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Preface

This dissertation draws inspiration from the remarkable self-organizing behaviors

seen in nature, such as flocking in birds, schooling in fish, and guiding in animals.

These natural phenomena demonstrate how complex, coordinated group movements

emerge from simple, local interactions among individuals without centralized control.

By translating these principles into engineered systems, this dissertation investigates

swarm guidance approaches that leverage decentralized control and information-

limited strategies to enable steering agents to guide groups of passive agents. These

methods have broad applications, from environmental monitoring and precision

agriculture to search and rescue.

Inspired by natural behaviors such as sheepdogs guiding sheep, ”shepherding”

in swarm robotics involves a class of steering agents that influence another group

of agents. Shepherding systems rely on steering agents to guide or repel passive

members, thus directing the entire swarm toward a target.

Conventional approaches to shepherding employ various methods, including

control theory, rule-based strategies, and reinforcement learning. Nevertheless, these

methods often rely on continuous access to detailed information, such as centralized

control for the steering agents or comprehensive sensing data about other agents.

In practical scenarios, such assumptions are frequently unrealistic due to sensing

limitations and communication constraints, which significantly reduce the feasibility

of the aforementioned methods.

This dissertation presents shepherding algorithms that utilize limited information

to enable cooperation among steering agents. The research aim is to find essential

information types for accomplishing the shepherding task by proposing and evaluating

practical algorithms. These algorithms emphasize simplicity by reducing reliance
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on complex data collection and extensive agent-to-agent communication, thereby

enabling flexibility and scalability in managing larger swarms. Specifically, this

research focuses on two key studies, each addressing distinct aspects of information

constraints.

The first study employs a fully decentralized method in which each steering agent

operates based solely on its local observations without any inter-agent communication.

This design enables steering agents to achieve emergent coordination, as collective

behavior arises naturally from the interplay of individual decisions. Specifically, each

steering agent guides the swarm by independently selecting, driving, and switching

target agents while maintaining a safe distance from other steering agents. Numerical

simulations demonstrate that this communication-free method is scalable and robust

under various conditions. In this context, ”scalability” refers to the ability to manage

larger swarm sizes and varied initial placements of agents without significant increases

in computational or communication demands, and ”robustness” denotes the ability

to maintain effective guidance even when we change agent model parameters or

fluctuations in sensing accuracy.

The second study introduces a bearing-only method that operates under stricter

sensing limitations. In this context, each agent senses only the directions of neigh-

boring agents without access to proximity or distance measurements. The algorithm

utilizes directional information relative to the swarm and the goal to guide the

movement of a steering agent. Additionally, to achieve coordination and prevent

collisions under these constraints, the algorithm incorporates limited inter-agent

communication, allowing each steering agent to share essential directional infor-

mation about the guiding swarm. This low-level communication approach enables

agents to adapt to scenarios involving multiple swarms. Simulations demonstrate

the performance of this algorithm in guiding multiple swarms with multiple agents

in various initial placements. The shepherding task generally remains successful even

as the accuracy of bearing measurements for each steering agent decreases.

Through extensive simulations, this dissertation validates the proposed methods
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under two distinct settings to examine the limits in swarm control: (1) relative

sensing without communication and (2) further reduced sensing with limited com-

munication. Although intermediate configurations may be possible, focusing on

these extreme scenarios provides critical insights into the information required for

coordination. The results offer practical and quantitative benchmarks, specifying

the sensing and communication limits that allow autonomous systems to operate

reliably with limited data in real-world conditions. By defining these criteria, this

research addresses pressing challenges in swarm robotics and multi-agent systems and

establishes a foundation for future developments in adaptive, information-efficient

swarm technologies.

In summary, this study advances our understanding of decentralized shepherding-

type swarm control by utilizing the limited information requirements for coordination.

These findings bridge theory with application, demonstrating that simple, rule-based

interactions can produce scalable, effective swarm behaviors under realistic constraints.

The solutions presented underscore the importance of simplicity and adaptability

in engineered systems, paving the way for robust and resource-efficient swarm

technologies that can perform in challenging, information-limited environments. The

results of this study bring us closer to realizing the potential of swarms as intelligent,

adaptive systems, poised to transform domains such as autonomous navigation,

environmental management, and collaborative robotics.
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Chapter 1

Introduction

1.1 Background

Self-organized group formation and collective motion in the form of swarms are

hallmarks of living systems over a wide range of length scales, from microorganisms

to fish schools, bird flocks, and animal herds [1, 2, 3]. These behaviors are remarkable

in that they emerge without any centralized coordination, relying instead on local

interactions among individual members of the group [4, 5, 6]. Through these interac-

tions, organisms collectively adjust their movements in response to environmental

cues and the positions of neighbors, producing cohesive formations and cooperative

behaviors.

The study of swarm behaviors has attracted interest in the field of biology and

inspired the development of artificial systems that utilize numerous agents to perform

intelligent tasks. In swarm robotics, autonomous agents collaborate to complete

complex objectives [7]. This capability supports a range of dynamic tasks, including

shape assembly [8], coordinated drone flying [9], and control of magnetic microrobot

systems [10, 11]. Such engineered swarms have found applications across diverse areas,

including environmental monitoring, search and rescue, and precision agriculture,

where multiple agents are deployed in various formations to perform intelligent tasks

with flexibility.

However, in many circumstances, directly manipulating swarm behaviors or

movements has significant difficulties and limitations due to the inherent autonomy

and decentralized decision-making processes within these systems, highlighting the

need for developing swarm control through external influences [12]. In biological

swarms, individuals act independently and often respond unpredictably to stimuli,
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Passive agents GoalSteering agents

How to guide

Figure 1. Illustration of the shepherding task for steering agents navigating a swarm
of passive agents.

making direct command nearly impossible. Similarly, in artificial swarms, while

robots can be programmed to localize and perform specific tasks, internal coordination

becomes increasingly difficult as swarm size grows. Therefore, establishing scalable

and smooth coordination within swarms is essential through swarm control.

A well-known example in swarm control and multi-agent systems is the leader-

follower formation [13, 14]. This approach is widely applied in scenarios where

structured movement is essential. In leader-follower formation, a designated leader

directs followers toward a common goal, with each follower adjusting their actions

based on the leader’s movements. Although this method has shown effectiveness in

certain controlled settings, the success of this method relies on each follower actively

coordinating to avoid collisions and maintain formation [15]. However, achieving

this level of coordination becomes increasingly difficult in large swarms or when

agents operate with only localized information, making it challenging to anticipate

the actions of distant agents.

On the other hand, a paradigmatic example of swarm control is the shepherding

problem [16, 17], which is inspired by the natural behavior of sheepdogs herding sheep.

This problem involves designing algorithms for shepherd-like steering agents to guide

sheep-like passive agents (commonly referred to as swarms) toward a designated goal

using repulsion forces, as illustrated in Figure 1. Beyond its biological inspiration, the

shepherding study encompasses theoretical and practical significance. Theoretically,
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this research provides a unique framework to explore distributed control strategies,

coordination mechanisms, and emergent behaviors in multi-agent systems [18]. It also

contributes to understanding how local interactions lead to global outcomes, a central

theme in swarm intelligence and control theory [19]. Practically, the applications of

shepherding span diverse domains. In agriculture, robotic systems can be deployed

for livestock herding [20, 21], reducing the dependency on human labor. In urban

settings, shepherding-inspired algorithms have been used for crowd control and

evacuation management [22], addressing challenges in public safety. Moreover, the

coordination of large-scale robotic and microrobotic swarms [23], as in environmental

monitoring, disaster response, and targeted drug delivery [24, 25], further underscores

the practical relevance of this research. The overarching goal is to bridge the gap

between understanding natural collective behaviors and engineering artificial swarm

systems capable of tackling complex, real-world challenges.

The study of shepherding focuses on designing movement algorithms for steering

agents, commonly referred to as shepherding algorithms. These algorithms can

generally be classified into three categories; however, limited-information scenarios

are rarely given priority in any of these categories.

The first category consists of control-theoretic methods, where researchers apply

control theory to design precise movements for steering agents, guiding the swarm

based on specific models and parameters [26, 27, 28, 29, 30, 31]. Although control-

theoretic methods achieve a high degree of precision, reliance on predefined kinematic

models and parameters limits their practicality when these underlying assumptions

no longer hold [32].

The second category includes rule-based methods, which rely on relatively sim-

ple behavioral rules to direct and gather sheep-like agents toward a target [33, 34,

35, 36, 37]. Rule-based models offer a simpler and more adaptable approach, es-

pecially in situations where precise control of individual agents is neither feasible

nor required. This adaptability makes rule-based algorithms particularly promising

for real-world applications. Nevertheless, most rule-based approaches still assume
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considerable sensing and communication capabilities, which may be impractical in

certain scenarios [38].

The third category encompasses learning or optimization-based path planning

methods, which employ reinforcement learning or optimization techniques to help

steering agents navigate effectively through environments with obstacles [39, 40].

These methods are particularly valuable in diverse environments with varying ob-

stacles and conditions, where agents need to adapt flexibly. However, to simplify

the learning process, these approaches often assume the sheep-like agents act as a

single cohesive group, removing the need to account for individual differences in

behavior [41].

1.2 Objective

This dissertation aims to find the key information types required by steering

agents to accomplish the shepherding task by proposing and evaluating practical

algorithms. In this context, we categorize information into two primary types:

sensing information, which relates to an agent’s ability to detect and determine the

relative positions of nearby agents, and communication information, which involves

data exchange between agents to enable cooperative behavior. We use rule-based

methods for this categorization, as rule-based algorithms provide consistent criteria

for evaluating feasibility. Addressing the objective will lay a framework that clarifies

how combinations of sensing and communication capabilities influence the success of

swarm shepherding.

This investigation contributes to practical applications by examining how simu-

lations based on real-world constraints reveal the requirements for information in

swarm coordination. These findings provide insights into optimizing system design

for applications where information is costly or difficult to obtain, such as autonomous

drone navigation in areas with low connectivity, or search-and-rescue operations in

dynamic and unpredictable terrains.
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To achieve the aforementioned aims, we study swarm shepherding from the

perspective of sensing and communication information required in rule-based methods.

In the first study [42], we examine the feasibility of guiding steering agents

under the constraint that sensing is limited to relative distances and directions

without relying on communication for coordination. The results indicate that direct

communication between agents is not required, as effective coordination can still

be achieved by agents adjusting their behavior based solely on relative distances to

other agents. Furthermore, the proposed approach leverages emergent inter-agent

repulsion and distributed target selection, enabling agents to collectively guide the

swarm toward a target without explicit communication.

In the second study [43], we further reduce the available sensing information by

limiting it to bearing-only measurements, where each agent can detect only the di-

rections of neighboring agents without access to relative distances. These constraints

make cooperative shepherding significantly more challenging, as agents lack precise

location information to evaluate proximity. To compensate for this reduced sensing

capability, we introduce a low level of communication that enables agents to share

brief directional information. This limited communication allows agents to confirm

relationships among multiple swarms and maintain cooperative movements with the

swarms. By integrating this low-level communication with bearing-only measure-

ments, we demonstrate that agents can still assess their orientations, coordinate,

and guide multiple swarms toward a goal under severely constrained sensing and

communication conditions.

1.3 Target Scenario

We begin by introducing the commonly used movement model for passive agents

and the goal settings in the shepherding problem, followed by a notable movement

algorithm for steering agents. The task of shepherding involves using these algorithms

to guide passive agents from their initial positions to a designated goal. Each algo-
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rithm is designed based on the specific information scenario in the study. Specifically,

we assume each agent has no area or volume to simplify the model, allowing us to

focus on the movement algorithms for steering agents.

1.3.1 Sheep Model

We consider a scenario in which M steering agents are tasked with guiding N

sheep. Initially, the N passive agents are grouped into several distinct swarms, each

with its spatial arrangement. The M steering agents are individually positioned at

specified locations around these swarms to facilitate the guidance process. The passive

agents and steering agents are assumed to move dynamically on a two-dimensional

plane R2 in discrete time. To denote the sets of passive agents and steering agents,

we use the notation [N ] = {1, 2, . . . , N} and [M ] = {1, 2, . . . ,M}, respectively. For

any i ∈ [N ] and k ∈ [M ], we use pi(t), ui(t) and qk(t), vk(t) to denote the position and

velocity, respectively, of the ith passive agents and kth steering agents, respectively,

at time t. The movements of the passive agent and steering agent are thus defined

as follows:

pi(t+ 1) = pi(t) + ui(t),

qk(t+ 1) = qk(t) + vk(t).

We assume that each passive agent and steering agent recognizes other agents

within limited sensing ranges by the positive values r and r′, respectively. Accordingly,

the sets of other passive agents and steering agents recognized by the passive agent i

at time t are given by

Ni(t) = {j ∈ [N ] | 0 < ∥pi(t)− pj(t)∥ < r},

Mi(t) = {k ∈ [M ] | 0 < ∥pi(t)− qk(t)∥ < r},
(1)

respectively. Similarly, the sets recognized by the kth steering agent at time t are

given by

N ′
k(t) = {j ∈ [N ] | 0 < ∥qk(t)− pj(t)∥ < r′},

6



Separation Alignment Cohesion Repulsion Noise 

Steering agent

Passive agent

Other passive agent

Figure 2. Schematic of the passive agent model described in Equation (3). A passive
agent receives separation, alignment, cohesion from other sheep, and repulsion from
steering agents within the sensing range. The passive agent is also exposed to noise.

M′
k(t) = {ℓ ∈ [M ] | 0 < ∥qk(t)− qℓ(t)∥ < r′},

respectively.

Following the convention used for the boid model [5] and the shepherding prob-

lem [34, 35, 37], the movement of the ith passive agent at time t is defined by

ui(t) = c1ui1(t) + c2ui2(t) + c3ui3(t) + c4ui4(t) + c5ui5(t), (2)

where ui1(t), ui2(t), and ui3(t) denote the forces of separation, cohesion, alignment,

respectively, between sheep; ui4(t) denotes the force of repulsion from the steering

agents; and ui5(t) denotes a uniformly distributed random vector representing noise.

Meanwhile, c1, c2, c3, c4, and c5 are positive constants. Specifically, we define the first

7



four vectors as

ui1(t) = −|Ni(t)|−1
∑

j∈Ni(t)

ψ(pj(t)− pi(t)),

ui2(t) = |Ni(t)|−1
∑

j∈Ni(t)

ϕ(pj(t)− pi(t)),

ui3(t) = |Ni(t)|−1
∑

j∈Ni(t)

ϕ(uj(t− 1)),

ui4(t) = −|Mi(t)|−1
∑

ℓ∈Mi(t)

ψ(ql(t)− pi(t))

(3)

where ϕ(x) = x/∥x∥ denotes a normalization operator, to represent the direction of

a vector; and

ψ(x) =


x/∥x∥3, if ∥x∥ ≥ δ,

x/(∥x∥δ2), if 0 < ∥x∥ < δ,

0, otherwise,

(4)

denotes a potential-like function, to represent the interference caused by the proximity

between two agents. We set the constant δ to be greater than 1 to prevent the value

of ∥ψ(x)∥ from diverging when ∥x∥ is less than 1. One example illustrating the

value of ψ(x) is visualized in Figure 3. Among the Equations in Equation (3), the

function ψ(x) allows both ui1(t) and ui3(t) to be calculated based on varying distance

scales between each pair of sheep, helping to prevent collisions when passive agents

are too close [44] and to avoid dispersion when distances exceed the sensing range r.

Additionally, we set u2(t) to a time-delay term to allow each agent to attempt to

observe and follow the movement of the surrounded sheep.
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x

0.0000
0.0100

0.1111

(x
)

(x) for x > 0 and = 3
Discontinuity at x = 0

Figure 3. Function ψ(x) defined in Equation (4) when δ = 3. The range of x,
representing the distance between two agents, is set to x ≥ 0. The value of ψ(x)
is 0 at ψ(0), reaches a threshold of 1/δ2 when 0 < x ≤ δ, and gradually decreases
when x ≥ δ.
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repulsion from the goal

repulsion from 
passive agents

chase the farthest agent

Figure 4. Illustration of the concept of the Farthest-Agent Targeting algorithm. A
steering agent (red dot) chases the farthest agent from the goal as its target agent
(blue dot).

1.3.2 Goal

The objective of the shepherding task is to guide all passive agents into a

designated region called the goal. The task is considered complete only when all

passive agents are within the goal area simultaneously at the same time step t. We

let the goal region G ⊂ R2 be a closed disk with centre xg ∈ R2 and radius Rg > 0.

The value of goal radius Rg influences the results of shepherding because the larger

the goal radius, the sooner the shepherding is completed. By contrast, the smaller

the goal radius, the more time steering agents consume until all passive agents are

guided into the goal region. Therefore, we set the goal radius Rg based on the

length of the swarm shape when it reaches a relatively stable shape. In this state,

the distances between passive agents remain almost constant after a few time steps

since initialization in the preliminary simulation, without any interference from the

steering agents. The specific values and adjustments for radius Rg and passive agent

number N are introduced in the experiment section of each study.

1.3.3 Example of Shepherding Algorithms

Among the methods introduced in Section 1.1 for designing movements of steering

agents, the Farthest-Agent Targeting (FAT) algorithm [37] stands out for its simplicity

and effectiveness in scenarios involving a single steering agent (i.e., M = 1) guiding
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a swarm. In this algorithm, the steering agent primarily moves toward the position

of the passive agent farthest from the goal, as observed by the steering agent

as argmax
i∈N (t)

∥pi(t)− xg∥. An illustration is presented in Figure 4 and the detailed

implementation of the algorithm is introduced in the following section. While the

FAT algorithm provides a straightforward approach, its primary limitations include a

lack of scalability due to reliance on a single steering agent and potential inaccuracies

caused by the relative placements of steering agents and swarms. Despite these

shortcomings, the FAT algorithm has inspired the development of numerous advanced

algorithms that aim to overcome these issues.

1.4 Outline of Dissertation

The remainder of this dissertation is organized into two sections according to the

objective introduced in Section 1.2. Chapter 2 presents the proposed communication-

free shepherding algorithm, designed for scenarios with limited sensing and no

communication capabilities. Chapter 3 describes the proposed bearing-only shep-

herding algorithm, developed for scenarios with further reduced sensing capabilities

and limited communication options. Chapter 4 presents the conclusion of this

dissertation.
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Chapter 2

Shepherding Control by

Communication-free Algorithm

2.1 Introduction

Our first study investigates whether communication between steering agents is

necessary for successful shepherding. Previous studies often rely on communication

between agents for the coordination of multiple steering agents, and various method-

ologies have been proposed to address challenges in information control. For example,

navigation using steering agents in a prescribed formation demonstrates effective

control [33]. Building on this concept, a 3-D guiding algorithm applies dimension

reduction to manage the complexity of the multi-agent system [27]. Other approaches

include caging-based algorithms designed for guiding a flock of agents [31, 29]. Ad-

ditionally, centralized shepherding algorithms assign specific paths to each steering

agent [38], and quasi-decentralized control laws using sliding mode control facilitate

coordination among multiple steering agents [26].

Most existing shepherding algorithms with multiple steering agents assume the

existence of a central coordinator [33, 27, 26, 29, 38, 31]. This assumption requires

the coordinator to observe the whole system including the steering agents. However,

these requirements can severely limit the practical feasibility of the algorithms.

Although we can find in the literature a few decentralized shepherding algorithms

with multiple steering agents, these works still implicitly assume the communication

among steering agents. For example, the shepherding algorithm proposed by [36]

requires that a steering agent can know the intention of another, which is hard

to realize without communication between these agents. Also, in the shepherding
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algorithm developed by [30], the steering agents initially need to perform multiple

rounds of communications for executing a distributed clustering algorithm to reach

a consensus on which sub-swarm is shepherded by which steering agent.

The objective of this study is to propose an algorithm for communication-free

shepherding navigation with multiple steering agents, relying solely on their ability

to sense relative distances and directions to achieve cooperation. Our approach is to

start from an existing single-steering agent algorithm called Farthest-Agent Targeting

algorithm [37]. Leveraging on the simplicity of the algorithm, we then construct an

algorithm for shepherding by multiple steering agents under the assumption that

each steering agent knows its relative position to the goal and the relative position of

other agents within the shepherd’s recognition range. Within the proposed algorithm,

although each steering agent attempts to guide the whole swarm by chasing its

target passive agent independently and without inter-steering agent communication,

cooperative behavior emerges as a consequence of the spatial distribution of steering

agents induced by the inter steering agent repulsion built into the algorithm. The

target passive agent of a steering agent is determined as the passive agent maximizing

the weighted difference between the sheep’s distance from the goal and the one

from the shepherd. The improved performance of the proposed algorithm with an

increasing number of steering agents is demonstrated through extensive numerical

simulations.

The remainder of this chapter is organized as follows. Section 2.2 describes

our proposed decentralized shepherding algorithm. Section 2.3 and Section 2.4

describe the baseline algorithms and centralized algorithms separately for comparison.

Section 2.5 presents the numerical simulations and discusses the robustness of the

proposed algorithm.
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2.2 Proposed Algorithm

In this section, we describe the algorithm that we propose for the movement

of the steering agents. We start by recalling the Farthest-Agent Targeting (FAT)

algorithm [37] designed for the case of a single steering agent (i.e., M = 1). In

the algorithm, the movement of the (1st) steering agent is specified as q1(t+ 1) =

q1(t) + v1(t), where v1(t) ∈ R2 represents the movement vector of the shepherd. Let

us denote the position of the passive agent farthest from the goal by ξ1(t); i.e., define

ξ1(t) = argmax
p∈{pi(t)}i∈[N ]

∥p− xg∥.

Then, in the FAT algorithm, the movement vector v1(t) is specified as the weighted

sum of the following three vectors:

ϕ(ξ1(t)− q1(t)), −ψ(ξ1(t)− q1(t)), −ϕ(xg − q1(t)), (5)

which are, respectively, to realize the movement of the steering agent for chasing the

farthest agent, taking an appropriate distance with the farthest agent, and pushing

the farthest agent toward the goal region. As for the second term, the term allows

us to realize an appropriate, non-vanishing distance for the same reason that the

normalization ψ in the passive agent model allows a passive agent to avoid a collision.

Despite being simple, the FAT algorithm is known for its effectiveness in performing

the shepherding navigation with a single shepherd [37]. However, the algorithm

requires knowledge of the positions of all sheep. Furthermore, when generalized to

the situation of multiple steering agents, the formula would result in all the steering

agents targeting the same sheep, which is presumably inefficient.

Based on these observations, in this study, we propose an extended version of the

FAT algorithm to let each steering agent choose, as its target, a passive agent both

close to itself and far from the goal. Specifically, we propose that the passive agent
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Figure 5. Target selection by the proposed algorithm. Goal: X; Sheep: circles;
Shepherd: square. For each value of α, we color each sheep i using the [0, 1]-
normalized value of the objective function ∥pi − xg∥ − α∥pi − qk(t)∥. When α = 0,
the steering agent targets the passive agent farthest from the goal. On the other
hand, for larger α, the steering agent targets a passive agent far from the goal and
close to the shepherd.

targeted by the kth steering agent is determined by the formula

ξk(t) = argmax
p∈{pj(t)}j∈N′

k
(t)

(
∥p− xg∥ − α∥p− qk(t)∥

)
, (6)

where α ≥ 0 is the parameter determining the behavior of steering agents within

the proposed algorithm by balancing two factors. For example, when α = 0, only

the first term ∥p− xg∥ remains in the formula (6) and, therefore, all steering agents

target the passive agent farthest from the goal; i.e., the proposed algorithm reduces

to the FAT algorithm. On the other hand, when α is sufficiently large, each steering

agent chooses the closest passive agent as its target, which specifically prevents the

scattering phenomenon caused by the FAT algorithm, as illustrated in Figure 5.

Hence, we can expect that choosing a moderate value of α would result in a control

strategy that is as effective as the FAT algorithm and is less suffered from the

scattering phenomenon. We here emphasize that ξk(t) is decidable by the kth

steering agent because the sheep’s relative position to the goal is computable as

pj(t)− xg = (pj(t)− qk(t)) + (xg − qk(t)).

We can now state the proposed movement algorithm of the steering agents. As
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in the FAT algorithm, we let

qk(t+ 1) = qk(t) + vk(t),

where vk(t) denotes the movement vector of the kth shepherd. This vector is to be

constructed as the weighted sum of the following four vectors. First, we define

vk1(t) = ϕ(ξk(t)− qk(t))

for the kth steering agent to chase the target sheep. Secondly, in order to take an

appropriate distance between the steering agent and sheep, we define

vk2(t) = −|N ′
k(t)|

−1
∑

j∈N ′
k(t)

ψ
(
pj(t)− qk(t)

)
(7)

so that the kth steering agent receives repulsion force from all the neighboring sheep.

Thirdly, to achieve guidance toward the goal region, we define the vector

vk3(t) = −ϕ(xg − qk(t))

by adopting (5). Finally, in order to avoid competition among steering agents for

efficient guidance, we introduce the vector

vk4(t) = −∥xg − qk(t)∥ |M′
k(t)|−1

∑
ℓ∈M′

k(t)

ψ(qℓ(t)− qk(t)), (8)

which represents repulsion between steering agents. Because steering agents need to

be relatively closer to each other at the final stage of the shepherding navigation, we

introduce the weight term ∥xg − qk(t)∥. Now, based on the four vectors introduced

above, we define the movement vector of the kth steering agent as

vk(t) = d1vk1(t) + d2vk2(t) + d3vk3(t) + d4vk4(t) (9)
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for positive constants d1, d2, d3, and d4. We do not include the additive noise term

in the movement of steering agents.

In the experiments described in Section 2.5, we use the parameters d1 = 2,

d2 = 100, d3 = 1, d4 = 2, and r′ = 300. We set the parameter α in Equation (6) to

α = 1, as it provides a balanced and intuitive value for this trade-off.

Moreover, in this study, we do not aim to analytically establish the effectiveness

of the shepherding algorithms. The major reason for this choice is its intrinsic

difficulty arising from the nonlinearity of the Boid model. In fact, several existing

works [see, e.g., 36, 27, 33, 31, 29, 38, 26] on the shepherding problem do not provide

a mathematical proof for the performance of the proposed control methodologies.

This tendency is a common practice in the field of swarm guidance, as the nonlinearity

of the swarm model often makes it challenging to perform a meaningful mathematical

analysis.

More importantly, let us discuss the communication requirements of the proposed

algorithm and existing distributed shepherding algorithms with multiple steering

agents [36, 30]. The proposed algorithm does not require communication between

steering agents in the sense that each steering agent requires only its relative position

with other steering agents, which can be achieved with its own sensing devices. On the

other hand, as discussed in Section 1, the existing algorithms require communication

between steering agents because each agent needs to understand the target or key

factors influencing the movement of other steering agents. Specifically, the algorithm

by [36] can require O(nfM
2) times of communications between steering agents at

each time step, where nf denotes the number of sub-flocks of sheep. Also, within the

algorithm presented by [30], in order to execute a clustering algorithm for determining

which sub-swarm is chased by which shepherd, O(nfM) times of communications

needs to be periodically performed between steering agents.
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2.3 Baseline Algorithms for Single Steering Agent

We describe notable baseline methods used for comparison in our numerical

simulations. Similarly, the methods presented in this section are not designed for

scenarios with multiple shepherds and do not rely on inter-shepherd communication.

These baseline methods are utilized to evaluate the effectiveness of the proposed

algorithm, particularly in scenarios involving multiple steering agents.

2.3.1 Farthest-Agent Targeting with Occlusion

The farthest-agent targeting algorithm with occlusion (FAT-OCC) [37] is also

considered. This algorithm is identical to the FAT algorithm except that the

vector vk2(t) in (7) is modified as

vk2(t) = −|N ′
k,occ(t)|−1

∑
j∈N ′

k,occ(t)

ψ(pj(t)− qk(t)),

in which the set N ′
k,occ(t) represents the set of passive agents recognizable under

occlusion and is constructed as follows. For each t, we first initialize N ′
k,occ(t) = ∅. We

then order the set N ′
k(t) as (i1, . . . , i|N ′

k(t)|) in such a way that ∥pi1(t)∥ ≤ ∥pi2(t)∥ ≤

· · · ≤ ∥pi|N′
k
(t)|
(t)∥. For each ι = 1, . . . , |N ′

k(t)|, we sequentially join the index iι to

the set N ′
k,occ(t) if and only if |∠(pι − qk)−∠(pϕ − qk)| > θ for all ϕ ∈ N ′

k,occ(t). We

use the parameter θ = π/36.

2.3.2 Online-Target Switching

The Online-Target Switching (OTS) algorithm proposed by [34] is applied by

judging the swarm separation. We implement this algorithm by replacing ξk(t) in
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(6) with ξotsk (t) defined by

ξotsk (t) =

p̄k(t) + dots ϕ
(
p̄k(t)− xg

)
, if ∥p#k (t)− p̄k(t)∥ ≤ Rots,

p#k (t) + dots ϕ
(
p#k (t)− p̄k(t)

)
, otherwise

(10)

where

p̄k(t) = Nk(t)
−1

Nk(t)∑
i=1

pi(t) (11)

is the mass center of the swarm that the steering agent k can observe,

p#k (t) = argmax
p∈{pi(t)}i∈[Nk(t)]

∥p̄k(t)− p∥ (12)

represents the position of the passive agent farthest from the mass center, and

Rots = rots
√
Nk(t) determines the size of the radius based on the number of the

sheep, which is the same setup as the original algorithm. We choose rots = 10

and dots = 25 so that there is an appropriate distance of Rots and dots between the

steering agent and the swarm. In this way, the steering agent can maintain the

swarm shape when changing the target position ξotsk (t) in Equation (10).

2.4 Centralized Algorithms for Multiple Steering

Agents

In this section, we investigate the role of coordination in centralized multi-agent

shepherding algorithms, with a focus on its function during shepherding. The

methods described in Section 2.4 are specifically designed for scenarios with multiple

shepherds and rely on inter-shepherd communication to form coordinated formations.

However, such coordination can sometimes restrict the individual flexibility of agents,

potentially reducing overall performance. By comparing these methods with the

proposed algorithm, which operates without communication, we aim to provide a
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clearer rationale for the necessity of communication in shepherding tasks.

2.4.1 Point-offset Circling Control

The shepherding algorithm proposed by [27] proposes a shepherding algorithm

in which steering agents form an arc formation to steer the swarm. Within the

algorithm, at each time a central controller computes the center of the mass p̄(t)

and the position p#(t) of the passive agent farthest from the center similarly in

(11). Then, the controller regards the swarm as a circle with center p̄(t) and radius

Rs(t) = ∥p#(t)− p̄(t)∥. The controller then generates a circle having the same center

but with a larger radius, and directs each steering agent to move toward a point on

the larger circle. Each steering agent is placed evenly on the larger circle.

Specifically, within the algorithm, the controller computes the following quantities

at each time t:

Rcircle(t) = αcircleRs(t),

∆circle
k = ∆

(2k −m− 1)

(2m− 2)
,

θ(t) = ∠(p̄(t)− xg)

where Rcircle(t) represents the radius of the larger circle whose radius is controlled by

parameter αcircle ≥ 1, ∆k represents the degree of kth steering agent for determining

its placement on the circle, and θp̄(t) represents the angle of the center of the swarm

in the counterclockwise direction with respect to the positive direction of x-axis.

Each steering agent needs to know its index k within the total number M of steering

agents. The controller then directs each steering agent to move toward its target

position defined by

ξcirclek (t) = p̄(t) +Rcircle(t)

cos∆circle
k + θ(t)

sin∆circle
k + θ(t)

 .
Within our simulation, we use αcircle = 1.5 and ∆ = 2π/3.
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2.4.2 Potential-based Caging

The shepherding algorithm proposed by [31] employs a caging formalism in robotic

manipulation and guides a group of passive agents to the goal region safely and with

provable guarantees. The cage is constructed by a regular n-sided polygon and has

the steering agents as its vertices. The distance between the center of the swarm

and the vertex is set as Rcage determined by

Rcage(t)−Rs(t)− dCSM = Rcage(t) sin (π/n),

∆cage
k =

2k

m
π,

where dCSM is the minimal required distance between the passive agents and the

point. Then, the target position for the kth steering agent is set as

ξcagek (t) = p̄(t) +Rcage(t)

cos∆cage
k

sin∆cage
k

+ αcageϕ(p̄(t)− xg).

We remark that we are introducing the term parameter αcageϕ(p̄(t)− xg) so that the

algorithm can achieve guidance of the swarm into the goal region. In the caging

process, each steering agent moves to a vertex close to itself as its target position

while making sure that no vertex is shared with multiple steering agents. We use

dCSM = 0.05Rs(0) and α
cage = −8.

2.5 Experiments

In this section, we present numerical simulations to evaluate the performance

of the proposed algorithm, which operates without communication between steer-

ing agents. These simulations aim to investigate how effective shepherding can be

achieved without relying on communication. To validate this, we compare the pro-

posed approach with other methods, including baseline algorithms that increase the

number of agents without communication and centralized methods that incorporate
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communication while employing a formation strategy. This comparison helps isolate

the effects of communication from other factors, providing a clearer understanding

of its role and the necessity of its inclusion in multi-agent systems.

For each of the initial placements, all trials are to be terminated when all the

passive agents are within the goal region, or after 3000 steps regardless of the result

of navigation. In the former case, we label the trial for the initial configuration as a

success.

2.5.1 Parameter Values

We assume that there exist N passive agents to be guided in a two-dimensional

space. We suppose that, at the initial time, these agents are placed uniformly and

randomly within a disc centered at the origin, with an initial radius Rs(0). Here, the

origin represents the center of the initial agent placement distribution. We design

the pattern of the initial distribution as 1) a small swarm: N = 20, Rs(0) = 40, 2) a

large swarm: N = 50, Rs(0) = 60, and 3) two separate swarms: N = 20, Rs(0) = 40

for one swarm and N = 30, Rs(0) = 50 for another swarm. The parameters of the

passive agent model are set as

c1 = 200, c2 = 0.2, c3 = 0.02, c4 = 400, c5 = 0.1 (13)

and r = 50. We call this parameter set or scenario as default. The goal G is supposed

to have the center xg = [150, 150]⊤ and radius Rg = 80. The radius size Rg is

reasonably determined based on the number of passive agents in the simulation. For

the comprehensiveness of our experiment, we prepare the following three different

placement patterns of the steering agents; steering agents are initially 1) placed

around at the bottom-left of the passive agents (bottom-left), 2) placed around at

the top-right of the passive agents (top-right), and 3) surrounding the passive agents

(surrounding). For each of the placement patterns, we randomly generate 100 trials

for different initial placements of agents. Samples of the initial placements are shown
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in the first column of Figure 6.

2.5.2 Experiment Results

We conduct simulations to illustrate the effectiveness of the proposed algorithm.

Within the simulations, we conduct shepherding of a swarm following one of the three

initial distributions of passive agents and three placements of steering agents using

one of the four algorithms. We illustrate the performance of the algorithms using

the trajectories of agents. Toward this end, for each pair of the four algorithms and

three placement patterns, we pick the quickest trial among 100 initial placements.

The trajectories and their corresponding completion time are shown in Figure 6. We

can observe that the trajectories of the steering agents in the proposed algorithm are

smoother than those of the three baseline algorithms, confirming the effectiveness of

the decentralized mechanism of the proposed algorithm. For guiding the two separate

swarms, we find through numerical simulations that the switching algorithm is not

capable of performing the shepherding task, so we only compare the three remaining

algorithms in Figure 6c. We also observe the FAT algorithm tends to consume

more time or fail depending on the cases of the initial placements. After examining

the simulation data, we identify the following problems with the FAT algorithm.

One problem is that guiding a large swarm can consume excessive time due to long

traversal distances. Another problem is that a swarm tends to be scattered when

the steering agent chases the passive agent on the opposite side of the swarm. The

scattering makes the shepherding process more difficult and increases consumed time.
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Bottom-left

Placement patterns OTS FAT FAT-OCC

Top-right

Surrounded

Proposed

(a) Guiding a small swarm in the default passive agent model with M = 3.

Bottom-left

Placement patterns OTS FAT FAT-OCC

Top-right

Surrounded

Proposed

(b) Guiding a large swarm in the default passive agent model with M = 5.
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Bottom-left

Placement patterns FAT FAT-OCC

Top-right

Surrounded

Proposed

(c) Guiding two separate swarms in the default passive agent model with M = 5. The
trajectory of the online-target switching (OTS) algorithm is not shown because of its
failure.

Figure 6. Initial placements and corresponding trajectories for guiding three types of
swarms in the default passive agent model. 1st column: Samples of initial placements.
2nd to the last columns: Trajectories of the quickest navigations among those
performed for randomly generated 100 initial placements. Circle: goal region. Red
dots: steering agents. Gray dots: passive agents. The numbers at the bottom-right
indicate the time at which the shepherding navigation is completed. It is remarked
that the initial placements in each row are not necessarily the same.
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For further evaluation and comparison of the proposed and the baseline algorithms,

we introduce the following three performance measures. First, the success rate of an

algorithm for a placement pattern is defined as the rate of successful trials among

randomly generated 100 initial placements. Second, we define the completion time as

the execution time of the algorithm in its successful trials. Finally, the average path

length is defined as the average of the mean traveling distance M−1
∑M

k=1

∑
t∥vk(t)∥

of steering agents in successful trials.

Figure 7 represents how these three performance measures depend on the number

of steering agents for each of the algorithms. We observe that the proposed algorithm

achieves almost 100% success rate regardless of the number of steering agents and

placement patterns, which confirms the effectiveness and scalability of the proposed

algorithm. We can also observe that the proposed algorithm outperforms the baseline

algorithms in completion time and average path length. Furthermore, the average

completion time and average path length steadily decrease with respect to the number

of steering agents. These trends suggest that the proposed algorithm allows stable

and synergistic coordination of steering agents for the navigation of passive agents.

26



Success rate Completion time Average path length

Bottom-left

Top-right
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M M M

Performance metrics

(a) Guiding a small swarm in the default passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 5.

Success rate Completion time Average path length

Bottom-left

Top-right

Surrounded

M M M

Performance metrics

(b) Guiding a large swarm in the default passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 10.
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Bottom-left

Top-right

Surrounded

M M M

Performance metrics

(c) Guiding two separate swarms in the default passive agent model. Horizontal axes
represent the number of steering agents M from 1 to 10.

Figure 7. Performance of the algorithms for guiding three types of swarms in the
default passive agent model. Horizontal axes represent the number of steering agents.
1st column: the rate of successful navigation. 2nd column: success time. 3rd column:
average traversal distance of steering agents. In the 2nd and 3rd columns, a solid
line draws an estimate of the mean value and shaded areas describe the confidence
interval for that estimate.

28



For a more thorough comparison, let us consider two other scenarios in which

the parameters of the passive agents are different from the ones used in previous

simulations. In the first scenario, we consider the parameters

c1 = 250, c2 = 0.2, c3 = 0.025, c4 = 500, c5 = 0.1.

These values are all no less than the corresponding ones of the default scenario

in (13). For this reason, we expect that the swarm with these parameters is more

sensitive to the movement of the steering agents. Let us call this scenario sensitive.

On the other hand, we prepare the other additional scenario to perform comparisons

for the swarm that is harder to navigate. For this reason, in the second scenario, we

use the parameters

c1 = 150, c2 = 0.2, c3 = 0.015, c4 = 300, c5 = 0.1.

Because these values are all no greater than the corresponding ones of default, we

call this scenario insensitive. Now, under these two additional scenarios, we conduct

the same set of simulations that we did for the default scenario (13). The results of

the simulations in the scenarios sensitive and insensitive are illustrated in Figure 8

and Figure 9, respectively. We can confirm that the proposed algorithm always

shows higher success rates as well as lower completion time and shorter path lengths.

In Figures 8b and 9b, we also observe a slight decrease in the success rate of the

proposed algorithm. After investigating the failure cases, we find the following

reasons. One reason is the interference behaviors among multiple steering agents

when steering agents may coincidentally choose the same target and drive the target

further away from the goal without returning. Another reason is due to the behaviors

of the passive agents; when the parameters of the passive agent model are changed to

be more sensitive, it can be difficult for the steering agents to include all the passive

agents inside the goal region simultaneously.
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(a) Guiding a small swarm in the sensitive passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 5.
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(b) Guiding a large swarm in the sensitive passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 10.

30



Success rate Completion time Average path length

Bottom-left

Top-right

Surrounded

M M M

Performance metrics

(c) Guiding two separate swarms in the sensitive passive agent model. Horizontal axes
represent the number of steering agents M from 1 to 10.

Figure 8. Performance of the algorithms for guiding three types of swarms in the
sensitive passive agent model. Horizontal axes represent the number of steering
agents.
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(a) Guiding a small swarm in the insensitive passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 5.
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(b) Guiding a large swarm in the insensitive passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 10.
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(c) Guiding two separate swarms in the insensitive passive agent model. Horizontal axes
represent the number of steering agents M from 1 to 10.

Figure 9. Performance of the algorithms for guiding three types of swarms in the
insensitive passive agent model. Horizontal axes represent the number of steering
agents.
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We then conduct simulations to compare the proposed algorithm with both

centralized shepherding algorithms. In the centralized algorithms, each steering

agent moves strictly according to the design, with the dynamics of the steering

agent presented in Equation (9) being modified by setting d2 = 0, d3 = 0, and

d4 = 0. From our preliminary simulations, we found that the algorithms presented

above do not perform well in some situations. Therefore, in our simulations, to

make the coordination of multiple steering agents stable, we modify the radius

Rs(t) = min{∥p̄(t)− p#(t)∥, β∥p̄(0)− p#(0)∥} to prevent failure when the swarm is

dispersed during shepherding and we choose β = 1.25. Further, we define that the

algorithm for point-offset circling control takes the same strategy to allocate the

steering agents to their target positions. The maximum time step is set to 5000 to

ensure the completion of the shepherding.

The trajectories and the performance for guiding the small and large swarms are

shown in Figures 10a and 11a and Figures 10b and 11b, respectively. Simulation

results indicate that for these two algorithms, the average completion time increases

and the success rate decreases as M increases. On the other hand, when guiding a

swarm with large N and Rs(0), the success rate is not necessarily high. We analyze

this poor performance due to the large interaction distances between the steering

agents and the swarm. For the case of two separate swarms, we choose not to present

the simulation results because we found through numerical simulations that these two

centralized algorithms are incapable of performing the shepherding task when multiple

separate swarms exist. From the simulation results based on the two other sets of the

passive agent model, in Figures 12a and 12b and Figures 13a and 13b, we observe

that the performance of these two algorithms is greatly influenced by the parameter

setting of the passive agent model. After examining the simulation data, we find

that although the poor performance of centralized algorithms is counterintuitive,

these algorithms, which rely on multiple steering agents moving in a fixed shape or

formation to guide swarms, are neither effective nor robust.

Based on the results above, we have observed that the advantage of the proposed

34



algorithm is that, although no communication is used, better performance is achieved

by assigning the movement of each steering agent to different target passive agents.

Specifically, the algorithm leverages cooperation among multiple agents using observ-

able position information, even though the agents do not communicate with each

other to share additional information. This approach improves scalability to changes

in initial placements, accommodates increases in shepherd numbers, and enhances

robustness to reductions in sensing accuracy.
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(a) Initial placements and corresponding trajectories for guiding a small swarm.
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(b) Initial placements and corresponding trajectories for guiding a large swarm. The circling
algorithm of shepherding continues until the maximum time step.

Figure 10. Initial placements and trajectories for guiding small and large swarms
in the default passive agent model, compared with the proposed algorithm and
centralized shepherding algorithms. The number of steering agents is set to M = 8.
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(a) Guiding a small swarm in the default passive agent model.
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(b) Guiding a large swarm in the default passive agent model.

Figure 11. Performance comparison between the centralized algorithms and the
proposed algorithm for guiding a small and large swarm in the default passive agent
model. Horizontal axes represent the number of steering agents M from 4 to 10. The
y-axis indicates completion time and average path length.
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(a) Guiding a small swarm in the sensitive passive agent model.
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(b) Guiding a large swarm in the sensitive passive agent model.

Figure 12. Performance comparison between the centralized algorithms and the
proposed algorithm for guiding a small and large swarm in the sensitive passive agent
model. Horizontal axes represent the number of steering agents M from 4 to 10. The
y-axis indicates completion time and average path length.
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(a) Guiding a small swarm in the insensitive passive agent model.
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(b) Guiding a large swarm in the insensitive passive agent model.

Figure 13. Performance comparison between the centralized algorithms and the
proposed algorithm in the insensitive passive agent model. Horizontal axes represent
the number of steering agents M from 4 to 10. The y-axis indicates completion time
and average path length.
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2.5.3 Experiments with Further Reduced Information

In this subsection, we numerically evaluate the robustness of steering agents

under further reduced sensing accuracies. In this context, we define robustness as

the ability to achieve success and maintain effectiveness despite reductions in sensing

range and accuracy. Throughout this subsection, we use 2) the large swarm to be

the same set of initial placements as the ones we used in the last subsection. The

passive agents were modeled as default, sensitive, or insensitive. The number of the

steering agents is fixed as M = 5. Because our main objective in this subsection is to

investigate the robustness properties of the proposed algorithm, we do not conduct

simulations of existing methods.

We first examine the performance of the proposed algorithm with respect to the

change in the sensing range of the steering agents and the passive agents. As for

the sensing range of the shepherd, we change r′ from its default value 300 and vary

within the set {50, 100, 150, ..., 400}. Also, we prepare two scenarios on the sensing

range r of the passive agents; r = 50 and r = 100. We present how the success rates,

completion times, and average path lengths depend on r′ in Figure 14a (r = 50) and

Figure 14b (r = 100). According to the results, different sizes of the sensing ranges r

of passive agents cause changes in the swarm behaviors to influence the shepherding

performance. For these two values of r, the success rate of shepherding drops when

the sensing range r′ of the steering agent is short. This observation suggests that, for

the proposed algorithm to be effective, we should avoid employing a steering agent

having a too short sensing range.

We then evaluate the performance of the proposed algorithm under sensing errors

of the steering agents. In this simulation, we assume that the sensing of the steering

agent to the positions of other agents and the goal is subject to additive noise in the

form of d5σ(t) where d5 is a positive weight, and the random vector σ(t) is generated

in the same way as the random vector ui5(t) in Equation (2). Importantly, we allow

each agent to continue targeting the correct passive agent for guidance according to

41



Equation (6), unaffected by sensing errors. This means that while the target agent i

is selected correctly, the position pi(t) is perceived with error as pi(t) + d5σ(t), as

described in Equation (3), which leads to movement deviations for the steering agents.

In Figure 15, we show how the performance of the proposed algorithm depends on

the weight d5. We confirm that the proposed algorithm tolerates relatively sensing

error increased to d5 = 10 in any of the initial placements. This observation indicates

that the strategy for selecting targets for each agent is crucial, and the proposed

algorithm remains robust to sensing errors as long as the strategy is implemented

correctly.
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(a) The sensing range of the passive agent is set as the default value r = 50.
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(b) The sensing range of the passive agent is enlarged as r = 100.

Figure 14. Performance of the proposed algorithm for guiding swarms in different
sensing ranges for steering agents. Horizontal axes represent the sensing range of
steering agents r′. The sensing range of the passive agents is varied between r = 50
and r = 100.
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Figure 15. Performance of the proposed algorithm for guiding three sets of swarm in
considering sensing error for steering agents. Horizontal axes represent the value d5
of the sensing error for steering agents.

44



2.6 Summary

In this chapter, we studied the shepherding problem with multiple steering agents

unable to communicate with each other. The results demonstrate that communication

between steering agents is not required for successful shepherding when cooperation

relies on relative situational sensing, even in the presence of sensing errors. Specifically,

we have first presented a model of passive agents in the presence of multiple steering

agents. We have then proposed a distributed and communication-free algorithm

with multiple steering agents to aggregate the passive agents by location-based

self-planning. We have also compared the proposed algorithm with other default

algorithms with and without centralized coordination. Finally, we have confirmed the

robustness of the proposed algorithm via extensive numerical simulations in various

situations, including different levels of sensing errors and mobility-related accidents.

The natural cooperative strategy for the steering agents adopted by the proposed

algorithm proves to be successful, effective, and robust compared to traditional

algorithms. In our simulations, the parameter value α used to balance factors when

selecting the target agent for each steering agent in Equation (6) was fixed at a

specific value. However, performance could potentially be improved by exploring

alternative formulations of the equation and assigning differentiated values to α to

enhance cooperation. Moreover, while the algorithm operates without communication,

incorporating communication or combining the strategy with other approaches could

increase flexibility and expand the range of applications.

In future research, we plan to investigate whether the proposed communication-

free coordination mechanism can be extended to other types of navigation tasks.

Moreover, we have observed that while we model passive agent movement based on

pre-assumed models and parameters, we observed that if passive agents deviate from

these settings, irregular spacing and unexpected reactions to steering agents may

occur. Therefore, one of the future works is to validate the shepherding algorithms

using different models imitating the practical behaviors of organisms or robots.
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Chapter 3

Shepherding Control by

Bearing-only Algorithm

3.1 Introduction

Our second study focuses on further reducing the required sensing information

and developing an algorithm for successful shepherding under these constraints.

Previous studies on the shepherding problem have predominantly assumed that

steering agents have sufficient sensing capabilities [38], i.e. each agent can recognize

passive agents by their positions and velocities, in conjunction with the positions and

velocities of other steering agents, and the position of the goal. However, in practice,

robots performing a guiding task may not be able to collect all the expected sensing

results from the surrounding environment [23]. Thus, the study of shepherding

incorporating such limitations on the sensing capability of steering agents has been

conducted from various perspectives, such as local-camera-based observation [37],

lack of computation ability or memory [45], and lack of coordination among multiple

steering agents [42].

On the other hand, in the context of relative bearing measurements, this term

refers to determining the relative direction or angle of a target object with respect

to a reference point or axis. Each agent can measure only the relative bearings of

its neighboring agents, without access to their relative distances or proximities [46].

The process of controlling such agents to achieve desired formation patterns is

referred to as bearing-only formation control, focusing on accurately coordinating

all moving agents [47, 48]. However, using one set of agents to guide another set of

unmanoeuvrable agents solely based on bearing measurements remains a challenging
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problem in swarm control.

This study presents a bearing-only algorithm for shepherding with limited infor-

mation. Leveraging the proposed algorithm, we find the essential sensing information

by the algorithm to guarantee the success of shepherding. The algorithm is inspired

by the strategy of a two-stage approach, which divides the movements of a steering

agent by initially orienting its position relative to its target swarm and then driving

the swarm towards the goal [34, 39]. The target swarm is one of the swarms that

is selected by the steering agent among multiple swarms as the target for chasing.

Specifically, we first introduce an algorithm using a steering agent, design strategies to

allow multiple steering agents to cooperate through reduced collisions and improved

efficiency by sharing limited knowledge of bearing measurements (i.e., direction

from each position to the estimated center of each target swarm), and then apply

distributed strategies for steering agents to guide multiple swarms. The experiments

are conducted for various initial placements with different parameter values for the

passive agents, to evaluate the effectiveness and robustness of the proposed algorithm.

Finally, we discuss the influence of bearing measurement accuracy and the role

of communication between steering agents to understand the requirements of the

proposed algorithm.

The remainder of this chapter is organized as follows. Section 3.2 outlines the

knowledge of steering agents in bearing-only measurements. Section 3.3 presents a

step-by-step description of the proposed algorithm. Section 3.4 shows experimental

results to illustrate the functionalities and capabilities of the proposed algorithm

under various configurations of parameter values and initial placements and presents

an investigation of the essential amount of information.

3.2 Shepherding Knowledges

The problem of the shepherding task focuses on designing a shepherding algorithm

for the steering agents to guide a set of passive agents into a designated goal region.
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In this section, we describe the movements of each passive agent using an agent-based

model to form swarm movements, present the goal setting, and design the knowledge

of steering agents with bearing measurements.

We let a shepherd k guide a swarm using the following knowledge of bearing-

only measurements. In the case of a single swarm, all passive agents are initially

aggregated, and the relative distances between them are limited.

First, we assign each steering agent to observe the other agents under occlusion [37]

with bearing measurements. Similar to how we defined Equation (1), we begin by

constructing sets N ′
k(t) and M′

k(t), and then define O′
k(t) = N ′

k(t) ∪ M′
k(t) to

represent the set containing all other agents within the limited sensing range r′. For

shepherd k, to get a subset O′
k,occ(t), we initialise O′

k,occ(t) = ∅ and relabel the indices

as O′
k(t) = {x1(t), . . . , x|O′

k(t)|)} in such a way that ∥x1(t)−qk(t)∥ ≤ ∥x2(t)−qk(t)∥ ≤

· · · ≤ ∥x|O′
k(t)|(t) − qk(t)∥. For each ι = 1, . . . , |O′

k(t)|, we sequentially join index ι

to set O′
k,occ(t) if and only if the angular difference from the other agent in O′

k(t)

is larger than a constant θocc, which is |∠(xι(t)− qk(t), xυ(t)− qk(t))| > θocc for

any υ ∈ O′
k,occ(t). We then partition O′

k,occ(t) in terms of passive agents and steering

agents to update the sets N ′
k(t) andM′

k(t), respectively.

For vectors x, y, and z, we define Θx(y, z) ∈ [−π, π) by

Θx(y, z) = ∠(z − x, y − x)

to denote the angle between the vectors z − x and y − x. In this study, the range

of any angle is defined to be [−π, π), wherein a negative value indicates clockwise

rotation (right) and a positive value indicates counterclockwise rotation (left), to

distinguish the right and left directions.

Then, from the position of shepherd k, the positions of the passive agents on the
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right and left sides of the swarm are given by

pkr(t) = argminp∈{pi(t)}i∈N′
k
(t)
Θqk(t)(g, p),

pkl(t) = argmaxp∈{pi(t)}i∈N′
k
(t)
Θqk(t)(g, p),

(14)

while shepherd k knows only the direction from itself to these two positions. Figure 16

visualizes how the angles and positions are calculated. Subsequently, we assume that

shepherd k has the following three vectors at time t:

Qk(t) = {ϕ(pkr(t)− qk(t)), ϕ(pkl(t)− qk(t)), ϕ(g − qk(t))} (15)

instead of the following positions: N ′
k(t),M′

k(t), and xg.

We then average the vectors to the left and right sides to obtain a vector

to the estimated swarm center, denoted as ck(t), such that ϕ(ck(t) − qk(t)) =

ϕ(ϕ(pkr(t)−qk(t))+ϕ(pkl(t)−qk(t))). The angle between the direction from shepherd k

to estimated swarm centre ck(t) and the direction from shepherd k to goal xg is

then denoted as Θqk(t)(ck(t), xg) based on knowledge Qk(t) defined in Equation (15).

Additionally, we assume that shepherd k can memorize only Qk(t) at each time

step and, therefore, cannot estimate the relative distance to any agent based on the

change in angle over time. Because the steering agent cannot measure how far it has

moved, we assign a fixed size for the velocity of each shepherd, denoted ∥vk(t)∥ = d,

where d is a positive constant.

3.3 Proposed Algorithm

The concept of our proposed algorithm is inspired by the online-target switching

(OTS) algorithm [34], which demonstrates that observing and guiding the swarm

as a single group can be effectively achieved using bearing measurements. We first

introduce the proposed algorithm based on a single steering agent (M = 1) guiding

a single swarm. Afterward, we extend the algorithm to allow for multiple steering
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Figure 16. Illustration depicting how shepherd k observes the directions to the left
and right positions (dark grey dots) of the swarm boundary relative to the goal
region according to Equation (14). Red dot: shepherd; grey dots: sheep; blue dot:
goal center. Blue dashed line: direction from steering agent to goal; red dashed lines:
directions from steering agent to two sheep; angles shown as blue curves between the
blue line and two red lines: minimum and maximum values. Time t is omitted here
and in subsequent illustrations.

agents guiding multiple swarms through coordination between steering agents and

strategies for recognizing swarms. The overall concept in constructing the algorithm

is for each steering agent to sense swarms into one or multiple masses based on

the angular difference to individuals and guide each mass sequentially using the

orientation and driving stages. Orientation, where the agent moves itself behind

the swarm relative to the goal, and driving, where it guides the swarm by switching

between its border directions. The movement of steering agents relative to the mass

is simplified by determining whether to move to the direction of the left or right

boundary using reasonable rules. The limited angular information to individuals is

sufficient to avoid disturbance from steering agents to individuals inside the swarms.

3.3.1 Single Steering Agent Guiding of One Swarm

In this part of the study, we use a reduction method that allows the steering

agent to regard each swarm as a mass rather than a set of individuals. Our algorithm

includes two stages, i.e. orienting behind the swarm relative to the goal, and driving
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the swarm towards the goal by switching between the two directions of the swarm

borders. Compared to previous two-staged algorithms in shepherding [34, 27, 39],

the proposed algorithm solely requires the steering agent to have bearing measure-

ments, and the target swarm is modeled using a nonlinear agent-based model as

denoted in Equation (2). Specifically, we judge these two stages by examining

angle Θqk(t)(ck(t), xg) and comparing it against a threshold θorient using the following

expression:

|Θqk(t)(ck(t), xg)| < θorient (16)

where a result of ‘false’ indicates orientation, and a result of ‘true’ indicates driving.

θorient is chosen to be sufficiently small enough to prevent judging two separate swarms

into one, yet large enough to ensure that the steering agent does not mistakenly

consider one swarm as multiple masses, particularly when the steering agent is close

to the swarm. Notably, during the guidance process, the steering agent judges the

situation defined in Equation (16) and decides between orientation and driving stage

in each time step t. Figure 17 illustrates the circumstances of each of the two stages.

Let us first introduce notations commonly used in both stages. Depending on

which side has the larger angle to the goal direction, we define unit vectors αk(t) and

α′
k(t) as

αk(t) =

ϕ(pkr(t)− qk(t)), if
∣∣Θqk(t)(pkr(t), xg)

∣∣ ≥ ∣∣Θqk(t)(pkl(t), xg)
∣∣,

ϕ(pkl(t)− qk(t)), otherwise,

(17)

and

α′
k(t) =

ϕ(pkr(t)− qk(t)), if
∣∣Θqk(t)(pkr(t), xg)

∣∣ < ∣∣Θqk(t)(pkl(t), xg)
∣∣,

ϕ(pkl(t)− qk(t)), otherwise,

(18)

where αk(t) represents the direction where the angle relative to the goal direction is
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larger compared to the other direction, while α′
k(t) represents the other direction.

We then let a unit vector vk1(t) represent the primary direction of movement for the

shepherd. The vector vk1(t) is assigned a value equal to either αk(t) or α
′
k(t), which

is determined by the following algorithm. Meanwhile, the steering agent receives

repulsion from the direction of estimated swarm centre ck(t) and goal xg. The velocity

of shepherd k is then derived to be

vk(t) = dqϕ(d1R(θ1, vk1(t)) + d2ϕ(qk(t)− ck(t)) + d3ϕ(qk(t)− xg)) (19)

where d1, d2, and d3 are positive constants, of which d1 is larger than the others.

Meanwhile, R(θ1, vk1(t)) is an operator defined as

R(θ1, vk1(t)) =



 cos θ1 sin θ1

− sin θ1 cos θ1

 vk1(t), if vk1(t) = ϕ(pkr(t)− qk(t)),cos θ1 − sin θ1

sin θ1 cos θ1

 vk1(t), otherwise.

(20)

to rotate vector vk1(t) by a non-negative angle θ1. The direction of rotation depends

on which side vk1(t) lies: if on the right side, then rotate right; and if on the left side,

then rotate left. Equation (20) is used to rotate the movement of the steering agent

away from the swarm to avoid collision risk.

Given that the steering agent cannot measure the distance to the other agents,

moving directly toward the swarm may result in collisions. In cases wherein the

angle |Θqk(t)(ck(t), xg)| between the direction from shepherd k to the swarm and the

direction from shepherd k to goal xg is very large, as indicated by a result of ‘false’

in Equation (16), the steering agent needs to orient behind the swarm relative to the

goal to reduce the angular difference |Θqk(t)(ck(t), xg)|.

Specifically, we choose the direction having the larger angular difference between

the left and right sides of the swarm and denote it as vk1(t), i.e., we let vk1(t) = αk(t).
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(b) Driving stage

Figure 17. Illustration depicting a steering agent guiding a swarm to the goal region.
The shepherding process is divided into two stages: orientation (Figure 17a) and
driving (Figure 17b). Red solid line with an arrow: movement direction of a shepherd.
During the orientation stage, a steering agent moves toward the sheep pkl(t) or pkr(t)
according to the unit vector αk(t) determined by comparing angles (indicated by
blue) as in Equation (17) is larger than the other indicated by blue curves. During
the driving stage, a steering agent continuously moves toward one passive agent until
the angle indicated by a blue curve is small enough.

Throughout the orientation stage, as the steering agent moves to one side, the angle

on that side increases, and thus the steering agent is expected to continuously move

to the same side of the swarm based on the comparison of angles in Equation (17).

After skipping or completing the orientation stage, which is indicated by a result

of ‘true’ in Equation (16), the steering agent begins to drive the swarm by alternately

switching between the right and left sides. Based on αk(t) defined in Equation (17),

we define another unit vector as

α̃k(t) =

ϕ(pkr(t)− qk(t)), if αk(t− 1) = ϕ(pkr(t− 1)− qk(t− 1)),

ϕ(pkl(t)− qk(t)), otherwise,

(21)

which remains at the same right or left side as that in the previous time step t− 1

when t > 0 and keeps the same value as α̃k(t) = αk(t) when t = 0. Then, similar to

how we defined Equation (18), we denote a unit vector on the other side as α̃′
k(t).

53



𝑞! 

𝑞ℓ 𝑞ℓ − 𝑞"

p!! 

p!" 

𝑐ℓ − 𝑞ℓ

(a) Shepherd k
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Figure 18. Illustration depicting two steering agents cooperating to guide a swarm.
Knowledge and next movements of steering agents k (Figure 18a) and l (Figure 18b)
are shown. Grey dashed lines: directions from each steering agent to their respective
estimated centers, which are shared between both steering agents; angles shown as
grey curves: for calculation of their next movements, in accordance with Algorithm 1;
red solid lines with arrows: movement of shepherd k to its left and shepherd ℓ to its
right at next time step.

We then let vk1(t) be

vk1(t) =


α̃′
k(t), if sgn∠(α̃k(t), α̃

′
k(t)) = sgn∠(α̃k(t), xg − qk(t))

and |∠(α̃k(t), xg − qk(t))| < θdrive

α̃k(t), otherwise

(22)

where the operator sgn indicates whether a value is positive or negative, and θdrive

is a positive constant. At each time step, vk1(t) is adjusted to remain on the same

side as that in the previous time step unless it is already at the edge of that side as

determined by the angle conditions in Equation (22). Throughout the driving stage,

the steering agent is expected to move to one of the right or left sides for a while,

then switch to the other side and repeat this switching movement.
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Algorithm 1 Multi-Shepherd coordination algorithm

Require: M ′
k(t), vk1(t)

Ensure: M ′
k(t) ̸= ∅

C l
k ← 0, Cr

k ← 0 ▷ Initialise counters for left and right directions
while ℓ ∈M ′

k(t) do ▷ Increment counters if conditions are met
if |∠(ϕ(ck(t)− qk(t)), ϕ(cℓ(t)− qℓ(t)))| < θn1 and∣∣Θqk(t)(pkr(t), pkl(t))− 2

∣∣Θqk(t)(qℓ(t), ck(t))
∣∣∣∣ < 2θn2 then

if Θqk(t)(ck(t), qℓ(t)) < 0 then
Cr

k ← Cr
k + 1

else
C l

k ← C l
k + 1

end if
end if

end while
if vk2(t) = ϕ(pkr(t)− qk(t)) and C l

k > Cr
k then ▷ Update by comparing counters

vk2(t)← ϕ(pkl(t)− qk(t))
else if vk2(t) = ϕ(pkl(t)− qk(t))) and Cr

k > C l
k then

vk2(t)← ϕ(pkr(t)− qk(t))
end if
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3.3.2 Multiple Steering Agents Guiding of One Swarm

In the next part of this study, we increase the number of steering agents to

perform the shepherding task more effectively. To avoid moving repeatedly among

multiple steering agents, we design a strategy for coordination between two steering

agents, denoted as k, ℓ, and subsequently apply it to more steering agents.

We allow communication between the steering agents because relying solely on the

direction from shepherd k to shepherd ℓ is not sufficient for accessing their orientation

relative to the swarm for coordination. Specifically, for shepherd k, we define the

shared information as the direction from another shepherd ℓ to its estimated swarm

centre cℓ(t). This additional knowledge is denoted as

Qkℓ(t) = {ϕ(cℓ(t)− qℓ(t))}. (23)

Subsequently, we update the knowledge of shepherd k in Equation (15) to obtain

the orientation of all the other steering agents as

Q̄k(t) = Qk(t) ∪
⋃

ℓ∈M′
k(t)

Qkℓ(t). (24)

Based on the updated knowledge Q̄k(t), we extend the proposed algorithm to allow

for multiple steering agents guiding one swarm. Each steering agent independently

decides its current stage. During the orientation stage, each steering agent determines

its direction without considering the presence of other steering agents. During the

driving stage, the movement of each steering agent is adjusted to avoid repeated

movements with other steering agents. Specifically, we propose Algorithm 1 to

modify vk1(t), where each steering agent can estimate the number of steering agents

on its potential path to the right or left and choose to move to the side that has

fewer steering agents. This estimation relies on comparing angles between specific

directions observed by each steering agent and directions shared among them, as

denoted in Equation (24). Specifically, for shepherd k and ℓ, the angle compared
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with θn1 evaluates whether qk(t) and qℓ(t) have similar directions to the swarm center,

while the angle compared with θn2 evaluates whether qℓ(t) and the swarm center

have similar directions to qk(t). If both conditions are met, shepherd ℓ is judged to

be near the potential movement path of shepherd k. Shepherd k then determines

whether that shepherd ℓ is on the left or right path. θn1 and θn2 are fixed values.

Additionally, although the vectors ϕ(ck(t)− qk(t)) and ϕ(cℓ(t)− qℓ(t)) are pointing to

different estimated swarm centers, we consider the error to be negligible. Figure 18

illustrates the shared information and movements of two steering agents during the

driving stage.

3.3.3 Multiple Steering Agents Guiding of Multiple Swarms

In this part of the study, we place multiple swarms separately in their initial

placements. Each steering agent lacks knowledge of the number of swarms based

on its knowledge Q̄k(t) defined in Equation (24). Instead, it observes these swarms

as subswarms by comparing the angles of the interval between passive agents with

a threshold θn. Therefore, the set of passive agents observed under occlusion by

shepherd k, denoted as N ′
k(t), is partitioned into multiple subswarms. Specifically, we

partition set N ′
k(t) to each subswarm τ as N ′

k(t) =
⋃

τ N ′
kτ (t) in such a way that any

pair of passive agents i ∈ N ′
kτ (t) and j ∈ N ′

kτ ′(t) satisfies |Θqk(t)(pi(t), pj(t))| > θn if

and only if τ ̸= τ ′.

Coordination between the steering agents can be established by letting each

steering agent sequentially target a specific subswarm rather than all subswarms.

We first label the subswarm that has the largest absolute angle between the direction

to its estimated center and the direction to the goal as

N ′max
k (t) = max

τ

∣∣Θqk(t)(ckτ (t), xg)
∣∣ (25)

where ckτ (t) represents the estimated centre of subswarm τ observed by shepherd k.

We then let the steering agent execute the algorithm by observing passive agents in
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𝑞ℓ 

𝑔 

Figure 19. Illustration depicting two steering agents guiding two swarms by targeting
a subswarm. Angles shown as blue curves: for comparison between each steering
agent to choose a subswarm having a larger angle; grey solid lines with arrows: the
subswarm targeted by both steering agents (herein, both are towards the bottom
swarm) based on Equation (25).

the subset N ′max
k (t) rather than N ′

k(t). Following this strategy, each steering agent

chooses and herds its target subswarm N ′max
k (t) at each time step until all the swarms

are inside the goal region. Figure 19 illustrates how two steering agents choose their

target subswarms.

Meanwhile, each steering agent is not aware of whether other steering agents are

targeting the same subswarm and needs only to estimate if the others are on its

potential path, in accordance with Algorithm 1, to cooperate.

Summary. Through the descriptions presented earlier, we have proposed an

algorithm by which varying numbers of steering agents can cooperatively guide

multiple swarms in different distributions. The steering agents follow the final design

of the algorithm regardless of their placements in the experiments.

58



3.4 Experiments

Our aim in experiments is to test whether shepherding can be successful and the

essential amount of information for the proposed algorithm. For the experiment, we

first assign values to the parameters of the passive agent model and shepherding

algorithm, set up the initial placements of the experiments, and design metrics to

evaluate the performance of the shepherding algorithm. Subsequently, we present

simulation results that illustrate the trajectory and time-series variations for a single

trial, and an evaluation across multiple trials. Finally, we reduce the angular accuracy

of the bearing measurements and remove communication between the steering agents

to conduct experiments to measure the information required to accomplish the

shepherding task.

3.4.1 Parameter Values

In this part of the study, we select different parameter values and placements for

the passive agents and observe their movements under these settings to determine

an appropriate goal radius for shepherding. Additionally, we assign the parameter

values for the shepherding algorithm and explain their rationales.

Because different parameter values for the same passive agent model can result

in a variety of behaviors, we conduct experiments under several sets of parameter

values c1, c2, c3, c4, c5 and compare their levels of performance. Here, based on the

movement characteristics of swarm systems [49], we present three sets of parameter

values for the passive agents, as follows:

c1 = 200, c2 = 0.2, c3 = 0.2, c4 = 1000, c5 = 0.1, r = 60,

c1 = 250, c2 = 0.15, c3 = 0.2, c4 = 1200, c5 = 0.2, r = 60,

c1 = 200, c2 = 0.2, c3 = 0.25, c4 = 800, c5 = 0.05, r = 60,

(26)

where we classify the first set as the default; and the second set as sensitive, owing
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to its larger separation c1, smaller cohesion c2, tendency to separate under larger

repulsion c4, and larger noise c5; and the third set as insensitive, owing to its tendency

to align with the others under larger alignment c3, smaller repulsion c4, and smaller

noise c5. The parameter value for alignment c3 is overall increased to mimic swarm

alignment behaviors. Additionally, we set δ = 3 in Equation (4).

The size of the goal radius greatly influences the performance of the shepherding

algorithm, particularly when The proposed algorithm relying on bearing measure-

ments, is unable to accelerate shepherding with a small goal radius. This limitation

arises from its inability to compress the area occupied by the swarm by moving closer

to the agents due to its lack of proximity judgment. If the goal radius is much smaller

than the radius of the swarm, the steering agents are likely to keep circling the goal

point and its periphery without completing the task successfully. Alternatively, if

the goal radius is set to be exceedingly large, the steering agents will easily complete

the task, leaving us unable to assess the performance.

Therefore, we determine the goal radius by observing the shape of the swarm

when it is relatively stationary without any steering agents or obstacles. Specifically,

we measure the length of the swarm shape in terms of the maximum distance between

agents, which is xs(t) = maxi,j∈N (t) ∥pi(t)− pj(t)∥. Then, by observing the time-

series variation of xs(t), we regard that the swarm is stationary when xs(t) has little

variation over time, i.e., if it satisfies (1− ks)xs(ts + 1) < xs(ts) < (1 + ks)xs(ts + 1)

with ks = 0.02 when t ≥ ts. We then define the goal radius Rg = kgxs(ts) with the

coefficient kg = 0.8. This procedure is followed to ensure a common goal radius for

the subsequent experiments conducted under different sets of parameter values for

the same placements, as outlined in Equation (26). When calculating the goal radius

for multiple swarms, we consider that the steering agents must be able to collect all

the swarms into the goal region. We first calculate the expected goal region for each

swarm, then summarise the approximated goal radius for all passive agents in these

swarms.

Additionally, given that steering agents rely solely on bearing measurements and
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cannot independently judge whether all the passive agents are inside the goal region,

the completion of a shepherding task is determined externally and uniformly for all

the steering agents.

For the parameter values of steering agents, we fix the magnitude of velocity

for each steering agent at dq = 2. This ensures that the velocity of the steering

agents is moderately higher than that of the passive agents, as determined by the

parameter values given in Equation (26). Additionally, regarding other coefficients

appearing in Equation (19), we set d1 to be much larger than d2, d3, as d1 = 5,

d2 = 1, and d3 = 1 to make vk1(t) the primary movement. We assign the sensing

range r′ = 300 to ensure that the range is sufficiently large for sensing other agents.

We then assign the angle thresholds for each steering agent as θocc = π/60, θ1 = π/9,

θorient = π/3, θdrive = π/18, θn1 = π/4, θn2 = π/2, θn = π/6. These angles are

assigned appropriate values based on the following rationales: angle θocc is set to a

small value to imitating observation under occlusion; angle θ1 is moderately adjusted

to avoid collisions between the steering agents and swarms; angle θorient is limited

to no more than π/2 to determine the orientation or driving stage; angle θdrive is

appropriately small to allow complete driving on one side before switching to the

other side; angles θn1, θn2 are chosen reasonably to determine whether there are other

steering agents on their paths; and angle θn is appropriately small to ensure correct

recognition of subswarms.

For this next part of the experiment, we design three initial placements of the

passive agents and steering agents where N passive agents are distributed into n

different swarms. Specifically, each swarm, denoted by σ, consists of Nσ passive

agents that are randomly placed on a disk centered at each origin with an initial

radius of Rsσ when t = 0. We denote the numbers and radii of multiple swarms as

follows:

• N1 = 30, Rs1 = 40,

• N1 = 30, Rs1 = 40 and N2 = 50, Rs2 = 60,
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One swarm, Behind Two swarms, Front Three swarms, Surrounded

Figure 20. Initial placements of swarms, steering agents, and goal. Positions of
passive agents vary from one to three swarms around the goal. Numbers of steering
agents are M = 3, M = 5, and M = 7, respectively. Positions of steering agents are
categorized as being behind the swarms, in front of the swarms, or surrounding the
swarms. Shepherds are behind the swarms if the steering agents are farther from the
goal than the swarms, with similar directions to the goal; steering agents are in front
of the swarms if the steering agents are close to the goal center; steering agents are
around the swarms if the steering agents are farther from the goal than the swarms,
with directions to the goal coming from all around.

• N1 = 30, Rs1 = 40, N2 = 30, Rs2 = 40 and N3 = 50, Rs3 = 60.

We then set up the placements between these swarms and between the swarms and

the goal, and position the steering agents at various positions to the swarms relative

to the goal, such as behind the swarms, in front of the swarms (near the goal), and

surround the swarms, as illustrated in Figure 20.

We design the following two metrics to evaluate the effectiveness and stability of

the proposed algorithm in the shepherding task. One metric measures progression in

individual trials, whereas the other measures performance across multiple trials.

Time-series variations in distances over time: This metric calculates the

distances from the passive agents and steering agents to the goal during each trial.

In successful trials, we observe that the distance from each passive agent i to the

goal, |pi(t)− xg|, decreases from an initial value to a value below the goal radius Rg.

We record the mean value and the upper and lower intervals for the passive agents.

Similarly, we denote the distance from shepherd k to the goal as |qk(t)− xg|. The

mean value for the steering agents usually follows the values for the passive agents
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because the steering agents guide the passive agents to the goal region.

Consumed time: This metric measures the overall performance of the steering

agents across multiple trials. The total time consumed in all trials is counted and

used to draw box plots that visualize the experiment results. Low consumed time

and small variation between trials indicate effective and robust shepherding.

3.4.2 Experiment Results

We conduct experiments in C = 20 trials with an upper time limit T for each

placement. The shepherding succeeds only when the consumed time is shorter than

the upper limit T . Specifically, we set T = 3000 to ensure sufficient time steps

to complete the shepherding task. We conduct simulation experiments for three

placements using the appropriate number of steering agents and the default parameter

values for passive agents. For the tasks of shepherding a swarm, two swarms, and

three swarms, we show the trajectories in Figure 21a and numerically illustrate the

shepherding process in Figure 21b by displaying the time-series variation in the

distances of the passive agents and steering agents to the goal for a random trial.

We then specifically show the simulation results in increasing the number of steering

agents for shepherding two swarms in Figure 22 and three swarms in Figure 23.

From the trajectories, we observe that the movement of each steering agent is

practically divided into two stages and repeated several times, especially in the

cases of shepherding three swarms, which aligns with the proposed algorithm that

includes the orientation and driving stages. When multiple steering agents guide

the same swarm, the movements at each time step indicate that the steering agents

can recognize neighboring steering agents and avoid converging toward each other.

This phenomenon naturally results in the steering agents dynamically encircling

the target swarm and collectively driving it to the goal region. Furthermore, when

guiding multiple swarms, each steering agent can estimate the orientation of other

steering agents relative to its target subswarm and sequentially drive the swarms
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without duplicating movements with the other steering agents.

We then evaluate the shepherding performance given the initial placements

described earlier and using three sets of parameter values for the sheep, with the

number of steering agents increasing from 1 to 10. The results are presented as

changes in consumed time across C trials. In Figure 24, to avoid redundancy, we

present only the results for guiding two and three swarms. We observe that whereas

the steering agents struggle to succeed with shepherding when their numbers are

low, success rates increase and consumed time decreases as the number of steering

agents increases, eventually reaching a 100% success rate and gradually decreasing

the consumed time, which demonstrates the significance of communication. We then

compare the differences in shepherding results among the three sets of parameter

values. We note that guiding sensitive passive agents tends to fail, whereas guiding

insensitive passive agents tends to succeed and consume less time. Nevertheless, the

shepherding results generally remain stable regardless of changes in the parameter

values for the passive agents.

Based on the results above, we have observed that the advantage of the proposed

algorithm is that, although no communication is used, better performance is achieved

by assigning the movement of each steering agent to different target passive agents.

Specifically, the algorithm leverages cooperation among multiple agents using observ-

able position information, even though the agents do not communicate with each

other to share additional information. This approach improves scalability to changes

in initial placements, accommodates increases in shepherd numbers, and enhances

robustness to reductions in sensing accuracy.
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One swarm

Two swarms

Three swarms

Behind Front Surrounded

(a) Trajectories for guiding one to three swarms under three initial placements for steering
agent. Trajectories are the same as the initial placements as in Figure 20.
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Behind Front

One swarm

Two swarms

Three swarms

Surrounded

Distance to the goal

Time step

(b) Time-series variations in distance to the goal for passive agents and steering agents.
Blue line and interval: steering agents; grey line and interval: passive agents.

Figure 21. Trajectories and time-series variations for guiding one to three swarms
under three types of initial placements for steering agents, using the default set
of sheep-model parameter values. Numbers of steering agents are M = 3, M = 5,
and M = 7 for the case of one, two, and three swarms, respectively.
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3 agents
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Behind Front Surrounded

(a) Trajectories for guiding two swarms with an increasing number of steering agents.
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Surrounded

(b) Time-series variations in distance while guiding two swarms with an increasing number
of steering agents. Blue line and interval: steering agents; grey line and interval: passive
agents.

Figure 22. Trajectories and time-series variations for guiding two swarms with an
increasing number of steering agents under three types of initial placements for
steering agents, using the default set of sheep-model parameter values. Numbers of
steering agents are M = 3, M = 5, and M = 7, respectively.
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7 agents
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Behind Front Surrounded

(a) Trajectories for guiding three swarms with an increasing number of steering agents.
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Surrounded

(b) Time-series variations in distance while guiding three swarms with an increasing number
of steering agents. Blue line and interval: steering agents; grey line and interval: passive
agents.

Figure 23. Trajectories and time-series variations for guiding three swarms with
an increasing number of steering agents under three types of initial placements for
steering agents, using the default set of sheep-model parameter values. Numbers of
steering agents are M = 5, M = 7, and M = 9, respectively.
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(a) Box plots of time consumed guiding two swarms with respect to the number of steering
agents.
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(b) Box plots of time consumed guiding three swarms with respect to the number of steering
agents.

Figure 24. Box plots of time consumed guiding two and three swarms with respect
to the number of steering agents, for three sets of sheep-model parameter values.
The number of steering agents M varies from 1 to 10, for three sets of sheep-model
parameter values.
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3.4.3 Experiments with Further Reduced Information

Furthermore, we investigate the essential amount of information, in terms of

angular accuracy and communication, required for guiding. We determine that

moderate angular accuracy and limited communication between steering agents are

required for our bearing-only algorithm.

With regard to angular accuracy, we increase the error for any angle measured by

rounding the value of each angle down to the nearest multiple of a unit, starting from

a default with no error, ranging from a radian of 0.1 to 3, with increments of 0.1, as

used in bearing measurements outlined in Equation (15). In the experiments, we

assign M = 7 to be the number of steering agents that are to guide three swarms,

which is sufficient for success with no angular error. The results are shown in

Figure 25. We observe that when the error is small, the consumed time does not

change much and may even become shorter until approximately 0.5. We believe that

this phenomenon occurs because, under the assumption that there is no error in

measuring the angles, the movements of the steering agents result in unnecessary

reactions to minor changes in the angle. This oscillation decreases as the error

increases. However, as the error continuously increases, the consumed time begins to

fluctuate, and the success rate significantly decreases. Trajectories with increasing

angular error are illustrated in Figure 26. The trajectory varies depending on whether

the shepherding succeeds or fails. In successful trials, steering agents usually guide

the swarms while maintaining the shape of the swarm until all the passive agents

reach the goal region. On the other hand, in failed trials, the steering agents gradually

lose precise control of the swarms as the angular error increases. With larger errors,

the shape of the swarm may exceed the size of the goal region even if the steering

agents continue circling the swarm to guide it into the goal region. With even larger

errors, the swarm may become completely fragmented and scattered by the steering

agents.
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Completion time

(a) Box plots of time consumed guiding two swarms with respect to angular error. Number
of steering agents is set to M = 5.
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(b) Box plots of time consumed guiding three swarms with respect to angular error. Number
of steering agents is set to M = 7.

Figure 25. Box plots of time consumed guiding two and three swarms with respect
to angular error, for three sets of sheep-model parameter values. The angular error
increases from 0 by 0.1 to 3.
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Angular unit is 2 Angular unit is 3

Angular unit is 1Angular unit is 0.5

Figure 26. Trajectories of guiding three swarms as angular unit increases from 0.5,
to 1, 2, and 3, respectively, for default set of sheep-model parameter values. Initial
placements are the same as in Figure 20.

With regard to communication, the proposed algorithm requires only the informa-

tion Qkℓ(t) given in Equation (23). If we attempt to remove the only communication

between each pair of steering agents, there would be no coordination among the

steering agents, potentially leading to collisions and overlapping movements. An

example of shepherding without communication is illustrated in Figure 27 where

steering agent number M = 3 for guiding one swarm, M = 5 for guiding two swarms,

and M = 7 for guiding three swarms. The trajectories of steering agents become

repetitive due to the lack of communication, which prevents accounting for the

presence of other steering agents, thus failing to differentiate their movements. As

the effectiveness does not improve with an increasing number of steering agents, this

approach takes longer to complete and is more likely to fail when multiple swarms

exist.
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One swarm, Behind Two swarms, Goal Three swarms, Surrounded

Figure 27. Trajectories of guiding one to three swarms with no communication
between steering agents, for the default set of sheep-model parameter values. Initial
placements, as well as the number of passive agents and steering agents, are the
same as in Figure 20, and the method is compared with that for Figure 21a.
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3.5 Summary

In this chapter, from the aspect of further reduced sensing information cases,

we propose a shepherding algorithm that relies on bearing measurements and low-

level inter-agent communication to achieve cooperation for successful shepherding.

The approach emphasizes the collective movements of entire swarms rather than

individual passive agents. Each steering agent is enabled to sense the orientation of

the two boundaries of each swarm and recognize multiple swarms based on angular

differences. Subsequently, we propose a generalized shepherding algorithm that

does not require knowledge of the exact swarm model or individual passive agents.

Additionally, we devise methods for steering agents to select target swarms and

cooperate in the driving stage by confirming their relative orientations to the swarms.

Experiments are conducted to evaluate performance under different placements and

parameter values, demonstrating the effectiveness of the proposed algorithm with

varying numbers of steering agents. Furthermore, we investigate the roles of angular

accuracy and communication among steering agents in shepherding and the minimum

conditions for both types of information required in shepherding.

The design of this shepherding algorithm based on bearing measurements draws

inspiration from conventional shepherding algorithms, which divide the shepherding

problem into manageable sub-problems. Although the information used decreases,

the core strategy remains consistent and effective. However, the simulation has not

been tested for scenarios where the number of sheep is significantly increased or

parameter values are adjusted to make passive agents more prone to separating from

the swarm. These cases reveal a bottleneck in performance.

Although the stability of shepherding using the bearing-based algorithm cannot

be formally established due to the nonlinear and highly complex dynamics of swarms

of passive agents, which make direct proof infeasible, a potential approach to address

this challenge involves abstracting the swarm model into a single-agent model. Future

research could focus on establishing stability using Lyapunov functions, constructing
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a mathematical model, and analyzing error states to demonstrate the stability of

a system where a steering agent guides a single passive agent to a target point.

Although the proposed shepherding algorithm relies on bearing measurements, the

stability proof needs to account for relative positions and velocities. Such a proof

would enhance the applicability and robustness of the proposed algorithm in practical

scenarios.
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Chapter 4

Conclusion

Throughout the two primary studies presented in this dissertation, we examine

the key types of sensing and communication information required for cooperation

among multiple steering agents to achieve swarm shepherding, which addresses

the broader question of the key information requirements for swarm navigation.

Through algorithmic development and extensive experiments, this research indicates

how specific sensing and communication capabilities enable effective swarm control.

Specifically, the findings from the first study revealed that the success of shepherding

tasks depends not only on the amount of information but also on its nature, with

factors such as relative positioning, rather than absolute coordinates, playing a

pivotal role. Meanwhile, the second study demonstrates that effective guidance can

still be achieved under constrained conditions, relying on bearing measurements

and basic information sharing. These insights highlight the practical potential for

reducing centralized information demands without significant performance losses,

particularly in scenarios with limited bandwidth or sensor capabilities.

One of the crucial contributions of the dissertation is laying a framework for devel-

oping quantitative benchmarks under systematically varied sensing ranges, accuracies,

and communication capabilities. These benchmarks will serve as practical references

for designing swarm systems under real-world constraints, assisting engineers in bal-

ancing system performance with hardware limitations. Furthermore, the scalability

of the algorithms under different information constraints will be demonstrated across

a range of swarm sizes and placements. This adaptability supports their application

in dynamic environments, where agents must effectively respond to changes in swarm

distribution, environmental obstacles, and task requirements.

Extensive experiments in the first and second studies reveal that swarm guidance

80



can still be achieved despite information constraints. For example, in cases of low

sensing accuracy, the system remains functional although there may be trade-offs in

time efficiency. This finding emphasizes the robustness of our proposed algorithms

and suggests the resilience potential of systems with constrained sensing inputs. In

situations where communication is limited or absent, our research demonstrates that

swarm control can still be maintained, allowing each agent to assess the orientation

of the swarm relative to its target independently. This approach is particularly

relevant for applications in remote or hazardous locations where communication

infrastructure may be unavailable, as well as in resource-limited robotic applications.

Although both of our proposed algorithms succeeded in their respective studies,

the first communication-free algorithm demonstrates greater effectiveness and ro-

bustness due to its mechanism of targeting specific agents to drive the entire swarm.

In contrast, the second bearing-based algorithm considers the swarm as a whole for

decision-making and control. While both studies use the same Boid model for passive

agents, the parameter values in the first study are more aligned with individual

behaviors, whereas those in the second study are closer to collective dynamics, better

reflecting the distinct characteristics of each algorithm. Furthermore, performance

could be improved by combining the targeting strategy from the first study with

the dividing-stage mechanisms from the second study, resulting in a more effective

approach.

The methods proposed in this dissertation enhance our understanding of essential

information for effective swarm guidance, while several promising research directions

remain. Future studies could explore adaptive mechanisms, such as reinforcement

learning, to enable real-time parameter tuning and decision-making. Equipping

steering agents with the ability to autonomously learn and adapt to environmental

changes could increase robustness across diverse conditions, reducing reliance on

pre-configured settings. Additionally, hybrid architectures combining rule-based and

learning-based control could optimize swarm behavior. For example, a hybrid model

might follow predefined rules in routine scenarios but employ reinforcement learning
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in unpredictable situations to broaden the applicability of swarm control to complex,

real-world tasks.

While our studies show that swarm control can operate effectively with limited

sensing and communication, further exploration of communication protocols could

facilitate the collection of additional critical information to enhance performance.

Designing protocols prioritizing essential information, such as urgent positional

shifts or environmental hazards, could enhance coordination in resource-constrained

settings. This dissertation establishes a theoretical foundation for understanding

how essential information governs swarm behavior, contributing valuable insights

to the field of swarm dynamics. By reducing dependency on centralized control

and extensive communication, we outline practical implications for the scalability

and feasibility of swarm systems in various contexts. Grounded in principles of

nonlinear control and collective behavior, this approach bridges theory and practical

application, offering a pathway for future systems that are not only efficient but also

robust and adaptable.

From the perspective of swarm movement models, this dissertation investigates

the performance of shepherding algorithms on swarms of passive agents in the Boid

model. We characterize the Boid-like properties by collective movements within

the swarms and repulsive reactions to steering agents, both of which we believe are

essential for shepherding. Similar properties are present in the Couzin model [50]

and the Vicsek model [51]. These characteristics are fundamental to shepherding by

allowing steering agents to guide swarms through localized stimuli and interactions.

In other models exhibiting Boid-like properties, adjustments to the implementation

might be required to accommodate different swarm dynamics. Nevertheless, the core

concepts of our proposed algorithms remain valuable: targeting a single agent to

drive the swarm and dividing the shepherding process into subproblems to enhance

performance in complex scenarios. In contrast, shepherding fails when attempting to

guide swarms that do not exhibit Boid-like properties, such as those following the

random-walk model [52], even though each passive agent has repulsive reactions to
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the steering agents.

The result of this dissertation demonstrates the potential applicability of swarm

shepherding algorithms across diverse domains. Future work could focus on deploying

these algorithms in real-world scenarios for empirical validation and refinement.

Cooperations with related fields may offer new perspectives and technical tools to

enhance practical applications. As the demand for multi-objective tasks in robotics

grows—such as simultaneous obstacle avoidance and goal-reaching—incorporating

multi-objective optimization techniques could enable swarm systems to dynamically

balance competing objectives, thereby expanding their range of applications.

The advancements presented in this dissertation mark a critical step toward

intelligent swarm control in real-world applications. As swarm systems gain wider

adoption, they are expected to revolutionize fields such as automated agriculture,

forestry, disaster response, environmental conservation, and large-scale coordination

of robots and vehicles. By addressing resource constraints, this research lays the

groundwork for making swarm systems more accessible and affordable. Ultimately,

this work advances swarm intelligence, positioning swarm systems as powerful tools to

complement and extend human capabilities. With continued technological progress,

swarm control is poised to redefine possibilities in robotics, artificial intelligence, and

autonomous systems, transforming industries and enhancing the quality of life.
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