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Abstract

Collaboration plays a crucial role in accomplishing tasks and exerts significant influence across

various domains, including workplaces and educational settings. In the field of learning sciences

in particular, the mechanisms of collaboration have been extensively studied, providing valuable

insights for boosting intellectual productivity through analyses of collaboration among learners.

However, traditional qualitative analyses require considerable human and time resources, which

makes it difficult to conduct analyses on a large number of participants or groups, or over extended

periods.

Recent advancements in the Internet of Things (IoT) suggest a way to reduce the costs associ-

ated with qualitative analysis. By automatically providing quantitative data on collaboration to

analysts via IoT systems, the labor and time costs of qualitative analysis can be reduced. This cost

reduction expands the potential scope of collaboration analysis—extending to contexts previously

out of reach—and helps generate new insights into the nature of collaboration.

To support qualitative collaboration analysis through IoT, three major requirements must be

met. The first requirement is time synchronization among sensor devices. Since multiple devices

may be deployed across many individuals and diverse environments, lack of time synchronization

among devices will lead to data inconsistencies that hinder accurate collaboration analysis. The

second requirement is multimodal extraction of collaboration. In qualitative analysis, multiple

modalities—such as video and audio—are examined, so IoT systems likewise need to extract data

from multiple modalities. In particular, it is necessary to quantitatively capture key factors such

as face-to-face interactions among learners, learning phases, speakers, activity, and postures. The

third requirement is a system design that prioritizes usability. Researchers and practitioners who

analyze collaboration are not always Information Technology (IT) experts, so it is crucial to provide

a system that is easy to operate, even for non-technical users.

In response to these requirements, this study proposes an IoT sensing platform for quantita-

tive collaboration analysis. The proposed system comprises three components: a set of portable

sensors that collect data with high-precision time synchronization, a suite of algorithms that ex-

tract collaboration data in a multimodal manner, and a web-based visualization tool that offers an

intuitive interface for analysts. By adopting this system, it becomes possible to automate much
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of the process that previously depended on manual labor, thereby substantially reducing the time

and effort needed for collaboration analysis.

Chapter 2 describes the research on the architecture of the proposed system. Specifically, the

study proposes and implement 1) a business-card-type sensor that collects each learner’s data

under precise time synchronization, 2) analytical algorithms that multimodally extract learners’

face-to-face interactions, learning phases, speakers, and activity, and 3) a web application that

visualizes the resulting data without requiring complex operations. Through both qualitative and

quantitative evaluations, the study demonstrates that the proposed system meets its required

specifications and supports qualitative analysis of collaboration.

Chapter 3 investigates a method for accurately identifying speakers—a crucial modality within

the proposed system. Specifically, the study realizes high-accuracy speaker identification for col-

laboration analysis by using a sound pressure sensor equipped with a peak-hold circuit, achieving

high-precision time synchronization among sensors, and employing an algorithm that reliably iden-

tifies speakers from noisy sound pressure data. Evaluation experiments show that the proposed

method remains robust for varying numbers of participants, different types of noise, and diverse

speaking durations.

Chapter 4 focuses on localization used for estimating posture, another modality in the proposed

system. The study clarifies the issues and solutions involved in applying a simple yet highly accu-

rate vision-based localization to real-world collaboration analysis. Through large-scale case studies

and controlled experiments, the study identifies practical challenges in applying the vision-based

localization to posture estimation. To address these challenges, this study proposes a prototype

solution that integrates Ultra Wide Band (UWB) with visual data. Through the evaluation ex-

periments, this study demonstrates the robustness of the prototype solution for localization.

Overall, this study suggests the potential to reduce the human and time costs required for

traditional qualitative analysis while also expanding the scope of collaboration analysis. By en-

abling approaches in domains where collaboration analysis has previously been limited, this work

is expected to further advance our understanding of collaboration.
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Chapter 1

Introduction

1.1 Background

Human interaction, in which individuals influence one another through complex social relation-

ships, plays a pivotal role in shaping the dynamics and outcomes of collaborative tasks carried

out by multiple people. The nature and quality of these interactions can significantly affect the

performance of teams, making their study and understanding critical in diverse settings such as

education and the workplace. By examining these interactions in detail, we can uncover underly-

ing patterns and develop strategies to foster more effective collaboration and enhance overall team

performance.

Over the years, researchers have dedicated considerable effort to qualitatively analyzing hu-

man interaction to uncover strategies for enhancing productivity and improving collaborative

outcomes. Collaboration analysis has traditionally been conducted using the ethnographic ap-

proach [1]. Ethnography, which originated in cultural anthropology, is a method for studying

human behavior and social interactions. Specifically, this involves the collection of field notes,

often supplemented by audio and visual recordings to provide detailed context. Ethnographic

methods have been widely applied across various disciplines to analyze human behaviors in dif-

ferent settings. Similarly, in collaborative environments, ethnographic techniques have been the

predominant approach for examining group interactions and dynamics.

In educational contexts, learning sciences have extensively examined the mechanisms of collab-

orative learning — a field that has garnered increasing attention for its potential to foster deeper

understanding and engagement among learners. Researchers have investigated interaction patterns,

communication strategies, and collaborative behaviors that emerge during group learning activi-

ties. Some studies in [2–5] have illuminated various interaction patterns, shedding light on how

learners construct knowledge together. For example, the work presented in [4] uniquely combined

social network analysis with in-depth dialogical analysis to study collegiate discourse recordings of

collaborative reading activities. This study not only identified shared awareness patterns within
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the group but also highlighted the diverse contributions of individual students, thereby revealing

nuanced dynamics of group learning. Another notable example is the study conducted by Chen

and colleagues [5], which employed a randomized controlled trial alongside case studies to evaluate

the impact of a year-long video-based professional development program utilizing the Classroom

Discourse Analyzer. The findings demonstrated that such video-based programs could significantly

enhance both classroom discourse and student learning. Moreover, this research provided valuable

insights for designing effective visualization tools to enrich the professional development experience,

enabling educators to better analyze and improve their teaching strategies.

Despite these advances, qualitative analysis of human interaction comes with significant chal-

lenges, particularly in terms of the time and effort required. Most of these analyses involve manual

examination of large datasets, making it a labor-intensive process. This limitation becomes espe-

cially pronounced when dealing with collaborative tasks involving a large number of participants,

where the sheer volume of data can render qualitative methods impractical. The bottleneck created

by manual analysis not only hinders scalability but also limits the application of these methods to

smaller, more controlled scenarios. Consequently, there is a growing need for innovative approaches

and tools that can complement qualitative analysis, enabling researchers and practitioners to han-

dle larger datasets more efficiently and effectively while still capturing the rich complexity of human

interaction.

1.2 Internet of Things for Collaboration Analysis

To support the existing qualitative collaboration analysis, Quantitative Ethnography (QE) was

proposed in 2017 by David Shaffer at the University of Wisconsin, a methodology that combines

quantitative and qualitative analysis to overcome the limitations of traditional ethnographic ap-

proaches. This method aims to guide qualitative analysis by leveraging quantitative techniques

to narrow the focus to specific, high-potential areas, thereby reducing the overall costs typically

associated with ethnographic studies while enhancing analytical precision. Specifically, QE em-

ploys data mining and natural language processing to extract structured data from dialogue texts.

These structured data are then interpreted through ethnographic frameworks, allowing for a seam-

less integration of computational analysis and qualitative contextual understanding.

Building on these advancements in QE, IoT-based collaboration analysis has gained increas-

ing attention as a means to deepen the understanding of collaboration. IoT technologies enable

multimodal data collection through wearable devices and environmental sensors, automating the

observation of collaboration scenarios traditionally conducted qualitatively. By integrating IoT-

based approaches, QE reduces the costs associated with narrowing the focus for qualitative analysis

and, in turn, facilitates the discovery of deeper insights into group and individual dynamics across
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various contexts. This fusion of data-driven methodologies and ethnographic interpretations paves

the way for innovative strategies to analyze and enhance human interactions.

To support such analyses in fact, IoT systems often employ compact, portable sensors like

business card-type devices that integrate seamlessly into the daily activities of individuals and

teams. These sensors have been widely used in studies to collect data on communication patterns,

interactions, and activity levels — key metrics for understanding collaboration dynamics. Examples

include Hitachi’s Business Microscope [6,7], MIT’s Sociometric Badge [8], and devices such as Open

Badges and Rhythm, developed by Lederman et al. [9, 10].

MIT Media Lab initially developed the Sociometric Badge [8], a sociometric wearable device

(SWD) for quantitatively investigating human behavior and interactions in collaborative envi-

ronments. Subsequent advancements led to Open Badge [9], focusing on miniaturization, and

Rhythm [10], which supports both on-site and online collaboration analysis. These devices mon-

itor interactions using sound pressure and radio frequency (RF) signals for voice recognition and

proximity detection. Similarly, Hitachi’s Business Microscope [6] uses business card-type sensors

to monitor workplace interactions and employee behaviors, while the Sensor-based Regulation Pro-

filer (SRP) incorporates precise synchronization RF modules for fine-grained collaboration analysis.

Additionally, MBox offers a low-cost, easy-to-use platform designed iteratively based on learning

theories to investigate collaborative learning in diverse group work contexts.

1.3 System Requirement for Multimodal Collaboration Anal-
ysis

Synchronization accuracy for collaborative sensor data: Synchronization between devices

is essential for accurately extracting data related to interpersonal collaboration. The study focuses

on analyzing collaboration with mobile devices deployed across various targets, such as participants

and environments. As described in Sec. 1.2 existing systems like Hitachi’s Business Microscope,

MIT’s Sociometric Badge, Open Badges, and Rhythm, have enabled quantitative analysis of social

interactions. However, a key limitation in these studies lies in their inability to achieve precise

synchronization across multiple devices. These synchronization errors result in misleading analyses

of collaborative activities. To ensure meaningful results, synchronization accuracy must be at least

one-tenth of the sensor’s maximum sampling rate. For example, sensors with a maximum sampling

rate of 100 Hz require synchronization precision within 1 millisecond or less.

Multimodal data extraction for qualitative analysis: Extracting multimodal data is essential

for supporting qualitative analysis and achieving a comprehensive understanding of collaboration.

Quantitative methods provide objective metrics, but they cannot fully replicate the nuanced in-

terpretations derived from qualitative approaches. To bridge this gap, the system identifies key
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multimodal data points, such as face-to-face interactions, learning phases, speakers, activity, and

posture [11–13]. By focusing on these dimensions, the system enhances qualitative analysis, reduc-

ing manual observation costs while improving analytical accuracy.

User-friendly system design for non-technical analysts: Supporting analysts without ad-

vanced technical expertise is essential for the widespread adoption of collaborative analysis sys-

tems. Analysts often lack the technical knowledge required to install and operate complex software

systems, which creates a barrier to their effective utilization. To address this, the system must

prioritize ease of installation and usability, enabling analysts to focus on their work without strug-

gling with technical difficulties. For example, implementing a web-based application allows for

seamless access and quick deployment, eliminating the need for time-consuming setup processes.

Such an intuitive interface ensures that non-technical users can efficiently perform quantitative

analysis and integrate it into their workflow for collaborative analysis.

1.4 Related Work

Table 1.1 shows related studies on an IoT system for collaboration analysis. MIT launched the ini-

tial study called Sociometric Badge [8], which enables the measurement of collaboration by sensing

individual activities and interactions through wearable sensors. Hitachi commercialized Sociomet-

ric Badge as Business Microscope [7], integrating additional features to analyze intra-organizational

communication quantitatively. The company thus initiated the application of collaboration anal-

ysis in organizational contexts. MIT further expanded the capabilities of Sociometric Badge and

developed Rhythm [10] in 2018, aiming to provide deeper insights into team dynamics in offline,

online, and hybrid environment. In the context of learning analytics, MBoX [14] was developed

as an IoT system specifically designed to support multimodal learning analysis by capturing and

analyzing various learning behaviors.

However, these systems do not meet three requirements described in Sec. 1.3, leaving gaps

in their ability to fully address collaboration analysis for collaborative learning. In the first re-

quirement of time synchronization, they do not meet the precision targeted in this study. These

analyses are useful for capturing long-term collaboration trends but are not applicable to fine-

grained analyses that detect second-by-second changes. Sec. 2.5.1 discussed details about the

precision requirements and synchronization accuracy of each method.

As for the second requirement of multimodal data extraction for collaboration analysis, none of

these systems focus on all five modalities required for collaborative learning analysis. Sociometric

Badge emphasizes activity levels, speech features, location, proximity, and face-to-face interaction,

while Rhythm primarily targets speaker turn-taking, conversation time, and proximity. Business

Microscope is designed to analyze face-to-face interactions and concentration levels. MBox captures
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Table 1.1: Related work

Image Scheme Abstract Req. 1 Req. 2 Req. 3

Sociometric
Badge [8]

Sensing user activity
with
business-card-type
sensors

Unsatisfied
Partially
satisfied

Unsatisfied

Rhythm
[10]

Sensing user activity
with
business-card-type
sensors

Unsatisfied
Partially
satisfied

Unsatisfied

Business
Microscope

[7]

Quantitative analysis
of
intra-organizational
communication

Unsatisfied
Partially
satisfied

Unsatisfied

MBoX [14]
IoT system to
support multimodal
learning analysis

Unsatisfied
Partially
satisfied

Unsatisfied

Extract

A

Phases

B C

F2F

Speaker

Quantitative approach

Activity Skeleton

Analysis algorithmsMobile devices

Display Web app

Interface

ExtractVideo Mic Movie Audio Play Screen

Qualitative approach

Analyze
Analyst

Collect
Collaboration

Feedback

Phone Tag

Badge

Figure 1.1: The concept of the IoT system for collaboration analysis.

face-to-face and speech between learners.

In the third requirement of usability, none of these systems support easy operation and instal-

lation of the system. Each method requires software installation and command-line operations. In

the case of Business Microscope, collaboration analysis depends on outsourcing, making it difficult

to consider it a highly user-friendly system.

1.5 Outline

Based on the requirements described in Sec. 1.3, this study focuses on an IoT platform for multi-

modal collaboration analysis. Figure 1.1 shows a structure of the IoT system.

The IoT system is composed of three major parts: data collection with mobile devices, data
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interpretation with multimodal analysis algorithms, and data visualization with a web-based ap-

plication. The entire process of collaboration analysis with the IoT system is shown below.

1. The analyst installs video cameras and voice recorders in the collaboration environment.

2. Each user mounts a mobile device.

3. The users starts collaborative activity.

4. The analyst collects video and audio data from the video cameras and voice recorders.

5. The analyst collects sensor data from the devices worn by the users.

6. The proposed system quantitatively extracts key points for collaboration analysis from the

data.

7. The system visualizes the key information for analysts on a web browser with the web appli-

cation.

8. The analyst starts qualitative analysis using the relevant parts of the video and audio.

The collected sensor data includes a variety of modalities from mobile devices such as badges,

smartphones, and smart tags. These modalities provide rich insights into the interactions and

dynamics during collaboration. The collected data is sent to a central repository for further

processing.

The next step involves interpreting the multimodal data using advanced algorithms designed to

extract meaningful points for qualitative collaboration analysis. These algorithms identify patterns

and relationships within the data to provide wide insights into the collaboration process. The

system extracts key points for collaboration analysis, such as face-to-face interaction, learning

phases, speakers, activity, and posture.

Once the analysis is complete, the results are visualized through an intuitive web-based appli-

cation. This application offers an interactive platform where collaboration analysts can explore

the data in detail. The visualizations provide a wide and detailed view of the collaboration with

multimodal information. The web application also allows analysts to filter and compare data across

different sessions, enabling them to identify trends and areas for improvement.

Analysts can conduct qualitative assessments and propose actionable recommendations to en-

hance collaboration efficiency by examining the video and audio corresponding to the obtained

key points. For example, they may suggest adjustments to team structures, reconfigure spatial

layouts, or recommend communication strategies based on data-driven findings. This iterative

process ensures that the IoT system continually contributes to refining collaborative practices.

The contributions of this study are as follows:
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� This study contributes to improving the efficiency of identifying key aspects of collaboration

analysis, enabling the low-cost extraction of analytical points even for large groups or ex-

tended activities. An IoT system was designed and implemented to support collaboration

analysis based on specific system requirements. Experimental evaluations in collaborative

learning scenarios demonstrated that the system significantly reduced the human effort and

time required for collaboration analysis.

� This study also contributes to establishing practical demonstrations for collaboration analysis

in learning scenarios. Using the developed IoT system, collaboration patterns were quantita-

tively identified, offering new insights into promoting collaborative behaviors. This approach

serves as a catalyst for advancing collaboration analysis.

� In the IoT system, this study advances collaboration analysis on mobile devices through

precise speaker identification. The proposed scheme addresses challenges such as spike mit-

igation in a sound pressure sensor, precise synchronization across the sensors, and noise

reduction for the sensor data. This improvement enables more precise collaboration analysis

and facilitates fine-grained insights.

� Finally, this study reveals practical challenges and solutions for motion capture in collab-

oration analysis. Vision-based localization, a mainstream approach for indoor positioning,

is applicable for motion capture with smart tags. This study comprehensively identifies

practical limitations of the current vision-based localization for collaboration analysis. In

addition, it proposes a novel solution that integrates vision-based and radio-based localiza-

tion, presenting a robust and effective modality for IoT systems to enhance practical motion

capture.

Chapter 2 focuses on the whole design and implementation of the IoT system with business-card-

type mobile devices for collaboration analysis. Chapter 3 delves into precise speaker identification

for such mobile devices. Finally, Chapter 4 finds that vision-based localization, which potentially

contributes to posture recognition in the IoT system, has practical challenges to apply for collab-

oration analysis. In addition, the chapter proposes an prototype solution with radio frequency for

robust localization.

18



Chapter 2

An IoT System for Collaboration
Analysis

2.1 Introduction

Collaboration fosters our human ability to address complex problems in partnership with fellows.

Many fields, such as workplace and education etc., adopt collaboration to their environment to

exceed our personal ability. In the field of learning science, for example, collaborative learning

has been featured as a learning method for future education. Collaborative learning promotes the

learner’s ability to solve complex problems through collaboration between learners.

To further enhance collaboration, the field of cognitive science has analyzed the patterns of

collaboration types and their effectiveness. Especially, the field has explored specific patterns

which promote our collaboration. However, the previous research often relies on substantial time

to identify such patterns during collaborative activities. The process takes much time due to manual

collaboration analysis with recorded videos and transcribed audio to evaluate the activities. This

qualitative approach hinders collaboration analysts from applying the method in collaboration

environments with a large number of users or real-time feedback.

To address the issue of time cost, Internet of Things (IoT) system has a potential to improve

the efficiency of collaboration analysis. The system collects data from users and environment in

collaboration with sensing devices. The system extracts key points for collaboration analysis from

the acquired sensor data. Based on the extracted information, a facilitator analyzes collaboration

and finally gives users feedback.

To develop an IoT system for collaboration analysis, there are three system requirements.

Time synchronization across sensing devices: The devices should precisely synchronize each

other for fine-grained collaboration analysis. Collaboration analysis includes various range of du-

ration from second-scale to month-scale. To adapt the second-scale collaboration analysis, the

sensing devices should keep the consistency across sensor data. In detail, the synchronization error
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should be less than one tenth of the sampling rate.

Multimodal data extraction: Multimodal data should be extracted in the IoT system for

collaboration analysis. Including the field of learning science, multimodal data from users and

environments are focused for collaboration analysis. This chapter poses four key modalities for

collaboration analysis: face-to-face between users, learning phases in a group, speakers, and activity

of each user.

Accessibility and usability: The requirement is necessary for any users who conduct collabo-

ration analysis. Collaboration analysts do not necessarily have skills of information technologies.

The IoT system should be easily accessed and utilized by the analysts. To ensure the accessibility,

the system should be accessible on a web browser for any users. In addition, the system should be

operable with graphical user interfaces (GUI).

Following the three requirements, this chapter proposes Sensor-based Regulation Profiler (SRP)

Web Services to quantitatively analyze collaboration. The system automates the extraction and

visualization of key aspects of collaboration, thus supporting researchers in conducting qualitative

analysis more efficiently. The proposed system consists of business card-type sensors called SRP

Badges, multimodal analysis algorithms called SRP Analysis, and a web-based visualization tool

called SRP Web. SRP badges precisely collect sensor data from users in collaboration under radio

frequency (RF)-based time synchronization across the badges. SRP Analysis multimodally extracts

key points of collaboration from the acquired sensor data: face-to-face, learning phases, speakers,

and activity. SRP Web finally visualizes extracted information on a web application for the users.

To evaluate the proposed IoT system, this chapter conducted both qualitative and quantitative

evaluation of the system. To conduct qualitative evaluation, the system was evaluated in collabo-

rative learning analysis. The evaluation reveals that the IoT system supports reduce the existing

time costs for collaboration analysts. In addition, both qualitative and quantitative evaluation

shows that the IoT system satisfies three system requirements.

The rest of this chapter is organized as follows. Section 2.2 describes the proposed IoT system.

Sections 2.3 and 2.4 describe the qualitative and quantitative evaluation of the proposed system.

Section 2.5 describes related works of the IoT system for collaboration analysis. Finally, Sec. 2.6

concludes this chapter.

2.2 Proposed Scheme

This chapter proposes an IoT system for collaboration analysis called SRP Web Services. Fig-

ure. 2.1 shows the workflow with SRP Web Services in collaboration environment. The system

consists of three parts: SRP Badge to collect sensor data from users and environment under precise

time synchronization, SRP Analysis to extract key points for collaboration analysis from the ac-
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Figure 2.1: The overview of the proposed Sensor-based Regulation Profiler Web Services.

quired sensor data, and SRP Web to graphically provide the extracted information to collaboration

analysts. The system is utilized along the procedure below.

1. Each user mounts SRP Badges on a chest

2. Start collaboration between the users

3. Collect all the badges from the users after collaboration

4. Extract sensor data from the badges with SRP Analysis

5. Visualize the extracted information on a web browser with SRP Web

6. Start qualitative analysis based on the extracted information by collaboration analysts

2.2.1 Sensor-based Regulation Profiler Badge

SRP Badge is a business-card-type sensor supposed to be worn on a user’s chest. Figures 2.2 (a),

(b), and (c) show the appearance, the block diagram, and the synchronizer of the SRP Badge. The

badge is composed of three units: a power control unit, a CPU sensor unit, and a wireless unit.

Power control unit: The unit mounts a lithium-ion battery to run the badge. The battery

supplies power to the power switch and Micro Controller Unit (MCU) in Fig. 2.2 (b). The badge

can continuously run for 24 hours with the supplied power. The battery is also rechargeable via

micro-USB adapter in the badge.

CPU sensor unit: The unit mounts STM32L476RGT6 from STMicroelectronics as the MCU,

OSI5LAS1C1A infrared light emitting diode (LED) from OptoSupply, PIC79603 infrared receiver
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Figure 2.2: Sensor-based Regulation Profiler Badge.

from KODENSHI CORP., INMP510 analog microphone from TDK, and ADXL362 accelerometer

from ANALOG DEVICES. The MCU regulates sampling rates of data from each sensor: the

infrared data at 12 bits and 34 Hz, the sound pressure data at 12 bits and 100 Hz, and the three-

axes acceleration data at 100 Hz. The microSD card slot of DM3AT-SF-PEJM5 from Hirose

Electric is equipped with the unit to record the sensor data.

Wireless unit: The unit mounts an RF module of CC2650 from Texas Instruments for wireless

time synchronization across badges. The module sends synchronous packets every 10 seconds from

other badges or its synchronizer. The CC2650 utilizes the protocol optimized for wireless synchro-

nization across devices called UNISONet [15] to achieve precise synchronization across the badges.

The synchronizer initially sends the synchronous packet for neighbor badges. Badges which receive

the packet minimize and fix the processing time from reception to forwarding, enabling simultane-

ous reception of the same packet at neighboring nodes and triggering constructive interference [16].

By repeating reception and forward of synchronous packets across the devices, all badges in the

environment keep the time consistency. Each badge can estimate the current time in the flooding-

based system by combining the original timestamp from the synchronizer with the fixed delay per

hop and the number of hops required for the packet to reach the badge.

2.2.2 Sensor-based Regulation Profiler Analysis

SRP Analysis consists of algorithms to extract key points for collaboration analysis with the

acquired sensor data. Figures 2.3 (a), (b), (c), and (d) show the appearance of each algorithm for

collaboration analysis. The algorithms extract face to face, learning phases, speakers, and activity

from the sensor data.

Face-to-face: The algorithm extracts face-to-face across users based on the transmission and

reception of the infrared data. Algorithm 1 and Table 2.1 show the procedure of the face-to-face

graph extraction and its notation. The algorithm starts by initializing the face-to-face graph matrix

G with zeros, representing no initial interactions between any users. For each sensor d in the set of

sensors U , the algorithm collects the infrared data (ld) that has been received within a specific time
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Figure 2.3: Sensor-based Regulation Profiler Analysis.

window from t0 to t0 +W . The received data contains a list of sensor IDs S that were detected by

sensor d during this period. For each detected sensor ID s in the list S, the algorithm increments

the corresponding element in the matrix G[s][d]. This increment represents the interaction between

sensor s and sensor d, essentially recording a face-to-face encounter. Finally, after processing all

sensors and their received data, the face-to-face graph matrix G is returned, summarizing all

interactions between the sensors during the given time window.

Learning phase: The algorithm extracts learning phases in collaboration based on the time

variation of face-to-face interaction across users. The time variation of the interaction is quantified

from face-to-face graph matrix G in the face-to-face algorithm. To reflect the context of face-

to-face interaction, the algorithm creates social network matrices by applying sliding windows

to the graph matrix G. The sliding windows consist of 3-seconds slide width and 60-seconds

window size. To automatically classify learning phases, the algorithm adopts AutoPlait [17] to

the social network matrices. AutoPlait quickly and automatically classifies similar patterns of the

data based on hidden Markov models. The proposed algorithm finally classifies collaboration into

several learning phases.

23



Table 2.1: Notation of the face-to-face graph extraction

Variable / Function Description

U Set of all the sensor IDs

L
Set of the infrared data

obtained from all the sensors
ld Infrared data of sensor d
t0 Target time for social graph extraction
G Face-to-face graph matrix with the size of |U | × |U |
W Window size [s]

Algorithm 1 Face-to-face graph extraction

Require: L, U , t0
Ensure: G

1: Insert zeros into all elements of G
2: for all d ∈ U do
3: S ← all received IDs in ld ∈ L between t0 to t0 +W
4: for all s ∈ S do
5: Increment G[s][d]
6: end for
7: end for
8: return G

Speaker: The algorithm identifies a speaker in collaboration with sound pressure data acquired

from SRP Badges. Figure 2.4 shows the overall process of the speaker identification algorithm.

For the accurate speaker identification, there are deliberate three-step algorithm.

1) Pre-processing: In this step, the algorithm detects the rise of sound pressure for each user.

The algorithm initially find the minimum sound pressure and subtract the entire sound pressure

values with the minimum value for each user. Based on the above zero-correction, the algorithm

distinguishes speech and non-speech in the data with sliding windows. Algorithm 2 exhibits the

procedure to label speech in Figure 2.4, and Table 2.2 lists its notation. The algorithm outputs

the array A called “the 1–0 data for each user” from the set of all sensor IDs U and the set of the

sound pressure data from all the sensors S = {S1, S2, . . . , S|U |}.

2) Speech Section Estimation: This step estimates whether speech occurred in the collaboration

from the 1–0 data for each user. The algorithm initially complements slight silence as speech and

removes sudden pulse noise as non-speech on the 1–0 data for each user. Specifically, the algorithm

regards the section between labels 0 within 90 ms as a part of consecutive speech. The algorithm

also regards the section between labels 1 within 150 ms as a part of mis-detected speech duration

due to noise. Finally, the algorithm extracts speech data where at least one user speaks or not

called “the speech section data.”

3) Speaker Identification: In this step, the algorithm fuses the data: the 1–0 data for each user

and the speech section data to extract a speaker in the collaboration. The algorithm focuses on
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Table 2.2: Notation of labeling in pre-processing

Variable / Function Description

U Set of all sensor IDs
d Sensor ID

S Set of the sound pressure data
obtained from all the sensors

Sd Sound pressure data for sensor d
A Set of 1 arrays with speech labels
Ad 1 bit arrays with speech labels of sensor d
ξ Top index of window
D Window size
ηs Speech threshold for all users

ηm
Speech threshold based on maximum

sound pressure in the window
max(X) Calculate the maximum of all the elements of X

each speech section in the speech section data. The algorithm identifies a user whose labels 1 in

the 1–0 data for each user are the most in the users as a speaker in the speech section.

Activity: The algorithm extracts activity of each user based on acceleration data acquired in each

user’s SRP Badge. The acceleration data is originally saved by three axes. The algorithm converts

the acceleration to L2 norm to acquire the motion scale. The acceleration norm is converted to

relative values from 0 to 1 for each user. The acquired data is used as a personal activity in

collaboration.

2.2.3 Sensor-based Regulation Profiler Web

SRP Web enables collaboration analysts to easily analyze collaboration on a web browser. Fig-

ures 2.5 (a) and (b) show the architecture, the appearance, and the analysis view of the proposed
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Algorithm 2 Labeling in pre-processing

Require: U,S
Ensure: A

1: for all d ∈ U do
2: Insert zeros into all elements of Ad

3: ξ ⇐ 0
4: while ξ < length of Ad do
5: W ⇐ Sd ∈ S between ξ to ξ +D
6: m⇐ max(W )
7: if m > ηs then
8: ηm ⇐ m ∗ 0.1
9: if w ∈W > ηm then

10: w ⇐ 1
11: else
12: w ⇐ 0
13: end if
14: Insert w ∈W into elements of Ad with OR
15: end if
16: ξ ⇐ ξ + slide width
17: end while
18: Insert Ad into A
19: end for
20: return A

web application named Sensor-based Regulation Profiler Web (SRP Web). The application is

composed of the front-end for the user interface and the back-end for data management. The

front-end is structured with Next.js in the version of 12. The back-end is structured with FastAPI

in the version of 0.72.0, SQLite, and Python 3.6. Requests from the user are sent to FastAPI

in the back-end. FastAPI receives the requests and communicates with SRP Analysis described

in 2.2.2 or the database. The requests include data operation such as creating, reading, updating,

and deleting (CRUD) the user’s information: accounts, projects, and sensor data acquired from

SRP Badges described in 2.2.1. FastAPI then sends required data, including parameters such as

the start and end time for collaboration analysis, to each collaboration analysis algorithm. The

analyzed data in SRP Analysis are sent to FastAPI. FastAPI finally returns the response to the

front-end and the user can start to analyze the collaboration on SRP Web.

SRP Web includes five main functions below.

High accessibility: The system is open for any collaboration analysts in terms of information

technology skills thanks to a web platform for high accessibility. The analyst can easily access to

the system on a web browser without any operation on command line interface (CLI) and software

installation. For example, the analyst does not need to consider software versions, packages, or

the operating system of the installation environment. Such users benefit from web services that

operate solely with a web browser and an internet connection.

Low performance dependence on end devices: A web application depends little on computer
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performance, allowing any user to access the service on any device. Since the application runs on

a server, users are not required to have a high-performance computer. Such low dependency on

hardware allows any user to analyze collaboration with the system.

Physical separation for easy maintenance: The application is designed with separate front-

end and back-end components for easy maintenance. System developers can independently manage

the functions of each component. This separated structure enables developers to respond to user

feedback and update the application instantly.

Account management for multiple users’ access: Users can simultaneously and indepen-

dently utilize the application with their personal accounts. The application requires users to

register their own accounts and log in before using it. Multiple users can simultaneously analyze

collaboration with the system, each separated by their individual accounts.

Session management for multiprocessing of collaboration analysis: The system enables
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Figure 2.6: Experimental environment of collaborative learning.

each user to manage and analyze multiple session of collaboration in the account. The application

provides sessions to hold sensor data corresponding to collaboration cases. The user can parallelly

analyze multiple collaboration sessions in the same account.

2.3 Qualitative Evaluation

This section qualitatively evaluates the proposed system with the experiment of collaboration.

As a collaboration, this study focuses on collaborative learning with three learners. Figure 2.6

shows a snapshot of the collaborative learning activity. The learning environment was composed

of a table, chairs, an iPad to watch a video material, and a whiteboard to discuss. Collaborative

learning was conducted five times in total and captured by SRP Badges. Each badge was attached

to learners, the iPad, and the whiteboard. The learners wore the badge on their chest in case 1

and on their head in cases 2 to 5. Two badges were installed on both left and right sides of the

whiteboard. To synchronize the badges, the synchronizer is installed on the table. The scenario

of collaborative learning is composed of video viewing for 15 minutes, discussion for 30 minutes,

and conclusion for 15 minutes based on a learning material for collaborative learning called the

Adventures of Jasper Woodbury [18]. The learning material provides learners with interactive,

narrative-based problem-solving challenges that integrate mathematical reasoning with real-world

applications, encouraging critical thinking and collaboration. In the phases of video viewing and

discussion, each learner can watch the learning material on the iPad.
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2.3.1 Sensor Deployment

Automatic data collection using SRP Badges helped reduce costs in collaboration analysis com-

pared to traditional methods. In conventional data collection, multiple video cameras were used to

record users and the learning environment. This approach had the issue of high installation costs

depending on the number of participants and the range of movement. In contrast, the proposed

method improved scalability by adjusting the number of badges based on the number of users,

reducing the overall installation costs for data collection devices.

2.3.2 Face-to-Face Extraction

The proposed algorithm for face-to-face extraction sufficiently supported collaboration analysts,

especially researchers in learning science, to reduce the cost of qualitative analysis for face-to-face

detection in each experiment case. Figures 2.7 (a), (b), and (c) show the face-to-face relationship

across learners in the phases of video viewing, discussion, and conclusion in the case 1 as an

example. The horizontal axis in each figure shows the elapsed time [s] of collaborative learning for

60 minutes. Each figure shows face-to-face relationship across three users named User 1, User 2,

and User 3, an iPad, and left and right sides of a whiteboard named WB L and WB R.

Figure 2.7 (a) shows face-to-face was scarce across the learners since they watched the learning

material on the iPad. Figure 2.7 (b), the discussion phase, shows User 1, User 2, and the right

side of the whiteboard faced. In addition, User 2 faced the left side of the whiteboard. Since the

position of User 1 was closest to the right side of the whiteboard, User 1 used the whiteboard to

leave clues to solve the problem. At the same time, User 2 saw User 1’s writing. This interaction

suggests that User 1 took on the role of leading the problem-solving effort, while User 2 acted as

a collaborator by observing and interpreting User 1’s input. Figure 2.7 (c), the conclusion phase,

shows all the users faced the right side of the whiteboard. In addition, User 1 and User 2 faced

each other. The figure indicates that User 1 wrote stuff to conclude the work and summarized the

answer of the problem. User 2 and User 3 simultaneously saw User 1’s writing. This interaction

suggests that User 1 played a central role in synthesizing the group’s ideas, while User 2 and

User 3 acted as reviewers, validating and integrating the final solution. Including these results,

the proposed algorithm enables efficient identification of key interactions, roles, and phases in

collaborative learning, reducing the challenges of traditionally time-consuming qualitative video

analysis.

2.3.3 Learning Phase Extraction

The algorithm for learning phase extraction supported collaboration analysts to reduce the cost of

qualitative classification of learning phases. Figure 2.8 shows the result of learning phase extraction

which the algorithm automatically output. The horizontal axis shows the elapsed time [s] of
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(a) Video viewing

(b) Discussion

(c) Conclusion

Figure 2.7: Extracted face-to-face relationship in each learning phase.

collaborative learning for 60 minutes. The top figure shows the normalized time variation of face-

to-face difference across the learners extracted in the process of Sec. 2.3.2. The middle three

figures show results automatically extracted by the proposed algorithm. The bottom figure shows

the result of manual classification by researchers in learning science based on the recorded video

of collaborative learning.

The results from the quantitative analysis indicate that: 1) learners rarely turned around during

the video viewing phase due to their focus on the screen, 2) learners began to turn around more

frequently during the discussion phase as they engaged in problem-solving conversations, and 3)
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Figure 2.8: Automatic extraction results of the learning phases.

learners commonly turned around in the conclusion phase to finalize their solution. The transitions

between these three phases were observed at 1,202 seconds and 3,326 seconds. In contrast, the

qualitative analysis revealed transitions occurring between 1,173 seconds and 1,213 seconds, and

between 3,335 seconds and 3,360 seconds. While there are some discrepancies between the two

methods, specifically between 51 and 403 seconds, and between 2,289 and 2,459 seconds, the

automatic extraction still reliably captured the transitions between the phases.

These quantitative results provide significant convenience to analysts by enabling quick and

visual identification of phase transitions. For example, once the transition to the discussion phase is

identified, analysts can focus on that period to efficiently investigate how problem-solving behaviors

evolve. Similarly, pinpointing the start of the conclusion phase allows analysts to examine what

aspects of the discussion prompted learners to begin synthesizing their ideas. By automatically

highlighting clear phase transitions, the need to meticulously review the entire video is reduced,

significantly saving time and effort in qualitative analysis.

2.3.4 Speaker Identification

The experimental evaluation shows the proposed algorithm for speaker identification supports

collaboration analysis with automatic annotation of user’s speech or non-speech. Figures 2.9 (a),

(b), and (c) show the result of speaker identification in each learning phase in the case 1. The

horizontal axis represents the elapsed time [s] and the blue bars indicate the speech of each user.

For simplicity, we extracted 60 seconds of speaker identification results for each learning phase.

To compare with the ground truth, the audio data was recorded and transcribed. Tables 2.3

(a) and (b) present the results of speech transcription in the same sections for 60 seconds shown

in Figs. 2.9 (b) and (c). Figure 2.9 (a) shows an accurate detection of non-speech between 500
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and 560 seconds during the video viewing phase, confirming that learners did not speak during

this period. Figures 2.9 (b) and (c) identify the speech sections between 1,300 and 1,360 seconds

in the discussion phase and between 3,700 and 3,760 seconds in the conclusion phase. In the

discussion phase, the frequent alternation of speech turns between User1 and User2 suggests active

engagement and collaborative exchange of ideas, a key indicator of productive group problem-

solving. In the conclusion phase, the dense clustering of speech segments between User1 and

User2 reflects their joint effort to synthesize and finalize the learning outcomes, while the minimal

contributions from User3 suggest a more peripheral role in this stage. Qualitative analysis requires

learning science researchers to repeatedly review the recorded video, noting the speech timing

and identifying speakers, as shown in Tables 2.3 (a) and (b). In contrast, the proposed speaker

identification method automates this process, significantly reducing the need for manual video

review.

2.3.5 Activity Estimation

The proposed algorithm for activity supports collaboration analysis by reducing the cost of qual-

itative activity estimation. Figures 2.10 (a), (b), and (c) present the estimated activity results

for each learner. The horizontal and vertical axes represent the elapsed time [s] and the relative

acceleration. To compare with the ground truth, the video data was recorded and transcribed.

Tables 2.4 (a) and (b) provide the qualitative records of the learners’ activities corresponding to

the sections in Figs. 2.10 (b) and (c). For consistency, we extracted 60 seconds from the same

sections as the speaker identification for each learning phase. Figure 2.10 (a) accurately detects

minimal activity between 500 and 560 seconds during the video viewing phase, indicating that

the learners remained still while watching the video. Figures 2.10 (b) and (c) successfully capture

specific activity between 1,300 and 1,360 seconds during the discussion phase, and between 3,700

and 3,760 seconds during the conclusion phase. In the discussion phase, the elevated activity levels

visible in the graph allow analysts to quickly identify periods of heightened engagement, reducing

the time needed to manually pinpoint moments of collaborative interaction for further analysis. In

the conclusion phase, the sustained activity levels suggest a focus on finalizing the task, enabling

analysts to concentrate on these periods to examine how learners consolidate their ideas and reach

consensus, without manually reviewing less relevant sections. Qualitative analysis traditionally

requires learning science researchers to replay the recorded video, closely observing the learners’

activity as detailed in Tables 2.4 (a) and (b). The proposed activity estimation method automates

this process, significantly reducing the need for manual observation by automatically extracting

key behaviors.
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Figure 2.9: Speaker identification results in each learning phase.

2.3.6 Web User Interface

The web application enables collaboration analysts to use the system without specialized operation

for CLI operation and complex software installation. Figure 2.11 shows each step for collaboration

analysis with SRP Web. The analyst just accessed to the webpage and operate the system on GUI.

Concretely, the analysts initially registered their accounts or login with the accounts in Fig. 2.11

(a). The analysts created each project and prepared each session to summarize the acquired sensor

data in Fig. 2.11 (b). Based on the sensor data saved in the session, the analysts executed each

algorithm for collaboration analysis. Therefore, the proposed web application showed accessibility

33



500                  520                  540                  560

U
se

r1
U

se
r2

U
se

r3
Time (s)

0.2

0.1

0.0

0.2

0.1

0.0

0.2

0.1

0.0

(a) Video viewing

1300                1320                1340                1360

U
se

r1
U

se
r2

U
se

r3

Time (s)

0.2

0.1

0.0

0.2

0.1

0.0

0.2

0.1

0.0

(b) Discussion

3700                3720                3740                3760

U
se

r1
U

se
r2

U
se

r3

Time (s)

0.2

0.1

0.0

0.2

0.1

0.0

0.2

0.1

0.0

(c) Conclusion

Figure 2.10: Activity estimation results in each learning phase.

and usability for learning analysts who are unfamiliar with information technology.

2.3.7 Collaboration Elucidation

This section presents the application of the proposed IoT system in uncovering novel collabo-

ration patterns through an integrated approach combining quantitative and qualitative analysis.

The study integrated the proposed system with Socio-Semantic Network Analysis (SSNA), which

quantitatively evaluates interactions, relationships, and communication patterns by analyzing the

structure of social networks based on verbal information. SSNA analyzed word co-occurrence net-

works to calculate degree centralities, providing insights into group communication trajectories and

individual transactive contributions. The proposed IoT system examined multimodal patterns to
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(a) Registration

(b) Session management

Figure 2.11: Procedure of collaboration analysis on SRP Web.

identify nonverbal cues that signaled transitions in collaboration phases. These combined analyses

narrowed the focus to specific segments of video and audio data, enabling a targeted qualitative

examination.

The analysis revealed that leadership transitions in transactive discourse were closely linked

to distinct patterns of nonverbal behavior, including activity dynamics. Figure 2.12 shows the

result of SSNA in a case of collaborative learning. The x-axis and y-axis show conversation turns

and sum of the degree centralities calculated from word co-occurrence networks. By analyzing

the trajectory of the group’s idea development, two key segments were extracted: conversation

turns 108–111 and 294–299. During the first segment, P2 and P3 played a prominent leadership

role, while in the second segment, P1 and P2 took the lead. Figures 2.13 (a) and (b) present
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Turn 111

Turn 108

(a) Turn 108–111

Turn 299

Turn 294

(b) Turn 294–299

Figure 2.13: The activity dynamics during the idea improvement.

results extracted from the proposed system, emphasizing two segments that showcase partial in-

sights into the extracted activity. The activity data shows consistent patterns through the entire

collaborative process, although there were some partial variations. For instance, when consider-

ing the findings on leadership dynamics, Figures 2.13 demonstrate that the intensity of activity

varies across problem-solving phases, while the relationships among participants remain consis-

tent regardless of leadership changes. Finally, qualitative analysis in these two segments revealed

that the first segment focused on gathering information, whereas the second segment centered

on discussing solutions to the task. These findings indicate that leadership roles shifted among

participants, adapting to the specific phases of problem-solving.

Traditional approaches to collaboration analysis relied on manual observation of video and audio

data, requiring researchers to qualitatively identify key points for analysis. Quantitative approaches

based on SSNA and the proposed system enable the identification of critical elements within the

data, significantly reducing the analytical cost associated with its multimodal complexity. Focusing

on these identified segments enabled efficient qualitative analysis, providing new insights into the
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Figure 2.14: Time synchronization accuracy between SRP Badge and its synchronizer.

dynamics of collaboration.

2.4 Quantitative Evaluation

This section quantitatively evaluates the proposed system with the experiment.

2.4.1 Synchronization Accuracy of Sensors

We conducted an experimental assessment of the time synchronization accuracy between SRP

Badge and its synchronizer. Each device was positioned close to each other on a desk and started

synchronization. The time difference between the devices was measured based on the synchro-

nization signals transmitted from the synchronizer. An oscilloscope was used to precisely measure

the clock rise time at both devices to determine the time deviation accurately. In this setup, the

synchronization error was calculated 30,003 times.

Figure 2.14 illustrates the synchronization accuracy between the devices. The horizontal and

vertical axes represent the time deviation and the number of samples corresponding to each devi-

ation. As shown in Fig. 2.14, the time synchronization error was confined to within ± 30 µs. The

mean and maximum synchronization errors recorded were −7.7 µs and 30µs, respectively. Given

that both the sound pressure sensor and the acceleration sensor on SRP Badge operate at a sam-

pling rate of 100 Hz, the synchronization error was allowable within the required threshold of less

than 1 ms. In addition, wireless sensor networks generally hinder high-precision synchronization

due to the complex interplay of factors such as changes in network topology, hardware resource

constraints, and environmental factors [19]. Achieving such µs-level synchronization demonstrates

precise synchronization within this wireless sensor network. The proposed synchronization method

thus ensures accurate sensor data analysis for collaboration analysis.
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2.4.2 Accuracy of Face-to-Face Extraction

The accuracy of face-to-face extraction in SRP Analysis was evaluated through an experiment using

infrared sensors embedded in SRP Badges. The experiment took place in a room with dimensions

of 10.6 m × 7.05 m × 2.65 m, equipped with multiple LED recessed ceiling lights. Three subjects

wore SRP Badges on the chest and were positioned 1.50 m apart, with two of the three engaging

in a face-to-face conversation for 60 s, while the non-speaking user faced the midpoint between

the speakers. All combinations of speakers were tested, and the accuracy of face-to-face detection

was calculated. Results showed that the infrared sensors detected face-to-face interactions with

accuracies of 75.3 %, 78.0 %, and 78.0 % across the different speaker combinations. These findings

suggest that the proposed face-to-face detection method is effective in supporting researchers in

learning science by reducing the qualitative analysis costs associated with face-to-face interaction

tracking in experimental scenarios.

2.4.3 Accuracy of Learning Phase Extraction

The accuracy of learning phase extraction was assessed with the five experimental cases of collab-

orative learning in Sec. 2.3. A simulation of all combinations of window size and slide width for

sliding windows in learning phase extraction was conducted, with the optimal parameters selected

to calculate face-to-face differences across users. The accuracy of learning phase extraction was

determined using the qualitative analysis results as the ground truth. Based on the learning phase

design detailed in Sec. 2.2.2, the best combinations of parameters for sliding windows in learning

phase extraction were identified from all possible combinations, which resulted in three phases

using AutoPlait.

Table 2.5 presents the best parameter combinations and the qualitative/quantitative phase

transitions for learning phase extraction. In cases 1 through 5, the learning phases were extracted

with accuracies of 86.9 %, 100 %, 99.8 %, 91.1 %, and 90.9 %, respectively, and phase transitions

were predicted within an average of 1 min. These results indicate that this approach effectively

supports researchers in learning science by reducing the costs associated with qualitative analysis

of learning phases.

2.4.4 Accuracy of Speaker Identification

The accuracy of speaker identification was assessed with three subjects. Each subject wore SRP

Badge on the chest and was seated 1.5 meters apart from the others. To ensure time synchronization

between the badges, the synchronizer was positioned at the center of the desk used by the subjects.

For the experiment, each subject was provided with a printed speech manuscript. The speeches

on the manuscripts were designed to take approximately 6 to 8 seconds to deliver in Japanese.

The subjects took turns reading their speech. Each subject spoke at regular intervals to avoid
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overlapping with others.

The algorithm correctly identified user 1’s speech with 100 % accuracy across 15 samples, while

the speeches of users 2 and 3 were also identified with 100 % accuracy for 14 samples. The results

demonstrate that the speaker identification algorithm successfully distinguished all speakers.

2.4.5 Processing Time

The processing time for each function of the proposed web services deployed on EC2 instances was

evaluated. A dataset of collaborative learning activity using SRP Badges was selected for analysis.

Sensor data of different durations (15 min, 30 min, 45 min, and 60 min) were extracted from three

participants’ chest-mounted sensors during a one-hour learning activity. Each processing time was

recorded for three functions without sensor data—sign up, log in, and create a session—and five

functions with sensor data—importing sensor data, extracting face-to-face interaction, extracting

learning phases, identifying speakers, and estimating activity. Each processing time was calculated

as the average of ten measurements.

Tables 2.6 and 2.7 present the results of processing time for functions without and with sensor

data, respectively. Table 2.6 illustrates the processing time for signing up, logging in, and creating a

session on t3.large, m6i.large, and m6i.2xlarge instances. Table 2.7 provides the processing time for

importing sensor data, extracting face-to-face interaction, extracting learning phases, identifying

speakers, and estimating activity for durations of 15 min, 30 min, 45 min, and 60 min on the same

instances.

Three key observations were made from the results presented in Tables 2.6 and 2.7:

� The m6i.large and m6i.2xlarge instances processed each function faster than the t3.large

instance.

� Differences in processing time between m6i.large and m6i.2xlarge were minimal.

� Speaker identification emerged as the most computationally intensive function.

The first observation indicates that t3.large might delay the analysis of collaborative learning

activities when using the proposed web services. This delay can be attributed to differences in

network bandwidth: t3.large supports up to 5 Gbps, whereas m6i.large and m6i.2xlarge support

up to 12.5 Gbps. For improved performance, using m6i.large or m6i.2xlarge is recommended.

The second observation suggests that m6i.large provides sufficient CPU performance and mem-

ory for handling the functions in the web services. The m6i.large instance is equipped with four

CPUs and 16 GiB of memory, whereas m6i.2xlarge features eight CPUs and 32 GiB of memory.

Despite the higher specifications of m6i.2xlarge, the processing speed of m6i.large was adequate

for the tested functions.
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The third observation highlights potential for optimization in the speaker identification process.

For example, on m6i.large, providing speaker information from 60 min of sensor data took 61.8 s,

as shown in Tab. 2.7 (b). While the web services successfully provide this information, the function

requires over 1 min to complete, which may hinder efficiency. Addressing this issue and accelerating

the speaker identification process remain areas for future development.

2.4.6 Scalability

This section shows the scalability of the proposed web services deployed on Amazon EC2 instances,

a service that provides scalable virtual server instances in the cloud. The scalability was compared

to standard implementation of the application in Django. Multiple access requests were generated

from one server to another using Apache’s JMeter [20], with each server hosting the respective

services. Speaker identification was performed using 1 min of sensor data collected from three

users’ chest-mounted SRP Badges during a collaborative learning session 1. The number of access

requests on the proposed web services ranged from 0 to 300, increasing in increments of 50, while

the earlier web application handled requests ranging from 0 to 60, increasing in increments of 5.

Furthermore, scalability testing with 60 min of sensor data was carried out. The proposed web

services were deployed on EC2 instances, and multiple access requests were made under similar

conditions. Speaker identification was requested using 60 min of sensor data collected in the same

learning environment, with access requests ranging from 0 to 1200, increasing in increments of 100.

Figure 2.15 (a) depicts the scalability for handling multiple requests with 1 min of sensor data on

both the standard web application (labeled Comparison) and the proposed web application (labeled

Proposal). The x-axis shows the number of simultaneous requests sent to each service, while the

y-axis represents the response success rate. The legend outlines the combinations of each service

and the type of EC2 instance used: the standard application running on t3.large (Comparison on

t3.l), m6i.large (Comparison on m6i.l), m6i.2xlarge (Comparison on m6i.2xl), and the proposed

application running on any instance (Proposal). For the standard web application running on

t3.large, the success rate remained at 1.0 for request numbers between 0 and 20, increasing by 5

each time. However, for 25 and higher request counts (25, 30, 35, 40, 45, 50, 55, and 60), the

success rate declined to 0.960, 0.767, 0.029, 0.025, 0.000, 0.000, 0.000, and 0.033, respectively. On

m6i.large, the success rate stayed at 1.0 for 0 to 30 requests, but dropped to 0.000 for requests

between 35 and 60. On m6i.2xlarge, the success rate remained at 1.0 for requests from 0 to 35, but

decreased to 0.925, 0.844, 0.640, 0.036, and 0.017 for 40, 45, 50, 55, and 60 requests, respectively.

The proposed web application, in contrast, maintained a success rate of 1.0 for all requests ranging

from 0 to 300, increasing in increments of 50. This shows that the proposed web application offered

improved scalability compared to the standard web application.

1Speaker identification was the most resource-intensive function in the proposed web services.
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Figure 2.15: Scalability of SRP Web Services for multiple requests.

Figure 2.15 (b) illustrates the scalability of the proposed web services for multiple requests. The

x-axis again represents the number of simultaneous requests, while the y-axis shows the success

rate of responses. On t3.large, the success rate was 1.0 for request counts between 0 and 400 (in

increments of 100), but then dropped to 0.964, 0.802, 0.683, 0.599, 0.536, 0.481, 0.439, and 0.337

for 500 to 1200 requests. On m6i.large, the success rate stayed at 1.0 for requests up to 400, but

then fell to 0.996, 0.797, 0.681, 0.599, 0.527, 0.477, 0.435, and 0.397 for 500 to 1200 requests. On

m6i.2xlarge, the success rate was 1.0 for up to 900 requests, but declined to 0.952, 0.853, and 0.821

for 1000, 1100, and 1200 requests. This figure demonstrates that the proposed web application

could handle speaker identification, the most demanding function, with 400 simultaneous requests

on t3.large and m6i.large, and up to 900 requests on m6i.2xlarge.

2.4.7 Running Cost

The cost of running the proposed web services was estimated based on the service fees on AWS.

The deployment was assumed to take place on EC2 instances located in the Ohio region, USA, with

an hourly rate of 0.0832 USD for t3.large, 0.096 USD for m6i.large, and 0.384 USD for m6i.2xlarge.

The running cost was calculated as the product of the running time and the hourly rate.

The number of users was assumed to be 400 for t3.large, 400 for m6i.large, and 900 for

m6i.2xlarge, representing the maximum number of users the proposed web services can handle

simultaneously without rejecting requests, as discussed in Sec. 2.4.6. Each user was assumed to

analyze five sessions of collaborative learning activity per month, with three learners per session

and a session duration of 60 min. The running time included time for signing up, logging in, creat-

ing sessions, importing sensor data, extracting face-to-face interaction, extracting learning phases,

identifying speakers, and estimating activity. These times were summed for each user based on the

average processing times reported in Sec. 2.4.5.
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Based on these assumptions, the total running cost for one month was approximately 5.658 USD

on t3.large for 400 users, 4.320 USD on m6i.large for 400 users, and 18.816 USD on m6i.2xlarge

for 900 users.

2.5 Related Work

2.5.1 Collaborative Extraction Using Business-Card-Type Sensors

Previous research has investigated the detection of collaboration between individuals using business-

card-type sensors worn by users. One such example is Hitachi’s Business Microscope [6, 7], which

features an infrared sensor. Business Microscope captures face-to-face interaction and suggests

that the frequency of meetings influences work efficiency. Similarly, MIT developed the Sociomet-

ric Badge [8] with accelerometers, sound pressure sensors, position sensors, Bluetooth, and infrared

sensors. Sociometric Badge collects data on face-to-face interactions, conversational tone shifts,

and proximity. The study in [8] indicates that these interactions correlate with workplace produc-

tivity and efficiency. Furthermore, MIT introduced a compact, energy-efficient variant called Open

Badges [9], which includes sound pressure sensors and Bluetooth, and is worn around the neck.

Open Badges enable visualization of face-to-face interactions using sound pressure and Bluetooth

received signal strength indicator (RSSI) data. MIT later integrated Open Badges into a hybrid

environment platform named Rhythm [10], designed to track face-to-face interactions in physical

settings and facilitate interaction tracking in distributed settings through online applications.

Despite these advancements, there are challenges in achieving precise synchronization of sensor

data, which limits the accuracy of collaboration analysis. Existing approaches typically rely on

software-based synchronization methods. For instance, one study [6] attempts synchronization by

identifying similar sound pressure patterns, aligning data sampled at 8 kHz within a 100 ms window.

However, this method becomes less effective with sensors that operate at a lower sampling rate of

100 Hz to conserve power, introducing errors that can lead to inaccurate analysis of collaborative

activities.

To address these limitations, this study proposes a new type of business card-type sensor,

building on the earlier work [21], which focuses on achieving precise synchronization across multiple

sensors. The proposed sensor incorporates hardware that enables high-precision synchronization

through the transmission of synchronization packets between devices. This setup allows for the

accurate capture of sound pressure, acceleration, and infrared data across all sensors.

2.5.2 Sensor-based Activity Recognition

Several studies have explored methods for recognizing user behavior using multiple sensors attached

to the user [22–27]. In one such study [22], accelerometers were placed on the user’s wrist, ankle,
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and chest, and the collected sensor data was transmitted to the cloud. The cloud then utilized

decision tree analysis to classify six activities: lying down, sitting, standing, walking, running,

and cycling. Another study [23] employed a wristwatch-style wearable device with integrated

sensors such as an accelerometer, light sensor, thermometer, and sound sensor, enabling real-time

classification of six activities: sitting, standing, walking, climbing stairs, descending stairs, and

running, achieving an accuracy of 92.5 % using decision tree analysis. Additionally, literature [24]

leveraged Zephyr BioHarness Bluetooth to gather acceleration and biometric data, classifying three

activities — running, walking, and sitting — again using decision tree analysis. This study also

demonstrated the ability to handle new users without requiring re-training by utilizing data from

a diverse group of users. Another example [25] used fuzzy basis functions to analyze data from

a 3-axis accelerometer worn on the user’s dominant wrist, successfully classifying seven activities:

brushing teeth, tapping a person, tapping a desk, working on a computer, running, waving, and

walking.

Building on this body of work, this study proposes SRP leverages data from SRP Badges

to identify and visualize key moments in collaborative activities. For instance, the system can

automatically detect shifts in learning phases by analyzing variations in network activity among

participants, as captured by infrared sensors mounted on the badges. This automated phase

detection has the potential to significantly reduce the qualitative analysis workload for researchers

studying collaborative activities, while also providing useful insights to guide the collaboration

process.

2.5.3 Web Services for Sensor Data Analysis

Several studies have focused on creating user-friendly web services designed for sensor data anal-

ysis [28–39]. For instance, the work presented in [33] developed a model for smart agriculture,

enabling real-time monitoring of soil conditions and remote control of field operations via mobile

and web applications. This model offered users a convenient way to monitor data processed by

the system through a web browser from any location at any time. Similarly, the study in [39]

introduced a new SaaS platform called motch, designed to simplify the operation of IoT systems

for end users via a web interface, allowing users to easily check the status of IoT devices directly

from a browser.

This paper introduces a web application named SRP Web, which enhances the usability of

sensor data analysis in collaboration. SRP Web aims to make it easier for analysts, even those

with limited technical expertise, to begin conducting analysis by providing improved scalability

and access to analysis algorithms.
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2.6 Conclusion

This study introduces an innovative IoT system utilizing business-card-type sensors designed to fa-

cilitate the analysis of collaboration. The system is composed of three main components: compact

business-card-type sensors called SRP Badge for data collection, an interaction analysis algorithm

called SRP Analysis to interpret the collected data, and a web-based application called SRP Web

for visualizing the analysis results in a browser. SRP Badge, worn individually by users, accu-

rately collects data such as sound pressure, acceleration, and infrared signals while maintaining

precise synchronization between devices. SRP Analysis processes this synchronized data to iden-

tify interactions, including face-to-face communication, learning phases, speakers, and activities.

The results are then presented through SRP Web that allows for easy visualization and inter-

pretation. To assess the system’s effectiveness, experiments were carried out focusing on sensor

synchronization accuracy, the performance and reliability of the interaction analysis algorithm, and

the usability of the web application. The findings highlighted several advantages for researchers

analyzing collaborative learning. First, the sensors achieved high precision in data acquisition,

with synchronization errors between devices kept within ±30 µs. Second, the interaction analy-

sis algorithm successfully identified collaborative behaviors, such as face-to-face interactions, task

phases, speech, and activities, providing valuable insights for qualitative analysis. Finally, the web

application enabled intuitive visualization of key data points, significantly streamlining the process

of human interaction analysis due to its web-based design and usability.
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Table 2.3: Qualitative transcription in each phase for case 1

(a) Discussion

Number Start [s] End [s] Speaker Speech content (in Japanese)
1 1302 1303 User 1 Then two thousand feet are... Ah, I see.
2 1303 1309 User 2 One foot is one-third yard so three feet

are two thousand-third yards.
3 1310 1314 User 1 Really... I learn something new.
4 1310 1311 User 2 Ha ha.
5 1310 1311 User 3 Ha ha.
6 1314 1316 User 2 I’m not confident...
7 1314 1315 User 3 Ha ha.
8 1317 1319 User 2 Six pounds...
9 1322 1323 User 2 Fifteen pounds.
10 1323 1325 User 1 Fifteen pounds.
11 1325 1326 User 3 Pound...
12 1332 1333 User 2 Ten...
13 1334 1339 User 1 I know that the normal plane is two

thousand feet long, but...
14 1339 1441 User 2 They used this plane?
15 1441 1347 User 1 Didn’t the video say that the fuel is

half?
16 1342 1343 User 2 Yes, the video said.
17 1350 1357 User 1 At the end of the video... Well, as I said

before, the part of the normal plane is
two thousand feet long...

18 1352 1353 User 3 At the end?

(b) Conclusion

Number Start [s] End [s] Speaker Speech content (in Japanese)
1 3706 3711 User 1 Yes, yes, yes, fifteen plus sixty, the fuel

is loaded here and fully used...
2 3708 3710 User 2 Ah, I see.
3 3710 3711 User 3 (Whispered)
4 3714 3716 User 1 About six gallons.
5 3717 3719 User 2 One gallon is six pounds, right?
6 3720 3721 User 1 Yes, yes, yes, yes.
7 3722 3724 User 2 Then eight gallons are...
8 3727 3728 User 1 Forty eight?
9 3728 3729 User 2 Forty eight pounds.
10 3729 3730 User 1 I see.
11 3730 3731 User 2 Can they load the fuel of forty eight

pounds?
12 3731 3732 User 3 Forty eight pounds are bad.
13 3732 3733 User 2 Bad?
14 3733 3734 User 3 Less than forty five.
15 3736 3737 User 2 Oh my!
16 3737 3738 User 1 Ah...
17 3738 3742 User 2 Ha ha ha, and they also have to load

the eagle.
18 3742 3743 User 1 The eagle, guy.
19 3743 3754 User 3 But they use fifteen so reduce one gallon

when the eagle, the eagle arrives.
20 3755 3756 User 2 Hmm... ha ha ha.
21 3756 3757 User 3 So...
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Table 2.4: Qualitative recodes of activity in each phase for case 1

(a) Discussion

Number Start [s] End [s] Learner Activity
1 1300 1316 User 1 He wrote on the whiteboard.
2 1303 1314 User 3 She watched the iPad and whiteboard

in turn.
3 1308 1314 User 2 She spoke moving the chair back and

forth.
4 1323 1336 User 1 He wrote on the whiteboard.
5 1323 1326 User 2 She watched the iPad and whiteboard

in turn.
6 1323 1326 User 3 She manually replayed the video on the

iPad.
7 1329 1330 User 3 She turned her head toward the white-

board from the iPad.
8 1339 1342 User 3 She manually replayed the video on the

iPad.
9 1343 1344 User 2 She pulled away from the desk.
10 1346 1348 User 3 She manually replayed the video on the

iPad.
11 1350 1356 User 1 He turned his head toward the white-

board from the iPad.

(b) Conclusion

Number Start [s] End [s] Learner Activity
1 3705 3717 User 1 He wrote on the whiteboard.
2 3708 3713 User 3 She pointed out to the whiteboard.
3 3720 3722 User 3 She scratched the side of her nose.
4 3723 3730 User 3 She nodded repeatedly.
5 3726 3734 User 2 She gestured in thinking.
6 3734 3740 User 1 He swang the body with laughing.
7 3735 3739 User 3 She laughed.
8 3736 3740 User 2 She swang the body with laughing.
9 3742 3749 User 1 He wrote on the whiteboard.
10 3744 3749 User 3 She pointed out to the whiteboard.
11 3750 3758 User 3 She swang the body with putting hand

on her hip.
12 3752 3754 User 2 She wondered scratching her head.

Table 2.5: Best combinations of window size and slide width, accuracy, and phase transitions in
learning phase extraction

Case Window size [s] Slide width [s] Accuracy
Transit from video viewing to discussion [s] Transit from discussion to conclusion [s]

Qualitative Quantitative Qualitative Quantitative
1 86 1 100 % 1,356 to 1,445 1,361 3,166 to 3,167 3,167
2 571 1 99.8 % 1,386 to 1,502 1,386 3,011 to 3,012 3,003
3 554 2 91.1 % 1,283 to 1,334 1,403 2,609 to 2,610 2,483
4 127 1 90.9 % 1,275 to 1,343 1,262 2,541 to 2,542 2,259
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Table 2.6: Processing time [s] for each function without sensor data

Process
Instance type

t3.large m6i.large m6i.2xlarge
Sign up 0.72 0.53 0.54
Log in 0.42 0.28 0.27

Create a session 0.071 0.040 0.036

Table 2.7: Processing time [s] for each function with sensor data

(a) t3.large

Process
Length of sensor data

15 min 30 min 45 min 60 min
Import a sensor datum 1.76 2.97 4.19 5.89
Extract F2F interaction 2.89 5.29 7.93 9.98
Extract learning phases 2.20 2.98 4.08 5.07

Identify speakers 19.9 40.0 61.9 82.9
Estimate activity 2.55 3.21 4.31 5.39

(b) m6i.large

Process
Length of sensor data

15 min 30 min 45 min 60 min
Import a sensor datum 0.866 1.66 2.40 3.25
Extract F2F interaction 0.275 0.499 0.754 1.14
Extract learning phases 1.09 1.78 2.48 3.14

Identify speakers 15.1 31.1 46.3 61.8
Estimate activity 1.24 1.95 2.67 3.54

(c) m6i.2xlarge

Process
Length of sensor data

15 min 30 min 45 min 60 min
Import a sensor datum 1.00 1.97 2.82 4.25
Extract F2F interaction 0.284 0.552 0.894 1.27
Extract learning phases 1.40 1.97 2.62 3.29

Identify speakers 14.6 30.1 47.0 66.1
Estimate activity 1.28 2.00 2.80 3.54
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Chapter 3

Speaker Identification for Mobile
Devices

3.1 Introduction

Collaboration plays a significant role in the success of activities involving multiple participants, such

as teamwork and collaborative learning. It enables individuals to integrate diverse perspectives and

enhance social skills through interaction with others. The field of cognitive science has explored

collaboration extensively, leading to various insights into how collaborative processes can improve

performance, particularly in learning environments. For instance, researchers have conducted

qualitative analyses of collaborative activities, uncovering patterns that contribute to enhanced

learning outcomes [3, 40–46]. As highlighted in [43], learners who approach problem-solving in a

unified manner often achieve better results. Analyzing collaboration often requires transcription,

which is critical for accurately capturing and understanding the interactions. However, this process

is both time-consuming and labor-intensive, as researchers must repeatedly watch recorded sessions

to manually note the timing of each speaker’s contributions.

One approach to reduce the challenges of transcription is speaker identification, which has been

explored in several studies. These studies have investigated methods such as speaker localization

using microphones [47–60], speaker verification using voice features [61–70], speaker identification

using voice features [61, 64, 71–87], and speaker recognition using a mobile device [10, 88–92]. For

example, speaker localization determines the positions of multiple speakers by analyzing audio

data captured through microphones or microphone arrays. While many of these studies rely on

high sampling rates (several kHz or more) for speaker recognition, this study focuses on identifying

speakers using sound pressure sensors operating at a lower sampling rate. This approach offers a

cost-effective solution for collecting collaboration data using low-power mobile devices.

One noteworthy contribution to this field is Rhythm [10], which employs a mobile device with

a sound pressure sensor operating at 700 Hz. Rhythm uses integration circuits, voice activity
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detection (VAD) [93], and thresholding algorithms to identify speakers. Despite its innovation,

several challenges remain in achieving accurate speaker identification using sound pressure sensors.

The first challenge is handling spikes in the recorded sound pressure data. Rhythm’s integration

circuit is susceptible to spikes, which can result in incorrect speech detection. The second challenge

involves distinguishing between speech and ambient noise. Even if spikes are mitigated, non-

speaking individuals’ sensors still pick up elements of speech, complicating the classification of

sound pressure data as either speech or noise. The third challenge is the lack of time synchronization

among the sensors, which can lead to errors in aligning sound pressure data across devices. This

misalignment makes it difficult to accurately classify the sound pressure data 1.

To address these challenges, this paper proposes a new speaker identification system specifically

designed for business-card-type sensors. The system includes: 1) a sound pressure sensor designed

to mitigate spikes, 2) a wireless synchronization framework to ensure data consistency, and 3)

a high-accuracy speaker identification algorithm optimized for low sampling rate data. The key

innovations of the approach are as follows:

� This study uses a peak hold circuit to reduce spikes in the sound pressure data.

� The system incorporates a flooding-based synchronization module for precise time alignment

across devices.

� The study introduces a three-step process for distinguishing speech from ambient noise,

improving the accuracy of speaker identification.

Evaluations demonstrate that 1) the peak hold circuit effectively removes spikes from the sound

pressure data, 2) the synchronization error between sensors is consistently within ±30 µs, and 3)

the proposed system performs well under various conditions, including different user numbers,

noise levels, and utterance lengths.

The structure of the rest of this paper is as follows: Section 3.2 reviews the related works.

Section 3.3 introduces the proposed algorithm for identifying speakers. The experimental results

are presented in Sec. 3.4. Finally, Sec. 3.5 concludes the paper.

3.2 Related Work

3.2.1 Speaker Recognition Using Stationary Devices

Previous research in the field of speaker recognition can generally be divided into three categories:

speaker localization, speaker verification, and speaker identification using voice characteristics.

Speaker localization [47–55] focuses on determining a speaker’s position by analyzing multiple audio

1To avoid errors caused by synchronization issues, the time synchronization accuracy must be less than one-tenth
of the sensor’s maximum sampling rate.
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signals. Applications of this technique include mobile robotics [56–58], passive sonar systems [59],

and hearing aids [60]. For instance, in environments with wideband noise, [58] introduces a method

to differentiate the time difference of arrival (TDoA) between the sound source and the noise, which

helps estimate the speaker’s location.

Research on speaker verification [61–67] focuses on comparing a speaker’s voice with a pre-

registered voice sample to verify identity. This technology has been used for authenticating IoT

devices [68], securing networks [69], and user authentication [70]. For example, [67] enhances

the performance of speaker verification for low-quality voice inputs by integrating mel-frequency

cepstral coefficients (MFCC) with linear predictive coding (LPC).

Speaker identification, another area of research, involves matching a speaker’s voice to that of a

pre-registered individual [61,64,71–84]. Applications of speaker identification include video confer-

encing [85], criminal investigations [86], and television broadcasts [87]. For instance, [85] improves

speaker identification robustness by focusing on key speakers in video conferences, reducing noise

from inactive participants and minimizing the interference of brief speech interruptions.

Despite the progress, many of these approaches involve substantial hardware and processing

requirements, as they rely on microphones to capture voice samples at high frequencies, often

exceeding several kHz. In contrast, this study uses a business-card-sized sensor that captures

sound pressure at 100 Hz to identify speakers. This setup significantly reduces both hardware and

processing costs, facilitating the extraction of collaborative data during multi-person activities.

3.2.2 Speaker Recognition Using Mobile Devices

Several studies [88,89] have implemented speaker identification using smartphones or business-card-

type sensors to extract collaboration data in organizational settings [90–92] and human interaction

contexts [10]. For instance, Hitachi’s business microscope [90–92] utilizes a business-card-type

sensor to achieve 97.3 % accuracy in speaker identification. However, it is important to note that

this system exhibits high power consumption due to the sensor’s high sound pressure sampling

rate of 8 kHz.

Additionally, MIT’s Rhythm project [10] employs a business-card-sized sensor known as the

Rhythm Badge for speaker identification. The Rhythm Badge operates at a lower power con-

sumption rate as it samples sound pressure at 700 Hz. It performs speaker identification using

a threshold-based approach without extracting specific voice features. Nevertheless, its accuracy

is somewhat limited due to the spikes observed in the sound pressure measurements (due to the

integration circuit), the fixed threshold which makes it susceptible to ambient noise, and the lack

of time synchronization across sensors.

This study introduces an innovative business-card-sized sensor designed to reduce spikes by

incorporating a peak hold circuit. The study also develop a speaker identification algorithm that
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Figure 3.1: Overview of the proposed speaker identification system.

minimizes the impact of ambient noise and include precise time synchronization between sensors.

Through simulations and experiments, the study demonstrate that these enhancements signifi-

cantly improve the accuracy of both speech detection and speaker identification.

3.3 Proposed Scheme

3.3.1 Overview of Proposed System

To identify speakers using sound pressure sensors embedded in a business-card-sized sensor with a

low sampling rate, this paper proposes a novel speaker identification system. Figure 3.1 provides

an overview of the system we have developed. The speaker identification process follows these

steps:

1. Before a multi-person activity, the business-card-sized sensors are distributed to participants.

2. During the activity, the sensors capture user speech using a sound pressure sensor equipped

with a peak hold circuit.

3. After the activity, the sensors are collected from the participants.

4. The sound pressure data from the collected sensors are extracted and processed through the

proposed speaker identification algorithm.

5. Finally, the algorithm generates and visualizes the speaker identification results.

3.3.2 Sound Pressure Acquisition

Figure 3.2 illustrates the design of the sound pressure sensor. This sensor samples sound pressure

at intervals of 10 ms. The microphone converts spoken audio into electrical signals, which are weak
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Figure 3.3: Overview of the speaker identification algorithm.

and therefore require amplification. The amplified signals are then passed through a peak hold

circuit that detects rapid signal peaks by utilizing the discharge properties of an RC parallel circuit.

The analog signal produced by the peak hold circuit is converted into a digital format through an

analog-to-digital (AD) converter. The digital output is provided every 10 ms, with both timing

and frequency synchronized using a synchronization signal generator. The sensor is designed to be

both cost-effective and simple. The circuit is composed of a microphone, an operational amplifier,

a peak hold circuit, and an AD converter, making it affordable and straightforward to implement.

Based on this hardware design, this study implemented a sound pressure sensor in the SRP

Badges described in Sec. 2.2.1. As outlined in Sec. 2.2.1, the badge, which is the size of a small

business card, operates continuously for 24 hours and is robust enough to endure extended collab-

oration sessions lasting several hours. The low-sampling sound pressure acquisition contributes to

both low power consumption and compact design.

3.3.3 Speaker Identification Algorithm

Figure 3.3 illustrates the overall structure of the speaker identification algorithm. This algorithm

operates in three stages: 1) estimating the speech segments, 2) evaluating all speakers, and 3)

identifying the target speaker.

Speech section estimation: The initial step involves determining whether users are speaking by
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Algorithm 3 Labeling in speech section estimation

Require: U,P
Ensure: L

1: for all d ∈ U do
2: Insert zeros into all elements in Ld

3: ξ ⇐ 0
4: while ξ < length of Ld do
5: W ⇐ Pd ∈ P between ξ to ξ + 1 s
6: m⇐ max(W )
7: if m > ηs then
8: ηm ⇐ m ∗ 0.1
9: if w ∈W > ηm then

10: w ⇐ 1
11: else
12: w ⇐ 0
13: end if
14: Replace elements in Ld with w ∈W
15: end if
16: ξ ⇐ ξ + 0.5 s
17: end while
18: Insert Ld into L
19: end for
20: return L

analyzing sound pressure signals collected from the sensors of all users. The algorithm performs

a zero-point correction by identifying the minimum sound pressure value across all sensors and

subtracting this value from each sensor’s respective sound pressure readings. Using sliding windows,

the algorithm then labels whether multiple users are speaking based on the corrected sound pressure

values for each user within each window.

Algorithm 6 illustrates the labeling procedure, which is depicted in Figure 3.3, and the notation

used is summarized in Table 3.1. The labeling process produces an array, L, which represents

“1-0 data” for each user, using both the set of all sensor IDs U and the sound pressure data

P = P1, P2, . . . , P|U | from each sensor. For each window W , the algorithm identifies the maximum

sound pressure value m for each sensor, as seen in line 6.

If m does not exceed the speech threshold ηs in any sensor for window W , the algorithm

considers that no users are speaking and moves to the next window (line 16). If m does surpass ηs,

the algorithm updates the threshold ηm to m ∗ 0.1 in line 8. It then compares the sound pressure

values from each sensor with ηm, assigning a label of 1 or 0 depending on whether the sound

pressure is higher or lower than ηm (lines 9–13).

The corresponding element in array Ld is updated with the label for window W in line 14. The

resulting pre-processed data, referred to as “1-0 data for each user,” is used to refine the speech

labels for each sensor. Labels of 1 are filled in sections with consecutive labels of 0 if these zeros

occur within 90 ms between ones, treating them as part of the speech in the 1-0 data. Additionally,
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Table 3.1: Notation

Variable / Function Description

A 1 bit array with labels for all users’ speech
d Sensor ID
f Flag for user utterances

J Set of 1 bit arrays with speech judgment
labels for all the sensors

Jd
1 bit array with speech judgment labels

for sensor d
L Set of 1 bit arrays with speech labels
Ld 1 bit array with speech labels of sensor d

P Set of sound pressure data
acquired from all sensors

Pd Sound pressure data for sensor d

Pavg
Set of averaged sound pressure data

acquired from all sensors
Pdavg Averaged sound pressure data for sensor d

S Set of arrays with start and end times
for speech sections

S
Array with start and end times

for a speech section
U Set of all sensor IDs

ηm
Speech threshold based on the maximum

sound pressure in the window
ηr Speech threshold for sound pressure ratio

ηS
Threshold for all users’ speech

in the speech section S
ηs Speech threshold for all sensors
ξ Top index of window

average(X)
Calculate the average

of all the elements in X

max(X)
Calculate the maximum
of all the elements in X

min(X)
Calculate the minimum
of all the elements in X

size(X) Count the number of all elements in X

continuous labels of 1 lasting less than 150 ms are replaced with 0s, assuming the section contains

false positives caused by background noise.

The final labels for each user are logically combined and output as scalar binary data. This

data, derived from the speech section estimation process, is referred to as “speech section data.”

All-speakers judgment: In the second step, the algorithm determines whether all users are

speaking within each speech section by combining the 1-0 data for each user with the speech

section data. The focus is placed on sections where the speech section data indicates that a user is

speaking. For each speech section, the algorithm calculates a threshold based on the maximum and

minimum sound pressure values across all sensors. If the sound pressure for all sensors surpasses
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Algorithm 4 All-speakers judgment

Require: U,S,P
Ensure: A

1: Insert zeros into all elements in A
2: for all S ∈ S do
3: pmin ⇐ min(P) in S before and after 100 ms
4: pmax ⇐ max(P) in S
5: ηS ⇐ pmin + (pmax − pmin) ∗ 0.95
6: for all d ∈ U do
7: pdmax

⇐ max(Pd) in S
8: if pdmax

> ηS then
9: Replace a ∈ A in S with 1

10: end if
11: end for
12: end for
13: return A

this threshold, it concludes that all users are speaking.

The process for making this all-speakers determination is detailed in Algorithm 4 and illustrated

in Figure 3.3, while Table 3.1 outlines the algorithm’s notation. The output of this step is an array

A, representing the speech activity of all users. This array is generated using the set of all sensor

IDs U , the speech sections S identified from the speech section estimation, and the sound pressure

data P = P1, P2, . . . , P|U | collected from all sensors.

To estimate the noise floor, the algorithm calculates the minimum sound pressure pmin by

examining a 100 ms interval before and after each speech section across all sensors (line 3). This

margin is added to ensure that the minimum sound pressure is accurately captured. Next, it

identifies the maximum sound pressure pmax within each speech section for all sensors (line 4).

The threshold for determining all-users speech ηS is then set as pmin +(pmax−pmin)∗0.95 (line 5).

The value of 0.95 was chosen as it maintained high accuracy while reducing the likelihood of overly

lenient judgments.

If the sound pressure within the speech section exceeds ηS for all sensors, the algorithm classifies

the section S as one where all users are speaking, assigning a label of 1 for that section (lines 6–11).

The algorithm then returns the speech labels for all users across the identified sections in array A.

Speaker identification: In the third step, the algorithm identifies which user is speaking during

each speech section by utilizing sound pressure values that are averaged, relativized, and adjusted

based on a baseline. Each speech section is analyzed to estimate where a user is speaking, relying

on the previously extracted speech section data. The speech of individual users is determined by

comparing their sound pressure values with the established speech threshold.

The sound pressure for each sensor is averaged using sliding windows, with a window size of

0.5 s and a slide interval of 0.01 s, allowing for fine-grained detection of simultaneous speech from

multiple speakers. The averaged sound pressures across all users Pavg are then used to identify
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Algorithm 5 Speaker identification with averaged sound pressure

Require: U,S,Pavg

Ensure: J
1: for all d ∈ U do
2: Insert zeros into all elements in Jd
3: end for
4: ηr ⇐ 1/size(U)
5: for all S ∈ S do
6: for all ti ∈ S do
7: f ⇐ 0
8: for all d ∈ U do
9: r ⇐ ratio of Pdavg

to Pdavg
at ti

10: δ ⇐ average(∀r in ¬S)− ηr
11: rbase ⇐ r − δ
12: if rbase > ηr + 0.01 then
13: Replace j ∈ Jd at ti with 1
14: f ⇐ 1
15: end if
16: end for
17: if f = 0 then
18: for all d ∈ U do
19: if rbase > ηr − 0.001 then
20: Replace j ∈ Jd at ti with 1
21: end if
22: end for
23: end if
24: end for
25: end for
26: Insert Jd into J
27: return J

the active speakers. The steps for speaker identification, based on these averaged sound pressures,

are detailed in Algorithm 5, illustrated in Figure 3.3, and the relevant notation is explained in

Table 3.1.

The output of the identification process is the array J, which represents the labeled speech

data for each user. This array is derived from the set of all sensor IDs U , the identified speech

sections S from speech section estimation, and the averaged sound pressure data for all sensors

Pavg = P1avg, P2avg , . . . , P|U |avg
.

The speech threshold ηr is determined based on the number of sensors, as indicated in line 4.

For each time ti within a speech section S ∈ S, the algorithm calculates the sound pressure ratio r

for each sensor using the averaged sound pressure p of each sensor d (line 9). A baseline adjustment

δ is then computed by comparing the sound pressure ratio during non-speech sections ¬S to the

threshold ηr (line 10), and this offset is subtracted from the sound pressure ratio for each sensor

(line 11).

The algorithm identifies speakers within each speech section S using a two-step process that
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incorporates both the averaged and baseline-adjusted ratio rbase. If the ratio rbase for sensor d

exceeds the sum of the threshold ηr and a margin of error of 0.01 in section S, the algorithm

classifies the user associated with sensor d as speaking in that section (lines 12–15). This initial

step detects clear speech when only a few people are talking.

The threshold ηr was optimized to 0.01, balancing detection accuracy without misclassifying

noise as speech. If the first step does not detect any speakers in section S, a second step is applied

with a slightly reduced margin of error of -0.001 (lines 18–22), which helps identify cases where

multiple users may be speaking simultaneously. This second pass detects more ambiguous speech

where multiple people are involved. Finally, the algorithm outputs the speech labels for each sensor

in the array J.

3.4 Evaluation

3.4.1 Speaker Identification Accuracy

An experimental evaluation was conducted to assess the accuracy of the proposed algorithm for

detecting speech using sound pressure data acquired from SRP Badges. The experiments took

place in a conference room, considering different numbers of participants, environmental noises,

and short utterances from the users. This study assumes a situation where environmental noise is

generated by video materials [18] played during collaborative learning activities.

The subjects were male university students in their early twenties. The room’s dimensions were

10.6 m, 7.05 m, and 2.65 m. The influence of reverberation was taken into account, as the room

was intended for collaborative learning. Each participant wore an SRP Badge on the chest and

was seated 1.50 m away from adjacent participants. A time synchronizer was placed on a table at

the center of the participants to ensure sensor synchronization.

For the experiments, both long and short utterances were tested using two types of speech

scripts provided to each participant. Table 3.2 shows the speech script prepared for the experi-

ments. Each script included 15 sentences in English. Participants took turns speaking one sentence

from the script, with a two-second interval between speakers. After completing a sentence, all par-

ticipants moved on to the next. The combinations of participants who spoke simultaneously were

varied for each sentence. For example, in an experiment involving three participants, the combi-

nations were as follows:

� One participant speaks while the other two remain silent

� Two participants speak simultaneously while the other remains silent

� All three participants speak simultaneously
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Table 3.2: Speech script prepared for the experiments

Order Long speech Short utterance
1 Nice to meet you everyone. Oh.
2 What do you study at the university? Hmmm.
3 Do you know where the library is? Huh?
4 I have a friend who speaks Chinese. What?
5 Please don’t keep the door open. Hey.
6 I can hardly believe your story. Hello.
7 I don’t know what you want to do. Pardon?
8 Shall we go hiking if it is sunny tomorrow? OK.
9 What should I do in order to improve my English? Thanks.
10 It is said that English is an international language. Good.
11 Without your help, we could not finish this job. Really?
12 It is dangerous for children to play here. Me, too.
13 Walking to the station, I met my father. Yes.
14 It takes five minutes to walk to the station. No.
15 I got up early so that I could make lunch. Nice.

In each case, all possible combinations of speakers and non-speakers were tested, taking into account

the variations in participants’ voice characteristics.

The accuracy of speaker identification was evaluated by comparing the proposed scheme with

three alternatives: “Scheme with absolute sound pressure” (absolute scheme), “Scheme with rela-

tive sound pressure” (relative scheme), and “An extended version of the method presented in [10]”

(Rhythm scheme). Both the absolute and relative schemes incorporate speech-section estimation

from parts of the proposed algorithm described in Sec. 3.3.3. In the absolute scheme, speaker iden-

tification relied on a speech threshold applied to each speech section, similar to the all-speakers

judgment approach in Sec. 3.3.3. For each user, the threshold ηS was determined in each speech

section S to identify individual speech segments. On the other hand, the relative scheme identified

multiple speakers using averaged and base-adjusted sound pressure, employing the thresholding

approach found in the speaker identification method of Sec. 3.3.3. The optimal speech detec-

tion threshold for both schemes was dependent on the evaluation conditions. The Rhythm scheme,

based on the work in [10], originally focused on identifying a single speaker using IoT devices called

Rhythm Badges. This method was extended to support the identification of multiple speakers. The

original scheme employed the VAD (Voice Activity Detection) algorithm [93] and a thresholding

algorithm to identify a single speaker for organizational management purposes. The VAD algo-

rithm used sliding windows to process sound pressure power, mitigating noise. The thresholding

algorithm then identified the speaker by selecting the user with the longest detected speech segment

in each section. To extend this approach for multiple speakers, modifications were made to the

thresholding algorithm, allowing it to detect simultaneous speakers by evaluating speech activity

for each user. The sliding window parameters for the VAD algorithm were empirically set to a

window size of 2 s and a slide width of 0.01 s. The optimal threshold for speech detection in the
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Algorithm 6 Labeling in speech section estimation

Require: U,P
Ensure: L

1: for all d ∈ U do
2: Insert zeros into all elements in Ld

3: ξ ⇐ 0
4: while ξ < length of Ld do
5: W ⇐ Pd ∈ P between ξ to ξ + 1 s
6: m⇐ max(W )
7: if m > ηs then
8: ηm ⇐ m ∗ 0.1
9: if w ∈W > ηm then

10: w ⇐ 1
11: else
12: w ⇐ 0
13: end if
14: Replace elements in Ld with w ∈W
15: end if
16: ξ ⇐ ξ + 0.5 s
17: end while
18: Insert Ld into L
19: end for
20: return L

thresholding algorithm varied depending on the specific evaluation settings.

The number of users: The speaker identification accuracy was evaluated with varying numbers

of users, using a script for long speech utterances. The number of users ranged from two to five.

The speech threshold ηs of Algorithm 6 was empirically set to 75 dB in the absolute, relative, and

proposed algorithms for speech section estimation. For the Rhythm scheme, the speech threshold

was set to 84 dB. This threshold was maintained consistently across different numbers of users.

Tables 3.3 and 3.4 present the F1-scores of each scheme and the corresponding confusion matri-

ces for two to five users. In Table 3.4, symbols indicate whether speech was present (T) or absent

(F), and whether the proposed algorithm estimated speech (P) or non-speech (N). Compared to

the absolute and relative schemes, the proposed algorithm combined the strengths of both compar-

ative schemes. It effectively identified all speakers in situations where all users spoke, leveraging a

combination of techniques from the two schemes. In cases involving fewer speakers, the proposed

scheme achieved high F1-scores by utilizing the relative scheme’s advantages. Additionally, for

detecting a single speaker, the proposed scheme performed well by benefiting from both compar-

ative schemes. However, Table 3.4 shows that the F1-scores were slightly lower in the cases of

one and four speakers out of five users, where the threshold incorrectly identified a non-speaker

as a speaker (False Positive). When compared with the Rhythm scheme, the proposed algorithm

accurately detected intermediate numbers of speakers, such as two out of three users, and similarly

for four and five users. As indicated in Table 3.4, the proposed scheme successfully avoided false
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Table 3.3: F1-scores under the different number of users

Case Scheme
# of users # of speakers Absolute Relative Rhythm Proposed

2
1 1.00 1.00 1.00 1.00
2 0.881 0.706 1.00 0.881

3
1 0.978 0.978 0.988 0.978
2 0.876 0.810 0.942 0.963
3 0.876 0.810 1.00 0.913

4

1 0.945 0.960 0.974 0.960
2 0.846 0.960 0.957 0.960
3 0.893 0.960 0.874 0.960
4 0.879 0.852 1.00 0.912

5

1 1.00 0.993 0.951 0.993
2 0.821 0.976 0.913 0.976
3 0.779 0.962 0.938 0.962
4 0.857 0.938 0.905 0.937
5 0.894 0.772 1.00 0.909

positives in most cases.

Environmental noise: The influence of environmental noise on speaker identification accuracy

was also assessed, involving three participants. A noise source was positioned 2 m away from the

table, generating five types of ambient noise: recorded sounds from trains, offices, streets, cars,

and rain. The other settings were consistent with the experiments under the different number of

users. Noise levels were set at 75 dB for trains, 70 dB for offices and streets, and 60 dB for cars

and rain, on average. Speech thresholds for the absolute, relative, and proposed algorithms were

empirically adjusted based on the environment, ranging from 80 dB to 85 dB. The Rhythm scheme

had thresholds between 84 dB and 89 dB, depending on the noise type.

Tables 3.5 and 3.6 display the F1-scores and confusion matrices for various environmental

noises. In these tables, the same symbol conventions were used as in previous evaluations. The

proposed scheme generally outperformed the absolute and relative schemes by accurately detecting

speakers and combining the strengths of both methods. However, Table 3.4 highlights slightly lower

F1-scores for the proposed scheme in certain scenarios, such as one or two speakers out of three

users under train or office noise, where false positives occurred. Compared to the Rhythm scheme,

the proposed algorithm performed better under street noise, showing a higher tolerance for low-

frequency noise, particularly between 10 Hz and 20 Hz. However, the Rhythm scheme excelled in

identifying speakers in rain noise, which involved uniform frequencies ranging between 0 Hz and

50 Hz, indicating some limitations in the proposed algorithm when handling such noise.

Short utterance: The impact of short utterances, defined as speeches lasting less than one

second [94], was also examined using a dedicated script. The other settings were consistent with

the experiments under the different number of users. The speech threshold ηs was empirically set

to 73 dB for the absolute, relative, and proposed algorithms, while the Rhythm scheme used a

threshold of 78 dB.
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Table 3.4: Confusion matrices under the different number of users

(a) Two users

One speaker out of two users Two speakers out of two users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N

T 30 0 30 0 30 0 30 0 26 4 18 12 30 0 26 4
F 0 90 0 90 0 90 0 90 3 27 3 27 0 30 3 27

(b) Three users

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N

T 44 1 44 1 44 1 44 1 85 5 90 0 90 0 90 0 39 6 34 11 45 0 42 3
F 1 224 1 224 0 225 1 224 9 171 8 172 11 169 8 172 5 40 5 40 0 45 5 40

(c) Four users

One speaker out of four users Two speakers out of four users Three speakers out of four users Four speakers out of four users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N

T 60 0 60 0 57 3 60 0 143 37 179 1 178 2 179 1 146 34 166 14 180 0 166 14 51 9 46 14 60 0 52 8
F 7 413 5 415 0 420 5 415 15 525 14 526 14 526 14 526 1 299 0 300 52 248 0 300 5 55 2 58 0 60 2 58

(d) Five users

One speaker out of five users Two speakers out of five users Three speakers out of five users Four speakers out of five users Five speakers out of five users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N

T 75 0 75 0 68 7 75 0 213 87 300 0 258 42 300 0 316 133 447 3 437 13 447 3 237 63 274 26 300 0 275 26 63 12 49 26 75 0 65 10
F 0 675 1 674 0 675 1 674 6 1194 15 1185 7 1193 15 1183 46 1005 32 1018 45 1005 32 1018 16 434 10 440 63 387 11 438 3 72 3 72 0 75 3 72

Table 3.5: F1-scores under the different environmental noise conditions

Case Scheme
Noise # of users # of speakers Absolute Relative Rhythm Proposed

Train 3
1 0.891 0.763 0.889 0.738
2 0.914 0.878 0.935 0.857
3 0.936 0.814 0.966 0.968

Office 3
1 0.938 0.918 0.875 0.928
2 0.865 0.888 0.878 0.845
3 0.918 0.725 0.989 0.938

Street 3
1 0.938 0.849 0.706 0.849
2 0.920 0.973 0.767 0.973
3 0.933 0.769 0.889 0.945

Car 3
1 0.865 0.882 0.989 0.900
2 0.867 0.938 0.927 0.938
3 0.839 0.587 1.00 0.795

Rain 3
1 0.928 0.938 0.989 0.947
2 0.853 0.899 0.942 0.899
3 0.938 0.824 1.00 0.947

Tables 3.7 and 3.8 provide the F1-scores and confusion matrices for short utterances. As with

the previous evaluations, symbols in Table 3.8 indicate whether speech occurred (T) or not (F),

and whether the proposed algorithm estimated speech (P) or non-speech (N). The proposed scheme

demonstrated strong performance by leveraging the advantages of both comparative schemes. It

accurately identified all speakers in most cases and performed well in single-speaker scenarios by

using techniques from the relative scheme. However, in the case of two speakers out of three users,

the proposed algorithm’s F1-score was slightly lower due to false positives. In comparison to the

Rhythm scheme, the proposed algorithm showed better accuracy for cases with one or two speakers
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Table 3.6: Confusion matrices under the different environmental noise conditions

(a) Train

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N

T 45 0 45 0 36 9 45 0 87 3 89 1 79 11 90 0 37 8 28 17 42 3 45 0
F 34 191 5 220 0 225 55 170 33 147 9 171 0 180 47 133 5 40 5 40 0 45 6 39

(b) Office

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N

T 45 0 45 0 42 3 45 0 77 13 82 8 90 0 90 0 29 16 24 21 45 0 45 0
F 16 209 3 222 9 216 26 199 12 168 7 173 25 155 30 150 0 45 0 45 1 44 2 43

(c) Street

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N

T 45 0 45 0 24 19 45 0 82 8 90 0 56 34 89 1 39 6 26 19 36 9 45 0
F 30 195 4 221 1 226 29 196 15 165 4 176 0 180 16 164 0 45 0 45 0 45 0 45

(d) Car

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N

T 45 0 45 0 44 1 45 0 83 7 86 4 89 1 89 1 24 21 18 27 45 0 35 10
F 24 201 9 216 0 225 16 209 15 165 4 176 13 167 7 173 0 45 1 44 0 45 8 37

(e) Rain

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N

T 45 0 45 0 44 1 45 0 72 18 81 9 90 0 87 3 35 10 25 20 45 0 45 0
F 24 201 3 222 0 225 4 221 14 166 9 171 11 169 13 167 1 44 2 43 0 45 1 44

Table 3.7: F1-scores of short utterances

Case Scheme
# of users # of speakers Absolute Relative Rhythm Proposed

3
1 0.916 0.929 0.878 0.929
2 0.775 0.960 0.857 0.878
3 0.767 0.800 0.989 0.846

out of three users, though slightly lower F1-scores were observed in the all-speakers case, where

the threshold occasionally misidentified a speaker as a non-speaker (True Negative).

3.4.2 Impact of Sound Pressure Sensors

The accuracy of the proposed scheme derives from two components: the architecture of the sound

pressure sensor and its synchronization. In Sec. 2.4.1, the synchronization accuracy of SRP Badges

is less than 30µs, which seems one of the contribution for precise speaker identification. This section

shows the impact of sound pressure sensor for precise speaker identification.

Figures 3.4 (a) and (b) display the circuit diagrams of a sound pressure sensor in the Rhythm
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Table 3.8: Confusion matrices of short utterances

One speaker out of three users Two speakers out of three users Three speakers out of three users
Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed Absolute Relative Rhythm Proposed
P N P N P N P N P N P N P N P N P N P N P N P N

T 16 29 22 23 43 2 22 23 81 9 82 8 90 0 86 4 13 32 20 25 45 0 21 24
F 0 225 0 225 10 215 0 225 15 165 0 180 30 150 20 160 1 44 0 45 1 44 0 45

Badge and the Sensor-based Regulation Profiler Badge. The Rhythm Badge, based on Open

Badge [9], utilizes an integration circuit, while the Sensor-based Regulation Profiler Badge employs

a peak hold circuit for sound pressure acquisition. The parameters of the circuit in the Sensor-based

Regulation Profiler Badge were chosen to achieve three objectives:

Eliminate low-frequency noise, specifically frequencies below 20 Hz, as they are unrelated to

speech. Amplify the sound pressure data 100 times to capture detailed changes in voice volume.

Precisely extract the beginning and end of each speech segment by adjusting the discharge slope

of the resistor-capacitor (RC) circuit. Simulations were performed for each circuit. A sinusoidal

wave was used to represent speech, with an amplitude of 0.8 V at 340 Hz and a duration of 500 ms.

Additionally, a direct current (DC) signal with an amplitude of 0.9 V and a length of 100 ms was

applied to simulate silence, placed before and after the sinusoidal wave.

Figures 3.4 (c) and (d) show the measured sound pressure as a function of time for both the

Rhythm Badge and the Sensor-based Regulation Profiler Badge. The Rhythm Badge exhibits

spikes at the start and end of the sound pressure measurement due to the integration circuit. In

contrast, the Sensor-based Regulation Profiler Badge, using a peak hold circuit, avoids spikes in

the measured sound pressure.

To evaluate the effect of the measured sound pressure data, a threshold-based speech detection

algorithm was applied to both the Rhythm Badge and the business-card-type sensor. A threshold

was set to detect the edges of speech segments. As shown in Fig.3.4 (c), the sound pressure in the

Rhythm Badge before and after the spikes was approximately 0.90 V and 0.95 V. The threshold

was set at 0.92 V to mitigate the effect of the spikes. In Fig.3.4 (d), the measured sound pressure

in the proposed sensor scheme was 0.9 V before speech and 1.8 V after. A threshold between 0.9 V

and 1.8 V yielded similar performance, so a threshold of 0.92 V was used in the proposed scheme

as well.

Figures 3.4 (e) and (f) show the results of the threshold-based speech detection for the Rhythm

Badge and the Sensor-based Regulation Profiler Badge. The Rhythm Badge struggled to accurately

extract speech using threshold-based detection due to the presence of spikes in the measured sound

pressure data. However, the Sensor-based Regulation Profiler Badge accurately detected speech

since its measured sound pressure lacked spikes. The results in Figs.3.4 (e) and (f) indicate that the

peak hold circuit detects speech more accurately than the integration circuit used in the Rhythm

Badge.
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Figure 3.4: Simulation results for speech detection in Rhythm and Sensor-based Regulation Profiler
Badge.

3.4.3 Influence of Synchronization Accuracy

An evaluation experiment using the SRP Badge was conducted to assess the relationship between

its time synchronization accuracy and speaker detection algorithm performance. The experimental

environment was identical to that described in Sec. 3.4.1. For this evaluation, pseudo data with

varying levels of time synchronization accuracy were generated by adding random values to the

timestamps of sound pressure data acquired by the SRP Badge. Since the distribution of time

synchronization errors shown in Fig. 2.14 resembles a normal distribution, normally distributed
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Table 3.9: Confusion matrix of speaker detection accuracy at each time synchronization error

0 ms 0.1 ms 1 ms 10 ms
P N P N P N P N

T 440 10 440 10 440 10 440 10
F 0 450 0 450 98 352 192 258

random values were used for this evaluation. The range of random values was determined by

adjusting the standard deviation of the normal distribution. For example, when the standard

deviation σ = 0.5 ms, approximately 95 % of the random values fall within the range of ±2σ = ±

1.0 ms. In this evaluation, ±2σ was treated as the time synchronization error.

Table 3.9 shows the confusion matrices of speaker detection accuracy for each synchronization

error. From Table 3.9, it can be observed that as the time synchronization error increases, the

misdetection of speech during non-speech intervals also increases. To verify the statistical sig-

nificance of these results, a t-test was conducted to compare the mean differences for each time

synchronization error. Given a sample size of 10, degrees of freedom of 18, and a significance

level of 5 %, no significant difference was observed between time synchronization errors of 0 ms

and 0.1 ms. However, a significant difference was observed between 0 ms and 1 ms. Based on these

results, it can be concluded that time synchronization accuracy within 1 ms between SRP Badges

is necessary to ensure the high speaker detection accuracy of the SRP Badge.

3.5 Conclusion

This chapter introduced an innovative sound pressure sensor along with a speaker identification

algorithm designed for business-card-sized sensors, aimed at analyzing collaborative dynamics in

multi-person activities. The sound pressure sensor incorporates a peak hold circuit and a time

synchronization module, which help reduce spikes and ensure precise synchronization between sen-

sors, enabling accurate and low-cost detection of user speech. The algorithm effectively filters out

background noise from non-speaker sensors, achieving high accuracy in identifying the speaker.

The evaluation demonstrated the proposed method’s efficiency across various conditions, includ-

ing different user numbers, background noise levels, and both long and short speech durations.

Furthermore, the peak hold circuit reliably captures user speech, and the synchronization error

between sensors consistently remains within ±30 µs.
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Chapter 4

Indoor Localization on Mobile
Devices

4.1 Introduction

The adoption of IoT systems for multimodal collaboration analysis is expanding. Multimodal

analysis has become critical for detailed descriptions of individuals and their environments. In

traditional multimodal collaboration analysis, experts often analyzed collaboration environments

by placing video cameras and microphones to record activities, then reviewing the recordings for

insights. This approach has historically incurred significant human and time costs due to its

reliance on manual effort. With the proliferation of IoT systems, these costs are expected to

decrease, potentially accelerating the adoption of multimodal collaboration analysis.

One modality for collaboration analysis is the posture of each user [11,95,96]. For example, the

literature [96] captures learners’ posture data to analyze its impact on the quality of collaborative

learning in augmented reality environments. To collect posture data, static cameras are typically

installed in the collaboration environment. Using the captured visual data, posture information is

extracted through joint detection using computer vision algorithms. However, such technologies

involve high setup costs in practical collaboration scenarios to accommodate user mobility and

address occlusions, rendering them unsuitable for effectively supporting collaboration analysis.

To address these limitations in practical scenarios, tag-based motion capture offers a promising

solution. Unlike traditional systems, this approach utilizes several small and lightweight tags worn

by each user, offering robust performance in practical collaboration scenarios. Tags provide a more

robust and practical solution for motion capture in multimodal collaboration analysis, particularly

in dynamic or crowded scenarios.

In the context of collaboration analysis, tag-based motion capture requires indoor localization

for each tag to meet two key requirements: centimeter-level accuracy and low-cost anchor setup.

Centimeter-level accuracy is essential for accurately capturing and analyzing learners’ postures.
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Low-cost anchor setup is required to support collaboration analysis without introducing additional

costs for the environment. Although various indoor localization methods such as acoustic, infrared,

WiFi/BLE, and RFID are available as discussed in Sec. 4.5, none of these methods simultaneously

satisfy both requirements.

Visual-Inertial Odometry (VIO) is a potential localization scheme to meet these requirements.

VIO complementarily integrates sensor data from cameras, LiDAR, and inertial measurement units

(IMUs), enabling centimeter-level localization in indoor scenarios through a straightforward setup

process. By utilizing miniaturized visual and inertial sensors, each tag is expected to achieve

precise localization for motion capture in multimodal collaboration analysis.

However, the challenges of VIO-based localization in practical environments remain unclear.

Various situations can arise in the context of real-world collaboration scenarios. For example,

some collaboration environments may be monochromatic with limited visual features. In addition,

collaboration environments utilizing projectors may involve dim lighting conditions or flickering

light sources. Whether VIO consistently achieves precise localization in practical environments,

including the aforementioned examples, has not been sufficiently evaluated.

This study aims to comprehensively evaluate the effectiveness of current VIO systems in practi-

cal environments, addressing the research question of their applicability to real-world collaboration

analysis. Specifically, the research involves conducting case studies simulating practical environ-

ments to verify the positioning accuracy of VIO. Controlled experiments are then performed to

identify the practical challenges of VIO observed in the case studies.

This study also poses a prototype solution with Ultra Wide Band (UWB) to address these

challenges. The study demonstrates how the proposed approach enhances the robustness of indoor

positioning in practical environments.

4.2 Case Study

4.2.1 Experiment Workflow

To evaluate the practicality of VIO, this study conducted a user-driven case study with a mobile

device. As a mobile device, iPhone 12 Pro was adopted in this study. A commercial Augmented

Reality (AR) application, which highly relies on VIO to overlay virtual elements onto the real

world, was also adopted for the evaluation. Figure 4.1 shows the overview of the application.

The application is called AR Visual [97], which virtually simulates furniture on the environment.

This study set a task: classroom setup with the application. The primary objective is to find a

table and chair arrangement, which maximizes the student capacity while ensuring the accessibility

and clear screen visibility from all the seats. Each user deployed virtual tables and chairs on an

empty classroom and checked the whole layout from different vantages. This study gathered 17
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Task: classroom setup Place furniture in AR Check from different vantages

Figure 4.1: The experimental procedure of case study.
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Figure 4.2: The user responses in the case study.

subjects aged between teens and forties in Osaka University and University of California, San

Diego. To further examine the effect of lighting conditions on localization performance, this study

also conducted the experiment under two lighting conditions: normal room (500 lux) and dark

room (2.5 lux). After the simulation, each subject was interviews with a questionnaire shown in

Table 1.

4.2.2 Case Study Analysis

Fig. 4.2 presents the participants’ responses, displaying average scores and interquartile ranges for

each question. The results show that task completion was rated lower in the dark room, which is

likely due to increased drift, as indicated by responses related to furniture misalignment and global

drift. The dark room, with fewer visual features, led to more tracking failures. Moreover, some

participants reported motion sickness in the dark room, likely due to greater drift of the virtual

elements.

From a quantitative perspective, the application reduced setup time. Arranging physical tables

and chairs in a bright room took 16 minutes and 13 seconds, while using AR shortened the time

to 12 minutes and 31 seconds in the bright room and 9 minutes and 58 seconds in the dark room.
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However, the drifting error for the front table averaged 30 cm in the bright room and 50 cm in the

dark room, which impacted task completion and comfort.

4.2.3 Takeaways

The case study revealed several barriers to the VIO-based localization in practical scenarios, par-

ticularly in complex environments. The first is global drift of virtual elements. Virtual tables

and chairs exhibited a tendency to drift over time, with average drift distances of 30 cm in the

bright room and 50 cm in the dark room. The second is tracking failures. AR systems experienced

difficulty tracking virtual objects in low-light conditions or environments lacking visual features,

resulting in glitches. Finally, such localization and tracking failures cause motion sickness for each

subject, especially in darker environments, due to inconsistencies in user perception.

Similar challenges were observed in other AR applications, such as AnywheRe [98] and ARvid [99],

Augment [100], COCOAR [101], Measure [102], and Monster Park [103]. These issues are largely

due to reliance on visual-based sensing systems (monocular cameras and LiDARs). Further anal-

ysis of these failure modes is provided in Sec. 4.3, where detailed experiments quantify the extent

of errors and provide a root-cause analysis of the problems encountered.

4.3 Controlled Experiment

This section conducts controlled experiments to quantitatively identify failure factors of VIO-based

localization and tracking in Sec. 4.2. To delve into the factors, this section extracted variables in

the case study environment: when using a smartphone integrated with an IMU, cameras, and

LiDAR, across environments with varying complexity, under diverse lighting conditions, and at

different motion speeds.

4.3.1 Control Variables

Sensors: Most smartphones utilize monocular cameras to enable VIO for tracking and localization,

while some modern devices also include time-of-flight sensors or LiDAR for enhanced functionality.

This study analyzed how different sensor combinations influence tracking and localization accuracy.

For this purpose, this study selected the iPhone 12 Pro, which features these advanced sensors. As

shown in Fig. 4.3, this study applied copper foil tape to create four configurations: IMU + camera

+ LiDAR, IMU + camera, IMU + LiDAR, and IMU only.

Environment complexity: The number of feature points captured by the camera and LiDAR

varies with the complexity of the environment. To evaluate the influence, this study tested three

types of environments: wall, shelf corner, and crowded, as depicted in Fig. 4.6. Figures 4.5 (a, b)

illustrate the changes in the number of feature points detected by the camera, using OpenCV [104],

and by LiDAR, using LOAM [105], as the smartphone moves back and forth on an xy-stage. In the
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camera ✓ ✓ ✘ ✘

LiDAR ✓ ✘ ✓ ✘

Figure 4.3: Sensor combination.

wall shelf corner crowded

camera LiDAR camera LiDAR camera LiDAR

Figure 4.4: Visual complexity.

(a) Camera feature (b) LiDAR feature

Figure 4.5: The extracted feature points.

wall environment, the number of feature points remains stable for both the camera and LiDAR.

However, in the shelf corner and crowded environments, significant fluctuations occur based on

the objects visible in the camera’s field of view. Additionally, the trends in feature point counts

between the camera and LiDAR do not always correspond. For example, at around the 10-second

mark in a crowded environment, a wall covered with newspapers leads to a reduction in LiDAR-

detected feature points, while the camera simultaneously detects an increased number of feature

points. This highlights discrepancies between the two sensors in capturing feature points.

Brightness: Localization accuracy with a camera is influenced by the level of brightness. To

examine the influence, the study conducted experiments under three distinct lighting conditions.

Using an Urceri MT-912 light meter, which offers an accuracy of ±3 % of the reading plus ±8
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Figure 4.6: Lighting conditions.
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Figure 4.7: Movement types.

digits on the least significant digit and a resolution of 0.1 lux up to 1000 lux, this study measured

the illuminance. This study created three scenarios: dark night (0 lux), dark room (7 lux), and

normal room (200 lux), as illustrated in Fig. 4.6. In the crowded environment, the camera detected

0 feature points under dark night conditions, 167 feature points in the dark room, and 222 feature

points in the normal room.

Movement: This study evaluated four types of motion patterns, as depicted in Figures 4.7. In

static, the smartphone remains completely still, as shown in Fig. 4.7 (a). In xy-stage, the device

moves back and forth over a distance of 40 cm at speeds of up to 0.08 m/s, as illustrated in Fig. 4.7

(b). In walk, a person walks around the room, carrying the smartphone, at speeds of up to 1 m/s,

as shown in Fig. 4.7 (c). In swing, the smartphone is waved back and forth with a motion speed

of up to 3 m/s, as depicted in Fig. 4.7 (d).

4.3.2 Localization: Distance

Experimental settings: As outlined in 4.1, smartphones can utilize landmark QR codes or

AprilTags to determine their position within global coordinates in environments lacking GPS. To

evaluate the accuracy and reliability of this approach, this study conducted a quantitative analysis

focusing on two key metrics: the detection distance for QR codes and AprilTags and the initial
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(b) AprilTag(a) QR code

Figure 4.8: Landmark types.

positional error when these landmarks are detected. Fig. 4.8 illustrates the landmark patterns used

in the study, featuring QR codes and AprilTags in three sizes: small (3 cm × 3 cm), medium (6 cm

× 6 cm), and large (9 cm × 9 cm). The evaluation procedure involves two device movements: first,

rotating the device along the z-axis by moving it left and right, and second, rotating it along the

x-axis by moving it up and down. These actions enable the smartphone’s VIO to effectively map

the surrounding space and integrate the physical environment with the virtual AR environment.

After spatial mapping, the smartphone attempts to detect and localize itself using a QR code or

AprilTag from a specific distance. Finally, the perceived location in the AR coordinate system is

compared with the smartphone’s actual physical location to assess accuracy.

Results: Fig. 4.9 illustrates the relationship between the distance from a QR code or AprilTag

to a smartphone (x-axis) and the localization error, represented as the discrepancy between the

actual and perceived AR space locations (y-axis). Notably, bars are absent in instances where the

landmark was undetectable. A key finding emerged: the localization error depends solely on the

distance between the smartphone and the landmark, irrespective of ambient lighting, the type of

landmark, or its size. In Fig. 4.9 (a), the error for both QR codes and AprilTags increases linearly

with distance, unaffected by brightness or landmark type. Similarly, Fig. 4.9 (b) demonstrates

that localization error trends remain consistent across different sizes of AprilTags, underscoring

that factors like lighting, type, and size have no impact on the error at a given distance. However,

these factors did influence the detectable range of the landmarks. For instance, in Fig. 4.9 (a), a

large QR code was readable up to 300 cm in a normal room, but this range decreased to 200 cm

in a dark room. QR codes also exhibited shorter detectable distances compared to equivalently

sized AprilTags, as their smaller pixel structure accommodates more data but reduces readability.

Additionally, Fig. 4.9 (b) shows that larger landmarks allowed greater detectable ranges, with

readability improving as the landmark size increased. This significant observation highlights that

localization error is solely dependent on distance, providing valuable insights for optimizing AR

systems. It emphasizes the critical limitation of proximity in achieving accuracy with optical AR

systems.
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(a) Landmark & brightness (b) Landmark size

Figure 4.9: Localization accuracy with different detection distance.

4.3.3 Localization: Angle

Experimental settings: In exploring the constraints and strengths of QR code-based and

AprilTag-based landmark detection for smartphone VIO, this study hypothesized that a land-

mark’s readability depends not only on the distance from the scanner but also on the angle of

approach. To test the influence, this study mounted 3 cm × 3 cm QR code and AprilTag land-

marks on a wall and conducted evaluations at a fixed distance of 1 m. The angle of approach was

varied from −90◦ to +90◦ in 10-degree increments, with 0◦ representing a direct, perpendicular

approach to the landmark. The experimental conditions were consistent with those outlined in

Sec. 4.3.1, ensuring that other variables remained constant and did not influence the results. This

setup allowed for a focused assessment of how the angle of approach affects landmark detection.

Results: The experimental results, depicted in Fig. 4.10, highlight a significant limitation regard-

ing the angle at which a smartphone’s camera can reliably detect QR codes and AprilTags in AR

applications. In Figures 4.10 (a, b), the horizontal axis represents the angle of the smartphone rela-

tive to the landmark, while the vertical axis shows the recognition distance, with accurate readings

indicated at 1 m. Areas without bars denote instances where the landmark was undetectable. The

findings reveal that QR codes have a notably narrow detection angle, limited to approximately 50◦

from the front, due to their high pixel density. Within this range, the detection distance remains

consistent at 1 m. However, this restricted angle poses challenges, particularly for dynamic AR

interactions where users may not consistently approach landmarks from ideal perspectives. These

limitations have significant implications for AR applications. A narrow detection angle reduces the

flexibility and usability of landmark-based systems, potentially diminishing user engagement and

immersion. Aligning a smartphone precisely within the required detection angle can be challeng-

ing for users, leading to frustration and interruptions in the experience. This issue is particularly

critical in scenarios like navigation, education, or interactive environments with dense or complex
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Figure 4.10: Localization accuracy with different detection angle.

layouts, where ease of interaction is essential for a seamless user experience.

4.3.4 Tracking: Environment Complexity

Experimental settings: This section explores the challenges environmental complexity presents

to tracking performance in VIO systems. The intricacy of an environment plays a crucial role

in determining the effectiveness of different sensing technologies used for spatial recognition and

mapping. For example, environments with distinct color variations benefit camera-based systems

by providing numerous feature points essential for accurate tracking. On the other hand, envi-

ronments with pronounced physical irregularities, such as bumps and ridges, are better suited for

LiDAR systems, which depend on surface variations for precise mapping. To investigate these

effects, this experiments systematically varied environmental complexity and sensor configurations

to assess their combined impact on tracking accuracy. The tests were conducted under controlled

conditions simulating normal room lighting to ensure practical applicability. Movement was simu-

lated using an xy-stage, allowing for consistent and reproducible evaluations of how environmental

features influence VIO system performance. This methodology provided valuable insights into op-

timizing VIO systems by examining the interactions between different sensors and environmental

characteristics, paving the way for enhanced performance across diverse application scenarios.

Results: Fig. 4.11 (a) presents the 99th percentile localization error observed in our experiments.

While LiDAR can enhance localization accuracy when combined with cameras, it is unable to

independently track the environment when using the iPhone 12 Pro. Specifically, as shown in

Fig. 4.11 (a), LiDAR alone struggles to track effectively across environments such as wall, shelf

corner, and crowded scenes. In feature-rich environments like crowded settings, the IMU + camera

configuration achieves high localization accuracy, and the addition of LiDAR does not degrade

performance. This suggests that LiDAR complements camera data under suitable conditions.

However, in feature-sparse environments such as shelf corner, integrating LiDAR with the IMU

and camera improves localization accuracy compared to using only IMU + camera. These results

demonstrate LiDAR’s ability to enhance depth perception and feature detection where camera-

based systems are less effective. Despite its benefits, the IMU + LiDAR configuration performed

poorly, highlighting the critical importance of sensor fusion in achieving precise localization. The

findings underline the nuanced role of LiDAR in VIO systems, showcasing its potential to enhance
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(a) Environment (b) Crowded timeline

Figure 4.11: Tracking accuracy in different visual complexity.

localization accuracy when used alongside cameras, while also emphasizing its limitations as a

standalone input. To further explore the results, Fig. 4.11 (b) examines location tracking errors

under the crowded scene. The figure plots localization errors over time, with the x-axis represent-

ing time in seconds and the y-axis denoting localization error. In this experiment, a smartphone

mounted on an xy-stage moved back and forth over a distance of 40 cm for 20 seconds. At the

starting point, all sensor configurations began with zero localization error. As the smartphone

moved away, both the IMU + camera and IMU + camera + LiDAR configurations showed in-

creasing errors, which diminished upon returning to the starting point, indicating effective error

correction. In contrast, the IMU + LiDAR setup exhibited a gradual increase in error over time,

even as the device returned to the start. This drift was caused by IMU inaccuracies, leading to

a slight misalignment over time and a failure to accurately track movement. The IMU + LiDAR

configuration notably perceived the device as stationary despite actual motion. This phenomenon,

driven by IMU drift, is further analyzed in Sec. 4.3.7, emphasizing the limitations of LiDAR-IMU

configurations without the aid of a camera for reliable tracking.

4.3.5 Tracking: Brightness

Experimental settings: Fig. 4.11 (a) revealed that in complex environments, the combination

of a camera and IMU enables high-precision tracking without relying on LiDAR. This finding

highlights the adaptability of VIO systems in intricate settings by leveraging the complementary

strengths of cameras and IMUs. However, a well-known limitation of camera-based systems is

their sensitivity to changes in lighting conditions, which can significantly impact the detection

and reliability of feature points, posing challenges for consistent tracking accuracy across varying

lighting environments. On the other hand, LiDAR offers a distinct advantage with its immunity

to ambient light variations. This stability ensures that LiDAR can provide reliable data even

in conditions where camera-based systems falter. To thoroughly evaluate these differences, this
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study extended our experiments using the crowded complexity environment described in Sec. 4.3.4,

introducing deliberate variations in lighting to assess their effects. The lighting conditions tested

included dark night (0 lux), dark room (7 lux), and normal room (200 lux), as shown in Fig. 4.6.

Additionally, a blink condition was introduced, where lighting alternated between 0 lux and 200 lux

every 3 seconds. This approach allowed to systematically evaluate the adaptability and limitations

of camera and IMU configurations under varying lighting conditions, while also assessing the

robustness of LiDAR-based data acquisition in scenarios that challenge camera-based systems.

Results: The investigation under varying lighting conditions uncovered a surprising and signifi-

cant finding regarding performance under blink conditions, where illumination alternates between

darkness and normal room lighting. As shown in Fig. 4.12 (a), which presents the 99th percentile

positional error across experiments, all sensor combinations experienced increased error rates as

the environment became darker. Notably, the degradation in accuracy under blink conditions

was as severe as that observed in the dark night scenario. Although blink conditions periodically

provided the same illumination level as the normal room, even brief periods of darkness signifi-

cantly impaired positional accuracy. This effect was evident even when using the combined IMU

+ camera + LiDAR configuration, highlighting that the inability to consistently capture feature

points, even momentarily, can substantially compromise tracking precision. Interestingly, further

analysis revealed that incorporating LiDAR could, in some cases, result in poorer accuracy than

using only IMU + camera. For instance, in the dark room scenario, the IMU + camera + LiDAR

setup performed worse than IMU + camera alone. This counterintuitive result suggests that under

certain complex conditions, LiDAR’s additional data does not always enhance performance and

may even degrade it. The degradation likely stems from both hardware and software factors: low

light reduces the number of camera-detectable feature points, making it difficult to integrate Li-

DAR point clouds effectively with visual data. To better understand these limitations, this study

conducted a detailed time-series analysis of positional accuracy in the dark room scenario. As illus-

trated in 4.12 (b), with time on the x-axis and positional error on the y-axis, configurations using

IMU + camera + LiDAR exhibited greater fluctuations (or jitter) compared to those using IMU

+ camera. This increased jitter indicates challenges in matching camera-detected feature points

with LiDAR-acquired depth data under low-light conditions. Insufficient lighting introduces errors

in aligning visual feature points with corresponding LiDAR point clouds, exacerbating positional

inaccuracies. This finding underscores a critical challenge in fusing LiDAR and visual data in sub-

optimal lighting. It highlights the need for improved algorithms or methodologies capable of more

robustly integrating disparate sensor inputs, particularly in environments with limited or variable

lighting.
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(a) Brightness (b) Dark room timeline

Figure 4.12: Tracking accuracy under different lighting conditions.

4.3.6 Tracking: Movement

Experimental settings: In Sec. 4.3.5, this study observed that the system incorrectly inferred the

smartphone to be stationary in the dark night environment. This raised questions about the IMU’s

sensitivity to detect movement, prompting us to hypothesize that the speed of the xy-stage, set at

8 cm/s, may have been too low to trigger motion detection by the IMU. To investigate further, this

study conducted additional experiments using two distinct motion patterns: a walking motion at

speeds of up to 1 m/s and a dynamic swinging motion reaching up to 3 m/s, both relying solely on

the IMU for movement detection. Ground truth data for these experiments was obtained using the

HTC VIVE Tracker, a well-established tracking system [106]. This approach enabled us to evaluate

the IMU’s performance across different motion intensities and address potential limitations in its

ability to detect movement at lower speeds.

Results: One of the key findings from this research on smartphone-based VIO systems is the

limited capability of the IMU to accurately track movement across various speeds. As shown

in Fig. 4.13 (a), which plots speed against positional tracking error, the IMU performs well for

walking movements (walk), capturing general trends despite minor errors. However, as illustrated

in Fig. 4.13 (b), the IMU struggles significantly with more dynamic movements such as swinging

(swing), where errors are much larger compared to walk. Additionally, Sections 4.3.4 and 4.3.5

revealed that the IMU failed to detect slower movements, such as those performed on the xy-stage

at a speed of 8 cm/s. Despite these limitations, the iPhone 12 Pro’s VIO system was capable of

achieving positional tracking at walking speeds of approximately 1 m/s, even without the support

of a camera or LiDAR. These findings underscore the nuanced strengths and weaknesses of IMU-

based tracking in VIO systems, highlighting its ability to handle moderate-speed movements while

revealing challenges with both slow and highly dynamic motions.
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(a) Walk

(b) Swing

Figure 4.13: The tracking results under different movement.

4.3.7 Microbenchmark: IMU’s Drift

Experimental settings: It is well-documented in inertial navigation and AR technologies that

IMUs are prone to drift [107, 108], a phenomenon that can significantly degrade location-tracking

accuracy over time. In Sec. 4.3.4, this study attributed the widening error over time in the IMU

+ LiDAR configuration, as observed in Fig. 4.11 (b), to IMU drift. This section systematically

investigated the occurrence and impact of IMU drift within our experimental setup, focusing on its

effect on positional accuracy under varying motion conditions. This study conducted evaluations

in two distinct scenarios. In static, the device was kept stationary to assess drift in the absence

of movement. In xy-stage, the device underwent continuous back-and-forth motion at a controlled

speed of 8 cm/s. Each scenario was evaluated over a duration of 10 minutes to capture the

progression of drift and its cumulative effects. To ensure the reliability of the results, each condition

was repeated five times. This thorough analysis provides a quantitative understanding of IMU

drift in both static and dynamic contexts, offering valuable insights into its impact on VIO system

performance for smartphone applications. These findings are instrumental in identifying strategies

to mitigate drift, thereby improving the robustness of location tracking in real-world scenarios.

Results: Fig. 4.14 illustrates positional error over time, with the horizontal axis representing time

and the vertical axis indicating the magnitude of localization error. Figures 4.14 (a, b) reveal

that drift is present under both static and xy-stage (dynamic) conditions, highlighting a persistent

challenge for VIO systems. A key observation is the variability of drift rates across different trials,

emphasizing the unpredictable nature of this phenomenon. Drift is notably more pronounced in the
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Figure 4.14: Experimental results of IMU’s drift.

dynamic xy-stage condition compared to the static setup. In the static scenario, the largest error

recorded over 10 minutes was approximately 1 cm—a relatively minor issue but still potentially

impactful for applications requiring high precision. In contrast, the xy-stage scenario exhibited

errors as large as 20 cm over the same period, posing a significant challenge for accurate positional

tracking in dynamic environments. These findings have important implications for tracking. In

static scenarios, a 1 cm error is unlikely to disrupt most navigation or interaction tasks. However,

in dynamic conditions akin to the xy-stage setup, drifts of up to 20 cm can severely impair user

experiences by misaligning virtual objects and disrupting spatial interactions. Such inaccuracies

undermine the immersive quality of tracking and could limit their effectiveness in use cases requiring

precise spatial awareness. Addressing IMU drift is therefore critical to improving tracking reliability

and user satisfaction.

4.3.8 Microbenchmark: Various Smartphones

Experimental settings: To examine the dependency of tracking performance on different de-

vices, this study conducted experiments using various smartphones in environments with the visual

complexity and brightness levels described in Sections 4.3.4 and 4.3.5. In addition to the iPhone

12 Pro used in previous sections, this study included the iPhone 15 Pro and Google Pixel 8 Pro

as representatives of the latest models from iPhone and Android (as of August 2024). Since the

Pixel 8 Pro lacks LiDAR, its tracking accuracy was evaluated using only the IMU + camera con-

figuration. For the iPhone 15 Pro, this study performed tracking experiments in the shelf corner

environment to compare its performance trends with the iPhone 12 Pro. Additionally, tracking

was tested with both the iPhone 15 Pro and Pixel 8 Pro under varying brightness conditions.

The experimental settings and procedures for these tests adhered to the methodologies outlined in

Sections 4.3.4 and 4.3.5, ensuring consistency and reliability across all device comparisons.

Results: Fig. 4.15 (a) illustrates the 99th percentile positional error for various smartphones in

the shelf corner environment. The results indicate that the iPhone 15 Pro exhibits the same
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(a) Shelf corner (b) Brightness

Figure 4.15: Tracking accuracy with different smartphones.

general tracking trend as the iPhone 12 Pro. As highlighted in Sec. 4.3.4, the figure reaffirms that

LiDAR alone is insufficient for effective tracking but demonstrates its capability to enhance tracking

accuracy when integrated with camera and IMU data. A notable finding is the hardware advantage

of the iPhone 15 Pro. Its higher-spec camera and LiDAR contribute to improved tracking accuracy

compared to the iPhone 12 Pro, particularly in the IMU + camera + LiDAR and IMU + camera

configurations. Fig. 4.15 (b) presents the 99th percentile positional error under varying brightness

levels across the iPhone 12 Pro, iPhone 15 Pro, and Pixel 8 Pro. The results show a consistent

trend among all devices, with tracking accuracy deteriorating as brightness decreases from 200

lux (normal room) to 0 lux (dark night). As noted in Sec. 4.3.5, the blink condition — where

lighting alternates between 0 lux and 200 lux — failed to provide sufficient visual cues to improve

tracking accuracy for any device, underscoring the limitations of momentary visual information in

enhancing positional precision.

4.4 Potential Solution

In Sec. 4.3, controlled experiments allowed to uncover various failure modes, shedding light on

the challenges associated with using current smartphone technologies for accurate localization and

tracking. These experiments highlighted fundamental shortcomings in existing frameworks, em-

phasizing the need for more reliable and precise solutions to improve both user experience and

application performance. This section shifts the focus towards addressing these challenges by ex-

ploring the use of UWB technology, which is now a standard feature in many modern smartphones.

UWB stands out as an ideal candidate for precise location tracking due to its exceptional accuracy

and minimal latency, making it a promising solution to the limitations discussed earlier.

4.4.1 Smartphone with UWB

UWB technology has recently found its way into smartphones, representing a major step forward in

wireless communication and device interaction. Known for its precise location tracking capabilities,
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Figure 4.16: Experimental setup with UWB.

UWB has been predominantly employed in asset tracking solutions, as demonstrated by devices

like Apple’s AirTag [109] and Samsung’s SmartTag+ [110]. These innovations highlight UWB’s

ability to enhance interactions with everyday items by delivering exceptional accuracy in locating

them.

To further investigate its potential, this study used the DW3000 chip in conjunction with an

iPhone 12 Pro to replicate the experimental setup outlined in Sec. 4.3. This included deploying

an application on the iPhone to measure distance, bearing, and elevation angles, as illustrated in

Fig. 4.16. This study customized Qorvo’s iOS application, Qorvo Nearby Interaction [111, 112],

which facilitates the localization of DW3000 devices using iOS-based UWB systems, to record

localization data during the experiments.

4.4.2 Global Coordinate Detection with UWB

As discussed in Sections 4.3.2 and 4.3.3, the detection range and angle of QR codes and AprilTags

were found to be limited, particularly when approached from varying angles. In contrast, our

experiments confirmed the reliability of using UWB tags as landmarks for localization.

In the setup illustrated in Fig. 4.16, we conducted tests by receiving signals from a UWB

landmark tag while systematically placing a smartphone on a 2 m grid within a 6 m × 10 m room.

The UWB landmark tag was fixed at the location indicated by the red “x” in the figure.

From the frames transmitted by the landmark UWB tag, which included distance, azimuth,

and elevation information, we derived location estimates. Each blue square and corresponding

number in Fig. 4.17 represents a measurement point and the associated positional error. The

results demonstrate that communication with the UWB tag was possible from all areas of the

room.

By combining UWB technology with vision-based approaches or leveraging advanced localiza-

tion techniques capable of achieving errors within just a few centimeters [113,114], we propose the

possibility of attaining high-accuracy global coordinate detection over a broader area than what is
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Figure 4.17: Localization error [m] with a UWB transceiver.

feasible with visual landmarks alone. This advancement has the potential to significantly enhance

location-based services, paving the way for future innovations in wireless communication.

4.4.3 Global Coordinate Tracking with UWB

UWB signals exhibit minimal sensitivity to variations in lighting conditions. Moreover, the Nearby

Interaction API [115] enables seamless extraction of UWB ranging and angle-of-arrival data be-

tween an iPhone and commercially available UWB tags. This makes the integration of UWB-based

sensing with VIO-based localization, which can be prone to errors, an appealing solution to address

the challenges identified in this paper.

To demonstrate this approach, we developed a prototype that combines these technologies. A

single landmark UWB tag was placed in the environment to serve as a static physical anchor for

the iPhone. As the iPhone moved through space, we measured its distance to the tag and the angle

of the UWB signal’s arrival. Simultaneously, we gathered VIO-based location estimates derived

from VIO, depending on environmental factors, can experience drift or inaccuracies.

These datasets were coupled within a factor graph framework implemented using the open-

source GTSAM [116] optimization library. The state space to be estimated includes the phone’s

position over time and the location of the static UWB tag. ARKit’s VIO provided relative coor-

dinates between time steps, while UWB measurements supplied range and bearing data relative

to the tag. These inputs defined ”between factors” and ”range-bearing factors” to constrain the

optimization.

The factor graph, illustrated in Fig. 4.18, was optimized using the Levenberg-Marquardt algo-

rithm [117]. The optimized phone trajectory, alongside ARKit’s VIO-only estimates and UWB-only

measurements, is shown in Fig. 4.18. In challenging scenarios such as dark night or blink condi-

tions, where VIO struggles to localize the phone (Sec. 4.3.5), UWB signal coupling significantly

improves the estimates, as evidenced by Fig. 4.19 (c, d).

Notably, the optimized cumulative distribution functions (CDFs) in Figures 4.19 (a, b) out-

perform both standalone VIO and UWB sensing. This improvement demonstrates that combining
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Figure 4.18: Factor graph for UWB + VIO coupling.
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Figure 4.19: CDF of localization error.

two independent sensing modalities—VIO and UWB—through an effective coupling algorithm like

GTSAM can substantially enhance localization performance, even in scenarios where VIO fails.

4.5 Related Work

Many studies have explored alternative sensing methods to enhance vision-based localization sys-

tems, aiming to address the inherent limitations of such approaches. Vision-based systems, relying

on cameras or LiDAR, often struggle in low-light conditions, featureless environments, or dynamic

scenarios. Despite their widespread use, there has been limited systematic analysis of the failure

modes associated with these systems. This study addresses that gap by identifying and analyzing

key failure scenarios and advocating for the integration of complementary sensing technologies,
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such as UWB, to improve robustness and accuracy.

Characterizing vision-based localization systems: Precision in vision-based localization hinges

on two aspects: accurate ego-localization and reliable placement of virtual anchors within an

environment. Systems such as ARKit [118] for Apple devices and ARCore [119] for Android

devices utilize computer vision techniques to deliver these capabilities for AR.

Previous research [120–122] has evaluated the accuracy of virtual anchor placement in controlled

indoor environments, while others [123–126] have experimentally measured the effectiveness of

ARKit’s indoor localization. These studies provide insights into the general performance of vision-

based systems but often lack detailed investigations into failure scenarios.

For instance, Nowacki et al. [127] analyzed the accuracy of ARKit’s plane detection under

varying lighting conditions but did not assess the end-to-end performance of localization and anchor

placement. Similarly, UbiPose [128] highlighted ARKit’s limitations in GPS-denied environments

but focused on outdoor settings, leaving critical gaps in understanding indoor-specific challenges.

LiDAR-equipped devices, such as recent iPhones, have improved localization performance in

certain scenarios, particularly in low-light conditions. Studies on LiDAR-based depth estimation

and mapping [129, 130] have enhanced SLAM systems, yet they often fail to quantify system

performance in challenging environments, such as featureless or highly reflective spaces. This lack

of comprehensive data hinders progress in overcoming these limitations.

Alternative sensing schemes: The limitations of vision-based systems have motivated research

into alternative sensing modalities, including acoustic, infrared, RFID, WiFi/BLE, and UWB. Re-

cent advancements in acoustic sensing [131–133] have achieved high-accuracy localization, while

systems such as X-AR [134] leverage RFID to improve anchor placement precision. Similarly,

WiFi/BLE-based systems [135–137] have demonstrated robust tracking capabilities in indoor envi-

ronments. UWB-based approaches, including XRLoc [113] and Garg et al. [114], achieve centimeter-

level accuracy and provide a promising alternative to vision-based systems.

Despite these advancements, many studies do not adequately address the specific weaknesses

of vision-based localization. This work contributes to the field by systematically evaluating these

gaps, emphasizing the potential of alternative sensing technologies to complement and enhance

vision-based localization systems.

Integrating UWB with vision-based systems: UWB technology, increasingly integrated into con-

sumer devices, offers a complementary modality to vision-based systems. Recent studies [138–140]

have explored UWB-enhanced localization for anchors and ego-localization in vision-based systems.

These approaches integrate UWB into AR frameworks, bridging gaps in scenarios where vision-

based methods falter. This study builds upon these findings, providing comprehensive measure-

ments and identifying failure modes to guide future advancements in hybrid localization systems.

84



4.6 Conclusion

This chapter identified key challenges in vision-based indoor localization for motion capture of

collaboration analysis based on exhaustive cases studies and controlled experiments. Errors in

landmark-based localization were observed, with visual markers such as QR codes and AprilT-

ags showing decreased localization accuracy at greater distances. Enlarging the size of landmarks

did not improve accuracy, and lighting conditions had minimal impact. Angular constraints for

landmark detection were also identified, with cameras detecting visual landmarks only within lim-

ited angular ranges: ±25◦ for QR codes and ±75◦ for AprilTags. Visual and LiDAR features for

localization were examined, revealing that reduced visual features degrade localization accuracy.

LiDAR sensors in modern iPhones provided additional depth information but were limited by low

resolution. Coupling LiDAR with visual data improved tracking accuracy by 28.8 %. Tracking fail-

ures under low-light conditions were significant, with poor lighting reducing localization accuracy

by 59.1 %, and dynamic lighting complicating tracking due to exposure issues. Speed limitations

in IMU-based localization were evident, with accuracy decreasing at speeds over 2 m/s or below

0.2 m/s due to errors and drift.

A prototype leveraging UWB-based measurements was developed and demonstrated its po-

tential to address these challenges. VIO and UWB were integrated using factor graphs in the

prototype solution to preserve the unique characteristics of each localization method. Preliminary

evaluations demonstrated that the prototype achieved superior accuracy under various lighting

conditions.
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Chapter 5

Conclusion

5.1 Conclusion

This study designed and implemented an IoT-based platform tailored for multimodal collabora-

tion analysis, addressing the critical demands of modern collaborative environments. The system

requires to meet three essential requirements for the system: synchronization accuracy of sens-

ing devices, multimodal extraction of collaboration, and a user-friendly design for collaboration

analysts.

Chapter 2 presented an innovative IoT system designed to support collaboration analysis, fea-

turing three key components: the SRP Badge for data collection, the SRP Analysis for processing

interaction data, and the SRP Web for visualizing results in a browser. The SRP Badge, a compact

business-card-type sensor worn by individuals, captures data such as sound pressure, acceleration,

and infrared signals with high precision, while ensuring accurate synchronization across devices.

The SRP Analysis processes this synchronized data to identify collaboration, including face-to-face

interaction, learning phases, speakers, and activity. These results are then visualized using SRP

Web, providing a user-friendly interface for interpretation.

To evaluate the system’s performance, experiments were conducted focusing on sensor synchro-

nization accuracy, the reliability and effectiveness of the interaction analysis algorithm, and the

usability of the web application. The findings demonstrated several key advantages for researchers

analyzing collaborative learning. First, the sensors achieved precise data collection, maintaining

synchronization errors within ±30 µs. Second, the interaction analysis algorithm effectively identi-

fied collaborative behaviors such as face-to-face interactions, learning phases, speakers, and activity,

offering valuable insights for qualitative studies. Lastly, the web application facilitated intuitive

visualization of critical data points, significantly enhancing the efficiency of human interaction

analysis through its web-based design and ease of use.

Chapter 3 presented a novel sound pressure sensor and a speaker identification algorithm specif-

ically designed for compact, business-card-type sensors, aiming to analyze collaborative dynamics
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in multi-person settings. The sound pressure sensor integrates a peak hold circuit and a time

synchronization module, which minimize signal spikes and maintain precise synchronization across

devices. This ensures accurate and cost-effective detection of user speech. The proposed algo-

rithm effectively suppresses background noise from non-speaker sensors, achieving reliable speaker

identification.

The evaluation highlighted the system’s robustness under diverse conditions, including varying

numbers of users, levels of background noise, and durations of speech. The proposed algorithm

demonstrated superior speaker identification accuracy compared to the comparative algorithm

across all tested scenarios. Additionally, the peak hold circuit consistently captured user speech

with high reliability, while synchronization errors between sensors were kept within ±30 µs. These

two innovations are also considered to significantly contribute to the high accuracy of speaker

identification.

Chapter 4 investigated practical challenges in vision-based indoor localization for motion cap-

ture in collaboration analysis, with three key findings emerging from the case studies and controlled

experiments. First, visual markers such as QR codes and AprilTags exhibited limitations in local-

ization accuracy as the distance from the camera increased, and enlarging the marker size failed

to address this issue. Second, LiDAR integration in VIO rather disturbed localization accuracy in

different lighting conditions. Third, IMU-based localization showed speed-related constraints, with

performance deteriorating at speeds above 2 m/s or below 0.2 m/s due to drift and cumulative

errors.

To address these challenges, a prototype leveraging UWB-based measurements was developed.

By integrating VIO and UWB data through factor graphs, the prototype effectively combined the

unique advantages of both localization methods. Initial evaluations demonstrated that the system

achieved significantly higher accuracy under diverse lighting conditions.

5.2 Future Work

The development of this IoT-based platform for multimodal collaboration analysis represents a

significant step forward in bridging the gap between qualitative and quantitative analytical ap-

proaches. However, to fully realize its potential and address the diverse needs of real-world ap-

plications, several areas for future improvement and expansion have been identified. These en-

hancements are categorized into four primary sections: an IoT system for collaboration analysis,

speaker identification for mobile devices, indoor localization on mobile devices, and the discovery

of collaboration patterns with the IoT system.
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5.2.1 An IoT System for Collaboration Analysis

In Chapter 2, the IoT system at the core of this platform has demonstrated impressive capabilities in

synchronizing multimodal data streams, ensuring precision, and providing a user-friendly interface.

Nonetheless, further efforts are required to improve its usability and scalability.

Balancing precision and modality expansion: One of the platform’s defining strengths is

its high synchronization accuracy, achieving precision within ±30 µs. Maintaining this accuracy

while expanding the range of modalities will be a critical challenge. The inclusion of additional

data types, such as environmental sensing, physiological metrics, or contextual information, can

enhance the depth of collaboration analysis. For environmental sensing, sensors monitoring light,

temperature, humidity, or noise levels can offer valuable insights into environmental factors affect-

ing collaborative dynamics. For physiological data, integrating devices like heart rate monitors,

skin conductivity sensors, or other biometric tools can uncover how individual stress levels or emo-

tional states influence group interactions. For contextual integration, tools that track task-specific

contexts, such as digital tool usage or shared document activity, can provide a more comprehensive

understanding of collaboration. The challenge lies in ensuring these additional modalities do not

compromise the synchronization accuracy or overwhelm the system’s processing capabilities. Ad-

vanced data fusion algorithms and optimized hardware architectures will be necessary to manage

the increased complexity.

Miniaturization and energy efficiency: The current badge-type sensors provide robust per-

formance for data collection, but their size and energy requirements may limit their application

in some scenarios. Future efforts will focus on miniaturization, which involves reducing the size of

sensors to make them less obtrusive and more wearable. Advances in micro-electromechanical sys-

tems (MEMS) and printed electronics could play a crucial role in achieving this goal. Additionally,

enhancing energy efficiency is critical for long-term deployments by prolonging battery life with-

out sacrificing functionality. Strategies for achieving this include incorporating energy-harvesting

technologies and optimizing communication protocols to minimize power consumption. The com-

bination of smaller, more energy-efficient sensors will expand the platform’s usability across diverse

settings.

Hybrid environments: As collaboration increasingly occurs across hybrid physical-virtual en-

vironments, the IoT system must adapt to these evolving contexts. Hybrid environments involve

participants interacting both in person and remotely, often using a combination of physical tools

and digital platforms. To support these scenarios, the platform will need to extend its capabili-

ties to capture and analyze virtual interactions, such as screen sharing, video conferencing, and

digital whiteboarding. It must also ensure seamless cross-platform compatibility, allowing smooth

operation across different hardware and software ecosystems, including integration with popular
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Figure 5.1: The overview of the prototype for hybrid collaboration analysis.

collaboration tools like Microsoft Teams and Zoom. Furthermore, the development of algorithms

capable of dynamically adapting to the specific needs of hybrid environments will be essential, en-

abling the platform to balance data collection priorities between physical and virtual interactions.

These enhancements will make the IoT platform indispensable for organizations navigating the

complexities of modern collaboration.

Based on this motivation, this study steps into proposing a hybrid system designed for collab-

oration analysis in diverse environments. Figure 5.1 shows the overview of the system prototype.

This system integrates key components: SRP Badges described in Chapter 2, precise synchro-

nization to connect distant environments, and a representative analytical algorithm of speaker

identification. For synchronization, Radio-over-Fiber (RoF) extends wireless networks to align

clocks across badges located in separate rooms, ensuring consistent and accurate data integra-

tion. The analytical algorithm processes the collected data, focusing on multimodal aspects of

collaboration. The algorithm includes speaker identification, a critical feature for interpreting in-

teractions and dynamics within group activities. This concept expands the scope of collaboration

analysis discussed in this study, providing a more comprehensive framework for understanding and

evaluating interactions and dynamics in diverse environments.

5.2.2 Speaker Identification for Mobile Devices

In Chapter 3, effective speaker identification remains a cornerstone of collaboration analysis, par-

ticularly in settings with multiple participants. Although the current system has shown robust

performance, real-world environments introduce a host of challenges that necessitate further re-

finement.

Accuracy improvement in actual collaboration environments: Speaker identification ac-

curacy can be influenced by numerous factors in collaboration, including background noise, over-

lapping speech, and varying acoustic properties of the environment. Future work will focus on

improving noise robustness by developing advanced noise reduction techniques to enhance detec-
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tion accuracy in noisy settings such as busy offices or classrooms. Additionally, the system’s ability

to handle overlapping speech will be enhanced by leveraging advanced machine learning models

and spatial audio processing to differentiate between simultaneous speakers. Furthermore, algo-

rithms will be fine-tuned to adapt to the unique characteristics of different environments, such as

open-plan offices that include mixed noise. Field testing in diverse real-world scenarios will be

essential to identify and address specific challenges, ensuring the system’s reliability across varied

contexts.

5.2.3 Indoor Localization on Mobile Devices

Chapter 4 revealed practical challenges in using vision-based indoor localization for motion capture

in collaboration analysis. The prototype solution with VIO and UWB was proposed and improved

localization accuracy in environments where vision-based methods have struggled. However, there

is still future work to apply this scheme to practical scenarios of collaboration analysis.

Comprehensive evaluation and accuracy enhancement: This study evaluated tracking per-

formance of the prototype solution in a single scenario where VIO struggles, namely, varying

lighting conditions. To demonstrate the improvement across a range of different environments,

comprehensive controlled experiments as shown in Sec. 4.3 for VIO evaluation are required to fur-

ther assess the solution’s accuracy. Moreover, when cases of degraded accuracy emerge, it becomes

crucial to identify and develop methods to improve performance in those specific situations.

In addition to controlled experiments, it is also important to evaluate the proposed scheme

in real collaborative environments for a more practical assessment. In settings where multiple

environmental factors interact simultaneously, performance equivalent to that achieved under con-

trolled conditions cannot be guaranteed. Actual case studies in collaborative environments are

needed to investigate how localization accuracy varies in more complex scenarios.

Implementation of the motion capture tag: As discussed in Sec. 4.1, implementing a ded-

icated tag is vital for using VIO and UWB in motion capture. Since the tag needs to be only

a few centimeters in size, it must incorporate a camera, an IMU, and a UWB transceiver while

maintaining operational power. Recent advancements in MEMS technology have made this in-

creasingly feasible. However, the actual implementation requires careful consideration of various

factors, including the tag’s processing performance and continuous operating time.

Localization accuracy improvement through tag collaboration: By exchanging positional

information among multiple tags worn by the user, tracking accuracy can be enhanced. Since these

motion capture tags are attached to the user’s body, each tag is subject to certain mechanical

constraints. Leveraging these constraints can help prevent drift from accumulating and causing

erroneous tracking directions. The communication protocol for tag collaboration remains a future

challenge.
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5.2.4 The Discovery of Collaboration Patterns with the IoT System

As described in Sec. 2.3.7, this study presented the application of the proposed IoT system in un-

covering novel collaboration patterns. In this application, the proposed system was utilized with

SSNA. SSNA revealed shifts in leadership roles by analyzing word co-occurrence networks and

degree centralities, uncovering key moments of group interaction. The proposed IoT system high-

lighted nonverbal cues signaling transitions in collaboration phases. Intensive qualitative analysis

showed that leadership adapted to task phases, with early efforts focused on gathering information

and later efforts on problem-solving, demonstrating dynamic role shifts in collaboration.

Learning analytics already incorporates various quantitative methods, such as SSNA. Combin-

ing these established techniques with the proposed method will be key to uncovering new patterns

of collaboration in future research.
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