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内容梗概
顕微鏡は組織や細胞といった微小世界を拡大して見せることで，肉眼だけでは得られな

い物体の識別能力を人に与えてくれた．細胞単位の観察から組織異常の有無を評価できる
が，顕微鏡レンズを通して見える領域は組織の一部であり，組織全体の状態把握にはす
べての視野を隅々まで探索することが望ましい．そこで組織の各領域をデジタル画像化
しコンピュータ上で再統合するという，標本全体をデジタル化した全組織スライド画像
(Whole Slide Image; WSI)を用いた解析手段がある．WSIは単位面積あたりのピクセル
密度が高く，組織のあらゆる領域を詳細に観察できる反面，ピクセル数の大きいWSI全
域に注意を払うことは大きな労力を伴う．労力を軽減しつつ，高精度な解析のためのユー
ザ支援を狙い，デジタル画像である点を活かした画像全域にわたる定量的なコンピュータ
解析法を構築する．
本研究で扱うWSIは，骨格筋の疾病を克服する医学・薬学研究で用いられている再生

過程の筋組織画像である．筋組織の状態は領域ごとに局所性が見られる一方，WSI すべ
てを観察し評価することは労力を伴うため，コンピュータ支援による手助けが有効であ
る．従来の筋組織WSIのコンピュータ支援研究では解析対象が限定的であった．特に毒
物注入による組織の壊死と再生が始まって数日間は，筋線維が元の形状に戻るまで複雑な
分化や成長を経るため，従来の一細胞に関する面積や円形度といった明示的特徴量では再
生の段階を分類できなかった．そこで機械学習手法を用いた暗黙的特徴量によって，筋線
維が壊れてから元の形状に戻る一連の再生段階の分類を目指す．
機械学習において一般的な教師あり学習には，データ解析の答えとなる教師ラベルが必

要となる．専門的なWSIの場合，膨大な教師データを用意することは労力や正確性の観
点から困難であるため，画像全体に何らかの事前情報があることを利用した弱教師あり学
習は教師作成コストが小さい．そこで筋組織WSIにおいて，各動物サンプルを安楽死さ
せてから画像化する際に一緒に保存する毒物注入からの「日付」に注目し，日付が浅い個
体であれば損傷が激しく，日付が経った個体は組織全体で回復した細胞領域が増えてい
く，という事前知識を用いる．個々の細胞領域画像の教師ラベル作成をせずとも，筋組織
WSIの概観観察と再生メカニズムの知見から，各日付における再生段階の「クラス比率」
を出すことは低コストである．「日付」と「クラス比率」を結びつけた弱教師学習手法を
用いて，再生段階の推論モデルを構築した．またモデルを用いた筋組織の再生段階解析ソ
フトウェアを開発し，ウェブ上に公開することでコミュニティへの貢献を果たした．



筋細胞のクラス分類モデルは画像を低次元に圧縮する特徴量抽出器 (backbone)と特徴
量からクラスを推論する分類器 (head)に分かれる．従来のクラス比率学習では backbone

に既存の大規模事前学習モデルを用いており，学習によって更新されるのは headに限定
されていた．一般画像で事前学習された backboneが筋細胞の特徴抽出に適している保証
はなく，実際再生段階の分類クラスを増やすと精度が劣化することが確認された．さらに
クラス比率学習では学習時にクラスを名義尺度として扱うため，再生過程における細胞の
順序的な類似性を考慮することができない．これら特徴量抽出器の未更新とクラスの名義
尺度化の課題に対処するため，類似密度分布による順序尺度類似比率学習 (Ordinal Scale

Learning from similarity proportion; OSLSP) を提案し，特徴量空間においてクラス類
似度に注意した損失関数の計算を実現した．OSLSPによって特徴量抽出器が筋細胞ドメ
インに適合したことを確認し，分類精度の向上を達成した．
本研究では慢性的に教師データが不足するWSI解析のコンピュータ支援において，ク

ラス比率を用いた弱教師あり学習パイプラインを構築し，学習したモデルの妥当性を確認
した．また比率学習の課題を解決するための新しい弱教師あり学習である OSLSPを提案
し有効性を示した．提案した OSLSPはWSIに留まらず教師のないデータに応用可能で
あり，機械学習分野の発展に寄与する．
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第 1章 序論
1.1 研究背景

1.1.1 顕微鏡による微小世界の可視化

顕微鏡とは肉眼で観察できない微小領域を拡大する視覚的な道具である．顕微鏡の発明
者は諸説あるものの，16世紀末から微小な構造の観察が始められており，ロバート・フッ
ク (Robert Hooke，1635年-1703年)が残した著Micrographia [16]にはコルク断面の細
胞壁，ノミの拡大図といった顕微鏡画像の記録が残っている．
微小領域の可視化は小さな物体の形状把握を助け，肉眼所見だけでは得られない空間識

別能力を人に付与してくれた．例えば医学において，病原菌を発見し形状からその種類を
特定することができれば，狭域な抗菌薬が投与できる [17]．あるいは工業において，人が
持ち歩けるようなコンピュータ*1 を作成するための微細な回路設計を可能とした．そし
て科学研究の場において，組織の構造や微生物の活動とそのメカニズムの理解に役立てら
れている．
こうした小さな世界の可視化はミリメートル (mm)，マイクロメートル (µm)，ナノメー

トル (nm)，オングストローム (Å)のスケールに分けられる．mmスケールでは組織の概
観把握，µmスケールだと組織に含まれる細胞を観察することが可能で，波長 400-700nm

の可視光による光学顕微鏡で見ることができる．顕微鏡の拡大スケールは波長による物
理的制約があり，より小さな nm スケールの分子やウイルスを観察するには電子 (波長
0.01nm 前後) を用いた電子顕微鏡や原子間の引力を利用した原子間力顕微鏡 (Atomic

Force Microscope)の出番となる．mm-µmスケールの観察は細胞の増殖や分裂，移動と
いった変化を捉え，細胞が集まった組織の機能理解を助ける．nm以下のスケールは細胞
の膜電位，代謝活動といった分子レベルの動きを捉えるために用いる．すなわち拡大ス
ケールの選択は観察目標に依存しており，分子レベルの反応に比べて巨視的な細胞動態の
観察は，ある組織が異常なくその役割を果たしているか評価する場合に用いる．ただし組
織に含まれるうちのたった一つの細胞をつぶさに観察しても，組織の機能を説明すること
にはならない．組織の評価には各細胞領域の状態を総合して判断することが求められる．

*1 初期コンピュータの一つである ENIACは，第二次世界大戦頃に米陸軍の砲弾弾道計算の為に開発され，
その大きさは部屋一つ分ほどあった．
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1.1.2 全組織スライド画像 (Whole Slide Image)

図 1.1 全組織スライド画像の例

組織全体の把握には，標本が載ったスライドガラスを動かしながら高倍率レンズによっ
て各細胞領域をくまなく観察する，という手法が考えられる．このとき低倍率レンズで組
織を概観観察して注目すべき領域を限定してから拡大して観察することで負担を軽減す
る．レンズを通して網膜に届く光は連続なアナログ情報であるから*2，レンズの倍率を変
えることで可視化したい領域スケールを変更でき，拡大縮小しても一定の解像度*3 を担
保する．一方デジタル画像はイメージセンサのピクセルサイズと数に依存した離散情報で
あり一度保存された情報量が増えることはないが*4，コンピュータ上に無尽蔵に情報を記
録でき，かつ他者との情報共有を簡便にする．これらを踏まえると，それ以上拡大しない
細胞単位を撮像してデジタル画像化しコンピュータ上で再統合すれば，デジタル画像と顕
微鏡を用いた目視，双方の短所を補い合った画像を作ることができる．このようなスラ
イドガラス上にある標本全体をデジタル化したものは全組織スライド画像 (Whole Slide

Image; WSI) と呼ばれており，図 1.1 [14] のように組織全体の広範な領域を高いピクセ
ル密度で画像化したものである．例えば人組織切片を染色したWSIは一般に病理画像と

*2 厳密には光はプランク定数を基準にした離散的な性質を持つが，顕微鏡レンズの倍率変更の分解能に比べ
れば十分連続と近似できる．

*3 この解像度は人間の視覚に依存した値となる．
*4 画像超解像技術 (Super-resolution)といった画像の解像度を高めて出力する研究分野もある．
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呼ばれ，疾病の進行状況の把握や原因の解明に用いられる．動物実験による薬学研究では
安楽死させたマウスの組織を切り取り染色を施して画像化し，組織内の筋細胞のふるまい
を観察する．特定の細胞膜や細胞のみに着目する場合は免疫染色と呼ばれる特定の抗体に
対する細胞の免疫反応を利用し，特異的に染色を施すことで図 1.1 [1]のWSIのように観
察対象を限定する．

アノテーション例数万ピクセル

図 1.2 WSIの解析例 [1]

WSIは単位面積あたりのピクセル密度が高く，細部まで詳細に表現できている反面，画
像中すべての領域が観察目標に関与するとは限らない．例えば図 1.2のように縦横のピク
セルサイズが数万ピクセルのWSIから，癌腫瘍領域をくまなく探索することには時間を
要する．すなわち観察者は疾病への糸口を探るためにWSI全領域に注意を払わなくては
ならず大きな労力を伴い，簡便な情報処理であっても繰り返しによるヒューマンエラーの
危険がある [1, 17]．そこでデジタル画像化である点を活かし，コンピュータを用いた人間
にはない情報記憶能力や画像全領域にわたる定量的な解析能力によって人の観察を支援す
ることで，労力軽減及びより高精度な解析を実現する．

1.1.3 古典的画像解析

図 1.3(りんごは illustAC フリーイラスト参照 [2]) に示すように，コンピュータ上で
画像を扱う際の最小単位であるピクセル (pixel)は，カラーであれば Red，Green，Blue

の RGB3チャンネル，白黒であれば 1チャンネルの値で構成されている．画像の縦幅を
H[pixel]，横幅を W [pixel] とすればカラー画像は H ∗ W ∗ 3 次元の情報体としてコン
ピュータ上で扱うことができる．
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𝑅, 𝐺, 𝐵 = (214, 36, 23)

横幅

縦
幅

ピクセル

図 1.3 画像の最小単位ピクセルとは [2]

例えばカラー画像から特定の物体が写されているかどうかの 2 値画像分類を行うとす
る．コンピュータ上ではH ∗W ∗ 3次元のデータがあり，各次元に閾値を設けて多数決分
類してみようとしても，各次元が特定物体の分別にどれだけ相関のある値かどうかは判ら
ない．よって物体を認識するためにH ∗W ∗ 3次元のデータから特徴量と呼ばれる代表値
を計算し，特定物体との関連づく値を探すことを図る．古典的な特徴量の一例は平均であ
る．画像の縦幅をH，横幅をW，(x, y)の位置にあるチャンネル cのピクセルの値 Ix,y,c

とすれば，全ピクセル群の RGBそれぞれの平均値 Ic を出すことができる．

Ic =
1

H ×W

H∑
y=1

W∑
x=1

Ix,y,c (1.1)

仮に特定物体の二値分類が「赤リンゴかそれ以外か (図 1.4左)」という課題であれば，
Red の平均値を見ることで判定可能であろう (いちご絵は StockNova フリーイラスト参
照 [3])．このように数式あるいはアルゴリズムによって導出方法が定義されている特徴量
を明示的特徴量と呼ぶ (explicit feature)．一般に値の意味を人が解釈しやすく，既に特徴
量が明確な物体では，分類目標に合わせて手動で特徴量選択する．このとき分類課題が複
雑になると，特徴量の数を増やさなくてはならない．先の「赤リンゴかそれ以外か」とい
う二値分類課題が「赤リンゴか，いちごか，それ以外か (図 1.4右)」だったとする．する
と Red の平均値だけでは「赤リンゴ」と「いちご」を区別することができないため，例
えばいちごの含まれた緑の葉に注目し，Greenの平均値と閾値を導入することで分類に試
みる．これは分類する数が増えれば増えるほど，用いる特徴量が増えるということを意味
する．
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図 1.4 色の平均値による分類例 [2, 3]

1.1.4 暗黙的特徴量

より複雑な分類をするためには，より多くの特徴量を用いなくてはならない．選択され
た特徴量は分類すべき物体の特徴と符号するものでなければならず，図 1.5にある 5つの
異なる細胞の分類といった人が定式化できない特徴を持った物体の場合，明示的特徴量だ
けでは分類不可を意味する．そこで特徴量と画像的意味の繋がりが明示的ではないもの
の，大量の特徴量を用いて分類する手段することで，分類不可の壁を打破する．例えば
Redの平均値，Greenの平均値という風に特徴量を増やしてみても，図 1.3のように，一
見赤に見えるピクセルであっても，青や緑の成分が含まれていることからも，これらの特
徴量は分類にあたって独立な関係ではない．大量の特徴量の関係を相補的に記述する術が
求められる．

図 1.5 明示的特徴量が不明な細胞の分類例

台頭してきたのは人神経システムを模したニューラルネットワーク [18] を用いた機械
学習である．各特徴量は神経細胞に模したパーセプトロン [18] と呼ばれる線形分類アル
ゴリズムにそれぞれ入力され，パーセプトロンが網目状に接続されることで，特徴量同士
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の関係を表現する．機械学習の興隆を支えているのは，入力データと答えとなる教師デー
タを用意するだけで予測モデルを学習する end-to-endと呼ばれる手法であろう．人の手
が入るのはハイパーパラメータの調整やデータを準備する作業であり，データ量が豊富か
つ高機能計算機を利用できる場合に有効である．データが不足する場合や end-to-endで
は狙った精度が出ない場合，埋め込み (embedding)と呼ばれる中間特徴量を利用する手法
がある．embeddingとは画像であればH ∗W ∗3の高次元データにおいてモデルが扱いや
すく (例えば分類であれば境界面を計算しやすく)するために，データを低次元の特徴量ベ
クトルに圧縮表現することである．end-to-end でも利用される畳み込みニューラルネッ
トワーク (Convolutional Neural Network; CNN) [19], Vision Transformer(ViT) [20]

やMamba [21]といった様々なネットワーク構造 (アーキテクチャ)の中間層においても，
入力データは一定の次元数に圧縮されている．この圧縮された次元数の値を，古典的な明
示的特徴量に対して，暗黙的特徴量 (implicit feature) と呼ぶ．特徴抽出後は目的の用途
に応じて，例えばクラス分類であるならば，ランダムフォレスト [22]，k-means法 [23]，
あるいは再度ニューラルネットワークに通すといった手法で解析を達成する．上記のよう
にデータから特徴抽出を行う層を backbone，課題に応じて異なる出力層を headと呼ぶ．

1.1.5 弱教師あり学習

機械学習は予測誤差と呼ばれる推測と観測の差分からネットワークモデルを学習す
る *5．あるデータから何かの答えを学習するシステムにおいて，推測とは入力データに
対するモデルの出力であり，観測はデータの答えに相当する．このデータの答えを教師
(supervisor)と呼び，機械学習では教師のありなしで学習が分かれる．教師がある場合は
モデルを更新するための損失関数は推論と教師から計算される一方，教師なしの場合は
データの相関を利用した手法に限定される．教師にはモデルが推論して欲しい結果そのも
のである完全な教師以外にも，データの一部にのみ完全な教師を持つ半教師，正解である
か不明である不完全な教師である弱教師，データ自身から教師を作る自己教師といった種
に分かれる．ただし head部の学習には教師がなくとも backboneの学習には何らかの教
師が用いられている場合もあることに注意する．一般に教師がないという場合，head部
の教師がないことを指している．この教師の種類による学習方法を以下 5つに分けて詳し
く紹介する．

*5 人も遠心性コピーに代表される通り，運動感覚の予測誤差による学習システムが備わっているとされる．
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1. 教師あり学習
教師ラベルと呼ばれる目的の解析対象の答えが，画像と一緒にあるデータセットで
学習する方法．データの作成の多くの場合，アノテーションと呼ばれる人の手作
業によって教師ラベルを付与する．図 1.6では〇がデータ点に，〇に塗られた色が
クラスに相当する．教師あり学習では各データにクラスの色が割り振られており，
データを区別するような線を引くことがモデル学習に相当する．

2. 半教師あり学習
データセットの中にアノテーションのあるデータが一部含まれており，残りはアノ
テーションのない画像で構成されたデータセットで学習する方法．弱教師あり学習
とは異なりアノテーションが施されたデータについては教師ラベルが正確であると
いう保証の下で学習する．例えば図 1.6では一部のデータに赤や青の教師があり，
残りは教師がない (黒)．一般にすべての教師データがある場合に比べて推論精度は
落ちる．

3. 弱教師あり学習
データセット一部のアノテーションが不正確である，多分類課題において一部のク
ラスにしかアノテーションが付与されていない，あるいはデータごとにはアノテー
ションが付与されておらずデータの集まりに対して何らかの情報が付与されてい
る，といった不完全な教師情報に対して実行する学習法である．弱教師となる情報
は画像の種類によって分かれており，場合によっては独自の学習パイプラインを作
成する必要がある．例えば図 1.6ではあるデータのグループ内に含まれるクラスの
比率が与えられている．

4. 自己教師あり学習
教師をデータ自身から生成する手法．主に backboneの学習に用いられており，大
量のラベルなしデータから特徴表現を学習する．データに対して何らかの変換を行
い，変換時のパラメータを予測するといった課題設定によって学習を進める．

5. 教師なし学習
解析対象の答えと関連する情報が一切ない画像のみのデータセットで学習する方
法．例えば図 1.6ではすべてのデータ点に教師がなく，各データ点の近さを用いた
クラスタリングが当たる．

ニューラルネットワークの学習はデータ数が多いほど推論精度が上がるため，実用に足
るモデルを学習するためにはそれに応じたデータ数が必要となる．ここで教師あり学習の
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教師あり学習 半教師あり教師

60%
40%

60%
40%

Model

Model

弱教師あり教師 教師なし学習

赤クラスの教師データ 青クラスの教師データ 教師なしデータ

図 1.6 機械学習の種類

手法を用いる場合，WSIのすべての領域に教師を与えなくてはならず，膨大なピクセル群
から観察対象の領域をピクセル単位で切り取り教師を付与する作業負荷は計り知れない．
また専門性の高い画像である場合，そのアノテーションの正確性の担保についても不明瞭
である．そこでWSIによく見られる「画像全体には何かしらの情報がある」ことを利用
した半あるいは弱教師あり学習が候補となる．例えば病理画像であれば「組織全体のうち
どこかが腫瘍である」あるいは「組織のうち数割が腫瘍である」といった医学的な事前知
識に基づいた診断所見がWSIと共に得られることは多い [24]．あるいは科学実験で得ら
れた組織画像であれば，実験条件が弱教師として用いる事前情報となり得る．このように
WSIでは正確な答えが大量に用意されていることを前提としない教師あり学習以外の手
法を用いることで，教師データを作るコストを回避する研究が進められている [25–27]．
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また人間情報の観点 [28] からも，知覚システムは教師なしで学習する系が備わっている
とされており [29, 30]，人システムと符号する点でも弱教師・教師なしの手法は興味深い
と同時に可能性を秘めている．

1.2 研究目的

本研究ではWSIの一つである筋組織画像において，教師ラベルのない条件下で画像化
までの実験情報を弱教師としたアノテーションコストの小さい学習法に取り組む．また用
いた弱教師あり学習の手法の問題点について言及し，新たな損失関数を提案し手法の改善
をすることで，他WSIへの転用時の精度向上に寄与する．筋組織の観察は人における病
気や加齢による筋力低下のメカニズムを解明する生物学的研究において，実験効果の大き
さを判定する上で欠くことのない解析手段の一つである．生物学的研究における現在最も
一般的な画像化の手段は安楽死させたマウスの対象領域の筋切片を染色したのちに顕微
鏡で撮影する手法である [31–33]．筋組織に含まれる筋線維やそのほかの細胞の形状や数
は筋の持つ運動能力と関連していることから解析の対象となっている [12]．しかし例え
ばマウス太腿の筋組織には数千単位の筋線維が備わっており，組織領域すべてを人の目
によって観察することは，大きなコストを要し (1)，多量な線維を一つ一つ観察すること
はヒューマンエラーの生む危険性が残り (2)，そして線維の形状を定量的に扱えない (3)，
といったWSI全般に通ずる課題が筋組織画像にも当てはまる．また豊富な教師付き学習
データを作成することは困難であるため，弱教師あり学習から筋組織画像解析に挑む．本
研究の目的はWSIの一つである筋組織画像において，完全な教師データを用意せずにモ
デル学習を行う弱教師あり学習手法の導入と改善に試み，その精度向上を確認することを
もって，不完全データの多いWSI解析へ貢献することを狙う．薬学・医学研究領域にお
ける貢献は，創薬における評価法の武器となる解析ソフトウェアの開発と，低コストな
WSI 解析の学習・推論パイプライン構築である．情報工学領域における貢献は，新しい
弱教師あり学習を提案した点にある．

1.3 本博士論文の構成

本博士論文は全 5 章で構成される．第 2 章ではこれまでの筋組織画像のコンピュータ
画像解析について俯瞰し，その中でも再生過程における筋組織の画像解析の方法論およ
び意義について述べる．特に解析に用いる特徴量が明示的か暗黙的であるかについて焦
点を当て議論し，暗黙的すなわち機械学習手法の必要性を説く．第 3 章では機械学習手
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法を特徴量抽出器 (backbone) とクラス分類器 (head) に分け，head の学習法について
説明する．再生過程の筋組織内にある細胞を含んだ小さい領域の画像分類を行うために，
クラス比率を用いた弱教師あり学習を導入する．クラス比率学習 (Learning from Label

Proportion; LLP) は，モデル学習時に，個々のデータ点であるインスタンス (instance)

を多数集めたバッグ (Bag) と呼ばれるインスタンス群を形成し，バッグに含まれるイン
スタンスのクラス比率ラベルのみが与えられる，という問題設定を解くための学習手法
である．LLP を再生過程の筋組織画像に適用しその推論性能を確認し，開発したソフト
ウェアの有用性を検証すると共にコードを公開し，筋組織画像解析コミュニティへの貢
献を行った．第 4 章では機械学習手法を特徴量抽出器 (backbone) の学習について述べ
る．第 3 章で用いた LLPが持つ 2つの課題，(1)特徴量抽出器の未更新と (2)クラスを
名義尺度化に言及する．(1)特徴量抽出と呼ばれる画像の低次元圧縮段階において，LLP

では大規模な一般物体画像データセットを用いた事前学習モデルを用いており，筋細胞
に適した特徴抽出がなされている保証はなかった．(2)また，再生過程段階のクラス分類
という本来順序性を持つ画像に LLPを適用すると，クラス間の類似情報が失われてしま
う．実際 (1,2)の問題で，分類クラスを増やした際に分類結果及び特徴量空間での可視化
から 3章の手法の限界が明らかとなった．よって当該課題を解決するために，インスタン
ス群とクラス比率ラベルから類似比率損失 (Similarity Proportion Loss)を提案し，クラ
スの順序性を考慮した比率学習法「順序尺度類似比率学習 (Ordinal Scale Learning from

Similarity Proportion; OSLSP)」を提案した．提案手法は (1,2) の問題を従来法に比べ
て改善されていることが特徴量空間での可視化で確認され，分類精度結果からも提案法の
妥当性を得た．第 5 章ではこれまで LLP がWSI 解析に適用された事例を紹介しつつ，
新しく提案された OSLSPがどういったデータに応用されるかの展望を述べる．
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本論文では数式の表記は以下に従う．

• ベクトルはゴシック体で統一表記する．
例: x = [x1, x2, ..., xn]

• スカラはイタリック体である．
例: クラス数K = 5

• 集合はダブルストライクキャピタルで統一表記する．
例: 自然数集合 N，整理数集合 Z，実数集合 R，クラス C = {red, blue}
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第 2章 明示的特徴量による筋組織画像解析
2.1 緒言

加齢に伴う筋力の低下であるサルコペニア [34] や骨格筋が壊れやすく再生されにくい
筋ジストロフィー [35] といった疾病は人間の運動能力を削ぎ，運動機能の低下は自立し
た生活を困難にさせ，生命活動の制限を引き起こす．

疾
病

健
常

HE染色 ジストロフィン

図 2.1 筋ジストロフィーと健常時の筋組織の比較 [4]

骨格筋の疾病を打破する手段の一つとして筋組織の筋肥大や再生機能のメカニズムを解
明し [36–38]，適切な薬剤処方によって疾病の進行を妨げるというものがある [39]．これら
の薬学研究では筋組織切片を染色したのちに画像化し，組織内の筋線維の形状や大きさか
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ら疾病の進行状態を評価する．例えば図 2.1 [4]が示すように筋ジストロフィー (muscular

dystrophy) と健常なマウスの筋組織を一般的な組織全体の可視化に用いるヘマエキトシ
ンエオジン (Hematoxylin and Eosin；HE)染色とジストロフィン (dystrophin)染色の 2

つの染色法で見比べる．ジストロフィン染色とはその名の通り筋ジストロフィーの診断や
研究で用いられる染色法で，細胞膜に存在するジストロフィンと呼ばれるたんぱく質の可
視化に用いる．健常なマウスは筋線維で組織内が満ちているが，筋ジストロフィーのマウ
スは白い脂肪部が散見されることが HE染色画像の比較から判る．また線維の大小につい
ても健常なマウスは均一な線維面積である一方，筋ジストロフィーのマウスは線維の面積
にばらつきがみられることがジストロフィン染色画像から判る．このように筋組織の染色
画像を比較することで特徴を見出し疾病の進行を判断することができる．
またこのような病気状態のマウス (muscular dystrophy X-linked: mdx) の解析 [6, 8,

9,40]のみならず，健常なマウスを用いた遅筋と速筋の分布解析 [10,11]，筋肉トレーニン
グの経過観察 [12]，破壊された筋組織の再生観察 [13] など画像解析の目的は多岐にわた
る．本章ではWSIを用いた全組織領域の再生段階評価において，画像化の手順，染色法
およびコンピュータ解析手法の検討を行う．

3200[pix]

3
9
0
0
[p
ix
]

2
5
6
[p
ix
]

図 2.2 筋組織に含まれる大量の細胞
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2.2 筋組織画像

2.2.1 画像化と解析

画像化にあたっては，前脛骨筋 (Tibialis anterior)などを切断しスライス状にした組織
切片を染色してから行う．画像化した組織標本例の図 2.2のように一つの筋組織には数千
本の筋線維やその他の細胞で構成されており，これらの細胞の面積，Feret比や円形度と
いった特徴量を図 2.3のように一つ一つ計算することが定量的解析に相当する．同じ組織
内であっても各線維の状態にはばらつきがあるため，組織の状態を評価するときは局所的
な筋線維や細胞のみに着目するのではなく，組織全体を解析することが望ましい．

2
5
6
[p
ix
]

256[pix]

線維画像 面積

長径/短径比 円形度

図 2.3 筋線維の特徴量例

図 2.3の特徴量をコンピュータで自動計算する場合図 2.4に示すセグメンテーションと
呼ばれる細胞領域の検出が必要となる．
組織評価について例えばセグメンテーションをしたのちに筋線維の断面積 (Cross

Sectional Area: CSA) を計算するという手法がある．一つの切断面から計算される線
維面積は解剖学的断面積 (Anatomical Cross Sectional Area: ACSA) と呼ばれており，
図 2.5が示すように平行筋であれば生理学的断面積 (Physiologic Cross Sectional Area:

PCSA)と等しいが，羽状筋である場合は羽状角 θに応じて下式のように cosθによる補正
をかけることで計算される [41]．
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図 2.4 筋組織セグメテーションの例

PCSA[cm2] =
筋質量 [g]

筋密度 [ g
cm3 ] ∗筋線維長 [cm]

∗ cosθ (2.1)

CSAは筋出力と正の相関があることが知られており，筋組織画像から直接線維面積を
計算することで筋出力を近似的に算出することが可能となる．なお筋密度は哺乳類の場
合，1.05g/cm3 である [41]．

平行筋

羽状筋

生理 解剖

P
C
SA

A
C
SA

A
C
SA

𝜃

図 2.5 平行筋と羽状筋の CSAの違い
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2.2.2 筋組織の再生過程

筋組織は損傷しても適切な条件下であれば再生することが知られており，1961年の筋サ
テライト細胞の発見 [42] を皮切りに再生メカニズムの研究が加速した．この筋組織再生
の解析は老化や疾患における筋力低下のメカニズムや治療法に関する研究に役立つことが
期待される．筋組織の再生を解析する手段としてコブラ (Naja pallida, Naja nigricollis)

の持つ毒 (cardiotoxin; CTX)を注入し選択的に筋組織の壊死と再生を誘発する手法があ
る [43](図 2.6)．

CTX

筋画像

Day
Day0 Day3 Day5 Day7 Day14

図 2.6 CTX注入による筋組織再生の観察 [5]

CTX はコブラ (Naja pallida, Naja nigricollis) が持つヘビ毒の一種であり，毒素に
よって筋線維のみを選択的に傷害する [43]．再生に必要な筋サテライト細胞や血管，神
経，コラーゲンなどの基底膜は保たれることから，すみやかな再生が誘導される．損傷
が起こると，まず筋組織を構成する主たる細胞である筋線維が壊死する．その後に，浸
潤してきた炎症性細胞により壊死した筋線維が除去され，ゴーストファイバーと呼ばれ
る筋線維を囲っていた基底膜だけが保持された状態となる [44]．壊死した筋線維由来の
damaged-myofiber-derived factors (DMDFs) [45] などによって筋サテライト細胞の活
性化が誘導され，増殖したサテライト細胞は萌芽細胞 (myoblast)と呼ばれる細胞になる．
一連の再生過程によって増殖した筋芽細胞は細胞分裂を停止し，隣接する筋芽細胞同士が
融合していくことで多核の筋管細胞 (Myotube)となる．筋管細胞がさらに成熟すること
で筋線維へ成長し，再生が完了する頃には成熟した筋線維によって隙間が埋め尽くされ，
組織内でひしめき合うようになる．こういった一連の流れは図 2.7のように進行する．

2.2.3 染色方法の違い

本論文では表 2.1の通り，筋組織の染色法を HE染色と免疫染色 (immunostaining)に
大別する．HE染色は染色手順が簡便かつ迅速に行うことができ，組織全体を観察に適し
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再生完了損傷損傷前 再生後期再生前期

図 2.7 筋組織の再生過程

ている．一方免疫染色は染色目標となる細胞の抗体を用いることで特定の分子または細
胞の可視化に優れる．例えばラット抗マウスラミニン alph2（Enzo, Clone 4H8-2, Cat#

ALX-804-190-C100）を用いた免疫染色の一種であるラミニン染色によって筋線維の細胞
膜を特異的に染色することを行う．観察する際は物体の反射光をレンズに通して拡大する
光学顕微鏡や，励起光と呼ばれる特定の波長を検体に照射し，発生した蛍光を観察する蛍
光顕微鏡が挙げられる．ただし同じ組織切片に HE染色と免疫染色を両方行うことはでき
ないため，仮に同じような切片に異なる染色を施す場合は同じ下腿筋 (tibialis anterior;

TA)の連続した切片を用いる．

表 2.1 染色法の比較

HE染色 免疫染色
手軽さ ○ ×

特定の細胞の可視化 × ○
組織全体の把握 ○ ×
領域検出の難易度 △ ○

また図 2.8の染色画像の違いからも判るように免疫染色の一つであるラミニン染色では
細胞膜の輪郭がはっきりしていることに比べ，HE 染色は膜の領域に色のグラデーショ
ンがあり境界線が判然としない．これによって画像処理の一つである領域検出 (セグメン
テーション)の難易度が上がってしまう．ただし HE染色では線維自体や周りの細胞につ
いても染色がなされていることからも，線維の周辺環境の情報を得られることが判る．特
に回復過程では筋線維以外の細胞が回復度合いの判定には必要であり，ラミニン染色から
得られる線維膜の情報だけでは図 2.7の分別は困難である．よって本論文では主に HE染
色画像から回復過程段階の推論に試みる．
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図 2.8 HE染色とラミニン染色

2.3 関連研究

2.3.1 従来の筋組織画像のコンピュータ支援

本節では染色，解析目標および手法の観点から，コンピュータ支援による筋組織画像解
析の関連研究について述べる．表 2.2の通り筋組織画像のコンピュータ解析は主にラミニ
ン染色された画像を中心に研究されてきた [6, 7, 9–13, 46–48]．この理由として，筋組織
の解析では主に Cross-sectional area(CSA)を計算することが求められており，健常な筋
線維であればラミニン染色を施すことで線維の輪郭がはっきりと判るため，線維面積がコ
ンピュータ解析上求めやすいからである．特に用いられる解析手法は図 2.4のような領域
検出 (セグメンテーション)であり，組織内の各細胞の輪郭をなぞるように領域を検出す
る．セグメンテーションによって図 2.3のような筋線維の明示的な特徴量を計算すること
が可能になる．HE染色に比べてラミニン染色画像のようにバイナリ化された画像ではセ
グメンテーションに必要な情報に限定されているため扱いやすいと言える．またこのよう
にして得られた特徴量を元に病理マウスの判定 [6–9]，遅筋と速筋の分類 [10]，細胞の分
類 [11]，筋肉トレーニングの経過観察 [12]，そして再生過程の観察 [13]などに用いられて
きた．
個別の手法ごとに見ていくと，SMASH [46]、MuscleJ [6]，およびMuscle2View [11]

では，酸化系アデノシン三リン酸 (adenosine tri-phosphate; ATP) 供給によってエネ
ルギーを得る遅筋 (slow-type oxidative fibers) と解糖系 ATP 供給によってエネルギー
を得る速筋 (fast-type glycolytic fiber) などに線維種類を分け，セグメンテーションに
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Muscle J (2018)

Muscle2view(2019)

OpenCSAM (2019)

MyoView (2021)

病理マウスの判定

再生傾向

筋トレ経過

MyoSOTHES(2022) LabelsToROIs (2022)

遅or速筋分類

細胞の分類

Myosoft (2020)

Myosight (2020)

図 2.9 関連研究の筋組織画像 [6–13]

よって得られる明示的な特徴量で分類を行っている．OpenCSAM [13] では CTX によ
り壊死と回復を誘発されたラミニン染色の筋線維セグメンテーションの精度に着目して
いる．OpenCSAM [13]は特にコブラの毒 (CTX)によって引き起こされた壊死および回
復している筋組織におけるラミニン染色筋線維のセグメンテーションの精度に焦点を当
てている．MyoView [12] では High-intensity interval training と呼ばれる筋肉の強化
プロトコルを行ったマウスの組織について観察しており，日数が経過したマウスの筋線
維を人のマニュアルと同等の精度でセグメンテーションすることに成功し，筋肉トレー
ニングしたマウスの平均 CSA が大きくなったことを確認した．また MyoView [12] は，
openCSAM [13]，MuscleJ [6]，SMASH [46]，および MyoVision [48] などの他のセグ
メンテーションツールと比較して，健全な筋線維のセグメンテーションにおいて最も高
い精度を達成したことを報告している．Myosoft [10] では 筋肉の代謝や収縮に関する
性質 (metabolic and contractile properties) に基づいて線維を種類分けし，面積・円形
度 (Circularity)・最小フェレ径 (Min Feret) の特徴量を用いて分類することに成功して
いる．またラミニン染色のために開発されたソフトウェアを他の染色法に適用すること
は図 2.10の予備実験結果からも判る通り困難であるため，LabelsToRois [9]，Laghi et

al . [49]、Liu et al . [50]、およびMyoSOTHES [8]などの代替ソフトウェアが開発されて
いる．
MyoSOTHES [8] は本研究と同様に HE 染色された画像に焦点を当てているが，解析

対象は健常な筋線維に限定的であり，回復過程で現れるゴーストファイバー，筋芽細胞，
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Original MyoSOTHESManual OpenCSAM Ours

図 2.10 ラミニン染色用ソフトの HE染色画像への適用例

筋管細胞など他の細胞をセグメンテーションすることはできていない．
セグメンテーションの手段にはおおまかに画像特徴量について閾値や条件式を組み合わ

せるアルゴリズム方式と既存ソフトウェアである cellprofiler [51]を採用する手段，ある
いは機械学習を基盤としたモデル Cellpose [52]を用いるものがある．

2.3.2 再生評価におけるHE染色の優位性と課題

表 2.2に示す通り，これまでの研究の多くは無傷な筋組織に免疫染色を施した画像を主
な対象としており，回復経過中の HE染色画像をその解析対象としてこなかった．免疫染
色は細胞膜の可視化に適しており定常状態のセグメテーションがしやすい反面色味情報は
失われるため，回復経過中の組織を解析する場合にはゴーストファイバー (ghost fiber),

萌芽細胞 (myoblast)や筋幹細胞 (myotube)，そもそも筋線維でないものを誤って定常状
態な筋線維 (myofiber) と解析してしまうリスクが伴う．一方最も一般的かつ手軽な HE

染色が施された筋線維は免疫染色にはない線維の周辺・輪郭情報 (特にサテライト細胞の
分布やゴーストファイバー (ghost fiber)のもやのような輪郭など)や色味を拾うことが可
能であり，各線維の再生状態を含めた評価に適する．ただ画像解析側にとっては色味や周
辺情報が増えることや画像上で細胞膜のエッジが際立ちづらい都合から画像処理としての
難易度が上がってしまう．これまでの研究では細胞壁が損傷していない安定状態な筋線維
のラミニン染色 [9–12]や HE染色 [8]，Picrosirius red staining 画像 [49]のセグメテー
ションを扱ってきたが，損傷初期から回復末期の HE 染色された筋線維についてはその
困難性から画像解析の対象外であった．当課題の解決には 2 つの段階があり，1 つ目は
Myofiber以外の線維のセグメテーション，2つ目は線維の状態推定すなわち分類である．
1点目のセグメテーションについて，これまでの研究では HE染色画像において無傷な

線維のみを領域検出することは確かめられていたが [8]，回復期における筋芽細胞やゴー
ストファイバーなどの他の細胞については対象外であった．また図 2.10が示すように，ラ
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ミニン染色画像によって学習されたセグメンテーションモデル [13]を HE染色画像に直
ちに転用することは難しい．よって再生過程に出現する細胞についてはファインチューニ
ングを行う必要がある．
2 点目の回復段階の分類について，クラス分類を行うときセグメテーションから得ら

れる選択的な明示的特徴量データは限定的である．たとえばMyosoft [10]，MuscleJ [6]，
Open-CSAM [13]などがあり，これらは HE染色ではなくラミニン染色された筋組織を
対象としており，セグメンテーションされた筋線維から面積や円形度などの特徴を抽出す
る．Open-CSAM [13]は，CTX注射後の 8日目から 28日目までのラミニン染色された
画像の断面積（CSA）を計算する．ユーザーは経過日数，マウスの年齢，健康状態に応じ
て細胞の大きさや円形度の閾値を手動で設定する必要があり，誤分類されたり未検出の筋
線維は手動で追加しなければならない．この処理プロセスはユーザーの専門知識のレベル
や撮影条件によって影響を受ける．Myosoft [10]も Feretアスペクト比や最小 Feret距離
などの形状に関連する特徴を使用して筋線維のタイプを判定する．こういったアプローチ
は手動での特徴選択がドメイン知識に依存するためドメインギャップに対しての頑健性が
不足していると言える．例えば図 2.11のように地面からの高さと葉っぱの数のみで成長
が定義される画像であれば，成長を分類する際に必要な特徴量は 2つである．一方回復経
過中の筋組織ではこういった明示的な特徴量がない．再生程度の指標となる定量的な数値
が定義されていないことが，再生評価の課題である．

Day0 Day3 Day7

ℎ𝑑𝑎𝑦1 ℎ𝑑𝑎𝑦3
ℎ𝑑𝑎𝑦7

𝐿𝑒𝑎𝑓_𝑛𝑢𝑚 = 1 𝐿𝑒𝑎𝑓_𝑛𝑢𝑚 = 2 𝐿𝑒𝑎𝑓_𝑛𝑢𝑚 = 4

図 2.11 明示的特徴量を持つ画像例

2.4 データセット作成法

再生過程筋組織の細胞及び周辺領域の再生段階を局所的に評価する実験を行うための，
解析対象となるマウスの回復過程画像データセットの作成方法について述べる．表 2.3に
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表 2.3 本論文で使用した筋組織画像一覧

目的 注入 Day0 Day3 Day5 Day7 Day14

学習用データ CTX 5 6 6 6 3

アノテーション済み検証用データ CTX 1 1 1 1 1

比較実験用データ CTX 3 3 3 3 3

比較実験用データ Glycerol 0 3 3 3 3

連続切片の HE染色データ CTX 0 1 1 1 0

連続切片の免疫染色データ (Laminin) CTX 0 1 1 1 0

連続切片の免疫染色データ (DAPI) CTX 0 1 1 1 0

連続切片の免疫染色データ (MyoD) CTX 0 1 0 0 0

連続切片の免疫染色データ (eMyHC) CTX 0 0 1 1 0

連続切片の免疫染色データ (Perilipin) Glycerol 0 0 0 1 1

連続切片の免疫染色データ (Collagen) Glycerol 0 0 0 1 1

おいて，学習用データとはモデル学習のために使用したデータである．アノテーション
済み検証用データとはモデル評価のために専門家によるアノテーションを行った検証用
データ (Test data)である．比較実験用データとは，作成したモデルを用いたソフトウェ
アMyoRegenTrackの性能評価のためのデータである．CTXとグリセロール (Glycerol)

の異なる薬剤による回復過程の比較実験を行う．CTXとグリセロール (Glycerol)の回復
傾向が異なることが知られているため，本ソフトウェアによる解析を行いその傾向の違い
を確認する．上記 4つのデータ項目については HE染色画像を用いた．
連続切片のデータとはアノテーションの正確性を担保するために同じ前脛骨筋（Tibialis

Anterior; TA）の連続切片に異なる染色を行ったデータである．取得した画像の詳細は
表 2.3に示す．

2.4.1 動物処理

画像化に用いた C57BL/6Jマウスは，神奈川県横浜市にあるチャールズリバー研究所
から購入された．マウスは温度 24 ± 2℃，湿度 50% ± 10%に制御された環境下で，12

時間の明暗サイクルで飼育された．飼育中のマウスには滅菌された標準飼料（DC-8，日本
クレア，東京，日本）と水が自由に与えられた．筋組織の再生を誘導するために，100 μ
Lの CTX（カーディオトキシン；生理食塩水中 10 μM；Latoxan, Valence, France）ま
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たは 50% v/v のグリセロールを 29ゲージの針を使用して前脛骨筋に注射した [31–33]．
この際，麻酔にはメデトミジン，ミダゾラム，およびブトルファノールのカクテルを使用
した． [31–33]．
マウスの安楽死には，熟練した研究者が大阪大学の動物実験委員会の指導に従い，頚椎

脱臼法を使用した．その後，前脛骨筋（Tibialis Anterior; TA）は解剖され，練り合わせ
たトラガカントゴム（和光純薬工業，大阪，日本）を使用してコルクに固定し，液体窒素
で冷却したイソペンタン（和光純薬工業）で 1分間フラッシュ凍結した．イソペンタンを
蒸発させるため，ドライアイス上で 1時間インキュベーションした後，筋肉は密閉容器に
入れて-80℃で保管した．10 µmの厚さの横断的な凍結切片を作成し，ヘマトキシリンお
よびエオシン溶液で染色した．
免疫染色データについては TA筋の横断凍結切片（6µm厚）をMyoD染色の場合は 4%

パラホルムアルデヒド（PFA）で固定し，胚性ミオシン重鎖（eMyHC）染色の場合は冷
却アセトンで 10分間固定した．5% 脱脂乳でブロッキングを行った後，一次抗体を用い
て 4° C で一晩染色した．eMyHC 染色では，内在性のマウス IgG 抗体をブロックする
ためにM.O.M.キット（Vector Laboratories, Burlingame, CA, USA）を使用した．本
研究で使用した一次抗体は，ラット抗マウスラミニンα 2（Enzo, Clone 4H8-2, Cat#

ALX-804-190-C100），ウサギ抗マウスMyoD（Abcam, Cat# ab133627），マウス eMyHC

（DSHB, Clone F1.652），およびウサギ抗コラーゲンタイプ I（Bio-Rad, #2150-1410）
抗体である．洗浄後，Alexa Fluor 488，546，または 647（Molecular Probes, Eugene,

OR, USA）で標識された二次抗体でインキュベーションを行った．洗浄したサンプルは，
DAPIを含むVECTASHIELD封入剤（Vector Laboratories, #H-1200）で封入した．な
お切片の厚さを正確に保つため，組織切片の厚さを変更する際には，最初の 1枚または 2

枚の切片を廃棄した．
染色された組織画像は，Plan Apochromat（キーエンス社）および 20x対物レンズ（ニ

コン社）を使用して BZ-X Analyzerで撮影した．撮影された画像の幅は 2877から 4606，
縦は 2720から 4355で，合計 12.5メガピクセルのサイズである．これらの画像は，CTX
注射後の経過日数に関する情報とともにタグ付き画像ファイル形式（TIFF）で保存した．
取得した画像の詳細は表 2.3に示す．学習用データと Day0 の比較実験用データでは，

各マウスの両足を切断し両方の前脛骨筋の撮影を行ったが，それ以外の場合では 1つの画
像が 1 つのマウスサンプルに対応している．凍結処理や染色に誤りがあった画像はデー
タセットから除外しており，例として学習用データと比較実験用データが該当する．した
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HE染色

免疫染色

Day3 Day5 Day7

図 2.12 HE染色と免疫染色の画像例

がって，学習用データは 14匹のマウス，アノテーション済み検証用データは 5匹のマウ
ス，CTX またはグリセロールの注射を受けた比較実験用データは 26 匹のマウスで構成
されている．連続切片の免疫染色画像については同じマウスの連続切片を使用する関係か
ら同じ注入かつ日付である画像は同じマウスから切り取られた TAの画像である．よって
連続切片画像は CTXで日付ごとに 3匹，Glycerolは 2匹である．
すべての実験動物に対する手順は，大阪大学の実験動物使用委員会（承認番号：R02-3）

によって承認され，すべての方法は関連するガイドラインや ARRIVEガイドラインに基
づいて実施された．
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2.4.2 検証用データのアノテーション

元
画
像

ア
ノ
テ
ー
シ
ョ
ン

Day0 Day3 Day5 Day7 Day14

図 2.13 専門家によるクラスアノテーション

図 2.13の通り CTX注入データのうち Day0,3,5,7,14の画像を一枚ずつ選択し線維状態
を以下の 5つのフェーズ: 安定（赤），損傷（青），再生前期（黄色），再生後期（オレン
ジ），再生完了（ピンク）に分け，Labelboxを用いて専門家によるマニュアルでの領域ア
ノテーションを行った．判断のつかない箇所についてはアノテーションをせず白塗りとし
た．筋組織の外側の領域も白塗りでマスクした．青色クラスはMyoD [54] *6 の発現がな
いまたは低い初期の再生を示し基底膜はあるが核は見られない領域を示す．黄色クラスは
顕著なMyoD発現が見られる再生中期を表す．オレンジクラスは中央に筋核を持つ小型
（eMyHC-high）および大型の筋管（eMyHC-low）の両方を含む再生後期を示す [55]．赤
色は損傷する前や回復が完了した段階である．

2.5 予備実験

2.5.1 学習データの拡張

すべての学習用データはコンピュータ上メモリで扱うために 256 ピクセルの正方画
像の切り取った．すべての正方画像データはは OpenCV4.8.1(Python3.7.13) の rotate

関数を用いて 90, 180, 270 度の回転画像と Flip 関数を用いた鏡像反転で 8 倍にデー
タ数を増やした．これは細胞は画像上ならば回転させてもその形態特徴は変化しない
事前知識を利用している．補足ではあるが例えば人であれば画像を回転させた場合そ

*6 MyoDは再生医療の始まりに発見された転写因子であり筋分化の運命を決定する

26



90度回転 180度回転

元画像

鏡
像
反
転

光
学
変
換

鏡
像
反
転

270度回転

図 2.14 画像データ拡張例

の特徴は失われるが，鏡像反転であれば目や鼻，口の位置関係などに齟齬は生じない
為可能であるとされている．撮影画像は撮影場所の照明，Light-Emitting Diode(LED)

の光量，カメラの露光時間や色味の設定，顕微鏡や鏡筒など撮影ハードウェアの型番，
検体の濃淡などの影響を受ける．こういった環境依存の条件をドメインと言い，画像
に現れる差をドメインギャップと言う．一般にこれらの撮影条件の統制を執ること
は難しく，画像処理側でドメインギャップの吸収を行う必要がある．そこでランダム
な光学条件で撮影されたことを仮定したデータ拡張を albumentations v1.3.1 [56] で
行い更に画像数を 2 倍に増やした．使用した Compose は RandomBrightness(p=0.5),

RandomContrast(p=0.5), RondomContrast(p=0.5)，RandomGamma(p=0.5)である．
従ってデータ拡張は図 2.14の通り合計で 16倍となる．
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2.5.2 明示的特徴量による分類結果

これまでの筋組織画像のコンピュータ解析研究 [6–13,46–50]では，細胞領域の検出 (セ
グメンテーション)をしたのちに細胞の明示的特徴量を計算することで，細胞の種類や状
態を分別していた．そこで本節では同様にセグメンテーションで検出した各細胞の明示的
特徴量を導出し，日付やWSIごとに並べることでその傾向を見る．また明示的特徴量を
用いた分類を試み，その成果を確認する．
得られた表 2.3に示す WSI を Cellpose [52] を用いてセグメンテーションをし，画

像ごとに細胞数，細胞面積の平均，円形度の平均について先行研究の手法によるパイ
ロットスタディを行った．細胞のセグメンテーションには Cellpose [52] の cyto モデル
(Version: 2.0.3，チャンネル=[0,0], ミニサイズ=40，残りはデフォルト設定)を用いた．
図 2.15, 2.16, 2.17, 2.18, 2.19ではセグメンテーションの結果から OpenCV(バージョン
4.8.1)を用いて各検出オブジェクトの細胞数，細胞面積，feret比 (長径短径比)，輪郭長，
円形度を計算し，WSIの画像名ごとに平均化した．
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図 2.15 各画像の細胞数

図 2.15の細胞数はセグメンテーションの検出したオブジェクト数であり，各WSI の
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図 2.16, 2.16, 2.17, 2.18における標本数を示している．細胞数には筋線維だけでなくゴー
ストファイバー，萌芽細胞，筋幹細胞などが含まれており，一般に組織切片の個体差に依
存する数なため，細胞の数と回復の度合いを結び付けられる因果関係はない．筋線維は萌
芽細胞や筋幹細胞よりも面積が大きいため [6]，図 2.16から，Day0 の細胞面積が CTX

注入後の Day3,5の面積に比べて大きい傾向にある．なお筋ジストロフィーの再生障害で
は筋線維の面積が大小さまざまとなり値の分散が高い傾向になる [35]．なおワイルドタ
イプ (wildtype:WT) と筋ジストロフィーマウス (mdx) の面積分布を比較すると，mdx

マウスの面積分布がWTに比べて正規性が失われ偏った分布となることが報告されてい
る． [10]．サルコペニアの場合は全体的に筋線維の面積が低下する [34]．CTX注入の場
合，上記のような疾病症状がでない代わりに，筋線維以外の細胞が発現されるため，筋線
維か否かの判断が再生評価には必要となる．
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図 2.16 WSIに含まれる細胞の面積平均
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図 2.17 WSIに含まれる細胞の feret比 (長径短径比)の平均
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図 2.18 WSIに含まれる細胞の輪郭長平均
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図 2.19 WSIに含まれる細胞の円形度平均

図 2.16, 2.17, 2.18, 2.19(エラーバーは 95%信頼区間)で示されるフェレット径，細胞
輪郭長，円形度は細胞の形態を表す明示的な特徴量であり [57]，Myosoft [10]が提供する
デフォルト値では，円形度 0.3以下，Feret比 4.0以上である場合筋線維ではないという
閾値としている．このように明示的特徴量を用いた線形カーネルのサポートベクター分
類 [58]によって，各細胞を安定または再生完了（赤），損傷（青），再生前期（黄色），再
生後期（オレンジ）にクラス分けする予備実験を行った結果を図 2.20に示す．
専門家が与えた真値とは大きく離れた推論結果となり，従来の明示的特徴量では回復段

階の分類が難しい結果が得られた．サポートベクター分類が失敗した原因として，再生過
程に現れる細胞は明示的な特徴量が近い値を示していることが挙げられる．図 2.21のよ
うに壊死したゴーストファイバー，筋分化を始めた筋幹細胞，定常状態の筋線維はいずれ
も円形度，細胞輪郭長，面積といった特徴量が近いことが判る．ゴーストファイバーはも
やのような輪郭をし，筋幹細胞は細胞内にヒビが入っている．こういった「もや」や「ヒ
ビ」といった人間の知識を明示的な特徴量で表現することは難しい．再生過程筋組織の細
胞のように特徴が明示的ではない場合に，暗黙的な多次元表現が強力な武器となる．
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図 2.20 回復過程の細胞の明示的特徴量によるサポートベクター分類結果

ゴーストファイバー安定状態 筋分化萌芽細胞 筋幹細胞 回復後の筋線維

図 2.21 再生過程の細胞特徴

2.6 結言

本章では筋組織WSI解析において，HE染色および蛍光染色の観察目的の違いに言及
しながら，再生過程筋組織のWSIデータ作成方法について述べた．蛍光染色は観察対象
となる細胞ごとに適切な抗体が異なるが，筋細胞の回復には多種多様な細胞が関わってお
り，1つの抗体蛍光染色画像だけでは，各細胞の回復段階を評価できない．一方 HE染色
は一つの染色だけで多様な細胞を可視化するため回復段階の評価をすることができる．各
細胞領域の回復段階を 4段階に分けるクラス分類課題と見なし，のセグメンテーションか
ら明示的な特徴量を計算し，従来法で再生段階を分類できるか試した．結果として再生段
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階の筋細胞は明示的な特徴量だけでは表現できないことが判明し，暗黙的特徴量を用いた
機械学習手法の必要性が示唆された．機械学習手法では各細胞領域に再生段階の教師を作
成コストを回避するために，WSIデータ作成時の個体ごとに持つ毒素注入からの日付を
利用した弱教師あり学習に臨む．
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第 3章 筋組織再生評価に向けた暗黙的特徴量によるクラス
比率学習

3.1 緒言

2.2.2節にある通り，損傷した筋組織には回復機能が備わっていることが知られている
が，再生は筋組織全体で均一に進行するわけではない．再生レベルは組織の領域ごとに異
なっており [59, 60]，図 3.1のように解析する場所によっては誤った解釈を導く可能性が
ある．局所的な筋線維に注目するのではなく筋組織全体をくまなく解析することが求めら
れるが，広い視野にわたった観察は労力が大きく，客観的かつ定量的なコンピュータによ
る画像解析の自動化を狙う研究が進められてきた [6–13,46–50].

図 3.1 筋組織再生の局所性

予備実験の図 2.20が示すように回復期の細胞分類にサポートベクターマシンを使用し
Myosoft [10] で手動選択した特徴がリカバリ中の HE 染色画像には適用できないことを
確認した．特に回復期間の 3 日目から 8 日目にかけてのミオシン重鎖のように明示的な
特徴が存在しない場合手動での明示的な特徴選択は適用できないことが判った．そこで機
械学習における暗黙的な特徴を用いることで [53,61–63]，手動で選択された特徴よりも多
次元で強力な表現力を持ち，幅広いドメインに適応することを可能とする．
本章では，筋組織WSIの回復過程を HE染色画像から外観検査的に行うことのできる

ソフトウェアMyoRegenTrackを開発する [14]．これは様々な機械学習，画像処理技術を
統合したソフトウェアである．当該ソフトウェアは HE 染色された筋組織の顕微鏡画像
であるWhole Slide Image(WSI) を入力として筋組織全体の再生状態を評価することに

34



成功した．また CTXと Glycerolを用いた筋組織再生の評価実験では，MyoRegenTrack

の導いた結論は先行研究の Glycerolに再生障害を見られる知見 [9, 64–68]と一致した．

3.1.1 機械学習手法による推論法

一般的にクラス分類を行うとき推論モデルは特徴量抽出器 (画像の [ピクセル数*channel

数] 次元から数百～数次元への圧縮:BackBone) とクラス推定器 (特徴量からクラスを予
測:Head) の段階に分かれている [69, 70]．近年これらの段階を特別意識せずに End-to-

End と呼ばれる学習法によって，入力データと教師のみを与えてモデル内部を完全にブ
ラックボックス化して学習する手法も有名であり [71]，大規模なデータセットと計算器
によって学習されており [5, 53]，事実上 accuracy needs money な状態になっている．
End-to-end は中間層の次元圧縮最適化に着目しないで済むというメリットがある一方，
その汎化性能を得るには大規模データセットが必要とされる．ひるがえって限られたデー
タセットの場合，特徴抽出の挙動にも目を配る必要があり，End-to-endでは精度が出づ
らいという一面もある．さてこれまでの筋線維の状態分類を試みる画像解析では，HE染
色向けではないものの Myosoft [10]，MuscleJ [6] や Open-CSAM [13] が免疫染色され
た筋組織のために開発されており，セグメテーションした筋線維から面積と円形度など
の特徴量を取得する．Open-CSAM [13] は CTX によって損傷させてからの経過日数が
Day8 から Day28 を対象とした免疫染色画像の CSA 計算を行っているが，ユーザは経
過日数やマウスの年齢・病気状態に応じて大きさの閾値 (Size threshold) と円形度閾値
(Circularity threshold) をチューニングしたり，偽の線維 (false fibers) や未検出線維を
マニュアルで追加する必要があったりと，人手による閾値の設定や補助作業はユーザーの
能力や撮影条件の影響を受けてしまう．かといって Myosoft [10] のようにフェレット比
(Feret aspect ratio)や最小フェレット径 (Minimum feret)など形状を評価できる解析項
目の特徴量を増やした場合は，特徴量選択に開発者のセンスが含まれてしまうことでドメ
インギャップに弱くなってしまう傾向にあり，Day3から Day8に見られる回復途中の胚
性ミオシン重鎖 (embryonic/neonatal myosin heavy chain) のように状態を示す明示的
な特徴量が判らない場合，マニュアルでの特徴量選択は適用できない．実際我々も当初は
線維の形状を表す特徴量 [10] を参考に選択してサポートベクター分類ができないか挑戦
したがその分類性能は高いものではなかった (図 2.20)．一方機械学習的手法を用いて網
羅的に数百次元の特徴量を取得しクラス推定を行う場合，次元圧縮された空間上において
次元数に応じた情報表現力を獲得することができるため幅広いドメインに適応することが
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できる．本研究では特徴量抽出器 (Backbone)には教師ラベルのない画像からの特徴量抽
出として既に drug target と gene family classificationの課題において CellProfiler [63]

を上回る精度を発揮した報告のある self-distillation with no labels(DINO) [53] を用い
ることとした．得られた特徴量を Full Connectionと ReLU [72]，Softmax関数から成る
ニューラルネットワークに通し (Head)，クラス推定器の学習に試みる．

3.1.2 日付を弱教師としたクラス比率学習

クラス分類問題を解くときに教師ラベルを作成してモデル学習する教師ありの手
法 [73, 74]は強力だが，今回のように再生 Process中の筋線維画像ではアノテーション自
体のコストが大きく，さらにそのアノテーションが正確であるという保証をつけること
は困難である．そこで我々は唯一得られる事前情報である時系列情報（CTXを注入して
からの経過日数）を弱教師として活用し分類に試みた．限られた GPU メモリ上で扱う
ために筋組織画像はセグメテーションされた線維ごとに切り取った．切り取り画像 (clip

image)は線維の数だけ存在し，それぞれの状態について 2.7のように損傷，再生前期，再
生後期，再生完了または損傷前を安定期の 4つの段階といった細胞クラスを定義し，個々
の細胞画像のクラスラベル作成はできなくても，筋組織画像の概観観察から whole slide

image(WSI)における各クラス比率を出すことは難しくない．たとえば Day0は CTX注
入前であるからすべての線維が安定的であり，Day3はゴーストファイバーや萌芽細胞が
多い．Dayが経つにつれて筋幹細胞の数は増えていき，反対に萌芽細胞の数は減っていく
であろう．図 3.2に細胞形態の日付に応じた分布の変化の一例を示す．各線は日付に対応
し，色は細胞クラスに対応する．横軸は一つ一つの細胞の回復度合い (Recovery Score)

を示しておりその確率密度分布となっている．Day3は回復度合いの小さい細胞群が多い
分布であり，日を追うごとにその分布が右に移動していることを示している．この分布の
移動を事前情報として持ったうえで，WSI に非常にラフなアノテーションを行い，日付
情報とWSIのクラス比率を紐づけることを行う．
こうしたクラス比率から学習する手段として最も一般的な方法は疑似ラベルである．日

付ラベルに関連付けられた筋線維の状態のクラス比率があるため，確率的なクラスを切り
取り画像に付与することで既存の教師あり学習に落とし込む．疑似ラベル [75] はバニラ
な手法であるがノイズを生み出してしまう可能性が残り必ずしも良い精度を期待できな
い．そこで個々のインスタンスにラベルはなくとも，複数のインスタンスで構成されたグ
ループ (本論文 [76–78] では先行研究に習いバッグと呼称する) のクラス割合が事前に与
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図 3.2 日付ごとの細胞状態分布の正規予測

えられているという課題設定にすることで学習を行う weekly supervisedな手法であるク
ラス比率学習 (Learning from label proportions: LLP) [76]に我々は注目した．LLPで
は図 3.3のように各インスタンスにクラスラベルはないが，バッグと呼ばれるインスタン
ス群にはクラス比率が与えられている問題設定における学習方法である．
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図 3.3 クラス比率学習

すなわち機械学習の損失を計算するときにある日付の画像から切り取って得た複数のイ
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ンスタンス群の予測結果を用意し，日付ラベルに紐づけられたクラス割合と比較すること
でモデルの勾配を更新する．LLPはプライバシーの観点から個々のインスタンスラベル
を生成することが困難な医療データベースを用いた学習においても強い力を発揮し，妊娠
率を向上させるための胚選択 (embryo selection) において胚着床予測データ (data from

embryo implantation prediction) から実際に着床した割合を使って個々の事例での推定
に成功している [77]. 医療画像を入力とする場合でも LLP は使われており特に大規模画
像の数千万ピクセルから数億ピクセルのWSIを扱うときにも力を発揮する．ほとんどの
場合においてWSIをピクセルレベルで様々な組織の状態にアノテーションすることは専
門家にとっては負担が大きく実施されるケースは少ない．腫瘍の懐死 2値判定に LLPを
使用した報告 [78]では，Fuzzy ProportionsとWSIをクリップした画像群セットを用い
て LLPを行いその精度を確認している．本研究は組織画像の日付ラベルと線維状態クラ
スの割合を関連付けさせた LLPの学習手法を取り入れることで線維のクラス分類を可能
とする推論器の構築を狙う．

3.2 提案手法

3.3.2節， 3.3.3節で用いた学習データ (train data)は表 2.2の「学習用データ」，テスト
データ (test data)は「アノテーション済み検証用データ」である．3.3.4節で用いたデー
タは表 2.2の「比較実験用データ」である．
学習時には png 形式で行う．これは tiff 形式であるとデータサイズが大きくなりすぎ

てしまい学習および推論時に GPU負荷が大きくなることが理由である．ただし負荷を小
さくするために jpg 形式にすることには注意が必要で，目視では png 形式と jpg 形式に
は大きな差はないが，openCVなどでプログラム上で扱う際には同じ画像であってもデー
タの中身が異なる．本論文では初期データは tiff形式，モデル学習を行う際は png形式，
それ以外のときに jpg形式を採用した．

3.2.1 提案手法の概観

図 3.4に HE 染色の WSI を解析する提案ソフトウェア MyoRegenTrack の概観を示
す．WSI はセグメンテーションモデルの Cellpose と組織領域を検出する Edge ソフト
(Python) に並行に入力され，2 つの出力画像の共通領域のみをセグメテーション結果
として扱う．これはセグメンテーションモデルが染色されていない組織の背景に細胞が
いると判定する誤検出に対応するためである．得られたセグメテーションデータから各
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細胞画像の特徴量を DINO [53] によって取得し，クラス分類器をかけることで細胞の
回復程度を 4 段階に分類する．その後各クラスに応じて細胞部への色塗りをすること
で MyoRegenTrack の出力結果とする．また本ソフトウェアの使用法については動画を
Github上 (https://github.com/RyuAmakaze/MyoRegenTrack)に公開している．
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図 3.4 提案ソフトウェアの概観

図 3.5は 1 枚の Whole Slide Image から各細胞のクラス分類を行うまでの推論パイ
プラインである．1250 万画素の画像を格子状に L × L のピクセルに切り分けてから
Cellpose [52]による細胞セグメテーションを行う．ここの分割サイズ Lは分類精度に重
要ではない．あくまで数千万画素をそのまま Cellposeに適用することができないため計
算がしやすいように L × Lのピクセルサイズへカットするだけである．セグメテーショ
ンを行うと各細胞の輪郭と中心座標が手に入るため，細胞を中心とした l × l ピクセル正
方画像を切り取る．この l ピクセル正方画像を当論文では線維画像あるいは細胞画像と
し，Vision Transformer ベースの特徴抽出器である DINO [53] を経て D 次元の特徴量
インスタンス x ∈ RD を手に入れる．また D は圧縮された次元数である．この特徴量抽
出器は通例バックボーン (Backbone)と呼称される．続いて特徴量インスタンス x ∈ RD

をクラス分類器に通すことで Class : C = {1, ..., k, ...K}(ex : red, blue, yellow, orange)

を得る．クラス分類器は Backboneに対してヘッド (Head)と呼ばれる．
特徴量インスタンスx ∈ RDから Class : C = {1, ..., k, ...K}(例 : red, blue, yellow, orange)

を予測する推論器のアーキテクチャについて述べる．図 3.9に示す通り 3層のニューラル
ネットワークを用いて学習を行った．入力は x ∈ RD であり，ニューラルネットワークの
出力はクラス数K についてのベクトル RK

+ であるため，図 3.9を関数 F と見なした場合，
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F : RD → RK
+ (

K∑
k=1

F(x)k = 1) (3.1)

と書き下すことができる．

Split 256 * 256 [pix]3400 * 2700[pix]

256 * 256 

[pix] 

64 * 64

 [pix] 

Cellpose

Cell Segmentation

Images of fibers Instance : 𝐱 ∈ ℝ𝐷

Backbone

𝑥2𝑥1 … 𝑥𝐷

𝑥2𝑥1 … 𝑥𝐷

Head

class : ℱ 𝐱 ∈ ℝ+
5

図 3.5 クラス推論のパイプライン

ただし F(x)k はクラス分類器 (head)が出力するクラス k の確信度である．
WSI から L × L [pixel] の画像に分けた後に Cellpose [52] で推論された細胞セグ

メンテーションを得る (表 3.5参照)．cell を中心とした l × l [pixel] の画像にしてか
ら特徴量抽出器によりインスタンス特徴量 (x) ∈ RD を得て，分類モデルによって
F(x) ∈ [0, 1]K(∥F(x)∥1 = 1), ただし F(x)はクラス分類モデルが出力するクラス確信度
である．ただし ∥∥1 は L1ノルムを意味する．

3.2.2 Cellposeのファインチューニング

本節では領域検出 (セグメンテーション) のための Cellpose [52] モデルのファイン
チューニングの方法について述べる．HE 染色画像の細胞セグメンテーションの先行研
究 [8]では，回復過程における筋組織画像に現れる安定状態な筋線維以外の細胞について
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脆弱であるため，これに対応するために Cellposeモデルをファインチューニングする必
要がある．

アノテーション例

Cellpose GUI

既存モデルでの推論例

図 3.6 Cellposeの GUIを用いたアノテーション

表図 2.2の学習用データデータの Day0 から Day7 の 1250 万画素の画像を 256 ×

256[pixels] の画像に切ってから各日付 4 枚ずつ計 20 枚 256[pixel] 正方画像の細胞輪
郭アノテーションをマニュアルで行った．なお図 3.6のように細胞輪郭アノテーション
コストの削減のために既存モデルで推論を行い，セグメンテーションに誤りがある部
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分に修正を行う形で作業は進められた．アノテーションソフトについては Cellpose が
提供する GUIを用いて行った．

3.2.3 日付ごとのクラス比率計算

判定不可損傷 再生前期 再生後期 安定

図 3.7 ラフアノテーション

壊死した筋線維から発生する damaged-myofiber-derived factors (DMDFs) によって
サテライト細胞の発生が促進され，サテライト細胞が筋分化の過程を経て線維は回復
する [45]．この過程は図 2.7のように損傷，再生前期，再生後期，再生完了または損傷
前を安定期の 4 つの段階に分けることができる．これを分類課題にするためにクラス
C : red(安定期), blue(損傷), yellow(再生前期), orange(再生後期)を定義する．
表 2.2にある学習用画像すべてを図 3.7のように手作業でラフなアノテーションを行っ

た．粗さの指標として，Windows にプリインストールされているペイントアプリケー
ション (バージョン 11.2404.45.0）)で，少なくとも 100ピクセルの円形ペンでアノテー
ションを行っている．これらのアフアノテーションはクラス比率を決定するためのもので
あり，分類モデルを学習するための各繊維の正確な教師としては機能しない．なお Day14

はすべてが回復しきっていると見なして Day0の画像群に含める．よって学習時の日付ラ
ベルは day ∈ {day0, day3, day5, day7}となる．得られた色塗り画像から各色のピクセル
数をカウントし，日付ごとに集計および正規化を行い，日付と各クラス比率の対応関係
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pday を導いた．
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69%

6%

𝐩𝑑𝑎𝑦5 𝐩𝑑𝑎𝑦7

ラフなアノテーション

ピクセル数の計算 (Python)

画
像

…

…

Day14

1.5% 0% 1.5%

97%

𝐩𝑑𝑎𝑦14

損傷 再生前期 再生後期 安定

図 3.8 クラス比率の計算方法

3.2.4 推論器 (head)のアーキテクチャ設計

D次元の特徴量インスタンスはニューラルネット 1層目に全結合 (Full connection [18])

される (FC1). FC1 層から出力された値は活性関数 ReLU [72] を通じて次の FC2 層に
結合される．このとき特徴量は D’ 次元に圧縮される．ニューラルネットワークの全結
合 (Full connection)層同士の間はすべて活性関数 Rectified Linear Unit(ReLU) [72]f :

RD → RD で繋げている．ReLUとは下記に示すように 0以下の値はすべて 0とする関
数である．

f(h) = h h > 0;

f(h) = 0 h ≤ 0
(3.2)

3つ目の Full connection層 (FC3)から出力されたベクトルは値の総和を 1とするため
に SoftMax関数で正規化する．

SoftMax(h)i =
exp(hi)∑K

j=1 exp(hj)
(3.3)

SoftMax 関数で得られた出力を各クラスの推論確信度 (confidence score) とした．ク
ラスを決定する際は確信度の最も高いものを選ぶ．
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… =

図 3.9 クラス分類器のアーキテクチャ

3.2.5 クラス比率学習

Learning from Label Proportion(LLP) は事前情報から推定された日付ごとの各クラ
スの Proportion を利用した弱教師あり学習である．Proportion loss Lprop は予測した
p̂day と図 3.10で得た pday の間で DKL:RK · RK → R+ を計算する．

Lprop(θ) = DKL(p̂day∥pday) =

K∑
k=1

p̂k log

(
p̂k
pk

)
(3.4)

まず各線維画像は Whole Slide Image(4K ピクセルの画像) が持つ日付ラベル d ∈

{day0, day3, day5, day7}を持つ．線維画像は Backboneに通されることでインスタンス
x ∈ RD(D:圧縮次元数)となる． 同じ日付ラベルを持つN 個のインスタンス x ∈ RD を
集めることで Bag B = {x1,x2, ...,xN} を作成する．Bag は日付ラベルに応じて真のク
ラス比率 pd を持つ．
損失は Bag ごとに計算されるためインスタンスから予測クラス比率 p̂ を求める．

Bag B = {x1,x2, ...,xN}に含まれるインスタンスをクラス分類器 (head)F : RD → RK
+

に通すことで各インスタンスのクラス確信度ベクトル {F(x1),F(x2), ...,F(xN )}を得る
p̂はインスタンスのクラス予測確信度ベクトル F(x)を bagに含まれるインスタンスで平
均を取ったものとなる．すなわち Bagに含まれるインスタンス数 N(bag size)に対して

p̂ =
1

N

N∑
n=1

F(xn) (3.5)

となる．Class : C = {1, ..., k, ...K}(ex : red, blue, yellow, orange) それぞれの値は
p̂day = [p̂1, ...p̂k..., p̂K ]において，
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図 3.10 クラス比率学習

p̂k =
1

N

∑
x∈B

F(x)k (3.6)

ただし

K∑
k=1

p̂k = 1 (3.7)

3.2.6 リカバリースコアの導入

クラス分類によるWhole Slide Image への色塗り表示は定性的な結果である一方定量
性に欠ける．よって推論したクラスの分布に応じて回復度を定量化する手法リカバリース
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コアを導入する．リカバリースコアとは推論クラス比率 p̂ と各クラスの回復への寄与を
示す重み ω によって以下のように計算される．

RecoveryScore = p̂day · ω =

K∑
k=1

p̂k · ωk (3.8)

ただし

K∑
k=1

p̂k = 1, 0 =< ωk =< 1 (3.9)

重み ω の計算方法について述べる．日付に対する組織の RecoveryScore を sigmoid

関数

σ(x) =
1

1 + e−a(x−d)
(3.10)

ただし gain a > 0, 回復の変曲点を示す日付 d ∈ N, e はネイピア数でモデル化す
る．gain a はシグモイド関数の勾配の大きさを示し回復度の速度を反映しており，変
曲点 d[day] は回復が大きく進展する日付に対応している．図 3.8で個別の WSI ごと
に得た真のクラス比率 pday ∈ R1×K , 回復スコア σ(x) ∈ R, 重み ω ∈ RK×1 を用い
て目的関数である最少二乗和 (σ(x) − pω)2 を最小化する．最小二乗Numpy v1.20.3の
linalg.lstsq(pday, σ(day)) から ω を導出した．
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3.3 実験結果と議論

3.3.1 実験手法

3.3.2節「セグメンテーションモデルのファインチューニング」では cardiotoxin(CTX)

を注入したマウスの筋組織の回復経過画像 Day0, 3,5,7,11,14 を用意し，Day3や 5に見
られるMyoblastやMyotubeを正しくセグメテーションできるようにファインチューニ
ングによるモデルの改良を行った．ファインチューニング時の Cellposeのバージョンは
2.0.3，学習開始時点のモデル (initial model)は cyto2, 画像チャンネル (channel)は [0,0]

つまり細胞は白黒 (gray), 核はなし (none)を選択し他のパラメータについてはデフォル
トを使用した．Cellposeに入力する際のWSIから切り分けた正方画像サイズ L× Lは，
L = 256 である．画像を 512 正方に切り分ける際に細胞が一つもない画像についてこの
時点でファインチューニング用のデータから除去している．この結果が先行研究 [8]およ
びベースライン [52]の精度を超えていることを確認する．

3.3.3節「筋線維のクラス分類」では DINO による特徴量抽出及び LLP 手法で得ら
れた Classifier モデルによるクラス推論を行い，各クラスを色付けて専門家によるアノ
テーションとの比較並びに交差検証を行い提案手法の精度を確かめる．DINO に入力す
る際に 512 正方画像から細胞単位を切り分ける際の画像サイズ l × l は，l = 64 であ
る．DINOのパラメータについてはパッチサイズ (patch size)は 8, avgpool patchtokens

True, checkpoint keyは studentである．
3.3.4節「CTXとグリセロールの回復経過解析」では既に知られている Glycerolの回

復阻害現象を本提案のソフトウェアで自動解析できることを確かめ Classificationによる
詳細な解析の有用性を示した．リカバリースコアについて，今回のデータセットはシグ
モイド関数のパラメータを a = 0.65, d = 6[day]と設定し，得られた値は ω = [0.230(青
), 1(赤), 0.756(オレンジ), 0.367(黄色)]である．

3.3.5節「免疫染色と手動アノテーションの比較」では手動アノテーションによる回復
段階の分類及びMyoRegenTrack推論の妥当性を，抗体を用いた免疫染色の結果を用いて
示す．
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3.3.2 再生過程筋組織のセグメンテーション

Day0 Day3 Day5 Day7 Day11 Day14

元画像

MyoSOTHES

Cyto

(control)

提案

真値

100μm 100μm 100μm 100μm 100μm 100μm

図 3.11 256ピクセル正方画像のセグメンテーション結果例 (文献 [14]の Fig.1(a)再掲)

Day0は CTXを Injectionする前を意味しており，以降は CTXを Injectionしてから
の経過日数を示す．すべての画像は Cellposeに入力されるときにWhole slide image(約
4K*4K[pix]) から 256*256[pix] の正方画像へ格子状に均等にカットされ，その結果の例
は図 3.11に示される．MyoSOTHES [8]，cyto(Cellpose [52] が提供する事前学習モデ
ル), 提案 (ファインチューニングを行ったモデル) の 3 つのモデルと手作業によるセグ
メンテーション真値を比べた結果を CTX 注入からの経過日数別に示す．また切り分け
た各 256 正方画像を統合し直して元のWhole slide image の通りに並べなおした結果が
図 3.13である．

48



Cell Num

図 3.12 検出した細胞数 (文献 [14]の Fig.1(c)再掲)
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1mm 1mm

1mm

図 3.13 WSIに統合後のセグメンテーション結果 (文献 [14]の Fig.1(b)再掲)

図 3.11 3.13の定性結果から，ファインチューニングがセグメテーションタスク効果的
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Mean IoU

+

図 3.14 セグメンテーション平均 IoU(文献 [14]の Fig.1(d)再掲)

であることが判る．特に Day3および Day5では先行研究では捉え切れなかった細胞を提
案法では捉えられている．
細胞セグメンテーションによって検出した細胞数を図 3.12，Manual を真値とし

て推論したモデルの性能を測る指標として真値と予測の Overlap の平均値である Mean

IoU(Intersection over Union)を図 3.14(エラーバーは 95%信頼区間. *: Mann-Whitney

U 検定 (両側検定) p < 10−27, †: Cliff’s d > 0.474 [79])，F1-scoreを図 3.15(*: Mann-

Whitney U 検定 (両側検定) p < 10−11, +: Cliff’s d > 0.330, †: Cliff’s d > 0.474.)に
示す．
Mean IoU は 256 ピクセル正方画像ごとに推論 Object と最も IoU の高い手作業のマ

スクとの重なる面積を求めて平均値を取った．サンプルサイズは図 3.12の各日付の細胞
数である．F1-score の計算は MyoSOTHES [8] にならい予測と真値の IoU の各閾値で
Precisionと recallを計算してから求め，IoU thresh=0.7のときの値を示している．この
ときの IoU閾値は図 3.16を参考に各日付の差が顕著になる値として採用している．各検
定については Cyto [52]の結果を Controlとした．サンプルサイズはWSIから 256ピク
セル正方画像を切り取った枚数であり 100から 124である．

図 3.14, 図 3.15の定量結果から提案手法が統計的優位であることが確認できる．
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図 3.15 セグメンテーション F1-スコア (文献 [14]の Fig.1(e)再掲)

図 3.16 日付ごとの IoUと F1-score

なおコルモゴロフ・スミルノフ検定では正規性が確認できなかったため，ノンパラメト
リック検定を行って p値と効果量を導出した．Mann-Whitney検定による p値，Cliffの
デルタ [79]を用いた効果量，およびそれらの信頼区間は，Pythonライブラリscipy.stats

(version 1.7.3)を用いて計算した．グラフは Python ライブラリmatplotlib.pyplot (ver-

sion 3.5.1)）を用いてプロットした．
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3.3.3 再生過程の筋細胞クラス分類
提
案

元
画
像

疑
似
ラ
ベ
ル

真
値

Day0 Day3 Day5 Day7 Day14

100μm 100μm 100μm 100μm 100μm

損傷 再生前期 再生後期 安定

図 3.17 クラス分類結果例 (文献 [14]の Fig.2(d)再掲)

cardiotoxin(CTX) を注入した回復過程のマウス筋組織の whole slide im-

age(WSI)Day0, 3,5,7,14 を用いて，筋組織再生における筋線維の状態を 4 段階
(損傷前または再生完了（赤），損傷（青），再生前期（黄色），再生後期（オレンジ）, ただ
しWhiteは判断のつかない箇所)に分けた専門家によるアノテーションと比較することで
提案手法の精度を検証した．セグメンテーションモデルに入力されるときは，WSI(about

4K*4K[pix]) から 256*256[pix] の正方画像へ格子状に均等に切り分けられる．256 ピク
セル正方画像における各細胞ごとに切り分けた 64 ピクセル正方画像ごとにクラス分類
を行い，256 ピクセル正方画像の色塗りを達成する．図 3.17には 256 ピクセル正方画像
におけるクラス分類結果の例を示している．セグメンテーションに用いた Cellpose は
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Diameter=5または None(default)の設定でセグメンテーションタスクを行い，検出した
Cell ごとに 64pix 正方画像に切り取って特徴量抽出とクラス推論を行う．Diameter=5

では小さな細胞を検出しており第 0層の分類結果に用い，Diameter=None(default)の設
定では筋線維程の大きさの細胞を検出し第 1層の分類結果として用いる．出力結果は第 0

層の上に第 1 層を重ねることで得られる．すなわち色が競合したときは第 1 層の結果を
優先する．

提
案

元
画
像

疑
似
ラ
ベ
ル

真
値

Day0 Day3 Day5 Day7 Day14

1mm

1mm

1mm 1mm 1mm

損傷 再生前期 再生後期 安定

図 3.18 WSIに統合後のクラス分類結果 (文献 [14]の Fig.2(a)再掲)

撮影した Width:2877˜4606, Height:2720˜4355, 1250万画素のWhole Slide Imageに
対するクラス分類結果を図 3.18に示す．これは図 3.17のような各 256 正方画像結果を
WSIに並べ直すことで得られる．
Cellpose で検出したオブジェクトごとのクラス推論結果を混合行列の図 3.19に，各ク

ラスごとに Recall, Precision, F1-scoreの結果を図 3.20 3.21 3.22に示す．
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図 3.19 クラス分類の混合行列結果 (文献 [14]の Fig.2(b)再掲)

blue red yelloworange

図 3.20 クラス分類の recall(文献 [14]の Fig.2(c)再掲)

また学習データと Test データを入れ替える 3 分割交差検証を行い汎化性能を確認し
た．このときの各テストデータを推論したときのクラス分布と真のクラス分布とのカル
バック・ライブラー情報量を表 3.1にまとめる．またWSI 画像での日付ごとの推論結果
を図 3.23に示す．定量データである図 3.20, 3.21, 3.22ではほとんどのスコアについて疑
似ラベル [80, 81]より優位な値を確認した．Recallの青クラスについては疑似ラベル法に
軍配が上がるが，混合行列の結果図 3.19からも判る通り，青を過剰検出しているためであ
ることに注意する．
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blue red yelloworange

図 3.21 クラス分類の precision(文献 [14]の Fig.2(c)再掲)

blue red yelloworange

図 3.22 クラス分類の F1-スコア (文献 [14]の Fig.2(c)再掲)

定性結果図 3.18においても疑似ラベル法では Day3,5で真値と異なる色塗りがなされて
いることが判る．また限られたデータの中で分割検証を行い汎化性能についても確認する
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図 3.23 3分割交差検証 (文献 [14]の Fig.2(e)再掲)

表 3.1 3分割検証による分類の汎化性能評価

DKL(p̂|p) Day0 Day3 Day5 Day7 Day14

Fold1 0.021 0.385 0.208 0.074 0.016

Fold2 0.058 0.103 0.274 0.031 0.185

Fold3 0.063 0.246 0.466 0.105 0.174

mean 0.047 0.245 0.316 0.070 0.125

3.3.4 CTXとグリセロールの回復経過解析

これまで glycerol と CTX の 2 種類の注入による組織の壊死と再生には有意差がある
ことが報告されており [9, 64–68]，glycerolでは脂肪細胞による再生阻害が知られている．
事前の実験として，図 3.24の通り健常なマウスにグリセロールを注入してから 7日目と
14日目の筋組織の HE染色及び免疫染色の結果図 3.24を示す．
7日目の白がコラーゲン染色，赤がペリリピン (Perilipin)染色，緑がラミニン染色，青

が DAPI 染色の結果である．ペリリピンは脂肪生成 (adipogenesis)，コラーゲンは線維
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LNa2Perilipin

Collagen

DAPI

HE(Glycerol Day14) MyoRegenTrack

LNa2Perilipin

Collagen

DAPI

HE(Glycerol Day7) MyoRegenTrack

図 3.24 グリセロールの回復傾向例

化 (fibrosis)の発生を示している．なおラミニン染色は細胞膜，DAPIは細胞核を染色す
る．図 3.24よりペリリピンとコラーゲン染色が Day7から Day14にかけて広がっている
ことが判る．このことからグリセロールの回復傾向は日にちが経過したからといって組織
全体として回復するわけではなく，部分的に回復が進行しその他の領域については炎症
(inflammation) が起こることが判る．すなわち日数が経過したからといって回復程度が
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向上するとは限らないのである．CTXは日数が経過するに従って回復することが知られ
ており，一般に 7日目に比べて 14日目は組織全体が回復する．

損傷 再生前期 再生後期 安定 細胞無
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図 3.25 CTXとグリセロールの回復傾向の解析 (文献 [14]の Fig.3(a)改変)

そこで本研究で作成したソフトウェア MyoRegenTrack を用いて glycerol または
cardiotoxin(CTX) を注入した回復経過のマウスの筋組織画像の解析を行う．図 3.25の
HE染色のWSIの解析結果についてクラス比率学習 (Learning from Label Proportion:

LLP)を用いた提案手法と，同じ弱教師を疑似ラベル法で学習した手法と比べる．提案手
法では日付ごとの CTXとグリセロールの回復傾向を捉えているのに対し，疑似ラベル法
では推論クラスに偏りがあることが判る．
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またクラス分類から定量的に回復の程度を測る指標として従来法 (cross-sectional area)

と Recovery Score を計算し，2 次元上に散布図 3.25および薬剤投与からの経過日数に
対する折れ線グラフ 3.27を示す．CSAは Recovery Score と比較するためにで正規化を
行う．

Cell Area Rate =
細胞面積
染色面積 (3.11)

Cell Area Rate
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図 3.26 リカバリースコアと細胞領域割合の 2次元散布図 (文献 [14]の Fig.3(b)改変)

図 3.27の結果ではセグメンテーションのみから得られる組織の細胞面積割合 (Cell

Area Rate)とクラス分類によるリカバリースコア (提案法)の日付経過を観察した．提案
手法ではリカバリースコアによって Day3 と Day5 の回復傾向が CTX と Glycerol 間で
異なることが図 3.27の灰色の薄枠部から判る一方，線維セグメテーションの情報のみか
ら得られる Cell Area Rateでは区別が付けられないことが判る．
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このことから Cell Area Rateと併用してリカバリースコアを用いることはより詳細な
細胞状態を知ることに繋がり，回復傾向の評価に有効であることが判る．また疑似ラベル
法については Glycerolの方が Day3において回復傾向が高いという誤った結果が得られ
た．これは図 3.25の結果からも判る通り疑似ラベル法はオレンジや赤を推論する傾向が
強く，Day3に見られる損傷状態や再生前期の細胞特徴を捉え切れていないことが原因で
ある．従って Glycerolと CTXの比較実験においても，疑似ラベル法に比べて LLP法が
優れていることが判った．ただし LLP法においても Day0の推論時に損傷クラスを推論
しているなど課題が残る．
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図 3.27 リカバリースコアと細胞領域割合の経過日数ごとの値 (文献 [14]の Fig.3(c)改変)
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3.3.5 免疫染色と手動アノテーションの比較

この手動アノテーションと提案したモデルを組み込んだオープンソフトウェア
である MyoRegenTrack の妥当性は免疫染色によって得られたプロテインマーカー
図 3.28 3.29 3.30と比較することで確認する．

HE (Day3) Rough Annotation MyoRegenTrack

MyoD DAPILNa2

HE (1)

(2)

Rough Anno. MyoD DAPILNa2MyoRegen

(1)

HE (2)

Rough Anno. MyoD DAPILNa2MyoRegen

図 3.28 CTX注入 3日後の筋組織連続切片画像群 (文献 [14]の Fig4.(a)改変)

図 3.28は CTX注入 3日後の TA連続切片の免疫染色画像である．赤はMyoDの発現
を示しており，緑はラミニン染色による線維膜，青は DAPI染色による細胞核を表す．ラ
フアノテーションおよび MyoRegenTrack の結果は HE 染色画像のみから出力されてお
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り，安定または再生完了（赤），損傷（青），再生前期（黄色），再生後期（オレンジ）を示し
ている．青い領域はMyoDの発現が少なく，細胞膜も崩壊直前であるということがラミ
ニン染色の画像からも判断できる．MyoD の発現は再生初期に見られ小さな核が DAPI

染色の結果からも判り，萌芽細胞 (Myoblast)の数が多く再生初期の特徴を捉えている．

HE (Day5) Rough Annotation MyoRegenTrack

eMyHC DAPILNa2

(1)

(2)

(3)

( 1 )

( 2 )

( 3 )

HE Annotation eMyHC DAPILNa2RegenTrack

図 3.29 CTX注入 5日後の筋組織連続切片画像群 (文献 [14]の Fig.4(b)改変)

図 3.29は CTX注入 5日後の TA連続切片の免疫染色画像である．5日目に入ると組織
のいたるところで再生が進んでいることが HE染色の結果から判る．また免疫染色につい
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ては赤が胚性ミオシン重鎖の強弱を表している．緑は引き続きラミニン染色による線維の
膜，青は DAPI染色による核を表す．線維膜がはっきりとしておりかつ eMyHCの赤色
が強いということは筋管細胞が成長していることを示しており，再生後期の特徴を示して
いる．

HE (Day7) Rough Annotation MyoRegenTrack

eMyHC DAPILNa2

(1)

Rough Anno. eMyHC DAPILNa2MyoRegenHE (1)

図 3.30 CTX注入 7日後の筋組織連続切片画像群 (文献 [14]の Fig.4(c)改変)

図 3.30は CTX注入 7日後の TA連続切片の免疫染色画像である．7日目では 5日目に
比べて回復が進んでいることが判る．その証拠に組織の多くの領域で eMyHC の赤色が
見られ，線維間に隙間がありつつもラミニン染色による細胞膜から線維面積が大きくなっ
ていることと判る．この結果はラフなアノテーションとも一致している．
上記の免疫染色と HE染色へのラフなアノテーションとの比較から，HE染色画像のみ

から人間の目であれば再生期の判断を下すことが可能であることが判る．よって専門家に
よるクラスアノテーションの妥当性が認められるとの結論で本節を閉じる．

64



3.4 議論

3.3.2節の結果では再生過程ドメインに適応したファインチューニングモデルの性能に
ついて確かめている．提案手法は萌芽細胞 (Myoblast) や筋幹細胞 (Myotube) を手作業
に近い精度で検出できている一方，表 3.13-Ours-Day7,11,14の結果を見れば，染色部で
ない画像部分でも細胞が検出されてしまっていることが伺える．これはモデルが萌芽細胞
などを検出する為に過剰検出をする状態になっていることを示しており，染色部のエッジ
検出スクリプトを加えることで空白地帯の検出については無視できる一方，モデルの性能
及び信頼性という観点では疑問符が残ってしまう．学習データに空白地帯を用意し細胞が
ないという情報を明示的にモデルに学習させることで解決が見込める．

3.3.3節の結果では回復過程の細胞とその周辺情報から回復期を分類するモデル評
価を行った．これまで組織の回復過程を解析するとき，図 3.18のように Whole Slide

Image(WSI)を用いた解析では組織全体を概観することには適している一方細部の各線維
の状態が判りづらく，図 3.17のような Clip画像であれば各線維の状態は見やすいが組織
全体が把握できない．このジレンマの一つの解決策はすべての Clip画像を掲載すること
であるが紙幅の観点から好まれない傾向にあり，組織全体の線維の回復状態を定量的に解
析する手法が望まれていた．クラス分類は一つの解決策であり実際筋組織を全体にわたっ
て俯瞰する解析によって各領域のおおよその傾向を把握することができる．今回用いた手
法はセグメンテーション＋クラス分類であるため図 3.17(Day3,5)に見られる Cellが検出
できない領域を塗ることはできない．

3.3.4節では分類性能を確認したモデルを解析ソフトウェアMyoRegenTrackとし，そ
の実用性について既にこれまでの薬学研究で良く知られた CTXとグリセロールの回復傾
向の解析に用いた．図 3.25ではクラス分類を加えた解析によりDay5のCTXとGlycerol

間に回復経過の差異があることが求められたが，一方で提案手法の汎化性能については
課題も見つかっている．これまでの筋線維クラス分類は明示的 (explicit)な線維の特徴量
(Area・円形度・Feret 比) と見分けたい線維タイプの相関が事前知識としてあった．し
かし明示的な特徴量のみでは識別しづらい萌芽細胞や筋幹細胞のように暗黙的 (implicit)

な特徴量を持つ線維を分類するときは機械学習的手法を用いた多次元特徴量による表現
力が必要である．ただし暗黙的 (implicit) である故に AI 全般に言える説明可能性の問
題は残っており，分類器の結果は必ずしも人間の目と同等である保証はなく，実環境で
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想定外のドメインギャップが生じた際に精度の担保や改善を行うことは難しい．実際．
図 3.25-Day0 では青色を示す損傷領域は存在しないはずであるが，動物処理における凍
結処理に不足があったために線維に気泡のような空白が生まれてしまい，本ソフトウェア
では無傷な線維を損傷状態と誤判定してしまうことが見られた．凍結処理に大きく失敗し
た例については今回解析対象から外しており，図 3.31のように MyoRegenTrack が無傷
の線維を損傷と判定してしまうことが判る．

図 3.31 凍結処理に失敗した画像の解析例

幅広いドメインに対応できる頑健性を得るには学習データセットのドメイン幅を広げる
ことが手っ取り早いが，動物処理や光学条件などあらゆる条件に対応したデータセットを
構築するためには多大な労力が必要である．または各種手続きや環境条件に依存しない
細胞の分類の根幹となる特徴を抽出できるように，特徴量抽出器 (backbone)のファイン
チューニングを行うということが考えられる．ただし LLPでは特徴量空間での損失計算
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が出来ず，筋細胞に合わせた特徴量抽出器を得られているか不確かである．本ソフトウェ
アについては今回多様な入力ドメインの汎用性について担保することはできず，入力画像
は限定的なドメインに留まる中で，組織解析への活用が期待される．

3.5 結言

我々は回復中の筋組織にあるセグメンテーションと再生段階の分類を行うMyoRegen-

Trackを開発した．セグメンテーションは事前学習モデルをファインチューニングするこ
とで得られその頑健性は先行研究のモデルと比較することで確かめられた．分類モデルの
学習には日付ラベルと紐づくクラス比率による Learning from Label Proportion(LLP)

を用いることで，専門家と遜色のない精度を担保することが判った．ただし推論パイプラ
インそのものの問題として，細胞セグメンテーションされていない領域を分類し色を塗る
ことはできない．オブジェクトの検出と領域検出は従来別々のモデルで推論することが一
般的であり，より適切な色塗りを行う場合は領域クラスを追加することで達成できる．開
発した MyoRegenTrack を回復過程の異なることで知られる CTX とグリセロールの注
入経過観察実験における解析で用いて，回復経過の違いについて先行研究と一致した結果
が得られ有効性を確認した．しかし画像を用意する際に検体処理での凍結不良など，学習
データにないドメインには対応できない．今後はより汎化性能を高めるためにデータセッ
トの増加や新しいデータ拡張法，そして特徴量抽出器の検討をする必要がある．
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第 4章 類似比率学習による筋細胞へのドメイン適応
4.1 緒言

筋組織の損傷再生過程の評価は加齢や疾患に関連する筋力低下のメカニズムを解明する
ための生物学的研究 [39, 82, 83]における実験操作の効果量を測定する上で基本的な解析
である．筋組織の損傷と再生を誘導するコブラ毒（cardiotoxin; CTX） [43]をマウスの
下腿筋に注射すると，筋線維の壊死が発生すると同時に筋組織が持つ再生機能が働く．筋
組織の回復速度は局所性を示しているため [59, 60]，組織回復を評価するためには特定の
領域ごとに細胞の状態を評価する必要がある一方 [13]，筋組織画像は組織全体を大量のピ
クセルによって画像化されたWSIであり，無数の細胞と筋線維を含むため労力を要する．
こういったWSIの各領域をコンピュータで解析・評価する方法は複数インスタンス学習
(Multiple instance learning: MIL) [25]と呼ばれている．

数万ピクセル

数
万
ピ
ク
セ
ル

バッグ

・・・

ラベルＡ

ラベルＡ

図 4.1 複数インスタンス学習 (Multiple instance learning: MIL) の例 [15]

たとえば図 4.1の癌腫瘍例 [15]のように数ギガピクセルの画像は直接コンピュータ上で
扱うことができない．よって各領域のアノテーションは難しいが画像一枚には悪性腫瘍か
どうかといったラベルが与えられているため，画像を各領域に切り分けて集めたバッグ
と呼ばれるインスタンス群ごとに学習し，予測器を作ることを目指す．WSI の大きな画
像サイズがもたらす GPU メモリの制限を回避し，WSI を切り分けた各領域においてク
ラス分類することで画像解析の説明可能性を向上することができる．このようにWSIの
MILではしばしば弱教師あり学習の手法を用いる．
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クラス比率からモデル学習する LLP [27, 76, 78, 84–92]は，WSIにおけるMILの文脈
において主要な弱教師あり学習の 1つである．これはクラス比率の弱教師を用意すること
が比較的容易であることが理由であり，WSIにおける LLP適用例として腫瘍の壊死の二
値 [78]または三分類 [1]や，関心領域のスクリーニング [93]が挙げられる．しかし LLP

は現在，本研究で扱う再生過程の筋組織を評価する際に 2つの課題に直面している．

• 特徴量抽出器の更新が不可
LLPはバッグ内の全インスタンスを予測した後に損失関数を計算するため，通常事
前学習済みのモデルを特徴抽出器（backbone）として使用し学習時はそのパラメー
タを固定し [94]，分類層（head）のみを更新する [1,78](図 4.2参照).DINO [53]の
ような大規模な事前学習モデルは一般的な対象物で訓練されているため，医療用
WSIタスクの特徴抽出には適さない可能性が残る．

Back

bone
Head

𝑥
2

𝑥
1

…
𝑥
𝐷

特徴量 クラス

図 4.2 クラス分類のパイプライン

• クラス類似情報の喪失
再生過程筋組織の細胞は CTX 筋注から時間の経過とともに形態が徐々に変化
し [59]，各段階間に生物由来の形態変化の順序が存在するが，LLP ではクラスを
名義尺度として扱い，順序情報が損なわれる．具体的には再生する細胞には次の段
階が含まれる．無傷の筋線維、ゴーストファイバー（CTX注射後の基底膜が残存
している細胞），萌芽細胞（サテライト細胞が育った細胞），筋管細胞（筋芽細胞が
筋分化したもの），および再生した筋線維．これらは再生時間順序に応じた類似性
を持つ．クラスを順序尺度として扱うことで，再生下の細胞類似性を損失関数に反
映させる．
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Intact MFMyotube Recovered Ghost fiberMyoblast

形態の類似度

図 4.3 クラスの類似性

大規模な事前学習モデル [53] を用いて抽出した特徴量空間において，学習データおよ
びテストデータの特徴点分布を確認すると，データ間に距離が生じることがある．いずれ
も同じ再生過程の筋組織画像であるため，本来データの分布は再生過程分類に必要な特徴
量差であるべきだが，図 4.4からも判る通り，例えば明るさといったドメインギャップが
特徴抽出に悪影響を及ぼす可能性がある．本章では筋細胞再生分類に必要な特徴抽出を行
えるように，抽出器のファインチューニングを試みる．

学
習
デ
ー
タ

Day0 Day3 Day5 Day7 Day14

検
証
デ
ー
タ

図 4.4 検証データと学習データのドメインギャップ

そこで LLPパラダイムの下でクラスの順序を考慮しながら特徴抽出器を更新する順序
尺度類似比率学習 (Ordinal Scale Learning from Similarity Proportion; OSLSP [95])

を考案し，上記 1,2両方の問題に同時に解決を試みた．
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4.2 関連研究

WSIの課題を解決する手法について表 4.1に示す． クラス尺度は最終的にモデルが出
力する推論結果の尺度を示す．更新目標は当該手段で更新するモデルアーキテクチャの層
を示しており，Backboneはデータから特徴量抽出をするレイヤであり，Headは抽出され
た特徴量からクラス推定を行うレイヤになる．Loss は学習に用いる損失関数を構成する
情報を示す. これまでの研究は bag単位の学習を行う場合はクラス比率を利用した損失関
数を設計し，インスタンス単位の学習を行う場合はクラス比率から疑似ラベルを各インス
タンスに生成することを行っていた．インスタンス単位の学習では特徴量抽出器の更新を
行える点がメリットである反面，疑似ラベルは誤ったラベル生成に繋がるノイズの可能性
を指摘されていた [26]．またこれまでの bag単位の学習では腫瘍の 2値判定 [26, 80, 96]

または 3値判定 [1],病理画像の注目領域の抽出 [93]などいずれも名義尺度を出力結果と
して扱っており，順序尺度を持つ筋組織の線維形態変化を対象とはして来なかった．WSI

を対象とはしていないが Jer ´ onimo’s [77] では既に特徴量化されている患者データと
着床した割合を使って Embryo Implantation Predictionを行う．DLLP [27]は LLPと
DeepLearning を組み合わせた初期研究である．LLP-VAT [89] では従来の LLP ロスに
加えて，個々のインスタンス画像に軽微なノイズを加えてもクラス予測に一貫性が担保
されるような一貫性損失 (consistency loss) を提案している．SIM-LLP [85]では従来の
LLP ロスに加えて，特徴ベクトルの異なる予測を罰するペアワイズ類似性ベースの損
失が追加されている．いずれの LLP 手法についても特徴量抽出には事前学習したエン
コーダを用いており，head部の学習に焦点を当てていた．提案手法である Ordinal Scale

Learning from Similarity Proportion(OSLSP) は対照学習 (Contrastive learning [30])

のようにインスタンス同士の類似度を損失関数に反映することで backbone の更新を行
う．またその際にクラス類似度に注意することでクラスの順序尺度を反映することを可
能とする．IIB-MIL [26] は Backbone の更新のためにクラス比率から疑似ラベルを生
成し，損失関数に加えることで Backbone と Head の更新を行っている．ただし疑似ラ
ベルが抱えるノイズの問題を解決したわけではない．なおバッグを用いた学習について
は 付録 A章に付録を載せた．
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表 4.1 WSIの複数インスタンス分類の手段一覧．

手法名 クラス尺度 更新目標 Loss

Pseudo [80] 名義尺度 Head Pseudo Class + Class Prop

LLP [97] 名義尺度 Head Class Prop

MIL [96] バイナリ Head Class Prop

IIB-MIL [26] バイナリ BackBone+Head Pseudo Class + Class Prop

OS-LSP(Ours) 順序尺度 BackBone+Head Sim Prop + Class Prop

4.3 類似比率学習 (Learning from Similarity Proportion)の提案

4.3.1 細胞形態の類似度

図 4.5に示す通り，筋線維はコブラ毒 (cardiotoxin: CTX) 注入から崩壊が始まりゴー
ストファイバー (ghost fiber)，萌芽細胞 (myoblast)，筋幹細胞 (myotube)を経て回復し

Intact MFMyotube Recovered Ghost fiberMyoblast

形態の類似度

toxin

回復度

Intact MF Ghost fiber Myoblast Myotube Recovered

図 4.5 線維の時間経過による形態変化と類似度
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た筋線維 (recovered myofiber) となる，といった時系列に沿った形態変化と再生現象を
起こす．無傷の筋線維 (Intact MF)は CTXで損傷を受ける前の安定状態を示している．
ゴーストファイバーは CTXによって壊死が誘発された筋線維の基底膜が残った状態であ
る．萌芽細胞は damaged-myofiber-derived factors (DMDFs) [45] などによって活性化
したサテライト細胞が増殖すること形成される．細胞分裂を停止した隣接し合う萌芽細胞
が筋分化することで多核の筋幹細胞となる．筋幹細胞が成長することで線維の隙間が埋め
尽くされ回復した筋線維となる．萌芽細胞はその名の通り筋線維再生の始まりと見なす
ことができ，ゴーストファイバーは筋線維が壊死する段階であるため，クラス間類似度
は萌芽細胞 (黄色)から見るとゴーストファイバー (青色)が最も遠い位置にある．よって
図 4.5のような形態の類似度関係を得る．

4.3.2 類似比率損失の概要
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図 4.6 順序尺度類似比率学習 (OSLSP)の概要

標準的な LLPのバッグ作成方法 [90]に従い，同じ日付ラベルのインスタンス (x) ∈ RD

をバッグサイズN 個でまとめる．各バッグはクラス比率 pd ∈ [0, 1]K(|pj |1 = 1)とN 個
のインスタンス x ∈ RD から構成される．図 4.6に示す通り，類似性比率損失 (similarity

proportion loss) の計算方法は真の確率密度関数 (PDF)P と予測された PDFP̂ の間の
Kullback–Leibler情報量を取ることで計算される．

LSimProp = DKL(P̂∥P ) =

bins∑
i=1

P̂ (i) log

(
P̂ (i)

P (i)

)
(4.1)

P は 2つのバッグ間のクラス比率の組み合わせから計算され、P̂ は 2つのバッグのイ
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ンスタンス特徴間の類似性の密度分布によって導かれる．

4.3.3 インスタンス類似度による予測密度分布

図 4.6の例では Day3 と Day5 のWSI から切り取られた線維画像によってバッグが 2

つ用意されている．Bag1には Day3の線維画像を特徴量抽出器に通すことで得られるイ
ンスタンス群 {x1,x2, ...,xN}(x ∈ RD)と図 3.8の方法で計算された 3日目のクラス比率
pday3 が与えられている．Bag2にも同様にインスタンス群 {y1,y2, ...,yN}(y ∈ RD)と
5日目のクラス比率 pday5 を有する．similarity proportion lossを計算するとき，予測さ
れる類似度の密度関数 P̂ はインスタンス群から計算し，真の確率密度関数 (PDF)P はク
ラス比率 pday3,pday5 から計算される．類似度密度関数の予測 P̂ の導出について述べる．
2 つのバッグから選ばれたインスタンス xn,yn(n ∈ {1, 2, ...N}) の類似度はコサイン類
似度 CosSim(xn,yn): RD × RD → [0, 1] ∈ Rを用いて計算する．

CosSim(xn,yn) =
1

2
(

xn · yn

∥xn∥ · ∥yn∥
+ 1) ∈ [0, 1] (4.2)

得られた各インスタンスの比較データ CosSim(xn,yn) をヒストグラム化する．max,

min, binsはヒストグラム化する際のパラメータであり，データの最大最小値の設定およ
びヒストグラムのビン (bins)の個数を指す．コサイン類似度の値は 0から 1までなので
今回の場合 max=1, min=0である．ビンの個数は類似度の組み合わせ数に相当するとし
て，クラス数K のうち 2つのクラスを選ぶただし同じクラスの比較を含めるとし，

bins = 異なるクラスの組み合わせ数+同じクラスの組み合わせ数 (4.3)

bins = KC2 +K =
K2 +K

2
(4.4)

で求めた．またパラメータからヒストグラムの幅 ∆

∆ =
max−min

bins
(4.5)

を計算できる．するとヒストグラムの i番目の binの値 hist(i)は以下のように求まる．

hist(i) =

N∑
n=1

I(CosSim(xn,yn) ∈ [i×∆, (i+ 1)×∆] (4.6)

ただし Iは範囲内にある値の場合にカウントアップを行う指示関数 (indicator function)

である．すなわち範囲 [i ×∆, (i + 1) ×∆]に含まるコサイン類似度が得られた場合に計
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数され，インスタンスを比較した類似度のヒストグラムを図 4.7の通り導く．
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図 4.7 インスタンス類似度の確率密度

しかし指示関数 I を損失関数の実装時に用いた場合，微分不可能な計算プロセスになり
Lossからモデルの勾配 (grad)へ誤差逆伝播 (Backpropagation)ができない．本研究では
当該問題の解決に inter-atomic distancesの離散から連続への変換方法 [98]を参考にし，
bins = K2+K

2 , σ = 0.1のガウス展開法 (Gaussian expansion) 式.4.7によって式.4.6の近
似計算をする．
ガウス展開法ではデータ点 iごとにガウス分布の密度関数の重ね合わせを行い binの幅

で積分することでヒストグラム計算を近似する．ただし µi は i ∈ {1, 2, ..., bins} 番目の
ビンの類似度平均値であることに注意する．よってビン番号 i における予測類似度密度
P̂ (i)は，

hist(i) ∼= P̂ (i) =

N∑
i=1

1√
2πσ

exp

(
− (CosSim(xn,yn)− µi)

2

2σ2

)
∆ (4.7)

と計算される．なおガウス展開法と torch が提供するヒストグラム関数を比べると，
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図 4.8 ガウス展開法と torch.histの比較

図 4.8のようにガウス展開法ヒストグラムと torchヒストグラムの分布が近く，近似が成
功していることが判る．

4.3.4 クラス比率の組み合わせによる真密度分布

2 つのバッグが持つクラス比率の組み合わせから P 計算する．クラス間の類似度を損
失関数に反映させるために，図 4.5から，赤: 無傷な筋線維 (intact myofiber), 青: ゴース
トファイバー (Ghost fiber), 黄: 萌芽細胞 (Myoblast), オレンジ: 筋幹細胞 (Myotube),

ピンク: 回復した筋線維 (Recovered Myofiber) の順序を持つクラス C = {1, ..., k, ...K}

を定義し，クラス間の類似度 sim(k, k′)

sim(k, k′) = 1− |k′ − k|
K − 1

∈ [0, 1] (4.8)

と定義する．同じクラスを比較した場合 (k = k′)，その類似度 sim(k, k′)) = 1となる．
ただしクラス数 K > 2 であることに注意する．2 つの異なる Bag に与えられた各クラ
ス比率 (class proportion)p,p′ ∈ [0, 1]K を用いて，真の PDFP は下記のように計算さ
れる．

P (sim(k, k‘)) = pk ∗ p′k′ if k = k′;

P (sim(k, k‘)) = pk ∗ p′k′ + pk′ ∗ p′k otherwise.
(4.9)
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図 4.9 バッグのクラス比率から導出された類似度確率密度

図 4.9の例では Bag1は黄色 40%，青色 60%のクラス比率であり，Bag2は黄色 30%，
オレンジ色 60%，青色 10%のクラス比率を持つ．2つの Bagを比べるとき同じクラスが
比べられる確率は Bag1 の黄色の割合 40% と Bag2 の黄色の割合 30% をかけあわせた
12%と Bag1の青色 60%と Bag2の青色 10%をかけあわせた 6%であるため，類似度 1

の割合は 12% + 6% = 18%となる．黄色 (萌芽細胞)とオレンジ (筋幹細胞)は類似度が
高く，Bag1の黄色 40%と Bag2のオレンジ色 60%を乗算し，24%の密度を得る．以下
同様に次の類似度である青とオレンジは 36%，最も類似度が小さい黄色と青色の確率密
度は 40% ∗ 10% + 60% ∗ 30% = 4%+ 18% = 22%となる．
なおクラス分類器 (head) の学習は 3.2.4節と等しく活性化関数 ReLU を挟んだ 3 層

MLP(Multilayer perceptron)を用いた．
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4.4 再生過程の細胞クラス分類実験

4.4.1 実験手法

順序尺度類似比率学習 (Ordinal Scale Learning from Similarity Proportion: OSLSP)

の評価には，表 2.3から CTX注入の学習用データ，アノテーション済み検証用データの
計 31枚のWhole Slide Image(WSI)を使用した．うち各日付から 1枚ずつWSIを選択
して計 5 枚のWSI に専門家による 5 分類のアノテーション: 赤: 無傷な筋線維 (intact

myofiber), 青: ゴーストファイバー (Ghost fiber), 黄: 萌芽細胞 (Myoblast), オレンジ:

筋幹細胞 (Myotube), ピンク: 回復した筋線維 (Recovered Myofiber) を施しテストデー
タ (アノテーション済み検証用データ)とした．

day0 day3 day5 day7 day14

Original

Annotation

図 4.10 専門家による 5クラス分類のアノテーション

残りの 26 枚は学習用データとした．データ拡張は 2.5.1節と同じく回転，鏡像反転，
ランダムな光学変換 RandomBrightness（p=0.5），RandomContrast（p=0.5），Ran-

domGamma（p=0.5）を Albumentations v1.3.1で適用した．これらはWSIから Cell-

pose に入力する際の切り分けるサイズ L = 256 とし，256 × 256 ピクセルにカットし
た後に行った．またデータセット内の比率を正しく反映するために学習データとして
256× 256ピクセルの画像から DINOに入力する際のサイズ l = 64として，ランダムに
64× 64ピクセルの画像をクリップした．
Backbone には ViT-B/8 モデル*7 を使用しておりパッチサイズは 8 である．check

pointは studentを採用し，パッチトークンの平均プーリングを有効にした．その他のパ

*7 Self-Supervised Vision Transformers with DINO. ¡https://github.com/facebookresearch/dino¿,

last accessed on June 29, 2024.
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ラメータはデフォルトのままにしている．
OSLSP においてはモデルの最後のブロックのみをファインチューニングした．これ

はすべての層を更新する場合，DINO が事前学習したパラメータを放棄することに等し
く，一般物体で学習したオブジェクトの特徴抽出力を一定程度残すために初期層のパラ
メータを残す目的がある．DINO のファインチューニングにおいては公式の学習パイプ
ラインに従い事前学習済みの ViT-B/8モデルからトレーニングを開始した．特徴抽出器
を準備した後日付のクラス比を使用した LLP による分類モデル (head) のトレーニング
では ReLU [72]活性化関数を備えた 3層のパーセプトロン [18]を使用した．テスト時の
推論には Cellpose [52]モデルを用いて Cyto モデルを基にトレーニングデータでファイ
ンチューニングしたセグメンテーションモデルに基づき細胞の中心に合わせてテストデー
タから 64× 64ピクセルの画像をクリップした．実験結果では OSLSPと事前学習された
DINOモデル [53]およびトレーニングデータでファインチューニングされた DINOモデ
ル [53]を比較した．

4.4.2 クラス分類実験結果

表 4.2の通り手動の専門家によるアノテーションを真値として順序尺度類似比率学習
(Ordinal Scale Learning from Similarity Proportion: OSLSP) とベースラインを比較
した．多クラス分類における定量結果指標では，各クラスのサンプル数の不均衡に影響を
受けない指標として micro平均による accuracy，また過剰検出か否かのバランスを見る
指標としてmacro平均による precision, recall, F値，クラス順序を考慮した Root mean

square error(RMSE)を用意した．micro平均では全クラスの True Positive(TP)，False

Positive(FP)，False Negative(FN) を先に計算し，macro平均では各クラスごとに指標
を計算してからクラス間平均を取る．各値の計算方法は以下の通りである．なお指標に関
する具体例を踏まえた説明は付録 Cに記載する．

Micro Accuracy =

∑K
k=1 TPk

Total Number of Samples

なお多クラス分類の場合 Total Number of Samplesは∑K
k=1(TPk + FPk)でもある．

Macro Recall =
1

K

K∑
k=1

TPk

TPk + FNk

Macro Precision =
1

K

K∑
k=1

TPk

TPk + FPk
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Macro F1-score = 2× Macro Precision×Macro Recall

Macro Precision +Macro Recall

RMSEは図 4.5に示した「青，赤，ピンク，オレンジ，黄」のクラス順における誤った
予測の重みを反映している．なお表中太文字は最もスコアの高い手法を意味する．推論ク
ラスを ŷ，真値を y とし，インスタンスの数 N に対して，

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

となる．表 4.2の Accuracy，Recall,Precision，F1-score，(RMSE)欄の横に付随する
矢印 (↑や↓)は，上矢印 (↑)は当該項目が高ければ，下矢印 (↓)は低ければ良いモデル
性能であるということを意味する．

表 4.2 異なる特徴量抽出器を用いたときのクラス分類器 (head)の推論結果

Method Accuracy [%] ↑ Recall ↑ Precision ↑ F1-score ↑ RMSE ↓

DINO Pre-trained [53] 44.442 0.436 0.332 0.377 2.431

DINO Fine-tuned [53] 20.967 0.251 0.191 0.217 1.76

OSLSP (Ours) 46.005 0.492 0.375 0.425 2.152
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図 4.11 クラス分類によるWSIへの色塗り結果

図 4.11には OSLSP およびベースラインの視覚的な定性結果を示す．これらは特徴量
抽出器 (backbone) が異なる一方で，クラス分類器 (head) はどれも同じアーキテクチャ
及び同じ学習 (LLP) をしている．Original は元の HE 染色画像，Fine-tuned は DINO

の学習パイプラインと学習用の細胞画像を用いて特徴量抽出器をファインチューニングし
た．Pretrained は DINO が提供する ImageNet で事前学習したモデルである．OSLSP

は提案する類似比率損失 (similarity proportion loss) によって特徴量抽出器をファイン
チューニングしている．なお図 4.11の Manual の空白部分は専門家でも細胞クラスを判
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別できなかった領域を示している．表 4.2の定量的評価を行う際、この領域の細胞は計算
から除外している．
表 4.2における DINO Fine-tuned [53] の RMSE が最も良い値を示しているが，

図 4.11の結果から判るように赤やオレンジ，ピンクといった類似性が近く，青や黄色
といった極端な形態を持つ細胞であるという推論をモデルが行っていない挙動である．こ
れは特徴量抽出器が適切に次元圧縮を行えていない結果である．その他の定量結果につい
ては提案手法が他手法を上回っている．

4.5 考察

4.5.1 検証/学習データのドメインギャップ

検証データと学習データの間には顕微鏡．レンズの光学条件，検体の薄さ，凍結処理の
精度，染色処理といったドメインギャップの影響を撮影画像は受ける可能性がある．実際
検証データと学習データを見比べた図 4.4を見ても，マウスの筋組織画像である点につい
ては一致しているものの，画像には目で見て判る差が存在する．特徴量抽出器は筋組織内
の細胞特徴とは別のドメインギャップに紛らわされないように，上手に細胞形態の特徴を
抽出する必要がある．

DINO Pretrained model DINO Fine-tuning model OSLSP (提案)

Day0

Train data

Day14Day7Day3 Day5

Test data

初期 無傷なMF 回復 MF 中期後期

図 4.12 抽出器別の特徴量空間

そこで DINO から出力された 768 次元の特徴量を 2 次元に射影した図 4.12では検証
データ (test data)と学習データ (train data)間の画像のドメインギャップを図示してい
る．図 4.12では△マークは日付ラベルを持つ学習用細胞画像，〇マークはクラスアノテー
ションがある検証用細胞画像である．事前学習モデル (Pretrain model) では学習データ
の特徴点〇と検証データの特徴点△が遠い位置に分布していることが判り，特徴抽出した
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時点で既に細胞形態とは無関係に近い特徴量を抽出していることを意味する．特徴点の距
離が大きい場合に推論器 (head)はいくつかの特徴量を分類に当たって無視する (重みを 0

に近づける)必要があり，適した次元圧縮が行えていないことになる．DINOによるファ
インチューニングには学習データの細胞画像を用いており，実際特徴量空間においても△
と〇が事前学習モデルよりも近くに分布していることが判る．なおこれらの手法はいずれ
も教師なし学習を用いた特徴量抽出および 2 次元可視化であるため，教師を使わないク
ラスタリングによる分類可能性について確認することができる．〇のテストデータについ
て，事前学習モデルでは無傷な筋線維 (赤)と回復した筋線維 (ピンク)，再生後期 (オレン
ジ)が近いクラスターを形成し，初期 (青色)および中期 (黄色)が近い位置に分布してい
る．仮にクラスタリング手法を採用した場合テストデータは 2群に分けられ，後から各ク
ラスタがどのクラス群 (再生初期・中期または後期・安定期) に属するかを付与すること
になる．ただしクラスタリングはある一点のデータに対してではなく他のデータとの比較
の中で行うため，例えばある日付のWSIのみを推論しようという場合，他のデータ点が
ないため性能が劣化するおそれがあることに注意しなければならない．提案手法である順
序尺度類似比率学習 (Ordinal Scale Learning from Similarity Proportion: OSLSP) は
学習データ Day0の黒△が，検証データの赤〇やピンク〇といった特徴点と近い位置に分
布している．Day0はすべて無傷な筋線維であり，赤〇やピンク〇もまた筋線維であるこ
とから，細胞の特徴を上手に抽出していることが判る．
また OSLSPによって学習した特徴量抽出器を用いたインスタンスをランダムな順番で

コサイン類似度で比較しその分布を確かめた図 4.13を見ると，Day0の画像同士を比べた
場合は高い類似度の多い分布となっている．Day0と Day3のインスタンス群を比べた場
合は Day0に比べると類似度の傾向は低くなっている．また同じ日付のインスタンス群を
比べた場合は比較的高い類似度分布になる傾向は変わらないが，Day7は類似度分布がど
の日付のインスタンス群とも一様になる傾向にあり，クラス比率の図 3.8からも判るよう
に様々な細胞クラスが存在していることが反映されている．
これらの結果から図 4.12の DINO Fine-tuning model が示す通り DINO のファイン

チューニング手法に基づいた教師なし学習によって train-test 間のドメインギャップを
抑えていることが判る．また OSLLPによるモデル学習は DINOのファインチューニン
グ以上に細胞の特徴を順序的に学習できていると言える．その結果、表 4.2に示す通り
OSLSPは RMSEと精度の両方において改善が見られ，RMSEの結果からも OSLSPが
クラスの順序をより正確に学習していることを示しています．一方、ファインチューニン
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Day0 Day3の比較Day0 Day0の比較

Day0 Day5の比較 Day0 Day7の比較

図 4.13 Day0と他の日付のインスタンス群コサイン類似度分布

グモデルは最も低い RMSEを示しているものの，図 4.11無傷のMF（筋繊維），回復した
MF，筋管細胞（myotubes）の推論に収束しており，精度に大きな悪影響を与えている．
つまり UMAP上で学習データ (train data)とテストデータ (test data)間のインスタン
ス特徴量が近づくことが必ずしも精度向上に繋がるわけではなく，その結果は表 4.2にも
表れていることに注意したい．ファインチューニングの結果が事前学習モデルよりも悪い
ということは，大規模データセットで学習した利点を消していることに等しい．すなわち
ImageNetなどの一般画像に含まれるオブジェクトを認識する力がモデルアーキテクチャ
の低レイヤで得られているにも関わらず，細胞画像を用いたファインチューニングによっ
て低レイヤの汎用的オブジェクト認識用の次元圧縮が過学習気味になった可能性がある．
ただしこれは DINOのファインチューニング手法にも依存する話であるため，他の手法
についても調査が必要である．ひるがえって提案手法 OSLSPでは順序尺度に注意を払い
ながらクラス比率を用いた特徴抽出器の更新を行うことが効果的に働いたことを示してい
る．ただ今回の更新ではモデルの最終層の更新に留め，中間層 (middle layer)や注意機構
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Day3 Day5の比較Day3 Day3の比較

Day5 Day7の比較 Day7 Day7の比較

図 4.14 Day3,5,7と他の日付のインスタンス群コサイン類似度分布

層 (attention layer) の更新は行わなかった．すべての層の重みを学習し直すことは大規
模データでの事前学習による利点を消してしまうことになるため避けるべきである．また
過学習の判断として用いられる学習時のクラス分類器 (head)のテスト損失 (test loss)と
学習損失 (train loss)の推移についても図 4.15の通り観察した．精度が拮抗している事前
学習モデルと OSLSPを比較したところ train lossの収束は等しい反面，テスト側では収
束傾向が見られなかった．この結果からもクラス分類器 (head)側でも適切な特徴量がな
ければ過学習気味になってしまうことが判る．

4.5.2 実用に応じた類似度定義

従来の LLPがクラスを名義尺度として扱うのに対し OSLSPはクラス間の類似性の順
序尺度性を考慮した．無傷の筋線維 (MF)とゴーストファイバーは，CTX注射の直前お
よび直後の時間関係であることから形態が似ている，といった時間順序を用いた類似性の
定義を行った．この類似比率損失のアプローチは，学習中の推定エラーに異なる重みを割
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図 4.15 クラス分類器の LLPにおける test,train損失

り当てる教師あり学習でのクラス重み付け適用に近い発想である [99]．反面本手法の制約
(limitation)の 1つは図 4.11の Day14に示されるように、無傷の筋線維 (赤)とゴースト
ファイバー (青)が事前学習モデルよりも頻繁に混同されることである．というのも赤と
青は近いという設定で学習をしているため，この推論誤りについては設定どおりに特徴量
抽出器が更新されていることを示す一方で，別種の問題を発生させている．特に赤と青の
混同は筋出力を計測する上では注意が必要である．無傷の MF と壊死したゴーストファ
イバーは形態的に似ているものの筋出力には大きな差があるため，赤と青の誤分類は筋力
測定において大きな悪影響を及ぼす可能性があるからである．推論誤りにより大きい重み
を損失関数に反映させるために，赤と青の類似度 (クラス間距離)を大きく設定すること
で，赤と青の取り違えを少なくすることができる．つまり類似度の定義をする段階で形態
情報だけで決定するのではなく，例えば本課題であれば筋出力に応じてクラス間距離を設
定するなど，使用目的に応じて設定を柔軟に対応させることも検討しなくてはいけない．
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4.6 結言

本章では画像を比較し類似情報を用いるといった対照学習 (Contrastive Learning) の
発想をクラス比率学習 (learning from label proportion) に応用することで，クラスの順
序尺度に注意した類似比率による特徴量抽出器のファインチューニングを行うことがで
きた．図 4.12から，学習データとテストデータ間の撮影条件由来のドメインギャップを
埋めることに成功し，再生過程筋組織の細胞を分類するための特徴抽出を可能とした．
OSLSP（Ordinal Scale Learning from Similarity Proportion）は，ラベルなしでの自己
蒸留 (self-distillation with no labels) によってファインチューニングされた DINOモデ
ルや事前学習モデルに比べて分類精度が高いことが確認された．今後は同じようにクラス
比率とクラスの類似性が与えられた課題に OSLSPを適用することで，従来の LLPに比
べて精度向上が見込めるかの検証する必要がある．
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第 5章 結論
本論文では WSI 解析のコンピュータ支援に向けた弱教師あり学習の検討を行った．

WSIコンピューティングは労力の削減や定量的な解析の点で期待される反面，その専門
性から教師データの作成が十分に行えず，慢性的なデータ不足に陥っている．特に巨大な
ピクセルで構成されたWhole Slide Image(WSI) はデータサイズが大きいためアノテー
ションには踏力を伴い，WSI の各領域ごとに教師データを作成することは困難である．
不完全データを用いたモデル学習の一つとして，画像化するさいの事前情報を手掛かりと
した弱教師あり学習がある．WSIには弱教師となり得る情報を与えられていることが多
く，その事前情報を上手くモデル学習に組み込むことで，低コストな推論器の作成を実現
する．
本論文では，筋組織の壊死と再生を誘発する毒物 (CTX)をマウスに注入し，マウスを

安楽死・画像化させた際に CTXを注入してからの日数を画像と共に記録した．組織の再
生具合は局所的であるため，解析目標は各領域が損傷，再生前期，再生後期，安定期のど
の段階あるいはクラスなのかを分類することである．これまでの筋組織画像のコンピュー
タ解析では再生過程における細胞を形態学的に見分けるための明示的な特徴量が不足して
おり，再生度合いの評価については対象外であった．本研究では自己教師あり学習由来の
特徴量抽出モデルを採用し，暗黙的な多次元特徴量によって再生過程時の細胞を見分ける
ための表現力を獲得した．
第 3章では薬学研究への応用に焦点を当て，再生過程解析ソフトウェア開発に取り組

んだ．CTX注入からの日数が 3日など浅い場合，マウスの筋組織の各領域は損傷から再
生初期段階が分布しており，日数が経つにつれて回復が進行するため，5日目，7日目と
なるにつれて損傷領域は減っていき，再生後期の領域が増えていく．この事前情報を活用
した荒いアノテーションをWSIに施すことで，日付に応じた各クラスの比率を手に入れ
る．この比率は例えば 3日目であれば損傷領域が 4割，再生前期が 6割といった風に，各
領域にクラスラベルが与えられるのではなく，CTX注入から 3日目のWSIは損傷 4割，
再生前期 6割の比率がある，という比率ラベルである．このように個別のデータ点 (イン
スタンス)には教師ラベルがないが，インスタンス群にクラス比率ラベルが与えられてい
るときに用いる Learning from Label proportion(LLP) を筋組織の各領域における再生
度合いの分類の学習パイプラインに組み込んだ．LLP手法はクラス比率を確率分布と見
なして疑似ラベルを各インスタンスに付与する手法に比べて優れた精度を発揮した．また
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LLPによって学習したモデルによって構成した解析ソフトウェアMyoRegenTrackは回
復傾向の異なる CTXとグリセロールの注入比較実験において，両薬剤の回復の違いを捉
えることに成功した．
第 4章では情報工学的な観点から LLPの持つ 2つの課題 (1)backboneの未更新，(2)

クラスの名義尺度化，に取り組んだ．画像を直接 head(クラス分類器)に入力すると分類
するための境界面の候補が無数となるため，backboneと呼ばれる特徴量抽出器に通すこ
とで 縦幅 ×横幅 ×チャンネル数 の画像は数百次元の空間へと次元圧縮する．(1) しか
し LLP の損失関数は head を通した後で計算されるため backbone の更新が行えない．
backbone は一般画像で事前学習されたモデルあり，目的の筋細胞に適した特徴抽出が
達成できている保証はない．実際特徴空間の可視化をすると，学習データと検証データ
の間にドメインギャップが観測され，分類クラスを増やした際の精度低下が深刻であっ
た．(2)また headを通した後に計算される損失関数はクラスを名義尺度として扱ってお
り，再生過程の細胞が持つ順序的な類似性を損なう．生物学的なクラス順序性に注意を
払いながら特徴抽出を行うことができれば，分類器の学習効率ならびに精度は向上する．
(1,2)を同時に解決する順序尺度類似比率学習 (Ordinal Scale Learning from Similarity

Proportion Loss; OSLSP)の提案を行った．OSLSPではインスタンス群同士を比較し合
うことで得られる類似度分布と，群の持つクラス比率を掛け合わせることで得られる類似
クラス分布，2つの分布を比べることで特徴量空間での順序学習を実現した．OSLSPに
よって特徴量抽出モデルが筋細胞にドメイン適合したことが確認され，分類精度について
も事前学習済みの backboneを凌駕する結果が得られた．OSLSPは順序性とクラス比率
を持つWSIへの応用が期待される．
これまで LLP は癌腫瘍領域の判定 [1, 27]，妊娠率を向上させるための胚選択 [77]

などに適用されており，筋組織の再生評価のための学習パイプラインに導入した知見
は 第 3章の貢献である．特に再生のトリガとなる毒物を注入してからの日数のみから学
習を行えた低コスト化の実現は，他のWSIコンピューティングにも活かされることを望
む． 第 4章では LLPそのものの改新を達成した．クラス比率学習はアノテーションコス
トが小さく，また胚選択 [77] のようにプライバシーの問題から個別のラベルを得られな
いケースでは有力な手段となり得る．無論 LLPはWSIにとどまらず，合成開口レーダー
(Synthetic Aperture Radar; SAR)画像の分類課題 [100]や選挙結果予測 [101]などに用
いられている．また順序尺度は時系列データと符合する点が多く細胞追跡 [102–104]や人
歩容解析 [105]などの課題への応用も面白く，アノテーションコストの低い比率学習にお
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ける順序尺度を考慮した OSLSPの応用先は幅広い．
ニューラルネットワークは人の神経回路から着想を得たわけだが，逆に弱教師あり学習

を人のメカニズム解明に役立てられないだろうか．例えば人を運動感覚系に捉え直した場
合，知覚システムはある運動・意思決定に応じて直接的な正解の知覚が用意されているわ
けではなく，認知機能なども絡めた自己教師学習あるいは弱教師あり学習を行っている可
能性がある．実際物体の類似度を考慮した自己教師あり学習による物体認識モデルは脳視
覚野メカニズムとの妥当性 (biologically plausible) が確認されているとの報告 [29]もあ
る．また弱教師あり学習である LLPで言えば，例えば同調性バイアス [106]という集団
にいると同じ行動 (behavior) をとってしまう心理傾向があるが，これは個別の行動では
なく郡単位で比率の多い側に誘導されている現象とも捉え直せる．このとき意思決定者は
群に属する個別の他人の行動を逐一観測するのではなく，群全体としての動きから自らの
意思決定を行っている．このようにマクロな比率データはミクロなヒト個別データに比べ
て観測のコストが小さい．データ取得コストを小さくして推論を行う例ではないだろう
か．弱教師あり学習の持つ，ある程度確定的な情報を用いて教師が不完全なデータの予測
を行う，というメカニズムに人類が未だ解明できぬ謎が隠れていると信じ，本論文の筆を
置くこととする．
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付録A Bag学習
本節では多数のインスタンス群と群のクラス比率が与えられたバッグを用いた学習方

法について補足する．クラス比率とは弱教師 (weakly supervise)の一つである．図 1.1に
ある値とクラスラベル赤または青を持つインスタンスの分類について考える．教師
(supervise) とは図 1.1の”各データに教師あり”が示すように，データ点それぞれに赤と
青の分類すべきクラスがある状態を示す．クラス比率とは図 1.1の右図のようにバッグと
呼ばれるインスタンス群を形成し，バッグに含まれるインスタンスのクラス”比率”のみを
持つ．バッグに含まれる各インスタンスのクラスは与えられておらず，この比率情報のみ
を元に青と赤を区別する分類モデルを学習することが目標である．

各データに教師あり クラス比率の弱教師

60%
40%

60%
40%

図 1.1 教師ありと弱教師 (クラス比率)

本章ではクラス比率を用いた学習法について紹介する．

A.1 疑似ラベル法

疑似ラベル法 [80] はクラス比率が与えられた際に，比率をクラス確率と見なすこ
とによって，インスタンスに確率に応じた疑似的なクラスを付与することで，疑似的
に教師あり学習のパイプラインに載せる手法である．本論文ではすべての学習データ
のインスタンスには日付ラベル d = {day0, day3, day5, day7} と紐づいたクラス比率
pd = [p1, ...pk, ..., pK ] が与えられている．そこでインスタンスそれぞれの持つ比率をク
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ラス確率と見なし，ベクトル内の 1 つの要素が 1，それ以外が 0 のベクトルであるワン
ホットベクトル (one-hot vector)y ∈ {0, 1}K を生成する．このとき one-hotベクトルの
k 番目の要素が 1になる確率がクラス k の比率に対応する．

y ∈ {0, 1}K , P (yk = 1) = pk (A.1)

バッグ単位での疑似ラベル法の損失関数 Lpseu は x ∈ RD をクラス分類器に入力した
結果である F(x) と one-hot ベクトル)y ∈ {0, 1}K との交差エントロピーによって計算
される．

Lpseu =
∑

F(x) · logy (A.2)

本手法は疑似的なラベルであることから誤ったラベルを付与する可能性が残り，ノイ
ズとして精度に悪影響が与えられることが指摘されている [90]．のちに説明する LLP

をベースとした手法の台頭により疑似ラベル法は最もバニラな手法の一つとしてベー
スラインの役割を担うことが多い．また特徴量抽出器の更新に疑似ラベル法を用いる
IIB-MIL [26]など，一部の利点を活用するケースもある．

A.2 Learning from Label Proportion: LLP

バッグ

60%
40%

60%
40%

真比率𝐩

推論
モデル

予測比率ෝ𝐩

推論結果

比率を比較

図 1.2 クラス比率学習
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個別のインスタンスにクラスラベルを付与するのではなく，インスタンスの予測を集計
してバッグ単位の予測クラス比率を計算する手法である．モデルを学習する際，図 1.2の
ようにバッグに含まれるインスタンスのクラスを予測した後，予測比率 p̂を計算し，元々
バッグに備わっている真のクラス比率 pと比較することで損失関数を計算する．
この比較は確立分布を差を計算する手法であれば良いため，L1ノルム，コサイン類似

度，交差エントロピー，KLダイバージェンス (Kullback-Leibler Divergence)，JSダイ
バージェンスなどが候補となる [90]．どの計算法を用いるかの観点の一つとして実際の損
失関数の値を見た収束性の観点がある．

図 1.3 分布差を計算する手法の収束性比較

図 1.3は，平均 0，分散 1 の標準正規分布 P = N(0, 1) と，平均 µ を 0 から 3 まで変
化させた標準正規分布 Q = N(µ, 1) を KL ダイバージェンス，交差エントロピー，L1

ノルムで比較した際の図である．いずれも数学的に非負が保証されている．L1ノルムは
µ = 1.5付近で凹凸の変曲点が発生しており，最小値に至る場合の勾配が急になりやすく
過学習の危険性が高まる．

DKL(P ||Q) =
∑
x

P (x)log
P (x)

Q(x)
(A.3)

H(P,Q) = −
∑
x

P (x)logQ(x) (A.4)

KLダイバージェンスDKL(P ||Q)と交差エントロピーH(P,Q)は勾配については数式
からも同じであるが，自己情報量の期待値であるシャノンエントロピー∑x P (x)logP (x)
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分オフセットが生じる，という見方ができる．本論文の場合，比率の差を限りなく 0に近
づけたい思想から KLダイバージェンスに決定した．また実験的な確認方法ではあるが，
実際に損失関数の推移を確認し，手前のコンピュータ資源や学習の学習率 (learning rate)

などのハイパーパラメータも勘案することも大切である．

A.3 IIB-MIL

IIB-MIL [26]は 2023年に提唱されたインスタンス単位の予測誤差には疑似ラベルロス
Linstance を用いて，バッグ単位の予測誤差には従来の LLP ロス Lbag を用いることで，
特徴量抽出器 (backbone) とクラス分類器 (head) を同時に学習する手法である．ただし
αは重みの割合を調整するためのハイパーパラメータである．

L = Lbag + α ∗ Linstance (A.5)

Github 上 (https://github.com/TencentAILabHealthcare/IIB-MIL) では限定的な
データに対しての推論コードが公開されており，他データセットでの学習コードがな
いため，本論文では紹介に留める．
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付録 B 多数決学習
本論文では採用しなかったがあるインスタンス群に最も多く含まれるクラス，という弱

教師を用いて学習する手法を多数決学習 (majority voting learning)と言われる*8 [107]．
Majority 学習はバッグ学習よりも更に弱い弱教師であるが，最頻のクラスを指定するだ
けであるため，クラス比率よりアノテーションコストが小さい．

真(3day)MV 推論

𝑠𝑐𝑜𝑟𝑒blue
= 0.9~0.7

~0.5 ~0.3

図 2.1 多数決アノテーション

多数決アノテーション (Majority Voting annotation; MV) は図 2.1のようにあるバッ
グの真のクラス割合が例えば青 50%，オレンジ 25%，黄色 25%という比率であったとし
ても，比率は分からず青が最も多いクラスであるということが判っている．この場合学習
時はバッグ内に含まれるすべてのインスタンスに青のクラスラベルを施して学習を行う．
すると推論時のクラス確信度分布からどの程度青が含まれているのか，ということが推定
可能である．このことを利用し，あるバッグに最も含まれているインスタンスが，他の
バッグにどの程度含まれているのか，ということを表現するのが多数決学習である．
実際に本研究において，CTX を注入してからの日付ラベルにおいて，Day0 は赤色が

最も多く，Day3 は黄色，Day5 は青色，Day7 はオレンジ，という多数決設定で学習を
行った結果を示す．多数決の判断に用いたのは専門家によるアノテーション結果である
(図 2.13参照)．なお実際は図 3.8からも判る通り，Day3 に最も多いのは青色，Day5 は
オレンジである．なお学習及び推論にはMaskRCNN [73]を用いた．図 2.2の結果では赤
は安定状態，青は損傷状態，黄色は再生初期状態，オレンジは再生後期状態であり，真値

*8 研究が盛んでないことから命名に定まりがない
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は図 2.13である．図 2.3は日付ごとに推論されたクラスの比率を円グラフにしたもので
ある．

day3 day5 day7 day14day0

図 2.2 多数決アノテーション結果

day0 day3 day5 day7

判定不可損傷 再生前期 再生後期 安定

図 2.3 各日付の推論クラス比率

図 2.4は各日付のごとに各クラスの確信度スコアの確率密度分布を示している．例えば
Day0は高い赤の確信度が多く検出されたことを示しており，確信度スコアが小さい分布
が多くなるほど，推論モデルの確信度にばらつきが見られ，推論に迷いが生じていること
になる．図 2.3では各日付のWSIに含まれた細胞のクラス予測結果の割合であり，3日目
以降で最も多く推論されたクラスは青色であることが示されている．また灰色の割合は本
来細胞があるにもかかわらずMaskRCNNで検出できなかった割合である．
0 日目と 14 日目の安定状態は精度良く推論できている点は，真のクラス比率で赤が

100%であることとも一致する反面，3日目から 7日目の推論結果には課題が残る．同様
に比較的多数決アノテーションと真のクラス比率が近い 7日目などはオレンジの検出が見
られる．3日目から 7日目にかけては青のクラスが支配的となり，多数決アノテーション
と真クラス比率の差が大きい場合は推論が成功しないことからも，WSIに最頻クラスが
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確信度スコア確信度スコア

Day0

Day5

Day3

Day7

図 2.4 確信度スコアの確率密度分布

少なくとも 70%近くなければ学習が成功しない傾向が確認された．多数決学習はよりク
ラス比率の偏りが大きい学習に適する．
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付録 C 多クラス分類の評価指標
本章では多クラス単一ラベル分類における評価指標について補足する．micro 平均

(Micro-Averaged Accuracy) は評価指標を全クラス同時に計算するため，全体の正解数
を全サンプル数で割ったものである．反対に macro 平均は各クラスごとに指標を計算
してから平均を取る．このため指標計算時，各クラスの反映度合いすなわち重みについ
て，micro はサンプル数の多いクラスほど反映される一方，macro は各クラスの重みが
等しくなる．クラスごとのサンプル数に偏りがある場合は，少ないサンプル数のクラス
の過度な影響を避ける為に，micro-accuracy を採用することになる．多クラス分類の
micro-accuracy計算手順は，全クラスにおける正解数（True Positives）の合計をカウン
トし，全サンプル数でその合計を割る．

Micro-Averaged Accuracy =

∑
k TPk

Total Number of Samples

TPk はクラス k において正しく分類されたサンプル数（True Positives）であり，分母
は全サンプル数の合計である.

例えば 3クラス（A、B、C）分類で、以下の混同行列があるとします．この例では C

は非常にレアなクラスである．

真値 \予測 Pred A Pred B Pred C

Actual A 30 5 3

Actual B 4 25 6

Actual C 2 4 1

- 各クラスの True Positives:

TPA = 30, TPB = 25, TPC = 1

- 全サンプル数の合計:

30 + 5 + 3 + 4 + 25 + 6 + 2 + 4 + 1 = 80

- ミクロ平均の Accuracy:

Micro-Averaged Accuracy =
30 + 25 + 1

80
= 0.7
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これに対して macro accuracy を仮に 2 値分類の定義を流用して下記のように定めた
場合，

macro accuracy =
1

K

K∑
k=1

TPk +TNk

TPk +TNk + FPk + FNk

多クラス分類では各クラスの TNを導入する場合，各クラスを「ポジティブクラス」と
見なし残りを「ネガティブクラス」とする 1対多（one-vs-all）手法を用いることになる．
混合行列で TNA を計算すると TN の定義「予測は A ではなく，実際も A ではない数」
から

TNA : 25 + 6 + 4 + 1 = 36

となってしまい，(予測,真値)の組のうち (B,C)=4,(C,B)=6は誤りであるにも関わらず，
TNに属してしまうため accuracyの計算をすると，
- Aクラスの macro accuracy(仮):

accuracyA =
TPA +TNA

TPA +TNA + FPA + FNA
=

30 + 36

30 + 36 + (4 + 2) + (5 + 3)
=

66

80

となり不適であることが判る．よって多クラス単一ラベル分類において Accuracyを計
算する場合は micro 平均 accuracy を採用することになるまた macro 平均では実際のサ
ンプル数は少ないクラス Cが，精度指標に他のクラスと同じ重みで計算されてしまう問
題点がある．これは例えば各クラスの recallを計算した場合，
- Aクラスの recall:

recallA =
30

30 + 5 + 3
=

30

38
0.789

- Bクラスの recall:

recallB =
25

4 + 25 + 6
=

25

35
0.714

- Cクラスの recall:

recallC =
1

2 + 4 + 1
=

1

7
0.143

- macro recall:

recallmacro =
1

3
× (

30

38
+

25

35
+

1

7
) 0.549

Micro-Averaged Accuracy が 0.7 であることから少数クラス C の影響を受けている
ことが判る．本研究の検証データでは真値が青クラス (損傷) のデータが 3000 程度に
対して，オレンジクラス (回復後期) が 1 万以上あるなどクラス不均衡であったため，
micro-accuracyの計算も入れた．

99



謝辞
本論文は著者が 2022年 4月に人間情報工学講座からゲノム情報工学講座研究室に移籍

してから現在に至るまでに行った研究成果をまとめたものです．他の研究室から来た私を
受け入れて下さった当時の松田研究室のスタッフや学生の皆様に感謝申し上げます．
論文投稿，国際会議，博士論文に至るまで全過程のご指導頂いた大阪大学大学院情報科

学研究科バイオ情報工学専攻 松田秀雄 教授に感謝申し上げます．研究室を移籍するにあ
たっての事前の相談から移籍後に至るまで大変ご迷惑をおかけしたことと思います．この
度博士審査に望めたことそれ自体が僥倖であり，先生のお力あってのことと思っておりま
す．本当にありがとうございました．
骨格筋のテーマを与えてくれ，論文執筆や発表資料の基礎の指導だけでなく，研究者と

しての生き方について教えを頂戴した大阪大学大学院情報科学研究科バイオ情報工学専攻
瀬尾茂人 准教授に御礼申し上げます．研究者としてのまさに骨格を教えて頂いたと感じ
ています．
また画像の提供のみならず論文執筆に大いなる尽力を頂いた大阪大学薬学研究科 再生

適応学分野 深田 宗一朗 教授に感謝を申し上げます．薬学研究について不慣れな私に実
験設備の説明から懇切丁寧にご教授頂いたことが，論文にも活かされているのだと思いま
す．さらにご協力いただいた同研究室の岩森歌奈子様にも感謝申し上げます．
大阪大学大学院情報科学研究科バイオ情報工学専攻 繁田浩功 助教からは論文執筆にと

どまらず研究における実装について知見を頂きました．とりわけ SSHと Docker につい
て移籍後門外漢であった私に丁寧に教えて頂いたことは，のちの研究成果に結びつくもの
でありました
また前研究室で指導教員であった大阪大学大学院情報科学研究科バイオ情報工学専攻

前田太郎 教授から受けた「科学とは再現性の学問である」という言葉は移籍しても常に持
ち続けていた心得であります．同研究室の古川正紘 准教授が D1 ポスター時にコメント
した「尺度」という言葉が，のちの医療画像解析のトップ会議で世界初となる LLPに順
序尺度を設けた OSLSPの発表に繋がったと思います．人に関する知見が逆にニューラル
ネットワークに活かされるということを体現できるのは，2つの研究室に在籍し，2つの
視点を学ぶことができたからなのだと思い，その運命に感謝したいと思います．同研究室
の助教である原彰良先生には学生時代から実験系，論文，予算書の相談に乗って頂きまし
た．今後のご活躍を祈念致します．

100



大阪芸術大学 安藤英由樹 教授には学部一年の頃よりお世話になっており，安藤教授が
大阪大学を去られた後も議論を交わす関係となったことは，大阪大学で得たかけがえのな
い出会いの一つであります．博士論文提出という報告を以て 10年にわたる指導への感謝
の意とさせてください．
研究室を移籍する際に特にご相談をさせていただいた大阪大学大学院情報科学研究科バ

イオ情報工学専攻 清水浩 教授には移籍後も度々 B棟エレベーターの中で会話をさせて頂
きました．先生に良い報告をできることが研究室移籍の意義を示す点で目標になっていた
と思います．本博士論文の審査にあたって頂き誠にありがとうございました．
大阪大学大学院情報科学研究科バイオ情報工学専攻 松田史生 教授にはM1のポスター

の頃から話をする機会があり，移籍し研究内容が変われど忌憚なくご意見を頂戴し，研究
の質を向上させてくれたものと思います．
大阪大学大学院情報科学研究科バイオ情報工学専攻ゲノム情報工学講座 事務補佐員 小

林加代子様 堀安 眞紀代様には日々の事務作業で私を支えてくださいました．誠にありが
とうございます．研究室移籍に伴い他の学生よりも多くの事務作業を強いてしまったこと
と存じます．また人間情報工学講座のときにあらゆる事務作業を完全にこなしてくれた水
岡真奈美様には，本文が届くこと叶わぬとしてもここで御礼を申し上げないわけにはいき
ませんゆえ，書かせて頂きます．本当にお世話になりました．
ヒューマンウェアの同期とその関係者各位の皆様にも，感謝申し上げます．同期には心

理面から支えられてきました．博士課程という言わば未知の航海を共に進めたことに感謝
したいです．ヒューマンウェアプログラムからは同期との出会いだけでなく経済的な支援
もありました．その支援がなければ博士課程を終えることは難しかったと思います．
最後に CHAN Weng Ianさん. 研究室を変えてから数カ月，君との出会いから探究の

歯車を動かすことができました．幾たびもの季節を廻り今博士論文の謝辞を書いている
と，これまでの記憶が蘇ります．研究室を移籍し，今まで貯めた研究を博論の業績リスト
から放棄したとき，正直に言ってすぐに研究をしようという気持ちにはなれませんでし
た．どれほど優れたとされる論文を読んでも，以前の研究ならばこう問題提起する，とい
うある種の傲慢が脳裏にちらつくのです．しかし君といることで研究の本質について考え
直す機会を与えられました．何が面白くて，何を知りたくて，僕は実験をしていたのか，
思い出すことができたのです．そして top tierの会議に出す文化の系譜を受けたこと．高
い難易度の国際会議に挑む精神は一人では醸成できません．君と肩を並べて世界と戦えた
ことを誇りに思います．ありがとう．

101



本研究の一部は大阪大学博士課程教育リーディングプログラムの補助，住友化学株式会
社高度情報人材育成奨学金，独立行政法人日本学術振興会特別研究員制度の助成を受けて
進められました．

102



参考文献
[1] S. Matsuo, D. Suehiro, S. Uchida, H. Ito, K. Terada, A. Yoshizawa, and R. Bise.

Learning from partial label proportions for whole slide image segmentation.

In Medical Image Computing and Computer Assisted Intervention (MICCAI),

2024.

[2] KTK. りんご. https://www.ac-illust.com/, 2024.

[3] StockNova. 手書き風いちご. https://stock-nova.com/ja/illust/36521.

[4] D. Miyazaki, A. Nakamura, K. Fukushima, K. Yoshida, S. Takeda, and S.-i.

Ikeda. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles

reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

Human Molecular Genetics, Vol. 20, No. 9, pp. 1787–1799, 2011.

[5] ChatGPT and DALL·E. AI-generated illustration:[マウスの回復]. Generated

using OpenAI’s ChatGPT and DALL·E, 2024.

[6] A. Mayeuf-Louchart, D. Hardy, Q. Thorel, P. Roux, L. Guéniot, D. Briand,
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