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Preface

This dissertation draws inspiration from the remarkable self-organizing behaviors
seen in nature, such as flocking in birds, schooling in fish, and guiding in animals.
These natural phenomena demonstrate how complex, coordinated group movements
emerge from simple, local interactions among individuals without centralized control.
By translating these principles into engineered systems, this dissertation investigates
swarm guidance approaches that leverage decentralized control and information-
limited strategies to enable steering agents to guide groups of passive agents. These
methods have broad applications, from environmental monitoring and precision
agriculture to search and rescue.

Inspired by natural behaviors such as sheepdogs guiding sheep, ”shepherding”
in swarm robotics involves a class of steering agents that influence another group
of agents. Shepherding systems rely on steering agents to guide or repel passive
members, thus directing the entire swarm toward a target.

Conventional approaches to shepherding employ various methods, including
control theory, rule-based strategies, and reinforcement learning. Nevertheless, these
methods often rely on continuous access to detailed information, such as centralized
control for the steering agents or comprehensive sensing data about other agents.
In practical scenarios, such assumptions are frequently unrealistic due to sensing
limitations and communication constraints, which significantly reduce the feasibility
of the aforementioned methods.

This dissertation presents shepherding algorithms that utilize limited information
to enable cooperation among steering agents. The research aim is to find essential
information types for accomplishing the shepherding task by proposing and evaluating

practical algorithms. These algorithms emphasize simplicity by reducing reliance



on complex data collection and extensive agent-to-agent communication, thereby
enabling flexibility and scalability in managing larger swarms. Specifically, this
research focuses on two key studies, each addressing distinct aspects of information
constraints.

The first study employs a fully decentralized method in which each steering agent
operates based solely on its local observations without any inter-agent communication.
This design enables steering agents to achieve emergent coordination, as collective
behavior arises naturally from the interplay of individual decisions. Specifically, each
steering agent guides the swarm by independently selecting, driving, and switching
target agents while maintaining a safe distance from other steering agents. Numerical
simulations demonstrate that this communication-free method is scalable and robust
under various conditions. In this context, ”scalability” refers to the ability to manage
larger swarm sizes and varied initial placements of agents without significant increases
in computational or communication demands, and "robustness” denotes the ability
to maintain effective guidance even when we change agent model parameters or
fluctuations in sensing accuracy.

The second study introduces a bearing-only method that operates under stricter
sensing limitations. In this context, each agent senses only the directions of neigh-
boring agents without access to proximity or distance measurements. The algorithm
utilizes directional information relative to the swarm and the goal to guide the
movement of a steering agent. Additionally, to achieve coordination and prevent
collisions under these constraints, the algorithm incorporates limited inter-agent
communication, allowing each steering agent to share essential directional infor-
mation about the guiding swarm. This low-level communication approach enables
agents to adapt to scenarios involving multiple swarms. Simulations demonstrate
the performance of this algorithm in guiding multiple swarms with multiple agents
in various initial placements. The shepherding task generally remains successful even
as the accuracy of bearing measurements for each steering agent decreases.

Through extensive simulations, this dissertation validates the proposed methods



under two distinct settings to examine the limits in swarm control: (1) relative
sensing without communication and (2) further reduced sensing with limited com-
munication. Although intermediate configurations may be possible, focusing on
these extreme scenarios provides critical insights into the information required for
coordination. The results offer practical and quantitative benchmarks, specifying
the sensing and communication limits that allow autonomous systems to operate
reliably with limited data in real-world conditions. By defining these criteria, this
research addresses pressing challenges in swarm robotics and multi-agent systems and
establishes a foundation for future developments in adaptive, information-efficient
swarm technologies.

In summary, this study advances our understanding of decentralized shepherding-
type swarm control by utilizing the limited information requirements for coordination.
These findings bridge theory with application, demonstrating that simple, rule-based
interactions can produce scalable, effective swarm behaviors under realistic constraints.
The solutions presented underscore the importance of simplicity and adaptability
in engineered systems, paving the way for robust and resource-efficient swarm
technologies that can perform in challenging, information-limited environments. The
results of this study bring us closer to realizing the potential of swarms as intelligent,
adaptive systems, poised to transform domains such as autonomous navigation,

environmental management, and collaborative robotics.
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Chapter 1

Introduction

1.1 Background

Self-organized group formation and collective motion in the form of swarms are
hallmarks of living systems over a wide range of length scales, from microorganisms
to fish schools, bird flocks, and animal herds [1I, 2l [3]. These behaviors are remarkable
in that they emerge without any centralized coordination, relying instead on local
interactions among individual members of the group [4] [5 [6]. Through these interac-
tions, organisms collectively adjust their movements in response to environmental
cues and the positions of neighbors, producing cohesive formations and cooperative
behaviors.

The study of swarm behaviors has attracted interest in the field of biology and
inspired the development of artificial systems that utilize numerous agents to perform
intelligent tasks. In swarm robotics, autonomous agents collaborate to complete
complex objectives [7]. This capability supports a range of dynamic tasks, including
shape assembly [§], coordinated drone flying [9], and control of magnetic microrobot
systems [10} [T1]. Such engineered swarms have found applications across diverse areas,
including environmental monitoring, search and rescue, and precision agriculture,
where multiple agents are deployed in various formations to perform intelligent tasks
with flexibility.

However, in many circumstances, directly manipulating swarm behaviors or
movements has significant difficulties and limitations due to the inherent autonomy
and decentralized decision-making processes within these systems, highlighting the
need for developing swarm control through external influences [12]. In biological

swarms, individuals act independently and often respond unpredictably to stimuli,
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Figure 1. Illustration of the shepherding task for steering agents navigating a swarm
of passive agents.

making direct command nearly impossible. Similarly, in artificial swarms, while
robots can be programmed to localize and perform specific tasks, internal coordination
becomes increasingly difficult as swarm size grows. Therefore, establishing scalable
and smooth coordination within swarms is essential through swarm control.

A well-known example in swarm control and multi-agent systems is the leader-
follower formation [I3, [I4]. This approach is widely applied in scenarios where
structured movement is essential. In leader-follower formation, a designated leader
directs followers toward a common goal, with each follower adjusting their actions
based on the leader’s movements. Although this method has shown effectiveness in
certain controlled settings, the success of this method relies on each follower actively
coordinating to avoid collisions and maintain formation [I5]. However, achieving
this level of coordination becomes increasingly difficult in large swarms or when
agents operate with only localized information, making it challenging to anticipate
the actions of distant agents.

On the other hand, a paradigmatic example of swarm control is the shepherding
problem [16] [17], which is inspired by the natural behavior of sheepdogs herding sheep.
This problem involves designing algorithms for shepherd-like steering agents to guide
sheep-like passive agents (commonly referred to as swarms) toward a designated goal
using repulsion forces, as illustrated in Figure[Il Beyond its biological inspiration, the

shepherding study encompasses theoretical and practical significance. Theoretically,



this research provides a unique framework to explore distributed control strategies,
coordination mechanisms, and emergent behaviors in multi-agent systems [18]. It also
contributes to understanding how local interactions lead to global outcomes, a central
theme in swarm intelligence and control theory [19]. Practically, the applications of
shepherding span diverse domains. In agriculture, robotic systems can be deployed
for livestock herding [20], 21], reducing the dependency on human labor. In urban
settings, shepherding-inspired algorithms have been used for crowd control and
evacuation management [22], addressing challenges in public safety. Moreover, the
coordination of large-scale robotic and microrobotic swarms [23], as in environmental
monitoring, disaster response, and targeted drug delivery [24] 25], further underscores
the practical relevance of this research. The overarching goal is to bridge the gap
between understanding natural collective behaviors and engineering artificial swarm
systems capable of tackling complex, real-world challenges.

The study of shepherding focuses on designing movement algorithms for steering
agents, commonly referred to as shepherding algorithms. These algorithms can
generally be classified into three categories; however, limited-information scenarios
are rarely given priority in any of these categories.

The first category consists of control-theoretic methods, where researchers apply
control theory to design precise movements for steering agents, guiding the swarm
based on specific models and parameters [26], 27, 28, 29, 30, 31]. Although control-
theoretic methods achieve a high degree of precision, reliance on predefined kinematic
models and parameters limits their practicality when these underlying assumptions
no longer hold [32].

The second category includes rule-based methods, which rely on relatively sim-
ple behavioral rules to direct and gather sheep-like agents toward a target [33], 34,
35, 36, B7]. Rule-based models offer a simpler and more adaptable approach, es-
pecially in situations where precise control of individual agents is neither feasible
nor required. This adaptability makes rule-based algorithms particularly promising

for real-world applications. Nevertheless, most rule-based approaches still assume



considerable sensing and communication capabilities, which may be impractical in
certain scenarios [38§].

The third category encompasses learning or optimization-based path planning
methods, which employ reinforcement learning or optimization techniques to help
steering agents navigate effectively through environments with obstacles [39] 40].
These methods are particularly valuable in diverse environments with varying ob-
stacles and conditions, where agents need to adapt flexibly. However, to simplify
the learning process, these approaches often assume the sheep-like agents act as a
single cohesive group, removing the need to account for individual differences in

behavior [41].

1.2 Objective

This dissertation aims to find the key information types required by steering
agents to accomplish the shepherding task by proposing and evaluating practical
algorithms. In this context, we categorize information into two primary types:
sensing information, which relates to an agent’s ability to detect and determine the
relative positions of nearby agents, and communication information, which involves
data exchange between agents to enable cooperative behavior. We use rule-based
methods for this categorization, as rule-based algorithms provide consistent criteria
for evaluating feasibility. Addressing the objective will lay a framework that clarifies
how combinations of sensing and communication capabilities influence the success of
swarm shepherding.

This investigation contributes to practical applications by examining how simu-
lations based on real-world constraints reveal the requirements for information in
swarm coordination. These findings provide insights into optimizing system design
for applications where information is costly or difficult to obtain, such as autonomous
drone navigation in areas with low connectivity, or search-and-rescue operations in

dynamic and unpredictable terrains.



To achieve the aforementioned aims, we study swarm shepherding from the
perspective of sensing and communication information required in rule-based methods.

In the first study [42], we examine the feasibility of guiding steering agents
under the constraint that sensing is limited to relative distances and directions
without relying on communication for coordination. The results indicate that direct
communication between agents is not required, as effective coordination can still
be achieved by agents adjusting their behavior based solely on relative distances to
other agents. Furthermore, the proposed approach leverages emergent inter-agent
repulsion and distributed target selection, enabling agents to collectively guide the
swarm toward a target without explicit communication.

In the second study [43], we further reduce the available sensing information by
limiting it to bearing-only measurements, where each agent can detect only the di-
rections of neighboring agents without access to relative distances. These constraints
make cooperative shepherding significantly more challenging, as agents lack precise
location information to evaluate proximity. To compensate for this reduced sensing
capability, we introduce a low level of communication that enables agents to share
brief directional information. This limited communication allows agents to confirm
relationships among multiple swarms and maintain cooperative movements with the
swarms. By integrating this low-level communication with bearing-only measure-
ments, we demonstrate that agents can still assess their orientations, coordinate,
and guide multiple swarms toward a goal under severely constrained sensing and

communication conditions.

1.3 Target Scenario

We begin by introducing the commonly used movement model for passive agents
and the goal settings in the shepherding problem, followed by a notable movement
algorithm for steering agents. The task of shepherding involves using these algorithms

to guide passive agents from their initial positions to a designated goal. Each algo-



rithm is designed based on the specific information scenario in the study. Specifically,
we assume each agent has no area or volume to simplify the model, allowing us to

focus on the movement algorithms for steering agents.

1.3.1 Sheep Model

We consider a scenario in which M steering agents are tasked with guiding N
sheep. Initially, the NV passive agents are grouped into several distinct swarms, each
with its spatial arrangement. The M steering agents are individually positioned at
specified locations around these swarms to facilitate the guidance process. The passive
agents and steering agents are assumed to move dynamically on a two-dimensional
plane R? in discrete time. To denote the sets of passive agents and steering agents,
we use the notation [N] ={1,2,..., N} and [M] ={1,2,..., M}, respectively. For
any i € [N] and k € [M], we use p;(t), u;(t) and qx(t), vk (t) to denote the position and
velocity, respectively, of the ith passive agents and kth steering agents, respectively,
at time ¢t. The movements of the passive agent and steering agent are thus defined
as follows:

pi(t+ 1) = pi(t) + (1),
gt + 1) = qult) + vilt).

We assume that each passive agent and steering agent recognizes other agents
within limited sensing ranges by the positive values r and 7/, respectively. Accordingly,
the sets of other passive agents and steering agents recognized by the passive agent ¢

at time ¢ are given by

Ni(t) = {7 € INI10 < [lpi(t) = p; ()| <},
Mi(t) = {k € [M] [0 < [|pi(t) — ax(D)]| <7},

(1)

respectively. Similarly, the sets recognized by the kth steering agent at time ¢ are
given by
Ni(t) = {5 € [IN] 0 < lgr(t) = p; ()] <7},



O 7
A

Separation u;;(t) Cohesion u;,(t) Alignment u;3(t) Repulsion u;,(t)  Noise u;5(t)

@ steering agent
@ Passive agent
O other passive agent

Figure 2. Schematic of the passive agent model described in Equation . A passive
agent receives separation, alignment, cohesion from other sheep, and repulsion from
steering agents within the sensing range. The passive agent is also exposed to noise.

My (t) ={t € [M]] 0 < [|lgu(t) — qe(t)]| < 7'},

respectively.
Following the convention used for the boid model [5] and the shepherding prob-
lem [34], 35 [37], the movement of the ith passive agent at time ¢ is defined by

u;(t) = crun (t) + cotin(t) + cawis(t) + cawia(t) + csuis(t), (2)

where u; (t), up(t), and u;3(t) denote the forces of separation, cohesion, alignment,
respectively, between sheep; wu;4(t) denotes the force of repulsion from the steering
agents; and w;5(t) denotes a uniformly distributed random vector representing noise.

Meanwhile, ¢y, co, 3, ¢4, and c5 are positive constants. Specifically, we define the first



four vectors as

wn(t) = =[N Y bl () = pilt)),

JEN()

wn(t) = NGO S ln(8) — pilt)),

JEN;(1)

ui(t) = NGO Y @luy(t = 1)),

JEN;()

wia(t) = =M1 Y (at) - pilt)

LeM;(t)
where ¢(x) = x/||z|| denotes a normalization operator, to represent the direction of

a vector; and
(

afllz)®, if flzfl >,
V() = z/(||z]|6%), if0 < |z| <é, (4)
0, otherwise,

\

denotes a potential-like function, to represent the interference caused by the proximity
between two agents. We set the constant ¢ to be greater than 1 to prevent the value
of ||¢(z)] from diverging when ||z| is less than 1. One example illustrating the
value of 1 (x) is visualized in Figure . Among the Equations in Equation , the
function () allows both u;; (f) and u3(t) to be calculated based on varying distance
scales between each pair of sheep, helping to prevent collisions when passive agents
are too close [44] and to avoid dispersion when distances exceed the sensing range r.
Additionally, we set us(t) to a time-delay term to allow each agent to attempt to

observe and follow the movement of the surrounded sheep.
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Figure 3. Function ¢ (z) defined in Equation (4)) when § = 3. The range of z,
representing the distance between two agents, is set to z > 0. The value of ¥(z)

is 0 at 1(0), reaches a threshold of 1/§? when 0 < z < §, and gradually decreases
when z > 6.
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Figure 4. Ilustration of the concept of the Farthest-Agent Targeting algorithm. A
steering agent (red dot) chases the farthest agent from the goal as its target agent
(blue dot).

1.3.2 Goal

The objective of the shepherding task is to guide all passive agents into a
designated region called the goal. The task is considered complete only when all
passive agents are within the goal area simultaneously at the same time step ¢. We
let the goal region G C R? be a closed disk with centre xz, € R? and radius R, > 0.
The value of goal radius R, influences the results of shepherding because the larger
the goal radius, the sooner the shepherding is completed. By contrast, the smaller
the goal radius, the more time steering agents consume until all passive agents are
guided into the goal region. Therefore, we set the goal radius R, based on the
length of the swarm shape when it reaches a relatively stable shape. In this state,
the distances between passive agents remain almost constant after a few time steps
since initialization in the preliminary simulation, without any interference from the
steering agents. The specific values and adjustments for radius I, and passive agent

number N are introduced in the experiment section of each study.

1.3.3 Example of Shepherding Algorithms

Among the methods introduced in Section for designing movements of steering
agents, the Farthest-Agent Targeting (FAT) algorithm [37] stands out for its simplicity

and effectiveness in scenarios involving a single steering agent (i.e., M = 1) guiding

10



a swarm. In this algorithm, the steering agent primarily moves toward the position
of the passive agent farthest from the goal, as observed by the steering agent
as arg max||p;(t) — z4||. An illustration is presented in Figure (4| and the detailed
impll:rjr\lf((etlzltation of the algorithm is introduced in the following section. While the
FAT algorithm provides a straightforward approach, its primary limitations include a
lack of scalability due to reliance on a single steering agent and potential inaccuracies
caused by the relative placements of steering agents and swarms. Despite these

shortcomings, the FAT algorithm has inspired the development of numerous advanced

algorithms that aim to overcome these issues.

1.4 Outline of Dissertation

The remainder of this dissertation is organized into two sections according to the
objective introduced in Section [I.2] Chapter [2] presents the proposed communication-
free shepherding algorithm, designed for scenarios with limited sensing and no
communication capabilities. Chapter [3| describes the proposed bearing-only shep-
herding algorithm, developed for scenarios with further reduced sensing capabilities
and limited communication options. Chapter 4| presents the conclusion of this

dissertation.

11



Chapter 2
Shepherding Control by

Communication-free Algorithm

2.1 Introduction

Our first study investigates whether communication between steering agents is
necessary for successful shepherding. Previous studies often rely on communication
between agents for the coordination of multiple steering agents, and various method-
ologies have been proposed to address challenges in information control. For example,
navigation using steering agents in a prescribed formation demonstrates effective
control [33]. Building on this concept, a 3-D guiding algorithm applies dimension
reduction to manage the complexity of the multi-agent system [27]. Other approaches
include caging-based algorithms designed for guiding a flock of agents [31, 29]. Ad-
ditionally, centralized shepherding algorithms assign specific paths to each steering
agent [38], and quasi-decentralized control laws using sliding mode control facilitate
coordination among multiple steering agents [26].

Most existing shepherding algorithms with multiple steering agents assume the
existence of a central coordinator [33], 27, 26, 29, 38|, BI]. This assumption requires
the coordinator to observe the whole system including the steering agents. However,
these requirements can severely limit the practical feasibility of the algorithms.
Although we can find in the literature a few decentralized shepherding algorithms
with multiple steering agents, these works still implicitly assume the communication
among steering agents. For example, the shepherding algorithm proposed by [36]
requires that a steering agent can know the intention of another, which is hard

to realize without communication between these agents. Also, in the shepherding

12



algorithm developed by [30], the steering agents initially need to perform multiple
rounds of communications for executing a distributed clustering algorithm to reach
a consensus on which sub-swarm is shepherded by which steering agent.

The objective of this study is to propose an algorithm for communication-free
shepherding navigation with multiple steering agents, relying solely on their ability
to sense relative distances and directions to achieve cooperation. Our approach is to
start from an existing single-steering agent algorithm called Farthest-Agent Targeting
algorithm [37]. Leveraging on the simplicity of the algorithm, we then construct an
algorithm for shepherding by multiple steering agents under the assumption that
each steering agent knows its relative position to the goal and the relative position of
other agents within the shepherd’s recognition range. Within the proposed algorithm,
although each steering agent attempts to guide the whole swarm by chasing its
target passive agent independently and without inter-steering agent communication,
cooperative behavior emerges as a consequence of the spatial distribution of steering
agents induced by the inter steering agent repulsion built into the algorithm. The
target passive agent of a steering agent is determined as the passive agent maximizing
the weighted difference between the sheep’s distance from the goal and the one
from the shepherd. The improved performance of the proposed algorithm with an
increasing number of steering agents is demonstrated through extensive numerical
simulations.

The remainder of this chapter is organized as follows. Section describes
our proposed decentralized shepherding algorithm. Section and Section 2.4
describe the baseline algorithms and centralized algorithms separately for comparison.
Section [2.5] presents the numerical simulations and discusses the robustness of the

proposed algorithm.
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2.2 Proposed Algorithm

In this section, we describe the algorithm that we propose for the movement
of the steering agents. We start by recalling the Farthest-Agent Targeting (FAT)
algorithm [37] designed for the case of a single steering agent (i.e., M = 1). In
the algorithm, the movement of the (1st) steering agent is specified as ¢;(t + 1) =
q1(t) + v1(t), where v, (t) € R? represents the movement vector of the shepherd. Let
us denote the position of the passive agent farthest from the goal by & (t); i.e., define

§i(t) = argmax |[|p —z,].
PE{Pi(t)}icim)
Then, in the FAT algorithm, the movement vector v (t) is specified as the weighted

sum of the following three vectors:

P& (1) —au(t), —v(&(t) — ai(t), —d(zy — q(t)), (5)

which are, respectively, to realize the movement of the steering agent for chasing the
farthest agent, taking an appropriate distance with the farthest agent, and pushing
the farthest agent toward the goal region. As for the second term, the term allows
us to realize an appropriate, non-vanishing distance for the same reason that the
normalization 1 in the passive agent model allows a passive agent to avoid a collision.
Despite being simple, the FAT algorithm is known for its effectiveness in performing
the shepherding navigation with a single shepherd [37]. However, the algorithm
requires knowledge of the positions of all sheep. Furthermore, when generalized to
the situation of multiple steering agents, the formula would result in all the steering
agents targeting the same sheep, which is presumably inefficient.

Based on these observations, in this study, we propose an extended version of the
FAT algorithm to let each steering agent choose, as its target, a passive agent both

close to itself and far from the goal. Specifically, we propose that the passive agent
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Figure 5. Target selection by the proposed algorithm. Goal: X; Sheep: circles;
Shepherd: square. For each value of «, we color each sheep i using the [0, 1]-
normalized value of the objective function ||p; — x,4|| — o||pi — qx(t)||. When a =0,
the steering agent targets the passive agent farthest from the goal. On the other
hand, for larger a, the steering agent targets a passive agent far from the goal and
close to the shepherd.

targeted by the kth steering agent is determined by the formula

&(t) = argmax  (|lp — 4]l —allp — a(®)]]), (6)
pE{P; (D} jent )

where a > 0 is the parameter determining the behavior of steering agents within
the proposed algorithm by balancing two factors. For example, when o = 0, only
the first term ||p — || remains in the formula (6) and, therefore, all steering agents
target the passive agent farthest from the goal; i.e., the proposed algorithm reduces
to the FAT algorithm. On the other hand, when « is sufficiently large, each steering
agent chooses the closest passive agent as its target, which specifically prevents the
scattering phenomenon caused by the FAT algorithm, as illustrated in Figure [5
Hence, we can expect that choosing a moderate value of o would result in a control
strategy that is as effective as the FAT algorithm and is less suffered from the
scattering phenomenon. We here emphasize that & (t) is decidable by the kth
steering agent because the sheep’s relative position to the goal is computable as
pi(t) =24 = (p3(8) — au(8)) + (7, — au(1)).

We can now state the proposed movement algorithm of the steering agents. As
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in the FAT algorithm, we let

where v (f) denotes the movement vector of the kth shepherd. This vector is to be

constructed as the weighted sum of the following four vectors. First, we define

v (t) = @(&r(t) — (1))

for the kth steering agent to chase the target sheep. Secondly, in order to take an

appropriate distance between the steering agent and sheep, we define

vka(t) = = INL@OIT D (i) — aw()) (7)

FEN(t)

so that the kth steering agent receives repulsion force from all the neighboring sheep.

Thirdly, to achieve guidance toward the goal region, we define the vector

ves(t) = —d(zg — qu(t))

by adopting . Finally, in order to avoid competition among steering agents for

efficient guidance, we introduce the vector

vra(t) = =llzg — @O ML D Dlaet) — ailh)), (8)

Le M, (t)

which represents repulsion between steering agents. Because steering agents need to
be relatively closer to each other at the final stage of the shepherding navigation, we
introduce the weight term ||z, — qx(t)||. Now, based on the four vectors introduced

above, we define the movement vector of the kth steering agent as
Uk(t) = d1’Uk;1 (t) + dgvkg(t) + d3vk3(t) + d4Uk4(t) (9)
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for positive constants dy, do, d3, and dy. We do not include the additive noise term
in the movement of steering agents.

In the experiments described in Section 2.5 we use the parameters d; = 2,
dy =100, d3 = 1, dy = 2, and ' = 300. We set the parameter o in Equation @ to
« = 1, as it provides a balanced and intuitive value for this trade-off.

Moreover, in this study, we do not aim to analytically establish the effectiveness
of the shepherding algorithms. The major reason for this choice is its intrinsic
difficulty arising from the nonlinearity of the Boid model. In fact, several existing
works [see, e.g., 30, 27, 33, 31], 29] 38}, 26] on the shepherding problem do not provide
a mathematical proof for the performance of the proposed control methodologies.
This tendency is a common practice in the field of swarm guidance, as the nonlinearity
of the swarm model often makes it challenging to perform a meaningful mathematical
analysis.

More importantly, let us discuss the communication requirements of the proposed
algorithm and existing distributed shepherding algorithms with multiple steering
agents [36] B0]. The proposed algorithm does not require communication between
steering agents in the sense that each steering agent requires only its relative position
with other steering agents, which can be achieved with its own sensing devices. On the
other hand, as discussed in Section 1, the existing algorithms require communication
between steering agents because each agent needs to understand the target or key
factors influencing the movement of other steering agents. Specifically, the algorithm
by [36] can require O(n;M?) times of communications between steering agents at
each time step, where n; denotes the number of sub-flocks of sheep. Also, within the
algorithm presented by [30], in order to execute a clustering algorithm for determining
which sub-swarm is chased by which shepherd, O(n;M) times of communications

needs to be periodically performed between steering agents.
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2.3 Baseline Algorithms for Single Steering Agent

We describe notable baseline methods used for comparison in our numerical
simulations. Similarly, the methods presented in this section are not designed for
scenarios with multiple shepherds and do not rely on inter-shepherd communication.
These baseline methods are utilized to evaluate the effectiveness of the proposed

algorithm, particularly in scenarios involving multiple steering agents.

2.3.1 Farthest-Agent Targeting with Occlusion

The farthest-agent targeting algorithm with occlusion (FAT-OCC) [37] is also
considered. This algorithm is identical to the FAT algorithm except that the

vector vgo(t) in (7)) is modified as

k() = = NI Y 9(p(t) — ar(t)),

FENE oee (V)

in which the set Ny .. (t) represents the set of passive agents recognizable under
occlusion and is constructed as follows. For each ¢, we first initialize N} ,..(t) = 0. We
then order the set NV (t) as (i1, ..., i) in such a way that [p;, ()] < [[pi, (t)]| <
e < Hp"w\f,;(t)\(t)n' For each ¢ = 1,...,|N/(t)|, we sequentially join the index i, to
the set NVj ..(t) if and only if [Z(p, — qx) — Z(pg — qr)| > 0 for all ¢ € Ny ..(t). We

use the parameter 6§ = 7/36.

2.3.2 Online-Target Switching

The Online-Target Switching (OTS) algorithm proposed by [34] is applied by

judging the swarm separation. We implement this algorithm by replacing &(¢) in
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(6) with &*(¢) defined by

D ots D — i # _ 5 ots
oy - A PO ), @ B <R
pk# (t) +do* ¢(p;f (t) — D (t)), otherwise

where

Ni(t)
Pr(t) = Ni(t)™ Z pi(t) (11)

is the mass center of the swarm that the steering agent k can observe,

pp(t)= argmax |pk(t) — pl| (12)
pE{pi(t) bie vy, (1))

represents the position of the passive agent farthest from the mass center, and
R = TOtS\/m determines the size of the radius based on the number of the
sheep, which is the same setup as the original algorithm. We choose r°* = 10
and d°® = 25 so that there is an appropriate distance of R°*® and d°* between the
steering agent and the swarm. In this way, the steering agent can maintain the

swarm shape when changing the target position £ (¢) in Equation ([10]).

2.4 Centralized Algorithms for Multiple Steering
Agents

In this section, we investigate the role of coordination in centralized multi-agent
shepherding algorithms, with a focus on its function during shepherding. The
methods described in Section 2.4 are specifically designed for scenarios with multiple
shepherds and rely on inter-shepherd communication to form coordinated formations.
However, such coordination can sometimes restrict the individual flexibility of agents,
potentially reducing overall performance. By comparing these methods with the

proposed algorithm, which operates without communication, we aim to provide a
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clearer rationale for the necessity of communication in shepherding tasks.

2.4.1 Point-offset Circling Control

The shepherding algorithm proposed by [27] proposes a shepherding algorithm
in which steering agents form an arc formation to steer the swarm. Within the
algorithm, at each time a central controller computes the center of the mass p(t)
and the position p#(t) of the passive agent farthest from the center similarly in
(11). Then, the controller regards the swarm as a circle with center p(t) and radius
Ry(t) = ||[p*(t) — p(t)|. The controller then generates a circle having the same center
but with a larger radius, and directs each steering agent to move toward a point on
the larger circle. Each steering agent is placed evenly on the larger circle.

Specifically, within the algorithm, the controller computes the following quantities

at each time ¢:
Rcircle<t) — acirclcRs (t),

Acircle _ A(zk —m— 1)
F (2m —2)

0(t) = £(p(t) — x)
where R(t) represents the radius of the larger circle whose radius is controlled by
parameter o > 1, A, represents the degree of kth steering agent for determining
its placement on the circle, and 6;(t) represents the angle of the center of the swarm
in the counterclockwise direction with respect to the positive direction of x-axis.
Each steering agent needs to know its index £ within the total number M of steering
agents. The controller then directs each steering agent to move toward its target

position defined by

COoS Aiirclc + 0(25)

gzircle@_) — ﬁ(t) + Rcircle(t> ‘ -
sin AgTe° + 6(t)

Within our simulation, we use o = 1.5 and A = 27/3.

20



2.4.2 Potential-based Caging

The shepherding algorithm proposed by [31] employs a caging formalism in robotic
manipulation and guides a group of passive agents to the goal region safely and with
provable guarantees. The cage is constructed by a regular n-sided polygon and has
the steering agents as its vertices. The distance between the center of the swarm

and the vertex is set as R°*®° determined by

R°(t) — Rs(t) — dosm = R®°(t) sin (7/n),
2k
ATE = —mr,
m
where dcgps is the minimal required distance between the passive agents and the

point. Then, the target position for the kth steering agent is set as

cos A&
k() = D(t) + ROt + "o (p(t) — xy).
sin A}*&°
k
We remark that we are introducing the term parameter a®*°¢(p(t) — x,4) so that the
algorithm can achieve guidance of the swarm into the goal region. In the caging
process, each steering agent moves to a vertex close to itself as its target position

while making sure that no vertex is shared with multiple steering agents. We use

desy = 0.05R4(0) and a8® = —8.

2.5 Experiments

In this section, we present numerical simulations to evaluate the performance
of the proposed algorithm, which operates without communication between steer-
ing agents. These simulations aim to investigate how effective shepherding can be
achieved without relying on communication. To validate this, we compare the pro-
posed approach with other methods, including baseline algorithms that increase the

number of agents without communication and centralized methods that incorporate
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communication while employing a formation strategy. This comparison helps isolate
the effects of communication from other factors, providing a clearer understanding
of its role and the necessity of its inclusion in multi-agent systems.

For each of the initial placements, all trials are to be terminated when all the
passive agents are within the goal region, or after 3000 steps regardless of the result
of navigation. In the former case, we label the trial for the initial configuration as a

sSuccess.

2.5.1 Parameter Values

We assume that there exist N passive agents to be guided in a two-dimensional
space. We suppose that, at the initial time, these agents are placed uniformly and
randomly within a disc centered at the origin, with an initial radius R4(0). Here, the
origin represents the center of the initial agent placement distribution. We design
the pattern of the initial distribution as 1) a small swarm: N = 20, R(0) = 40, 2) a
large swarm: N = 50, R(0) = 60, and 3) two separate swarms: N = 20, R,(0) = 40
for one swarm and N = 30, Rs(0) = 50 for another swarm. The parameters of the

passive agent model are set as
c1 = 200,c9 =0.2,c3 = 0.02,¢4 = 400, ¢c; = 0.1 (13)

and r = 50. We call this parameter set or scenario as default. The goal G is supposed
to have the center z9 = [150,150]" and radius RY = 80. The radius size R, is
reasonably determined based on the number of passive agents in the simulation. For
the comprehensiveness of our experiment, we prepare the following three different
placement patterns of the steering agents; steering agents are initially 1) placed
around at the bottom-left of the passive agents (bottom-left), 2) placed around at
the top-right of the passive agents (top-right), and 3) surrounding the passive agents
(surrounding). For each of the placement patterns, we randomly generate 100 trials

for different initial placements of agents. Samples of the initial placements are shown
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in the first column of Figure [6]

2.5.2 Experiment Results

We conduct simulations to illustrate the effectiveness of the proposed algorithm.
Within the simulations, we conduct shepherding of a swarm following one of the three
initial distributions of passive agents and three placements of steering agents using
one of the four algorithms. We illustrate the performance of the algorithms using
the trajectories of agents. Toward this end, for each pair of the four algorithms and
three placement patterns, we pick the quickest trial among 100 initial placements.
The trajectories and their corresponding completion time are shown in Figure[6] We
can observe that the trajectories of the steering agents in the proposed algorithm are
smoother than those of the three baseline algorithms, confirming the effectiveness of
the decentralized mechanism of the proposed algorithm. For guiding the two separate
swarms, we find through numerical simulations that the switching algorithm is not
capable of performing the shepherding task, so we only compare the three remaining
algorithms in Figure [6cf We also observe the FAT algorithm tends to consume
more time or fail depending on the cases of the initial placements. After examining
the simulation data, we identify the following problems with the FAT algorithm.
One problem is that guiding a large swarm can consume excessive time due to long
traversal distances. Another problem is that a swarm tends to be scattered when
the steering agent chases the passive agent on the opposite side of the swarm. The

scattering makes the shepherding process more difficult and increases consumed time.
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(c) Guiding two separate swarms in the default passive agent model with M = 5. The
trajectory of the online-target switching (OTS) algorithm is not shown because of its
failure.

Figure 6. Initial placements and corresponding trajectories for guiding three types of
swarms in the default passive agent model. 1st column: Samples of initial placements.
2nd to the last columns: Trajectories of the quickest navigations among those
performed for randomly generated 100 initial placements. Circle: goal region. Red
dots: steering agents. Gray dots: passive agents. The numbers at the bottom-right
indicate the time at which the shepherding navigation is completed. It is remarked
that the initial placements in each row are not necessarily the same.
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For further evaluation and comparison of the proposed and the baseline algorithms,
we introduce the following three performance measures. First, the success rate of an
algorithm for a placement pattern is defined as the rate of successful trials among
randomly generated 100 initial placements. Second, we define the completion time as
the execution time of the algorithm in its successful trials. Finally, the average path
length is defined as the average of the mean traveling distance M =" S0 37, [Jox (1))
of steering agents in successful trials.

Figure [7] represents how these three performance measures depend on the number
of steering agents for each of the algorithms. We observe that the proposed algorithm
achieves almost 100% success rate regardless of the number of steering agents and
placement patterns, which confirms the effectiveness and scalability of the proposed
algorithm. We can also observe that the proposed algorithm outperforms the baseline
algorithms in completion time and average path length. Furthermore, the average
completion time and average path length steadily decrease with respect to the number
of steering agents. These trends suggest that the proposed algorithm allows stable

and synergistic coordination of steering agents for the navigation of passive agents.
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the number of steering agents M from 1 to 10.
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(c) Guiding two separate swarms in the default passive agent model. Horizontal axes
represent the number of steering agents M from 1 to 10.

Figure 7. Performance of the algorithms for guiding three types of swarms in the
default passive agent model. Horizontal axes represent the number of steering agents.
1st column: the rate of successful navigation. 2nd column: success time. 3rd column:
average traversal distance of steering agents. In the 2nd and 3rd columns, a solid
line draws an estimate of the mean value and shaded areas describe the confidence
interval for that estimate.
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For a more thorough comparison, let us consider two other scenarios in which
the parameters of the passive agents are different from the ones used in previous

simulations. In the first scenario, we consider the parameters
c1 = 250,c9 = 0.2, ¢35 = 0.025, ¢4 = 500, c5 = 0.1.

These values are all no less than the corresponding ones of the default scenario
in . For this reason, we expect that the swarm with these parameters is more
sensitive to the movement of the steering agents. Let us call this scenario sensitive.
On the other hand, we prepare the other additional scenario to perform comparisons
for the swarm that is harder to navigate. For this reason, in the second scenario, we

use the parameters
C1 = 150, Cy = 02, C3 — 0015, Cy — 300, Cy — 0.1.

Because these values are all no greater than the corresponding ones of default, we
call this scenario insensitive. Now, under these two additional scenarios, we conduct
the same set of simulations that we did for the default scenario . The results of
the simulations in the scenarios sensitive and insensitive are illustrated in Figure
and Figure [9] respectively. We can confirm that the proposed algorithm always
shows higher success rates as well as lower completion time and shorter path lengths.
In Figures and [0b], we also observe a slight decrease in the success rate of the
proposed algorithm. After investigating the failure cases, we find the following
reasons. One reason is the interference behaviors among multiple steering agents
when steering agents may coincidentally choose the same target and drive the target
further away from the goal without returning. Another reason is due to the behaviors
of the passive agents; when the parameters of the passive agent model are changed to
be more sensitive, it can be difficult for the steering agents to include all the passive

agents inside the goal region simultaneously.
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(a) Guiding a small swarm in the sensitive passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 5.
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(b) Guiding a large swarm in the sensitive passive agent model. Horizontal axes represent
the number of steering agents M from 1 to 10.
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(c) Guiding two separate swarms in the sensitive passive agent model. Horizontal axes
represent the number of steering agents M from 1 to 10.

Figure 8. Performance of the algorithms for guiding three types of swarms in the
sensitive passive agent model. Horizontal axes represent the number of steering
agents.
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Figure 9. Performance of the algorithms for guiding three types of swarms in the
insensitive passive agent model. Horizontal axes represent the number of steering
agents.
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We then conduct simulations to compare the proposed algorithm with both
centralized shepherding algorithms. In the centralized algorithms, each steering
agent moves strictly according to the design, with the dynamics of the steering
agent presented in Equation @D being modified by setting dy = 0, d3 = 0, and
dy = 0. From our preliminary simulations, we found that the algorithms presented
above do not perform well in some situations. Therefore, in our simulations, to
make the coordination of multiple steering agents stable, we modify the radius
Ry(t) = min{||p(t) — p* (t)||, B||p(0) — p*(0)||} to prevent failure when the swarm is
dispersed during shepherding and we choose = 1.25. Further, we define that the
algorithm for point-offset circling control takes the same strategy to allocate the
steering agents to their target positions. The maximum time step is set to 5000 to
ensure the completion of the shepherding.

The trajectories and the performance for guiding the small and large swarms are
shown in Figures [10a] and and Figures and [11D] respectively. Simulation
results indicate that for these two algorithms, the average completion time increases
and the success rate decreases as M increases. On the other hand, when guiding a
swarm with large N and R4(0), the success rate is not necessarily high. We analyze
this poor performance due to the large interaction distances between the steering
agents and the swarm. For the case of two separate swarms, we choose not to present
the simulation results because we found through numerical simulations that these two
centralized algorithms are incapable of performing the shepherding task when multiple
separate swarms exist. From the simulation results based on the two other sets of the
passive agent model, in Figures and and Figures and [I3D] we observe
that the performance of these two algorithms is greatly influenced by the parameter
setting of the passive agent model. After examining the simulation data, we find
that although the poor performance of centralized algorithms is counterintuitive,
these algorithms, which rely on multiple steering agents moving in a fixed shape or
formation to guide swarms, are neither effective nor robust.

Based on the results above, we have observed that the advantage of the proposed
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algorithm is that, although no communication is used, better performance is achieved
by assigning the movement of each steering agent to different target passive agents.
Specifically, the algorithm leverages cooperation among multiple agents using observ-
able position information, even though the agents do not communicate with each
other to share additional information. This approach improves scalability to changes
in initial placements, accommodates increases in shepherd numbers, and enhances

robustness to reductions in sensing accuracy.
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Figure 10. Initial placements and trajectories for guiding small and large swarms
in the default passive agent model, compared with the proposed algorithm and
centralized shepherding algorithms. The number of steering agents is set to M = 8.
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(b) Guiding a large swarm in the default passive agent model.

Figure 11. Performance comparison between the centralized algorithms and the
proposed algorithm for guiding a small and large swarm in the default passive agent
model. Horizontal axes represent the number of steering agents M from 4 to 10. The
y-axis indicates completion time and average path length.
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Figure 12. Performance comparison between the centralized algorithms and the
proposed algorithm for guiding a small and large swarm in the sensitive passive agent
model. Horizontal axes represent the number of steering agents M from 4 to 10. The
y-axis indicates completion time and average path length.
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Figure 13. Performance comparison between the centralized algorithms and the
proposed algorithm in the insensitive passive agent model. Horizontal axes represent
the number of steering agents M from 4 to 10. The y-axis indicates completion time
and average path length.
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2.5.3 Experiments with Further Reduced Information

In this subsection, we numerically evaluate the robustness of steering agents
under further reduced sensing accuracies. In this context, we define robustness as
the ability to achieve success and maintain effectiveness despite reductions in sensing
range and accuracy. Throughout this subsection, we use 2) the large swarm to be
the same set of initial placements as the ones we used in the last subsection. The
passive agents were modeled as default, sensitive, or insensitive. The number of the
steering agents is fixed as M = 5. Because our main objective in this subsection is to
investigate the robustness properties of the proposed algorithm, we do not conduct
simulations of existing methods.

We first examine the performance of the proposed algorithm with respect to the
change in the sensing range of the steering agents and the passive agents. As for
the sensing range of the shepherd, we change 7’ from its default value 300 and vary
within the set {50,100, 150, ...,400}. Also, we prepare two scenarios on the sensing
range r of the passive agents; » = 50 and r = 100. We present how the success rates,
completion times, and average path lengths depend on 7/ in Figure (r = 50) and
Figure m (r =100). According to the results, different sizes of the sensing ranges r
of passive agents cause changes in the swarm behaviors to influence the shepherding
performance. For these two values of r, the success rate of shepherding drops when
the sensing range 7’ of the steering agent is short. This observation suggests that, for
the proposed algorithm to be effective, we should avoid employing a steering agent
having a too short sensing range.

We then evaluate the performance of the proposed algorithm under sensing errors
of the steering agents. In this simulation, we assume that the sensing of the steering
agent to the positions of other agents and the goal is subject to additive noise in the
form of dso(t) where dj is a positive weight, and the random vector o(t) is generated
in the same way as the random vector wu;5(t) in Equation . Importantly, we allow

each agent to continue targeting the correct passive agent for guidance according to
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Equation @, unaffected by sensing errors. This means that while the target agent ¢
is selected correctly, the position p;(t) is perceived with error as p;(t) + dso(t), as
described in Equation (3), which leads to movement deviations for the steering agents.
In Figure [15] we show how the performance of the proposed algorithm depends on
the weight ds5. We confirm that the proposed algorithm tolerates relatively sensing
error increased to d; = 10 in any of the initial placements. This observation indicates
that the strategy for selecting targets for each agent is crucial, and the proposed
algorithm remains robust to sensing errors as long as the strategy is implemented

correctly.

42



Performance metrics

Success rate Completion time Average path length
10 O ¢ e e O O . | 3000 2000]
Bottom-left os 1500 1000 PP
@ e e e g e O
00150 200 300 wo 100 200 300 a0 100 200 300 400
10 o o o e o g | 3000 2000
Top-right  os 1500 1000{ - G s ———
e e e e 0 6
00350 200 300 w0 O 100 200 300 wo O 100 200 300 400
10 S 2000
Surrounded o5 1500 1000] et e—e—e
0 s s i 8
00160 200 300 200 100 200 300 400 100 200 300 400
range range range
== baseline sensitive == insensitive

(a) The sensing range of the passive agent is set as the default value r = 50.
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(b) The sensing range of the passive agent is enlarged as r = 100.

Figure 14. Performance of the proposed algorithm for guiding swarms in different
sensing ranges for steering agents. Horizontal axes represent the sensing range of

steering agents r’. The sensing range of the passive agents is varied between r = 50
and r = 100.
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2.6 Summary

In this chapter, we studied the shepherding problem with multiple steering agents
unable to communicate with each other. The results demonstrate that communication
between steering agents is not required for successful shepherding when cooperation
relies on relative situational sensing, even in the presence of sensing errors. Specifically,
we have first presented a model of passive agents in the presence of multiple steering
agents. We have then proposed a distributed and communication-free algorithm
with multiple steering agents to aggregate the passive agents by location-based
self-planning. We have also compared the proposed algorithm with other default
algorithms with and without centralized coordination. Finally, we have confirmed the
robustness of the proposed algorithm via extensive numerical simulations in various
situations, including different levels of sensing errors and mobility-related accidents.

The natural cooperative strategy for the steering agents adopted by the proposed
algorithm proves to be successful, effective, and robust compared to traditional
algorithms. In our simulations, the parameter value a used to balance factors when
selecting the target agent for each steering agent in Equation @ was fixed at a
specific value. However, performance could potentially be improved by exploring
alternative formulations of the equation and assigning differentiated values to « to
enhance cooperation. Moreover, while the algorithm operates without communication,
incorporating communication or combining the strategy with other approaches could
increase flexibility and expand the range of applications.

In future research, we plan to investigate whether the proposed communication-
free coordination mechanism can be extended to other types of navigation tasks.
Moreover, we have observed that while we model passive agent movement based on
pre-assumed models and parameters, we observed that if passive agents deviate from
these settings, irregular spacing and unexpected reactions to steering agents may
occur. Therefore, one of the future works is to validate the shepherding algorithms

using different models imitating the practical behaviors of organisms or robots.
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Chapter 3
Shepherding Control by
Bearing-only Algorithm

3.1 Introduction

Our second study focuses on further reducing the required sensing information
and developing an algorithm for successful shepherding under these constraints.
Previous studies on the shepherding problem have predominantly assumed that
steering agents have sufficient sensing capabilities [38], i.e. each agent can recognize
passive agents by their positions and velocities, in conjunction with the positions and
velocities of other steering agents, and the position of the goal. However, in practice,
robots performing a guiding task may not be able to collect all the expected sensing
results from the surrounding environment [23]. Thus, the study of shepherding
incorporating such limitations on the sensing capability of steering agents has been
conducted from various perspectives, such as local-camera-based observation [37],
lack of computation ability or memory [45], and lack of coordination among multiple
steering agents [42].

On the other hand, in the context of relative bearing measurements, this term
refers to determining the relative direction or angle of a target object with respect
to a reference point or axis. Each agent can measure only the relative bearings of
its neighboring agents, without access to their relative distances or proximities [46].
The process of controlling such agents to achieve desired formation patterns is
referred to as bearing-only formation control, focusing on accurately coordinating
all moving agents [47, 48]. However, using one set of agents to guide another set of

unmanoeuvrable agents solely based on bearing measurements remains a challenging
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problem in swarm control.

This study presents a bearing-only algorithm for shepherding with limited infor-
mation. Leveraging the proposed algorithm, we find the essential sensing information
by the algorithm to guarantee the success of shepherding. The algorithm is inspired
by the strategy of a two-stage approach, which divides the movements of a steering
agent by initially orienting its position relative to its target swarm and then driving
the swarm towards the goal [34] 39]. The target swarm is one of the swarms that
is selected by the steering agent among multiple swarms as the target for chasing.
Specifically, we first introduce an algorithm using a steering agent, design strategies to
allow multiple steering agents to cooperate through reduced collisions and improved
efficiency by sharing limited knowledge of bearing measurements (i.e., direction
from each position to the estimated center of each target swarm), and then apply
distributed strategies for steering agents to guide multiple swarms. The experiments
are conducted for various initial placements with different parameter values for the
passive agents, to evaluate the effectiveness and robustness of the proposed algorithm.
Finally, we discuss the influence of bearing measurement accuracy and the role
of communication between steering agents to understand the requirements of the
proposed algorithm.

The remainder of this chapter is organized as follows. Section outlines the
knowledge of steering agents in bearing-only measurements. Section presents a
step-by-step description of the proposed algorithm. Section shows experimental
results to illustrate the functionalities and capabilities of the proposed algorithm
under various configurations of parameter values and initial placements and presents

an investigation of the essential amount of information.

3.2 Shepherding Knowledges

The problem of the shepherding task focuses on designing a shepherding algorithm

for the steering agents to guide a set of passive agents into a designated goal region.
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In this section, we describe the movements of each passive agent using an agent-based
model to form swarm movements, present the goal setting, and design the knowledge
of steering agents with bearing measurements.

We let a shepherd k guide a swarm using the following knowledge of bearing-
only measurements. In the case of a single swarm, all passive agents are initially
aggregated, and the relative distances between them are limited.

First, we assign each steering agent to observe the other agents under occlusion [37]
with bearing measurements. Similar to how we defined Equation ([1)), we begin by
constructing sets A (t) and M) (¢), and then define O (t) = N/ (t) U M/(t) to
represent the set containing all other agents within the limited sensing range r’. For
shepherd k, to get a subset O}, ,..(t), we initialise O ,..(t) = 0 and relabel the indices
as Oy (t) = {x1(t), ..., zj0 () } in such a way that ||z, (t) — g (t)|| < [[22(t) —ax(?)]| <
o < l@op () — gr(t)]]. For each ¢ = 1,..., |0} (t)], we sequentially join index ¢
to set Oy . (t) if and only if the angular difference from the other agent in O, (¢)
is larger than a constant 6..., which is |Z(z,(t) — qx(t), 2, (t) — qx(t))] > Ooce for
any v € O) ..(t). We then partition O} ..(t) in terms of passive agents and steering

agents to update the sets N/ (t) and M/ (t), respectively.

For vectors z,y, and z, we define ©,(y, z) € [-m,7) by
O.(y,2) = L(z —z,y — )

to denote the angle between the vectors z — x and y — x. In this study, the range
of any angle is defined to be [—7, 1), wherein a negative value indicates clockwise
rotation (right) and a positive value indicates counterclockwise rotation (left), to
distinguish the right and left directions.

Then, from the position of shepherd k, the positions of the passive agents on the
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right and left sides of the swarm are given by

i, (t) = arg mlan{pi(t)}ieNl/c(t) B4 (9,D), (14)

Pk, (t) = arg maxpe{pi(t)}iej%(t) 8%(75) (gap)u

while shepherd k£ knows only the direction from itself to these two positions. Figure
visualizes how the angles and positions are calculated. Subsequently, we assume that

shepherd k has the following three vectors at time t¢:

Qr(t) = {D(pr. (t) — qi(t)), ¢(pr, (1) — qi(t)), d(g — 4 (1)) } (15)

instead of the following positions: NV (t), M}.(¢), and z,.

We then average the vectors to the left and right sides to obtain a vector
to the estimated swarm center, denoted as cx(t), such that ¢(ck(t) — qr(t)) =
O(d(pr, (1) —ar(t))+o(pr, (t)—qr(t))). The angle between the direction from shepherd k
to estimated swarm centre c(¢) and the direction from shepherd k to goal z, is
then denoted as O, ) (ck(t), z4) based on knowledge Q(t) defined in Equation ([15)).
Additionally, we assume that shepherd k can memorize only Q(t) at each time
step and, therefore, cannot estimate the relative distance to any agent based on the
change in angle over time. Because the steering agent cannot measure how far it has
moved, we assign a fixed size for the velocity of each shepherd, denoted ||vg(t)|| = d,

where d is a positive constant.

3.3 Proposed Algorithm

The concept of our proposed algorithm is inspired by the online-target switching
(OTS) algorithm [34], which demonstrates that observing and guiding the swarm
as a single group can be effectively achieved using bearing measurements. We first
introduce the proposed algorithm based on a single steering agent (M = 1) guiding

a single swarm. Afterward, we extend the algorithm to allow for multiple steering
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Figure 16. Illustration depicting how shepherd k& observes the directions to the left
and right positions (dark grey dots) of the swarm boundary relative to the goal
region according to Equation . Red dot: shepherd; grey dots: sheep; blue dot:
goal center. Blue dashed line: direction from steering agent to goal; red dashed lines:
directions from steering agent to two sheep; angles shown as blue curves between the
blue line and two red lines: minimum and maximum values. Time ¢ is omitted here
and in subsequent illustrations.

agents guiding multiple swarms through coordination between steering agents and
strategies for recognizing swarms. The overall concept in constructing the algorithm
is for each steering agent to sense swarms into one or multiple masses based on
the angular difference to individuals and guide each mass sequentially using the
orientation and driving stages. Orientation, where the agent moves itself behind
the swarm relative to the goal, and driving, where it guides the swarm by switching
between its border directions. The movement of steering agents relative to the mass
is simplified by determining whether to move to the direction of the left or right
boundary using reasonable rules. The limited angular information to individuals is

sufficient to avoid disturbance from steering agents to individuals inside the swarms.

3.3.1 Single Steering Agent Guiding of One Swarm

In this part of the study, we use a reduction method that allows the steering
agent to regard each swarm as a mass rather than a set of individuals. Our algorithm

includes two stages, i.e. orienting behind the swarm relative to the goal, and driving
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the swarm towards the goal by switching between the two directions of the swarm
borders. Compared to previous two-staged algorithms in shepherding [34] 27, [39],
the proposed algorithm solely requires the steering agent to have bearing measure-
ments, and the target swarm is modeled using a nonlinear agent-based model as
denoted in Equation . Specifically, we judge these two stages by examining
angle Oy, (1)(cx(t), r4) and comparing it against a threshold Oens using the following

expression:

|®Qk(t)(c/€<t>a Ig)| < Qorient (16)

where a result of ‘false’ indicates orientation, and a result of ‘true’ indicates driving.
Oorient 1S chosen to be sufficiently small enough to prevent judging two separate swarms
into one, yet large enough to ensure that the steering agent does not mistakenly
consider one swarm as multiple masses, particularly when the steering agent is close
to the swarm. Notably, during the guidance process, the steering agent judges the
situation defined in Equation (16]) and decides between orientation and driving stage
in each time step ¢. Figure [L7]illustrates the circumstances of each of the two stages.

Let us first introduce notations commonly used in both stages. Depending on
which side has the larger angle to the goal direction, we define unit vectors ay(t) and

a(t) as

an(t) = O(pr, (1) — qi(t)), if |@qk(t)(]?kr(t),xg)| > |®qk(t)(pkl (t),x4)], an

&(pr, (t) — qr(t)), otherwise,

and

o) = S(pr, (t) = qr(t)), i[O ) (P, (1), 29)| < Oty (Pr (), ), )
&(pr, (t) — qi(t)), otherwise,

where ai(t) represents the direction where the angle relative to the goal direction is
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larger compared to the other direction, while o/ (t) represents the other direction.
We then let a unit vector vy (t) represent the primary direction of movement for the
shepherd. The vector vg (t) is assigned a value equal to either ay(t) or a(t), which
is determined by the following algorithm. Meanwhile, the steering agent receives
repulsion from the direction of estimated swarm centre ¢ (t) and goal x,. The velocity

of shepherd k is then derived to be

vi(t) = dgd(di R(01, v (1)) + dad(q(t) — cx(t)) + dsp(ai(t) — zg))  (19)

where di, do, and d3 are positive constants, of which d; is larger than the others.

Meanwhile, R(6;,v1(t)) is an operator defined as

costy sint, .
v (), if vpa(t) = o(pr, (1) — ax(t)),
—sinf; cosb,

R(@l,vkl(t)) =< r 9 (20)
cosf; —sinb,
vg1(t), otherwise.

sinf); cosf,

to rotate vector vg1(t) by a non-negative angle #;. The direction of rotation depends
on which side v () lies: if on the right side, then rotate right; and if on the left side,
then rotate left. Equation (20)) is used to rotate the movement of the steering agent
away from the swarm to avoid collision risk.

Given that the steering agent cannot measure the distance to the other agents,
moving directly toward the swarm may result in collisions. In cases wherein the
angle |, (1)(ck(t), z4)| between the direction from shepherd & to the swarm and the
direction from shepherd £ to goal z, is very large, as indicated by a result of ‘false’
in Equation , the steering agent needs to orient behind the swarm relative to the
goal to reduce the angular difference |0y, (1)(ck(t), z,)|-

Specifically, we choose the direction having the larger angular difference between

the left and right sides of the swarm and denote it as vg1 (1), i.e., we let vy (t) = ax(t).
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(a) Orientation stage (b) Driving stage

Figure 17. lustration depicting a steering agent guiding a swarm to the goal region.
The shepherding process is divided into two stages: orientation (Figure and
driving (Figure. Red solid line with an arrow: movement direction of a shepherd.
During the orientation stage, a steering agent moves toward the sheep py, (¢) or py, (¢)
according to the unit vector ay(t) determined by comparing angles (indicated by
blue) as in Equation is larger than the other indicated by blue curves. During
the driving stage, a steering agent continuously moves toward one passive agent until
the angle indicated by a blue curve is small enough.

Throughout the orientation stage, as the steering agent moves to one side, the angle
on that side increases, and thus the steering agent is expected to continuously move
to the same side of the swarm based on the comparison of angles in Equation .

After skipping or completing the orientation stage, which is indicated by a result
of ‘true’ in Equation , the steering agent begins to drive the swarm by alternately
switching between the right and left sides. Based on ay(t) defined in Equation (17),

we define another unit vector as

ky — (k s 1fak —1)= for _1_k —1 y
falt) = ¢ (P, (t) — (1)) (t =1) = ¢(pr, (t = 1) — gi(t = 1)) (1)

&(pr, (t) — qx(t)), otherwise,

which remains at the same right or left side as that in the previous time step t — 1
when ¢ > 0 and keeps the same value as &(t) = ax(t) when ¢ = 0. Then, similar to

how we defined Equation (L8], we denote a unit vector on the other side as d/,(t).
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(a) Shepherd k (b) Shepherd ¢

Figure 18. Illustration depicting two steering agents cooperating to guide a swarm.
Knowledge and next movements of steering agents k& (Figure and [ (Figure
are shown. Grey dashed lines: directions from each steering agent to their respective
estimated centers, which are shared between both steering agents; angles shown as
grey curves: for calculation of their next movements, in accordance with Algorithm
red solid lines with arrows: movement of shepherd k to its left and shepherd ¢ to its
right at next time step.

We then let vy (t) be

(

GL(t), it sgn Z(én(t), d4(1)) = sen Z(@(t), 24 — qult))

Vg1 (t) = 3 and |Z(ax(t), 7y — qr(t))| < Oarive  (22)

ai(t), otherwise
\

where the operator sgn indicates whether a value is positive or negative, and 0g;iye
is a positive constant. At each time step, vg1(t) is adjusted to remain on the same
side as that in the previous time step unless it is already at the edge of that side as
determined by the angle conditions in Equation . Throughout the driving stage,
the steering agent is expected to move to one of the right or left sides for a while,

then switch to the other side and repeat this switching movement.
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Algorithm 1 Multi-Shepherd coordination algorithm
Require: M, (t),vk1(t)
Ensure: M (t) #0
Cl+0,Cr <0 > Initialise counters for left and right directions
while ¢ € M (t) do > Increment counters if conditions are met
if |Z(o(ck(t) — qr(t)), p(co(t) — qu(t )))| < 01 and
‘G)Qk(t) pkr( ) Pk, t) -2 ‘@% ( Ck(t>>H < 20,2 then
if O, 1) (ck(t),q(t)) <0 then
Cr <+ Cp+1

else
Cl«+ Ol +1
end if
end if
end while
if vpa(t) = ¢d(py, (t) — qx(t)) and CL > C7 then > Update by comparing counters
Vra(t) <= (i, (1) — qie(t)
else if via(t) = o (pr, (¢) — an

Vka(t) < P(pr, (t) — qu(t)
end if

)
q(t))) and CL > C! then
)
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3.3.2 Multiple Steering Agents Guiding of One Swarm

In the next part of this study, we increase the number of steering agents to
perform the shepherding task more effectively. To avoid moving repeatedly among
multiple steering agents, we design a strategy for coordination between two steering
agents, denoted as k, ¢, and subsequently apply it to more steering agents.

We allow communication between the steering agents because relying solely on the
direction from shepherd £ to shepherd ¢ is not sufficient for accessing their orientation
relative to the swarm for coordination. Specifically, for shepherd k, we define the
shared information as the direction from another shepherd /¢ to its estimated swarm

centre ¢(t). This additional knowledge is denoted as

Qre(t) = {p(ce(t) — (1))} (23)

Subsequently, we update the knowledge of shepherd £ in Equation to obtain

the orientation of all the other steering agents as

Qu(t) = QU | Q). (24)
LeM(t)
Based on the updated knowledge Q(t), we extend the proposed algorithm to allow
for multiple steering agents guiding one swarm. Each steering agent independently
decides its current stage. During the orientation stage, each steering agent determines
its direction without considering the presence of other steering agents. During the
driving stage, the movement of each steering agent is adjusted to avoid repeated
movements with other steering agents. Specifically, we propose Algorithm [I] to
modify vy (t), where each steering agent can estimate the number of steering agents
on its potential path to the right or left and choose to move to the side that has
fewer steering agents. This estimation relies on comparing angles between specific
directions observed by each steering agent and directions shared among them, as

denoted in Equation . Specifically, for shepherd £ and /¢, the angle compared
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with 6,,; evaluates whether ¢x(t) and ¢,(t) have similar directions to the swarm center,
while the angle compared with 0,5 evaluates whether ¢,(¢) and the swarm center
have similar directions to gx(t). If both conditions are met, shepherd ¢ is judged to
be near the potential movement path of shepherd k. Shepherd k then determines
whether that shepherd /¢ is on the left or right path. 6,; and 6,5 are fixed values.
Additionally, although the vectors ¢(c(t) — qr(t)) and ¢(c,(t) — qo(t)) are pointing to
different estimated swarm centers, we consider the error to be negligible. Figure
illustrates the shared information and movements of two steering agents during the

driving stage.

3.3.3 Multiple Steering Agents Guiding of Multiple Swarms

In this part of the study, we place multiple swarms separately in their initial
placements. Each steering agent lacks knowledge of the number of swarms based
on its knowledge Q(t) defined in Equation . Instead, it observes these swarms
as subswarms by comparing the angles of the interval between passive agents with
a threshold 6,,. Therefore, the set of passive agents observed under occlusion by
shepherd k, denoted as N/(t), is partitioned into multiple subswarms. Specifically, we
partition set N/ (t) to each subswarm 7 as N} (t) = |J, NV} .(t) in such a way that any
pair of passive agents ¢ € Ny (t) and j € N}, (t) satisfies |Og, ) (pi(t), p;(t))| > 0, if
and only if 7 # 7'

Coordination between the steering agents can be established by letting each
steering agent sequentially target a specific subswarm rather than all subswarms.
We first label the subswarm that has the largest absolute angle between the direction

to its estimated center and the direction to the goal as
Némax(t) = mEX ’@%(t)(ck"r (t)v ng)} (25)

where ¢ (t) represents the estimated centre of subswarm 7 observed by shepherd k.

We then let the steering agent execute the algorithm by observing passive agents in
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Figure 19. Illustration depicting two steering agents guiding two swarms by targeting
a subswarm. Angles shown as blue curves: for comparison between each steering
agent to choose a subswarm having a larger angle; grey solid lines with arrows: the
subswarm targeted by both steering agents (herein, both are towards the bottom

swarm) based on Equation (25)).

the subset N/™**(¢) rather than N/ (t). Following this strategy, each steering agent
chooses and herds its target subswarm N/™®*(¢) at each time step until all the swarms
are inside the goal region. Figure [1Y|illustrates how two steering agents choose their
target subswarms.

Meanwhile, each steering agent is not aware of whether other steering agents are
targeting the same subswarm and needs only to estimate if the others are on its
potential path, in accordance with Algorithm [I} to cooperate.

Summary. Through the descriptions presented earlier, we have proposed an
algorithm by which varying numbers of steering agents can cooperatively guide
multiple swarms in different distributions. The steering agents follow the final design

of the algorithm regardless of their placements in the experiments.
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3.4 Experiments

Our aim in experiments is to test whether shepherding can be successful and the
essential amount of information for the proposed algorithm. For the experiment, we
first assign values to the parameters of the passive agent model and shepherding
algorithm, set up the initial placements of the experiments, and design metrics to
evaluate the performance of the shepherding algorithm. Subsequently, we present
simulation results that illustrate the trajectory and time-series variations for a single
trial, and an evaluation across multiple trials. Finally, we reduce the angular accuracy
of the bearing measurements and remove communication between the steering agents
to conduct experiments to measure the information required to accomplish the

shepherding task.

3.4.1 Parameter Values

In this part of the study, we select different parameter values and placements for
the passive agents and observe their movements under these settings to determine
an appropriate goal radius for shepherding. Additionally, we assign the parameter
values for the shepherding algorithm and explain their rationales.

Because different parameter values for the same passive agent model can result
in a variety of behaviors, we conduct experiments under several sets of parameter
values ¢, g, €3, ¢4, c5 and compare their levels of performance. Here, based on the
movement characteristics of swarm systems [49], we present three sets of parameter

values for the passive agents, as follows:

c1 = 200, Cy = 02, C3 = 02, Ccy = ]_0007 s = 01’ r = 607
c1 =250, ¢ = 0.15,¢5 = 0.2, ¢4 = 1200, ¢5 = 0.2, = 60, (26)

1 =200, ¢, = 0.2, c5 = 0.25, ¢, = 800, c5 = 0.05,7 = 60,

where we classify the first set as the default; and the second set as sensitive, owing
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to its larger separation c;, smaller cohesion cs, tendency to separate under larger
repulsion ¢4, and larger noise c5; and the third set as insensitive, owing to its tendency
to align with the others under larger alignment c3, smaller repulsion ¢4, and smaller
noise c;. The parameter value for alignment c3 is overall increased to mimic swarm
alignment behaviors. Additionally, we set § = 3 in Equation ({4]).

The size of the goal radius greatly influences the performance of the shepherding
algorithm, particularly when The proposed algorithm relying on bearing measure-
ments, is unable to accelerate shepherding with a small goal radius. This limitation
arises from its inability to compress the area occupied by the swarm by moving closer
to the agents due to its lack of proximity judgment. If the goal radius is much smaller
than the radius of the swarm, the steering agents are likely to keep circling the goal
point and its periphery without completing the task successfully. Alternatively, if
the goal radius is set to be exceedingly large, the steering agents will easily complete
the task, leaving us unable to assess the performance.

Therefore, we determine the goal radius by observing the shape of the swarm
when it is relatively stationary without any steering agents or obstacles. Specifically,
we measure the length of the swarm shape in terms of the maximum distance between
agents, which is x,(t) = max; jen |[pi(t) — p;(t)||. Then, by observing the time-
series variation of x4(t), we regard that the swarm is stationary when x4(t) has little
variation over time, i.e., if it satisfies (1 — kq)zs(ts + 1) < x4(ts) < (1 + kg)zs(ts + 1)
with ks = 0.02 when t > t,. We then define the goal radius R, = k,x,(ts) with the
coefficient k; = 0.8. This procedure is followed to ensure a common goal radius for
the subsequent experiments conducted under different sets of parameter values for
the same placements, as outlined in Equation . When calculating the goal radius
for multiple swarms, we consider that the steering agents must be able to collect all
the swarms into the goal region. We first calculate the expected goal region for each
swarm, then summarise the approximated goal radius for all passive agents in these
swarmes.

Additionally, given that steering agents rely solely on bearing measurements and
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cannot independently judge whether all the passive agents are inside the goal region,
the completion of a shepherding task is determined externally and uniformly for all
the steering agents.

For the parameter values of steering agents, we fix the magnitude of velocity
for each steering agent at d, = 2. This ensures that the velocity of the steering
agents is moderately higher than that of the passive agents, as determined by the
parameter values given in Equation . Additionally, regarding other coefficients
appearing in Equation , we set d; to be much larger than ds,ds, as d; = 5,
dy = 1, and d3 = 1 to make vg(t) the primary movement. We assign the sensing
range 1’ = 300 to ensure that the range is sufficiently large for sensing other agents.
We then assign the angle thresholds for each steering agent as 0o.. = 7/60, 0; = 7/9,
Oorient = /3, Oarive = 7/18, 641 = /4, 0o = 7/2, 0,, = 7/6. These angles are
assigned appropriate values based on the following rationales: angle 0, is set to a
small value to imitating observation under occlusion; angle 0, is moderately adjusted
to avoid collisions between the steering agents and swarms; angle Oypien is limited
to no more than 7/2 to determine the orientation or driving stage; angle Ogive 1S
appropriately small to allow complete driving on one side before switching to the
other side; angles 6,1, 6,2 are chosen reasonably to determine whether there are other
steering agents on their paths; and angle 6, is appropriately small to ensure correct
recognition of subswarms.

For this next part of the experiment, we design three initial placements of the
passive agents and steering agents where N passive agents are distributed into n
different swarms. Specifically, each swarm, denoted by o, consists of N, passive
agents that are randomly placed on a disk centered at each origin with an initial
radius of R,, when t = 0. We denote the numbers and radii of multiple swarms as

follows:

L] N1 = BO,Rsl = 40,

o N; =30,Rq =40 and Ny = 50, Ry = 60,
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Figure 20. Initial placements of swarms, steering agents, and goal. Positions of
passive agents vary from one to three swarms around the goal. Numbers of steering
agents are M =3, M =5, and M = 7, respectively. Positions of steering agents are
categorized as being behind the swarms, in front of the swarms, or surrounding the
swarms. Shepherds are behind the swarms if the steering agents are farther from the
goal than the swarms, with similar directions to the goal; steering agents are in front
of the swarms if the steering agents are close to the goal center; steering agents are
around the swarms if the steering agents are farther from the goal than the swarms,
with directions to the goal coming from all around.

L N1 = 30, Rsl = 40, N2 = 30, RSQ = 40 and N3 = 50, ng = 60.

We then set up the placements between these swarms and between the swarms and
the goal, and position the steering agents at various positions to the swarms relative
to the goal, such as behind the swarms, in front of the swarms (near the goal), and
surround the swarms, as illustrated in Figure

We design the following two metrics to evaluate the effectiveness and stability of
the proposed algorithm in the shepherding task. One metric measures progression in
individual trials, whereas the other measures performance across multiple trials.

Time-series variations in distances over time: This metric calculates the
distances from the passive agents and steering agents to the goal during each trial.
In successful trials, we observe that the distance from each passive agent ¢ to the
goal, |p;(t) — x4, decreases from an initial value to a value below the goal radius R,.
We record the mean value and the upper and lower intervals for the passive agents.
Similarly, we denote the distance from shepherd k to the goal as |g(t) — x,4|. The

mean value for the steering agents usually follows the values for the passive agents
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because the steering agents guide the passive agents to the goal region.
Consumed time: This metric measures the overall performance of the steering

agents across multiple trials. The total time consumed in all trials is counted and

used to draw box plots that visualize the experiment results. Low consumed time

and small variation between trials indicate effective and robust shepherding.

3.4.2 Experiment Results

We conduct experiments in C' = 20 trials with an upper time limit 7" for each
placement. The shepherding succeeds only when the consumed time is shorter than
the upper limit 7. Specifically, we set T = 3000 to ensure sufficient time steps
to complete the shepherding task. We conduct simulation experiments for three
placements using the appropriate number of steering agents and the default parameter
values for passive agents. For the tasks of shepherding a swarm, two swarms, and
three swarms, we show the trajectories in Figure [21a] and numerically illustrate the
shepherding process in Figure by displaying the time-series variation in the
distances of the passive agents and steering agents to the goal for a random trial.
We then specifically show the simulation results in increasing the number of steering
agents for shepherding two swarms in Figure 22| and three swarms in Figure [23]

From the trajectories, we observe that the movement of each steering agent is
practically divided into two stages and repeated several times, especially in the
cases of shepherding three swarms, which aligns with the proposed algorithm that
includes the orientation and driving stages. When multiple steering agents guide
the same swarm, the movements at each time step indicate that the steering agents
can recognize neighboring steering agents and avoid converging toward each other.
This phenomenon naturally results in the steering agents dynamically encircling
the target swarm and collectively driving it to the goal region. Furthermore, when
guiding multiple swarms, each steering agent can estimate the orientation of other

steering agents relative to its target subswarm and sequentially drive the swarms
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without duplicating movements with the other steering agents.

We then evaluate the shepherding performance given the initial placements
described earlier and using three sets of parameter values for the sheep, with the
number of steering agents increasing from 1 to 10. The results are presented as
changes in consumed time across C' trials. In Figure 24} to avoid redundancy, we
present only the results for guiding two and three swarms. We observe that whereas
the steering agents struggle to succeed with shepherding when their numbers are
low, success rates increase and consumed time decreases as the number of steering
agents increases, eventually reaching a 100% success rate and gradually decreasing
the consumed time, which demonstrates the significance of communication. We then
compare the differences in shepherding results among the three sets of parameter
values. We note that guiding sensitive passive agents tends to fail, whereas guiding
insensitive passive agents tends to succeed and consume less time. Nevertheless, the
shepherding results generally remain stable regardless of changes in the parameter
values for the passive agents.

Based on the results above, we have observed that the advantage of the proposed
algorithm is that, although no communication is used, better performance is achieved
by assigning the movement of each steering agent to different target passive agents.
Specifically, the algorithm leverages cooperation among multiple agents using observ-
able position information, even though the agents do not communicate with each
other to share additional information. This approach improves scalability to changes
in initial placements, accommodates increases in shepherd numbers, and enhances

robustness to reductions in sensing accuracy.
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(a) Trajectories for guiding one to three swarms under three initial placements for steering
agent. Trajectories are the same as the initial placements as in Figure
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(b) Time-series variations in distance to the goal for passive agents and steering agents.
Blue line and interval: steering agents; grey line and interval: passive agents.

Figure 21. Trajectories and time-series variations for guiding one to three swarms
under three types of initial placements for steering agents, using the default set
of sheep-model parameter values. Numbers of steering agents are M = 3, M = 5,
and M = 7 for the case of one, two, and three swarms, respectively.
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(a) Trajectories for guiding two swarms with an increasing number of steering agents.
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(b) Time-series variations in distance while guiding two swarms with an increasing number
of steering agents. Blue line and interval: steering agents; grey line and interval: passive
agents.

Figure 22. Trajectories and time-series variations for guiding two swarms with an
increasing number of steering agents under three types of initial placements for
steering agents, using the default set of sheep-model parameter values. Numbers of
steering agents are M = 3, M =5, and M = 7, respectively.
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(a) Trajectories for guiding three swarms with an increasing number of steering agents.
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(b) Time-series variations in distance while guiding three swarms with an increasing number
of steering agents. Blue line and interval: steering agents; grey line and interval: passive
agents.

Figure 23. Trajectories and time-series variations for guiding three swarms with
an increasing number of steering agents under three types of initial placements for
steering agents, using the default set of sheep-model parameter values. Numbers of
steering agents are M =5, M =7, and M = 9, respectively.
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(a) Box plots of time consumed guiding two swarms with respect to the number of steering
agents.
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(b) Box plots of time consumed guiding three swarms with respect to the number of steering
agents.

Figure 24. Box plots of time consumed guiding two and three swarms with respect
to the number of steering agents, for three sets of sheep-model parameter values.
The number of steering agents M varies from 1 to 10, for three sets of sheep-model
parameter values.
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3.4.3 Experiments with Further Reduced Information

Furthermore, we investigate the essential amount of information, in terms of
angular accuracy and communication, required for guiding. We determine that
moderate angular accuracy and limited communication between steering agents are
required for our bearing-only algorithm.

With regard to angular accuracy, we increase the error for any angle measured by
rounding the value of each angle down to the nearest multiple of a unit, starting from
a default with no error, ranging from a radian of 0.1 to 3, with increments of 0.1, as
used in bearing measurements outlined in Equation . In the experiments, we
assign M = 7 to be the number of steering agents that are to guide three swarms,
which is sufficient for success with no angular error. The results are shown in
Figure [25] We observe that when the error is small, the consumed time does not
change much and may even become shorter until approximately 0.5. We believe that
this phenomenon occurs because, under the assumption that there is no error in
measuring the angles, the movements of the steering agents result in unnecessary
reactions to minor changes in the angle. This oscillation decreases as the error
increases. However, as the error continuously increases, the consumed time begins to
fluctuate, and the success rate significantly decreases. Trajectories with increasing
angular error are illustrated in Figure 26| The trajectory varies depending on whether
the shepherding succeeds or fails. In successful trials, steering agents usually guide
the swarms while maintaining the shape of the swarm until all the passive agents
reach the goal region. On the other hand, in failed trials, the steering agents gradually
lose precise control of the swarms as the angular error increases. With larger errors,
the shape of the swarm may exceed the size of the goal region even if the steering
agents continue circling the swarm to guide it into the goal region. With even larger
errors, the swarm may become completely fragmented and scattered by the steering

agents.
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(a) Box plots of time consumed guiding two swarms with respect to angular error. Number
of steering agents is set to M = 5.
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(b) Box plots of time consumed guiding three swarms with respect to angular error. Number
of steering agents is set to M = 7.

Figure 25. Box plots of time consumed guiding two and three swarms with respect
to angular error, for three sets of sheep-model parameter values. The angular error
increases from 0 by 0.1 to 3.
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Figure 26. Trajectories of guiding three swarms as angular unit increases from 0.5,
to 1, 2, and 3, respectively, for default set of sheep-model parameter values. Initial
placements are the same as in Figure

With regard to communication, the proposed algorithm requires only the informa-
tion Qpe(t) given in Equation (23). If we attempt to remove the only communication
between each pair of steering agents, there would be no coordination among the
steering agents, potentially leading to collisions and overlapping movements. An
example of shepherding without communication is illustrated in Figure [27] where
steering agent number M = 3 for guiding one swarm, M = 5 for guiding two swarms,
and M = 7 for guiding three swarms. The trajectories of steering agents become
repetitive due to the lack of communication, which prevents accounting for the
presence of other steering agents, thus failing to differentiate their movements. As
the effectiveness does not improve with an increasing number of steering agents, this
approach takes longer to complete and is more likely to fail when multiple swarms

exist.
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Figure 27. Trajectories of guiding one to three swarms with no communication
between steering agents, for the default set of sheep-model parameter values. Initial
placements, as well as the number of passive agents and steering agents, are the
same as in Figure and the method is compared with that for Figure
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3.5 Summary

In this chapter, from the aspect of further reduced sensing information cases,
we propose a shepherding algorithm that relies on bearing measurements and low-
level inter-agent communication to achieve cooperation for successful shepherding.
The approach emphasizes the collective movements of entire swarms rather than
individual passive agents. Each steering agent is enabled to sense the orientation of
the two boundaries of each swarm and recognize multiple swarms based on angular
differences. Subsequently, we propose a generalized shepherding algorithm that
does not require knowledge of the exact swarm model or individual passive agents.
Additionally, we devise methods for steering agents to select target swarms and
cooperate in the driving stage by confirming their relative orientations to the swarms.
Experiments are conducted to evaluate performance under different placements and
parameter values, demonstrating the effectiveness of the proposed algorithm with
varying numbers of steering agents. Furthermore, we investigate the roles of angular
accuracy and communication among steering agents in shepherding and the minimum
conditions for both types of information required in shepherding.

The design of this shepherding algorithm based on bearing measurements draws
inspiration from conventional shepherding algorithms, which divide the shepherding
problem into manageable sub-problems. Although the information used decreases,
the core strategy remains consistent and effective. However, the simulation has not
been tested for scenarios where the number of sheep is significantly increased or
parameter values are adjusted to make passive agents more prone to separating from
the swarm. These cases reveal a bottleneck in performance.

Although the stability of shepherding using the bearing-based algorithm cannot
be formally established due to the nonlinear and highly complex dynamics of swarms
of passive agents, which make direct proof infeasible, a potential approach to address
this challenge involves abstracting the swarm model into a single-agent model. Future

research could focus on establishing stability using Lyapunov functions, constructing
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a mathematical model, and analyzing error states to demonstrate the stability of
a system where a steering agent guides a single passive agent to a target point.
Although the proposed shepherding algorithm relies on bearing measurements, the
stability proof needs to account for relative positions and velocities. Such a proof
would enhance the applicability and robustness of the proposed algorithm in practical

scenarios.
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Chapter 4
Conclusion

Throughout the two primary studies presented in this dissertation, we examine
the key types of sensing and communication information required for cooperation
among multiple steering agents to achieve swarm shepherding, which addresses
the broader question of the key information requirements for swarm navigation.
Through algorithmic development and extensive experiments, this research indicates
how specific sensing and communication capabilities enable effective swarm control.
Specifically, the findings from the first study revealed that the success of shepherding
tasks depends not only on the amount of information but also on its nature, with
factors such as relative positioning, rather than absolute coordinates, playing a
pivotal role. Meanwhile, the second study demonstrates that effective guidance can
still be achieved under constrained conditions, relying on bearing measurements
and basic information sharing. These insights highlight the practical potential for
reducing centralized information demands without significant performance losses,
particularly in scenarios with limited bandwidth or sensor capabilities.

One of the crucial contributions of the dissertation is laying a framework for devel-
oping quantitative benchmarks under systematically varied sensing ranges, accuracies,
and communication capabilities. These benchmarks will serve as practical references
for designing swarm systems under real-world constraints, assisting engineers in bal-
ancing system performance with hardware limitations. Furthermore, the scalability
of the algorithms under different information constraints will be demonstrated across
a range of swarm sizes and placements. This adaptability supports their application
in dynamic environments, where agents must effectively respond to changes in swarm
distribution, environmental obstacles, and task requirements.

Extensive experiments in the first and second studies reveal that swarm guidance

80



can still be achieved despite information constraints. For example, in cases of low
sensing accuracy, the system remains functional although there may be trade-offs in
time efficiency. This finding emphasizes the robustness of our proposed algorithms
and suggests the resilience potential of systems with constrained sensing inputs. In
situations where communication is limited or absent, our research demonstrates that
swarm control can still be maintained, allowing each agent to assess the orientation
of the swarm relative to its target independently. This approach is particularly
relevant for applications in remote or hazardous locations where communication
infrastructure may be unavailable, as well as in resource-limited robotic applications.

Although both of our proposed algorithms succeeded in their respective studies,
the first communication-free algorithm demonstrates greater effectiveness and ro-
bustness due to its mechanism of targeting specific agents to drive the entire swarm.
In contrast, the second bearing-based algorithm considers the swarm as a whole for
decision-making and control. While both studies use the same Boid model for passive
agents, the parameter values in the first study are more aligned with individual
behaviors, whereas those in the second study are closer to collective dynamics, better
reflecting the distinct characteristics of each algorithm. Furthermore, performance
could be improved by combining the targeting strategy from the first study with
the dividing-stage mechanisms from the second study, resulting in a more effective
approach.

The methods proposed in this dissertation enhance our understanding of essential
information for effective swarm guidance, while several promising research directions
remain. Future studies could explore adaptive mechanisms, such as reinforcement
learning, to enable real-time parameter tuning and decision-making. Equipping
steering agents with the ability to autonomously learn and adapt to environmental
changes could increase robustness across diverse conditions, reducing reliance on
pre-configured settings. Additionally, hybrid architectures combining rule-based and
learning-based control could optimize swarm behavior. For example, a hybrid model

might follow predefined rules in routine scenarios but employ reinforcement learning
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in unpredictable situations to broaden the applicability of swarm control to complex,
real-world tasks.

While our studies show that swarm control can operate effectively with limited
sensing and communication, further exploration of communication protocols could
facilitate the collection of additional critical information to enhance performance.
Designing protocols prioritizing essential information, such as urgent positional
shifts or environmental hazards, could enhance coordination in resource-constrained
settings. This dissertation establishes a theoretical foundation for understanding
how essential information governs swarm behavior, contributing valuable insights
to the field of swarm dynamics. By reducing dependency on centralized control
and extensive communication, we outline practical implications for the scalability
and feasibility of swarm systems in various contexts. Grounded in principles of
nonlinear control and collective behavior, this approach bridges theory and practical
application, offering a pathway for future systems that are not only efficient but also
robust and adaptable.

From the perspective of swarm movement models, this dissertation investigates
the performance of shepherding algorithms on swarms of passive agents in the Boid
model. We characterize the Boid-like properties by collective movements within
the swarms and repulsive reactions to steering agents, both of which we believe are
essential for shepherding. Similar properties are present in the Couzin model [50]
and the Vicsek model [51]. These characteristics are fundamental to shepherding by
allowing steering agents to guide swarms through localized stimuli and interactions.
In other models exhibiting Boid-like properties, adjustments to the implementation
might be required to accommodate different swarm dynamics. Nevertheless, the core
concepts of our proposed algorithms remain valuable: targeting a single agent to
drive the swarm and dividing the shepherding process into subproblems to enhance
performance in complex scenarios. In contrast, shepherding fails when attempting to
guide swarms that do not exhibit Boid-like properties, such as those following the

random-walk model [52], even though each passive agent has repulsive reactions to

82



the steering agents.

The result of this dissertation demonstrates the potential applicability of swarm
shepherding algorithms across diverse domains. Future work could focus on deploying
these algorithms in real-world scenarios for empirical validation and refinement.
Cooperations with related fields may offer new perspectives and technical tools to
enhance practical applications. As the demand for multi-objective tasks in robotics
grows—such as simultaneous obstacle avoidance and goal-reaching—incorporating
multi-objective optimization techniques could enable swarm systems to dynamically
balance competing objectives, thereby expanding their range of applications.

The advancements presented in this dissertation mark a critical step toward
intelligent swarm control in real-world applications. As swarm systems gain wider
adoption, they are expected to revolutionize fields such as automated agriculture,
forestry, disaster response, environmental conservation, and large-scale coordination
of robots and vehicles. By addressing resource constraints, this research lays the
groundwork for making swarm systems more accessible and affordable. Ultimately,
this work advances swarm intelligence, positioning swarm systems as powerful tools to
complement and extend human capabilities. With continued technological progress,
swarm control is poised to redefine possibilities in robotics, artificial intelligence, and

autonomous systems, transforming industries and enhancing the quality of life.
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