

Title	Enumerative and algebraic invariants of lattice polytopes
Author(s)	Koelbl, Max
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/101775
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Max Kölbl)	
Title	Enumerative and algebraic invariants of lattice polytopes (格子多面体の数え上げ不变量および代数的不变量)

Abstract of Thesis

This thesis treats a variety of topics surrounding lattice polytopes, mostly related to their Ehrhart theory. The content of the thesis splits into four parts. In the first part we introduce the preliminary concepts necessary to understand the main results. In the second part, we investigate the roots of Ehrhart polynomials, in the third part, we study equivariant Ehrhart theory, that is, Ehrhart theory under a lattice action that fixes the polytope, and lastly, in the fourth part we examine the nearly Gorenstein property of the Ehrhart ring associated to a lattice polytope.

The first part contains two chapters. In the first one, we lay the groundwork for the understanding of polytopes, Ehrhart theory, and relevant notions about commutative algebra. The second chapter serves as an introduction to equivariant Ehrhart theory by supplying some background in representation theory and detailing the equivariant versions of Ehrhart theoretic notions.

The second part revolves around the question “What can we know about lattice polytopes whose Ehrhart polynomial roots have real part $-1/2$?” . This part contains two chapters. The first chapter is a general investigation of a class of Polynomials - Stanley non-negative (SNN) polynomials -- which includes all Ehrhart polynomials. The main results characterises the space of roots attainable by SNN-polynomials under the condition that all roots have real part $-1/2$. This confirms a special case of a conjecture of Braun and Develin (2006).

The second chapter revolves around symmetric edge polytopes (SEPs) - a type of polytopes that are defined by graphs. Higashitani, Kummer, and Michalek conjectured in (2017) that SEPs defined by complete multipartite graphs exclusively have Ehrhart polynomial roots with real part $-1/2$. By using Gröbner basis techniques and a number of previous results about symmetric edge polytopes, we compute the h^* -polynomial certain classes of SEPs from complete multipartite graphs and - with the help of interlacing techniques -- confirm the aforementioned conjecture in a number of new cases. We also show that these interlacing techniques have limitations which makes it unlikely that they will be of much use for further investigations of this conjecture.

The third part centres around the equivariant Ehrhart theory of certain classes of polytopes. It has two chapters.

In the first chapter, we discuss Stapledon's Effectiveness Conjecture. We confirm it for SEPs coming from cycle graphs under dihedral group actions. Furthermore, we supply an example that shows that if the Effectiveness Conjecture is generalised to rational polytopes, it does not hold. In the second chapter, we discuss the equivariant H^* -series of hypersimplices. We confirm another conjecture by Stapledon, that states that the representation given by $H^*[1]$ is a permutation action, and give a combinatorial interpretation of it in terms of decorated ordered set partitions, following research by Early and Kim.

The fourth part contains one chapter. It investigates the nearly Gorenstein property of the Ehrhart rings of lattice polytopes. We find necessary conditions and sufficient conditions on lattice polytopes for their Ehrhart rings to be nearly Gorenstein. We also find a full characterisation in the case of $(0, 1)$ -polytopes that have the integer decomposition property which we use to classify nearly Gorensteiness for edge rings and matroid polytopes arising from graphic matroids.

論文審査の結果の要旨及び担当者

氏 名 (Max Kölbl)		
	(職)	氏 名
論文審査担当者	主査	准教授 東谷 章弘
	副査	教授 中村 誠
	副査	教授 降幡 大介
	副査	教授 八森 正泰 (筑波大学システム情報系社会工学域)

論文審査の結果の要旨

Max Kölbl氏の論文では、格子多面体を巡る代数的／組合せ論的不変量の研究に取り組んでいる。特に、膨らませた格子多面体に含まれる格子点の数え上げ関数であるEhrhart多項式に関する理論（Ehrhart理論）の研究に主に取り組んでいる。本論文において、具体的には、以下の3つのトピックに関する研究成果について述べている。

- (1) 反射的多面体のEhrhart多項式のCL性
- (2) 同変Ehrhart理論
- (3) Ehrhart環がnearly Gorensteinになるための条件

(1) 反射的多面体は、そのEhrhart多項式がある関数等式を満たすという条件で特徴付けられ、Ehrhart理論において最も重要な格子多面体のクラスの1つとして認識されている。反射的多面体のEhrhart多項式は複素平面における“ $\text{Re}(\alpha) = -1/2$ ”という直線(canonical line)に関して対称に分布する。そこでKölbl氏は本論文において、根が全てcanonical lineに乗るEhrhart多項式を持つ反射的多面体（CL多面体と呼ぶ）の研究に従事し、CL多面体の満たす性質の証明や新たな例の構成などに成功している。これらの成果は、CL多面体に関する新たな知見を与えており、Ehrhart理論におけるCL多面体の構造解析に大いに貢献している。

(2) 同変Ehrhart理論は、格子多面体とそこへの有限群の線型作用を加味して考えたものであり、通常のEhrhart理論の一般化として近年盛んに研究されている。同変Ehrhart理論における重要な予想として“effective予想”があるが、Kölbl氏は本論文において、いくつかの格子多面体に対してeffective予想が成立することを示し、さらに、effective予想の拡張を考えるとある種の反例が存在するということも示している。同変Ehrhart理論は、当該分野における1つのトレンドとなっており、本論文の結果はその潮流に沿った興味深いものであると言える。

(3) 可換環論において“Gorenstein性”は極めて重要な概念である一方で、近年、その一般化が数多く導入されている。その一種の“nearly Gorenstein性”(NG性と略記)が盛んに研究されている。Kölbl氏は本論文において、格子多面体に付随する次数付き環であるEhrhart環に対し、そのNG性を詳しく解析し、必要条件や十分条件、ある条件下での特徴付けなどを得た。これは次数付き環に対するNG性の更なる理解の端緒となるものであり、重要である。

上記の研究成果はいずれも、当該分野における研究をさらに進展させるものであり、十分に価値のあるものであると言える。よって、本論文は博士（理学）の学位論文として価値のあるものと認める。