

Title	Swarm Shepherding with Multiple Steering Agents in Limited Information Environments
Author(s)	Li, Aiyi
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/101773
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Aiyi Li)	
Title	Swarm Shepherding with Multiple Steering Agents in Limited Information Environments (情報制約下における複数エージェントによるシェーペーディング型群れ誘導)

Abstract of Thesis

Inspired by natural behaviors such as sheepdogs guiding sheep, "shepherding" in swarm robotics involves a class of steering agents that influence another group of agents. Shepherding systems rely on steering agents to guide or repel passive members, thus directing the entire swarm toward a target.

Conventional approaches to shepherding employ various methods, including control theory, rule-based strategies, and reinforcement learning. Nevertheless, these methods often rely on continuous access to detailed information, such as centralized control for the steering agents or comprehensive sensing data about other agents. In practical scenarios, such assumptions are frequently unrealistic due to sensing limitations and communication constraints, which significantly reduce the feasibility of the aforementioned methods.

This dissertation presents shepherding algorithms that utilize limited information to enable collaboration among steering agents. The research aim is to find essential information types for accomplishing the shepherding task by proposing and evaluating practical algorithms. These algorithms emphasize simplicity by reducing reliance on complex data collection and extensive agent-to-agent communication, thereby enabling flexibility and scalability in managing larger swarms. Specifically, this research focuses on two key studies, each addressing distinct aspects of information constraints.

Through extensive simulations, this dissertation introduces and validates the methods under two distinct settings to examine the limits in swarm control: (1) relative sensing without communication and (2) further reduced sensing with limited communication. Although intermediate configurations may be possible, focusing on these extreme scenarios provides critical insights into the information required for coordination. The results offer practical and quantitative benchmarks, specifying the sensing and communication limits that allow autonomous systems to operate reliably with limited data in real-world conditions. By defining these criteria, this research addresses pressing challenges in swarm robotics and multi-agent systems and establishes a foundation for future developments in adaptive, information-efficient swarm technologies.

In summary, this study advances our understanding of decentralized shepherding-type swarm control by utilizing the limited information requirements for coordination. These findings bridge theory with application, demonstrating that simple, rule-based interactions can produce scalable, effective swarm behaviors under realistic constraints. The solutions presented underscore the importance of simplicity and adaptability in engineered systems, paving the way for robust and resource-efficient swarm technologies that can perform in challenging, information-limited environments. The results of this study bring us closer to realizing the potential of swarms as intelligent, adaptive systems, poised to transform domains such as autonomous navigation, environmental management, and collaborative robotics.

論文審査の結果の要旨及び担当者

氏　名　(　Li Aiyi　)		
	(職)	氏　名
論文審査担当者	主　查	教授　若宮　直紀
	副　查	教授　松田　秀雄
	副　查	教授　小蔵　正輝（広島大学大学院先進理工系科学研究科）
	副　查	准教授　瀬尾　茂人

シェパーディング (shepherding) は、牧羊犬による羊集団の誘導などに着想を得た群制御モデルの一種であり、牧羊犬エージェントが羊エージェントに対して斥力を働かせることによって多数の羊エージェントを目標とするゴールエリアに追い込む。シェパーディングのための効果的な牧羊犬エージェントの移動アルゴリズムが様々提案されているが、その多くは理想的なセンシングにより全てのエージェントの正確な位置情報が利用できるなどの仮定が置かれている。群ロボット制御などの実応用においては、センシング範囲や精度、また、エージェント間の情報交換などにおいて制限や誤差があり、アルゴリズムの動作や性能に大きな影響を与える。

本論文では利用可能な情報が制限された環境を想定した牧羊犬エージェントの移動アルゴリズムを提案することにより、センシング能力やエージェント間情報交換に大きく依存せずとも群誘導が可能であり、エージェント配置に対する柔軟性やエージェント数に対する拡張性を高められることを示した。本論文は以下の4章で構成されている。

第1章では、研究の背景、目的および対象とするシステムの仮定を述べた。

第2章では、牧羊犬エージェント間の情報交換がなくそれが局所的に観測可能な周囲のエージェントの位置情報だけが利用可能であるという制約のもとでの牧羊犬エージェント移動アルゴリズムを設計した。本アルゴリズムでは、牧羊犬エージェントは自律的な判断により、追跡対象とする羊エージェントを選択し、また、他の牧羊犬エージェントとの衝突を回避する。シミュレーション評価によって提案アルゴリズムの有効性を示すとともに、羊エージェントの数や配置、また、羊エージェントのパラメータやセンシング範囲や誤差に対して柔軟で頑健であることを確認した。これにより牧羊犬エージェント間の情報交換がなくとも羊エージェント群の誘導が可能であることを明らかにした。

第3章では、牧羊犬エージェント間の情報交換を許す一方でセンシングについては羊エージェント群の左右の外縁への角度のみ知りうるという制約を課し、牧羊犬エージェントの移動アルゴリズムを設計した。本アルゴリズムでは、ゴールに対する角度差の大きい外縁を追跡対象として羊エージェントの群をゴールへ誘導する。シミュレーション評価によって提案アルゴリズムの有効性を示すとともに、センシングにおける角度誤差が大きくなる場合には誘導に成功することを確認した。一方で牧羊犬エージェントが情報交換を行わない場合には誘導が困難であることを示した。これによりセンシングによって得られる情報に制約がある場合でも牧羊犬エージェント間で限定的な情報交換が可能であれば羊エージェントの誘導を達成できることを明らかにした。

第4章では、本論文の結論を述べた。牧羊犬エージェントが局所的なエージェントの位置情報を取得可能である一方で情報交換ができない場合ならびに牧羊犬エージェントが角度情報しか知り得ないが情報交換が可能な場合の双方について羊エージェントの群の誘導が可能であること、また、従来のアルゴリズムよりも拡張性、柔軟性、頑健性が高いことを明らかにした。これにより様々な実応用への展開が期待される。

よって、博士（情報科学）の学位論文として価値あるものと認める。