotes the set of paths between GPUs g1, g2 € G.

Throughput requirement The throughput of the allocated DL service k£ € K must be larger than

the throughput requirement, that is,

Vke K, v, < Py (4.13)

Execution time requirement The execution time of the allocated DL service £ € K must be

smaller than the execution time requirement, that is,

Vk € K, 6 > T}, (4.14)

Memory requirement The total memory consumption of the operations mapped to the GPU and
the data size input to the pipeline stage corresponding to that GPU must be less than or equal to the

GPU memory capacity, that is,

Vk e K,Vg € G,

. (4.15)
> x(, 9wy + Y X(vE, 9)x(vE, g)de < M,
’UGVak eeEak
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where X (v, g) denotes the inversion of x(v, g). If x(v, g)=1, the value is 0. If x(v, g)=0, the value
is 1.
Solving this optimization problem minimizes the allocation of important GPUs and paths for

service task execution while satisfying the performance requirements.

4.4.3 Model partitioning and allocation based on ant colony optimization

To derive the optimization problem defined in Section 4.4.2, we searched for mappings between
the operation graph nodes and GPU, operation graph edges, and paths. However, such mappings
are a binomial combinational optimization problem, and resource allocation based on the binomial
combinational optimization problem is NP-hard [34]. To address such problems, metaheuristic
methods have been used to address these problems. In this chapter, we solve this problem using ant
colony optimization (ACO).

ACO is a population-based metaheuristic method in which multiple agents probabilistically
search for solutions. ACO is a flexible method that can adapt to changes in the environment [35] and
can flexibly search for solutions even if the resource utilization status in a cluster changes. In ACO,
the pheromone values are first assigned to GPUs and network links. The higher the pheromone
values of the GPU and network link, the more likely they are to be selected by the agent. After
multiple agents probabilistically search for a solution based on pheromones, an optimal solution
is selected from the searched solutions. Finally, the pheromone value in the optimal solution is
increased. This process is repeated several times.

VNE-AC was proposed for resource mapping using ACO [34]. However, this method allocates
only the shortest routing paths. In this chapter, because network link allocation costs are not directly
related to communication delays, the performance requirements may not be satisfied because of
communication delays between GPUs if a path is allocated according to the shortest path problem.
We arranged and used VNE-AC to use ACO to select network links. However, any method can be

used as long as the solution can be derived.

In deriving the solution using ACO, we change the number of pipeline stages from one to the

number of operations and determine the lowest cost solution for each number of pipeline stages.

—114-



Chapter 4. Resource Aware Model Partitioning and Allocation

Thereafter, we derive an optimal solution by selecting the lowest cost among these solutions. To
search for a solution, the following steps are performed: (1) GPU search, (2) network link search,
(3) Performance requirement check, and (4) Pheromone update. If the allocation cost exceeds the
current minimum allocation cost, then the process is rejected to avoid unnecessary processes. The

notations used for ACO are listed in Table 4.2.

Table 4.2: Notation of model partitioning and allocation based on ant colony optimization.

Symbols Definition

T Pheromone of GPU or link r

o Pheromone weight

154 Resource allocation cost weight

p Pheromone decrease rate

¢ Pheromone increase rate

G® Set of GPUs in current best solution
Lb Set of links in current best solution

GPU search

During the GPU search, the agent probabilistically selects the GPU corresponding to each pipeline
stage from the available GPUs. The objective is to minimize the allocation cost; therefore, the
allocation probability of GPUs with a low cost is set high. We define GPU g € G allocation

probability p§ as follows:

g (Tg)a (@)

Network link search

In a network link search, the agent generates sub-agents to explore the paths between the GPUs
selected in the GPU search. Each sub-agent probabilistically selects a network link from the source
GPU. Next, the sub-agent probabilistically selects the next network link from the destination node

of the first link. This process is repeated until the destination GPU is reached. We define network
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link [ € L and allocation probability pf ,, as follows:

[ 1
(m) (cll)ﬁ

A
pl,n - 1
o

Performance requirement check

In this phase, we check whether the performance requirements are satisfied when the DL service is
executed by the selected GPUs and paths. First, we calculate the throughput, execution time, and
memory consumption for each combination of operations executed at each pipeline stage. Then, we
check whether a combination exists that satisfies the performance requirements. If no combination

satisfies the performance requirements, the process is rejected.

Pheromone update

After the performance requirement check, pheromones of all GPUs and network links decay based
on the pheromone reduction rate rho. However, only the pheromones of the GPU and network link
in the optimal solution for each iteration are augmented based on the pheromone increase rate phi

and the allocation cost value. The pheromone enhancement value h is obtained as follows:

¢

h—
> gecr CF + 2 iers Cf

The pheromones 7, 7; for GPU g € G and network link [ € L are updated as follows:

Tg:pTg+ha Tl:PTl+h,

4.5 Evaluation

We evaluate RAMPA through simulations of a cluster with heterogeneous GPUs and DL service

allocation.
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4.5.1 Environment

We describe the cluster with heterogeneous GPUs, execution services, and comparative methods

used to evaluate RAMPA.

Cluster with heterogeneous GPUs

We assume a GPU cluster comprising 16 GPU pools. Each pool has 40 GPUs. We evaluate RAMPA

in the following three GPU clusters with different GPU and network performances:
* Base cluster: Neutral GPU cluster for comparison.
* High-bandwidth cluster: GPU cluster with high network bandwidth.
* High-performance cluster: GPU cluster with many high-performance GPUs.

A high-bandwidth cluster differs from the base cluster only in terms of the bandwidth of each net-
work link. In a high-performance cluster, relatively low-performance GPUs are removed from the
base cluster. In all other aspects, the base and high-performance clusters were identical. Fig. 4.4a
shows the base and high-bandwidth clusters and Fig. 4.4b illustrates a high-performance cluster.
For stable and fast communication between GPUs, the same type GPUs in each pool are connected
to an optical circuit switch. The optical circuit switches are connected to each other by an optical
fiber to form an network. We assume that the network topology is a two-dimensional torus topol-
ogy of 4 x 4 with 16 optical circuit switches. For flexible routing, an optical circuit switch pear is
connected to four optical fibers. Connected GPUs are the following four types: NVIDIA L4 [64],
NVIDIA V100 [65], NVIDIA A30 [66], and NVIDIA Tesla T4 [67]. Hereinafter, we refer to these
as GPU_A, GPU_B, GPU_C, and GPU_D, respectively. In the high-performance cluster, eight pools
with only GPU_A and GPU_B are connected. GPU_A and GPU_B performed better than GPU_C
and GPU_D in terms of memory capacity and FLOPS.

The parameters of the GPU clusters used to estimate the performance and set the allocation
costs are listed in Table 4.3. The bandwidth in the base and high-performance clusters is 10 Gbps
and that in the high-bandwidth cluster is 100 Gbps. The network link length within a pool is 10

m, and that between pools is 20 m. The propagation delay of each network link is 0.05 ps and 0.1
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us. By referencing CALIENT ’ s optical circuit switch [50], we set the switching delay to 0.03 us.
GPU FLOPS, memory bandwidth, and memory capacity are based on the data sheet of each GPU.

GPU cluster GPU cluster

GPU_) ((GPU ) N
GPU_)|GPU )| GPU :

() optical circuit switch —— Optical fiber cable GPU [E) optical circuit switch —— Optical fiber cable GPU
@ GPUApool [@ GPUBpool [@ GPU_Cpool GPU_D pool @ GPUApool [@ GPU_Bpool
(a) Network for base and high-bandwidth clusters. (b) Network for high-performance cluster.

Figure 4.4: Networks used in evaluation.

Table 4.3: Parameter settings for GPU cluster.

Parameters Value
GPU_A FLOPS 30.3 TFLOPS
GPU_A memory size 24GB
GPU_A memory bandwidth 300GB/s
GPU_B FLOPS 14 TFLOPS
GPU_B memory size 32GB
GPU_B memory bandwidth 900GB/s
GPU_C FLOPS 10.3 TFLOPS
GPU_C memory size 24GB
GPU_C memory bandwidth 933GB/s
GPU_D FLOPS 8.1 TFLOPS
GPU_D memory size 16GB
GPU_D memory bandwidth 320GB/s
Propagation delay (Switch - GPU) 0.05 us
Propagation delay (Switch - Switch) 0.1 us
Switch latency of the optical circuit switch 30 ns
The bandwidth (Base / high bandwidth) | 10 Gbps/100Gbps

Execution task

We assume tasks for the following DL services with different characteristics in throughputs, execu-

tion latencies, and memory requirements:

* High-throughput service : Object recognition service for video streaming using YOLOS [68].
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* Low-delay service . Image classification service using vision transformer [68].

* Huge model service . Al chat bot service using Gemma2 [68].

DL models used in this chapter were downloaded from the Hugging Face. The throughput, execu-

tion time requirements, and usage DL model for each service are listed in Table 4.5. Throughput

refers to the number of transactions per second (tps), where one inference of an input datum is a

transaction. The execution time is defined as the time required to complete a transaction. In the

high-throughput, low-delay, and huge model services, one input data is set to one frame, one image,

and 1000 characters of text, respectively. We set the proportion of the number of services to be

executed in the following four environments to evaluate RAMPA:

» Same demand for all services . The proportion of the number of executed service is balanced.

* High demand for high-throughput services: The proportion of the number of high-throughput

service is high.

* High demand for low-delay services : The proportion of the number of low-delay service is

high.

* High demand for huge model services . The proportion of the number of huge model service

is high.

To simulate each environment, we generate resource allocation request for each service with a

certain probability. The probabilities of each service are listed in Table 4.4.

Table 4.4: Generation probability of resource allocation requests.

Service High throughput ‘ Low delay ‘ Huge model
Same demand for all services Same probability
High demand for high-throughput service 0.8 0.1 0.1
High demand for low-delay service 0.1 0.8 0.1
High demand for huge model service 0.1 0.1 0.8

Table 4.5 lists the layer names corresponding to the operations of each DL model, correspond-

ing floating-point operations (FLOPs), amount of memory consumed, and size of the output data for

each operation. The FLOPs and output data sizes are set by profiling using calflops [69]. Memory
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consumption is set to the parameter size of each operation multiplied by 1.2. The reason for mul-
tiplying by 1.2 is to consider the overhead of the consumed memory. In this evaluation, we set the
execution time of the operation for each GPU type based on the values shown in 4.3. Execution time
is the sum of FLOPs divided by GPU FLOPS and memory consumption divided by GPU memory

bandwidth. Therefore, execution time ¢} ; of operation v in GPU g can be obtained as follows:

FLOPs(v) n dy
fq Memory_Band(g)

g _
tvhq -

where F'LOPs(v) denotes the FLOPS of operation v and M emory_Band(g) is the memory band-
width of GPU g. However, more appropriate execution time estimation methods may exist, which

will be a topic for future studies.

Table 4.5: Deep learning model and performance requirements.

Service High throughput | Low delay Huge model

Model yolos-base [68] | vit-huge [70] | gemma-2-27b [71]
Execution time (s) 0.1 0.05 10
Throughput (tps) 60 30 0.1

Table 4.6: Parameter settings for each deep learning model.

Operation ‘ FLOPs ‘ memory consumption ‘ output data size
yolos-base [68]
Embedings 3.9G 192.55MB 109.60MB
YolosLayer (X 12) 48.17 G 32.46MB 9.96MB
LayerNorm 13.06M | O 9.96MB
YolosPooler 1.18 M 2.7MB 3KB
vit-huge [70]
ViTEmbeddings 385.68 M | 4.94MB 1.25MB
ViTLayer (X 32) 10.11 G | 90.08MB 1.25MB
LayerNorm 1.64 M 11.72KB 1.25MB
ViTPooler 328 M 7.51MB 5.00KB
gemma-2-27b [71]
Embedding 0 5.28GB 5.98MB
GemmaDecoderLayer (X 46) | 1.15T 2.52GB 5.98MB
GemmaRMSNorm 0 20.4KB 5.98MB
Linear 236T 5.28GB 332.03MB
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Parameter settings for ant colony optimization

We use ACO for GPU and path allocation. Parameters for ACO are listed in Table 4.7.

Table 4.7: Parameter settings for ant colony optimization.

Parameters Value
Number of agents 20
Number of agent generations | 20
Pheromone decrease rate 0.1
Pheromone increase rate 100
Pheromone weight 2
Allocation cost weight 1
Initial pheromone value 1000

Comparative methods

RAMPA can optimize model partitioning and allocation by considering both the importance of
allocated resources and number of allocated resources. To demonstrate their effectiveness, we com-

pared them using the following two methods.

PipeEdge (PE) PipeEdge [63]is a model partitioning and allocation method to maximize through-
out by considering the performance of allocated resources. This method minimizes the maximum
execution time of each pipeline stage by preferentially selecting high-performance GPUs and low-
latency paths. The number of pipeline stages is fixed for each model in advance. In comparison

with this method, we demonstrate the effectiveness of the objective setting of RAMPA.

No considering allocated resource number(NCAR) NCAR is a model partitioning and allo-
cation method that minimizes the allocation of important GPUs and paths to execute tasks while
satisfying the service performance requirements. In this method, the number of pipeline stages
is fixed for each model in advance. This method is similar to RAMPA in terms of its objective.
However, it differs in the absence of consideration of the number of allocated resources. In com-
parison with this method, we demonstrate the effectiveness of model partitioning and allocation by

considering the number of resources allocated.
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In the comparison methods, the number of pipeline stages is fixed for each DL model. We
evaluate the comparative methods for all possible pipeline stage number patterns to demonstrate
the effectiveness of optimizing model partitioning and allocation, including the number of allocated
resources. Therefore, we set the number of pipeline stages to range from the number of pipeline
stages that can be executed on any GPU in this evaluation environment to the number of pipeline
stages that can be executed only on a GPU with high-performance (GPU_A and GPU_B). The high-
throughput service ranges from 2 to 3, the low-delay service ranges from 1 to 2, and the huge model
service ranges from 5 to 9. We evaluate all the combinations of the number of pipeline stages for
the three types of services for each comparison method. Hereinafter, in the comparison method PE,
when the number of pipeline stages for high-throughput, low-delay, and huge model services are 2,

1, and 6, respectively, it is denoted as PE(2,1,6).

Metric

We measure the number of allocated tasks to evaluate the ability of RAMPA to execute more DL
services. In the evaluation, we continue to generate resource allocation requests until resource
allocation that can satisfy performance requirements fails. The evaluation terminates when the

allocation of a service that satisfies the performance requirements fails.

4.5.2 Number of allocated tasks

In Fig. 4.5, we show the number of services successfully allocated that satisfy the performance
requirements for RAMPA and the comparative methods for all combinations of the three different
GPU clusters and four different proportions of executed services. We measure 20 different com-
binations of pipeline stages using comparative methods. The results of the comparative methods
are shown in Fig. 4.5; we show the best case, worst case, and average of all the combinations. The

numbers above the bars represent the corresponding number of pipeline stages.
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Number of allocated tasks.

Figure 4.5
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Figure 4.6: Distribution of number of pipeline stages of allocated tasks in RAMPA.

First, we compare NCAR and PE, which differ only in terms of their objectives. NCAR tends
to be able to allocate more services. This is because it preserves the required GPUs to execute
the future requested services by avoiding the allocation of resources used by other services. The
effectiveness of considering the resource utilization of other services to allocate more services was
demonstrated. Next, we compare RAMPA and NCAR. In all environments, RAMPA allocates more
services to satisfy the performance requirements and improves the number of executed tasks by up
to 30%. This result indicates that optimizing the selection of allocated resources is not sufficient
for the efficient use of resources. To execute more services, considering the number of resources
allocated is necessary. To verify the model partitioning that was performed by RAMPA, we show
the distribution of the number of pipeline stages of allocated tasks in the case of the same demand
for all services in Fig. 4.6. As shown in Fig. 4.6, RAMPA partitions the DL model based on the
number of pipeline stages in multiple patterns. This implies that the suitable model partitioning
strategy changes depending on the resource allocation situation. For the execution of numerous
services, the optimization of the resources used and their number is effective based on the current

resource allocation situation.

4.5.3 Comparison of task execution performance

Unlike conventional methods, RAMPA does not aim to maximize performance. Therefore, it may

be inferior to conventional methods in terms of service task execution performance. We compare the
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service throughput and execution time of RAMPA and PE and discuss the limitations of RAMPA
on execution performance. Fig. 4.7 and 4.8 show the average values of throughput and execution
time for each service in the case of the same demand for all services in the base cluster. Error bars
represent the maximum and minimum values. The red lines indicate the performance requirements.

The orange bars in the figure represent RAMPA and the other bars represent PE.

---- Acceptable throughput ---- Acceptable throughput

Average throughput (tps)
Average throughput (tps)

(a) High-throughput service. (b) Low-delay service.

---- Acceptable throughput
4.0

(c) Huge model service.

Figure 4.7: Throughput of tasks allocated in each method.
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(c) Huge model service.

Figure 4.8: Execution time of tasks allocated in each method.

RAMPA had a smaller average and minimum throughput than PE for all combinations of
pipeline stage numbers. Because PE aims to maximize throughput, this result is similar to that
of Hu et al. [63]. In execution time, for services other than high-throughput services, PE was supe-
rior. By contrast, in the high-throughput service, PE had a lower execution time than RAMPA only
when the number of pipeline stages was two. This is because the execution time is affected by the
communication delay between pipeline stages. If excess pipeline stages exist, then the communi-
cation delay overhead will increase. When the model was properly partitioned, RAMPA exhibited
a lower service task execution performance than PE. However, the performance requirements were
satisfied. RAMPA is effective when performance requirements are properly set and performance

maximization is not required.

4.5.4 Computational time for model partitioning and allocation by RAMPA

Unlike conventional methods, RAMPA considers the resource allocation and optimizes the number

of resources allocated. Because of these processes, more computational time is required than in
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conventional methods. The relationship between computational complexity and computation time

is discussed as a limitation of RAMPA.

Computational complexity of RAMPA

We verified the computational complexity of RAMPA by clarifying the computational complexity

of each of the processes described in Section 4.4.3.

GPU search In GPU search, the GPU corresponding to each pipeline stage is selected from the
available GPUs in the GPU cluster. Therefore, the GPU selection is repeated for the number of
pipeline stages, and all available GPUs in the cluster are checked in each iteration. When the number
of pipeline stages is V¥ and the number of available GPUs is |G|, the computational complexity is

O(N?|G)).

Network link search In this phase, we probabilistically select the transit link from the source
GPU to the destination GPU. This process is repeated N” — 1, because it is performed to establish
the path between GPUs when the number of pipeline stages is NP. In addition, in the worst-case
scenario, a path through all the nodes is established. Therefore, the computational complexity is

O(N? +|G)).

Performance requirement check In this phase, we check the performance requirements for each
combination of operations executed for each pipeline stage. When the number of pipeline stages is

NP and that of operations is |V,

, the computational complexity is O(|V,|NP).

Pheromone update After GPU and path selection, the pheromones are updated for all GPUs and
network links. Therefore, the computational complexity is O(|G| + |L|).

The maximum number of pipeline stages is equal to the number of operations in the model.
Therefore, the above process is repeated from 1 to |V, | at the maximum. Thus, the computational
complexity of RAMPA is O(|V,|? - (|G| + |L| + |S]) + |V.|?). From this perspective, the compu-

tational complexity of RAMPA depends on the scale of the cluster and DL model.
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Relationship between number of operations and average computational time

We investigate the relationship between the computational complexity and computation time of
RAMPA to discuss the practicality of RAMPA. In this chapter, we assume clusters of scales as
shown in Fig. 4.4. Therefore, we measure the computational time for the cluster, as shown in
Fig. 4.4. Because |G|+ |L| + | S| is constant within the same cluster, the computational complexity
is O(|V,|?). The relationship between the number of operations and the average computational time

for each model is shown in Fig. 4.9. Error bars represent 95% confidence interval.

10

— 95% confidence interval

©
L

model partitioning
and allocation (s)

15 20 25 30 35 40 45 50

Number of operations

Average computational time for

Figure 4.9: Relationship between number of operations and average computational time for model
partitioning and allocation by RAMPA.

In the huge model service with 49 model operations, the computation time is approximately 9 s.
For a high-throughput service with 15 model operations, the computation time is approximately 1
s. This result matches the computational complexity O(|V;|?). However, the low-delay service had
a shorter computation time than the high-throughput service, even though the number of operations
was larger. This is because the number of pipeline stages required to satisfy performance require-
ments is significantly constrained. Once the number of pipeline stages exceeds a certain level, it
becomes impossible to satisfy the execution time requirements and the processes are quickly termi-
nated.

The results also demonstrate that, in the cluster assumed in this chapter, processing is completed

within 10 s, even for large models. This is an acceptable time for the allocation of services after
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resource allocation. One solution is to avoid the search process by reserving the execution resources.
Estimating the resources that can satisfy the performance requirements of future requested services
based on predictions of future resource allocation situations in the cluster is necessary. Proposals

for these methods will be investigated in future studies.

4.6 Conclusion

We proposed RAMPA to execute more DL services while satisfying the performance requirements
in clusters of heterogeneous GPUs of a disaggregated data center. RAMPA minimizes the allocation
of important resources for future DL service task execution to avoid inhibiting future DL service
task execution. We defined the resource allocation cost for GPU and network links in terms of re-
source importance. Furthermore, we formulated the impact of model partitioning, allocated GPUs,
and paths on the execution time and throughput. To comprehensively consider resource allocation
and model partitioning, we defined an optimization problem to minimize resource allocation costs
while satisfying the service performance requirements. We evaluated the effectiveness of RAMPA
by simulating the execution of DL services. The results demonstrated that more service tasks can be
executed while satisfying the performance requirements compared to the conventional method. By
RAMPA, we achieved efficient GPU utilization to deliver many DL service tasks in clusters with

heterogeneous GPUs.
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Chapter 5

Conclusion

uDDCs can efficiently use resources such as CPUs, GPUs, and memory. From this advantage, it
is effective for providing many services in an environment where resources are limited. On the
other hand, because network and resource allocation have a significant impact on the execution of
service tasks, efficient network topology and resource allocation for a uDDC are required. In this
thesis, we proposed resource allocation methods and optical network topology to execute many

tasks simultaneously in a uDDC.

First, we proposed a resource allocation method that considers the impact of the network on
performance. We call this method RA-CNP. In this method, we model the impact of the network
on the performance of tasks and verify whether the resource allocation can satisfy performance re-
quirements. Furthermore, we define resource allocation costs for each resource based on whether
it is necessary for future task execution. By defining a resource allocation problem to minimize
resource allocation costs while satisfying the performance requirements, we achieve resource uti-
lization where the required resources are available when a task is requested. We evaluated the ef-
fectiveness of RA-CNP by simulating uDDC networks. We demonstrated that RA-CNP can reduce

task blocking to 0 even in environments where task blocking occurs in conventional methods.

Next, we proposed an optical network topology evaluation metric called the capability of si-

multaneous task execution (CSTE) and an optical network topology design based on CSTE. CSTE
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represents the ratio of resources that could be used as a resource communicating with other re-
sources without violating the performance requirements in a situation where tasks up to the maxi-
mum number of executable tasks are executed. uDDC with high CSTE can have a large number of
resource pairs capable of communicating satisfying task performance requirements. Furthermore,
we formulate an optical network topology design problem aimed at generating an optical network
topology capable of maximizing task execution based on CSTE. By solving this optimization prob-
lem, we generate optical network topologies capable of executing many tasks simultaneously. We
evaluated optical network topologies generated based on CSTE. The results showed that an opti-
mal network topology based on CSTE reduces task blocks by over 50% compared to conventional
optical network topologies.

Finally, we extended RA-CNP to estimate the suitable resources for each task. We focused
on the deep learning-based tasks that can be partitioned and executed in parallel and proposed re-
source aware model partitioning and allocation (RAMPA) to execute many tasks while satisfying
the performance requirements. First, we extended the model of the impact of the network on the
performance to consider the impact of model partitioning on performance. We also extended the re-
source allocation problem defined in RA-CNP to determine the combination of model partitioning
and resource allocation that minimizes the resource allocation costs while satisfying the service per-
formance requirements. We demonstrated that RAMPA can execute more tasks in any environment
and improve the number of executed tasks by up to 30% compared to conventional methods.

By resource allocation methods and optical network topology proposed in this thesis, we can
configure a uDDC capable of executing many tasks simultaneously. In this uDDC, resources are
allocated to preserve the resources required for future tasks while satisfying the performance re-
quirements of services. Furthermore, an optical network topology with a large number of resource
pairs capable of communicating satisfying task performance requirements is configured to connect
resources and enables flexible resource allocation to execute many tasks simultaneously. By this
pDDC, we can maximize the utilization of the limited resources at the edge and provide more edge
services.

In this thesis, we assumed that the execution information of each service task, such as the

resource type required for task execution and the traffic that occurs between resources, is profiled
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in advance. However, in cases such as task offloading, it is difficult to know this information.
Therefore, it is not possible to accurately estimate the impact of resource allocation on performance.
Task execution depends on the program of the task, processed data, and resource performance. By
extending our resource allocation method to estimate task execution information based on program
and resource performance, we can also handle tasks that are difficult to profile in advance. Such an

extension is our future work.
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