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Abstract

Spatial applications are becoming increasingly important in our daily lives. For instance,
people can easily find their way to a railway station in a foreign city with mobile map
applications. These applications process a large amount of queries to meet users’ needs
every day. Fast responses to queries are crucial for providing good user experiences.
Therefore, efficient query processing is always in demand for spatial applications. Es-
timating a query’s result size, known as the cardinality estimation, plays a significant
role in query scheduling, optimization, and processing. For example, query optimiza-
tion generates optimized query plans based on the estimated cardinality of subqueries.
Accurate and fast cardinality estimation substantially improves query efficiency.

Recently, with the advancement of machine learning technologies, many learned
methods have been proposed for cardinality estimation. Generally, they have shown
greatly improved performance compared with traditional methods like histograms.
However, existing methods cannot keep accurate and fast estimations facing following
challenges brought by spatial data. (i) Complex data distribution: Spatial data are
generally multi-dimensional and tend to have a complex data distribution. Some existing
methods adopt complex neural networks to approximate the data distribution, resulting
in large inference times. (ii) Frequent data updates: Data updates are frequent in spatial
applications. It is challenging for learned methods to keep a good accuracy on a frequent-
updated data distribution. Designing an efficient updating strategy remains an open
question for current learning models. (iii) Variable data size: Complex spatial data types
like polygons have variable sizes. A polygon consists of a variable number of vertices.
Therefore, a set of polygons has a large range of possible data sizes. Existing learned
solutions cannot handle input data of variable sizes efficiently.

In this thesis, we focus on fast and accurate learned cardinality estimation for
spatial data, and address the above challenges. This thesis consists of five chapters.
We introduce the research background and issues for learned cardinality estimation in

Chapter 1. In Chapter 2, we demonstrate that light-weight learning models are promising



vi

for one-dimensional cardinality estimation and have the potential for spatial data. In
Chapter 3, we address the case of the dynamic spatial data and propose SAFE, a learned
method that supports frequent updates. In Chapter 4, we propose PolyCard, a learned
cardinality estimator specialized for intersection queries on polygons.

In Chapter 2, we investigate cardinality estimation in the one-dimensional case. We
note that the latest proximity query processing methods benefit from learned models
(indexes) and have shown better performances than non-learned indexing approaches.
Specifically, we address the one-dimensional cardinality estimation problem and consider
light-weight learning methods. We first design a prototype of a learned method for
one-dimensional cardinality estimation. Second, we empirically evaluate the learned
method together with existing methods. Then, we analyze the strong and weak points
of these methods and find that the proposed learned method is promising and has the
potential for the spatial data case.

In Chapter 3, we focus on dynamic spatial data and propose SAFE (Sampling-
Assisted Fast learned cardinality Estimator). Dynamic setting assumes frequent data
updates, which brings challenges for the task of cardinality estimation. The estimation
methods are expected to be update-friendly and keep fast estimation. Facing these
challenges, we specifically develop a sampling strategy that uses a quad-tree-based data
partitioning and extracts a small subset to enable fast training of cardinality estimation
models. In addition, we employ two-tier regression models to approximate the spatial
data distribution while achieving accurate and fast cardinality estimation. Furthermore,
we provide an incremental model update strategy to avoid re-training all models from
scratch when we receive updates. We conduct experiments on real and synthetic datasets,
and their results demonstrate that SAFE (i) outperforms state-of-the-art cardinality
estimation models for spatial data and (ii) efficiently handles data updates while ensuring
accurate and low-latency estimation.

In Chapter 4, we present PolyCard, a learned cardinality estimator for intersection
queries on spatial polygons. Polygons are the most representative spatial objects and
cardinality estimation for polygons has not been well studied. The commonly used
bounding box approximation is intrinsically inaccurate. Existing learning methods
cannot be applied to polygons directly due to the variable sizes of polygons. We develop
an adaptive sampling method to transform polygon data to a fixed size, which considers
the spatial distribution of the coordinates belonging to a polygon, and successfully

apply learning techniques to spatial polygons. We propose a training data generator to
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provide training data distributed over the data space and covering different cardinalities.
Our experiments on four real-world datasets of millions of polygons demonstrate the
efficiency and effectiveness of PolyCard.

In Chapter 5, we conclude this thesis and discuss our future work. Our proposed
methods can achieve fast and accurate cardinality estimation for spatial data and can

further accelerate query processing.






Table of contents

1 Introduction 1

1.1 Background . . . . . ... ... 1

1.2 Challenges. . . . . . . . . . e 3

1.2.1 Challenges Brought by the Spatial Data . . . . ... ... ... 3

1.2.2  Limitations of Existing Methods . . . . . .. ... ... .... 4

1.3 ResearchContents . . . . ... ... ... ... .. ... ....... 5
1.3.1 A Light-weight Learned Solution for the One-dimensional Car-

dinality Estimation . . . . . ... ... ... .......... 6

1.3.2 Learned Cardinality Estimation for Dynamic Spatial Data . . . 7

1.3.3 Learned Cardinality Estimation for Complex Spatial Polygons . 8
1.4 Organization. . . . . . . . . . . ot e 10

2 One-dimensional Learned Cardinality Estimation by Light-Weight Regres-

sion Models 13
2.1 Introduction . . . . . . . . ... 13
2.2 Preliminary . . . . . . . . .. .. 15
2.2.1 Problem Statement . . . . . . ... ... ... ... ... .. 15
222 ExistingMethods . . . . . .. .. oo 15
2.3 Solution . . . ... 16
23.1 Mainldea . . . . . ... ... ... 16
232 Design . ... 17
24 Experiments . . . . . . . . ... e e 18
241 Setup . . . .. 18

2.4.2 Overall Performance . . . .. .. ... ... ... ....... 21



Table of contents

243 Detailed Analysis . . . . . ... ... ... 23
2.5 Related Work . . . . . . .. 24
2.6 Conclusion . . . . . . . . . . 25

SAFE: Sampling-Assisted Fast Learned Cardinality Estimation for Dy-

namic Spatial Data 27
3.1 Introduction . . . . . . . . . ... 27
3.2 Preliminary . . . . . ... ... 30
3.2.1 Problem Statement . . . . .. ... ... ... ... ...... 30
3.2.2 Learning Data Distribution . . . . . . .. ... ... ...... 31
3.2.3 Update Solutions of Existing Methods . . . . . ... ... ... 32
33 SAFE . . . . 34
33,1 Mainldea . . . . . ... ... ... 34
332 OVerview . . . . . o i e e e e 34
3.3.3 Sampling by Data Partitioning based on Quad-tree . . . . . .. 35
3.3.4 Regression Models for Cardinality Estimation . . . . . . . . .. 37
335 ModelUpdate. . . . .. ... ... ... ... ... 41
34 ExXperiments . . . . . . . ... e e 42
341 Setup . . ... 42
34.2 Result: StaticDataCase . . . ... ... ............ 43
343 Result: Dynamic DataCase . ... ............... 48
35 RelatedWork . . . .. .. ... 51
3.6 Conclusion . . . .. .. . ... 52

PolyCard: A Learned Cardinality Estimator for Intersection Queries on

Spatial Polygons 55
4.1 Introduction . . . . . . . . . . . . 55
4.2 Preliminary . . . . . . . . . . . 59
43 PolyCard . . .. .. . . . . 60
43,1 Mainldea . . . . . ... ... ... 60
432 OVEIrVIEW . . . . vt e e 61
4.3.3 Training Data Generator . . . . . .. ... ... ........ 61

434 Polygon Transformation . . . ... ... ... ......... 63



Table of contents

xi

43.5 Featurization . ... .. ...
436 Model ... ..........
4.3.7 Training and Estimation . . .
4.4 Experiments . . . ... ... .....
441 Setup . ... ... .. ...,
4.4.2 Overall Performance . . . . .
4.4.3 Detailed Analysis . . . . . ..
45 RelatedWork ... ..........
4.6 Conclusion . .. ... ........

5 Conclusion

5.1 Summary . . ...
5.2 FutureWork . . . . . . ..
5.2.1 Cardinality Estimation for Various Spatial Query Types . . . . .
5.2.2 Cardinality Estimation for Dynamic Spatial Objects . . . . . . .

5.2.3 Benchmark in Spatial DBMSs
Acknowledgements

References

65
66
67
67
67
68
70
72
74

77
7
79
79
79
79

81

83






Chapter 1

Introduction

1.1 Background

Spatial applications are prevalent in our daily lives, greatly changing the way we interact
with our surroundings [3-7, 23, 37, 39, 76, 77, 90]. For example, people can easily
explore nearby sightseeing spots and restaurants, and find the routes to them with a map
application on their mobile phones. To process requests from users, the systems behind
the applications need to execute queries to find the corresponding information from their
databases. Suppose that we want to find a Japanese restaurant within 1 kilometer (km)
from our current location, the system will formulate this request into a query like finding
locations satisfying the following requirements: 1) is a Japanese restaurant and 2) within
1 km of the current position. Then the system processes it and retrieves the restaurant
information to answer the request.

These spatial applications handle a large volume of requests all the time, necessitating
efficient query processing mechanisms. As shown in Figure 1.1, the systems employ
functions such as query scheduling [14, 29, 30, 82, 114] and query optimization [2, 61,
62, 86, 105] to process queries efficiently. Specifically, they rely on query scheduling to
allocate the queries to multiple servers. Ideally, the computation costs of query requests
allocated to each server should be balanced. Otherwise, it will result in a waste of
resources because some servers are idle. For queries with multiple filters, like the former
example of finding a nearby Japanese restaurant, the system will generate the query
plan and divide the query into subqueries to be executed sequentially. To obtain the
most efficient query plan, the query optimization needs to optimize the sequence of the

subqueries based on the query costs of different choices.



2 Introduction

=) >

Cost Estimation

Applications Systems Functions

Figure 1.1: Cardinality Estimation (CE) plays a core role in cost estimation, query
scheduling, and query optimization. The systems rely on these functions to process large
amounts of queries from the application.

We observe that query scheduling and optimization cannot work without the knowl-
edge of query costs. While we cannot know the exact query cost easily before the
execution, we can estimate the query costs based on the cardinality as shown in Figure
1.2 [104, 109]. Cardinality is the number of data points in a dataset satisfying a query
predicate. In most cases, a query with a larger cardinality has more data accesses
and thus, incurs a higher computation cost [33, 54]. In common practice, cardinality
estimation is necessary to estimate the query costs and plays the core role for functions
including query scheduling and query optimization [34, 51, 57].

Accurate and fast cardinality estimation is always desired for the systems [2, 13, 60,
89, 97]. An accurate estimation of the cardinality can make the cost estimation of queries
reliable and one step further, achieve a balanced query scheduling and an optimized
query plan. Thus, accurate cardinality estimation can improve the system performance
of spatial applications. Besides, the spatial applications ask for fast responses. During
processing the queries, the cardinality estimation will be called frequently and contribute
to the total response time. If the cardinality can be estimated in a shorter time, functions
like query scheduling and optimization that rely on it can also finish earlier. Therefore,
fast cardinality estimation can make the whole query processing efficient. Besides, the

query time provides an upper limitation for estimation speed. Because we can obtain
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the true cardinality (and do not need to know the cardinality anymore) after the query
execution. Generally, we expect the estimation time to be shorter than one-hundredth of
the query time [33, 88].

1.2 Challenges

1.2.1 Challenges Brought by the Spatial Data

The spatial data, also known as geospatial data, is used to represent the geographical
area and locations [43]. It is the foundation of spatial applications. Common types
of spatial data include points, lines, and polygons. Compared with other data types
like timestamps and user IDs, spatial data are usually represented by large volumes of
values and have a more complex data distribution. Here, we introduce the following
attributes of spatial data and the new challenges for cardinality estimation brought by
these attributes:

* Multi-dimensional: The most representative spatial data type is the point, usually
consisting of coordinates. Compared with common one-dimensional data like
timestamps, these multi-dimensional data tend to have a complex data distribution,
which makes cardinality estimation difficult.

* Frequent updates: Considering the spatial applications, there are large amounts of

updates like adding new locations during daily operations. For example, Google
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Maps has 20 million updates of various spatial information every day'. As a result,
the task of cardinality estimation faces frequent updates. It is challenging to keep

an accurate model on a changing data distribution.

* Variable sizes of data: Some complex spatial data types like polygons have a
variable size of data. A polygon is represented by a variable number of vertices.
Thus, a polygon dataset usually includes polygons represented by a large-scale size
of data. Existing learned-based methods cannot easily handle inputs of variable

sizes.

1.2.2 Limitations of Existing Methods

Traditional methods for cardinality estimation are mainly histogram-based and sampling-
based methods. Histogram-based methods [1, 49] build histograms as the statistics of
the data distribution. Given a query, they scan the buckets accessed by the query and
give an estimated cardinality. Sampling-based methods [18] generate a set of samples
from the original dataset. Then, they execute the query on this sample set and obtain an
estimated cardinality for the query on the original dataset. These traditional methods
are easy to build and practical for simple cases where datasets follow a uniform data
distribution. However, they are inflexible and not suitable for complex data distribution
of multi-dimensional spatial data. Thus, traditional solutions do not satisfy the case of
spatial data.

Recent results of learned cardinality estimation methods show remarkable improve-
ments compared with traditional methods (e.g., histogram-based methods) [35, 57, 68,
71,98, 100, 102, 109]. Learned cardinality estimation methods can be categorized into
query-driven models and data-driven models.

Query-driven models are built on training queries and map a training query to its true
cardinality. Most of them use deep learning to capture the relationship between queries
and cardinalities [78, 97]. They are suitable for the case that data distribution is too
complex to be approximated by data-driven methods. However, it is laborious to collect
a large number of training queries and compute their true cardinality. Besides, these
solutions are effective only when datasets are static and query workloads are known,
whereas the nature of “relying on training queries” is not appropriate for dynamic data

and unknown query workloads. Considering the frequent updates of spatial data, if

Uhttps://mapsplatform.google.com/resources/blog/9-things-know-about-googles-maps-data-beyond-
map/
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query-driven models need to deal with data updates, they need to collect training samples
on updated datasets and retrain the models. The high costs of obtaining training data
disturb the direct usage of query-driven models for spatial data.

Data-driven models usually learn the distribution of a given dataset mainly through
deep neural networks [35, 71, 109]. Autoregressive models [35, 109] can approximate
the joint distribution in a conditional manner and estimate the cardinality without any
independent assumptions. Considering the complex data distribution of spatial data,
they usually build a deep neural network to approximate the data distribution and the
construction takes a long time [35]. Besides, the estimation time can be large due to the
complex neural networks. This attribute limits to only static data, as they cannot support
fast model updates. LHist [62] and MOSE [89] are two state-of-the-art cardinality
estimators approximating the data distribution directly with simple regression models
instead of neural networks. However, they also do not support model updates. More
importantly, these learning-based methods face difficulties with complex spatial data
of variable sizes. Direct solutions like zero-padding will greatly increase the volume
of data to be processed during training and estimation. Thus, it is challenging to apply

existing learning-based solutions to spatial data.

1.3 Research Contents

Facing the challenges introduced in Section 1.2, we want to design learned solutions
that break the limitations of existing solutions and overcome the challenges brought by
spatial data.

There are still questions about selecting different learned approaches for different
cases. Data-driven learned methods can easily achieve good accuracy in most cases.
However, if the data distribution is too complex to be approximated, complex data-driven
models will be used for the approximation, which leads to slow estimation speed. In
that case, we seek for a query-driven solution. To conclude, we aim at fast and accurate

cardinality estimation and try to design learned solutions to achieve the goal.
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Figure 1.3: In Chapter 2, we investigate the learned cardinality estimation on a one-
dimensional case by using light-weight models.

1.3.1 A Light-weight Learned Solution for the One-dimensional
Cardinality Estimation

As shown in Figure 1.3, we focus on a one-dimensional case in Chapter 2. We success-
fully apply light-weight models to the one-dimensional cardinality estimation. Existing
learned solutions have not discussed the one-dimensional case, which is simple but fun-
damental. They mainly use complex neural networks, which are slow and unsuitable for
the simple one-dimensional case. Therefore, whether learning methods can be applied to
one-dimensional cardinality estimation remains a question. We expect our investigation
of the one-dimensional case to be a basis to help solve the case of spatial data.

In Chapter 2, we design a one-dimensional cardinality estimation method inspired
by the learned index [21, 53, 74, 80]. A learned index uses light-weight learning models
to map a query key to the corresponding position. Its core idea is to use learning
models to approximate the data distribution. The data-driven cardinality estimation
also uses techniques to approximate the data distribution and then estimate based on
the approximation. The most important thing is that the light-weight models (usually
simple linear regression models) can guarantee an extremely fast estimation speed. At
the same time, they can provide a good approximation quality, which means the potential
to achieve good accuracy for the cardinality estimation. With this idea, we design a
structure using only light-weight models for cardinality estimation, referring to a learned
index. Its estimation time for a range query is only one-tenth of other competitors. Also,
its accuracy is relatively good. Through our investigation of the one-dimensional case,

we find the light-weight learning models promising for cardinality estimation.
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1.3.2 Learned Cardinality Estimation for Dynamic Spatial Data

As introduced in Section 1.2.1, dynamic spatial data is a common case for popular
spatial applications. We have frequent data updates including insertions, deletions, and
replacements in a dynamic setting, as shown in Figure 1.4. These data updates will
change the data distribution, which could make the cardinality estimation inaccurate. For
example, the true cardinality of the range query in Figure 1.4 changes from ten to nine
after data updates. If the estimator has not been updated after the data updates, it may
decrease the accuracy. Data-driven methods face continuously changing data, and their
approximated data distribution will no longer be accurate unless they can frequently
update their models to keep up with the changing data distribution. Query-driven
methods are built on training queries with corresponding true cardinality. However, the
cardinality of training queries will probably change after data updates. Though some
query-driven methods adopt an incremental update strategy to continuously train on the
latest queries, the outdated information still hurts the accuracy.

We note that the light-weight models discussed in Section 1.3.1 can be extended to
approximate two-dimensional data. They can be organized as a hierarchy and approxi-
mate the data distribution on each dimension sequentially. This dividable structure has
the potential to support frequent updates. However, how to design the update strategy
and make it practical remains a challenging task. Facing frequent data updates, simply
"supporting" updates is not enough. Fast model updating is also desired. In an ideal
case, the model can update itself for every data update. However, the large data volume
of real-world datasets and applications leads to high training costs for both the model
construction and updates. Reducing the volume of data for training is a practical way.
We review sampling-based solutions, and find if we can make a sample set for the model
training, the training can be greatly accelerated. Notice that such a sample set has to be
update-insensitive, which is a challenge.

Chapter 3 presents our solution SAFE, a learned cardinality estimator for dynamic
spatial data. The design of SAFE derives from our investigation in Section 2. We use
a hierarchy of regression models to approximate the data distribution and further help
estimate the cardinality. We propose an incremental update strategy whose core idea is to
update only models that need to be updated. Thus, for most updates, only a small portion
of regression models need to be updated, which costs a little. To make an updatable
sample set, we design a sampling strategy based on a quad-tree-based partition. We

generate samples according to the cells partitioned by a quad-tree. With the support
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Figure 1.4: In Chapter 3, we focus on the case of dynamic spatial data.

from the quad-tree, the update of the sample set is easy. Furthermore, we can achieve

fast model updates by training on the sample set.

1.3.3 Learned Cardinality Estimation for Complex Spatial Polygons

Many objects in spatial applications like districts, parks, and lakes are represented by
polygons. Intersection queries on polygons find polygons intersected by the query poly-
gons and Figure 1.5 shows an example of an intersection query on polygons. Intersection
queries become prevalent due to the widespread spatial applications. Therefore, the
cardinality estimation for intersection queries on spatial polygons is an important task to
achieve good user experiences of spatial applications.

Currently, this task has not been well studied. Existing cardinality estimation
methods for polygons typically rely on histograms built on the minimum bounding
rectangles (MBRs) of polygons [55]. We can easily imagine that the approximation
of polygons by MBRs is essentially inaccurate. Besides, they inherit the limitations
of the histogram-based methods and cannot maintain stable performance for different
datasets and queries. Unfortunately, recently proposed learned methods [35, 51, 89]
cannot be used for spatial polygons due to the variable size of polygons as discussed in
Section 1.2.1. The most common solution to this issue is padding all the input data with
zeros [36]. Considering the possible sizes of polygons, the zero padding greatly increases
the computation cost for both training and estimation, which makes it impractical for

polygons.
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P

Figure 1.5: In Chapter 4, we study the learned cardinality estimation for intersection
queries on polygons.

Low latency is always required for the cardinality estimation problem because the
cardinality estimation is frequently called in a database system. Moreover, collecting
high-quality training data is always challenging for learned cardinality estimators [51,
54]. One may come up with randomly generating query (training) polygons to address
this issue. This is, however, not appropriate because the shape and the number of
vertices of polygons are not fixed. Randomly generated polygons consisting of randomly
generated vertices may be invalid due to crossed edges. Furthermore, the cardinality
distribution of randomly generated queries has a long tail. The distribution with a long
tail makes the convergence of the training of a network difficult [111]. As can be seen
above, existing techniques are not appropriate for cardinality estimation of intersection
queries on polygons, despite the importance of efficiently supporting this task.

Motivated by this fact, we focus on efficient and accurate cardinality estimation for
intersection queries on polygons in Chapter 4. First, we tried to apply the data-driven
design in Chapter 3 to the estimation for polygons. Unfortunately, it is impractical
because a polygon dataset usually has a complex data distribution. Data-driven methods
using only light-weight models cannot provide a good approximation and they are not
suitable for this variable and relatively high dimensional case [62]. Second, we want
to guarantee a fast estimation, which is not provided by data-driven methods using
complex learning models. Therefore, we adopt a query-driven design with a training

data generator to generate sufficient training queries with a near-uniform cardinality
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distribution. To make the learning model compatible with the polygons of variable sizes,

we propose an adaptive transformation method to transform polygons to a fixed size.

1.4 Organization

This thesis consists of five chapters. The organization of the remaining parts is as
follows:

In Chapter 2, we investigate the cardinality estimation in the one-dimensional case
and find it helpful to the further study of the spatial data case. In Section 2.1, we analyze
the importance of the one-dimensional case and show our idea derived from the learned
index. We define the problem and introduce related work in Section 2.2. We introduce
the structure of our one-dimensional cardinality estimator in Section 2.3. We give an
overview of our solution and show the efficient estimation flow. The experimental results
in Section 2.4 demonstrate the effectiveness of our estimator. We discuss related work
in Section 2.5. Furthermore, we conclude the work in Section 2.6.

In Chapter 3, we focus on cardinality estimation in the dynamic spatial data setting.
We introduce the setting and discuss the challenges brought by it in Section 3.1. Section
3.2 gives the problem definition and shows the limitations of existing methods. We
discuss why they cannot support frequent updates and the latent paths leading to an
updatable design. We introduce our solution SAFE in Section 3.3. Starting with the
overall framework, we present the hierarchy of regression models that supports frequent
data updates. Then we show the estimation flow which has a stable fast speed. We
elaborate on the details of the update flow and show the essence of the fast update speed
coming from the structure design. The experimental results in Section 3.4 demonstrate
the capability of SAFE for frequent data updates. We introduce related work and analyze
their limitations in Section 3.5. We summarize this work in Section 3.6.

In Chapter 4, we estimate the cardinality of intersection queries on complex spatial
polygons. We analyze why the existing solutions are inaccurate for polygons. Besides,
we discuss the incapability of existing learned methods, and these contents are shown in
Section 4.1. Section 4.2 reviews related work of this topic. We describe our proposed
solution PolyCard in Section 4.3. It is a query-driven design, which avoids approximating
the complex data distribution of polygons. We show how we transform the polygons of
variable sizes to a fixed size and make them compatible with a learning-based design in

detail. Also, we propose a training data generator and show its effectiveness to help the
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training converge. The experiment results are shown in Section 4.4. The accuracy and
efficiency of PolyCard demonstrate its capability for the case of complex polygons. We
discuss related work in Section 4.5 and conclude this work in Section 4.6.

In Chapter 5, we summarize this thesis and discuss future works.

Chapter 2 is based on our work published in [44]. Chapter 3 is based on our works
published in [45, 47, 48]. Chapter 4 is based on our work published in [46].






Chapter 2

One-dimensional Learned Cardinality
Estimation by Light-Weight Regression
Models

2.1 Introduction

As we introduced in Section 1.1, cardinality estimation is a fundamental problem in
query optimization. Recently, proposed cardinality estimation methods mainly use deep
learning models to map given query predicates to an estimated cardinality of query
results because they can handle complex non-linear relationships better than traditional
methods [35, 88].

However, existing learned cardinality estimation methods focus on multi-dimensional
data [100, 110]. They ignore the most fundamental case, namely one dimension. One-
dimensional data and queries are essential in database management systems (DBMSs).
They support basic operations such as managing user IDs and queries according to
timestamps. Cardinality estimation on one-dimensional data can help estimate execution
costs and better plan these operations [12]. For example, traditional histogram-based
and sampling-based methods are both extended from one dimension to multiple dimen-
sions [34, 41]. The execution time of queries provides an upper time limit for cardinality
estimation. As shown in Table 2.5, it takes only tens to hundreds of microseconds to
obtain an exact cardinality. Existing learned methods typically require milliseconds

for estimation due to their designs for more complex settings and the use of complex



14 One-dimensional Learned Cardinality Estimation by Light-Weight Models

deep neural networks. Consequently, developing a light-weight learned structure for
one-dimensional cardinality estimation remains an unresolved challenge.

In the field of artificial intelligence for databases (AI4DB), indexes receive benefits
from machine learning [58]. The learned index is first proposed for point and range
queries on one-dimensional data by using light-weight learning models [53]. Learned
indexes perform much better than traditional indexes, such as B-trees [52], because
learning models can avoid time-consuming traverses in tree structures. This observation
suggests that light-weight learning models can improve cardinality estimation for one-
dimensional range queries, especially considering the estimation time. However, whether
it is practical to apply light-weight learning models to cardinality estimation remains a

question.

Contribution. To investigate the above research question, we make the following

contributions.

(i) A light-weight learned cardinality estimation solution. We design a prototype of
light-weight learning models for one-dimensional cardinality estimation in Section 2.3,
to compare with existing techniques.

(ii) Empirical evaluations. We conduct experiments by using four real datasets in
Section 2.4, (i) to see the performances of the learned and non-learned cardinality
estimation methods and (i1) to confirm whether a light-weight learned approach is
promising for one-dimensional cardinality estimation. These two evaluations are the
main objective of this chapter. We analyze their strong and weak points.

To summarize, the learned method is promising, i.e., its estimation speed is the fastest
and its error is small enough. Furthermore, we expect these light-weight models can
be used for the multi-dimensional (spatial data) case. Also, our insights would support
implementations and selections of one-dimensional cardinality estimation methods for
practical DBMSs.

Organization. The rest of this chapter is organized as follows. Section 2.2 intro-
duces the background and existing methods for one-dimensional cardinality estimation.
Section 2.3 presents the detailed solution of our proposed learned estimator for the
one-dimensional case. Our experimental results are reported in Section 2.4. We discuss
related work in Section 2.5 and conclude this chapter in Section 2.6.
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2.2 Preliminary

In this section, we define the problem of this chapter and then introduce existing solutions

for one-dimensional cardinality estimation.

2.2.1 Problem Statement

Consider a dataset D consisting of sorted one-dimensional data with unique integer keys.
A range query predicate Q is specified as a central key K and a range R. The query result
is the set of records whose keys fall into [K — R, K + R]. Here, the goal of cardinality
estimation is to estimate the number of records from D satisfying the query predicate.
The estimated cardinality is denoted by c@) and the real cardinality is denoted by
card(Q). (Another equivalent concept of cardinality is selectivity, and it represents the

percentage of records satisfying the query predicate [113].)

2.2.2 Existing Methods

Sampling. This is the most straightforward approach to estimate the cardinality of a
given range query. The estimated cardinality is obtained by scaling the cardinality on
the samples. The performance of sampling is directly related to the number of samples

(more samples yield a better accuracy but incur a higher computational cost).

Histogram. Histogram-based approaches build a histogram on a given dataset and
sum up the counts of buckets intersected with a given query predicate as estimated
cardinality [18]. Histograms have a long history of being used to solve these estimation
tasks [41, 101]. For one-dimensional cases, there are two classical histograms: equal-
width and equal-depth. A histogram is essentially a group of linear models, where each
bucket is a linear model with a slope of the number of records divided by the width. This
one-level histogram usually uses a higher computation cost than existing hierarchical
learning models [53], because it needs hundreds of add operations to sum up the counts
of buckets.

Direct calculation. The cardinality of range queries on one-dimensional data can be

easily estimated by two-point queries because the records in one-dimensional datasets

are generally sorted according to keys.
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Figure 2.1: The learned index approximates the CDF to obtain the orders of the keys.
The approximated CDF, F, can be used to estimate the cardinality of range queries.
Suppose a range query is represented by a central key K and range R, the cardinality
of the range query can be estimated by the orders of keys (K —R) and (K +R). The
relationship between cardinality and the range started from the central key K can be
approximated by F’.

More concretely, we can obtain the exact cardinality after computing the orders of
records with K — R and K + R as keys in the dataset for the query Q:

card(Q) = Order(K+R) — Order(K —R) + N,

where Order(X) indicates the order of the first record whose key is greater than or equal
to X in the sorted dataset. N is 1 if there exists a record whose key equals K + R in the
dataset. Otherwise N is 0. Hence, the computation cost is equivalent to the cost of the

two-point queries. The computational efficiency can be improved by using indexes.

2.3 Solution

2.3.1 Main Idea

We derive our idea from a learned index structure, Recursive Model Index (RMI) [69].
RMI is the first and state-of-the-art learned index for the search problem on one-
dimensional data. It stacks light-weight learning models to approximate the cumulative
distribution function (CDF) and then computes the position of a given key in a sorted
array according to the CDF. Here the term "CDF" means the function mapping keys to
their corresponding positions in an array.

As shown in Figure 2.1, the approximated CDF, F, which maps keys to the corre-

sponding positions, can also be used for cardinality estimation. The mapping done by
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Figure 2.2: The prototype learning model for one-dimensional cardinality estimation has
a two-level hierarchical structure. The first level directs to models in the second level
according to a given query. The second level is responsible for cardinality estimation.

indexes has an intrinsic relationship with the mapping from range queries to estimated
cardinality. We can approximate the relationship between cardinality and the range
starting from K by F':

F'(R)=(F(K+R)—F(K—R))/2.

RMI usually adopts light-weight models like linear models to approximate F' and shows

good performance. Therefore, we also employ linear models to approximate F’.

2.3.2 Design

We design a cardinality estimation by refining the original RMI based on our observation
in 2.3.1. As shown in Figure 2.2, this model has a two-level hierarchy. For an input
query, the first level directs to a specific model in the second level, and models in the
second level then predict the cardinality. We use a two-layer neural network in the first
level. In the second level, we organize many multi-scale linear models into an array.
Each multi-scale linear model is responsible for a subset of the original dataset.

For the first level, another choice is a linear model with less computation cost than
a neural network. However, choosing a linear model will result in a more skewed
distribution of subsets for the second level [65], thus negatively affecting performance
and training. The neural network is a better choice. It is hard for a simple linear model
in the second level to cover range queries with totally different scales of selectivity.



18 One-dimensional Learned Cardinality Estimation by Light-Weight Models

Therefore, we train some models with different scales for each subset in the second
level.

During the estimation procedure, the first level takes the central key K of the given
query as input and directs it to the corresponding model in the second level. The selected
second-layer model estimates the cardinality according to the query range.

From the recent success of learned indexes, we expect that this learning model
works well, i.e., it will provide high efficiency and accuracy. We report its practical

performance in the next section.

2.4 Experiments

This section reports our experimental results. All experiments were conducted on a
server with an Intel Xeon Gold 6254 @3.10GHz CPU and 768GB RAM, running Ubuntu
18.04 LTS. The evaluated methods were implemented in Python with a single thread.
We implement the neural network model with the PyTorch library and conduct training

and estimation on CPU.

24.1 Setup

Datasets. We used four real-world datasets with different distributions from the SOSD
benchmark [69]. These datasets have recently been used for evaluating learned index
works [19, 87]. Each of them contains 200 million 64-bit key/value records:

amzn: book popularity data from Amazon.

face: Facebook user IDs sampled randomly.

osm: cell IDs from Open Street Map.

wiki: timestamps from Wikipedia.

Figure 2.3 plots CDFs of the four datasets. Zoomed regions show small segments of
datasets. The face dataset contains tens of outliers with much larger keys than the others.

I'The selectivity is application dependent. Hence, applications can train this model by specifying the
range of selectivity.
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Figure 2.3: CDFs of evaluation datasets. Zoomed regions show plots of 200 consecutive
keys.

Error metrics. We evaluate the Mean Absolute Percentage Error (MAPE) and g-error

to see the accuracy. These errors are widely used for cardinality estimation problems [88,

100, 104] and are respectively defined as:

MAPE — card(Q) — card(Q) ‘
card(Q)

and

max (ca/rd(\Q),Cdrd(Q)>
g-error = — '
min (card(Q), card(Q))

Evaluated methods. We evaluated the methods listed in Table 2.1. In the case of

sampling methods, we estimated the cardinality based on the calculated cardinality of

sampled datasets by binary search. An equal-depth histogram has the same number of
records in each bucket. For the direct calculation method, we built an RMI index on the
original dataset. Compared with classical B-Trees [17], RMI shows better computational
and space costs [69]. Recall that direct calculation returns the exact cardinality, so we

measured the computation time and model size for direct calculation. For the learned
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Table 2.1: Overview of evaluated methods

Methods Descriptions
LC The learning model designed in Section 2.3
SA2 Sampling 1 x 1072 records of original dataset
SA3 Sampling 1 x 1073 records of original dataset
SA4 Sampling 1 x 10~ records of original dataset
HM An equal-depth histogram having 1 x 10° buckets
DC Direct calculation using RMI as the index

Table 2.2: Model sizes of evaluated methods (MB)

Methods LC HM SA2 SA3 SA4 DC
Model sizes 1.6 0.8 16 1.6 0.16 1.6

method, we used a two-layer neural network with 16 neurons in the hidden layer for the
first level. We set the number of models in the second level to 1 x 10° to leverage the
storage cost and accuracy. Table 2.2 shows the model sizes of all methods. We set the

sizes (space consumptions) of LC, HM, SA3, and DC to be almost the same.

Training of LC. For the first level, we assume that a given dataset is equally divided

into subsets for models of the second level. We composed keys and corresponding IDs
of models into pairs as the training data. After the training of the first level was done, we
partitioned the original dataset according to the output of the first level. For the second
level, we trained the group of models sequentially. We prepared training data of multiple
scales for each model. For each scale, we generated 1000 query predicates (K, R) and
calculated the true cardinality as the training data.

The keys and IDs were both scaled to a maximum of 100 during the training
and evaluation. To train the neural network of the first level, we used Adam as the
optimizer [50]. We set the learning rate to 1 x 10™*. It took two epochs to finish the
training. The loss remained large when the network was trained on osm, because a
two-layer neural network cannot approximate the skewed distribution well. We divided
the datasets into subsets for models in the second level according to the predicted results
of the trained neural network. Therefore, the high loss of the neural network did not
matter. We fitted the linear models of the second level to the training data by using
non-linear least squares. In the case of the face dataset, there were tens of outliers that
made it hard for training. We removed the outliers when we scaled the keys for model

training.
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Table 2.3: Estimation errors for cardinality estimation using queries with a selectivity of
around 1074,

Datasets amzn face

Metri MAPE q-error MAPE q-error
ere 1 50th 95th 99th 50th  95th  99th 50th 95th 99th 50th  95th  99th
LC [55x1073 1.2x10°T 33x10T| 1.0055 1.13 134 [32x1072 9.0x107% 3.6x10°2| 1.032  1.097 1.14
HM |63x1073 1.0x107! 2.0x10~'| 1.0063  1.11 122 | 14x107% 44x1072 62x1072| 1014 1.045  1.064
SA2 |7.8x1073 45x1072 82x1072| 1.0078 1.045  1.082 [8.9x1073 1.3x107% 1.6x1072| 1.0089 1.014  1.016
SA3 [82x1072 3.8x107! 1.0 1.087 146  3.1x10%| 9.0x10> 1.4x107' 1.6x107!'| 1.098 1.16 1.19
SA4 1.0 2.6 6.1 1.4x10% 54x10° 54x10° 1.0 15 1.6 1.9%10* 2.5x10* 2.7x10*

Datasets osm wiki

Metri MAPE q-error MAPE q-error
ere 1 5oth 95th 99th 50th  95th  99th 50th 95th 99th 50th  95th  99th
LC [1.1x10°T 3.4x10°T 89x10~ 1| 1.11 1.37 196 [6.5%x1073 3.0x1072 12x10°T| 1.0065 1.031 1.12
HM |12x1073 5.6x107% 32x107'| 1.0012  1.058 141 |1.0x1073 1.0x1072 7.0x1072| 1.0010 1.010  1.072
SA2 | 1.1x1073 2.8x1072 1.3x107'| 1.0011  1.029 1.14 | 12x1073 6.8x1073 2.4x1072| 1.0013 1.0068  1.024
SA3 |1.1x1072 2.8x107! 1.0 1.011 133 6.54 |12x107°2 7.1x1072 2.6x107'| 1.012  1.072 1.32
SA4 |1.1x107! 24 1.3x10" | 1.12 10.88  2.3x10*|1.2x107! 1.0 1.34 112 45x10% 5.9x10°

Workloads. For query predicates (K, R), first, we selected scales of selectivity” for
query range R from {107,107%,1073}. Then we randomly generated 1000 pairs of
(K,R) for each scale of selectivity. The keys generated are limited within the range of
existing keys in the datasets. The generated R was floated around the selected selectivity
with possible magnitudes within (10~!,10").

2.4.2 Overall Performance

Table 2.3 shows the estimation errors on all datasets and queries with a selectivity of
around 10, The 50th/95th/99th values show the corresponding percentile errors. Table
2.4 shows estimation errors on the wiki dataset with selectivities of around 107>, 104,
and 1073,

The MAPE errors and g-errors do not show significant differences. Most MAPE
errors are much smaller than 1, with zeros after their decimal points. According to the
definitions, the similarity of MAPE errors and g-errors is easy to understand. However,
for SA4, whose selectivity of sampling hardly matches the queries’ selectivity, its
g-errors are extremely large.

Exp-1 (LC vs. SA). Sampling methods can easily find a trade-off between accuracy
and storage cost. According to the errors shown in Tables 2.3 and 2.4, we study the
following: (i) Generally, LC in the current setting has a competitive accuracy over SA3.
(i1) The 50th errors of LC are usually slightly larger than those of SA3, whereas LC has
smaller 95th and 99th errors. This means that the distribution of LC’s errors is more

2We omit the term “1x”.
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Table 2.4: Estimation error comparison at different scales of range queries using the
wiki dataset.

Metric MAPE
50th 95th \ 99th
Selectivity 1073 1074 103 1073 104 1073 1073 1074 103
LC 27x1072 6.5x1073 1.2x1072 54x107%2 3.0x1072 8.7x1072 6.1x1072 1.2x10"! 3.0x10"1
HM L.1x107* 1.0x1073 1.0x1073 1.1x1073 1.0x1072 7.1x1072 84x1073 7.0x1072 2.1x1071
SA2 13x107% 12x1073 12x1072 6.6x107* 6.8x1073 6.7x1072 2.6x1073 24x1072 2.7x1071
SA3 13x1073 12x1072 12x107! 6.5%x1073 7.1x1072 1.0 27x1072 2.6x107! 1.4
SA4 | 1.3x1072 | 1.2x10~! 1.0 6.6x1072 1.0 36 2.2x107! 13 6.1
. g-error
Metric 50th 95th | 99th
Selectivity 1073 1074 1073 1073 1074 1075 1073 1074 105
LC 1.03 1.0065 1.012 1.054 1.031 1.09 1.06 1.12 1.35
HM 1.00011 1.0010 1.0098 1.0011 1.010 1.075 1.0085 1.072 1.24
SA2 1.00013 1.0013 1.012 1.00066  1.0068 1.068 1.0026 1.024 1.32
SA3 1.0013 1.012 1.13 1.0065 1.072 33 1.027 1.32 5.7x102
SA4 1.013 1.12 1.9x10° 1.068 45%x10%> 3.8x10° 1.25 59%x10° 4.4x10°

even than that of SA3. (iii) Sampling methods have larger errors for a smaller selectivity.
In contrast, the variation of LC’s errors for different scales of selectivity is more stable.
The MAPE errors of the three sampling methods are linear to their sampling scales.
Sampling methods with different scales can be treated as a trade-off between accuracy
and storage cost.

Exp-2 (LC vs. HM). Tables 2.3 and 2.4 show that HM generally returns smaller errors
than LC. Similar to SA, HM shows degraded performance with smaller selectivity of

queries. HM has a more significant advantage over LC for queries with a selectivity of
1073

Exp-3 (Performances on osm). LC has the worst accuracy on osm among all datasets,
whereas the other methods do not show decreased performances on osm. This is mainly
attributed to the distribution of osm. Figure 2.3 shows that osm is the most skewed. The
small segment shown in the zoomed region of osm shows that the distribution lacks
local structures, making it difficult for LC to learn the CDF. Similar situations are met
in indexing works [69]. HM and the sampling methods are not bothered a lot by the
distribution of osm, because they do not need to learn the distribution.

Exp-4 (Performances on amzn, face, and wiki). The CDFs of amzn and wiki show
very smooth distributions. The zoomed small segments of amzn and wiki also look
similar. Considering zoomed segments of face, face also lacks local structures, similar
to osm. As a result, LC has more significant errors on face compared with its errors on
amzn and wiki.
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Table 2.5: Estimation time comparison for different methods on different datasets
(microseconds)

Datasets LC HM SA2 SA3 SA4 DC
amzn 159 139.2 44821.5 1176.6 129.8 77.6
wiki 159 1450 42313.6 1162.3 1299 91.8
face 169 148.4 447432 1230.1 138.5 93.0
osm 17.6 1534 47847.8 1271.0 143.1 196.6

Exp-5 (Estimation time). Table 2.5 shows the average estimation times on different
datasets with a selectivity of 10~*. LC is much faster than the other methods. DC takes
less time than HM and SA4 on amzn, face, and wiki. When RMI is used as the index,
the time cost of a point query consists of the inference time (evaluated by RMI) and the
search time (for searching around the predicted order). As DC uses two-point queries to
estimate cardinality, it is reasonable that DC needs a longer time than LC. We see that
LC, HM, and SA have stable times on different datasets. DC needs more time on osm
than the other datasets. The point queries on osm incur a long search time [69]. HM
scans the border values of buckets, and this scanning contributes to a major part of the
time costs. The sampling methods with large samples involve many record accesses,
thereby SA2 and SA3 are very slow.

2.4.3 Detailed Analysis

Overall, LC has the best computational efficiency. Its errors are a bit larger than those
of the other models but is absolutely small. DC provides the true value of cardinality,
showing the best accuracy. At the same time, its estimation time normally outperforms
those of the sampling methods and HM. Consequently, LC and DC are the options.
However, for the estimation purpose, we consider that LC is better suited, as it yields
high efficiency and small error. The main advantage of the prototype learned method
LC is its computational efficiency. The advantage comes from its structure, which is
based on light-weight learning models.

As mentioned in Section 2.2, HM is a group of linear models. LC, HM, and DC
with RMI all make use of models. The model differences lead to differences in their
performances. DC calculates cardinality by finding the orders of two border keys of
the query range. It involves twice the computation cost of RMI. Compared with DC,

LC infers the difference between the orders of two border keys instead of inferring the
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orders. Hence, LC reduces the computation cost to one pass of the learning models.
Models of HM take charge of counting their buckets. When the query range covers
multiple buckets, which is a typical case, HM accumulates counts of all covered buckets.
Inferences by models need to be executed only on the border buckets intersected by the
query range. The errors in HM come from estimations of the border buckets.

The training cost of LC consists of two parts. (i) For model training, LC shares
similar costs with the original RMI model, which DC uses. In our evaluation, to train the
prototype learning model on a dataset consisting of 200 million records, it took about a
half hour for a simple neural network and 10 minutes for 1 x 10° linear models. (ii) For
the preparation of training data, LC has two ways, passive and active. The query results
produced by DBMSs can be utilized for training. However, this passive way cannot
guarantee sufficient amounts of data to train the models. Besides, an active collection of
training data for learning models can be expensive [35]. LC needs a longer time than DC
to collect training data because DC does not need to obtain true cardinality. However,
both training data collection and model training are done once, so the offline cost of LC

would not be a drawback in practice.

2.5 Related Work

Learned indexes. Learned indexes have recently been proposed to use learning models

to replace traditional index structures like trees [53, 64, 87]. They avoid the time-
consuming traverses in a tree structure and achieve fast query processing. RMI is the
first proposed learned index and preserves the state-of-the-art performance in the one-
dimensional case [53, 66, 69]. Our idea of approximating the data distribution in this
work also derives from RMI as introduced in Section 2.3. Flood [74] and Tsunami [21]
are two latest works on multi-dimensional indexes. They divide the data space into
buckets on a selected dimension and consider the data distribution during the division,
which can optimize the number of buckets that queries access and further improve
the query efficiency. Focusing on different data types, several learned indexes have
been proposed for the strings [107] and variable-length keys [15]. These works extend
the application scenarios for learned indexes and we can get inspiration about how to

approximate data distribution for cardinality estimation.

Learned cardinality estimation. Learned cardinality estimation methods use learning

models to estimate the cardinality. In this chapter, we focus on light-weight cardi-
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nality estimation methods for the one-dimensional case and achieve fast estimation.
MSCN [51] is an early and relatively fast learned cardinality estimator. It is a query-
driven method and relies on generated training queries with corresponding true cardinali-
ties. In particular, MSCN uses multilayer perceptrons to learn the mapping from queries
to corresponding cardinalities. Successors mainly focus on more complex settings like
high dimensions and large joins across multiple labels [13, 54, 61], and they are not
suitable for our task. As discussed in Section 2.1, existing works have not studied the

one-dimensional case and we investigate the problem in this chapter.

2.6 Conclusion

In this chapter, we addressed an unanswered question: Are learned methods suitable
for one-dimensional cardinality estimation? We designed a prototype of a light-weight
learned structure for one-dimensional cardinality estimation. We empirically evaluated
the performances of the proposed learned method and existing methods to investigate
their advantages and disadvantages. The evaluation results answer the question: A
light-weight learned method can achieve fast and accurate one-dimensional cardinality
estimation.

Though results in Section 2.4 have shown the effectiveness of our proposed LC,
we are seeking further improvements. If we treat LC as a baseline, better methods
for one-dimensional cardinality estimation should have smaller estimation errors and
competitive computational efficiency. A possible way is to add some extra models to LC
to achieve more accurate estimations. However, complex models are not suitable because
they incur high time costs. Therefore, the issue is how to make LC more accurate while
retaining simple structures. If we seek to optimize models compared with DC, we will
need to cut down its computation time. With RMI as an index, DC consumes about 20
multiplication operations (varying among the different models used in RMI) and tens
of add operations. Less computation than DC means that only several multiplication
operations are allowed. This is a new research challenge.

We expect that our investigation in this chapter can further inspire our study on the
multidimensional spatial data case (mentioned in Section 2.1). The point here is, light-
weight regression models can provide extremely fast inference speed compared with
commonly used deep neural networks for cardinality estimation. From the structures

of our proposed LC in Section 2.3, we can observe that a combination of light-weight
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models can easily approximate the data distribution. If we treat regression models as a
basis and design a cardinality estimator for spatial data, we can expect that the estimator
will easily achieve fast estimation speed, which is desired for spatial applications as
discussed in Section 1.1.



Chapter 3

SAFE: Sampling-Assisted Fast Learned
Cardinality Estimation for Dynamic
Spatial Data

3.1 Introduction

We have introduced spatial data in Section 1.1 and one of the fundamental technologies
for spatial data is range queries, which find spatial points within a specified range.
For example, navigation/map applications display Point-of-Interest information in spe-
cific areas, and monitoring systems count the number of people on each floor. Due to
widespread usages of spatial applications, the volume of spatial range queries continu-
ously increases [23, 90]. Reducing the latency of range queries is essential to provide
comfortable applications for users. Cost-based query optimization is often used to obtain
the most efficient query plan. Cardinality estimation, which estimates the result size of a
given query, is one of the most important core functions for query optimization. Because
spatial data applications usually need to deal with a significant number of range queries,
the accuracy and efficiency of cardinality estimation for range queries are directly related
to the efficiency of dealing with a workload of range queries [62, 85, 86].

It is well known that spatial datasets are generally dynamic, i.e., they allow frequent
updates, including insertions and deletions [5, 6, 93] as mentioned in Section 1.2.
Therefore, cardinality estimators should be updatable according to dataset updates. This

is a trivial requirement, as, if a given dataset is subject to updates, static estimators
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cannot consider the latest data distribution and the estimation results will be inaccurate.
This chapter addresses the cardinality estimation problem on dynamic spatial data and

designs a fast, accurate, and efficiently updatable cardinality estimator.

Motivation and challenge. Many studies proposed efficient and accurate cardinality

estimation approaches. As introduced in Section 1.2, recent results of learned cardinality
estimation methods [22, 35, 40, 57, 68, 71, 75, 98, 100] show remarkable improvements
compared with traditional methods, such as histogram-based methods [18]. Learned
cardinality estimation methods can be categorized into query-driven models (e.g., [33,
97]) and data-driven models (e.g., [71, 78]).

Query-driven models are built on training queries and map a training query to its
true cardinality. Most of them use deep learning to capture the relationship between
queries and cardinalities [22, 97, 78]. Although this approach is effective when datasets
are static and query workloads are known, the nature of “relying on training queries” is
not appropriate for dynamic data and unknown query workloads. If query-driven models
need to deal with dataset updates and unknown query distributions, they need to collect
training queries and compute their true cardinality, which leads to laborious costs.

On the other hand, data-driven models usually learn the distribution of a given
dataset mainly through deep neural networks [38, 71, 109]. They hence take a long
time to build a model (at least several “minutes” of training time are required for large
datasets) [35, 110]. This property limits to only static data, as they cannot support fast
model updates (i.e., re-training is required whenever datasets are updated). LHist [62]
is a state-of-the-art cardinality estimator for spatial data and does not use complex
models like neural networks, but it also does not support model updates. Traditional
methods, such as histogram and sampling, also can be considered as data-driven models,
because they generate some statistics from original datasets. These traditional methods
are employed as components of major DBMSs such as PostgreSQL [102]. Although
their structures are easy to build, their accuracy is lower than those of learning-based
models [33, 78].

We here summarize the challenges that need to be solved to deal with dynamic
spatial data effectively. (1) Stable performance: The estimation accuracy and speed
should be stable even if a given dataset is updated. (2) Fast estimation: Cardinality
estimation is frequently called, so fast estimation is desirable (e.g., microsec-level). (3)
Update-friendly: Estimation models should be easily (efficiently) updatable according

to data updates. As seen from the above discussion, existing approaches cannot satisfy
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these requirements at the same time. This motivates us to design a new cardinality

estimator that satisfies these requirements.

Contribution. To solve the above challenges, we propose SAFE, a sampling-assisted
fast and accurate learned cardinality estimator. Specifically, we solve the cardinality

estimation problem on dynamic spatial data by making the following contributions:

(i) SAFE. Our estimator specializes in solving frequent data updates while keeping
efficient and accurate cardinality estimations. It enables fast training by a sampling
strategy using data partitioning based on a quad-tree. Our key observation is that we
can accelerate the model updates from two perspectives: (i) updating only the necessary
models and (ii) fast training.

As for the first perspective, existing cardinality estimation methods typically need
to update/train their whole structures/models from scratch whenever they receive an
update. To avoid this issue, we employ 2-tier regression models, based on our insight
that each model can be updated independently. In addition, there are various regression
models, and their performances depend on the data distributions. To make an appropriate
selection among these models, we design a cost model that considers accuracy, estimation
time, and construction time. This cost model helps select a model with a balanced trade-
off between time and accuracy.

Next, as for fast training, we propose a sampling strategy using data partitioning
based on a quad-tree. A smaller sample size alleviates the training time while learning
the data distribution as samples follow the data distribution. Thanks to our idea of these

two perspectives, SAFE provides stable performance.

(ii) Incremental model update strategy for fast dealing with data updates. To enable
fast model updates, we propose an incremental model update algorithm for SAFE. The
SAFE structure can avoid model updates from scratch, and, for a given update (e.g.,
point insertion), only several regression models are affected. The SAFE structure enables
finding such models quickly, and only affected models are updated.

(iii) Experiments. We conduct experiments on both real-world and synthetic datasets.
Our results demonstrate that SAFE outperforms state-of-the-art cardinality estimation

methods and can efficiently handle dataset updates.

Organization. The rest of this chapter is organized as follows. Section 3.2 provides
preliminary information to present our proposed method. Section 3.3 presents our
efficiently-updatable learned estimator SAFE. Our experimental results are reported in
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Table 3.1: Overview of symbols frequently used in this chapter

Symbol Description
P Spatial dataset

p Spatial point in P
N Number of points in P
R Range query
l Left-bottom point of a query range R
u Right-top point of a query range R
card(R) True cardinality of R
cm) Estimated cardinality of R

fx Regression model for the x-dimension
i

3 i-th regression model for the y-dimension

Section 3.4. Related work is reviewed in Section 3.5. Finally, we conclude this chapter
in Section 3.6.

3.2 Preliminary

In this section, we first define our problem. Then, we provide preliminaries on learning-
based cardinality estimation. Table 3.1 summarizes the symbols used throughout this

chapter.

3.2.1 Problem Statement

Let P be a dataset of N two-dimensional (i.e., geospatial) points, and each point p in P

is represented as p = (x,y).

Query predicate. This chapter considers two-dimensional orthogonal (axes-parallel)

range queries. Let R be the specified range of a given orthogonal range query, and
the orthogonal range reporting query outputs all points in P that overlap R. Notice
that a range R can be represented by its left-bottom point / and right-top point u. For
conciseness, we use “range queries” to denote orthogonal range queries. Also, R is used

to denote a range query hereinafter.

Cardinality of a range query R is the number of points in P that overlap R. We use

card(R) to denote the cardinality of R. The notion of selectivity is close to cardinality
card(R)

and represented as —;
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We address the cardinality estimation problem, which is to infer card(R). We use
cm) to denote an estimated cardinality of R. Our objective is to compute cm)
efficiently and accurately. Notice that computing cardinality by using existing range
search (reporting) algorithms (e.g., R-tree) is meaningless (and slow), as applications
require only cardinality. Although there exists an O(v/N) time range counting algorithm
(i.e., kd-tree [10]), it is still slow, because it requires many point accesses. We therefore
consider a learning-based approach, because it achieves O(1) time estimation (the
estimation time is dependent only on a model). We assume that the query workload is

unknown (i.e., is not given in advance) for generality.

3.2.2 Learning Data Distribution

Learned cardinality estimation methods map queries to their cardinality. As intro-
duced in Chapter 2, we can use light-weight regression models to approximate one-
dimensional data distribution and estimate the cardinality for range queries. To extend
the one-dimensional approach for multi-dimensional cases, the joint distribution of multi-
dimensions should be considered. Particularly, the correlations between dimensions
need to be captured for cardinality estimation. One existing approach is to approximate
the CDF of multi-dimensional data directly. As shown in Figure 3.1(a), MOSE [89] uses
the lattice regression model for the approximation:

—

card(R) = fuose(u1,u2) — fuose(u1,2) — fuose(l1,u2) + fuose(l1,12),  (3.1)

where fyose approximates the joint CDF of the two-dimensions'. MOSE captures the
data distribution well, but it employs a supervised approach, i.e., it requires many (e.g.,
thousands of) training queries and their true cardinality to train fj;osg. This approach
cannot be used for unknown query workloads and dynamic data, as it needs to recompute
the true cardinality of each query when the dataset is updated, which is too expensive.
Another way is to approximate the data distribution on each dimension. LHist [62]
partitions the data space into multi-dimensional grid cells and employs hierarchical
regression models, which is shown in Figure 3.1(b). Specifically, LHist approximates the

distribution of each dimension based on the one-dimensional histogram. The estimated

"For example, firose(u1,us) approximately counts the number of points falling in the rectangle whose
left-bottom and right-top coordinates are respectively (0,0) and (u;,us). For details, refer to [89].
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Figure 3.1: Existing solutions for approximating data distributions. (a) MOSE approxi-
mates the overall distribution directly by using the lattice regression model. (b) LHist
recursively learns the data distribution of each dimension, similar to an equal-depth
histogram.

cardinality is computed by:
card(R) = Zfll;Hist (Di),
i

where f .. (D;) approximates the cardinality of the i-th partition D;.

This recursive way can adapt to frequent updates, because each regression model
can be trained independently. By selecting only the models that need to be updated, we
can avoid training all models from scratch and efficiently keep accurate models even on
dynamic data. However, LHist does not have this idea, and it does not support model
updates. SAFE implements this new idea and employs 2-tier regression models in an
update-friendly manner.

3.2.3 Update Solutions of Existing Methods

We briefly describe the update solutions of existing methods by answering the following
two questions.

Can they avoid reconstructions? The most straightforward approach to dealing with

updates is reconstruction (i.e., re-training all models). In this case, the update time cor-

responds to the construction time. For example, histogram-based solutions, e.g., LHist,
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Figure 3.2: Comparison of estimation time and update time of existing cardinality
estimation methods on a Gaussian dataset with 20 million points

need to reconstruct their models to deal with dataset updates. Clearly, reconstruction is
laborious and cannot deal with frequent updates.

Adapting to data updates continuously is preferable for saving time. QuickSel [78]
employs a continuous learning approach to gradually learn from incoming queries. That
1s, QuickSel does not learn updated data distributions if no new queries are given, so
its accuracy becomes worse as it receives more updates. It is possible that QuickSel
uses all existing queries to learn the up-to-date data distribution, but it trivially takes a
significantly large cost.

What are their time costs? Figure 3.2 compares three existing methods’ update and

estimation times on a Gaussian dataset with 20 million two-dimensional points. For
LHist and Histogram, the update time equals the construction time because they need
reconstructions to update models. QuickSel builds its models from scratch. It continu-
ously records incoming queries and true cardinalities. Its update time cost increases as
more queries are accumulated. In Figure 3.2, the number of recorded queries is 300 for
QuickSel. The update and estimation times of QuickSel increase with more queries, so,
when data updates are frequent, the update cost becomes a heavy burden. In particular,
learning-based methods (i.e., LHist and QuickSel) incur a long update time, which is
not acceptable in the dynamic setting. This is the main issue of existing learning-based
cardinality methods. We overcome this challenge and design a solution that achieves

fast estimations and updates.
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3.3 SAFE

3.3.1 Main Idea

SAFE is a learned cardinality estimator designed for dynamic spatial data. To accurately
learn the 2-dimensional CDF, we employ 2-tier regression models, each of which is a
light-weight (e.g., polynomial) model. The first tier (resp. second tier) corresponds to
the x (resp. y)-dimension®. The idea behind employing light-weight regression models is
twofold. First, they can infer and be trained quickly, whereas complex models (e.g., deep
neural networks) do not have these properties. Second, by dividing the x-dimensional
space into disjoint buckets, we can focus on the y-dimensional CDF on each bucket,
and the CDF tends not to have a complex curve. More precisely, the first tier model is
responsible for dividing the data space into disjoint subspaces based on x-dimensional
values, whereas the second tier models are responsible for cardinality estimation.

The accuracy of a learned cardinality estimator becomes worse on dynamic data
if models are not updated. As we assume dynamic spatial data with frequent updates
(e.g., insertions and deletions), cardinality estimators should be robust against this
setting. Then, we come up with two ideas: (i) fast training with small samples and (ii)
updating only the necessary models. To implement these ideas, we propose to use “good”
samples for accurately training the regression models, and we design the structure of
SAFE to identify which model has to be updated easily. With these techniques, we can
incrementally update a SAFE, i.e., we update only models that need to be updated even

when we receive dataset updates.

3.3.2 Opverview

Figure 3.3 shows an overview of SAFE construction. We first obtain samples by using
data partitioning based on a quad-tree. The samples are used to quickly train regression
models. We then train 2-tier regression models (the first tier corresponds to the CDF on
the x-dimension while the second tier corresponds to the CDF on the y-dimension). Note
that each cardinality estimation model for the corresponding subspace does not affect the
others, thereby it can be trained independently. Figure 3.3(d) illustrates how (i) the data
space is divided into multiple (three in the figure) buckets based on the x-dimensional

The order of the x- and y-dimensions is changeable.
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Figure 3.3: Construction of a SAFE. (a) Given a dataset P, (b) we partition P into
disjoint subspaces by using quad-tree-based partitioning. (c) We sample a random point
from each partition, and (d) train 2-tier regression models by using the samples. The
regression model on the x-dimension (the first tier) partitions P into m buckets based on
the x-dimensional values, and a regression model is created for each bucket (the second
tier).

values and (ii) a model in each bucket is trained while considering the y-dimensional

CDF. Algorithm 1 describes the pseudo-code of our construction algorithm.

3.3.3 Sampling by Data Partitioning based on Quad-tree

When a model needs to be updated, fast training is required for dynamic data. To
this end, we consider using samples. That is, we train our regression models from
samples obtained from a given dataset. This is a simple-yet-effective approach, as this

approach makes the training easier and faster. We here note that straightforward random
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Algorithm 1: CONSTRUCTION
Input: P (a spatial dataset) and m (the number of buckets)
Output: f,, fyl, ..., Jy' (regression models)
1 /* Generate samples */
2 PP = {P],Pz, } — PARTITION-DATASET(P) // based on a quad-tree
3 S+ GET-SAMPLES (P /) /I sample a random point from each partition

4 /* Train regression models */

5 P, <+ a set of x-dimensional values in S

6 fx — TRAIN(PX) // learning the CDF curve in x-dimension by least squares
7 B1,By,....B,, + &

8 foreach p € S do

9 | Bj< BjU{p}, where j = |§fi(x)]

10 foreach i € [1,m] do

11 L Pyi <+ a set of y-dimensional values in B;

12 fyl <+ TRAIN (P)l)) // learning the CDF curve in y-dimension by least squares

sampling is not suitable, as it may fail to sample points in sparse regions, leading to
wrong learning.

To avoid this issue, we partition the whole data space into disjoint fine-grained
subspaces so that we can sample a point from each subspace. We achieve this by
using quad-tree-based partitioning. A quad-tree decomposes a given data space into
equal-sized four disjoint subspaces [25]. This is repeated until a given space has a small
number of points. As seen from Figures 3.3(b) and (c), this approach does not fail to
sample points from sparse regions. We pick one random sample from each partition.

Other (virtual) sampling approaches are also considered:

* Averaged point. We compute the average (or median) x-y coordinates of all points in
a given partition and use it as a sample. It is expected that this approach can reflect

the distribution in the partition.

* Center point: The geometric center of a partition is considered as the partition’s

coordinates. This is also easy to compute.

We compare the performance differences between these strategies in Section 3.4.2 and
confirm that random points are sufficient. Note that we do not take samples from empty
partitions.
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Figure 3.4: Illustration of the two-dimensional layout for regression models. For the
x-dimension, a regression model divides the data space into m buckets according to the
data values of the x-dimension (m = 4 in the figure). Then, regression models are built
on each bucket to approximate the y-dimensional CDF. For a query R, the regression
model for the x-dimension locates the buckets that need to be accessed. The estimated
card(R) is obtained by summing the results from all the accessed buckets.

3.3.4 Regression Models for Cardinality Estimation

Considering data-driven models for cardinality estimation without relying on queries,
existing works employ hierarchical regression models. However, they do not provide
any ideas of how we efficiently update such models or they cannot avoid re-training
all models from scratch [62]. Our structure is designed based on the idea that each
regression model can be independently updatable. In addition, we design a cost model to
select a suitable model for a given dataset to achieve a good trade-off between accuracy
and estimation time.

Layout & estimation. As shown in Figure 3.3(d), we employ 2-tier regression models.

For the x-dimension, we divide the data space into m subspaces called buckets, based
on a regression model that approximates the x-dimensional CDF. On each bucket, we
train a regression model to approximate the y-dimensional CDF curve of points falling
in this bucket. The first tier has a single model f,, while the second tier has m regression
models fyl, s Sy
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Algorithm 2: ESTIMATION

Input: f,, fyl, ..., Jy" (regression models) and R (a range query)
Output: card

1 A < GET-BUCKETS (fx, R) /I get a set of all buckets overlapping R

2 card + 0

3 foreach B; € 4 do

s | card « card+(fi(u) - fi(L))

—_ —

5 card < o X card 1/ o is the average number of points in each partition

Table 3.2: Types of regression models (6; is a parameter and z = x or z =)

Name Description
Polynomial  f(z) =60+ 012+ ...+ 6,2"
B 6y + 61z (Z < 93)

Spline Linear =
P f) 62+ 60160:+6) (2> 63)

Log Linear  f(z) = exp(6oz+ 01)

To estimate the cardinality of a query R, the first tier model is used to find the buckets
overlapping R. Figure 3.4 illustrates the estimation flow. Because the model for the
x-dimension, fy, divides the data space into m buckets, the left-most and right-most
buckets overlapping R are respectively computed by | % fx(/1) ]| and | 5 fx(u1)], where [,
and u are respectively the left-most and right-most x-dimensional values of R. Then,
we estimate the cardinality by considering a set B of all overlapping buckets:

card(R) = &'y (fi(u2) - fi() (3.2)
i€B

where [/, and u; are respectively R’s bottom and top values in the y-dimension, and
« is the average number of points in each partition obtained by the quad-tree-based
partitioning. Recall that our regression models are trained on sample points (i.e., a small
subset of P). Therefore, the cardinality estimated by f, needs to be scaled up, and « is

used to achieve this.
For computing ca/m’(\R), we access at most 1 +m = O(1) regression models, and
each model needs O(1) time, see Table 3.2. Therefore, Equation (3.2) needs O(1) time.

A pseudo-code of our estimation algorithm appears in Algorithm 2.
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Selection of regression models. Regression models are responsible for approximating

one-dimensional CDFs, and LHist [62] uses only polynomial models. It is trivial that
an appropriate regression model is dependent on the data distributions. Specifically,
considering skewed data distributions in real datasets, it is difficult for a simple linear
regression model to approximate the CDF curve well. An exponential or polynomial
model with high degrees may achieve better results. Therefore, it is better to consider
which model we should select, but automatically selecting it is challenging.

To address this task, we propose a strategy to select the most suitable type of
regression model. Table 3.2 lists the representative types of regression models, which
are candidates for SAFE. We design a cost model that considers the following three

parts:

» Estimation error. This is a core part we care about when selecting which model to
be used. However, it is not practical to obtain estimation errors during construction,
and we need query samples to measure them. Instead, we consider the training error
of a given regression model, because the training error represents how the model
approximates the data distribution. We measure the least square error as the training

error of a given regression model.

* Estimation time. Fast estimations highly rely on regression models with low
computation time. Considering the types of candidates, it is easy to get an expected

estimation time by feeding in some default values during construction.

* Training time. The dynamic setting asks for frequent and efficient model updates,
so training time is also important. Measuring the training time of a given model is

trivial.

Then, we measure the cost for a given regression model f as follows:
COSt(R f) — Etrain + Test + Ttraim

where Ejgin, Test, and T4, represent the estimation error, estimation time, and training
time, respectively. We collect E;y4in, Tesr, and T4, of all candidates, and each of them
is normalized to [0, 1] (so Cost(P, f) € [0,3]). Based on the costs, we use the model

with the lowest cost. This cost model evaluation is done for each dimension.

31t is also possible to use weights {w1,wa, w3} for the criteria.
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Training of regression models. For a given regression model, we use the least square

method to obtain its parameters. We introduce the training of polynomial models. (The
training for spline linear and log linear models is essentially similar to the training for a
linear regression model, which is trivial.)

Assume that we have a training dataset containing pairs of (p;,r;), where r; is the
rank of p; in the dataset determined by the sorted order of a given dimension (x or y).
For a polynomial model f(z) = 6y + 6,z + ... + 6,z", where z is the x- or y-dimensional
value of a given point, we can write the residual sum of squares as:

N/
RSS=Y"(f(zi)— )%,

i=1

where N’ < N is the number of input points. RSS can be written in a matrix format [56]:

RSS = (2,60 — 0y)" (2,6 — 0y),

where
Iz Z% T Z’f 6o r
1 2 & - 2B 0 rn
Z, = . . . . . ) 0= . 7QY =
1 zv 22, - 2" 0
N ZN/ ZN/ n ryy

Here Z, is the Vandermonde matrix. The optimal 6 = {6y, 61, ..., 6, } should minimize

RSS. We have:
JRSS

26
Hence, we can calculate 0 by:

=7r7,6 -7I'Q,=0.

6 = (ZVTZV)_IZVTQY'

Regression models are arranged in a 2-tier manner (the first tier corresponds to
the x-dimension with a single model f; whereas the second tier corresponds to the
y-dimension with m models fyl, s Jy'). We train these regression models in a top-down
style. After training f,, we divide the dataset into m buckets and assign each point to the

Jj-th bucket if its x-dimensional value satisfies

i = L))
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Figure 3.5: The workflow of model update. The red token represents a point deletion.

Then, we train the regression model for each bucket based on the y-dimensional values.

The training flow is also described in Algorithm 1.

3.3.5 Model Update

We consider point insertions, deletions, and replacements as updates. Figure 3.5 illus-
trates the flow of our model update when a deletion is given.

Given an update, we first check whether we need to update the quad-tree-based
partitions, which is shown in Figure 3.5(b). If an update makes the number of data
points belonging to a node larger than the node capability of the quad-tree, the partition
will split. If an update reduces the total number of data points in the four child nodes
(partitions) belonging to the same parent node in a quad-tree (where each parent node

has four child nodes) to a value that is no larger than the node’s capacity, the four child
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nodes (partitions) will merge into a single node (partition). When necessary, the samples
also need to be updated. (If not, we update ¢ in Equation (3.2), and the update is over.)
We conclude the following three cases that we need to update the samples from the

corresponding partitions.

* A partition is split (mainly due to an insertion).
* A partition is merged (mainly due to a deletion).

* The current sample is removed (due to a deletion or replacement).

In these cases, we create update records. Specifically, we create (s, ins) for an insertion
and (s,del) for a deletion, where s is the original sample of the partition that needs to
be updated. Also, each of new partitions picks a random sample. These new samples
are assigned to the corresponding buckets. Notice that replacements are regarded as
deletion-then-insertion.

As each sample s is associated with a unique bucket, we can identify the bucket to
which s belongs by using a hash table, i.e., by using s as a key. From this approach and
update records, we can identify the models that need to be updated, as each model is
trained on the samples in the bucket. We update the corresponding regression models by
using the training method (like in Section 5).

We note that, given an update, a quad-tree partition rarely changes, so we rarely
update the models. Even if some partitions are updated, we need to update only a
small number of models, as such updated partitions exist locally. This mechanism helps
minimize the time for updating the SAFE structure, which is empirically confirmed in
Section 3.4.3.

3.4 Experiments

This section reports our experimental results. We conducted experiments on a server
with an Intel Xeon Gold 6254@3.10GHz CPU and 768GB RAM, running Ubuntu 18.04
LTS. The evaluated methods were single-threaded and implemented in C++.

3.4.1 Setup

Datasets. We used three real-world datasets and one synthetic dataset, and they contain

millions of two-dimensional points. Table 3.3 shows the information on the datasets. The
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Table 3.3: Datasets for evaluation

Name  Category Size (million)

Colorado Real 35

Paris Real 28
Shikoku Real 9
Gaussian  Synthetic 20

three real-world datasets were extracted from OpenStreetMap (OSM)*. They contain
pairs of latitudes and longitudes. We also prepared a synthetic Gaussian dataset with a

mean of 100 and a variance of 500 for each dimension.

Evaluated methods. Our experiments evaluated the following cardinality estimation

methods.

* SAFE: Our proposed estimator. We set the cell capability of the quad-tree to 10.

* LHist [62]: is the state-of-the-art data-driven cardinality estimation method for
spatial data. It uses polynomial models to approximate the data distribution, and we

set the degree of polynomial models to 6 as recommended in the original paper.

* QuickSel [78]: QuickSel is a state-of-the-art supervised (query-driven) cardinality
estimation method. It continuously learns from incoming queries to update its
Gaussian mixture models. To make it comparable to the above methods, we prepared

1,000 queries as the training set for initializing QuickSel before evaluation.

3.4.2 Result: Static Data Case

For each dataset, we prepared three groups of queries. Each group contains 1,000
randomly generated range queries with a mix of selectivity of about 0.1 and 0.01. The
three groups are regarded as disjoint clusters, i.e., queries in the same group (in different
groups) have similar (totally different) query regions. In our preliminary experiment,
which is shown in Figure 3.6, we found that R-tree runs range counting with a selectivity
of 0.01 in less than 10 milliseconds in average. Then, to ensure the effectiveness of
estimations, we controlled the estimation time of all the evaluated methods to around
100 microseconds in the following experiments by default. Therefore, m in SAFE was
tuned accordingly. Note that this section evaluates the cardinality estimation models in

the case where no updates occur.

“http://download.geofabrik.de/
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Figure 3.6: Running times for range counting conducted by R-tree, kd-tree, and Quad-
tree.

Construction time. Figure 3.7 shows the construction time of each method. The con-
struction time of SAFE is not the shortest, but the difference is not large. The construction
of SAFE can be divided into three parts: data partitioning based on a quad-tree, sam-
pling, and the training of regression models according to the design in Section 3.3. If we
assume that the quad-tree is built in advance (for efficiently running range queries as
in Figure 3.6), we can ignore the quad-tree construction time, the main bottleneck of
building a SAFE. Then, under this assumption, its construction time can be the fastest.

Accuracy. Figure 3.8 shows the 50th and 95th g-errors of each method. SAFE and
LHist show similar g-errors (but SAFE is usually better). It is also seen that QuickSel
shows the lowest 95th g-error among the three methods. Actually, this result is expected
because QuickSel exploits incoming queries for learning, which is quite advantageous
against SAFE and LHist. Nevertheless, (i) all three methods show similar 50th g-errors



3.4 Experiments 45

B SAFE (Quad-trec) WM SAFE (models) B QuickSel
W SAFE (sampling) B THist

50+

30 1

20 1

Construction time (sec)

10 1

Colorado Paris Shikoku Gaussian

Figure 3.7: Construction time evaluation on different datasets

and (ii) they are close to 1 (nearly no error). We therefore see that SAFE can (often) yield
an accurate cardinality for a given range query without any query workloads. (Later, we
show the advantage of SAFE against QuickSel w.r.t. time and accuracy trade-off and
updatability.)

Accuracy vs. estimation time. We next investigate the trade-off relationship between

accuracy and estimation time, and the result is depicted in Figure 3.9. We see that
QuickSel has the worst trade-off, whereas SAFE does the best. If applications require
faster estimation time, the accuracy of QuickSel degrades quickly. On the other hand,
SAFE does not lose its accuracy so much even when a faster estimation time (e.g., less
than 10 microseconds) is required. This is a great advantage of SAFE. SAFE can choose
the most suitable types of regression models for different settings. This feature makes a
good trade-off between accuracy and estimation time possible.

Sampling strategies. We first compare the performances of the three sampling strategies

(random point, averaged point, and center point) introduced in Section 3.3.3. We trained
SAFE with different sampling strategies. Tables 3.4-3.7 show that these strategies have

nearly the same sampling time. However, as for estimation accuracy, the center point
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Figure 3.8: Accuracy evaluation on different datasets
strategy fails, whereas the others share similar accuracy. We therefore used the simple

random point strategy for SAFE.

Table 3.4: Comparison of sampling strategies on Colorado

Strategy Time (sec) 50th g-error 95th g-error
Random point 11.1 1.26 1.77
Averaged point 11.2 1.25 1.74
Center point 9.5 1.22 1.80

Sampling efficiency for training. Table 3.8 compares the training time of our models

using samples and all points. Clearly, using samples obtains about x10 times faster
training time, which confirms our motivation of using only samples.
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Figure 3.9: Comparison evaluation on estimation time versus accuracy (50th g-error)

Table 3.5: Comparison of sampling strategies on Paris

Strategy Time (sec) 50th g-error 95th g-error
Random point 7.0 1.12 2.10
Averaged point 6.5 1.19 1.98
Center point 5.8 1.21 1.99

Table 3.6: Comparison of sampling strategies on Shikoku

Strategy Time (sec) 50th g-error 95th g-error
Random point 1.8 1.09 1.67
Averaged point 2.1 1.09 1.61

Center point 1.4 1.15 2.57
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Table 3.7: Comparison of sampling strategies on Gaussian

Strategy Time (sec) 50th g-error 95th g-error
Random point 4.7 1.044 1.060
Averaged point 4.6 1.050 1.068
Center point 5.0 1.574 22.822

Table 3.8: Training times on all points and samples

Dataset ~ All points Samples

Colorado 25.7 2.9
Paris 21.1 2.3
Shikoku 4.9 09
Gaussian 20.0 1.7

3.4.3 Result: Dynamic Data Case

We turn our attention to the dynamic data case. This section evaluates accuracy and
update time. We here note that estimation time does not change even when we update
the models. As competitors, we used QuickSel and SAFE without update’. This strategy,
denoted by Scaling, scales the estimation results of the non-updated model by using the
original and updated dataset sizes.

We sequentially updated the datasets by using one million insertions, one million
deletions, and one million replacements. The insertions followed a Gaussian distribution
within the corresponding data space, and the deletions were randomly selected from the
original datasets. Each replacement replaced a randomly selected original point with
a synthetic point following Gaussian distribution (i.e., the data distribution gradually
changed). We used 300 queries with selectivity of 0.1 and 0.01 for the evaluation.

Figure 3.10 shows the continuous update results on different datasets. SAFE keeps
high accuracy as its 50th g-error keeps being almost 1.0 and the 95th g-error is also
generally low. On the other hand, Scaling and QuickSel cannot keep accurate estimations,
and, as they receive more updates, their 50th g-errors and 95th errors always become
larger. Comparing results on different datasets, we can observe the following points: (i)
For replacements, the accuracy loss of Scaling and QuickSel is huge. It is attributed

SRecall Section 3.2.3, and, to update QuickSel’s model for the up-to-date dataset, we need to compute
the results of all existing queries, which requires more than a few seconds even for hundreds of queries.
This is too slow for dynamic data, thereby we followed the original strategy of QuickSel (i.e., its model
was not updated). In addition, LHist does not support data updates and needs reconstruction (incurring at
least more than a few seconds for each update), thus we did not use it as a competitor.
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Figure 3.10: Continuous update evaluation

Table 3.9: Average update time of SAFE per an update (microsec)

Datasets Colorado Paris Shikoku Gaussian
Update time 9.9 19.8 6.2 14.1

to the large variations of data distribution incurred by the replacements. Our update
strategy does not suffer from this. (ii) The g-error curves of SAFE have sawtooth-like
fluctuations. Some data updates may incur more skewed data distributions, which
lead to low-quality approximation. Nevertheless, its average g-error remains low. The
credit for SAFE’s ability to maintain good accuracy during data updates should be
attributed to the incremental strategy proposed in 3.3.5. SAFE can update the necessary
regression models when encountering data updates, making it possible to keep the
models up-to-date with every data update.

We next investigated the update time of SAFE per an update, which is shown in
Table 3.9. We see that the update time is around 10 microseconds and quite fast. It is
attributed to the light-weight structure design and sampling-ass This is a desirable result
for frequent data updates.
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Figure 3.11: Comparison between incremental update and bulk update on a Gaussian
dataset.

Is bulk update useful? When data update comes in a batch (like tens of thousands of

insertions into a dataset), one may consider that a bulk update is better than dealing
with them one-by-one by our update strategy. If a batch contains many updates, it is
often the case that insertions/deletions/replacement points are usually distributed all
over the data space. Then, nearly every model can benefit from model updates, thereby
the sample-based update judgment can be inefficient. We hence consider a bulk update
strategy for this case.

Compared with our original update strategy, we always update the model for the x-
dimension. This update is needed for large variations of the data distribution. Compared
with the construction procedure, the bulk update saves much time in building a quad-tree
and generating samples.

Figure 3.11 shows our experimental result on a Gaussian dataset. We generated point
insertions from the Gaussian distribution with a variance of 1 for each dimension (notice
that this variance is different from the original). We evaluated the accuracy and total
time for model updates. We observe that incremental and bulk updates show similar
accuracy. As for the update time, bulk update took about two seconds to deal with all
updates and is robust to the number of updates. Notice that this update time is much
faster than the SAFE construction time. However, our incremental update is much faster
than the bulk update strategy even when we have 200,000 updates (i.e., 1072 case) at a
time.
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Given the experimental results in Sections 3.4.2 and 3.4.3, it is clear that SAFE is
better than the state-of-the-art cardinality estimation methods since SAFE is better at

estimation-accuracy trade-off and updatability than them.

3.5 Related Work

Data-driven cardinality estimation. Data-driven cardinality estimators learn the data

distribution from a given dataset directly. Recall that SAFE also belongs to this category.
A representative example is traditional histograms. Latest learning-based methods tend
to consider this task as an unsupervised problem. The Sum-Product network [38] recur-
sively assigns points into clusters. It uses a probabilistic graphic model to approximate
the joint data distribution. A SUM operator is then used to add estimated results from
all the clusters. Those data-driven estimators can well handle two-dimensional range
queries. However, they cannot update easily when meeting data updates. Therefore, they

are not suitable for dynamic data.

Query-driven cardinality estimation. Query-driven estimators have also been devel-

oped. Some traditional histograms are refined based on given query workloads [1, 70].
Many state-of-the-art cardinality methods tend to employ this query-driven style [33], be-
cause deep learning models well suit this style. QuickSel [78] is the most representative
among non-deep learning technologies. However, its supervised nature, which requires
queries to learn the queried data distribution, limits applications. Those query-driven
estimators can easily handle range queries as they are the most simple query type. In this
chapter, we focus on the dynamic case, which means the training queries will become
out-of-date after data updates. It is the main barrier to applying query-driven solutions

to range queries on dynamic spatial data.

Spatial data partition. Normally, a given spatial dataset is partitioned and indexed

by some classical tree structure to enable fast query processing. Recent works on
spatial data partitions provide learning approaches for more efficient data processing
and analytics.

The incremental partition for spatial data [96] proposes a framework that makes
block-level systems better maintain spatial partitions. It integrates R*-tree and LSM-
Tree into its framework and proves its superiority over other partitioning methods. A
partition agent is proposed to choose an approximate partitioning technique based on the
data distribution [95]. It adopts deep learning models to evaluate the quality of different
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partition technologies considering different data distributions. It can automatically
decide which partition technique to be used for shifted data distributions. Qd-tree [108]
can improve the query performance by optimizing the metric of the number of blocks
accessed by a query. It introduces a reinforcement learning algorithm to make partitioned
layouts better suit the data distribution.

As we require fast data partitioning techniques to deal with data updates, learning-
based partitioning, which typically requires training queries, is not appropriate. There-
fore, the above learning-based partitioning techniques are not available for SAFE.

Learned spatial indexes. Learned indexes provide a new way to construct spatial in-

dexes [103]. The range query is the most fundamental function to be supported by
learned spatial indexes. Literature [80] extended RMI to 2-dimensional spaces by using
z-ordering. LISA [59] is the state-of-the-art learned spatial index. Instead of z-ordering,
it proposes a novel shard-based solution to map spatial keys into one-dimensional
mapped values. To process range queries, they will map the border values of queries
to one-dimensional values in the same way as mapping spatial keys. Waffle [73] is
introduced to handle highly dynamic datasets. It can automatically optimize the index
by managing the trade-off between the query and update speed. Though Waffle can well
handle range queries in a dynamic setting, it requires a query workload in advance and
its idea cannot be used in our setting.

3.6 Conclusion

Cardinality estimation plays an important role in optimizing spatial query plans. Consid-
ering the real-world spatial applications, spatial datasets are subjective to data updates,
1.e., dynamic. In this chapter, we focus on the dynamic spatial data case and propose
a new learned cardinality estimator SAFE. However, it exists several challenges to
achieve this: 1) The performance of the estimator should remain stable on a dataset
with frequent data updates. ii) The estimation should be fast, which is hard to achieve
by using common neural networks. iii) The estimator needs to support model updates.
To solve these challenges, SAFE employs (i) sampling-based learning for fast training,
(i1) 2-tier regression models to enable fast and accurate estimation while having an
efficient update ability, and (iii) an incremental model update strategy. Combining these
three mechanisms, SAFE achieves low-latency and accurate estimation while being
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robust to data updates. Our experimental results demonstrate that SAFE outperforms the
state-of-the-art estimators while supporting efficient model updates.

From the experiment results in Section 3.4, we can observe that the main advantage
of SAFE compared with other competitors is the support for frequent updates. It is
ascribed to the proposed incremental update strategy. To further achieve better estimation
performance and strengthen our advantages, we consider the following two points. First,
we want to extend the solution for more general spatial data cases, like three-dimensional
data. We live in a three-dimensional real world and coordinates data often come with
altitude information. Also, many spatial objects are represented by combinations of data
points. To make our solution capable of these different data types, we need to improve
the structure to well approximate the complex data distribution, which is a challenge for
our current design. Second, we seek update solutions for existing learned cardinality
estimators mainly using neural networks. Those existing methods show advantages in
scenarios like high-dimensional data and join queries, which also exist in spatial data
applications. If we can make these learned estimators update-friendly, we will benefit

from them to develop our estimation solutions for spatial data.






Chapter 4

PolyCard: A Learned Cardinality
Estimator for Intersection Queries on
Spatial Polygons

4.1 Introduction

Spatial applications require many spatial objects like polygons and efficient techniques
that process such spatial objects [11, 83]. Many spatial objects in real-world applications
are represented as polygons. For example, in map applications, districts, rivers, and
parks are represented as spatial polygons (or a set of polygons), and this chapter focuses
on spatial polygons. One of the fundamental operations employed in these applications
is intersection query, which, given a query and a set of spatial polygons, finds all spatial
polygons intersecting with the query in the dataset. As shown in Figure 4.1, this query
supports (i) finding all districts crossed by a high-risk river during heavy rainfall! and
(i1) looking for parks located within a specific region using a map application [42, 67].
These examples trivially clarify the importance of intersection queries.

As introduced in Section 1.1, low response time for queries is an essential require-
ment for application users. Database management systems (DBMS) usually use a
cost-based query optimizer to generate the most efficient query plan and to achieve
low query latency. The query optimization heavily relies on good estimates of the
cardinality of query results [44, 85, 86]. Therefore, to process intersection queries on

IThese districts are from https://geoshape.ex.nii.ac.jp/.
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Figure 4.1: Examples of intersection queries. (a) Find districts in a city (red polygons)
crossed by the bottom river (the black polygon). The results are denoted by the red
polygons with slashes. (b) List parks (green polygons with slashes) located in the
specified district (the red polygon).

spatial polygons efficiently, we need an estimator that estimates the cardinality of a

given intersection query with high accuracy.

Motivation and challenge. Existing cardinality estimation methods for polygons typi-

cally rely on histograms built on the minimum bounding rectangles (MBRs) of poly-
gons [55]. They estimate the cardinality of a given query’s result based on the statistics
derived from the histograms. Unfortunately, these methods have two drawbacks: (1)
They approximate polygons by their MBRs, which makes the estimation essentially
inaccurate. (2) They cannot maintain stable performance for different datasets and
queries. For example, the estimation time of histogram-based methods is highly depen-
dent on the number of buckets accessed. Some methods designed to optimize spatial
intersection searches/joins can also be used for cardinality estimation [11]. RI [27]
provides efficient approximations for polygons, particularly for the spatial intersection
join cases. However, RI is slow to estimate the cardinality of a single intersection query’s
result.

Learned cardinality estimation methods mentioned in Section 1.1 provide efficient
estimations for relational database systems [22, 98, 99, 110]. They have shown great
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advantages compared with traditional histogram-based methods. Most of them adopt
deep neural networks and train these networks in a supervised manner. However, they
cannot be used for spatial polygons. Each polygon is represented by a set of two-
dimensional coordinates. The number of coordinates is variable, e.g., from three to
hundreds in real-world spatial datasets [24]. The variable length input is not allowed for
neural networks. The most common solution to this issue is padding all the input data
with zeros [36]. Considering the possible sizes of polygons, the zero padding greatly
increases the computation cost for both training and estimation.

Moreover, collecting high-quality training data is always challenging for learned
cardinality estimators [51, 54] because the skewed distribution of polygons in real-world
polygon datasets makes obtaining sufficient training data difficult. One may come
up with randomly generating query (training) polygons to address this issue. This is,
however, not appropriate because the shape and the number of vertices of polygons are
not fixed. Furthermore, the cardinality distribution of randomly generated queries has
a long tail. The distribution with a long tail makes convergence of the training of the
network difficult [111].

As can be seen above, existing techniques are not appropriate for cardinality estima-
tion of intersection queries on polygons, despite the importance of efficiently supporting
this task. Our data-driven design in Section 3 is incapable of approximating the data
distribution of polygons because the distribution is too complex to be approximated by
simple regression models. Other data-driven designs using deep neural networks tend to
have a large estimation time. Motivated by this fact, we devise an efficient and accurate
query-driven cardinality estimator for intersection queries on polygons and overcome

the following main challenges.

* Variable input size: Neural networks need to be compatible with input polygons

of variable sizes.

* Training data generation: The high-quality and sufficient training data is desired

for a learning method.

* Fast estimation: The estimation time should be at least competitive with light-
weight methods, e.g., histogram-based ones, and be quite fast (e.g., microsec-

order).
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Contribution. In this chapter, we propose a learned cardinality estimation method for
polygons, providing fast and accurate estimations for spatial intersection queries. We
summarize our contributions below.

(i) PolyCard. We propose PolyCard, the first learned cardinality estimator for inter-
section queries on polygons. The main idea behind PolyCard is to make polygons of
variable sizes compatible with the neural network and provide substantial estimation per-
formance derived from learning techniques. We propose an adaptive sampling method
to transform polygon data to a fixed size, which considers the spatial distribution of
the coordinates belonging to a polygon. The differences between polygons are well
preserved even after the transformation. The transformed polygons can be processed
efficiently after normalization and sent into a specifically designed neural network. This
technique yields the final estimation to be fast and accurate.

(ii) Training data generation. PolyCard is a supervised query-driven estimator, so its
performance depends on training data (i.e., training queries). We propose a training data
generator to provide training data distributed over the data space and covering different
cardinalities. It is difficult to generate polygons serving as training queries directly
because polygons have variable number of vertices. We perform data augmentation on
real-world polygons and prepare sufficient polygons for the training. The distribution
of polygons is naturally skewed. The long tail distribution of true cardinalities corre-
sponding to randomly generated training queries heavily burdens the training process.
We guarantee an even cardinality distribution of training data by a sampling strategy.
(iii) Experiments. We conduct experiments on four real-world datasets. Our results
demonstrate that PolyCard outperforms state-of-the-art cardinality estimation methods
and can maintain stable performances on different datasets. We also analyze the effec-
tiveness of our proposed polygon transformation and training data generator by several
comparison experiments. Figure 4.2 shows the overview of our results: PolygCard
is very fast and has a better trade-off between speed and accuracy (g-error) than the

competitors.

Organization. The rest of this chapter is organized as follows. We present the prelimi-
nary information in Section 4.2. We elaborate on PolyCard in Section 4.3. We report

our experimental results in Section 4.4, and Section 4.5 concludes this chapter.
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Figure 4.2: Accuracy (represented by the 50th g-error) vs. estimation time on Sports
dataset

Table 4.1: Overview of symbols frequently used in this chapter

Symbol  Description
D Polygon dataset
P Polygon in a dataset D
P Vertex in a polygon P
(0] Intersection query
card(Q) True cardinality of Q

—

card(Q) Estimated cardinality of Q

4.2 Preliminary

We define our problem in this section. Table 4.1 gives the main symbols we use in this
chapter. Let D denote a set of polygons. A polygon is a typical spatial object type. We
use P to denote a polygon, and it is defined as:

Polygon. P is represented by a list of vertices, i.e., P = [p1,p2,...,Pm]. Each of its
vertices p is represented by the two-dimensional coordinates, i.e., p = (x,y). There is an
edge (or a line segment) between consecutive vertices p; and p;+1 (p, and p; are also
consecutive vertices). That is, a polygon is a two-dimensional shape closed by its edges.
Notice that each polygon can have a different number of vertices.

This chapter considers intersection queries on polygons, and we define this type of
query and its cardinality below. (Recall that Figure 4.1 illustrates some examples of

intersection queries.)

Polygon intersection. Polygon A is intersected with polygon B if one of the following

cases is met:
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* Any pair of edges (e, ep;) intersects, where e, is an edge of A and e, ; is an edge
of B.

* A (B) is fully contained in B (A).

Intersection query. Given a dataset D and a query polygon Q, the intersection query

returns all polygons in D that intersect with Q.

Cardinality. The cardinality of an intersection query Q is the output size of Q, i.e., the
number of polygons in D that intersect with Q. We use card(Q) to denote the cardinality
of 0.

The polygon intersection is first tested using the MBRs of two polygons. If MBRs
do not overlap, the two polygons do not intersect. Otherwise, a line segment intersection
test is used to check if any pairs of line segments (edges) are intersected [63, 81]. If no
pairs of line segments intersect, a point-in-polygon test can determine if one polygon is
fully contained within the other [31]. It takes O(mlogm) time to test if two polygons are
intersected and O(Nmlogm) time for an intersection query, where m is the number of
vertices in a polygon and N is the number of polygons in D. We address the cardinality
estimation problem to help further accelerate query processing in this chapter. We use

—

card(Q) to denote an estimated cardinality of Q. We aim at fast and accurate estimation.

4.3 PolyCard

4.3.1 Main Idea

PolyCard is a learned cardinality estimator designed for intersection queries on polygons.
We first solve the challenge of designing a learned model for polygons with variable-
sized vertices. To map variable-sized vertices to fixed-sized ones, zero padding is the
most direct solution and can make all polygons the same size as the maximal one.
However, it increases the computation cost of NN, resulting in inefficiency. To transform
polygons to a fixed size without having this inefficiency issue, we develop an adaptive
sampling method. The idea behind the adaptive sampling is twofold. First, sampling can
adjust the size freely. Second, adaptive sampling, which considers the spatial distribution
of vertices, can well preserve the shapes of polygons even with smaller sizes of vertices.

Standard deep neural networks, such as convolutional neural networks (CNN), multi-

layer perceptrons (MLPs), and autoregressive models, have been used for the cardinality
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estimation problem on the other data formats [51, 75, 88, 110]. Inspired by these
existing works, we build our neural network (NN) based on a combination of MLPs. Its
structure helps achieve accurate estimation within several microseconds according to
our evaluation, see Figure 4.2.

Recall our discussion in Section 4.1: we want to train a NN with query polygons
of evenly distributed cardinalities. (Training queries with more evenly distributed
cardinalities can help reduce high-percentile errors.) Generating polygons from scratch
is challenging, complex, and laborious, due to the variable number of vertices [115]
and complex and various polygon shapes. To overcome this challenge, we come up
with the idea of using real-world datasets as sources of polygons. Specifically, we
generate new (synthetic) query polygons based on real polygons from these datasets,
with modifications such as shifting. Additionally, the cardinality distribution of the
overall generated training data can be skewed and interfere with the convergence of
model training, which makes the training a challenging task. We tackle this challenge
by using a down-sampling strategy and achieve a uniform cardinality distribution for

well model training. We develop a training data generator based on the above ideas.

4.3.2 Overview

Figure 4.3 shows the framework of PolyCard. For model training, we use our training
data generator to obtain sufficient training queries and their true cardinalities. We
featurize the training queries into dataset vectors and polygon vectors. Specifically, we
represent the dataset information by one-hot vectors. Polygons are also represented
as fixed-sized normalized vectors. A NN is trained with these vectors and the true
cardinalities. After the training, we use the NN for cardinality estimation. Given a query,
we featurize it into two vectors in the same way as the training. These two vectors are

entered into the NN, and its output is c/azi .

4.3.3 Training Data Generator

Our training data generator aims at two goals: (i) generating sufficient polygon queries
and (ii) obtaining training data with evenly distributed cardinalities. Because polygons
have variable sizes and vertices distribution, generating a polygon from scratch is not
a good idea. We choose polygons from real-world datasets. Our generator chooses

polygons from datasets randomly and performs transformations, i.e., shifting, reflection,
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Figure 4.3: Framework of PolyCard. Training: Our training data generator is used to
obtain sufficient training queries and their true cardinalities (left-top part). We featurize
the training queries into dataset vectors and polygon vectors (middle part), that is, we
represent the dataset information by one-hot vectors, whereas polygons are repressed
as fixed-sized normalized vectors. The NN is trained with these vectors and the true
cardinalities (right-top part). Cardinality estimation: Given a query input, we featurize
it into two vectors in the same way as the training (middle part). We then use the trained
NN to obtain card.

and perturbation, to generate polygons serving as training queries, as shown in Figure
4.4. To obtain a shifted version of a polygon P, we apply the same modifications to all
coordinates of its vertices in each dimension. For the reflection, we randomly select a
vertex of P and reflect all the other vertices vertically. To obtain a perturbation edition
of a polygon P, we add a random small value to each coordinate of each vertex of P.
The distribution of polygons is naturally skewed [64]. This observation makes
the cardinality distribution of randomly generated queries have a long tail, as shown
in Figure 4.5(a). As discussed in Section 4.1, this distribution makes convergence
of the training hard. Our generator helps obtain training data with evenly distributed
cardinalities in two steps. First, generate new query polygons and compute their true
cardinalities. Second, our generator guarantees the training data with an even cardinality
distribution by down-sampling from the overall generated training data. To achieve
this, we generate the cardinality histogram of training data. If the distribution shown
in the histogram is skewed, the generator selects small portions of training data from
buckets containing more data than the average. With our generator, we can always obtain

training data with the cardinality distribution like the one shown in Figure 4.5(b).
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Figure 4.4: Generation of polygons. We perform shifting, reflection, and perturbation
on polygons from real-world datasets.
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Figure 4.5: Histogram of cardinalities of training queries on Sports dataset.

4.3.4 Polygon Transformation

The polygon transformation aims at transforming polygons with variable-sized vertices
to a fixed size m, which makes polygons compatible for feeding into our NN model.
Algorithm 3 shows the details of the transformation. Let m be the number of vertices of
a polygon P. We want to transform P to a similar polygon with n vertices.

If n < m, we run an adaptive sampling that considers the distribution of vertices. We
first compute the MBR of the original polygon and divide the MBR into four equal-sized
zones according to the midpoints of the four edges of the MBR (line 5). Then, we

perform a uniform-like sampling by scanning the vertices sequentially. During the
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Algorithm 3: POLYGON-TRANSFORMATION
Input: P (a polygon represented by an array of m vertices) and n (the number of
vertices of the transformed polygon)
Output: P’ (the transformed polygon)

1 P < @, interval < m/n, count < 0
2 if n < m then
3 zone_flag < False
4 foreach i € [1,n] do
5 cur_zone <— GET-ZONE(P[i]) # P[i] s the i-th vertex in P
6 count <— count + 1
7 if zone_flag[cur_zone| = False then
8 P+ P'U{P[i]}
9 count <— count — interval
10 zone_flag[cur_zone| < True
1 else
12 if count > interval then
13 P+ P'U{P[i]}
14 L count <— count — interval
15 else
16 foreach i € [1,m] do
17 count <— count + 1
18 num_vertices <— FLOOR (count /interval)
19 if num_vertices = 1 then
20 P+ P'U{P[i]}
21 count <— count — interval
22 else
23 if num_vertices > 2 then
24 P’ + P'U{INTERPOLATION(P[i — 1], P[i],num_vertices)}
25 L count < count — interval X num_vertices

scan, we guarantee that at least one vertex is sampled in each zone intersecting with the
polygon. To achieve this, we locate the zone to which each vertex Pli] belongs. If no
sample belongs to the zone, we sample P[i] (line 7).

If m > n, we adopt a uniform interpolation method for the transformation’. We

sequentially scan the vertices and calculate the number of new vertices to be inserted

2Considering the estimation efficiency, n should be smaller than m for most polygons because a large
n will increase the size of the NN and the computation cost for estimation.
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Figure 4.6: Our polygon transformation. (a) The polygon is represented by vertices and
edges connecting the vertices. The outside rectangle is the MBR of the polygon. The
black dashed line separates the MBR into four equal-sized zones referring to the four
corners of the MBR. Given the fixed size of five vertices for transformation, we sample
the blue vertices. (b) The transformed polygon.

between two vertices by interpolation (line 18). If the number of new vertices equals
one, we simply treat the current vertex as a new vertex (lines 19-21). If the number
of new vertices is larger than one, we interpolate the coordinates of two consecutive
vertices and obtain the required number of new vertices with interpolated coordinates
(lines 23-25). The transformation costs O(max(m,n)) time.

In Figure 4.6(a), suppose that we transform the polygon to a fixed size of five vertices.
Only two vertices fall into the left-bottom zone, and they are far away from the other
vertices. If we run a standard random sampling, they are probably not sampled. Our
adaptive sampling guarantees every zone where the vertices exit is covered. Thus, the
transformation can preserve the shapes of polygons well. As shown in Figure 4.6(b), the

shape of the transformed polygon is very similar to that of the original polygon.

4.3.5 Featurization

As shown in Figure 4.3, the input data fed into the NN consists of two kinds of vectors,
respectively representing the dataset information and the polygon. We featurize an input
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query into two vectors, a dataset vector and a polygon vector, to better represent the
input and help the training converge.

The dataset vector represents which dataset is being queried. We use a one-hot vector
of the length M, where M is the total number of datasets used as sources. For this vector,
when the i-th dataset is accessed by a query, its corresponding dimension is one and the
other dimensions are zero.

To featurize the query polygon, we first perform the transformation discussed in Sec-
tion 4.3.4. Then we normalize the coordinates of vertices to avoid numerical instability.
We construct the polygon vector by concatenating all coordinates of the polygon.

4.3.6 Model

For our NN, we employ MLPs, because they can approximate functions well and yield
fast inferences [16, 72]. Each MLP is composed of two fully connected layers, each

accompanied by a ReL.U activation function:
MLP(x) = max (0, max(0,xW; + by )W> + by), 4.1)

where x represents the input vector whereas Wy, W», by, and b, are learned parameters.
The ReLU function is represented by max(0,x). We use one MLP for polygon vectors
and another for dataset vectors. The outputs of the two MLPs are concatenated and then
fed into the output MLP.

For the output MLP, we replace the final ReLU function with a sigmoid function,
which is a common choice as the activation function for the output layer [32]. Compared
with the other NNs, the main advantage of our design is the computation speed. For
example, the fully connected layer consumes much less computation time compared
with the convolutional layer (widely used in various NNs).

Since PolyCard is a supervised estimator, we pre-compute the true cardinality of each
training query polygon. Notice that the cardinality has a wide range of possible values.
For training, we perform the logarithmization and normalization on the cardinality to
compress the range and reduce the impact of extreme values on model training [112].
To get card for a query, we perform the reversion of the logarithmization and the
normalization on the output of the NN.
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4.3.7 Training and Estimation

Figure 4.3 shows the training and estimation flow of PolyCard. We take the following
steps for the training: (i) generate training data by the generator, which contains the
training queries and corresponding true cardinalities and (ii) train the NN with the
training data. We use the g-error as our loss function, which is widely used for the
cardinality estimation problem [88, 104].

To estimate the cardinality of a given query, we featurize this query into a dataset
vector and a polygon vector. After feeding the featurized vectors into the NN, we obtain
card as discussed in Section 4.3.6. The estimation time is dependent only on the NN
structure. Therefore, the estimation of PolyCard is stably fast for datasets of different
sizes and queries of different selectivities.

4.4 Experiments

We report our experiment results and investigate the following questions in this section:

* Is PolyCard accurate, fast, and stable?
* How good is PolyCard compared with competitors?

* Are the challenges mentioned in Section 4.1 severe problems for the cardinality

estimation? How much does PolyCard benefit from solving those challenges?

* How much does PolyCard benefit from solving those challenges?

4.4.1 Setup

Datasets. We used four real-world datasets widely used in spatial data processing
works? [24, 27]. They contain polygons representing the boundaries of various types of
objects. Table 4.2 shows the information of the datasets.

Workloads. We prepared one thousand randomly generated queries based on real-world
polygons. We guarantee that they have a wide cardinality distribution from one to tens
of thousands.

Evaluated methods. We evaluated the following methods in this chapter.

3https://spatialhadoop.cs.umn.edu/datasets.html
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Table 4.2: Statistics of datasets

Name Cemetery Sports Parks Buildings
Size (million) 0.2 1.8 10 115
Average #vertices per polygon 10 11 36 7

Maximum #vertices in any polygon 572 5890 127954 1660

 PolyCard: is our proposed method. The size of transformed polygons is set to ten
by default. (The impact of different sizes is discussed in Section 4.4.3.) PolyCard
is trained on a GPU.

* PostgreSQL*: refers to the cardinality estimation method used in PostgreSQL
16. It estimates the cardinality based on the statistics of the datasets including
histograms. PostgreSQL does not provide the exact estimation time, so we used

the planning time to represent its estimation time instead.

* CDHistogram [49]: is one of the most representative histogram-based methods
designed for spatial objects. It originally supports only rectangles. We extended it
to support polygons by using MBRs. The bucket size of CDHistogram on each
dimension was set to 10,000 by default.

e RI [27]: is a state-of-the-art approximation method for intersection joins on
polygons. We employed its upper-bounding technique to estimate the cardinality

of a given query’s result.

Environment. All experiments were conducted on a server with an Intel Xeon Gold
6254 CPU, a NVIDIA Quadro RTX 8000 GPU, and 768GB RAM. The OS was Ubuntu
22.04.4 LTS. PolyCard was implemented in Python with PyTorch. We implemented
CDHistogram in C++. For RI, we used the C++ source code provided by the authors.

4.4.2 Overall Performance

Estimation time. Figure 4.7 shows the estimation time of each method. PolyCard is

the fastest method on all datasets except the Cemetery case. Furthermore, PolyCard
provides a stable estimation time, i.e., its estimation time is not dependent on dataset
size, which is desirable for large datasets. On the other hand, CDHistogram becomes

slower as the dataset size grows, and PostgreSQL is usually slower than CDHistogram.

“https://www.postgresql.org/docs/current/row-estimation-examples.html
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Table 4.3: Accuracy evaluation results. Bold shows the winner.

Datasets Methods 25th g-error  50th g-error  75th g-error  95th g-error  99th g-error

PolyCard 1.2 1.45 191 3.22 53
Cemetery  PostgreSQL 1.0 1.85 2.33 5.0 7.0
CDHistogram 1.6 2.25 3.26 6.0 8.0
PolyCard 1.32 1.85 3.26 9.34 26.78
Sports PostgreSQL 1.71 3.15 7.0 23.0 47.08
CDHistogram 1.54 2.69 5.0 15.5 38.0
PolyCard 1.29 1.79 3.03 8.86 19.73
Parks PostgreSQL 1.46 2.35 4.5 18.69 90.26
CDHistogram 2.47 343 5.31 13.0 30.02
PolyCard 1.72 2.99 7.19 37.47 126.36
Buildings  PostgreSQL 7.74 28.85 75.68 333.05 1192.32
CDHistogram 2.11 3.48 6.48 52.84 367.18

The estimation time of RI is much longer than the other methods and is longer than even
the execution time of queries (normally several milliseconds)?. It is trivial that RI is not
suitable for the estimation task because we can get the true cardinality in a shorter time

than RI. We therefore did not evaluate RI in the remaining experiments.

Accuracy. Table 4.3 shows the accuracy evaluation results. Overall, PolyCard achieves
smaller errors than PostgreSQL and CDHistogram. When considering high percentile
errors (i.e., 95th and 99th g-errors), which are of great concern for the cardinality
estimation task, PolyCard beats the competitors on all datasets. PostgreSQL has the

5The construction of RI on Buildings took more than several hours, so we omit its result.
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Figure 4.8: Sizes of the input data for the NN achieved by the proposed polygon
transformation and zero padding

largest high percentile errors on all datasets except the Cemetery case. These large errors
lead to a high risk of generating inefficient query plans.

4.4.3 Detailed Analysis

How good is our polygon transformation? We compare the sizes of input data ob-

tained by the proposed polygon transformation solution (Section 4.3.4) with zero padding
to confirm that zero padding is not a feasible approach. (Recall that zero padding is to
fix the size of all polygons to the maximum one by adding zero.) Figure 4.8 observes
that zero padding incurs too large data (more than 150GB) for NN training (i.e., tens
of thousands of dimensions for each polygon). It will greatly enlarge the computation
cost and make the training NN much more difficult. Therefore, we can observe that the
existing solution to transform polygons to a fixed size is not suitable for our task and our
adaptive transformation is a practical solution.

Furthermore, we compare our adaptive sampling transformation with uniform sam-
pling and MBR approximation. Trivially, if method A provides a transformed polygon
with a better similarity than method B, method A yields less error. Figure 4.9 shows the
advantage of adaptive sampling. This result demonstrates that our polygon transforma-
tion is of high quality and helps achieve better accuracy.

Impact of reduced polygon size. Figure 4.10 shows the accuracy results corresponding

to different sizes of transformed polygons. The accuracy can be greatly improved
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Figure 4.9: Accuracy comparison of the proposed adaptive sampling, uniform sampling,
and MBR approximation for polygon transformation

(specifically high percentile errors) when the size increases from 4 to 10. Considering
the average number of vertices per polygon shown in 4.2, large sizes like 25 cannot
further improve the performance. On the other side, large sizes increase the storage and
computation costs. A grid-based search can help find the most suitable size for each
dataset. Here, the choice of size = 10 is sufficient for our evaluation.

How good is our training data generator? Figure 4.11 shows two convergence curves

of PolyCard; one is generated by our proposed generator and the other is the random one
discussed in Section 4.3.3. We can observe that PolyCard meets difficulty in convergence
(at a small loss) when trained on randomly generated datasets. As discussed in Section
4.3.3, the cardinality distribution of randomly generated queries has a long tail. It makes
convergence of the training hard. In the case of Cemetery, we found that more than
sixty percent of queries in the randomly generated training queries have zero cardinality.
As a result, the training loss shown in Figure 4.11(a) fails to decrease and becomes a
stubborn constant. Furthermore, as shown in Figure 4.12(a), the trained model achieves
poor estimation accuracy. Our training data generator solves this problem by generating

training data with more evenly distributed cardinalities.
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Figure 4.10: Impact of sizes of transformed polygons on the accuracy

Figure 4.12 shows the estimation errors of PolyCard after the above training. The
g-errors of PolyCard trained on randomly generated queries are much larger. The above
results clearly show that our training data generator helps the training converge and

achieve reasonable accuracy.

4.5 Related Work

Histogram-based cardinality estimation. Histogram-based cardinality estimation meth-

ods are the most widely used in relational database systems like PostgreSQL [55, 102].
These database systems build histograms on relational tables as the statistics. Estimators
for rectangle queries have also been developed for spatial cases [8, 20].

CDHistogram addresses this problem by maintaining four sub-histograms corre-
sponding to the four vertices of a rectangle [49]. A bucket in a sub-histogram stores the
number of corresponding vertices falling in the bucket. This design can avoid duplicate
counts of rectangles spanning several buckets. Histogram-based methods can be used

for our task by approximating polygons with their MBRs. Our experimental results
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Figure 4.11: Convergence of training

confirm that this approximation hurts estimation accuracy. In addition, the accuracy of
histogram-based methods is severely dependent on the bucketing resolution and the data
distribution.

Spatial joins and related query optimization have been widely studied [8, 11, 91, 92,
94, 106]. They mainly focus on how to execute complex spatial queries and select the
most efficient join algorithms. Note that they have not answered how to estimate the
cardinality of an intersection query.

RI[27], which focuses on efficient approximation of polygons for spatial joins, can be
used for cardinality estimation. However, our evaluation in Figure 4.2 finds it too slow to
be used as a cardinality estimator. RI is designed for precise approximation of polygons
and can provide an estimation near the true cardinality. However, it incurs nearly the
same time cost of query execution, which is meaningless under the cardinality estimation
context. (Note that cardinality estimation is conducted before query execution.)

Spatial intersection query has been widely studied for a long time [9, 28, 84]. The

intersection of two polygons is determined by finding a pair of line segments intersecting
with each other, where each segment belongs to a different polygon. Recent works [26,
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Figure 4.12: The proposed training data generator helps achieve good accuracy: the
estimation errors of PolyCard trained on the datasets generated by the generator and the
random generation.

63, 79] mainly focus on accelerating intersection query processing by parallelization.
These techniques are not available for our problem, because running an intersection
query to estimate its result size is meaningless. Our problem is useful for making an
efficient execution schedule of many intersection queries.

4.6 Conclusion

Spatial objects like polygons are prevalent in spatial applications. Cardinality estimation
is essential for the efficient processing of queries on spatial polygons. In this chapter, we
presented PolyCard, which addressed the cardinality estimation problem of intersection
queries on polygons. Existing learned estimators meet difficulty for polygons due to
the variable sizes of polygons and the generation of new query polygons. Our main
idea to solve these challenges is twofold: (i) making learning models compatible with
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variable-sized polygons by applying adaptive sampling transformation on polygons and
(1) acquiring sufficient training data with evenly distributed cardinalities by a training
data generator. Our experimental results show that our PolyCard has the following
advantages compared with other competitors: (i) PolyCard improves 30% accuracy in
comparison to the comparison methods, (ii) PolyCard costs only 4 microseconds for a
single estimation, and (ii1) PolyCard is effective on datasets of different sizes and has
low high percentile g-errors.

We observe that PolyCard has the potential to be extended for other settings and
tasks, and we want to make PolyCard support most spatial query types other than current
intersection queries. This can be achieved by one-hot encoding of different query types.
However, how to collect sufficient training queries and corresponding cardinalities
remains a challenge because calculating true cardinalities of spatial queries costs a lot.
Obtaining training data efficiently is desired if we extend PolyCard for various types
of queries. Also, we expect our solution to be capable of most spatial types including
line strings and groups of polygons as mentioned in Section 1. It is trivial to extend for
line strings because they can be treated as simplified polygons. To process groups of
polygons, which means a spatial object is represented by a variable number of polygons,
the current transformation of PolyCard is not practical. How to represent groups of
polygons for cardinality estimators is a challenging task and has not been studied by
existing works. The challenge of obtaining sufficient training queries and corresponding
cardinalities also exists for the extension to general spatial objects. We will focus on
these two directions and make PolyCard a more general and capable solution for spatial
data and objects.






Chapter 5

Conclusion

5.1 Summary

In this thesis, we have discussed learned cardinality estimation for spatial data. In
Chapter 1, we introduced the importance of cardinality estimation to spatial applica-
tions. Fast and accurate cardinality estimation can accelerate query processing, and
furthermore, achieve good user experiences for spatial applications. Recently proposed
learned cardinality estimators have shown greatly improved performance compared with
traditional methods. However, they cannot address challenges brought by spatial data: 1)
complex data distribution, i1) frequent data updates, and iii) variable data sizes. Aiming
at fast and accurate cardinality estimation for spatial data we presented our research
challenges.

Existing learned methods focus on high-dimensional relational data and complex
query types by using complex neural networks. They overlook the one-dimensional
case, which is prevalent in many query processing tasks. Whether learned methods are
suitable for one-dimensional cardinality estimation remains a question. In Chapter 2,
we proposed a learned estimator for the one-dimensional case to answer this question.
We noted that the light-weight regression models adopted by recently proposed learned
indexes are well-suited for the task of cardinality estimation. The light-weight regression
models can approximate data distribution well in the one-dimensional case, and their
structures can ensure fast estimation speeds. Compared with other solutions in evaluation,
the proposed learned method is much faster and achieves relatively good accuracy,
demonstrating that learned methods are promising for one-dimensional cardinality

estimation and have the potential to be used for spatial (multi-dimensional) data case.
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In Chapter 3, we proposed SAFE, a fast and accurate learned cardinality estimator
for dynamic spatial data. Frequent data updates in the dynamic case require an update-
friendly solution. We found that the light-weight regression models used in Chapter 2
can be extended for approximating multi-dimensional data. We organized light-weight
models hierarchically and made them updatable by employing (i) a sampling-assisted
learning for fast training, and (i1) an incremental model update strategy with the idea of
"update only necessary models". Specifically, we build a quad-tree to partition the data
space into cells. We can easily obtain a sample set derived from the cells. Our regression
models approximate the data distribution of the sample set, instead of the original
dataset, significantly speeding up the training process. Additionally, the regression
models organized hierarchically are intrinsically divisible. Therefore, for a data update,
we usually only need to update one regression model (if the data update leads to a sample
update), which is extremely fast. We can incrementally update our regression models
for data updates. Evaluations on both real-world and synthetic datasets demonstrate that
SAFE outperforms the state-of-the-art estimators and achieves low-latency and accurate
estimation for dynamic spatial data.

In Chapter 4, we focused on complex spatial polygons and proposed PolyCard, a
learned cardinality estimator for intersection queries on polygons. Applying learning
techniques to polygons represented by a variable number of vertices is challenging. We
have two main ideas to make our proposed learned solution practical: (i) making learning
models compatible with variable-sized polygons by performing adaptive sampling trans-
formation on polygons and (ii) generating sufficient training data with evenly distributed
cardinalities by a training data generator. Our experimental results demonstrate that
PolyCard outperforms competitors with a great advantage. PolyCard is fast, accurate,
and can keep stable performances on datasets of different sizes.

In summary, aiming at fast and accurate cardinality estimation for spatial data, we
studied the case of one-dimensional data as a basis and proposed SAFE for dynamic
spatial data, and PolyCard for intersection queries on spatial polygons. Our experiment
results show that these methods can provide fast and accurate estimation. These advan-
tages can further accelerate query processing and improve user experiences for spatial
applications.
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5.2 Future Work

We plan to investigate the following issues related to the current works.

5.2.1 Cardinality Estimation for Various Spatial Query Types

Currently, we have investigated cardinality estimation for range queries (Chapter 3) and
intersection queries (Chapter 4) on spatial data. There exist various spatial query types
in spatial applications, especially complex ones like distance-based queries and spatial
joins across multiple tables. There are nearly no existing learned cardinality estimation
methods designed for these complex spatial queries. Developing learned cardinality
estimators for various query types is valuable for the practical use. Furthermore, we plan
to develop a learned cardinality estimator compatible with most query types, achieving

fast and accurate estimation.

5.2.2 Cardinality Estimation for Dynamic Spatial Objects

We have studied cardinality estimation for dynamic spatial points in Chapter 3, and for
spatial polygons in Chapter 4. However, the case of dynamic complex spatial objects
like polygons remains unsolved. Updates of spatial objects are frequent in applications
like mobile maps. Developing an updatable learned solution for spatial objects is
challenging. For example, a data-driven learned estimator needs to approximate the data
distribution of frequently updated polygons. Additionally, updates of vertices belonging
to polygons further complicate the approximation. We plan to find a way to capture the
frequently updated data distribution and develop an update-friendly cardinality estimator
for dynamic spatial objects.

5.2.3 Benchmark in Spatial DBMSs

We have demonstrated that SAFE (Chapter 3) and PolyCard (Chapter 4) outperform the
state-of-the-art methods on real-world datasets. However, we also want to understand
to what extent these cardinality estimators aid in query processing. While there are
benchmark works on relational databases that evaluate cardinality estimation solutions
integrated into DBMSs (e.g., PostgreSQL), benchmarking for spatial data has not been

studied. We plan to integrate our solutions into some DBMSs and design a benchmark
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framework for cardinality estimation on spatial data. We will evaluate the estimators by
end-to-end query times to show their value for spatial query processing. We believe that

this will be greatly helpful to other researchers working on spatial queries.
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