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Abstract

Collaboration plays a crucial role in accomplishing tasks and exerts significant influence across
various domains, including workplaces and educational settings. In the field of learning sciences
in particular, the mechanisms of collaboration have been extensively studied, providing valuable
insights for boosting intellectual productivity through analyses of collaboration among learners.
However, traditional qualitative analyses require considerable human and time resources, which
makes it difficult to conduct analyses on a large number of participants or groups, or over extended
periods.

Recent advancements in the Internet of Things (IoT) suggest a way to reduce the costs associ-
ated with qualitative analysis. By automatically providing quantitative data on collaboration to
analysts via [oT systems, the labor and time costs of qualitative analysis can be reduced. This cost
reduction expands the potential scope of collaboration analysis—extending to contexts previously
out of reach—and helps generate new insights into the nature of collaboration.

To support qualitative collaboration analysis through IoT, three major requirements must be
met. The first requirement is time synchronization among sensor devices. Since multiple devices
may be deployed across many individuals and diverse environments, lack of time synchronization
among devices will lead to data inconsistencies that hinder accurate collaboration analysis. The
second requirement is multimodal extraction of collaboration. In qualitative analysis, multiple
modalities—such as video and audio—are examined, so IoT systems likewise need to extract data
from multiple modalities. In particular, it is necessary to quantitatively capture key factors such
as face-to-face interactions among learners, learning phases, speakers, activity, and postures. The
third requirement is a system design that prioritizes usability. Researchers and practitioners who
analyze collaboration are not always Information Technology (IT) experts, so it is crucial to provide
a system that is easy to operate, even for non-technical users.

In response to these requirements, this study proposes an IoT sensing platform for quantita-
tive collaboration analysis. The proposed system comprises three components: a set of portable
sensors that collect data with high-precision time synchronization, a suite of algorithms that ex-
tract collaboration data in a multimodal manner, and a web-based visualization tool that offers an

intuitive interface for analysts. By adopting this system, it becomes possible to automate much



of the process that previously depended on manual labor, thereby substantially reducing the time
and effort needed for collaboration analysis.

Chapter 2 describes the research on the architecture of the proposed system. Specifically, the
study proposes and implement 1) a business-card-type sensor that collects each learner’s data
under precise time synchronization, 2) analytical algorithms that multimodally extract learners’
face-to-face interactions, learning phases, speakers, and activity, and 3) a web application that
visualizes the resulting data without requiring complex operations. Through both qualitative and
quantitative evaluations, the study demonstrates that the proposed system meets its required
specifications and supports qualitative analysis of collaboration.

Chapter 3 investigates a method for accurately identifying speakers—a crucial modality within
the proposed system. Specifically, the study realizes high-accuracy speaker identification for col-
laboration analysis by using a sound pressure sensor equipped with a peak-hold circuit, achieving
high-precision time synchronization among sensors, and employing an algorithm that reliably iden-
tifies speakers from noisy sound pressure data. Evaluation experiments show that the proposed
method remains robust for varying numbers of participants, different types of noise, and diverse
speaking durations.

Chapter 4 focuses on localization used for estimating posture, another modality in the proposed
system. The study clarifies the issues and solutions involved in applying a simple yet highly accu-
rate vision-based localization to real-world collaboration analysis. Through large-scale case studies
and controlled experiments, the study identifies practical challenges in applying the vision-based
localization to posture estimation. To address these challenges, this study proposes a prototype
solution that integrates Ultra Wide Band (UWB) with visual data. Through the evaluation ex-
periments, this study demonstrates the robustness of the prototype solution for localization.

Overall, this study suggests the potential to reduce the human and time costs required for
traditional qualitative analysis while also expanding the scope of collaboration analysis. By en-
abling approaches in domains where collaboration analysis has previously been limited, this work

is expected to further advance our understanding of collaboration.
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Chapter 1

Introduction

1.1 Background

Human interaction, in which individuals influence one another through complex social relation-
ships, plays a pivotal role in shaping the dynamics and outcomes of collaborative tasks carried
out by multiple people. The nature and quality of these interactions can significantly affect the
performance of teams, making their study and understanding critical in diverse settings such as
education and the workplace. By examining these interactions in detail, we can uncover underly-
ing patterns and develop strategies to foster more effective collaboration and enhance overall team
performance.

Over the years, researchers have dedicated considerable effort to qualitatively analyzing hu-
man interaction to uncover strategies for enhancing productivity and improving collaborative
outcomes. Collaboration analysis has traditionally been conducted using the ethnographic ap-
proach [1]. Ethnography, which originated in cultural anthropology, is a method for studying
human behavior and social interactions. Specifically, this involves the collection of field notes,
often supplemented by audio and visual recordings to provide detailed context. Ethnographic
methods have been widely applied across various disciplines to analyze human behaviors in dif-
ferent settings. Similarly, in collaborative environments, ethnographic techniques have been the
predominant approach for examining group interactions and dynamics.

In educational contexts, learning sciences have extensively examined the mechanisms of collab-
orative learning — a field that has garnered increasing attention for its potential to foster deeper
understanding and engagement among learners. Researchers have investigated interaction patterns,
communication strategies, and collaborative behaviors that emerge during group learning activi-
ties. Some studies in [2-5] have illuminated various interaction patterns, shedding light on how
learners construct knowledge together. For example, the work presented in [4] uniquely combined
social network analysis with in-depth dialogical analysis to study collegiate discourse recordings of

collaborative reading activities. This study not only identified shared awareness patterns within

12



the group but also highlighted the diverse contributions of individual students, thereby revealing
nuanced dynamics of group learning. Another notable example is the study conducted by Chen
and colleagues [5], which employed a randomized controlled trial alongside case studies to evaluate
the impact of a year-long video-based professional development program utilizing the Classroom
Discourse Analyzer. The findings demonstrated that such video-based programs could significantly
enhance both classroom discourse and student learning. Moreover, this research provided valuable
insights for designing effective visualization tools to enrich the professional development experience,
enabling educators to better analyze and improve their teaching strategies.

Despite these advances, qualitative analysis of human interaction comes with significant chal-
lenges, particularly in terms of the time and effort required. Most of these analyses involve manual
examination of large datasets, making it a labor-intensive process. This limitation becomes espe-
cially pronounced when dealing with collaborative tasks involving a large number of participants,
where the sheer volume of data can render qualitative methods impractical. The bottleneck created
by manual analysis not only hinders scalability but also limits the application of these methods to
smaller, more controlled scenarios. Consequently, there is a growing need for innovative approaches
and tools that can complement qualitative analysis, enabling researchers and practitioners to han-
dle larger datasets more efficiently and effectively while still capturing the rich complexity of human

interaction.

1.2 Internet of Things for Collaboration Analysis

To support the existing qualitative collaboration analysis, Quantitative Ethnography (QE) was
proposed in 2017 by David Shaffer at the University of Wisconsin, a methodology that combines
quantitative and qualitative analysis to overcome the limitations of traditional ethnographic ap-
proaches. This method aims to guide qualitative analysis by leveraging quantitative techniques
to narrow the focus to specific, high-potential areas, thereby reducing the overall costs typically
associated with ethnographic studies while enhancing analytical precision. Specifically, QE em-
ploys data mining and natural language processing to extract structured data from dialogue texts.
These structured data are then interpreted through ethnographic frameworks, allowing for a seam-
less integration of computational analysis and qualitative contextual understanding.

Building on these advancements in QE, IoT-based collaboration analysis has gained increas-
ing attention as a means to deepen the understanding of collaboration. IoT technologies enable
multimodal data collection through wearable devices and environmental sensors, automating the
observation of collaboration scenarios traditionally conducted qualitatively. By integrating IoT-
based approaches, QE reduces the costs associated with narrowing the focus for qualitative analysis

and, in turn, facilitates the discovery of deeper insights into group and individual dynamics across
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various contexts. This fusion of data-driven methodologies and ethnographic interpretations paves
the way for innovative strategies to analyze and enhance human interactions.

To support such analyses in fact, IoT systems often employ compact, portable sensors like
business card-type devices that integrate seamlessly into the daily activities of individuals and
teams. These sensors have been widely used in studies to collect data on communication patterns,
interactions, and activity levels — key metrics for understanding collaboration dynamics. Examples
include Hitachi’s Business Microscope [6,7], MIT’s Sociometric Badge [8], and devices such as Open
Badges and Rhythm, developed by Lederman et al. [9,10].

MIT Media Lab initially developed the Sociometric Badge [8], a sociometric wearable device
(SWD) for quantitatively investigating human behavior and interactions in collaborative envi-
ronments. Subsequent advancements led to Open Badge [9], focusing on miniaturization, and
Rhythm [10], which supports both on-site and online collaboration analysis. These devices mon-
itor interactions using sound pressure and radio frequency (RF) signals for voice recognition and
proximity detection. Similarly, Hitachi’s Business Microscope [6] uses business card-type sensors
to monitor workplace interactions and employee behaviors, while the Sensor-based Regulation Pro-
filer (SRP) incorporates precise synchronization RF modules for fine-grained collaboration analysis.
Additionally, MBox offers a low-cost, easy-to-use platform designed iteratively based on learning

theories to investigate collaborative learning in diverse group work contexts.

1.3 System Requirement for Multimodal Collaboration Anal-
ysis

Synchronization accuracy for collaborative sensor data: Synchronization between devices
is essential for accurately extracting data related to interpersonal collaboration. The study focuses
on analyzing collaboration with mobile devices deployed across various targets, such as participants
and environments. As described in Sec. 1.2 existing systems like Hitachi’s Business Microscope,
MIT’s Sociometric Badge, Open Badges, and Rhythm, have enabled quantitative analysis of social
interactions. However, a key limitation in these studies lies in their inability to achieve precise
synchronization across multiple devices. These synchronization errors result in misleading analyses
of collaborative activities. To ensure meaningful results, synchronization accuracy must be at least
one-tenth of the sensor’s maximum sampling rate. For example, sensors with a maximum sampling
rate of 100 Hz require synchronization precision within 1 millisecond or less.

Multimodal data extraction for qualitative analysis: Extracting multimodal data is essential
for supporting qualitative analysis and achieving a comprehensive understanding of collaboration.
Quantitative methods provide objective metrics, but they cannot fully replicate the nuanced in-

terpretations derived from qualitative approaches. To bridge this gap, the system identifies key
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multimodal data points, such as face-to-face interactions, learning phases, speakers, activity, and
posture [11-13]. By focusing on these dimensions, the system enhances qualitative analysis, reduc-
ing manual observation costs while improving analytical accuracy.

User-friendly system design for non-technical analysts: Supporting analysts without ad-
vanced technical expertise is essential for the widespread adoption of collaborative analysis sys-
tems. Analysts often lack the technical knowledge required to install and operate complex software
systems, which creates a barrier to their effective utilization. To address this, the system must
prioritize ease of installation and usability, enabling analysts to focus on their work without strug-
gling with technical difficulties. For example, implementing a web-based application allows for
seamless access and quick deployment, eliminating the need for time-consuming setup processes.
Such an intuitive interface ensures that non-technical users can efficiently perform quantitative

analysis and integrate it into their workflow for collaborative analysis.

1.4 Related Work

Table 1.1 shows related studies on an IoT system for collaboration analysis. MIT launched the ini-
tial study called Sociometric Badge [8], which enables the measurement of collaboration by sensing
individual activities and interactions through wearable sensors. Hitachi commercialized Sociomet-
ric Badge as Business Microscope [7], integrating additional features to analyze intra-organizational
communication quantitatively. The company thus initiated the application of collaboration anal-
ysis in organizational contexts. MIT further expanded the capabilities of Sociometric Badge and
developed Rhythm [10] in 2018, aiming to provide deeper insights into team dynamics in offline,
online, and hybrid environment. In the context of learning analytics, MBoX [14] was developed
as an IoT system specifically designed to support multimodal learning analysis by capturing and
analyzing various learning behaviors.

However, these systems do not meet three requirements described in Sec. 1.3, leaving gaps
in their ability to fully address collaboration analysis for collaborative learning. In the first re-
quirement of time synchronization, they do not meet the precision targeted in this study. These
analyses are useful for capturing long-term collaboration trends but are not applicable to fine-
grained analyses that detect second-by-second changes. Sec. 2.5.1 discussed details about the
precision requirements and synchronization accuracy of each method.

As for the second requirement of multimodal data extraction for collaboration analysis, none of
these systems focus on all five modalities required for collaborative learning analysis. Sociometric
Badge emphasizes activity levels, speech features, location, proximity, and face-to-face interaction,
while Rhythm primarily targets speaker turn-taking, conversation time, and proximity. Business

Microscope is designed to analyze face-to-face interactions and concentration levels. MBox captures
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Table 1.1: Related work

Image Scheme Abstract Req. 1 Req. 2 Req. 3
Sensing user activity
Soci tri ith . Partially .
OCIOMERIIC | With Unsatisfied o ‘ Unsatisfied
Badge [8] | business-card-type satisfied
Sensors
Sensing user activity
hyth ith . Partially .
Rhythm Wlt. Unsatisfied prviaty Unsatisfied
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Business ((;quantitative analysis N
Microscope | . . Unsatisfied DA Unsatisfied
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communication
IoT system to Partially
MBoX [14] | support multimodal | Unsatisfied %fl t1sh(d Unsatisfied
learning analysis B
Qualitative approach
Collaboration Analyst
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D O Extract & < 1 I/ ~‘|'nY' Display = web app
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Feedback

Figure 1.1: The concept of the IoT system for collaboration analysis.

face-to-face and speech between learners.

In the third requirement of usability, none of these systems support easy operation and instal-
lation of the system. Each method requires software installation and command-line operations. In
the case of Business Microscope, collaboration analysis depends on outsourcing, making it difficult

to consider it a highly user-friendly system.

1.5 Outline

Based on the requirements described in Sec. 1.3, this study focuses on an IoT platform for multi-
modal collaboration analysis. Figure 1.1 shows a structure of the IoT system.

The IoT system is composed of three major parts: data collection with mobile devices, data

16



interpretation with multimodal analysis algorithms, and data visualization with a web-based ap-

plication. The entire process of collaboration analysis with the IoT system is shown below.
1. The analyst installs video cameras and voice recorders in the collaboration environment.
2. Each user mounts a mobile device.
3. The users starts collaborative activity.
4. The analyst collects video and audio data from the video cameras and voice recorders.
5. The analyst collects sensor data from the devices worn by the users.

6. The proposed system quantitatively extracts key points for collaboration analysis from the

data.

7. The system visualizes the key information for analysts on a web browser with the web appli-

cation.
8. The analyst starts qualitative analysis using the relevant parts of the video and audio.

The collected sensor data includes a variety of modalities from mobile devices such as badges,
smartphones, and smart tags. These modalities provide rich insights into the interactions and
dynamics during collaboration. The collected data is sent to a central repository for further
processing.

The next step involves interpreting the multimodal data using advanced algorithms designed to
extract meaningful points for qualitative collaboration analysis. These algorithms identify patterns
and relationships within the data to provide wide insights into the collaboration process. The
system extracts key points for collaboration analysis, such as face-to-face interaction, learning
phases, speakers, activity, and posture.

Once the analysis is complete, the results are visualized through an intuitive web-based appli-
cation. This application offers an interactive platform where collaboration analysts can explore
the data in detail. The visualizations provide a wide and detailed view of the collaboration with
multimodal information. The web application also allows analysts to filter and compare data across
different sessions, enabling them to identify trends and areas for improvement.

Analysts can conduct qualitative assessments and propose actionable recommendations to en-
hance collaboration efficiency by examining the video and audio corresponding to the obtained
key points. For example, they may suggest adjustments to team structures, reconfigure spatial
layouts, or recommend communication strategies based on data-driven findings. This iterative
process ensures that the IoT system continually contributes to refining collaborative practices.

The contributions of this study are as follows:
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e This study contributes to improving the efficiency of identifying key aspects of collaboration
analysis, enabling the low-cost extraction of analytical points even for large groups or ex-
tended activities. An IoT system was designed and implemented to support collaboration
analysis based on specific system requirements. Experimental evaluations in collaborative
learning scenarios demonstrated that the system significantly reduced the human effort and

time required for collaboration analysis.

e This study also contributes to establishing practical demonstrations for collaboration analysis
in learning scenarios. Using the developed IoT system, collaboration patterns were quantita-
tively identified, offering new insights into promoting collaborative behaviors. This approach

serves as a catalyst for advancing collaboration analysis.

e In the IoT system, this study advances collaboration analysis on mobile devices through
precise speaker identification. The proposed scheme addresses challenges such as spike mit-
igation in a sound pressure sensor, precise synchronization across the sensors, and noise
reduction for the sensor data. This improvement enables more precise collaboration analysis

and facilitates fine-grained insights.

e Finally, this study reveals practical challenges and solutions for motion capture in collab-
oration analysis. Vision-based localization, a mainstream approach for indoor positioning,
is applicable for motion capture with smart tags. This study comprehensively identifies
practical limitations of the current vision-based localization for collaboration analysis. In
addition, it proposes a novel solution that integrates vision-based and radio-based localiza-
tion, presenting a robust and effective modality for IoT systems to enhance practical motion

capture.

Chapter 2 focuses on the whole design and implementation of the IoT system with business-card-
type mobile devices for collaboration analysis. Chapter 3 delves into precise speaker identification
for such mobile devices. Finally, Chapter 4 finds that vision-based localization, which potentially
contributes to posture recognition in the IoT system, has practical challenges to apply for collab-
oration analysis. In addition, the chapter proposes an prototype solution with radio frequency for

robust localization.
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Chapter 2

An IoT System for Collaboration
Analysis

2.1 Introduction

Collaboration fosters our human ability to address complex problems in partnership with fellows.
Many fields, such as workplace and education etc., adopt collaboration to their environment to
exceed our personal ability. In the field of learning science, for example, collaborative learning
has been featured as a learning method for future education. Collaborative learning promotes the
learner’s ability to solve complex problems through collaboration between learners.

To further enhance collaboration, the field of cognitive science has analyzed the patterns of
collaboration types and their effectiveness. Especially, the field has explored specific patterns
which promote our collaboration. However, the previous research often relies on substantial time
to identify such patterns during collaborative activities. The process takes much time due to manual
collaboration analysis with recorded videos and transcribed audio to evaluate the activities. This
qualitative approach hinders collaboration analysts from applying the method in collaboration
environments with a large number of users or real-time feedback.

To address the issue of time cost, Internet of Things (IoT) system has a potential to improve
the efficiency of collaboration analysis. The system collects data from users and environment in
collaboration with sensing devices. The system extracts key points for collaboration analysis from
the acquired sensor data. Based on the extracted information, a facilitator analyzes collaboration
and finally gives users feedback.

To develop an IoT system for collaboration analysis, there are three system requirements.
Time synchronization across sensing devices: The devices should precisely synchronize each
other for fine-grained collaboration analysis. Collaboration analysis includes various range of du-
ration from second-scale to month-scale. To adapt the second-scale collaboration analysis, the

sensing devices should keep the consistency across sensor data. In detail, the synchronization error
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should be less than one tenth of the sampling rate.

Multimodal data extraction: Multimodal data should be extracted in the IoT system for
collaboration analysis. Including the field of learning science, multimodal data from users and
environments are focused for collaboration analysis. This chapter poses four key modalities for
collaboration analysis: face-to-face between users, learning phases in a group, speakers, and activity
of each user.

Accessibility and usability: The requirement is necessary for any users who conduct collabo-
ration analysis. Collaboration analysts do not necessarily have skills of information technologies.
The IoT system should be easily accessed and utilized by the analysts. To ensure the accessibility,
the system should be accessible on a web browser for any users. In addition, the system should be
operable with graphical user interfaces (GUI).

Following the three requirements, this chapter proposes Sensor-based Regulation Profiler (SRP)
Web Services to quantitatively analyze collaboration. The system automates the extraction and
visualization of key aspects of collaboration, thus supporting researchers in conducting qualitative
analysis more efficiently. The proposed system consists of business card-type sensors called SRP
Badges, multimodal analysis algorithms called SRP Analysis, and a web-based visualization tool
called SRP Web. SRP badges precisely collect sensor data from users in collaboration under radio
frequency (RF)-based time synchronization across the badges. SRP Analysis multimodally extracts
key points of collaboration from the acquired sensor data: face-to-face, learning phases, speakers,
and activity. SRP Web finally visualizes extracted information on a web application for the users.

To evaluate the proposed IoT system, this chapter conducted both qualitative and quantitative
evaluation of the system. To conduct qualitative evaluation, the system was evaluated in collabo-
rative learning analysis. The evaluation reveals that the IoT system supports reduce the existing
time costs for collaboration analysts. In addition, both qualitative and quantitative evaluation
shows that the IoT system satisfies three system requirements.

The rest of this chapter is organized as follows. Section 2.2 describes the proposed IoT system.
Sections 2.3 and 2.4 describe the qualitative and quantitative evaluation of the proposed system.
Section 2.5 describes related works of the IoT system for collaboration analysis. Finally, Sec. 2.6

concludes this chapter.

2.2 Proposed Scheme

This chapter proposes an IoT system for collaboration analysis called SRP Web Services. Fig-
ure. 2.1 shows the workflow with SRP Web Services in collaboration environment. The system
consists of three parts: SRP Badge to collect sensor data from users and environment under precise

time synchronization, SRP Analysis to extract key points for collaboration analysis from the ac-
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Figure 2.1: The overview of the proposed Sensor-based Regulation Profiler Web Services.
quired sensor data, and SRP Web to graphically provide the extracted information to collaboration
analysts. The system is utilized along the procedure below.

1. Each user mounts SRP Badges on a chest

2. Start collaboration between the users

3. Collect all the badges from the users after collaboration

4. Extract sensor data from the badges with SRP Analysis

5. Visualize the extracted information on a web browser with SRP Web

6. Start qualitative analysis based on the extracted information by collaboration analysts

2.2.1 Sensor-based Regulation Profiler Badge

SRP Badge is a business-card-type sensor supposed to be worn on a user’s chest. Figures 2.2 (a),
(b), and (c) show the appearance, the block diagram, and the synchronizer of the SRP Badge. The
badge is composed of three units: a power control unit, a CPU sensor unit, and a wireless unit.
Power control unit: The unit mounts a lithium-ion battery to run the badge. The battery
supplies power to the power switch and Micro Controller Unit (MCU) in Fig. 2.2 (b). The badge
can continuously run for 24 hours with the supplied power. The battery is also rechargeable via
micro-USB adapter in the badge.

CPU sensor unit: The unit mounts STM32L476RGT6 from STMicroelectronics as the MCU,
OSI5LAS1C1A infrared light emitting diode (LED) from OptoSupply, PIC79603 infrared receiver
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Figure 2.2: Sensor-based Regulation Profiler Badge.

from KODENSHI CORP., INMP510 analog microphone from TDK, and ADXL362 accelerometer
from ANALOG DEVICES. The MCU regulates sampling rates of data from each sensor: the
infrared data at 12 bits and 34 Hz, the sound pressure data at 12 bits and 100 Hz, and the three-
axes acceleration data at 100 Hz. The microSD card slot of DM3AT-SF-PEJM5 from Hirose
Electric is equipped with the unit to record the sensor data.

Wireless unit: The unit mounts an RF module of CC2650 from Texas Instruments for wireless
time synchronization across badges. The module sends synchronous packets every 10 seconds from
other badges or its synchronizer. The CC2650 utilizes the protocol optimized for wireless synchro-
nization across devices called UNISONet [15] to achieve precise synchronization across the badges.
The synchronizer initially sends the synchronous packet for neighbor badges. Badges which receive
the packet minimize and fix the processing time from reception to forwarding, enabling simultane-
ous reception of the same packet at neighboring nodes and triggering constructive interference [16].
By repeating reception and forward of synchronous packets across the devices, all badges in the
environment keep the time consistency. Each badge can estimate the current time in the flooding-
based system by combining the original timestamp from the synchronizer with the fixed delay per

hop and the number of hops required for the packet to reach the badge.

2.2.2 Sensor-based Regulation Profiler Analysis

SRP Analysis consists of algorithms to extract key points for collaboration analysis with the
acquired sensor data. Figures 2.3 (a), (b), (c), and (d) show the appearance of each algorithm for
collaboration analysis. The algorithms extract face to face, learning phases, speakers, and activity
from the sensor data.

Face-to-face: The algorithm extracts face-to-face across users based on the transmission and
reception of the infrared data. Algorithm 1 and Table 2.1 show the procedure of the face-to-face
graph extraction and its notation. The algorithm starts by initializing the face-to-face graph matrix
G with zeros, representing no initial interactions between any users. For each sensor d in the set of

sensors U, the algorithm collects the infrared data (I;) that has been received within a specific time

22



F2F difference MWVW W ML
0 ]
Conclusion I .

Discussion

Video viewing -

0 500 1000 1500 2000 2500 3000 3500

Time (s)
(a) Face to face (b) Learning phases
.02
‘INENI N s
3 | | | e
0.2
o o
= ‘ | | 0.0 Pt s
0.2
bt o
g 2 0.1
2 3 oot
‘ ‘ ‘ ‘ 0.0 : :
1300 1320 1340 1360 1300 1320 1340 1360
Time (s) Time (s)
(c) Speakers (d) Activity

Figure 2.3: Sensor-based Regulation Profiler Analysis.

window from ¢y to tg + W. The received data contains a list of sensor IDs .S that were detected by
sensor d during this period. For each detected sensor ID s in the list S, the algorithm increments
the corresponding element in the matrix G[s][d]. This increment represents the interaction between
sensor s and sensor d, essentially recording a face-to-face encounter. Finally, after processing all
sensors and their received data, the face-to-face graph matrix G is returned, summarizing all
interactions between the sensors during the given time window.

Learning phase: The algorithm extracts learning phases in collaboration based on the time
variation of face-to-face interaction across users. The time variation of the interaction is quantified
from face-to-face graph matrix G in the face-to-face algorithm. To reflect the context of face-
to-face interaction, the algorithm creates social network matrices by applying sliding windows
to the graph matrix G. The sliding windows consist of 3-seconds slide width and 60-seconds
window size. To automatically classify learning phases, the algorithm adopts AutoPlait [17] to
the social network matrices. AutoPlait quickly and automatically classifies similar patterns of the
data based on hidden Markov models. The proposed algorithm finally classifies collaboration into

several learning phases.
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Table 2.1: Notation of the face-to-face graph extraction

Variable / Function ‘ Description

U Set of all the sensor IDs

I Set of the infrared data

obtained from all the sensors

lg Infrared data of sensor d

to Target time for social graph extraction

G Face-to-face graph matrix with the size of |U| x |U]|
w Window size [s]

Algorithm 1 Face-to-face graph extraction
Require: L, U, tg
Ensure: G
: Insert zeros into all elements of G
: for all d € U do
S <+ all received IDs in {4 € L between tg to tg + W
for all s € S do
Increment G[s][d]
end for
end for
return G

P N DT w

Speaker: The algorithm identifies a speaker in collaboration with sound pressure data acquired
from SRP Badges. Figure 2.4 shows the overall process of the speaker identification algorithm.
For the accurate speaker identification, there are deliberate three-step algorithm.

1) Pre-processing: In this step, the algorithm detects the rise of sound pressure for each user.
The algorithm initially find the minimum sound pressure and subtract the entire sound pressure
values with the minimum value for each user. Based on the above zero-correction, the algorithm
distinguishes speech and non-speech in the data with sliding windows. Algorithm 2 exhibits the
procedure to label speech in Figure 2.4, and Table 2.2 lists its notation. The algorithm outputs
the array A called “the 1-0 data for each user” from the set of all sensor IDs U and the set of the
sound pressure data from all the sensors S = {51, 55,..., Sy}

2) Speech Section Estimation: This step estimates whether speech occurred in the collaboration
from the 1-0 data for each user. The algorithm initially complements slight silence as speech and
removes sudden pulse noise as non-speech on the 1-0 data for each user. Specifically, the algorithm
regards the section between labels 0 within 90ms as a part of consecutive speech. The algorithm
also regards the section between labels 1 within 150 ms as a part of mis-detected speech duration
due to noise. Finally, the algorithm extracts speech data where at least one user speaks or not
called “the speech section data.”

3) Speaker Identification: In this step, the algorithm fuses the data: the 1-0 data for each user

and the speech section data to extract a speaker in the collaboration. The algorithm focuses on
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Figure 2.4: The procedure of speaker identification in SRP Analysis.

Table 2.2: Notation of labeling in pre-processing

Variable / Function Description
U Set of all sensor IDs
d Sensor ID
S Set of the sound pressure data
obtained from all the sensors
Sq Sound pressure data for sensor d
A Set of 1 arrays with speech labels
Ay 1 bit arrays with speech labels of sensor d
£ Top index of window
D Window size
Ns Speech threshold for all users
Speech threshold based on maximum
hm sound pressure in the window
max(X) Calculate the maximum of all the elements of X

each speech section in the speech section data. The algorithm identifies a user whose labels 1 in
the 1-0 data for each user are the most in the users as a speaker in the speech section.

Activity: The algorithm extracts activity of each user based on acceleration data acquired in each
user’s SRP Badge. The acceleration data is originally saved by three axes. The algorithm converts
the acceleration to L2 norm to acquire the motion scale. The acceleration norm is converted to
relative values from 0 to 1 for each user. The acquired data is used as a personal activity in

collaboration.

2.2.3 Sensor-based Regulation Profiler Web

SRP Web enables collaboration analysts to easily analyze collaboration on a web browser. Fig-

ures 2.5 (a) and (b) show the architecture, the appearance, and the analysis view of the proposed
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Algorithm 2 Labeling in pre-processing

Require: U,S
Ensure: A
1: for all d € U do
2:  Insert zeros into all elements of A4

3 £<=0

4:  while £ < length of A3 do

5: W < S; € S between € to & + D
6: m < max(W)

7: if m > ns then

8: Nm <= m* 0.1

9: if we W > n,, then

10: w <=1

11: else

12: w<=0

13: end if

14: Insert w € W into elements of A4 with OR
15: end if

16: & < £ + slide width

17:  end while

18:  Insert A, into A
19: end for

20: return A

web application named Sensor-based Regulation Profiler Web (SRP Web). The application is
composed of the front-end for the user interface and the back-end for data management. The
front-end is structured with Next.js in the version of 12. The back-end is structured with Fast API
in the version of 0.72.0, SQLite, and Python 3.6. Requests from the user are sent to FastAPI
in the back-end. FastAPI receives the requests and communicates with SRP Analysis described
in 2.2.2 or the database. The requests include data operation such as creating, reading, updating,
and deleting (CRUD) the user’s information: accounts, projects, and sensor data acquired from
SRP Badges described in 2.2.1. FastAPI then sends required data, including parameters such as
the start and end time for collaboration analysis, to each collaboration analysis algorithm. The
analyzed data in SRP Analysis are sent to FastAPI. FastAPI finally returns the response to the
front-end and the user can start to analyze the collaboration on SRP Web.
SRP Web includes five main functions below.

High accessibility: The system is open for any collaboration analysts in terms of information
technology skills thanks to a web platform for high accessibility. The analyst can easily access to
the system on a web browser without any operation on command line interface (CLI) and software
installation. For example, the analyst does not need to consider software versions, packages, or
the operating system of the installation environment. Such users benefit from web services that
operate solely with a web browser and an internet connection.

Low performance dependence on end devices: A web application depends little on computer
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Figure 2.5: Sensor-based Regulation Profiler Web.

performance, allowing any user to access the service on any device. Since the application runs on
a server, users are not required to have a high-performance computer. Such low dependency on
hardware allows any user to analyze collaboration with the system.

Physical separation for easy maintenance: The application is designed with separate front-
end and back-end components for easy maintenance. System developers can independently manage
the functions of each component. This separated structure enables developers to respond to user
feedback and update the application instantly.

Account management for multiple users’ access: Users can simultaneously and indepen-
dently utilize the application with their personal accounts. The application requires users to
register their own accounts and log in before using it. Multiple users can simultaneously analyze
collaboration with the system, each separated by their individual accounts.

Session management for multiprocessing of collaboration analysis: The system enables
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Figure 2.6: Experimental environment of collaborative learning.

each user to manage and analyze multiple session of collaboration in the account. The application
provides sessions to hold sensor data corresponding to collaboration cases. The user can parallelly

analyze multiple collaboration sessions in the same account.

2.3 Qualitative Evaluation

This section qualitatively evaluates the proposed system with the experiment of collaboration.
As a collaboration, this study focuses on collaborative learning with three learners. Figure 2.6
shows a snapshot of the collaborative learning activity. The learning environment was composed
of a table, chairs, an iPad to watch a video material, and a whiteboard to discuss. Collaborative
learning was conducted five times in total and captured by SRP Badges. Each badge was attached
to learners, the iPad, and the whiteboard. The learners wore the badge on their chest in case 1
and on their head in cases 2 to 5. Two badges were installed on both left and right sides of the
whiteboard. To synchronize the badges, the synchronizer is installed on the table. The scenario
of collaborative learning is composed of video viewing for 15 minutes, discussion for 30 minutes,
and conclusion for 15 minutes based on a learning material for collaborative learning called the
Adventures of Jasper Woodbury [18]. The learning material provides learners with interactive,
narrative-based problem-solving challenges that integrate mathematical reasoning with real-world
applications, encouraging critical thinking and collaboration. In the phases of video viewing and

discussion, each learner can watch the learning material on the iPad.
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2.3.1 Sensor Deployment

Automatic data collection using SRP Badges helped reduce costs in collaboration analysis com-
pared to traditional methods. In conventional data collection, multiple video cameras were used to
record users and the learning environment. This approach had the issue of high installation costs
depending on the number of participants and the range of movement. In contrast, the proposed
method improved scalability by adjusting the number of badges based on the number of users,

reducing the overall installation costs for data collection devices.

2.3.2 Face-to-Face Extraction

The proposed algorithm for face-to-face extraction sufficiently supported collaboration analysts,
especially researchers in learning science, to reduce the cost of qualitative analysis for face-to-face
detection in each experiment case. Figures 2.7 (a), (b), and (¢) show the face-to-face relationship
across learners in the phases of video viewing, discussion, and conclusion in the case 1 as an
example. The horizontal axis in each figure shows the elapsed time [s] of collaborative learning for
60 minutes. Each figure shows face-to-face relationship across three users named User 1, User 2,
and User 3, an iPad, and left and right sides of a whiteboard named WB_L and WB_R.

Figure 2.7 (a) shows face-to-face was scarce across the learners since they watched the learning
material on the iPad. Figure 2.7 (b), the discussion phase, shows User 1, User 2, and the right
side of the whiteboard faced. In addition, User 2 faced the left side of the whiteboard. Since the
position of User 1 was closest to the right side of the whiteboard, User 1 used the whiteboard to
leave clues to solve the problem. At the same time, User 2 saw User 1’s writing. This interaction
suggests that User 1 took on the role of leading the problem-solving effort, while User 2 acted as
a collaborator by observing and interpreting User 1’s input. Figure 2.7 (¢), the conclusion phase,
shows all the users faced the right side of the whiteboard. In addition, User 1 and User 2 faced
each other. The figure indicates that User 1 wrote stuff to conclude the work and summarized the
answer of the problem. User 2 and User 3 simultaneously saw User 1’s writing. This interaction
suggests that User 1 played a central role in synthesizing the group’s ideas, while User 2 and
User 3 acted as reviewers, validating and integrating the final solution. Including these results,
the proposed algorithm enables efficient identification of key interactions, roles, and phases in
collaborative learning, reducing the challenges of traditionally time-consuming qualitative video

analysis.

2.3.3 Learning Phase Extraction

The algorithm for learning phase extraction supported collaboration analysts to reduce the cost of
qualitative classification of learning phases. Figure 2.8 shows the result of learning phase extraction

which the algorithm automatically output. The horizontal axis shows the elapsed time [s] of
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Figure 2.7: Extracted face-to-face relationship in each learning phase.

collaborative learning for 60 minutes. The top figure shows the normalized time variation of face-
to-face difference across the learners extracted in the process of Sec. 2.3.2. The middle three
figures show results automatically extracted by the proposed algorithm. The bottom figure shows
the result of manual classification by researchers in learning science based on the recorded video
of collaborative learning.

The results from the quantitative analysis indicate that: 1) learners rarely turned around during
the video viewing phase due to their focus on the screen, 2) learners began to turn around more

frequently during the discussion phase as they engaged in problem-solving conversations, and 3)
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learners commonly turned around in the conclusion phase to finalize their solution. The transitions
between these three phases were observed at 1,202 seconds and 3,326 seconds. In contrast, the
qualitative analysis revealed transitions occurring between 1,173 seconds and 1,213 seconds, and
between 3,335 seconds and 3,360 seconds. While there are some discrepancies between the two
methods, specifically between 51 and 403 seconds, and between 2,289 and 2,459 seconds, the
automatic extraction still reliably captured the transitions between the phases.

These quantitative results provide significant convenience to analysts by enabling quick and
visual identification of phase transitions. For example, once the transition to the discussion phase is
identified, analysts can focus on that period to efficiently investigate how problem-solving behaviors
evolve. Similarly, pinpointing the start of the conclusion phase allows analysts to examine what
aspects of the discussion prompted learners to begin synthesizing their ideas. By automatically
highlighting clear phase transitions, the need to meticulously review the entire video is reduced,

significantly saving time and effort in qualitative analysis.

2.3.4 Speaker Identification

The experimental evaluation shows the proposed algorithm for speaker identification supports
collaboration analysis with automatic annotation of user’s speech or non-speech. Figures 2.9 (a),
(b), and (c) show the result of speaker identification in each learning phase in the case 1. The
horizontal axis represents the elapsed time [s] and the blue bars indicate the speech of each user.
For simplicity, we extracted 60 seconds of speaker identification results for each learning phase.
To compare with the ground truth, the audio data was recorded and transcribed. Tables 2.3
(a) and (b) present the results of speech transcription in the same sections for 60 seconds shown

in Figs. 2.9 (b) and (c¢). Figure 2.9 (a) shows an accurate detection of non-speech between 500
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and 560 seconds during the video viewing phase, confirming that learners did not speak during
this period. Figures 2.9 (b) and (c) identify the speech sections between 1,300 and 1,360 seconds
in the discussion phase and between 3,700 and 3,760 seconds in the conclusion phase. In the
discussion phase, the frequent alternation of speech turns between Userl and User2 suggests active
engagement and collaborative exchange of ideas, a key indicator of productive group problem-
solving. In the conclusion phase, the dense clustering of speech segments between Userl and
User?2 reflects their joint effort to synthesize and finalize the learning outcomes, while the minimal
contributions from User3 suggest a more peripheral role in this stage. Qualitative analysis requires
learning science researchers to repeatedly review the recorded video, noting the speech timing
and identifying speakers, as shown in Tables 2.3 (a) and (b). In contrast, the proposed speaker
identification method automates this process, significantly reducing the need for manual video

review.

2.3.5 Activity Estimation

The proposed algorithm for activity supports collaboration analysis by reducing the cost of qual-
itative activity estimation. Figures 2.10 (a), (b), and (c) present the estimated activity results
for each learner. The horizontal and vertical axes represent the elapsed time [s] and the relative
acceleration. To compare with the ground truth, the video data was recorded and transcribed.
Tables 2.4 (a) and (b) provide the qualitative records of the learners’ activities corresponding to
the sections in Figs. 2.10 (b) and (c¢). For consistency, we extracted 60 seconds from the same
sections as the speaker identification for each learning phase. Figure 2.10 (a) accurately detects
minimal activity between 500 and 560 seconds during the video viewing phase, indicating that
the learners remained still while watching the video. Figures 2.10 (b) and (c) successfully capture
specific activity between 1,300 and 1,360 seconds during the discussion phase, and between 3,700
and 3,760 seconds during the conclusion phase. In the discussion phase, the elevated activity levels
visible in the graph allow analysts to quickly identify periods of heightened engagement, reducing
the time needed to manually pinpoint moments of collaborative interaction for further analysis. In
the conclusion phase, the sustained activity levels suggest a focus on finalizing the task, enabling
analysts to concentrate on these periods to examine how learners consolidate their ideas and reach
consensus, without manually reviewing less relevant sections. Qualitative analysis traditionally
requires learning science researchers to replay the recorded video, closely observing the learners’
activity as detailed in Tables 2.4 (a) and (b). The proposed activity estimation method automates
this process, significantly reducing the need for manual observation by automatically extracting

key behaviors.
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Figure 2.9: Speaker identification results in each learning phase.

2.3.6 Web User Interface

The web application enables collaboration analysts to use the system without specialized operation
for CLI operation and complex software installation. Figure 2.11 shows each step for collaboration
analysis with SRP Web. The analyst just accessed to the webpage and operate the system on GUI.
Concretely, the analysts initially registered their accounts or login with the accounts in Fig. 2.11
(a). The analysts created each project and prepared each session to summarize the acquired sensor
data in Fig. 2.11 (b). Based on the sensor data saved in the session, the analysts executed each

algorithm for collaboration analysis. Therefore, the proposed web application showed accessibility
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Figure 2.10: Activity estimation results in each learning phase.

and usability for learning analysts who are unfamiliar with information technology.

2.3.7 Collaboration Elucidation

This section presents the application of the proposed IoT system in uncovering novel collabo-
ration patterns through an integrated approach combining quantitative and qualitative analysis.
The study integrated the proposed system with Socio-Semantic Network Analysis (SSNA), which
quantitatively evaluates interactions, relationships, and communication patterns by analyzing the
structure of social networks based on verbal information. SSNA analyzed word co-occurrence net-
works to calculate degree centralities, providing insights into group communication trajectories and

individual transactive contributions. The proposed IoT system examined multimodal patterns to
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Figure 2.11: Procedure of collaboration analysis on SRP Web.

identify nonverbal cues that signaled transitions in collaboration phases. These combined analyses
narrowed the focus to specific segments of video and audio data, enabling a targeted qualitative
examination.

The analysis revealed that leadership transitions in transactive discourse were closely linked
to distinct patterns of nonverbal behavior, including activity dynamics. Figure 2.12 shows the
result of SSNA in a case of collaborative learning. The x-axis and y-axis show conversation turns
and sum of the degree centralities calculated from word co-occurrence networks. By analyzing
the trajectory of the group’s idea development, two key segments were extracted: conversation
turns 108-111 and 294-299. During the first segment, P2 and P3 played a prominent leadership
role, while in the second segment, P1 and P2 took the lead. Figures 2.13 (a) and (b) present
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Figure 2.13: The activity dynamics during the idea improvement.

results extracted from the proposed system, emphasizing two segments that showcase partial in-
sights into the extracted activity. The activity data shows consistent patterns through the entire
collaborative process, although there were some partial variations. For instance, when consider-
ing the findings on leadership dynamics, Figures 2.13 demonstrate that the intensity of activity
varies across problem-solving phases, while the relationships among participants remain consis-
tent regardless of leadership changes. Finally, qualitative analysis in these two segments revealed
that the first segment focused on gathering information, whereas the second segment centered
on discussing solutions to the task. These findings indicate that leadership roles shifted among
participants, adapting to the specific phases of problem-solving.

Traditional approaches to collaboration analysis relied on manual observation of video and audio
data, requiring researchers to qualitatively identify key points for analysis. Quantitative approaches
based on SSNA and the proposed system enable the identification of critical elements within the
data, significantly reducing the analytical cost associated with its multimodal complexity. Focusing

on these identified segments enabled efficient qualitative analysis, providing new insights into the
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Figure 2.14: Time synchronization accuracy between SRP Badge and its synchronizer.

dynamics of collaboration.

2.4 Quantitative Evaluation

This section quantitatively evaluates the proposed system with the experiment.

2.4.1 Synchronization Accuracy of Sensors

We conducted an experimental assessment of the time synchronization accuracy between SRP
Badge and its synchronizer. Each device was positioned close to each other on a desk and started
synchronization. The time difference between the devices was measured based on the synchro-
nization signals transmitted from the synchronizer. An oscilloscope was used to precisely measure
the clock rise time at both devices to determine the time deviation accurately. In this setup, the
synchronization error was calculated 30,003 times.

Figure 2.14 illustrates the synchronization accuracy between the devices. The horizontal and
vertical axes represent the time deviation and the number of samples corresponding to each devi-
ation. As shown in Fig. 2.14, the time synchronization error was confined to within 4+ 30ps. The
mean and maximum synchronization errors recorded were —7.7 ps and 30 s, respectively. Given
that both the sound pressure sensor and the acceleration sensor on SRP Badge operate at a sam-
pling rate of 100 Hz, the synchronization error was allowable within the required threshold of less
than 1 ms. In addition, wireless sensor networks generally hinder high-precision synchronization
due to the complex interplay of factors such as changes in network topology, hardware resource
constraints, and environmental factors [19]. Achieving such ps-level synchronization demonstrates
precise synchronization within this wireless sensor network. The proposed synchronization method

thus ensures accurate sensor data analysis for collaboration analysis.
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2.4.2 Accuracy of Face-to-Face Extraction

The accuracy of face-to-face extraction in SRP Analysis was evaluated through an experiment using
infrared sensors embedded in SRP Badges. The experiment took place in a room with dimensions
of 10.6m x 7.05m x 2.65m, equipped with multiple LED recessed ceiling lights. Three subjects
wore SRP Badges on the chest and were positioned 1.50 m apart, with two of the three engaging
in a face-to-face conversation for 60s, while the non-speaking user faced the midpoint between
the speakers. All combinations of speakers were tested, and the accuracy of face-to-face detection
was calculated. Results showed that the infrared sensors detected face-to-face interactions with
accuracies of 75.3 %, 78.0 %, and 78.0 % across the different speaker combinations. These findings
suggest that the proposed face-to-face detection method is effective in supporting researchers in
learning science by reducing the qualitative analysis costs associated with face-to-face interaction

tracking in experimental scenarios.

2.4.3 Accuracy of Learning Phase Extraction

The accuracy of learning phase extraction was assessed with the five experimental cases of collab-
orative learning in Sec. 2.3. A simulation of all combinations of window size and slide width for
sliding windows in learning phase extraction was conducted, with the optimal parameters selected
to calculate face-to-face differences across users. The accuracy of learning phase extraction was
determined using the qualitative analysis results as the ground truth. Based on the learning phase
design detailed in Sec. 2.2.2, the best combinations of parameters for sliding windows in learning
phase extraction were identified from all possible combinations, which resulted in three phases
using AutoPlait.

Table 2.5 presents the best parameter combinations and the qualitative/quantitative phase
transitions for learning phase extraction. In cases 1 through 5, the learning phases were extracted
with accuracies of 86.9%, 100 %, 99.8%, 91.1 %, and 90.9 %, respectively, and phase transitions
were predicted within an average of 1min. These results indicate that this approach effectively
supports researchers in learning science by reducing the costs associated with qualitative analysis

of learning phases.

2.4.4 Accuracy of Speaker Identification

The accuracy of speaker identification was assessed with three subjects. Each subject wore SRP
Badge on the chest and was seated 1.5 meters apart from the others. To ensure time synchronization
between the badges, the synchronizer was positioned at the center of the desk used by the subjects.
For the experiment, each subject was provided with a printed speech manuscript. The speeches
on the manuscripts were designed to take approximately 6 to 8 seconds to deliver in Japanese.

The subjects took turns reading their speech. Each subject spoke at regular intervals to avoid
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overlapping with others.
The algorithm correctly identified user 1’s speech with 100 % accuracy across 15 samples, while
the speeches of users 2 and 3 were also identified with 100 % accuracy for 14 samples. The results

demonstrate that the speaker identification algorithm successfully distinguished all speakers.

2.4.5 Processing Time

The processing time for each function of the proposed web services deployed on EC2 instances was
evaluated. A dataset of collaborative learning activity using SRP Badges was selected for analysis.
Sensor data of different durations (15 min, 30 min, 45 min, and 60 min) were extracted from three
participants’ chest-mounted sensors during a one-hour learning activity. Each processing time was
recorded for three functions without sensor data—sign up, log in, and create a session—and five
functions with sensor data—importing sensor data, extracting face-to-face interaction, extracting
learning phases, identifying speakers, and estimating activity. Each processing time was calculated
as the average of ten measurements.

Tables 2.6 and 2.7 present the results of processing time for functions without and with sensor
data, respectively. Table 2.6 illustrates the processing time for signing up, logging in, and creating a
session on t3.large, m6i.large, and m6i.2xlarge instances. Table 2.7 provides the processing time for
importing sensor data, extracting face-to-face interaction, extracting learning phases, identifying
speakers, and estimating activity for durations of 15 min, 30 min, 45 min, and 60 min on the same
instances.

Three key observations were made from the results presented in Tables 2.6 and 2.7:

e The m6i.large and m6i.2xlarge instances processed each function faster than the t3.large

instance.
e Differences in processing time between mé6i.large and m6i.2xlarge were minimal.
e Speaker identification emerged as the most computationally intensive function.

The first observation indicates that t3.large might delay the analysis of collaborative learning
activities when using the proposed web services. This delay can be attributed to differences in
network bandwidth: t3.large supports up to 5 Gbps, whereas m6i.large and m6i.2xlarge support
up to 12.5 Gbps. For improved performance, using m6i.large or m6i.2xlarge is recommended.

The second observation suggests that m6i.large provides sufficient CPU performance and mem-
ory for handling the functions in the web services. The m6i.large instance is equipped with four
CPUs and 16 GiB of memory, whereas m6i.2xlarge features eight CPUs and 32 GiB of memory.
Despite the higher specifications of m6i.2xlarge, the processing speed of m6i.large was adequate

for the tested functions.
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The third observation highlights potential for optimization in the speaker identification process.
For example, on m6i.large, providing speaker information from 60 min of sensor data took 61.8s,
as shown in Tab. 2.7 (b). While the web services successfully provide this information, the function
requires over 1 min to complete, which may hinder efficiency. Addressing this issue and accelerating

the speaker identification process remain areas for future development.

2.4.6 Scalability

This section shows the scalability of the proposed web services deployed on Amazon EC2 instances,
a service that provides scalable virtual server instances in the cloud. The scalability was compared
to standard implementation of the application in Django. Multiple access requests were generated
from one server to another using Apache’s JMeter [20], with each server hosting the respective
services. Speaker identification was performed using 1min of sensor data collected from three
users’ chest-mounted SRP Badges during a collaborative learning session !. The number of access
requests on the proposed web services ranged from 0 to 300, increasing in increments of 50, while
the earlier web application handled requests ranging from 0 to 60, increasing in increments of 5.
Furthermore, scalability testing with 60 min of sensor data was carried out. The proposed web
services were deployed on EC2 instances, and multiple access requests were made under similar
conditions. Speaker identification was requested using 60 min of sensor data collected in the same
learning environment, with access requests ranging from 0 to 1200, increasing in increments of 100.

Figure 2.15 (a) depicts the scalability for handling multiple requests with 1 min of sensor data on
both the standard web application (labeled Comparison) and the proposed web application (labeled
Proposal). The x-axis shows the number of simultaneous requests sent to each service, while the
y-axis represents the response success rate. The legend outlines the combinations of each service
and the type of EC2 instance used: the standard application running on t3.large (Comparison on
t3.1), m6i.large (Comparison on mé6i.l), m6i.2xlarge (Comparison on m6i.2xl), and the proposed
application running on any instance (Proposal). For the standard web application running on
t3.large, the success rate remained at 1.0 for request numbers between 0 and 20, increasing by 5
each time. However, for 25 and higher request counts (25, 30, 35, 40, 45, 50, 55, and 60), the
success rate declined to 0.960, 0.767, 0.029, 0.025, 0.000, 0.000, 0.000, and 0.033, respectively. On
m6i.large, the success rate stayed at 1.0 for 0 to 30 requests, but dropped to 0.000 for requests
between 35 and 60. On m6i.2xlarge, the success rate remained at 1.0 for requests from 0 to 35, but
decreased to 0.925, 0.844, 0.640, 0.036, and 0.017 for 40, 45, 50, 55, and 60 requests, respectively.
The proposed web application, in contrast, maintained a success rate of 1.0 for all requests ranging
from 0 to 300, increasing in increments of 50. This shows that the proposed web application offered

improved scalability compared to the standard web application.

ISpeaker identification was the most resource-intensive function in the proposed web services.
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Figure 2.15: Scalability of SRP Web Services for multiple requests.

Figure 2.15 (b) illustrates the scalability of the proposed web services for multiple requests. The
x-axis again represents the number of simultaneous requests, while the y-axis shows the success
rate of responses. On t3.large, the success rate was 1.0 for request counts between 0 and 400 (in
increments of 100), but then dropped to 0.964, 0.802, 0.683, 0.599, 0.536, 0.481, 0.439, and 0.337
for 500 to 1200 requests. On m6i.large, the success rate stayed at 1.0 for requests up to 400, but
then fell to 0.996, 0.797, 0.681, 0.599, 0.527, 0.477, 0.435, and 0.397 for 500 to 1200 requests. On
m6i.2xlarge, the success rate was 1.0 for up to 900 requests, but declined to 0.952, 0.853, and 0.821
for 1000, 1100, and 1200 requests. This figure demonstrates that the proposed web application
could handle speaker identification, the most demanding function, with 400 simultaneous requests

on t3.large and m6i.large, and up to 900 requests on m6i.2xlarge.

2.4.7 Running Cost

The cost of running the proposed web services was estimated based on the service fees on AWS.
The deployment was assumed to take place on EC2 instances located in the Ohio region, USA, with
an hourly rate of 0.0832 USD for t3.large, 0.096 USD for m6i.large, and 0.384 USD for m6i.2xlarge.
The running cost was calculated as the product of the running time and the hourly rate.

The number of users was assumed to be 400 for t3.large, 400 for mé6i.large, and 900 for
m6i.2xlarge, representing the maximum number of users the proposed web services can handle
simultaneously without rejecting requests, as discussed in Sec. 2.4.6. Each user was assumed to
analyze five sessions of collaborative learning activity per month, with three learners per session
and a session duration of 60 min. The running time included time for signing up, logging in, creat-
ing sessions, importing sensor data, extracting face-to-face interaction, extracting learning phases,

identifying speakers, and estimating activity. These times were summed for each user based on the

average processing times reported in Sec. 2.4.5.
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Based on these assumptions, the total running cost for one month was approximately 5.658 USD
on t3.large for 400 users, 4.320 USD on m6i.large for 400 users, and 18.816 USD on m6i.2xlarge

for 900 users.

2.5 Related Work
2.5.1 Collaborative Extraction Using Business-Card-Type Sensors

Previous research has investigated the detection of collaboration between individuals using business-
card-type sensors worn by users. One such example is Hitachi’s Business Microscope [6,7], which
features an infrared sensor. Business Microscope captures face-to-face interaction and suggests
that the frequency of meetings influences work efficiency. Similarly, MIT developed the Sociomet-
ric Badge [8] with accelerometers, sound pressure sensors, position sensors, Bluetooth, and infrared
sensors. Sociometric Badge collects data on face-to-face interactions, conversational tone shifts,
and proximity. The study in [8] indicates that these interactions correlate with workplace produc-
tivity and efficiency. Furthermore, MIT introduced a compact, energy-efficient variant called Open
Badges [9], which includes sound pressure sensors and Bluetooth, and is worn around the neck.
Open Badges enable visualization of face-to-face interactions using sound pressure and Bluetooth
received signal strength indicator (RSSI) data. MIT later integrated Open Badges into a hybrid
environment platform named Rhythm [10], designed to track face-to-face interactions in physical
settings and facilitate interaction tracking in distributed settings through online applications.

Despite these advancements, there are challenges in achieving precise synchronization of sensor
data, which limits the accuracy of collaboration analysis. Existing approaches typically rely on
software-based synchronization methods. For instance, one study [6] attempts synchronization by
identifying similar sound pressure patterns, aligning data sampled at 8 kHz within a 100 ms window.
However, this method becomes less effective with sensors that operate at a lower sampling rate of
100 Hz to conserve power, introducing errors that can lead to inaccurate analysis of collaborative
activities.

To address these limitations, this study proposes a new type of business card-type sensor,
building on the earlier work [21], which focuses on achieving precise synchronization across multiple
sensors. The proposed sensor incorporates hardware that enables high-precision synchronization
through the transmission of synchronization packets between devices. This setup allows for the

accurate capture of sound pressure, acceleration, and infrared data across all sensors.

2.5.2 Sensor-based Activity Recognition

Several studies have explored methods for recognizing user behavior using multiple sensors attached

to the user [22-27]. In one such study [22], accelerometers were placed on the user’s wrist, ankle,
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and chest, and the collected sensor data was transmitted to the cloud. The cloud then utilized
decision tree analysis to classify six activities: lying down, sitting, standing, walking, running,
and cycling. Another study [23] employed a wristwatch-style wearable device with integrated
sensors such as an accelerometer, light sensor, thermometer, and sound sensor, enabling real-time
classification of six activities: sitting, standing, walking, climbing stairs, descending stairs, and
running, achieving an accuracy of 92.5 % using decision tree analysis. Additionally, literature [24]
leveraged Zephyr BioHarness Bluetooth to gather acceleration and biometric data, classifying three
activities — running, walking, and sitting — again using decision tree analysis. This study also
demonstrated the ability to handle new users without requiring re-training by utilizing data from
a diverse group of users. Another example [25] used fuzzy basis functions to analyze data from
a 3-axis accelerometer worn on the user’s dominant wrist, successfully classifying seven activities:
brushing teeth, tapping a person, tapping a desk, working on a computer, running, waving, and
walking.

Building on this body of work, this study proposes SRP leverages data from SRP Badges
to identify and visualize key moments in collaborative activities. For instance, the system can
automatically detect shifts in learning phases by analyzing variations in network activity among
participants, as captured by infrared sensors mounted on the badges. This automated phase
detection has the potential to significantly reduce the qualitative analysis workload for researchers
studying collaborative activities, while also providing useful insights to guide the collaboration

process.

2.5.3 Web Services for Sensor Data Analysis

Several studies have focused on creating user-friendly web services designed for sensor data anal-
ysis [28-39]. For instance, the work presented in [33] developed a model for smart agriculture,
enabling real-time monitoring of soil conditions and remote control of field operations via mobile
and web applications. This model offered users a convenient way to monitor data processed by
the system through a web browser from any location at any time. Similarly, the study in [39]
introduced a new SaaS platform called motch, designed to simplify the operation of IoT systems
for end users via a web interface, allowing users to easily check the status of IoT devices directly
from a browser.

This paper introduces a web application named SRP Web, which enhances the usability of
sensor data analysis in collaboration. SRP Web aims to make it easier for analysts, even those
with limited technical expertise, to begin conducting analysis by providing improved scalability

and access to analysis algorithms.
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2.6 Conclusion

This study introduces an innovative IoT system utilizing business-card-type sensors designed to fa-
cilitate the analysis of collaboration. The system is composed of three main components: compact
business-card-type sensors called SRP Badge for data collection, an interaction analysis algorithm
called SRP Analysis to interpret the collected data, and a web-based application called SRP Web
for visualizing the analysis results in a browser. SRP Badge, worn individually by users, accu-
rately collects data such as sound pressure, acceleration, and infrared signals while maintaining
precise synchronization between devices. SRP Analysis processes this synchronized data to iden-
tify interactions, including face-to-face communication, learning phases, speakers, and activities.
The results are then presented through SRP Web that allows for easy visualization and inter-
pretation. To assess the system’s effectiveness, experiments were carried out focusing on sensor
synchronization accuracy, the performance and reliability of the interaction analysis algorithm, and
the usability of the web application. The findings highlighted several advantages for researchers
analyzing collaborative learning. First, the sensors achieved high precision in data acquisition,
with synchronization errors between devices kept within +30ps. Second, the interaction analy-
sis algorithm successfully identified collaborative behaviors, such as face-to-face interactions, task
phases, speech, and activities, providing valuable insights for qualitative analysis. Finally, the web
application enabled intuitive visualization of key data points, significantly streamlining the process

of human interaction analysis due to its web-based design and usability.
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Table 2.3: Qualitative transcription in each phase for case 1

(a) Discussion

Number | Start [s] | End [s] | Speaker | Speech content (in Japanese)

1 1302 1303 User 1 | Then two thousand feet are... Ah, I see.

2 1303 1309 User 2 | One foot is one-third yard so three feet
are two thousand-third yards.

3 1310 1314 User 1 | Really... I learn something new.

4 1310 1311 User 2 | Ha ha.

5 1310 1311 User 3 | Ha ha.

6 1314 1316 User 2 | I'm not confident...

7 1314 1315 User 3 | Ha ha.

8 1317 1319 User 2 | Six pounds...

9 1322 1323 User 2 | Fifteen pounds.

10 1323 1325 User 1 | Fifteen pounds.

11 1325 1326 User 3 | Pound...

12 1332 1333 User 2 | Ten...

13 1334 1339 User 1 | I know that the normal plane is two
thousand feet long, but...

14 1339 1441 User 2 | They used this plane?

15 1441 1347 User 1 | Didn’t the video say that the fuel is
half?

16 1342 1343 User 2 | Yes, the video said.

17 1350 1357 User 1 | At the end of the video... Well, as I said
before, the part of the normal plane is
two thousand feet long...

18 1352 1353 User 3 | At the end?

(b) Conclusion
Number | Start [s] | End [s] | Speaker | Speech content (in Japanese)

1 3706 3711 User 1 | Yes, yes, yes, fifteen plus sixty, the fuel
is loaded here and fully used...

2 3708 3710 User 2 | Ah, I see.

3 3710 3711 User 3 | (Whispered)

4 3714 3716 User 1 | About six gallons.

5 3717 3719 User 2 | One gallon is six pounds, right?

6 3720 3721 User 1 | Yes, yes, yes, yes.

7 3722 3724 User 2 | Then eight gallons are...

8 3727 3728 User 1 | Forty eight?

9 3728 3729 User 2 | Forty eight pounds.

10 3729 3730 User 1 | I see.

11 3730 3731 User 2 | Can they load the fuel of forty eight
pounds?

12 3731 3732 User 3 | Forty eight pounds are bad.

13 3732 3733 User 2 | Bad?

14 3733 3734 User 3 | Less than forty five.

15 3736 3737 User 2 | Oh my!

16 3737 3738 User 1 | Ah...

17 3738 3742 User 2 | Ha ha ha, and they also have to load
the eagle.

18 3742 3743 User 1 | The eagle, guy.

19 3743 3754 User 3 | But they use fifteen so reduce one gallon
when the eagle, the eagle arrives.

20 3755 3756 User 2 | Hmm... ha ha ha.

21 3756 3757 User 3 | So...




Table 2.4: Qualitative recodes of activity in each phase for case 1

(a) Discussion

Number | Start [s] | End [s] | Learner | Activity

1 1300 1316 User 1 | He wrote on the whiteboard.

2 1303 1314 User 3 | She watched the iPad and whiteboard
in turn.

3 1308 1314 User 2 | She spoke moving the chair back and
forth.

4 1323 1336 User 1 | He wrote on the whiteboard.

5 1323 1326 User 2 | She watched the iPad and whiteboard
in turn.

6 1323 1326 User 3 | She manually replayed the video on the
iPad.

7 1329 1330 User 3 | She turned her head toward the white-
board from the iPad.

8 1339 1342 User 3 | She manually replayed the video on the
iPad.

9 1343 1344 User 2 | She pulled away from the desk.

10 1346 1348 User 3 | She manually replayed the video on the
iPad.

11 1350 1356 User 1 | He turned his head toward the white-

board from the iPad.

(b) Conclusion

Number | Start [s] | End [s] | Learner | Activity

1 3705 3717 User 1 | He wrote on the whiteboard.

2 3708 3713 User 3 | She pointed out to the whiteboard.

3 3720 3722 User 3 | She scratched the side of her nose.

4 3723 3730 User 3 | She nodded repeatedly.

5 3726 3734 User 2 | She gestured in thinking.

6 3734 3740 User 1 | He swang the body with laughing.

7 3735 3739 User 3 | She laughed.

8 3736 3740 User 2 | She swang the body with laughing.

9 3742 3749 User 1 | He wrote on the whiteboard.

10 3744 3749 User 3 | She pointed out to the whiteboard.

11 3750 3758 User 3 | She swang the body with putting hand
on her hip.

12 3752 3754 User 2 | She wondered scratching her head.

Table 2.5: Best combinations of window size and slide width, accuracy, and phase transitions in
learning phase extraction

Transit from video viewing to discussion [s| | Transit from discussion to conclusion [s]

Case | Window size [s] | Slide width [s] | Accuracy Qualitative Quantitative Qualitative Quantitative
1 86 1 100 % 1,356 to 1,445 1,361 3,166 to 3,167 3,167
2 571 1 99.8% 1,386 to 1,502 1,386 3,011 to 3,012 3,003
3 554 2 91.1% 1,283 to 1,334 1,403 2,609 to 2,610 2,483
4 127 1 90.9% 1,275 to 1,343 1,262 2,541 to 2,542 2,259
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Table 2.6: Processing time [s] for each function without sensor data

Process Instance type
t3.large mé6ilarge m6i.2xlarge
Sign up 0.72 0.53 0.54
Log in 0.42 0.28 0.27
Create a session | 0.071 0.040 0.036

Table 2.7: Processing time [s] for each function with sensor data

(a) t3.large

Length of sensor data
15min  30min 45min 60 min
Import a sensor datum 1.76 2.97 4.19 5.89
Extract F2F interaction 2.89 5.29 7.93 9.98
Extract learning phases 2.20 2.98 4.08 5.07

Identify speakers 19.9 40.0 61.9 82.9
Estimate activity 2.55 3.21 4.31 5.39

Process

(b) m6i.large

Length of sensor data
15min  30min 45min 60 min
Import a sensor datum | 0.866 1.66 2.40 3.25
Extract F2F interaction | 0.275 | 0.499 | 0.754 1.14
Extract learning phases 1.09 1.78 2.48 3.14

Identify speakers 15.1 31.1 46.3 61.8
Estimate activity 1.24 1.95 2.67 3.54

Process

(c) m6i.2xlarge

Length of sensor data
15min  30min 45min 60 min
Import a sensor datum 1.00 1.97 2.82 4.25
Extract F2F interaction | 0.284 0.552 0.894 1.27
Extract learning phases 1.40 1.97 2.62 3.29

Identify speakers 14.6 30.1 47.0 66.1
Estimate activity 1.28 2.00 2.80 3.54

Process
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Chapter 3

Speaker Identification for Mobile
Devices

3.1 Introduction

Collaboration plays a significant role in the success of activities involving multiple participants, such
as teamwork and collaborative learning. It enables individuals to integrate diverse perspectives and
enhance social skills through interaction with others. The field of cognitive science has explored
collaboration extensively, leading to various insights into how collaborative processes can improve
performance, particularly in learning environments. For instance, researchers have conducted
qualitative analyses of collaborative activities, uncovering patterns that contribute to enhanced
learning outcomes [3,40-46]. As highlighted in [43], learners who approach problem-solving in a
unified manner often achieve better results. Analyzing collaboration often requires transcription,
which is critical for accurately capturing and understanding the interactions. However, this process
is both time-consuming and labor-intensive, as researchers must repeatedly watch recorded sessions
to manually note the timing of each speaker’s contributions.

One approach to reduce the challenges of transcription is speaker identification, which has been
explored in several studies. These studies have investigated methods such as speaker localization
using microphones [47-60], speaker verification using voice features [61-70], speaker identification
using voice features [61,64,71-87], and speaker recognition using a mobile device [10,88-92]. For
example, speaker localization determines the positions of multiple speakers by analyzing audio
data captured through microphones or microphone arrays. While many of these studies rely on
high sampling rates (several kHz or more) for speaker recognition, this study focuses on identifying
speakers using sound pressure sensors operating at a lower sampling rate. This approach offers a
cost-effective solution for collecting collaboration data using low-power mobile devices.

One noteworthy contribution to this field is Rhythm [10], which employs a mobile device with

a sound pressure sensor operating at 700 Hz. Rhythm uses integration circuits, voice activity
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detection (VAD) [93], and thresholding algorithms to identify speakers. Despite its innovation,
several challenges remain in achieving accurate speaker identification using sound pressure sensors.

The first challenge is handling spikes in the recorded sound pressure data. Rhythm’s integration
circuit is susceptible to spikes, which can result in incorrect speech detection. The second challenge
involves distinguishing between speech and ambient noise. Even if spikes are mitigated, non-
speaking individuals’ sensors still pick up elements of speech, complicating the classification of
sound pressure data as either speech or noise. The third challenge is the lack of time synchronization
among the sensors, which can lead to errors in aligning sound pressure data across devices. This
misalignment makes it difficult to accurately classify the sound pressure data !.

To address these challenges, this paper proposes a new speaker identification system specifically
designed for business-card-type sensors. The system includes: 1) a sound pressure sensor designed
to mitigate spikes, 2) a wireless synchronization framework to ensure data consistency, and 3)
a high-accuracy speaker identification algorithm optimized for low sampling rate data. The key

innovations of the approach are as follows:
e This study uses a peak hold circuit to reduce spikes in the sound pressure data.

e The system incorporates a flooding-based synchronization module for precise time alignment

across devices.

e The study introduces a three-step process for distinguishing speech from ambient noise,

improving the accuracy of speaker identification.

Evaluations demonstrate that 1) the peak hold circuit effectively removes spikes from the sound
pressure data, 2) the synchronization error between sensors is consistently within £30pus, and 3)
the proposed system performs well under various conditions, including different user numbers,
noise levels, and utterance lengths.

The structure of the rest of this paper is as follows: Section 3.2 reviews the related works.
Section 3.3 introduces the proposed algorithm for identifying speakers. The experimental results

are presented in Sec. 3.4. Finally, Sec. 3.5 concludes the paper.

3.2 Related Work
3.2.1 Speaker Recognition Using Stationary Devices

Previous research in the field of speaker recognition can generally be divided into three categories:
speaker localization, speaker verification, and speaker identification using voice characteristics.

Speaker localization [47-55] focuses on determining a speaker’s position by analyzing multiple audio

1To avoid errors caused by synchronization issues, the time synchronization accuracy must be less than one-tenth
of the sensor’s maximum sampling rate.
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signals. Applications of this technique include mobile robotics [56-58], passive sonar systems [59],
and hearing aids [60]. For instance, in environments with wideband noise, [58] introduces a method
to differentiate the time difference of arrival (TDoA) between the sound source and the noise, which
helps estimate the speaker’s location.

Research on speaker verification [61-67] focuses on comparing a speaker’s voice with a pre-
registered voice sample to verify identity. This technology has been used for authenticating IoT
devices [68], securing networks [69], and user authentication [70]. For example, [67] enhances
the performance of speaker verification for low-quality voice inputs by integrating mel-frequency
cepstral coefficients (MFCC) with linear predictive coding (LPC).

Speaker identification, another area of research, involves matching a speaker’s voice to that of a
pre-registered individual [61,64,71-84]. Applications of speaker identification include video confer-
encing [85], criminal investigations [86], and television broadcasts [87]. For instance, [85] improves
speaker identification robustness by focusing on key speakers in video conferences, reducing noise
from inactive participants and minimizing the interference of brief speech interruptions.

Despite the progress, many of these approaches involve substantial hardware and processing
requirements, as they rely on microphones to capture voice samples at high frequencies, often
exceeding several kHz. In contrast, this study uses a business-card-sized sensor that captures
sound pressure at 100 Hz to identify speakers. This setup significantly reduces both hardware and

processing costs, facilitating the extraction of collaborative data during multi-person activities.

3.2.2 Speaker Recognition Using Mobile Devices

Several studies [88,89] have implemented speaker identification using smartphones or business-card-
type sensors to extract collaboration data in organizational settings [90-92] and human interaction
contexts [10]. For instance, Hitachi’s business microscope [90-92] utilizes a business-card-type
sensor to achieve 97.3 % accuracy in speaker identification. However, it is important to note that
this system exhibits high power consumption due to the sensor’s high sound pressure sampling
rate of 8 kHz.

Additionally, MIT’s Rhythm project [10] employs a business-card-sized sensor known as the
Rhythm Badge for speaker identification. The Rhythm Badge operates at a lower power con-
sumption rate as it samples sound pressure at 700 Hz. It performs speaker identification using
a threshold-based approach without extracting specific voice features. Nevertheless, its accuracy
is somewhat limited due to the spikes observed in the sound pressure measurements (due to the
integration circuit), the fixed threshold which makes it susceptible to ambient noise, and the lack
of time synchronization across sensors.

This study introduces an innovative business-card-sized sensor designed to reduce spikes by

incorporating a peak hold circuit. The study also develop a speaker identification algorithm that
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Figure 3.1: Overview of the proposed speaker identification system.

minimizes the impact of ambient noise and include precise time synchronization between sensors.
Through simulations and experiments, the study demonstrate that these enhancements signifi-

cantly improve the accuracy of both speech detection and speaker identification.

3.3 Proposed Scheme
3.3.1 Overview of Proposed System

To identify speakers using sound pressure sensors embedded in a business-card-sized sensor with a
low sampling rate, this paper proposes a novel speaker identification system. Figure 3.1 provides
an overview of the system we have developed. The speaker identification process follows these

steps:
1. Before a multi-person activity, the business-card-sized sensors are distributed to participants.

2. During the activity, the sensors capture user speech using a sound pressure sensor equipped

with a peak hold circuit.
3. After the activity, the sensors are collected from the participants.

4. The sound pressure data from the collected sensors are extracted and processed through the

proposed speaker identification algorithm.

5. Finally, the algorithm generates and visualizes the speaker identification results.

3.3.2 Sound Pressure Acquisition

Figure 3.2 illustrates the design of the sound pressure sensor. This sensor samples sound pressure

at intervals of 10 ms. The microphone converts spoken audio into electrical signals, which are weak
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Figure 3.3: Overview of the speaker identification algorithm.

and therefore require amplification. The amplified signals are then passed through a peak hold
circuit that detects rapid signal peaks by utilizing the discharge properties of an RC parallel circuit.
The analog signal produced by the peak hold circuit is converted into a digital format through an
analog-to-digital (AD) converter. The digital output is provided every 10ms, with both timing
and frequency synchronized using a synchronization signal generator. The sensor is designed to be
both cost-effective and simple. The circuit is composed of a microphone, an operational amplifier,
a peak hold circuit, and an AD converter, making it affordable and straightforward to implement.

Based on this hardware design, this study implemented a sound pressure sensor in the SRP
Badges described in Sec. 2.2.1. As outlined in Sec. 2.2.1, the badge, which is the size of a small
business card, operates continuously for 24 hours and is robust enough to endure extended collab-
oration sessions lasting several hours. The low-sampling sound pressure acquisition contributes to

both low power consumption and compact design.

3.3.3 Speaker Identification Algorithm

Figure 3.3 illustrates the overall structure of the speaker identification algorithm. This algorithm
operates in three stages: 1) estimating the speech segments, 2) evaluating all speakers, and 3)
identifying the target speaker.

Speech section estimation: The initial step involves determining whether users are speaking by
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Algorithm 3 Labeling in speech section estimation

Require: U, P
Ensure: L
1: for all d € U do
2:  Insert zeros into all elements in Ly

3 £<0

4:  while £ < length of Ly do

5: W «< P; € P between £ to £ + 1
6: m < max(W)

7: if m > ns then

8: Nm <= m* 0.1

9: if we W > n,, then

10: w1

11: else

12: w0

13: end if

14: Replace elements in Ly with w € W
15: end if

16: £E<=E+05s

17:  end while

18:  Insert Ly into L
19: end for

20: return L

analyzing sound pressure signals collected from the sensors of all users. The algorithm performs
a zero-point correction by identifying the minimum sound pressure value across all sensors and
subtracting this value from each sensor’s respective sound pressure readings. Using sliding windows,
the algorithm then labels whether multiple users are speaking based on the corrected sound pressure
values for each user within each window.

Algorithm 6 illustrates the labeling procedure, which is depicted in Figure 3.3, and the notation
used is summarized in Table 3.1. The labeling process produces an array, I, which represents
“1-0 data” for each user, using both the set of all sensor IDs U and the sound pressure data
P= P, P,,..., Py from each sensor. For each window W, the algorithm identifies the maximum
sound pressure value m for each sensor, as seen in line 6.

If m does not exceed the speech threshold 7y in any sensor for window W, the algorithm
considers that no users are speaking and moves to the next window (line 16). If m does surpass 7;,
the algorithm updates the threshold 7, to m % 0.1 in line 8. It then compares the sound pressure
values from each sensor with 7,,, assigning a label of 1 or 0 depending on whether the sound
pressure is higher or lower than 7,, (lines 9-13).

The corresponding element in array Ly is updated with the label for window W in line 14. The
resulting pre-processed data, referred to as “1-0 data for each user,” is used to refine the speech
labels for each sensor. Labels of 1 are filled in sections with consecutive labels of 0 if these zeros

occur within 90 ms between ones, treating them as part of the speech in the 1-0 data. Additionally,
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Table 3.1: Notation

Variable / Function | Description
A 1 bit array with labels for all users’ speech
d Sensor ID
f Flag for user utterances
Set of 1 bit arrays with speech judgment
J labels for all the sensors
J 1 bit array with speech judgment labels
d for sensor d
L Set of 1 bit arrays with speech labels
Ly 1 bit array with speech labels of sensor d
Set of sound pressure data
P .
acquired from all sensors
Py Sound pressure data for sensor d
Set of averaged sound pressure data
]Pavg

acquired from all sensors

Pa,,, Averaged sound pressure data for sensor d
S Set of arrays with start and end times
for speech sections
g Array with start and end times

for a speech section
U Set of all sensor IDs

. Speech threshold based on the maximum

m

sound pressure in the window
N Speech threshold for sound pressure ratio
Threshold for all users’ speech

s in the speech section §

Ns Speech threshold for all sensors

& Top index of window
average(X) Calculate the average

of all the elements in X
max(X) Calculate the maxirpum

of all the elements in X
Calculate the minimum
of all the elements in X
size(X) Count the number of all elements in X

min(X)

continuous labels of 1 lasting less than 150 ms are replaced with Os, assuming the section contains
false positives caused by background noise.

The final labels for each user are logically combined and output as scalar binary data. This
data, derived from the speech section estimation process, is referred to as “speech section data.”
All-speakers judgment: In the second step, the algorithm determines whether all users are
speaking within each speech section by combining the 1-0 data for each user with the speech
section data. The focus is placed on sections where the speech section data indicates that a user is
speaking. For each speech section, the algorithm calculates a threshold based on the maximum and

minimum sound pressure values across all sensors. If the sound pressure for all sensors surpasses
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Algorithm 4 All-speakers judgment
Require: U,S,P
Ensure: A
1: Insert zeros into all elements in A
2: for all S € S do
3:  Pmin < min(P) in S before and after 100 ms

4 Pmar < max(P) in S

5: NS <= Pmin + (pmaw - pmzn) *0.95
6: for alld e U do

7: Dd,,.., <= max(Py) in S

8: if pa,,,. > ns then

9: Replace ¢ € A in S with 1
10: end if

11:  end for

12: end for

13: return A

this threshold, it concludes that all users are speaking.

The process for making this all-speakers determination is detailed in Algorithm 4 and illustrated
in Figure 3.3, while Table 3.1 outlines the algorithm’s notation. The output of this step is an array
A, representing the speech activity of all users. This array is generated using the set of all sensor
IDs U, the speech sections S identified from the speech section estimation, and the sound pressure
data P = P, P, ..., Py collected from all sensors.

To estimate the noise floor, the algorithm calculates the minimum sound pressure pp,i, by
examining a 100 ms interval before and after each speech section across all sensors (line 3). This
margin is added to ensure that the minimum sound pressure is accurately captured. Next, it
identifies the maximum sound pressure p,,q, within each speech section for all sensors (line 4).
The threshold for determining all-users speech ng is then set as piin + (Pmaz — Pmin) ¥0.95 (line 5).
The value of 0.95 was chosen as it maintained high accuracy while reducing the likelihood of overly
lenient judgments.

If the sound pressure within the speech section exceeds ng for all sensors, the algorithm classifies
the section S as one where all users are speaking, assigning a label of 1 for that section (lines 6-11).
The algorithm then returns the speech labels for all users across the identified sections in array A.
Speaker identification: In the third step, the algorithm identifies which user is speaking during
each speech section by utilizing sound pressure values that are averaged, relativized, and adjusted
based on a baseline. Each speech section is analyzed to estimate where a user is speaking, relying
on the previously extracted speech section data. The speech of individual users is determined by
comparing their sound pressure values with the established speech threshold.

The sound pressure for each sensor is averaged using sliding windows, with a window size of
0.5s and a slide interval of 0.01s, allowing for fine-grained detection of simultaneous speech from

multiple speakers. The averaged sound pressures across all users Py,  are then used to identify
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Algorithm 5 Speaker identification with averaged sound pressure

Require: U, S, Py,
Ensure: J
1: for all d € U do
2:  Insert zeros into all elements in Jy

3: end for

4: n, < 1/size(U)

5: for all S € S do

6: for allt; € S do

7 f<=0

8: for all d € U do

9: r < ratio of Py, toPg,,, att;
10: 0 < average(Vr in =S) — 7,
11: Thase <= T — 0

12: if rpgse > nr + 0.01 then

13: Replace j € Jg at t; with 1
14: f<1

15: end if

16: end for

17: if f =0 then

18: for all d € U do

19: if rpgse > nr — 0.001 then
20: Replace j € J; at t; with 1
21: end if

22: end for

23: end if

24:  end for

25: end for

26: Insert Jy into J
27: return J

the active speakers. The steps for speaker identification, based on these averaged sound pressures,
are detailed in Algorithm 5, illustrated in Figure 3.3, and the relevant notation is explained in
Table 3.1.

The output of the identification process is the array J, which represents the labeled speech
data for each user. This array is derived from the set of all sensor IDs U, the identified speech
sections S from speech section estimation, and the averaged sound pressure data for all sensors
Pavg = Plavg, Payyys -3 PU|a0,-

The speech threshold 7, is determined based on the number of sensors, as indicated in line 4.
For each time ¢; within a speech section S € S, the algorithm calculates the sound pressure ratio r
for each sensor using the averaged sound pressure p of each sensor d (line 9). A baseline adjustment
0 is then computed by comparing the sound pressure ratio during non-speech sections =S to the
threshold 7, (line 10), and this offset is subtracted from the sound pressure ratio for each sensor
(line 11).

The algorithm identifies speakers within each speech section S using a two-step process that
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incorporates both the averaged and baseline-adjusted ratio rpqse. If the ratio rpese for sensor d
exceeds the sum of the threshold 7, and a margin of error of 0.01 in section S, the algorithm
classifies the user associated with sensor d as speaking in that section (lines 12-15). This initial
step detects clear speech when only a few people are talking.

The threshold 7, was optimized to 0.01, balancing detection accuracy without misclassifying
noise as speech. If the first step does not detect any speakers in section S, a second step is applied
with a slightly reduced margin of error of -0.001 (lines 18-22), which helps identify cases where
multiple users may be speaking simultaneously. This second pass detects more ambiguous speech
where multiple people are involved. Finally, the algorithm outputs the speech labels for each sensor

in the array J.

3.4 Evaluation
3.4.1 Speaker Identification Accuracy

An experimental evaluation was conducted to assess the accuracy of the proposed algorithm for
detecting speech using sound pressure data acquired from SRP Badges. The experiments took
place in a conference room, considering different numbers of participants, environmental noises,
and short utterances from the users. This study assumes a situation where environmental noise is
generated by video materials [18] played during collaborative learning activities.

The subjects were male university students in their early twenties. The room’s dimensions were
10.6m, 7.05m, and 2.65m. The influence of reverberation was taken into account, as the room
was intended for collaborative learning. Each participant wore an SRP Badge on the chest and
was seated 1.50 m away from adjacent participants. A time synchronizer was placed on a table at
the center of the participants to ensure sensor synchronization.

For the experiments, both long and short utterances were tested using two types of speech
scripts provided to each participant. Table 3.2 shows the speech script prepared for the experi-
ments. Each script included 15 sentences in English. Participants took turns speaking one sentence
from the script, with a two-second interval between speakers. After completing a sentence, all par-
ticipants moved on to the next. The combinations of participants who spoke simultaneously were
varied for each sentence. For example, in an experiment involving three participants, the combi-

nations were as follows:
e One participant speaks while the other two remain silent
e Two participants speak simultaneously while the other remains silent

e All three participants speak simultaneously
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Table 3.2: Speech script prepared for the experiments

Order | Long speech Short utterance
1 Nice to meet you everyone. Oh.
2 What do you study at the university? Hmmm.
3 Do you know where the library is? Huh?
4 I have a friend who speaks Chinese. What?
5 Please don’t keep the door open. Hey.
6 I can hardly believe your story. Hello.
7 I don’t know what you want to do. Pardon?
8 Shall we go hiking if it is sunny tomorrow? OK.
9 What should I do in order to improve my English? | Thanks.
10 It is said that English is an international language. | Good.
11 Without your help, we could not finish this job. Really?
12 It is dangerous for children to play here. Me, too.
13 Walking to the station, I met my father. Yes.
14 It takes five minutes to walk to the station. No.
15 I got up early so that I could make lunch. Nice.

In each case, all possible combinations of speakers and non-speakers were tested, taking into account
the variations in participants’ voice characteristics.

The accuracy of speaker identification was evaluated by comparing the proposed scheme with
three alternatives: “Scheme with absolute sound pressure” (absolute scheme), “Scheme with rela-
tive sound pressure” (relative scheme), and “An extended version of the method presented in [10]”
(Rhythm scheme). Both the absolute and relative schemes incorporate speech-section estimation
from parts of the proposed algorithm described in Sec. 3.3.3. In the absolute scheme, speaker iden-
tification relied on a speech threshold applied to each speech section, similar to the all-speakers
judgment approach in Sec. 3.3.3. For each user, the threshold ng was determined in each speech
section S to identify individual speech segments. On the other hand, the relative scheme identified
multiple speakers using averaged and base-adjusted sound pressure, employing the thresholding
approach found in the speaker identification method of Sec. 3.3.3. The optimal speech detec-
tion threshold for both schemes was dependent on the evaluation conditions. The Rhythm scheme,
based on the work in [10], originally focused on identifying a single speaker using IoT devices called
Rhythm Badges. This method was extended to support the identification of multiple speakers. The
original scheme employed the VAD (Voice Activity Detection) algorithm [93] and a thresholding
algorithm to identify a single speaker for organizational management purposes. The VAD algo-
rithm used sliding windows to process sound pressure power, mitigating noise. The thresholding
algorithm then identified the speaker by selecting the user with the longest detected speech segment
in each section. To extend this approach for multiple speakers, modifications were made to the
thresholding algorithm, allowing it to detect simultaneous speakers by evaluating speech activity
for each user. The sliding window parameters for the VAD algorithm were empirically set to a

window size of 2s and a slide width of 0.01s. The optimal threshold for speech detection in the
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Algorithm 6 Labeling in speech section estimation

Require: U, P
Ensure: L
1: for all d € U do
2:  Insert zeros into all elements in Ly

3 £<0

4:  while £ < length of Ly do

5: W «< P; € P between £ to £ + 1
6: m < max(W)

7: if m > ns then

8: Nm <= m* 0.1

9: if we W > n,, then

10: w1

11: else

12: w0

13: end if

14: Replace elements in Ly with w € W
15: end if

16: £E<=E+05s

17:  end while

18:  Insert Ly into L
19: end for

20: return L

thresholding algorithm varied depending on the specific evaluation settings.
The number of users: The speaker identification accuracy was evaluated with varying numbers
of users, using a script for long speech utterances. The number of users ranged from two to five.
The speech threshold 7 of Algorithm 6 was empirically set to 75 dB in the absolute, relative, and
proposed algorithms for speech section estimation. For the Rhythm scheme, the speech threshold
was set to 84 dB. This threshold was maintained consistently across different numbers of users.
Tables 3.3 and 3.4 present the F1-scores of each scheme and the corresponding confusion matri-
ces for two to five users. In Table 3.4, symbols indicate whether speech was present (T) or absent
(F), and whether the proposed algorithm estimated speech (P) or non-speech (N). Compared to
the absolute and relative schemes, the proposed algorithm combined the strengths of both compar-
ative schemes. It effectively identified all speakers in situations where all users spoke, leveraging a
combination of techniques from the two schemes. In cases involving fewer speakers, the proposed
scheme achieved high Fl-scores by utilizing the relative scheme’s advantages. Additionally, for
detecting a single speaker, the proposed scheme performed well by benefiting from both compar-
ative schemes. However, Table 3.4 shows that the Fl-scores were slightly lower in the cases of
one and four speakers out of five users, where the threshold incorrectly identified a non-speaker
as a speaker (False Positive). When compared with the Rhythm scheme, the proposed algorithm
accurately detected intermediate numbers of speakers, such as two out of three users, and similarly

for four and five users. As indicated in Table 3.4, the proposed scheme successfully avoided false

59



Table 3.3: Fl-scores under the different number of users

Case Scheme
# of users # of speakers | Absolute Relative Rhythm Proposed
9 1 1.00 1.00 1.00 1.00
2 0.881 0.706 1.00 0.881
1 0.978 0.978 0.988 0.978
3 2 0.876 0.810 0.942 0.963
3 0.876 0.810 1.00 0.913
1 0.945 0.960 0.974 0.960
4 2 0.846 0.960 0.957 0.960
3 0.893 0.960 0.874 0.960
4 0.879 0.852 1.00 0.912
1 1.00 0.993 0.951 0.993
2 0.821 0.976 0.913 0.976
5 3 0.779 0.962 0.938 0.962
4 0.857 0.938 0.905 0.937
5 0.894 0.772 1.00 0.909

positives in most cases.

Environmental noise: The influence of environmental noise on speaker identification accuracy
was also assessed, involving three participants. A noise source was positioned 2m away from the
table, generating five types of ambient noise: recorded sounds from trains, offices, streets, cars,
and rain. The other settings were consistent with the experiments under the different number of
users. Noise levels were set at 75dB for trains, 70dB for offices and streets, and 60dB for cars
and rain, on average. Speech thresholds for the absolute, relative, and proposed algorithms were
empirically adjusted based on the environment, ranging from 80 dB to 85dB. The Rhythm scheme
had thresholds between 84 dB and 89 dB, depending on the noise type.

Tables 3.5 and 3.6 display the Fl-scores and confusion matrices for various environmental

noises. In these tables, the same symbol conventions were used as in previous evaluations. The
proposed scheme generally outperformed the absolute and relative schemes by accurately detecting
speakers and combining the strengths of both methods. However, Table 3.4 highlights slightly lower
F1-scores for the proposed scheme in certain scenarios, such as one or two speakers out of three
users under train or office noise, where false positives occurred. Compared to the Rhythm scheme,
the proposed algorithm performed better under street noise, showing a higher tolerance for low-
frequency noise, particularly between 10 Hz and 20 Hz. However, the Rhythm scheme excelled in
identifying speakers in rain noise, which involved uniform frequencies ranging between 0 Hz and
50 Hz, indicating some limitations in the proposed algorithm when handling such noise.
Short utterance: The impact of short utterances, defined as speeches lasting less than one
second [94], was also examined using a dedicated script. The other settings were consistent with
the experiments under the different number of users. The speech threshold 75 was empirically set
to 73dB for the absolute, relative, and proposed algorithms, while the Rhythm scheme used a
threshold of 78 dB.
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Table 3.4: Confusion matrices under the different number of users

(a) Two users

One speaker out of two users Two speakers out of two users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N|P N |P N P N P N|P N|P N
T30 O 30 0 |30 0 |30 0 26 4 18 12 |30 0 |26 4
F|O0 90 0 90| 0 90| 0 90 3 27 3 27|10 30| 3 27

(b) Three users

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N P N |P N P N P N P N |P N P N P N|P N |P N
T |44 1 4 1 4 1 44 1 85 5 90 0 |9 0 |90 0 39 [ 34 11 |45 0 | 42 3

224 |1 2240 2251 224 |9 171 | 8 17211 169 | 8 172 | 5 40 5 40 |0 45| 5 40
(c¢) Four users
Onic speaker out of four wsers Two speakers out of four wsers Three speakers out of four users Four speakers out of four wsers
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absohite | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
N P N N P N P N P N P N P N P N P N P N P N P N P N P N P N
T 0 60 0 3 60 0 143 37 | 179 1 178 2 179 1 146 34 | 166 14 | 180 0 166 14 | 51 9 46 14 0 52 8
F 413 | 5 415 420 | 5 415 15 525 | 14 526 | 14 526 | 14 526 1 299 0 300 | 52 248 0 300 | 5 55 2 58 0 60 2 58
(d) Five users
On speaker oul of five users Two speakers out of five users Three speakers out of five users TFour speakers ont of five users TFive speakers out of five users
Absolute’ Proposed | Absolute’ Relative Rhythm Proposed Absolute’ Relative Rhythm Proposed | Absolute | Relative Rhythm | Proposed [ Absolute | Relative [ Rhythm | Proposed
P N P N P N P N P N P N P N P N P N P N P N P N P N P N | P N P N|P N|P N
[ 213 87 300 0 258 12 300 o 316 133 447 3 137 13 U7 3 237 63 | 274 26 | 300 ] 275 26 |63 12 2 [ 70 65 10
0 675 674 6 1194 15 1185 7 1193 | 15 1183 | 46 1005 | 32 1018 | 45 1005 | 32 1018 | 16 434 | 10 440 | 63 38 11 438 3 72 72 0 75 3 72

Table 3.5: Fl-scores under the different environmental noise conditions

Case Scheme

Noise  # of users # of speakers | Absolute Relative Rhythm Proposed
1 0.891 0.763 0.889 0.738
Train 3 2 0.914 0.878 0.935 0.857
3 0.936 0.814 0.966 0.968
1 0.938 0.918 0.875 0.928
Office 3 2 0.865 0.888 0.878 0.845
3 0.918 0.725 0.989 0.938
1 0.938 0.849 0.706 0.849
Street 3 2 0.920 0.973 0.767 0.973
3 0.933 0.769 0.889 0.945
1 0.865 0.882 0.989 0.900
Car 3 2 0.867 0.938 0.927 0.938
3 0.839 0.587 1.00 0.795
1 0.928 0.938 0.989 0.947
Rain 3 2 0.853 0.899 0.942 0.899
3 0.938 0.824 1.00 0.947

Tables 3.7 and 3.8 provide the Fl-scores and confusion matrices for short utterances. As with
the previous evaluations, symbols in Table 3.8 indicate whether speech occurred (T) or not (F),
and whether the proposed algorithm estimated speech (P) or non-speech (N). The proposed scheme
demonstrated strong performance by leveraging the advantages of both comparative schemes. It
accurately identified all speakers in most cases and performed well in single-speaker scenarios by
using techniques from the relative scheme. However, in the case of two speakers out of three users,
the proposed algorithm’s F1-score was slightly lower due to false positives. In comparison to the

Rhythm scheme, the proposed algorithm showed better accuracy for cases with one or two speakers
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Table 3.6: Confusion matrices under the different environmental noise conditions

(a) Train

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N P N P N P N P N P N P N P N P N P N P N
T | 45 0 45 0 36 9 45 0 87 3 89 1 79 11 | 90 0 37 8 28 17 | 42 3 45 0
F |34 191 |5 220 0 225|55 170 |33 147 | 9 171 | 0 180 |47 133 | 5 40 | 5 40 | 0 45 | 6 39

(b) Office

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N|P N |P N P N P N|P N |P N P N P N|P N |P N
T|45 0 |45 0 |42 3 |45 0 7r13 |8 8 |9 0 |90 0 29 16 |24 21 |45 0 |45 0
F |16 209 | 3 222| 9 21626 199 |12 168 | 7 173 |25 155|30 150 | 0 45 0 45 |1 44| 2 43

(c) Street

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N|P N |P N P N P N|P N |P N P N P N|P N |P N
T|45 0 [45 0 [24 19 |45 0 82 8 |90 0 |56 34|89 1 39 6 26 19 {36 9 |45 0
F |13 1954 2211 22629 19 |15 165 | 4 176 | 0 180 |16 164 | 0 45 0 450 45| 0 45

(d) Car

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N|P N |P N P N P N|P N |P N P N P N|P N [P N
T|45 0 [45 0 [44 1 |45 0 8 7 |8 4 |8 1 |89 1 24 21 |18 27 |45 0 |35 10
F|l24 2009 216| 0 225|116 209 |15 165 | 4 176 |13 167 | 7 173 | 0 45 1 4|0 45| 8 37

(e) Rain

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N|P N |P N P N P N|P N |P N P N P N|P N |P N
T|45 0 |45 0 |44 1 |45 0 7218 |8 9 |9 0 |87 3 35 10 |25 20 |45 0 |45 0
Fl24 201 |3 22]0 2254 221 |14 166 | 9 171 |11 169 |13 167 | 1 44 | 2 43 |0 45 | 1 44

Table 3.7: Fl-scores of short utterances

Case Scheme
# of users  # of speakers | Absolute Relative Rhythm Proposed
1 0.916 0.929 0.878 0.929
3 2 0.775 0.960 0.857 0.878
3 0.767 0.800 0.989 0.846

out of three users, though slightly lower F1l-scores were observed in the all-speakers case, where

the threshold occasionally misidentified a speaker as a non-speaker (True Negative).

3.4.2 Impact of Sound Pressure Sensors

The accuracy of the proposed scheme derives from two components: the architecture of the sound
pressure sensor and its synchronization. In Sec. 2.4.1, the synchronization accuracy of SRP Badges
is less than 30 ps, which seems one of the contribution for precise speaker identification. This section
shows the impact of sound pressure sensor for precise speaker identification.

Figures 3.4 (a) and (b) display the circuit diagrams of a sound pressure sensor in the Rhythm
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Table 3.8: Confusion matrices of short utterances

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed | Absolute | Relative | Rhythm | Proposed
P N P N P N P N P N P N P N P N P N P N P N P N
T|16 29 |22 23 |43 2 22 23 81 9 82 8 90 0 86 4 13 32 20 25 | 45 0 21 24
F| 0 225|0 22|10 215 0 225 |15 165 | 0 180 |30 150 | 20 160 | 1 4 10 451 410 45

Badge and the Sensor-based Regulation Profiler Badge. The Rhythm Badge, based on Open
Badge [9], utilizes an integration circuit, while the Sensor-based Regulation Profiler Badge employs
a peak hold circuit for sound pressure acquisition. The parameters of the circuit in the Sensor-based
Regulation Profiler Badge were chosen to achieve three objectives:

Eliminate low-frequency noise, specifically frequencies below 20Hz, as they are unrelated to
speech. Amplify the sound pressure data 100 times to capture detailed changes in voice volume.
Precisely extract the beginning and end of each speech segment by adjusting the discharge slope
of the resistor-capacitor (RC) circuit. Simulations were performed for each circuit. A sinusoidal
wave was used to represent speech, with an amplitude of 0.8 V at 340 Hz and a duration of 500 ms.
Additionally, a direct current (DC) signal with an amplitude of 0.9V and a length of 100 ms was
applied to simulate silence, placed before and after the sinusoidal wave.

Figures 3.4 (c) and (d) show the measured sound pressure as a function of time for both the
Rhythm Badge and the Sensor-based Regulation Profiler Badge. The Rhythm Badge exhibits
spikes at the start and end of the sound pressure measurement due to the integration circuit. In
contrast, the Sensor-based Regulation Profiler Badge, using a peak hold circuit, avoids spikes in
the measured sound pressure.

To evaluate the effect of the measured sound pressure data, a threshold-based speech detection
algorithm was applied to both the Rhythm Badge and the business-card-type sensor. A threshold
was set to detect the edges of speech segments. As shown in Fig.3.4 (¢), the sound pressure in the
Rhythm Badge before and after the spikes was approximately 0.90V and 0.95V. The threshold
was set at 0.92V to mitigate the effect of the spikes. In Fig.3.4 (d), the measured sound pressure
in the proposed sensor scheme was 0.9 V before speech and 1.8V after. A threshold between 0.9V
and 1.8V yielded similar performance, so a threshold of 0.92V was used in the proposed scheme
as well.

Figures 3.4 (e) and (f) show the results of the threshold-based speech detection for the Rhythm
Badge and the Sensor-based Regulation Profiler Badge. The Rhythm Badge struggled to accurately
extract speech using threshold-based detection due to the presence of spikes in the measured sound
pressure data. However, the Sensor-based Regulation Profiler Badge accurately detected speech
since its measured sound pressure lacked spikes. The results in Figs.3.4 (e) and (f) indicate that the
peak hold circuit detects speech more accurately than the integration circuit used in the Rhythm

Badge.
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Figure 3.4: Simulation results for speech detection in Rhythm and Sensor-based Regulation Profiler
Badge.

3.4.3 Influence of Synchronization Accuracy

An evaluation experiment using the SRP Badge was conducted to assess the relationship between
its time synchronization accuracy and speaker detection algorithm performance. The experimental
environment was identical to that described in Sec. 3.4.1. For this evaluation, pseudo data with
varying levels of time synchronization accuracy were generated by adding random values to the
timestamps of sound pressure data acquired by the SRP Badge. Since the distribution of time

synchronization errors shown in Fig. 2.14 resembles a normal distribution, normally distributed
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Table 3.9: Confusion matrix of speaker detection accuracy at each time synchronization error

0 ms 0.1ms 1ms 10 ms
P N P N P N P N
T | 440 10 440 10 440 10 440 10
F 0 450 0 450 98 352 | 192 258

random values were used for this evaluation. The range of random values was determined by
adjusting the standard deviation of the normal distribution. For example, when the standard
deviation o = 0.5 ms, approximately 95% of the random values fall within the range of +20 = +
1.0ms. In this evaluation, +20 was treated as the time synchronization error.

Table 3.9 shows the confusion matrices of speaker detection accuracy for each synchronization
error. From Table 3.9, it can be observed that as the time synchronization error increases, the
misdetection of speech during non-speech intervals also increases. To verify the statistical sig-
nificance of these results, a t-test was conducted to compare the mean differences for each time
synchronization error. Given a sample size of 10, degrees of freedom of 18, and a significance
level of 5%, no significant difference was observed between time synchronization errors of 0ms
and 0.1 ms. However, a significant difference was observed between 0 ms and 1ms. Based on these

results, it can be concluded that time synchronization accuracy within 1 ms between SRP Badges

is necessary to ensure the high speaker detection accuracy of the SRP Badge.

3.5 Conclusion

This chapter introduced an innovative sound pressure sensor along with a speaker identification
algorithm designed for business-card-sized sensors, aimed at analyzing collaborative dynamics in
multi-person activities. The sound pressure sensor incorporates a peak hold circuit and a time
synchronization module, which help reduce spikes and ensure precise synchronization between sen-
sors, enabling accurate and low-cost detection of user speech. The algorithm effectively filters out
background noise from non-speaker sensors, achieving high accuracy in identifying the speaker.
The evaluation demonstrated the proposed method’s efficiency across various conditions, includ-
ing different user numbers, background noise levels, and both long and short speech durations.
Furthermore, the peak hold circuit reliably captures user speech, and the synchronization error

between sensors consistently remains within +30 ps.
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Chapter 4

Indoor Localization on Mobile
Devices

4.1 Introduction

The adoption of IoT systems for multimodal collaboration analysis is expanding. Multimodal
analysis has become critical for detailed descriptions of individuals and their environments. In
traditional multimodal collaboration analysis, experts often analyzed collaboration environments
by placing video cameras and microphones to record activities, then reviewing the recordings for
insights. This approach has historically incurred significant human and time costs due to its
reliance on manual effort. With the proliferation of IoT systems, these costs are expected to
decrease, potentially accelerating the adoption of multimodal collaboration analysis.

One modality for collaboration analysis is the posture of each user [11,95,96]. For example, the
literature [96] captures learners’ posture data to analyze its impact on the quality of collaborative
learning in augmented reality environments. To collect posture data, static cameras are typically
installed in the collaboration environment. Using the captured visual data, posture information is
extracted through joint detection using computer vision algorithms. However, such technologies
involve high setup costs in practical collaboration scenarios to accommodate user mobility and
address occlusions, rendering them unsuitable for effectively supporting collaboration analysis.

To address these limitations in practical scenarios, tag-based motion capture offers a promising
solution. Unlike traditional systems, this approach utilizes several small and lightweight tags worn
by each user, offering robust performance in practical collaboration scenarios. Tags provide a more
robust and practical solution for motion capture in multimodal collaboration analysis, particularly
in dynamic or crowded scenarios.

In the context of collaboration analysis, tag-based motion capture requires indoor localization
for each tag to meet two key requirements: centimeter-level accuracy and low-cost anchor setup.

Centimeter-level accuracy is essential for accurately capturing and analyzing learners’ postures.
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Low-cost anchor setup is required to support collaboration analysis without introducing additional
costs for the environment. Although various indoor localization methods such as acoustic, infrared,
WiFi/BLE, and RFID are available as discussed in Sec. 4.5, none of these methods simultaneously
satisfy both requirements.

Visual-Inertial Odometry (VIO) is a potential localization scheme to meet these requirements.
VIO complementarily integrates sensor data from cameras, LIDAR, and inertial measurement units
(IMUs), enabling centimeter-level localization in indoor scenarios through a straightforward setup
process. By utilizing miniaturized visual and inertial sensors, each tag is expected to achieve
precise localization for motion capture in multimodal collaboration analysis.

However, the challenges of VIO-based localization in practical environments remain unclear.
Various situations can arise in the context of real-world collaboration scenarios. For example,
some collaboration environments may be monochromatic with limited visual features. In addition,
collaboration environments utilizing projectors may involve dim lighting conditions or flickering
light sources. Whether VIO consistently achieves precise localization in practical environments,
including the aforementioned examples, has not been sufficiently evaluated.

This study aims to comprehensively evaluate the effectiveness of current VIO systems in practi-
cal environments, addressing the research question of their applicability to real-world collaboration
analysis. Specifically, the research involves conducting case studies simulating practical environ-
ments to verify the positioning accuracy of VIO. Controlled experiments are then performed to
identify the practical challenges of VIO observed in the case studies.

This study also poses a prototype solution with Ultra Wide Band (UWB) to address these
challenges. The study demonstrates how the proposed approach enhances the robustness of indoor

positioning in practical environments.

4.2 Case Study
4.2.1 Experiment Workflow

To evaluate the practicality of VIO, this study conducted a user-driven case study with a mobile
device. As a mobile device, iPhone 12 Pro was adopted in this study. A commercial Augmented
Reality (AR) application, which highly relies on VIO to overlay virtual elements onto the real
world, was also adopted for the evaluation. Figure 4.1 shows the overview of the application.
The application is called AR Visual [97], which virtually simulates furniture on the environment.
This study set a task: classroom setup with the application. The primary objective is to find a
table and chair arrangement, which maximizes the student capacity while ensuring the accessibility
and clear screen visibility from all the seats. Each user deployed virtual tables and chairs on an

empty classroom and checked the whole layout from different vantages. This study gathered 17
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Figure 4.1: The experimental procedure of case study.
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Figure 4.2: The user responses in the case study.

subjects aged between teens and forties in Osaka University and University of California, San
Diego. To further examine the effect of lighting conditions on localization performance, this study
also conducted the experiment under two lighting conditions: normal room (500 lux) and dark
room (2.5 lux). After the simulation, each subject was interviews with a questionnaire shown in

Table 1.

4.2.2 Case Study Analysis

Fig. 4.2 presents the participants’ responses, displaying average scores and interquartile ranges for
each question. The results show that task completion was rated lower in the dark room, which is
likely due to increased drift, as indicated by responses related to furniture misalignment and global
drift. The dark room, with fewer visual features, led to more tracking failures. Moreover, some
participants reported motion sickness in the dark room, likely due to greater drift of the virtual
elements.

From a quantitative perspective, the application reduced setup time. Arranging physical tables
and chairs in a bright room took 16 minutes and 13 seconds, while using AR shortened the time

to 12 minutes and 31 seconds in the bright room and 9 minutes and 58 seconds in the dark room.



However, the drifting error for the front table averaged 30 cm in the bright room and 50 cm in the

dark room, which impacted task completion and comfort.

4.2.3 Takeaways

The case study revealed several barriers to the VIO-based localization in practical scenarios, par-
ticularly in complex environments. The first is global drift of virtual elements. Virtual tables
and chairs exhibited a tendency to drift over time, with average drift distances of 30 cm in the
bright room and 50 c¢m in the dark room. The second is tracking failures. AR systems experienced
difficulty tracking virtual objects in low-light conditions or environments lacking visual features,
resulting in glitches. Finally, such localization and tracking failures cause motion sickness for each
subject, especially in darker environments, due to inconsistencies in user perception.

Similar challenges were observed in other AR applications, such as AnywheRe [98] and ARvid [99],
Augment [100], COCOAR [101], Measure [102], and Monster Park [103]. These issues are largely
due to reliance on visual-based sensing systems (monocular cameras and LiDARs). Further anal-
ysis of these failure modes is provided in Sec. 4.3, where detailed experiments quantify the extent

of errors and provide a root-cause analysis of the problems encountered.

4.3 Controlled Experiment

This section conducts controlled experiments to quantitatively identify failure factors of VIO-based
localization and tracking in Sec. 4.2. To delve into the factors, this section extracted variables in
the case study environment: when using a smartphone integrated with an IMU, cameras, and
LiDAR, across environments with varying complexity, under diverse lighting conditions, and at

different motion speeds.

4.3.1 Control Variables

Sensors: Most smartphones utilize monocular cameras to enable VIO for tracking and localization,
while some modern devices also include time-of-flight sensors or LiDAR for enhanced functionality.
This study analyzed how different sensor combinations influence tracking and localization accuracy.
For this purpose, this study selected the iPhone 12 Pro, which features these advanced sensors. As
shown in Fig. 4.3, this study applied copper foil tape to create four configurations: IMU + camera
+ LiDAR, IMU + camera, IMU + LiDAR, and IMU only.

Environment complexity: The number of feature points captured by the camera and LiDAR
varies with the complexity of the environment. To evaluate the influence, this study tested three
types of environments: wall, shelf corner, and crowded, as depicted in Fig. 4.6. Figures 4.5 (a, b)
illustrate the changes in the number of feature points detected by the camera, using OpenCV [104],
and by LiDAR, using LOAM [105], as the smartphone moves back and forth on an xy-stage. In the
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Figure 4.5: The extracted feature points.

wall environment, the number of feature points remains stable for both the camera and LiDAR.
However, in the shelf corner and crowded environments, significant fluctuations occur based on
the objects visible in the camera’s field of view. Additionally, the trends in feature point counts
between the camera and LiDAR do not always correspond. For example, at around the 10-second
mark in a crowded environment, a wall covered with newspapers leads to a reduction in LiDAR-
detected feature points, while the camera simultaneously detects an increased number of feature
points. This highlights discrepancies between the two sensors in capturing feature points.

Brightness: Localization accuracy with a camera is influenced by the level of brightness. To
examine the influence, the study conducted experiments under three distinct lighting conditions.

Using an Urceri MT-912 light meter, which offers an accuracy of 3% of the reading plus £8
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Figure 4.7: Movement types.

digits on the least significant digit and a resolution of 0.1 lux up to 1000 lux, this study measured
the illuminance. This study created three scenarios: dark night (0 lux), dark room (7 lux), and
normal room (200 lux), as illustrated in Fig. 4.6. In the crowded environment, the camera detected
0 feature points under dark night conditions, 167 feature points in the dark room, and 222 feature
points in the normal room.

Movement: This study evaluated four types of motion patterns, as depicted in Figures 4.7. In
static, the smartphone remains completely still, as shown in Fig. 4.7 (a). In zy-stage, the device
moves back and forth over a distance of 40 cm at speeds of up to 0.08 m/s, as illustrated in Fig. 4.7
(b). In walk, a person walks around the room, carrying the smartphone, at speeds of up to 1 m/s,
as shown in Fig. 4.7 (¢). In swing, the smartphone is waved back and forth with a motion speed

of up to 3 m/s, as depicted in Fig. 4.7 (d).

4.3.2 Localization: Distance

Experimental settings: As outlined in 4.1, smartphones can utilize landmark QR codes or
AprilTags to determine their position within global coordinates in environments lacking GPS. To
evaluate the accuracy and reliability of this approach, this study conducted a quantitative analysis

focusing on two key metrics: the detection distance for QR codes and AprilTags and the initial
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Figure 4.8: Landmark types.

positional error when these landmarks are detected. Fig. 4.8 illustrates the landmark patterns used
in the study, featuring QR codes and AprilTags in three sizes: small (3 cm X 3 cm), medium (6 cm
x 6 cm), and large (9 cm x 9 cm). The evaluation procedure involves two device movements: first,
rotating the device along the z-axis by moving it left and right, and second, rotating it along the
x-axis by moving it up and down. These actions enable the smartphone’s VIO to effectively map
the surrounding space and integrate the physical environment with the virtual AR environment.
After spatial mapping, the smartphone attempts to detect and localize itself using a QR code or
AprilTag from a specific distance. Finally, the perceived location in the AR coordinate system is
compared with the smartphone’s actual physical location to assess accuracy.

Results: Fig. 4.9 illustrates the relationship between the distance from a QR code or AprilTag
to a smartphone (x-axis) and the localization error, represented as the discrepancy between the
actual and perceived AR space locations (y-axis). Notably, bars are absent in instances where the
landmark was undetectable. A key finding emerged: the localization error depends solely on the
distance between the smartphone and the landmark, irrespective of ambient lighting, the type of
landmark, or its size. In Fig. 4.9 (a), the error for both QR codes and AprilTags increases linearly
with distance, unaffected by brightness or landmark type. Similarly, Fig. 4.9 (b) demonstrates
that localization error trends remain consistent across different sizes of AprilTags, underscoring
that factors like lighting, type, and size have no impact on the error at a given distance. However,
these factors did influence the detectable range of the landmarks. For instance, in Fig. 4.9 (a), a
large QR code was readable up to 300 cm in a normal room, but this range decreased to 200 cm
in a dark room. QR codes also exhibited shorter detectable distances compared to equivalently
sized AprilTags, as their smaller pixel structure accommodates more data but reduces readability.
Additionally, Fig. 4.9 (b) shows that larger landmarks allowed greater detectable ranges, with
readability improving as the landmark size increased. This significant observation highlights that
localization error is solely dependent on distance, providing valuable insights for optimizing AR
systems. It emphasizes the critical limitation of proximity in achieving accuracy with optical AR

systems.
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Figure 4.9: Localization accuracy with different detection distance.

4.3.3 Localization: Angle

Experimental settings: In exploring the constraints and strengths of QR code-based and
AprilTag-based landmark detection for smartphone VIO, this study hypothesized that a land-
mark’s readability depends not only on the distance from the scanner but also on the angle of
approach. To test the influence, this study mounted 3 cm x 3 cm QR code and AprilTag land-
marks on a wall and conducted evaluations at a fixed distance of 1 m. The angle of approach was
varied from —90° to +90° in 10-degree increments, with 0° representing a direct, perpendicular
approach to the landmark. The experimental conditions were consistent with those outlined in
Sec. 4.3.1, ensuring that other variables remained constant and did not influence the results. This
setup allowed for a focused assessment of how the angle of approach affects landmark detection.

Results: The experimental results, depicted in Fig. 4.10, highlight a significant limitation regard-
ing the angle at which a smartphone’s camera can reliably detect QR codes and AprilTags in AR
applications. In Figures 4.10 (a, b), the horizontal axis represents the angle of the smartphone rela-
tive to the landmark, while the vertical axis shows the recognition distance, with accurate readings
indicated at 1 m. Areas without bars denote instances where the landmark was undetectable. The
findings reveal that QR codes have a notably narrow detection angle, limited to approximately 50°
from the front, due to their high pixel density. Within this range, the detection distance remains
consistent at 1 m. However, this restricted angle poses challenges, particularly for dynamic AR
interactions where users may not consistently approach landmarks from ideal perspectives. These
limitations have significant implications for AR applications. A narrow detection angle reduces the
flexibility and usability of landmark-based systems, potentially diminishing user engagement and
immersion. Aligning a smartphone precisely within the required detection angle can be challeng-
ing for users, leading to frustration and interruptions in the experience. This issue is particularly

critical in scenarios like navigation, education, or interactive environments with dense or complex
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Figure 4.10: Localization accuracy with different detection angle.

layouts, where ease of interaction is essential for a seamless user experience.

4.3.4 Tracking: Environment Complexity

Experimental settings: This section explores the challenges environmental complexity presents
to tracking performance in VIO systems. The intricacy of an environment plays a crucial role
in determining the effectiveness of different sensing technologies used for spatial recognition and
mapping. For example, environments with distinct color variations benefit camera-based systems
by providing numerous feature points essential for accurate tracking. On the other hand, envi-
ronments with pronounced physical irregularities, such as bumps and ridges, are better suited for
LiDAR systems, which depend on surface variations for precise mapping. To investigate these
effects, this experiments systematically varied environmental complexity and sensor configurations
to assess their combined impact on tracking accuracy. The tests were conducted under controlled
conditions simulating normal room lighting to ensure practical applicability. Movement was simu-
lated using an xy-stage, allowing for consistent and reproducible evaluations of how environmental
features influence VIO system performance. This methodology provided valuable insights into op-
timizing VIO systems by examining the interactions between different sensors and environmental
characteristics, paving the way for enhanced performance across diverse application scenarios.

Results: Fig. 4.11 (a) presents the 99th percentile localization error observed in our experiments.
While LiDAR can enhance localization accuracy when combined with cameras, it is unable to
independently track the environment when using the iPhone 12 Pro. Specifically, as shown in
Fig. 4.11 (a), LiDAR alone struggles to track effectively across environments such as wall, shelf
corner, and crowded scenes. In feature-rich environments like crowded settings, the IMU + camera
configuration achieves high localization accuracy, and the addition of LiDAR does not degrade
performance. This suggests that LIDAR complements camera data under suitable conditions.
However, in feature-sparse environments such as shelf corner, integrating LiDAR with the IMU
and camera improves localization accuracy compared to using only IMU + camera. These results
demonstrate LiDAR’s ability to enhance depth perception and feature detection where camera-
based systems are less effective. Despite its benefits, the IMU + LiDAR configuration performed
poorly, highlighting the critical importance of sensor fusion in achieving precise localization. The

findings underline the nuanced role of LiDAR in VIO systems, showcasing its potential to enhance

74



-
o
-
o

Il |IMU + camera + LIiDAR ] - IMU + camera + LIDAR
0.8 I |IMU + camera ogl®"" IMU + camera
I MU + LiDAR = |MU + LiDAR
£0.6 €06
S S
5 0.4 504
0.2 0.2
0.0 wall shelf corner crowded 0.0% 50 100
Time [s]
(a) Environment (b) Crowded timeline

Figure 4.11: Tracking accuracy in different visual complexity.

localization accuracy when used alongside cameras, while also emphasizing its limitations as a
standalone input. To further explore the results, Fig. 4.11 (b) examines location tracking errors
under the crowded scene. The figure plots localization errors over time, with the x-axis represent-
ing time in seconds and the y-axis denoting localization error. In this experiment, a smartphone
mounted on an xy-stage moved back and forth over a distance of 40 cm for 20 seconds. At the
starting point, all sensor configurations began with zero localization error. As the smartphone
moved away, both the IMU + camera and IMU + camera + LiDAR configurations showed in-
creasing errors, which diminished upon returning to the starting point, indicating effective error
correction. In contrast, the IMU + LiDAR setup exhibited a gradual increase in error over time,
even as the device returned to the start. This drift was caused by IMU inaccuracies, leading to
a slight misalignment over time and a failure to accurately track movement. The IMU + LiDAR
configuration notably perceived the device as stationary despite actual motion. This phenomenon,
driven by IMU drift, is further analyzed in Sec. 4.3.7, emphasizing the limitations of LiDAR-IMU

configurations without the aid of a camera for reliable tracking.

4.3.5 Tracking: Brightness

Experimental settings: Fig. 4.11 (a) revealed that in complex environments, the combination
of a camera and IMU enables high-precision tracking without relying on LiDAR. This finding
highlights the adaptability of VIO systems in intricate settings by leveraging the complementary
strengths of cameras and IMUs. However, a well-known limitation of camera-based systems is
their sensitivity to changes in lighting conditions, which can significantly impact the detection
and reliability of feature points, posing challenges for consistent tracking accuracy across varying
lighting environments. On the other hand, LiDAR offers a distinct advantage with its immunity
to ambient light variations. This stability ensures that LiDAR can provide reliable data even

in conditions where camera-based systems falter. To thoroughly evaluate these differences, this
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study extended our experiments using the crowded complexity environment described in Sec. 4.3.4,
introducing deliberate variations in lighting to assess their effects. The lighting conditions tested
included dark night (0 lux), dark room (7 lux), and normal room (200 lux), as shown in Fig. 4.6.
Additionally, a blink condition was introduced, where lighting alternated between 0 lux and 200 lux
every 3 seconds. This approach allowed to systematically evaluate the adaptability and limitations
of camera and IMU configurations under varying lighting conditions, while also assessing the
robustness of LiDAR-based data acquisition in scenarios that challenge camera-based systems.

Results: The investigation under varying lighting conditions uncovered a surprising and signifi-
cant finding regarding performance under blink conditions, where illumination alternates between
darkness and normal room lighting. As shown in Fig. 4.12 (a), which presents the 99th percentile
positional error across experiments, all sensor combinations experienced increased error rates as
the environment became darker. Notably, the degradation in accuracy under blink conditions
was as severe as that observed in the dark night scenario. Although blink conditions periodically
provided the same illumination level as the normal room, even brief periods of darkness signifi-
cantly impaired positional accuracy. This effect was evident even when using the combined IMU
+ camera + LiDAR configuration, highlighting that the inability to consistently capture feature
points, even momentarily, can substantially compromise tracking precision. Interestingly, further
analysis revealed that incorporating LiDAR could, in some cases, result in poorer accuracy than
using only IMU + camera. For instance, in the dark room scenario, the IMU + camera + LiDAR
setup performed worse than IMU + camera alone. This counterintuitive result suggests that under
certain complex conditions, LiDAR’s additional data does not always enhance performance and
may even degrade it. The degradation likely stems from both hardware and software factors: low
light reduces the number of camera-detectable feature points, making it difficult to integrate Li-
DAR point clouds effectively with visual data. To better understand these limitations, this study
conducted a detailed time-series analysis of positional accuracy in the dark room scenario. As illus-
trated in 4.12 (b), with time on the x-axis and positional error on the y-axis, configurations using
IMU + camera + LiDAR exhibited greater fluctuations (or jitter) compared to those using IMU
+ camera. This increased jitter indicates challenges in matching camera-detected feature points
with LiDAR~acquired depth data under low-light conditions. Insufficient lighting introduces errors
in aligning visual feature points with corresponding LiDAR point clouds, exacerbating positional
inaccuracies. This finding underscores a critical challenge in fusing LiDAR and visual data in sub-
optimal lighting. It highlights the need for improved algorithms or methodologies capable of more
robustly integrating disparate sensor inputs, particularly in environments with limited or variable

lighting.
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Figure 4.12: Tracking accuracy under different lighting conditions.

4.3.6 Tracking: Movement

Experimental settings: In Sec. 4.3.5, this study observed that the system incorrectly inferred the
smartphone to be stationary in the dark night environment. This raised questions about the IMU’s
sensitivity to detect movement, prompting us to hypothesize that the speed of the xy-stage, set at
8 cm/s, may have been too low to trigger motion detection by the IMU. To investigate further, this
study conducted additional experiments using two distinct motion patterns: a walking motion at
speeds of up to 1 m/s and a dynamic swinging motion reaching up to 3 m/s, both relying solely on
the IMU for movement detection. Ground truth data for these experiments was obtained using the
HTC VIVE Tracker, a well-established tracking system [106]. This approach enabled us to evaluate
the IMU’s performance across different motion intensities and address potential limitations in its
ability to detect movement at lower speeds.

Results: One of the key findings from this research on smartphone-based VIO systems is the
limited capability of the IMU to accurately track movement across various speeds. As shown
in Fig. 4.13 (a), which plots speed against positional tracking error, the IMU performs well for
walking movements (walk), capturing general trends despite minor errors. However, as illustrated
in Fig. 4.13 (b), the IMU struggles significantly with more dynamic movements such as swinging
(swing), where errors are much larger compared to walk. Additionally, Sections 4.3.4 and 4.3.5
revealed that the IMU failed to detect slower movements, such as those performed on the xy-stage
at a speed of 8 cm/s. Despite these limitations, the iPhone 12 Pro’s VIO system was capable of
achieving positional tracking at walking speeds of approximately 1 m/s, even without the support
of a camera or LiDAR. These findings underscore the nuanced strengths and weaknesses of IMU-
based tracking in VIO systems, highlighting its ability to handle moderate-speed movements while

revealing challenges with both slow and highly dynamic motions.
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Figure 4.13: The tracking results under different movement.

4.3.7 Microbenchmark: IMU’s Drift

Experimental settings: It is well-documented in inertial navigation and AR technologies that
IMUs are prone to drift [107,108], a phenomenon that can significantly degrade location-tracking
accuracy over time. In Sec. 4.3.4, this study attributed the widening error over time in the IMU
+ LiDAR configuration, as observed in Fig. 4.11 (b), to IMU drift. This section systematically
investigated the occurrence and impact of IMU drift within our experimental setup, focusing on its
effect on positional accuracy under varying motion conditions. This study conducted evaluations
in two distinct scenarios. In static, the device was kept stationary to assess drift in the absence
of movement. In xy-stage, the device underwent continuous back-and-forth motion at a controlled
speed of 8 cm/s. Each scenario was evaluated over a duration of 10 minutes to capture the
progression of drift and its cumulative effects. To ensure the reliability of the results, each condition
was repeated five times. This thorough analysis provides a quantitative understanding of IMU
drift in both static and dynamic contexts, offering valuable insights into its impact on VIO system
performance for smartphone applications. These findings are instrumental in identifying strategies
to mitigate drift, thereby improving the robustness of location tracking in real-world scenarios.

Results: Fig. 4.14 illustrates positional error over time, with the horizontal axis representing time
and the vertical axis indicating the magnitude of localization error. Figures 4.14 (a, b) reveal
that drift is present under both static and zy-stage (dynamic) conditions, highlighting a persistent
challenge for VIO systems. A key observation is the variability of drift rates across different trials,

emphasizing the unpredictable nature of this phenomenon. Drift is notably more pronounced in the
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Figure 4.14: Experimental results of IMU’s drift.

dynamic xy-stage condition compared to the static setup. In the static scenario, the largest error
recorded over 10 minutes was approximately 1 cm—a relatively minor issue but still potentially
impactful for applications requiring high precision. In contrast, the zy-stage scenario exhibited
errors as large as 20 cm over the same period, posing a significant challenge for accurate positional
tracking in dynamic environments. These findings have important implications for tracking. In
static scenarios, a 1 cm error is unlikely to disrupt most navigation or interaction tasks. However,
in dynamic conditions akin to the xy-stage setup, drifts of up to 20 cm can severely impair user
experiences by misaligning virtual objects and disrupting spatial interactions. Such inaccuracies
undermine the immersive quality of tracking and could limit their effectiveness in use cases requiring
precise spatial awareness. Addressing IMU drift is therefore critical to improving tracking reliability

and user satisfaction.

4.3.8 Microbenchmark: Various Smartphones

Experimental settings: To examine the dependency of tracking performance on different de-
vices, this study conducted experiments using various smartphones in environments with the visual
complexity and brightness levels described in Sections 4.3.4 and 4.3.5. In addition to the iPhone
12 Pro used in previous sections, this study included the iPhone 15 Pro and Google Pixel 8 Pro
as representatives of the latest models from iPhone and Android (as of August 2024). Since the
Pixel 8 Pro lacks LiDAR, its tracking accuracy was evaluated using only the IMU + camera con-
figuration. For the iPhone 15 Pro, this study performed tracking experiments in the shelf corner
environment to compare its performance trends with the iPhone 12 Pro. Additionally, tracking
was tested with both the iPhone 15 Pro and Pixel 8 Pro under varying brightness conditions.
The experimental settings and procedures for these tests adhered to the methodologies outlined in
Sections 4.3.4 and 4.3.5, ensuring consistency and reliability across all device comparisons.

Results: Fig. 4.15 (a) illustrates the 99th percentile positional error for various smartphones in

the shelf corner environment. The results indicate that the iPhone 15 Pro exhibits the same
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Figure 4.15: Tracking accuracy with different smartphones.

general tracking trend as the iPhone 12 Pro. As highlighted in Sec. 4.3.4, the figure reaffirms that
LiDAR alone is insufficient for effective tracking but demonstrates its capability to enhance tracking
accuracy when integrated with camera and IMU data. A notable finding is the hardware advantage
of the iPhone 15 Pro. Its higher-spec camera and LiDAR contribute to improved tracking accuracy
compared to the iPhone 12 Pro, particularly in the IMU + camera + LiDAR and IMU + camera
configurations. Fig. 4.15 (b) presents the 99th percentile positional error under varying brightness
levels across the iPhone 12 Pro, iPhone 15 Pro, and Pixel 8 Pro. The results show a consistent
trend among all devices, with tracking accuracy deteriorating as brightness decreases from 200
lux (normal room) to 0 lux (dark night). As noted in Sec. 4.3.5, the blink condition — where
lighting alternates between 0 lux and 200 lux — failed to provide sufficient visual cues to improve
tracking accuracy for any device, underscoring the limitations of momentary visual information in

enhancing positional precision.

4.4 Potential Solution

In Sec. 4.3, controlled experiments allowed to uncover various failure modes, shedding light on
the challenges associated with using current smartphone technologies for accurate localization and
tracking. These experiments highlighted fundamental shortcomings in existing frameworks, em-
phasizing the need for more reliable and precise solutions to improve both user experience and
application performance. This section shifts the focus towards addressing these challenges by ex-
ploring the use of UWB technology, which is now a standard feature in many modern smartphones.
UWB stands out as an ideal candidate for precise location tracking due to its exceptional accuracy

and minimal latency, making it a promising solution to the limitations discussed earlier.

4.4.1 Smartphone with UWB

UWRB technology has recently found its way into smartphones, representing a major step forward in

wireless communication and device interaction. Known for its precise location tracking capabilities,
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Figure 4.16: Experimental setup with UWB.

UWB has been predominantly employed in asset tracking solutions, as demonstrated by devices
like Apple’s AirTag [109] and Samsung’s SmartTag+ [110]. These innovations highlight UWB’s
ability to enhance interactions with everyday items by delivering exceptional accuracy in locating
them.

To further investigate its potential, this study used the DW3000 chip in conjunction with an
iPhone 12 Pro to replicate the experimental setup outlined in Sec. 4.3. This included deploying
an application on the iPhone to measure distance, bearing, and elevation angles, as illustrated in
Fig. 4.16. This study customized Qorvo’s i0OS application, Qorvo Nearby Interaction [111,112],
which facilitates the localization of DW3000 devices using iOS-based UWB systems, to record

localization data during the experiments.

4.4.2 Global Coordinate Detection with UWDB

As discussed in Sections 4.3.2 and 4.3.3, the detection range and angle of QR codes and AprilTags
were found to be limited, particularly when approached from varying angles. In contrast, our
experiments confirmed the reliability of using UWB tags as landmarks for localization.

In the setup illustrated in Fig. 4.16, we conducted tests by receiving signals from a UWB
landmark tag while systematically placing a smartphone on a 2 m grid within a 6 m x 10 m room.
The UWB landmark tag was fixed at the location indicated by the red “x” in the figure.

From the frames transmitted by the landmark UWB tag, which included distance, azimuth,
and elevation information, we derived location estimates. Each blue square and corresponding
number in Fig. 4.17 represents a measurement point and the associated positional error. The
results demonstrate that communication with the UWB tag was possible from all areas of the
room.

By combining UWB technology with vision-based approaches or leveraging advanced localiza-
tion techniques capable of achieving errors within just a few centimeters [113,114], we propose the

possibility of attaining high-accuracy global coordinate detection over a broader area than what is
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feasible with visual landmarks alone. This advancement has the potential to significantly enhance

location-based services, paving the way for future innovations in wireless communication.

4.4.3 Global Coordinate Tracking with UWB

UWSB signals exhibit minimal sensitivity to variations in lighting conditions. Moreover, the Nearby
Interaction API [115] enables seamless extraction of UWB ranging and angle-of-arrival data be-
tween an iPhone and commercially available UWB tags. This makes the integration of UWB-based
sensing with VIO-based localization, which can be prone to errors, an appealing solution to address
the challenges identified in this paper.

To demonstrate this approach, we developed a prototype that combines these technologies. A
single landmark UWB tag was placed in the environment to serve as a static physical anchor for
the iPhone. As the iPhone moved through space, we measured its distance to the tag and the angle
of the UWB signal’s arrival. Simultaneously, we gathered VIO-based location estimates derived
from VIO, depending on environmental factors, can experience drift or inaccuracies.

These datasets were coupled within a factor graph framework implemented using the open-
source GTSAM [116] optimization library. The state space to be estimated includes the phone’s
position over time and the location of the static UWB tag. ARKit’s VIO provided relative coor-
dinates between time steps, while UWB measurements supplied range and bearing data relative
to the tag. These inputs defined "between factors” and ”range-bearing factors” to constrain the
optimization.

The factor graph, illustrated in Fig. 4.18, was optimized using the Levenberg-Marquardt algo-
rithm [117]. The optimized phone trajectory, alongside ARKit’s VIO-only estimates and UWB-only
measurements, is shown in Fig. 4.18. In challenging scenarios such as dark night or blink condi-
tions, where VIO struggles to localize the phone (Sec. 4.3.5), UWB signal coupling significantly
improves the estimates, as evidenced by Fig. 4.19 (c, d).

Notably, the optimized cumulative distribution functions (CDFs) in Figures 4.19 (a, b) out-

perform both standalone VIO and UWB sensing. This improvement demonstrates that combining
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Figure 4.19: CDF of localization error.

two independent sensing modalities—VIO and UWB—through an effective coupling algorithm like

GTSAM can substantially enhance localization performance, even in scenarios where VIO fails.

4.5 Related Work

Many studies have explored alternative sensing methods to enhance vision-based localization sys-
tems, aiming to address the inherent limitations of such approaches. Vision-based systems, relying
on cameras or LiDAR, often struggle in low-light conditions, featureless environments, or dynamic
scenarios. Despite their widespread use, there has been limited systematic analysis of the failure
modes associated with these systems. This study addresses that gap by identifying and analyzing

key failure scenarios and advocating for the integration of complementary sensing technologies,
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such as UWB, to improve robustness and accuracy.

Characterizing vision-based localization systems: Precision in vision-based localization hinges
on two aspects: accurate ego-localization and reliable placement of virtual anchors within an
environment. Systems such as ARKit [118] for Apple devices and ARCore [119] for Android
devices utilize computer vision techniques to deliver these capabilities for AR.

Previous research [120-122] has evaluated the accuracy of virtual anchor placement in controlled
indoor environments, while others [123-126] have experimentally measured the effectiveness of
ARKit’s indoor localization. These studies provide insights into the general performance of vision-
based systems but often lack detailed investigations into failure scenarios.

For instance, Nowacki et al. [127] analyzed the accuracy of ARKit’s plane detection under
varying lighting conditions but did not assess the end-to-end performance of localization and anchor
placement. Similarly, UbiPose [128] highlighted ARKit’s limitations in GPS-denied environments
but focused on outdoor settings, leaving critical gaps in understanding indoor-specific challenges.

LiDAR-equipped devices, such as recent iPhones, have improved localization performance in
certain scenarios, particularly in low-light conditions. Studies on LiDAR-based depth estimation
and mapping [129, 130] have enhanced SLAM systems, yet they often fail to quantify system
performance in challenging environments, such as featureless or highly reflective spaces. This lack
of comprehensive data hinders progress in overcoming these limitations.

Alternative sensing schemes: The limitations of vision-based systems have motivated research
into alternative sensing modalities, including acoustic, infrared, RFID, WiFi/BLE, and UWB. Re-
cent advancements in acoustic sensing [131-133] have achieved high-accuracy localization, while
systems such as X-AR [134] leverage RFID to improve anchor placement precision. Similarly,
WiFi/BLE-based systems [135-137] have demonstrated robust tracking capabilities in indoor envi-
ronments. UWB-based approaches, including XRLoc [113] and Garg et al. [114], achieve centimeter-
level accuracy and provide a promising alternative to vision-based systems.

Despite these advancements, many studies do not adequately address the specific weaknesses
of vision-based localization. This work contributes to the field by systematically evaluating these
gaps, emphasizing the potential of alternative sensing technologies to complement and enhance
vision-based localization systems.

Integrating UWDB with vision-based systems: UWB technology, increasingly integrated into con-
sumer devices, offers a complementary modality to vision-based systems. Recent studies [138-140]
have explored UWB-enhanced localization for anchors and ego-localization in vision-based systems.
These approaches integrate UWB into AR frameworks, bridging gaps in scenarios where vision-
based methods falter. This study builds upon these findings, providing comprehensive measure-

ments and identifying failure modes to guide future advancements in hybrid localization systems.
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4.6 Conclusion

This chapter identified key challenges in vision-based indoor localization for motion capture of
collaboration analysis based on exhaustive cases studies and controlled experiments. Errors in
landmark-based localization were observed, with visual markers such as QR codes and AprilT-
ags showing decreased localization accuracy at greater distances. Enlarging the size of landmarks
did not improve accuracy, and lighting conditions had minimal impact. Angular constraints for
landmark detection were also identified, with cameras detecting visual landmarks only within lim-
ited angular ranges: £25° for QR codes and £75° for AprilTags. Visual and LiDAR features for
localization were examined, revealing that reduced visual features degrade localization accuracy.
LiDAR sensors in modern iPhones provided additional depth information but were limited by low
resolution. Coupling LiDAR with visual data improved tracking accuracy by 28.8 %. Tracking fail-
ures under low-light conditions were significant, with poor lighting reducing localization accuracy
by 59.1%, and dynamic lighting complicating tracking due to exposure issues. Speed limitations
in IMU-based localization were evident, with accuracy decreasing at speeds over 2 m/s or below
0.2 m/s due to errors and drift.

A prototype leveraging UWB-based measurements was developed and demonstrated its po-
tential to address these challenges. VIO and UWB were integrated using factor graphs in the
prototype solution to preserve the unique characteristics of each localization method. Preliminary
evaluations demonstrated that the prototype achieved superior accuracy under various lighting

conditions.
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Chapter 5

Conclusion

5.1 Conclusion

This study designed and implemented an IoT-based platform tailored for multimodal collabora-
tion analysis, addressing the critical demands of modern collaborative environments. The system
requires to meet three essential requirements for the system: synchronization accuracy of sens-
ing devices, multimodal extraction of collaboration, and a user-friendly design for collaboration
analysts.

Chapter 2 presented an innovative IoT system designed to support collaboration analysis, fea-
turing three key components: the SRP Badge for data collection, the SRP Analysis for processing
interaction data, and the SRP Web for visualizing results in a browser. The SRP Badge, a compact
business-card-type sensor worn by individuals, captures data such as sound pressure, acceleration,
and infrared signals with high precision, while ensuring accurate synchronization across devices.
The SRP Analysis processes this synchronized data to identify collaboration, including face-to-face
interaction, learning phases, speakers, and activity. These results are then visualized using SRP
Web, providing a user-friendly interface for interpretation.

To evaluate the system’s performance, experiments were conducted focusing on sensor synchro-
nization accuracy, the reliability and effectiveness of the interaction analysis algorithm, and the
usability of the web application. The findings demonstrated several key advantages for researchers
analyzing collaborative learning. First, the sensors achieved precise data collection, maintaining
synchronization errors within +30us. Second, the interaction analysis algorithm effectively identi-
fied collaborative behaviors such as face-to-face interactions, learning phases, speakers, and activity,
offering valuable insights for qualitative studies. Lastly, the web application facilitated intuitive
visualization of critical data points, significantly enhancing the efficiency of human interaction
analysis through its web-based design and ease of use.

Chapter 3 presented a novel sound pressure sensor and a speaker identification algorithm specif-

ically designed for compact, business-card-type sensors, aiming to analyze collaborative dynamics
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in multi-person settings. The sound pressure sensor integrates a peak hold circuit and a time
synchronization module, which minimize signal spikes and maintain precise synchronization across
devices. This ensures accurate and cost-effective detection of user speech. The proposed algo-
rithm effectively suppresses background noise from non-speaker sensors, achieving reliable speaker
identification.

The evaluation highlighted the system’s robustness under diverse conditions, including varying
numbers of users, levels of background noise, and durations of speech. The proposed algorithm
demonstrated superior speaker identification accuracy compared to the comparative algorithm
across all tested scenarios. Additionally, the peak hold circuit consistently captured user speech
with high reliability, while synchronization errors between sensors were kept within £30ps. These
two innovations are also considered to significantly contribute to the high accuracy of speaker
identification.

Chapter 4 investigated practical challenges in vision-based indoor localization for motion cap-
ture in collaboration analysis, with three key findings emerging from the case studies and controlled
experiments. First, visual markers such as QR codes and AprilTags exhibited limitations in local-
ization accuracy as the distance from the camera increased, and enlarging the marker size failed
to address this issue. Second, LiDAR integration in VIO rather disturbed localization accuracy in
different lighting conditions. Third, IMU-based localization showed speed-related constraints, with
performance deteriorating at speeds above 2 m/s or below 0.2 m/s due to drift and cumulative
errors.

To address these challenges, a prototype leveraging UWB-based measurements was developed.
By integrating VIO and UWB data through factor graphs, the prototype effectively combined the
unique advantages of both localization methods. Initial evaluations demonstrated that the system

achieved significantly higher accuracy under diverse lighting conditions.

5.2 Future Work

The development of this IoT-based platform for multimodal collaboration analysis represents a
significant step forward in bridging the gap between qualitative and quantitative analytical ap-
proaches. However, to fully realize its potential and address the diverse needs of real-world ap-
plications, several areas for future improvement and expansion have been identified. These en-
hancements are categorized into four primary sections: an IoT system for collaboration analysis,
speaker identification for mobile devices, indoor localization on mobile devices, and the discovery

of collaboration patterns with the IoT system.
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5.2.1 An IoT System for Collaboration Analysis

In Chapter 2, the IoT system at the core of this platform has demonstrated impressive capabilities in
synchronizing multimodal data streams, ensuring precision, and providing a user-friendly interface.
Nonetheless, further efforts are required to improve its usability and scalability.

Balancing precision and modality expansion: One of the platform’s defining strengths is
its high synchronization accuracy, achieving precision within £30ps. Maintaining this accuracy
while expanding the range of modalities will be a critical challenge. The inclusion of additional
data types, such as environmental sensing, physiological metrics, or contextual information, can
enhance the depth of collaboration analysis. For environmental sensing, sensors monitoring light,
temperature, humidity, or noise levels can offer valuable insights into environmental factors affect-
ing collaborative dynamics. For physiological data, integrating devices like heart rate monitors,
skin conductivity sensors, or other biometric tools can uncover how individual stress levels or emo-
tional states influence group interactions. For contextual integration, tools that track task-specific
contexts, such as digital tool usage or shared document activity, can provide a more comprehensive
understanding of collaboration. The challenge lies in ensuring these additional modalities do not
compromise the synchronization accuracy or overwhelm the system’s processing capabilities. Ad-
vanced data fusion algorithms and optimized hardware architectures will be necessary to manage
the increased complexity.

Miniaturization and energy efficiency: The current badge-type sensors provide robust per-
formance for data collection, but their size and energy requirements may limit their application
in some scenarios. Future efforts will focus on miniaturization, which involves reducing the size of
sensors to make them less obtrusive and more wearable. Advances in micro-electromechanical sys-
tems (MEMS) and printed electronics could play a crucial role in achieving this goal. Additionally,
enhancing energy efficiency is critical for long-term deployments by prolonging battery life with-
out sacrificing functionality. Strategies for achieving this include incorporating energy-harvesting
technologies and optimizing communication protocols to minimize power consumption. The com-
bination of smaller, more energy-efficient sensors will expand the platform’s usability across diverse
settings.

Hybrid environments: As collaboration increasingly occurs across hybrid physical-virtual en-
vironments, the IoT system must adapt to these evolving contexts. Hybrid environments involve
participants interacting both in person and remotely, often using a combination of physical tools
and digital platforms. To support these scenarios, the platform will need to extend its capabili-
ties to capture and analyze virtual interactions, such as screen sharing, video conferencing, and
digital whiteboarding. It must also ensure seamless cross-platform compatibility, allowing smooth

operation across different hardware and software ecosystems, including integration with popular
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Figure 5.1: The overview of the prototype for hybrid collaboration analysis.

collaboration tools like Microsoft Teams and Zoom. Furthermore, the development of algorithms
capable of dynamically adapting to the specific needs of hybrid environments will be essential, en-
abling the platform to balance data collection priorities between physical and virtual interactions.
These enhancements will make the IoT platform indispensable for organizations navigating the
complexities of modern collaboration.

Based on this motivation, this study steps into proposing a hybrid system designed for collab-
oration analysis in diverse environments. Figure 5.1 shows the overview of the system prototype.
This system integrates key components: SRP Badges described in Chapter 2, precise synchro-
nization to connect distant environments, and a representative analytical algorithm of speaker
identification. For synchronization, Radio-over-Fiber (RoF) extends wireless networks to align
clocks across badges located in separate rooms, ensuring consistent and accurate data integra-
tion. The analytical algorithm processes the collected data, focusing on multimodal aspects of
collaboration. The algorithm includes speaker identification, a critical feature for interpreting in-
teractions and dynamics within group activities. This concept expands the scope of collaboration
analysis discussed in this study, providing a more comprehensive framework for understanding and

evaluating interactions and dynamics in diverse environments.

5.2.2 Speaker Identification for Mobile Devices

In Chapter 3, effective speaker identification remains a cornerstone of collaboration analysis, par-
ticularly in settings with multiple participants. Although the current system has shown robust
performance, real-world environments introduce a host of challenges that necessitate further re-
finement.

Accuracy improvement in actual collaboration environments: Speaker identification ac-
curacy can be influenced by numerous factors in collaboration, including background noise, over-
lapping speech, and varying acoustic properties of the environment. Future work will focus on

improving noise robustness by developing advanced noise reduction techniques to enhance detec-
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tion accuracy in noisy settings such as busy offices or classrooms. Additionally, the system’s ability
to handle overlapping speech will be enhanced by leveraging advanced machine learning models
and spatial audio processing to differentiate between simultaneous speakers. Furthermore, algo-
rithms will be fine-tuned to adapt to the unique characteristics of different environments, such as
open-plan offices that include mixed noise. Field testing in diverse real-world scenarios will be
essential to identify and address specific challenges, ensuring the system’s reliability across varied

contexts.

5.2.3 Indoor Localization on Mobile Devices

Chapter 4 revealed practical challenges in using vision-based indoor localization for motion capture
in collaboration analysis. The prototype solution with VIO and UWB was proposed and improved
localization accuracy in environments where vision-based methods have struggled. However, there
is still future work to apply this scheme to practical scenarios of collaboration analysis.
Comprehensive evaluation and accuracy enhancement: This study evaluated tracking per-
formance of the prototype solution in a single scenario where VIO struggles, namely, varying
lighting conditions. To demonstrate the improvement across a range of different environments,
comprehensive controlled experiments as shown in Sec. 4.3 for VIO evaluation are required to fur-
ther assess the solution’s accuracy. Moreover, when cases of degraded accuracy emerge, it becomes
crucial to identify and develop methods to improve performance in those specific situations.

In addition to controlled experiments, it is also important to evaluate the proposed scheme
in real collaborative environments for a more practical assessment. In settings where multiple
environmental factors interact simultaneously, performance equivalent to that achieved under con-
trolled conditions cannot be guaranteed. Actual case studies in collaborative environments are
needed to investigate how localization accuracy varies in more complex scenarios.
Implementation of the motion capture tag: As discussed in Sec. 4.1, implementing a ded-
icated tag is vital for using VIO and UWB in motion capture. Since the tag needs to be only
a few centimeters in size, it must incorporate a camera, an IMU, and a UWB transceiver while
maintaining operational power. Recent advancements in MEMS technology have made this in-
creasingly feasible. However, the actual implementation requires careful consideration of various
factors, including the tag’s processing performance and continuous operating time.

Localization accuracy improvement through tag collaboration: By exchanging positional
information among multiple tags worn by the user, tracking accuracy can be enhanced. Since these
motion capture tags are attached to the user’s body, each tag is subject to certain mechanical
constraints. Leveraging these constraints can help prevent drift from accumulating and causing
erroneous tracking directions. The communication protocol for tag collaboration remains a future

challenge.

90



5.2.4 The Discovery of Collaboration Patterns with the IoT System

As described in Sec. 2.3.7, this study presented the application of the proposed IoT system in un-
covering novel collaboration patterns. In this application, the proposed system was utilized with
SSNA. SSNA revealed shifts in leadership roles by analyzing word co-occurrence networks and
degree centralities, uncovering key moments of group interaction. The proposed IoT system high-
lighted nonverbal cues signaling transitions in collaboration phases. Intensive qualitative analysis
showed that leadership adapted to task phases, with early efforts focused on gathering information
and later efforts on problem-solving, demonstrating dynamic role shifts in collaboration.
Learning analytics already incorporates various quantitative methods, such as SSNA. Combin-
ing these established techniques with the proposed method will be key to uncovering new patterns

of collaboration in future research.
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