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Chapter 1

Introduction

Given a convex polytope as a subset of R, how many integral points are contained in it
and its integer dilates?

This question was investigated by Eugene Ehrhart in the 1960s and has since become
a subject of intense research. Ehrhart found that the counting function which maps the
magnitude of the dilation to the number of lattice points in the dilated polytope is a quasi-
polynomial if one of the dilates has all integral vertices. If the first dilate has all integral
vertices already (i.e., the polytope is a lattice polytope), the function is a polynomial.
Thus, we call this function the Fhrhart (quasi-)polynomial of a polytope.

The Ehrhart polynomial of a lattice polytope encodes a variety of geometric informa-
tion about it that goes beyond merely counting lattice points. For example, Alexander
Barvinok showed in [Bar94] that the coefficients of the Ehrhart polynomial could be com-
puted in polynomial time from the volumes of the faces of the polytope.

In the early 2000s, Ehrhart polynomials made a surprise appearance in number theory.
While studying a version of the Riemann hypothesis, the authors of [Bum+00] noticed
that one family of functions they investigated are the Ehrhart polynomials of the cross-
polytope. This prompted [Rod02] to study polynomials whose roots also have real part
—% more closely. Both of these papers then led to [Bec+05], which initiated the study of
Ehrhart polynomial roots. In particular, they considered geometric properties of polytopes
whose Ehrhart polynomial roots have real part —%. From there, the study of Ehrhart
polynomial roots can be split into two categories. Firstly, the study of the roots of classes
of polynomials, which include Ehrhart polynomials, as showcased in publications such as
[BD08; Bra08; Higl2; HHK19], and secondly, the study of specific families of polytopes
with a focus on their Ehrhart polynomial roots, as showcased in publications such as
[OS12; HKM17; HHY22]. In [HHKI19], the term CL-polytope was coined for polytopes
with all Ehrhart polynomial roots on the canonical line, i.e. the set { —% +ai: o€ R}.
Chapter 4 falls into the first category. It uses techniques similar to those in [BD08] and
[Bra08] to prove a conjecture about Ehrhart polynomial roots from [BD08] in the case of
polynomials that have all roots on the canonical line.

Symmetric edge polytopes (also sometimes referred to as adjacency polytopes) are a
class of graph polytopes that have been the subject of intense study in recent years, for
example [HKM17; CD22; DDM22; KT22] to name a few. They are a family of reflexive
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polytopes that are constructed from simple graphs. The dimension of a symmetric edge
polytope is equal to the number of edges of the largest spanning forests of its graph, making
this family of polytopes an ideal provider of examples of reflexive polytopes in high dimen-
sions. Since every CL-polytope is reflexive (a fact that follows from Ehrhart reciprocity),
symmetric edge polytopes also play a role in the study of CL-polytopes [HKM17].

In the study of CL-polytopes, one useful tool is the theory of interlacing polynomials.
Given real-rooted polynomials p and ¢ of degrees d and d + 1 respectively, we say that
they interlace if their roots alternate on R. Interlacing polynomials have been making
appearances in mathematics for a long time, for example in form of the classical result that
orthogonal polynomials interlace, but only recently have all these results been collected
and organised [Fis06]. In recent years, the theory of interlacing polynomials has been used
to show that certain families of polytopes are CL-polytopes. In [HKM17], it was applied
to symmetric edge polytopes of complete bipartite graphs of types (1,n), (2,n), and (3,n).
In Chapter 5, we extend these results to complete multipartite graphs of type (1,1,n),
(1,2,n), and (1,1,1,n).

Since its advent, Ehrhart theory has seen several generalisations. One of these is
equivariant Ehrhart theory, introduced in [Stall], which considers lattice polytopes that
are fixed by a group action on the lattice Z%. Instead of simply counting the number of
lattice points in the dilations of a polytope, we count for every element ¢ in the acting
group only the number of lattice points in every dilation, fixed by ¢g. Ehrhart polynomial,
Ehrhart series, and h*-polynomial all have equivariant analogues where values from 7Z
(or Q in the case of Ehrhart polynomial coefficients) have been replaced by Z- ( or Q-
Jvalued class functions. One peculiarity however is that the equivariant analogue of the
h*-polynomial need not be a polynomial, which is why we call it equivariant H*-series.
Whenever the equivariant H*-series is not a polynomial, it also has a coefficient which
does not correspond to an effective representation. Conversely, all currently available data
suggests that if the equivariant H*-series is a polynomial, all of its coefficients correspond
to effective representations. This is known as the effectiveness conjecture and has been the
main focus of investigation into equivariant Ehrhart theory. In Chapter 6, we investigate
the effectiveness conjecture for symmetric edge polytopes coming from cycle graphs.

Another of the conjectures Stapledon has posed is concerned with the value of H*[1].
It posits that if the equivariant H*-series of a polytope is a polynomial, then H*[1] is a
permutation representation. In Chapter 7 we investigate this question for hypersimplices
when the symmetric group acts via coordinate permutation. The equivariant Ehrhart
theory of hypersimplices has been studied before in [EKS24], but with a focus on the ef-
fectiveness conjecture. In particular, we propose the first closed formula for the coefficients
of the equivariant H*-series under this action.

Every lattice polytope P gives rise to an Fhrhart ring defined by taking the cone over
P x {1} and forming the semigroup ring over the set of lattice points in that cone. This
correspondence gives rise to a correspondence of notions. For example, a lattice polytope
has the integer decomposition property if and only if its Ehrhart ring is normal. Famously,
the Gorenstein property for rings indirectly corresponds to reflexivity in polytopes [Hib92]
in the sense that a polytope is Gorenstein if one of its integer dilations is reflexive. The
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Gorenstein property has numerous generalisations, and a popular subject of study is to
attempt to understand them in terms of lattice polytopes. One of these properties is the
nearly Gorenstein property [HHS19] defined in terms of the trace ideal of the canonical
module. Both the canonical module and its trace ideal have combinatorial interpretations
in terms of lattice points in the cone over a lattice polytope and are thus closely related
to the integer decomposition property. We study the nearly Gorenstein property of lattice
polytopes in Part IV.

Summary of the thesis

Part T contains background on the objects we study in this thesis. In Chapter 2 we recall
some background about polytopes and Ehrhart theory and introduce the classes of poly-
topes that will play an important role later on. Alongside them, we will introduce the
methods we use to study them. Specifically, we will introduce symmetric edge polytopes
and Grobner basis techniques, as well as CL-polytopes and the theory of interlacing poly-
nomials and some notions from ring theory. In Chapter 3 we will introduce equivariant
Ehrhart theory. In order to do that, we will first give some background in representation
theory.

Part II contains two chapters that deal with the roots of Ehrhart polynomials. For this
we will make heavy use of the theory of interlacing polynomials. In Chapter 4, we study
SNN-polynomials, as introduced in [BD08], whose roots have real parts —%. We call this
class of polynomials € N &S: The set G is the set of SNN-polynomials and € is the set of
real polynomials whose zeros all have real part —%. In particular, in Theorem 7 we find
that in degree d the imaginary parts of the roots are bounded by those of the polynomial

o= (5)+ (5,

This confirms a conjecture from [Bra0g] in the case of € N &. Further, in Theorem 8 we
show that within this bound, every root can be obtained by a degree d polynomial in € N G.
The pd are not themselves Ehrhart polynomials of any polytope. Up to dimension 9, we
identify the standard reflexive simplex as being the polytope whose Ehrhart polynomials
have the largest spread across the canonical line. For higher dimensions, we show how that
might not be the case without providing a concrete polytope as a counterexample. Lastly,
in Proposition 20 we provide a sufficient criterion for a polynomial in € to be contained
in & in the form of inequalities on the roots.

In Chapter 5, we study symmetric edge polytopes from complete multipartite graphs.
The goal is to find further evidence for a conjecture from [HKM17]. First, we use Grobner
basis techniques to derive a formula for the h*-polynomials of complete tripartite graphs
(Theorem 10, Theorem 11). Then, in Proposition 22 we use this formula, as well as results
from [OT21] to compute the h*-polynomials of the complete multipartite graphs of types
(1,m,n), (1,1,1,n), and (2,2,n). Using techniques from [HKM17], in Theorem 9 we show
interlacing relationships among the Ehrhart polynomials of some of these graphs. Finally,
in Theorem 12 we develop a systematic approach to these techniques and show that their
effectiveness depends on the v-polynomial, which limits their usefulness in the further
study of the conjecture from [HKM17].
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Part III contains two chapters that deal with equivariant Ehrhart theory. In Chapter 6,
we focus on testing the effectiveness conjecture. First, we consider the symmetric edge
polytopes of cycle graphs where the actions are induced by the actions of the automorphism
groups on the graphs. We confirm the conjecture in two cases (Theorem 13): firstly,
for cycle graphs of prime order under the action of the dihedral group, and secondly
for all cycle graphs under the action of the order 2 reflection subgroup of the dihedral
group. In Theorem 17 we also study a family of modified cross-polytopes with rational
coefficients under reflections across a hyperplane. All of these modified cross-polytopes
have a polynomial equivariant H*-series, but one of them has a non-effective coordinate.
This shows that even if the effectiveness conjecture is true, it cannot be extended to the
rational case.

In Chapter 7, we study the equivariant Ehrhart theory of hypersimplices under the
action of the symmetric group. From [EKS24] it is already known that the effectiveness
conjecture holds, so we focus on a different conjecture, namely whether in the effective
case, H*[1], the sum of all the coefficients of the equivariant H*-series, is a permutation
representation. We show in Theorem 20 that this is indeed the case and detail an in-
terpretation via decorated ordered set partitions (DOSPs for short), which is known to
exist both in the non-equivariant case [[Kim20] and in the case of a cyclic group action.
In Theorem 18 we also give an explicit description of the individual coordinates of the
equivariant H*-series and show that they are not necessarily permutation actions.

Part IV contains one chapter. In it, the goal is to find a characterisation of the nearly
Gorenstein property for the Ehrhart rings of lattice polytopes. We start by defining the
floor polytope | P| and the remainder polytope { P} of a given lattice polytope. Then in
Theorem 24 we show that every nearly Gorenstein lattice point with negated a-invariant
a can be written as the Minkowski sum |aP] + {P}. We show that the converse does not
necessarily hold, but if P is representable as such a sum, then at least most of its integer
dilates are nearly Gorenstein. In Theorem 26 we show that for every nearly Gorenstein
polytope its facet data is encoded by some reflexive polytope. Lastly, in Theorem 27 we
give a full classification of nearly Gorenstein (0, 1)-polytopes in the case when they have
the integer decomposition property. Using that, we prove in Corollary 7 that all IDP
(0, 1)-polytopes are level. Furthermore, we characterise nearly Gorenstein edge polytopes
in the IDP (Corollary 8) case and nearly Gorenstein matroid base polytopes from graphic
matroids (Corollary 9).
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Chapter 2

Convex polytopes and Ehrhart
theory

In this chapter we will introduce our main object of study: convex polytopes. We will
start by introducing the most basic notions and give an overview of Ehrhart theory, the
methodology for the study of convex polytopes used throughout most of this thesis. We will
also introduce the classes of polytopes that will play a special role during our investigations.
For any undefined terms and notations throughout this chapter, we may refer to standard
texts like [BR15] and [Ziel2].

2.1 Basic notions

Polytopes. A lattice of dimension d is an abelian group M = Z%. For every M we get
the real vector space M ®z R. In the following we will always identify M with Z¢ and
M ®7 R with R? unless stated otherwise. Ehrhart theory is the study of convex polytopes
via counting lattice points it contains. We will start by defining convex polytopes.

Definition 1 (Convex polytope, lattice polytope, rational polytope). Let d be a positive
integer. Then a convezx polytope P is the convex hull of a finite subset of RY. If a convex
polytope can be written as the convex hull of elements of Z¢ (resp. @d) exclusively, we
refer to it as a lattice polytope (resp. rational polytope).

Throughout this thesis, we will refer to convex polytopes simply as polytopes. While
rational non-lattice polytopes play a vital role in parts of this thesis, the focus in general
lies on lattice polytopes. We provide a number of useful examples.

Example 1 (Some useful families of lattice polytopes). Fix a positive integer d. Hence-
forth, we will refer to the i-th unit vector in R? as e;.

(a) The standard (d — 1)-simplex is given by

A%l = conv{ey, es, ..., eq}.
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(b) The standard reflezive d-simplex is given by

d
d ._
AS, = conv 61,62,...,6,1,—2 T
i=1

(¢) The d-th cross-polytope is given by

O = conv{ze,, *ey, ..., Eeq}.

(d) The d-th hypercube is given by

d
¢ .= conv{z gie;: (€1,€9,...,€q4) € {—1, 1}d}.

i=1
(e) The d-th unit hypercube is given by

d

Ud .= conv{Zaiei: (e1,€2,...,€q) €10, 1}d}.

i=1
(f) Let 0 < k < n be integers. The hypersimplex of type (k,n) is given by
Ay = conv{e;, + e, + -+ e, {1, 00, ..., 0k} C [n]}.
In particular, the hypersimplex of type (1,n) is identical with the standard (n — 1)-
simplex

There exists a natural notion of isomorphism for polytopes called unimodular equiva-
lence. Let M and N be two lattices and P C M ®z R and Q C N ®z R polytopes. Then
P and @ are called unimodularly equivalent if there exists a map f: M — N such that
f(MNP)=NNQ, fis invertible of M N P, and for a fixed n € N and every M-basis
B C M, f(N)+nis an N-basis (see Figure 2.1).

Let (R%)* denote the dual space of R%. For n € (R?)* and z € R?, we denote by n(z)
their natural pairing. Given n € (Rd)* and h € R, a hyperplane in R? is a subset H,.n of
the form

Hop = {z € R?: n(z) = —h}.

Every hyperplane H,,;, defines a closed half-space ”H:;h by
Hyp = {z € R?: n(z) > —h}.
A hyperplane H,, 5, is called supporting hyperplane of a polytope P if
(i) PCHyi,or PCHE, _,,

(ii) PN Hyyp is not empty.
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[ ] I [ ] [ ]

€2
° ° o (z,y) = 0 &

0 el - e e—e e
e e ®

[ ] ? [ ] [ ]

Figure 2.1: The polytopes A! and U! are unimodularly equivalent but lie in different
lattices.

Definition 2 (Face, dimension). A face of a polytope P is a subset of the form P NH
where H is a supporting hyperplane of P. Notice that P is a face of itself given by PNH .
The dimension of a face F' is the length d of the longest chain

FCH G- CFCF=F

where the Fy, Fi, ..., Fy_1 are faces. The dimension of the polytope P is its dimension as
a face.

Some authors regard the empty set as a face of dimension —1, but here, this case is
excluded. Faces of dimension 0 are called wvertices, those of dimension 1 are called edges,
and those of codimension 1 facets. We denote the set of vertices of P by vert(P) and the
set of facets by F(P). In particular, P = conv{vert(P)}. We can also describe P in terms
of its facets. Assume P is is rational polytope. Then we can write

P ={z € R*: np(x) > —hp for all F € F(P)} (2.1)

where hp is a rational number and np is a primitive integer vector, i.e., the greatest
common divisor of its coordinates is 1. We call hr the height and ng the facet normal of
F. In particular, if P is a lattice polytope, hp is an integer. We call the set in Equation 2.1
call the hyperplane description or facet presentation of P. The set 0P = UFeF(P) Fis
called the boundary of P and the set int(P) = P\ OP is called the strict interior of P.

Constructions. Given one or several polytopes, it is always possible to construct new
polytopes. As we will see on many occasions, understanding polytopes in relationship with
each other often tremendously boosts our understanding of them.

Definition 3 (Polar dual, reflexivity). Given a polytope P C R? of dimension d with
0 € int(P), its polar dual P* is given by

Pr={ne R :n(zr)>—1foralze P}

If P is a lattice polytope, it is called reflexive if P* is also a lattice polytope.



CHAPTER 2. CONVEX POLYTOPES AND EHRHART THEORY 9

One can verify that (P*)* = P. The condition of having full dimension and including
the origin in the strict interior is a technicality that must be satisfied to guarantee that
P* is a polytope. Whenever we encounter a polytope P that contains a lattice point
in its strict interior but does not satisfy these conditions, we consider an appropriate
unimodularly equivalent polytope.

Given two polytopes P,Q C R, we can define their Minkowski sum

P+Q={zx+y:xz€P, yec@}

One can check that P + @ is also a polytope. In particular, it is a lattice polytope if P
and () are. For a non-negative integer k, the k-th dilation kP of P is given by

kP = {kx: z € P}.

The 0-th dilation is just the origin and for every k£ > 1, kP coincides with the k-fold
Minkowski sum of P with itself.

The (direct) product of two polytopes P C R? and @ C R is defined as the Cartesian
product of P and @ and denoted by P x Q C R*™. Note that we can regard P x Q as
the Minkowski sum of polytopes, as follows. Let

P ={(p,0,...,0) ERdJre:pEP} and Q' = {(0,...,0,q) c R4te. q € Q}.
—— ——

e d

Then, we can see that P x Q = P' 4+ Q'. Conversely, suppose two polytopes P, Q' C R?
satisfy the following condition: for all i € [d] .= {1,...,d}, we have that m;(P") = {0} or
m:(Q") = {0}, where m;: RY — R is the projection onto the i-th coordinate. Then we can
regard P’ + Q" as the product of two polytopes.

The direct sum or free sum of two polytopes P C R? and @ C R® is defined as

P®Q=conv | {(p,0,...,0):pe PYU{(0,...,0,¢9): g € Q} | c R¥**.
—— T

Ehrhart theory. We define the lattice point enumerator of a set P C R? as the function
Ep: N — Nyvia
Ep(k) = |[kPNZY.

If P is a lattice polytope, Ep is a polynomial which we call the Ehrhart polynomial of P.
If P is a rational polytope, Ep is a quasi-polynomial, i.e. a function

Ep(k) = co (k) + c1(k) k + co(k) K + - + cq(k) K

such that there exists an integer p with ¢;(k) = ¢;(k + p) for all ¢ and k. We call p the
period of P. If p = 1, then Ep is a polynomial. A rational, non-lattice polytope whose
Ehrhart quasi-polynomial has period p = 1 is called a pseudo-integral polytope (PIP). The
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degree of the Ehrhart (quasi-)polynomial is equal to the dimension of its polytope. In
the lattice polytope case, the leading coefficient of Ep is equal to the volume of P and
the coefficient with the second-highest degree is equal to half the boundary volume of P.
In both cases the volumes are suitably normalised (i.e. the volumes of the polytope and
each of its facets are defined with respect to the volume of the unit hypercubes in the
sublattices they lie in).

The Ehrhart (quasi-)polynomial also contains information about the number of lattice
points in the strict interior of P.

Proposition 1 (Ehrhart-Macdonald reciprocity [Mac71]). Let P be a rational polytope of
dimension d with Ehrhart quasi-polynomial Ep. Then the following equality holds.

Ep(—k) = (_1>dEint(P)<k)

The generating function of the Ehrhart (quasi)-polynomial is called its Ehrhart series
and can be written as

ehrp ZEP = Pp(t ( )

(1— tp)dJrl’
k>0

where h% (1) is a polynomial with non-negative integer coefficients of degree dp or less, and p
is the period of the Ehrhart (quasi-)polynomial. We call this polynomial the h*-polynomial
of P.

If p=1, Ep can be easily inferred from h} via the equation

:;d:h <k+d_‘7) (2:2)

where hj is the k-th coefficient of h},. When P is clear from context, we will usually just
omit the index.

Example 2 (Ehrhart polynomial of the d-simplex). Let d and k be positive integers. The
set of lattice points in kA? is given by

{arer + ases + -+ + agrieqrr: foralli, 0 <oy <kand o +as+ -+ +ag; =k}

To get Faa(k), we need to count the number of ways to partition k elements into d + 1
many parts. By stars and bars, we obtain

Ear(k) = (k ; d).

Equation 2.2 implies that h},(t) = 1.

A popular subject of study are the properties of the coefficients of the h*-polynomial.
For example, it is known that b = 1, b’ = |int(P)NZ%|, bt = |[PNZ% —d — 1, and k(1)
is equal to the normalised volume of P, i.e., the volume of P expressed with respect to the
volume of A?. Another relationship is given by the following classical result due to Hibi.
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Theorem 1 (Hibi’s Lower Bound Theorem [Hib94]). Let P be a lattice polytope of dimen-
sion d with h*-polynomial h*(t) = ZZZO hit*. Further, suppose that h # 0. Then the
inequalities hy < hj hold for every 1 <k < d.

A remarkable result by Hibi even shows us that the h*-polynomial has a connection
with reflexivity.

Theorem 2 (Corollary 2.2 in [Hib92]). Let f be a degree d polynomial and set h*(t) =
(1 —¢t)d+t > wso f (k) tF. Then f satisfies the functional equation

fz=1) = (=1)"f(~2) (2.3)
if and only if h* has palindromic coefficients, i.e., h*(t) =t h* (%)

Ehrhart polynomials and A*-polynomials behave nicely under certain polytope con-
structions. For example, for polytopes P € R% and Q C RE, Epyg = Ep - Eg and
hpag = hp - hi. For most other constructions however (like Minkowski-summation and
dilation), Fp and h* are difficult to deduce in general.

Unimodular triangulations. The most basic way of computing Ehrhart polynomials
is straightforward: if your polytope has dimension d, count the number of lattice points
in the first d dilations and infer the coefficients of Ehrhart polynomial from it. In many
cases however, there is a better way. We need two key definitions.

Definition 4 (Unimodular simplex, unimodular triangulation). A wunimodular simplex
of dimension d is a polytope which is unimodularly equivalent to A%. A wunimodular
triangulation of a d-dimensional polytope P is a decomposition

P=5SUSU---US,

where every S; is a unimodular simplex of dimension d such that for any pair 1 <i < j <,
S; N'S; is either empty or a face of .S; and 5;.

A polytope does not necessarily have a unimodular triangulation. For example, almost
by definition, only lattice polytopes can have one. However, in the case when a polytope
does admit a unimodular triangulation, the h*-polynomial is fully encoded by it.

Definition 5 (Visible facets, half-open simplex). Fix integers d > 0 and 0 < m < d. Let
the facets of A? be denoted by Fy, Fi, ..., F; and assume A? lies in R%. Let ¢ € R? be a
point in general position, i.e., assume it does not lie on any of the supporting hyperplanes
of the F;. We call a facet visible from q if for every point f € F;, the half-open line segment
[g, f) does not intersect P. The set of visible facets from ¢ shall be denote by V,. The
half-open simplex of dimension d viewed from ¢ is defined as

HAY:=AN | F

Fev,
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With an argument similar to that from Example 2, one can show that the lattice point
enumerator of this set is given by

k+d—1V,
EHdAd(k):( d | q|)-

Equation 2.2 implies that A%, . (t) = t/Val.

Suppose P has a unimodular triangulation Si,S5,...,S,. There exists a ¢ € P in
general position with respect to every S;. We can then define the half-open triangulation
viewed from q by

H,Si UH S U---UHS,.

All the elements of the half-open triangulation are disjoint [KKVO08] and their union is
exactly P. This means that the Ehrhart polynomial of P is equal to the sum of the lattice
point enumerators of the half-open simplices. The same goes for the Ehrhart series and,
in particular, the hA*-polynomial.

2.2 Symmetric edge polytopes

We will now introduce a family of polytopes, first defined in [Mat+11], which we will study
in Chapters 5 and 7. Let G = (V, E') be a simple graph with vertex set V' and edge set E.
We define the symmetric edge polytope of G as

Pg = {j:(ev —ep) € RV {o, w} € E}

The dimension of Py is equal to |V| —¢(G) where ¢(G) is the number of connected compo-
nents of G. In practice it is never necessary to consider disconnected graphs because joining
connected components in a common vertex yields the same symmetric edge polytope. In
particular, if Gy, G, ..., G, are the 2-connected components of G, we get

Po=Pg, ®Ps,® & Pg,.
This leads us to our first family of examples.
Example 3. Let G be a tree with d edges. Then
Pg =1
after an appropriate unimodular transformation.

The geometric and combinatorial properties of a symmetric edge polytope can usually
be expressed in terms of its underlying graph. One example is its facet structure.

Proposition 2 (Theorem 3.1 in [HIM19]). Let G = (V, E) be a finite simple connected
graph. Then f:V — Z is facet defining if and only if
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(i) for any edge e = {u,v} we have |f(u) — f(v)| <1, and

(it) the subset of edges Ef = {e = {u,v} € E: |f(u) — f(v)| = 1} forms a spanning
subgraph of G.

In Chapter 5 we will be studying symmetric edge polytopes of complete multipartite
graphs, i.e., graphs of the form

Koyapan = (AU A U---UA, {{u,v}: forue A, and v € A; if i # j})

where the a; are positive integers and the A; are finite sets with |A;| = a; for all i. The
facet description of symmetric edge polytopes from multipartite graphs is as follows.

Proposition 3 (Proposition 3.5 in [HIM19]). Let k > 3 and G = K,,.._,, be a complete
k-partite graph with vertex set V = |_|f:1 A;. Then \:'V — Z is facet defining if and only
if A, up to a constant, satisfies one of the following conditions.

(i) MA;) ={-1,1} for some 1 <i<k and )\|Aj =0 foralli# j, or
(i) A(V)=1{0,1} and
(a) Aly, is constant for every A;, or

(b) there exists an i such that A\(A;) = {0,1} = A (Ule A\ Ai>.

In particular, the symmetric edge polytope of G has 9214 2521(2‘“ —2) — 2 facets.

Grobner bases and unimodular triangulations. Symmetric edge polytopes have
a unimodular triangulation, as stated in [HJM19]. It was obtained using an algebraic
technique which we will briefly introduce now. More detailed information can be found in
[Stu96).

Let k be a field and let k[t #5,...,t5 s] be the Laurent monomial ring in d + 1
variables. We define the toric ring of a d-dimensional lattice polytope P as the subring

k[P] = k[t’s: p € PNZ"]

where t? = t¥* .- t%¢ and p = (p1, ..., ps) € PNZ". Define now the ring k[z,: p € PNZY
which associates a formal variable to every lattice point in P. We define the toric ideal
Ip of k[P] as the kernel of the map

m: k[z,: p € PNZY — k[P]

where 7(x,) = tPs. It is well known that toric ideals arising from polytopes in this way
are homogeneous binomial prime ideals.

A monomial ordering is a total ordering of monomials in a polynomial ring k[z1, . . ., 2]
such that three given monomials a, b, ¢, a < b and 1 < ¢ imply ac < be for every monomial
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c. There exist several standard examples, such as lez (lexicographic), deglex (degree-
lexicographic) and degrevlez (degree-reverse lexicographic), but we will focus only on the
last one. First we impose a total ordering on the variables of k[xy, za, ..., z,]. Without
loss of generality, assume z; < z; if and only if ¢ < j. Then, given two monomials
2% = x{'al? - 2% and o = 2w - 2l we say that 29 < 2¥ if either Y7 a; < Y00 b
or Y o a; =y b and a; > b; where j = min{i: a; # b;}.

Given a polynomial p € k[xy,zo,...,x,], the leading term of p, denoted lt(p), is
the largest term of p with respect to the chosen monomial ordering. For a subset S C
k[zq, 29, ..., z,], we define

ItS :={lt(p): p € S}.

This gives us the necessary tools for the following definition.

Definition 6 (Grobner basis). Let I be an ideal in a polynomial ring k[z1,za, ..., ,)]
equipped with a monomial ordering. A Grobner basis By of I is a finite subset of I such
that B generates I and It B; generates 1t I.

A Grobner basis By is called square-free if every element in 1t By is square free, i.e., for
every element of It By, every variable x; has at most degree 1. A Grobner basis is called
quadratic (resp. cubic) if every element in it is at most quadratic (resp. cubic).

Let Ip be the toric ideal of a d-dimensional polytope P. Denote its Grobner basis
by Bp and assume Bp is square-free. Then the elements of It Bp encode a unimodular
triangulation in the following way. In the ring k{z,: p € PN 7%, define the set

U:= {QUS:H%: |S|=d+1, zg €ltlp} Cklz,:pe PNZ%

peS

of square-free degree d 4+ 1 monomials not in It /p. Then the set of polytopes
T := {conv{S}: x5 € U}
defines a unimodular triangulation of P. And since the condition xg ¢ 1t Ip is equivalent
to the condition that no m € 1t Bp divides zg, we can think of 7 as being encoded by Bp.
For symmetric edge polytopes, there exists a known square-free Grobner basis.
Proposition 4 (Proposition 3.8 in [HIM19]). Let z < ey < Yoy <+ < Te,, < Yo, be
an ordering on the edges. Then the following collection of three types of binomials forms

a Grobner basis of the toric ideal of the symmetric edge polytope of G with respect to the
degrevlex ordering:

(1) For every 2k-cycle C, with fixed orientation, and any k-element subset I of edges of
C not containing the smallest edge

ITr-— 1T @

eel ecC\I
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(2) For every (2k + 1)-cycle C, with fized orientation, and any (k + 1)-element subset I

of edges of C
Hpe -z H Ge-

ecl eeC\I

(3) For any edge e
Tele — 2°.

The leading monomial is always chosen to have positive sign.

The h*-polynomials of symmetric edge polytopes. We almost have all necessary
parts for the machine that lets us compute h*-polynomials from symmetric edge polytopes.
The only thing missing is a way to make the triangulation half-open. The authors of
[HJM19] found a solution in terms of graphs.

First, note that type (3) of the Grobner basis elements implies that every unimodular
simplex comes from a monomial of the form zHee g Ve Where v, is either x. or y.. The
variables x. and y. can be regarded as directed versions of e which go in opposite directions.
Consequently, every simplex in 7 can be identified with a directed spanning subgraph of
G. Now we fix a vertex r of G. Given a directed spanning tree T' € T, we call an edge e
of S ingoing if the unique path starting at the foot of e and ending in r, the path includes
e. Otherwise we call it outgoing. We denote the number of ingoing edges of S by in(S).
With all this information, one can compute the hA*-polynomial of Pg.

Proposition 5 (Proposition 4.6 in [HIM19]). Let hi(t) = 320 hit'. Then
h;=|{T € T: in(T) =i}

Notice that there is a symmetry in these coefficients. Whenever there is a T € T
with in(7") = 4, reversing all the edge gives a 7" € T with in(7") = d — i. Hence, the
h*-polynomials of symmetric edge polytopes are palindromic, which means that they are
reflexive.

The authors use Proposition 5 to compute the h*-polynomial in the case of complete
bipartite graphs.

Proposition 6 (Theorem 4.1 in [HIMI19]). For all a,b > 0 let h} ,(t) denote the h*-
polynomial of the symmetric edge polytope of K,i1p+1. Then

. min{a,b} 92 a b i b1 i
=0

In Chapter 5 we will make use of two other results that both come from [OT21]. The
first one out of the two needs some preparation. A hypergraph H is a set V and a set E
of nonempty subsets of V' called hyperedges. We can associate a bipartite graph Bip(H)
to H whose bipartite classes are given by elements of V' and F respectively with an edge
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between a v € V and an e € E if v € e. A hypertree is a function f: E — {0,1,...} such
that there exists a spanning tree I' of Bip(#) whose vertices e € E have degree f(e) + 1.
In this case, we say that I induces f. The set of hypertrees of H shall be denoted by
ht(H). Let us now fix a total ordering of E. A hyperedge e is called internally active with
respect to f is there exists no ¢/ < e such that increasing f(e’) by 1 and decreasing f(e)
results in a different hypertree. A hyperedge that is not internally active with respect to
f is called internally inactive. We denote the number of internally inactive edges of f by
t(f). The interior polynomial I3, of H is then defined as

Lyt)y= Y Y.
)

feht(H

Given a graph G = Bip(H) for some hypergraph H, we define I = Iy;.

Next, recall that a cut of a graph G = (V, E) is a subgraph G¢ = (V, E¢) of G where
C is a subset of V and Ex C F is the set of edges of G with one end in C' and one end
not in C'. We denote the set of cuts of G by Cuts(G).

Lastly, we need two special graph constructions. Given a graph G with vertex set [d],
let G describe the the suspension of G, i.e., the graph on the set [d + 1] with the same
edge set as G but with the vertex d + 1 connected to all the others. If GG is bipartite with
bipartite classes V' and W, its joint bipartite suspension G is the graph on [d + 2| such
that d + 1 connects to all the edges in V', d + 2 connects to all the edges in W and d 41
and d + 2 connect to each other. Like this, we can cite the following theorem.

Proposition 7 (Theorem 4.3 in [OT21]). Let G be a finite graph on the vertex set [d].

Then the symmetric edge polytope of G is unimodularly equivalent to a reflexive polytope
whose h*-polynomial is

Lo at
a0 = L+ 0% (s )
where fa(t) = Qd% ZHGCuts(G) [;I(t)-

The other useful theorem is the following.

Proposition 8 (Proposition 4.4 in [OT21]). Let G be a bipartite graph on [d| and let e be
an edge of G. Then we have

ha(t) = (14 6)hg,. (1)
where G /e denotes the graph obtained from G by contracting the edge e.

2.3 CL-polytopes

We define the canonical line (CL for short) as the set

CL:{—%—l—ai:aER}CC.
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Figure 2.2: The root distribution of the Ehrhart polynomial of a 20-dimensional polytope
studied in [OS12]. Notice the reflection symmetry across both R and CL, which tells us
that the underlying polytope is reflexive. It is, however, not a CL-polytope.

Theorem 2 implies the fact that a polytope is reflexive if and only if its Ehrhart polynomial
roots are distributed symmetrically across the canonical line (see Figure 2.2). A special
case of that are reflexive polytopes whose Ehrhart polynomial roots all lie on CL. We call
these polytopes CL-polytopes.

The prototypical family of CL-polytopes are the cross-polytopes, which also happen
to be symmetric edge polytopes (Example 3). There are several ways to prove that cross-
polytopes are in fact CL, but a historically relevant one follows from the main theorem in

[Rod02].

Theorem 3. Let f be a degree d and h a degree d — 1 polynomial. Also, assume

- h(t)
kz:% flk)th = A=t

holds. If the roots of h lie on the unit circle, then the roots of f all lie on CL.

The original statement also considers roots on lines parallel to CL, but for our purposes,
it is enough to present it like this. The h*-polynomial of {' is 1 +¢. As a consequence,
using the fact that cross-polytopes are direct sums of copies of !, the h*-polynomial of
O™ is (14 t)™. By Theorem 3 and the behaviour of h*-polynomials with respect to direct
sums, it follows immediately that " is CL-polytope.

Interlacing polynomials. The converse of Theorem 3 does not hold in general. Thus,
other methods of studying CL-polytopes have been employed. One that has become
popular in recent years is the technique of interlacing polynomials. We will define the
term and give some results.
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Definition 7. Let f and g be polynomials of degrees d and d + 1 respectively. Further,
let L be a totally ordered subset of C. We say that f L-interlaces g or f and g interlace
on L if all the roots aq,...,aq of f and by,...,bs41 of g lie on L and satisfy

by <ap <by<ay < - <ag<bip
with respect to the ordering on L.

The first result is an extension of Theorem 3.

Proposition 9 (Theorem 2.1.10, [Rod10]). Let f and g be CL-polynomials with degrees
d and d + 1 respectively. Let Iy and b} be the polynomials (1 + )57, o f(k)t* and
(1 +t)d+2 > k0 9(k) tF respectively. Assume h} and h; also have degrees d and d + 1 and
their roots interlace on the unit circle. Then f CL-interlaces g.

The next two theorems come from Steven Fisk’s vast work on interlacing polynomials
[Fis06]. They have been selected because we will make use of them in Chapter 4.

Proposition 10 (Lemma 1.26, [Fis06], “Leibnitz Rule”). Suppose that f, fi1, g, g1 are
polynomials with positive leading coefficients, and with all real roots. Assume that f and g
have no common roots. If fi R-interlaces f and g, R-interlaces g, then fig1 R-interlaces
fag1 + fig which in turn R-interlaces fg, fgi, and fig. In particular, fg, + fig has all real
r0018.

Proposition 11 (Corollary 1.41, [Fis06]). Suppose that fi, fo,... and g1, g, ... are se-
quences of polynomials with all real roots that converge to polynomials f and g respectively.
If f,, and g, R-interlace for all positive integers n, then f and g R-interlace.

Both these statements refer to interlacing on the real line, but can be transported to
any line of the form ¢; R +c¢, for complex numbers ¢, ¢y by performing an appropriate
affine transformation. Further, since roots are invariant under scaling, positive leading
coefficients can always be obtained.

Next, we will recall some results from [HKMI17]. This paper studies the Ehrhart
polynomials of symmetric edge polytopes of complete bipartite graphs. This family can be
seen as a natural extension of cross-polytopes, considering that Pk, , is the cross-polytope
of dimension d. We start by citing the following useful result.

Proposition 12 (Lemmas 2.3, 2.4, 2.5 in [HKM17]). Let f, g, hq, ..., hy, be real polynomi-
als such that deg f = degg+1 = degh;+2 for all 1 < i < n which all satisfy Equation 2.35.
Assume the identity

fl@)=Qz+1) aglz) + Z a;hi(z)

where o, o; > 0 for all i. Then Y | a;h; CL-interlaces g if for every i, h; CL-interlaces
g. Also, the following are equivalent.

(a) D7 a;h; CL-interlaces g,
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(b) g CL-interlaces f.
If this is the case, (2x 4+ 1) > | a;h; CL-interlaces f.

Among other things, it gives an alternative proof for the CL-ness of cross-polytopes.
We saw the A*-polynomials of cross-polytopes before. Notice that that implies that the
Ehrhart polynomials Esa := C4 are of the form

d :
d\ (d+k—1
k) = .
=% ()"
We call the polynomials Cy4(k) cross-polynomials. They fulfil a recursive relation.

Proposition 13 (Example 3.3 in [HKM17]). For any n > 2, cross-polynomials satisfy the

recursive relation !
n —

Co(7) = l(29: +1)Cp1 () +

0 Cn_g(flf).

With Proposition 12, it follows that cross-polytopes are CL-polytopes.

The next results concern the Ehrhart polynomials of Pk, ,, denoted by E,p. In the
course of this thesis, we will continue using this notation and, by analogy, use Eq, 4. a,
to denote the Ehrhart polynomial of the complete k-partite graph K, 4, .o

ke

Proposition 14 (Proposition 4.5 in [HKM17]). The following relations hold:

1 1
Eg,n(x) = 5(237 + 1) El,n(x) + §E1,n71('x)7
1 1
Esp(x) = E(Qx +1)Eypn1(x) + on (nEyp1(z) + (n—2)2x + 1)Ey —o(x)),
(22 +1)(3n* + 13n + 16)
Eoni(@) = 8(n2+ 5n + 6) 2n+1(2)
n313n? + 18n 4n3 4+ 9n? — 13n — 32

Es E, :
8(n—1)(n2+5n+6) > (@) + 8(n—1)(n2+5n+6) - ()
With Proposition 12, the authors derived the following result.

Proposition 15 (Lemmas 4.6, 4.7, 4.8, Theorem 4.9 in [HKM17]). The following state-
ments hold.

(a) For everyn > 1, Ey,, CL-interlaces Ey 541.

(b) For every n > 1, the Ehrhart polynomials of K;,, and (2k + 1)K;,_1 CL-interlace
Esp.

(¢) For everyn > 1, Ey,, CL-interlaces Ea 1.
(d) For everyn > 1, Ey,, CL-interlaces Es,,.

In particular, for every n > 1 the Ehrhart polynomial of K, ,, is a CL-polynomial if m < 2.
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2.4 Algebraic aspects of polytopes

In this section, we will give some background from commutative algebra necessary to
understand the content of Part IV. We will focus more on the algebraic rather than the
combinatorial side, so the reader is advised to consult standard references such as [CLS524],
[Mat89], or [Eis13] for any undefined terms and notations.

Ehrhart rings. We begin by defining the codegree ap of a lattice polytope P by
ap = min{k € N: int(kP) N Z* # @},

i.e. the minimum positive integer you have to dilate P by until its interior contains lattice
points [Bat06]. Next, let Cp be the cone over P, that is,

Cp = Rso(P x {1}) = {(2,k) € R x R: np(x) > —khp for all F € F(P)}.

In our discussion of Grébner bases, we defined toric rings. A similar object is the Ehrhart
ring of P, defined as

A(P) =Kk[CpNZ“] =k[tPs": k € N and p € kPN Z%,

where t? = /' .. t"* and x = (z1,...,74) € kP NZ" Note that the Ehrhart ring of P
is a normal affine semigroup ring, and hence it is Cohen-Macaulay [BG09, Prop. 6.10].
Moreover, we can regard A(P) as an N-graded k-algebra by setting deg(t?s*) = k for each
p € kP NZ" The toric ring of P is a standard N-graded k-algebra.

We say that P has the integer decomposition property (i.e. P is IDP) if for all positive
integers k and all p € kP NZ%, there exist qi, ..., q € PNZ% such that p = q1 + - - - + qs.
It is known that k[P] = A(P) if and only if P has the integer decomposition property.

Gorensteinness and its generalisations. Let R be a finitely generated N-graded k-
algebra with unique graded maximal ideal m. We will assume that R is Cohen-Macaulay
and admits a canonical module wgr and, consequently, an anticanonical module wgl. In
particular, every Ehrhart ring admits a canonical module. We call a(R) the a-invariant of
R, ie.

a(R) = —min{i € N: (wgr); # 0},

where (wg); is the i-th graded piece of wg.

For Ehrhart rings, the canonical and anti-canonical modules as well as the a-invariant
can be interpreted in combinatorial terms. For a cone o, we denote its strict interior by
int(o). Note that

int(Cp) = {(z,k) € R™ : np(x) > —khp for all F € F(P)}.
Moreover, we define
ant(Cp) = {(2,k) € R™™: np(x) > —khp — 1 for all F € F(P)}.

Then the following is true.
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Proposition 16 (see [HMP19, Proposition 4.1 and Corollary 4.2]). The canonical module
of A(P) and the anti-canonical module of A(P) are given by the following, respectively:

wacpy = (t"s": (z,k) € int(Cp) NZ*") and wg(lp) = (t"s*: (z,k) € ant(Cp) N Z).
Further, the negated a-invariant of A(P) coincides with the codegree of P, i.e.
a(A(P)) = —min{k € Z>,: int(kP) N Z* # &}

The canonical module is very closely related to the Gorenstein property. In the follow-
ing we will use them to study two of its numerous generalisations: nearly Gorensteinness
and levelness. For this, we will use trace ideals.

Definition 8 (Trace ideal). For a graded R-module M, let the trace ideal of M, trgp(M),
be the sum of the ideals ¢(M) over all ¢ € Homg(M, R), i.e.

r(M) = Y @(M).
¢6HOmR(M,R)
When there is no risk of confusion about the ring, we simply write tr(M).
With this, we can define Gorensteinness and nearly Gorensteinness.

Definition 9 ([HHS19, Definition 2.2]). We say that R is nearly Gorenstein if tr(wg) 2 m.
In particular, R is Gorenstein if and only if tr(wg) = R.

With the next proposition, the anti-canonical module enters the picture.

Proposition 17 ([HHS19, Lemma 1.1]). Let R be a ring and I an ideal of R containing
a non-zero divisor of R. Let Q(R) be the total quotient ring of fractions of R and [™' =
{r € Q(R): xI C R}. Then

tr(I) =1-1"".

Lastly, we shall introduce levelness.

Definition 10 ([Sta07, Chapter III, Proposition 3.2]). We say that R is level if all the
degrees of the minimal generators of wg are the same.

Segre products. Let R = D, ., R, and S = P, -, 5, be standard graded k-algebras
and define their Segre product R#S as the graded algebra

R#S = (Ro ®x So) & (R1 @ S1) @+ C R®x S.

We denote a homogeneous element x ®y y € R; Qk S; by x#y.
If P and @ are lattice polytopes, it is known that k[P x )] is isomorphic to the Segre
product k[P]#k[Q)].

Proposition 18 ([HMP19, Proposition 2.2 and Theorem 2.4]). Let Ry,--- , Rs be stan-
dard graded Cohen-Macaulay toric k-algebras with Krull dimension at least 2. Let R =
R1#Ro# - - - # Ry be the Segre product. Then the following is true.

—1 1y, 1 ~1
WR = WR, #WR,# - H#wr, and wp = wp #Hwp H#- - Hwpg



Chapter 3

Equivariant Ehrhart theory

Equivariant Ehrhart theory concerns the study of polytopes and their lattice points under
a given group action. In this chapter we introduce the necessary preliminaries and fix
the main setup following [Stall]. We begin with some background on the representation
theory of finite groups [Isa94; CR66].

3.1 Representations of groups

Let G be a finite group and k a field. A finite dimensional k-representation of G is a
homomorphism p: G — GL(V) from G to the group of invertible linear maps of an n-
dimensional k-vector space V. Fixing a basis for V' identifies p(g) with an n x n matrix,
for each ¢ € G. Equivalently, a representation is a module V' for the group ring kG
where ¢ € G C kG acts via the linear map p(g). The character of p is the function
X: G — k defined by the trace x(g) = tr(p(g)). We say that a representation is irreducible
if it contains no proper G-invariant subspaces, indecomposable if it cannot be written as a
non-trivial direct sum of representations, and semisimple if it is a direct sum of irreducible
representations.

The representation ring R(G) is the set of formal differences with respect to direct
sums of isomorphism classes of representations of G. The term “formal difference” here
means that for two isomorphism classes of representations [V] and [W] we define the
element [V] — [W] which satisfy ([V]+ [W]) —[V] = [W]. The addition and multiplication
structure of R(G) are given by direct sums and tensor products respectively. So given [V]
and [W] in R(G) we have [V]+[W] = [V@ W] and [V]-[W] = [V ®x W]. Throughout this
thesis, we work with representations defined over C. In this case Maschke’s Theorem holds,
so all representations are semisimple. In particular, all indecomposable representations are
irreducible and any representation is a direct sum of irreducible representations. Therefore,
R(G) is a free Abelian group generated by the irreducible representations of G. Since the
isomorphism class of a representation is determined uniquely by its character, we identify
elements of R(G) with Z-linear combinations of characters.

Suppose G acts on a finite set S. Then the action induces a so-called permutation
representation constructed as follows. Let V' be the vector space over some field k with
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basis {es: s € S}. We define the permutation representation p: G — GL(V') by its action
on the basis p(g)(es) = ey(s). Each matrix p(g) is a permutation matrix, hence the character
of the representation is given by x(g) = [{s € S: g(s) = s}|. We say that a kG-module V
is a permutation representation if it is isomorphic to a permutation representation.

3.2 Group actions on lattices

Let M =2 Z"*! be a lattice with a distinguished basis and G a finite group. We say that G
acts on M if there is a homomorphism p: G — GL,11(Z) from G to the group of invertible
(n+ 1) x (n 4+ 1) matrices with entries in Z. Note, this action extends naturally to the
vector space Mg = M ®zR. Assume that G fixes a lattice point m € M\ {0}. We proceed
to describe how M decomposes into a disjoint union of G-invariant affine lattices.

By assumption M has a basis, so we denote by (-,-): M x M — Z the standard
inner-product. We construct a new inner-product by averaging over the group:

(1) 1= 157 2 ol ploe) € Q.
geG

Using the above inner-product, we observe two important properties about the orthogonal
space m* C Mg. Firstly, we have that m™* is G-invariant, which follows from the fact that
(p(g)u, p(9)v) e = (u,v) for all u,v € Mg and g € G. Secondly, we may choose a basis
for m™* that lies in M, since (u,v), € Q for all u,v € M. It follows that the lattice N
generated by m* N M and m has rank n + 1. Therefore, N is a finite index subgroup of
M and we write [M : N] for the index. We define the affine space (M;)r and the affine
lattice M; at height i € Z as follows:

(MZ)R - WZ—]V]m + mL and Mz = (Mz)R N M.
Since m* and M are G-invariant, we have that M; is G-invariant for each i € Z. Note
that M = J,., M; is a disjoint union and for each v € M; we have v + M; = M, ;.

Example 4. Let G = {1,0} < S; be a subgroup of the symmetric group on four letters
with 0 = (1,2)(3,4). The permutation representation p maps o to the permutation matrix

€L

0100
1 000
0010

In particular, this matrix lies in GL4(Z), hence G preserves the lattice M = Zley, ea, €3, €4].
Notice that m = e + es + e3 + e4 is fixed by the action of G. We compute a basis F' that
decomposes p(o) as a block diagonal matrix:

1 1 1 1 1 0 0 0
1 ~1 0 0 0 -1 -1 —1
F=11l" 1ol |1’ | o and plo)r=10 g ¢ 1
1 0 0 -1 00 1 0
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The orthogonal lattice M, is the 3-dimensional lattice generated by F' \ {m}. Observe
that the sublattice N = Z[F] has index 4 inside M. Therefore, the affine lattice M; =
(3m + (Mo)r) N M is equal to the lattice affinely generated by {ey, es, €3, e4}.

3.3 Main setup

Let M = Z™! be a lattice with a distinguished basis and G a finite group that acts on M
by p: G — GL,+1(Z). Assume that there is a lattice point m € M \ {0} fixed by G. Let
P C (M;)gr be a rational G-invariant polytope. For each non-negative integer k € Z>,
we obtain a permutation representation of the lattice points kP N M C M, and denote
by xrp its character. The equivariant Ehrhart series is an element of the ring of formal
power series R(G)[[t]] given by:

H*H H*[t]
hr, (P, t) th = =
el ;X’”’ I—t-p] (L= t)det[I —t- plag)

where H*[t] € R(G)[[t]] is the equivariant H*-series. The denominator det[/ — ¢ - p]
denotes the formal alternating sum >/ [A‘Mg](—t)" € R(G)[t], where A’Mg is the i-th
alternating power of the representation Mp. If the character of the above alternating sum
is evaluated at an element g € G, then the resulting polynomial is equal to det[l —¢- p(g)]
where [ is the identity matrix, see [Stall, Lemma 3.1].

By assumption, Mg = (m)p & (Mo)r is a G-invariant decomposition of Mg. So,
for each g € G, we may write p(g) = [1] ® p(g)|m, as a block diagonal matrix, hence
det[l —t-p(g)] = (1 —t) det[] —t- p(g)|n,].

Remark 1. The equivariant Ehrhart series and H*-series are a generalisation of the usual
Ehrhart series and h*-polynomial. If the equivariant Ehrhart series is evaluated at the
identity element, then each character y,p(lg) is equal to the number of lattice points of
kP. Since det[I —t - p(lg)] = (1 — t)"™!, it follows that the equivariant Ehrhart series
evaluated at 1¢ is equal to the classical Ehrhart series ehr(P, t).

The equivariant Ehrhart series contains all the data about the Ehrhart series for fixed
sub-polytopes of P. Let Mg = {x € Mg: g(x) = z} be the subspace of Mg fixed by
g € G. For each k > 0 and g € G, the value x;p(g) is the number of lattice points of kP
fixed by g. Equivalently, xxp(g) is the number of lattice points in the k-th dilate of the
fized polytope P? = P N Mg. Therefore, the evaluation of the equivariant Ehrhart series
at g € G is the Ehrhart series ehr(PY,t).

Remark 2. The setup may be equivalently defined by fixing: a group action p|y, of G on
a lattice My = Z"; a rational polytope P C (M;)g, where M; = Z" is a lattice of the same
rank; and a lattice-preserving isomorphism between (M;)g and (My)g, which induces an
action of G on P. We require that, for each g € G, the polytope g(P) = (—v,) + P differs
from P only by a translation v, € M. So, for all g,h € G we have that

(gh)(P) + vgn = P = g(P) + vy = g(h(P) + va) + vy = (gh)(P) + g(vn) + vy,
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hence vy, = g(vi,) + vy.

We recover the original setup by taking m € |G| - P C (Mg|)r to be any G-invariant
lattice point of the |G|-th dilate of P. Explicitly, for all g € G, we require g(m)+|G|-v, =
m. For example, such a point can always be constructed from any lattice point p € P by
summing over the group: m = deG (9(p) + vy). We define M to be the lattice generated
by My and M; where M is a lattice that contains the origin and M, is the affine lattice at
height 1 such that the orthogonal projection of (M;)g onto (My)g sends ﬁm € (Mg to
0 € My and differs from the lattice-preserving isomorphism by a translation. Concretely,
we may take M = ZxM, = Z"™' and define the action of G on M by the matrix

1 0
plg) = {

Ug p|Mo
and A in G we have

plo)o(h) = L)lg P\Mf(g)] [“1h P\Mg(h)] - L](”h)lng p|MOO(gh) - ot

since g(vp) + vy = Vgp.
Let A\ € Z~ be the smallest positive integer such that ‘—g'e is a lattice point. The value
of A coincides with the index of the sublattice N in M from the original setup.

(g)} . Note that p is indeed a group homomorphism. That is, for all g

Example 5 (Continuation of Example 4). Recall G = {1,0} < Sy, with ¢ = (1,2)(3,4),
acting by a permutation representation on M = Z* Let P = conv{ey, es, 3,64} C
(M;)g be a G-invariant 3-dimensional simplex. The permutation character yp counts the
number of lattice points of kP C M), fixed by each g € GG. Explicitly, we have

k+3 ki1 if2]k
1) = and o) =<2 ’
xer (1) ( 3 ) Xer () {O otherwise.

Computing the equivariant Ehrhart series, we have

S () = g and v = s

k>0 k>0

For each g € GG, we observe that the equivariant Ehrhart series is given by m.

Therefore, the equivariant H*-series is a polynomial given by H*[t] = 1.

Example 6. Following the alternative setup in Remark 2, let G = {1,0} be the group
with two elements that acts on a rank 3 lattice My = Zley, e, e3] by the map

-1 -1 -1
oc— | 0 0 1
0 1 0

Let P = conv{0, e1, 2, e3} and notice that o(P) = (—e;)+ P, hence the above map defines
a valid setup. This setup is equivalent to the setup in Example 5, which can be seen as
follows. By averaging the vertex 0 € P over GG, we obtain the G-invariant point m = %el,
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verified by the fact that m = o(e) + e;. We define the lattice M = Z[ey, €1, €2, €3] and
identify the affine sublattice of M containing P with the affine span of {eg+e1, e+ ez, €9+
es}. In particular, the polytope P is identified in My as conv{eq, eg + €1, eg + €2, €9 + €3}.
The action of G on P extends to an action of G on M given by

1 0 0 0
1 -1 -1 —1
1o 0 0 1
00 1 0

The point m in My is identified with ey + %61 which spans a 1-dimensional G-invariant
subspace. Observe that the vertices of P C My are a basis for the lattice M. Rewriting
the action of GG in terms of this basis identifies it with Example 5.

Effectiveness of the equivariant H*-series. We say that the equivariant H*-series
H*[t] = Y ..o Hit' € R(G)[[t]] is effective if each H € R(G) is the isomorphism class of
a representation of G. In other words, H} is a non-negative sum of irreducible represen-
tations of G. One of the main problems in equivariant Ehrhart theory is to understand
when H*[t] is effective.

Conjecture 1 ([Stall, Conjecture 12.1]). Let G be a finite group that acts on a lattice
and P a G-invariant lattice polytope. Let Y be the toric variety with ample line bundle L
associated to P. Then the following are equivalent:

(1) L admits a G-invariant section that defines a non-degenerate hypersurface of Y,
(2) H*[t] is effective,
(3) H*[t] is a polynomial.

It is known that (1) = (2) = (3), see [Stall], and a counterexample has been con-
structed by Santos and Stapledon [EKS24, Theorem 1.2] showing that (2) % (1) and
(3) # (1). It is currently open whether (3) = (2).

Another conjecture of interest asks about the character obtained by summing up the
coefficients of the H*-series.

Conjecture 2 ([Stall, Conjecture 12.2]). Let P be a lattice polytope. If the equivariant
H*-series H*[t] is effective, then H*[1] is a permutation representation.



Part 11

On CL-polytopes
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Chapter 4

The roots of the Ehrhart
polynomials of CL-polytopes

In this chapter we study the distribution of the roots of Ehrhart polynomials of CL-
polytopes. The work in this chapter is motivated by the way roots of Ehrhart polynomials
are studied in [Bra08] and [BD08] and the first main result confirms a conjecture in [BD0S]
in the case of CL-polynomials. The chapter also includes brief discussions about attain-
ability of roots, CL-polytopes whose Ehrhart polynomial roots have large magnitude, and
a more refined set of inequalities on the magnitude of the Ehrhart polynomial, which
is satisfied by many — possibly all — CL-polytopes. The content of this chapter is fully
contained in the author’s paper [Ko125].

4.1 Background on Ehrhart polynomial roots and the
main results

The study of the bounds of Ehrhart polynomial roots goes back to [Bec+05] and starts
with the following theorem.

Theorem 4 (Theorem 1.2 in [Bec+05]).  (a) The roots of Ehrhart polynomials of lattice
polytopes of dimension d are bounded in norm by 1+ (d+ 1)!.

(b) All real roots of Ehrhart polynomials of d-dimensional lattice polytopes lie in the

half-open interval [—d, ng)

The authors noticed that this bound was far from being optimal and conjectured, based
on experimental data, the following.

Conjecture 3 (Conjecture 1.4 in [Bec+05]). All roots a of Ehrhart polynomials of lattice
polytopes of dimension d satisfy —d < Re(a) < d — 1.

This conjecture holds true for the real roots of Ehrhart polynomials of degree 5 or less,
but has been disproven in general by counterexamples in [Higl12] and [OS12]. Meanwhile,
Braun gave an improvement of the bound in Theorem 4.
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Theorem 5 (Theorem 1 in [BraO8]). If P is a lattice polytope of dimension d, then all
the roots of Ep lie inside the disc with centre —% of radius d (d — %)

Braun obtained this result by studying a larger class of polynomials, called Stanley
non-negative polynomials (SNN-polynomials). They are defined as the class of non-zero
polynomials f such that h*(t) = (1 — ¢)%&/T1 5" o f(k)¢* has only non-negative coef-
ficients. Notice that for every (not necessarily reflexive) lattice polytope P, Ep lies in
S. SNN-polynomials were also used in [BD08] to give a bound for the imaginary part of
Ehrhart polynomial roots.

Theorem 6 (Theorem 2.3 in [BDO8]). For the polynomial My(t) = ("1%) + (}), which is
not an Ehrhart polynomial, if By is the oot of My(t) of mazximal norm, then

1 d>
- =—4+0(1
it 3| =%+ 00
as d goes to infinity.

The authors also conjecture the following.

Conjecture 4 (Conjecture 2.4 in [BDO8]). The root of the polynomial My(t) with largest
norm has the maximal imaginary part among all roots of degree d polynomials in &.

In this study, we will use a similar idea to study the roots of CL-polytopes and define
the class € C R[z] of CL-polynomials. Tts elements are the polynomials of the form

fR)=b) (2 +z2+c) (2 +z+c) (2 +24cm), (4.1)

where the ¢, are real numbers > }L and

b(z) =

a if deg f is even,
a(2z+1) otherwise

for a non-zero real number a. Notice that if P is a CL-polytope, Ep does indeed fall into

this class: if —% + ai is a root of Ep with o > 0, then so is —% —at and Ep is divisible by

2242+ }l + o If Ep has odd degree, then —% is necessarily a root, thus Ep is divisible

by 2z + 1. Furthermore, notice that every f € € satisfies Equation (2.3) and thus

() = (1L —t)* sy " f (k)

k>0

is a palindromic polynomial.

However, not every CL-polynomial is an SNN-polynomial. For example, for f(z) =
2 (24 z+8) (22 +2+1), weget h*(t) =1+ 2t — 2¢* + 2t + t*. Hence, we will focus
on the class €N G.

Our first result proves Conjecture 4 in the case of CL-polynomials.
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Theorem (Theorem 7). The root of the polynomial My(t) with largest norm has the
maximal imaginary part among all roots of degree d polynomials in € N G.

In Section 3 we present a sufficient condition for a given f € € to lie in &.

Theorem (Proposition 20). Let f be a CL-polynomial of degree d. Assume that the ¢
are ordered by size. Then f € & if the ¢, satisfy

1 2k 4+ 2, dis odd
- < < ’
4 — = {2k+ 1, dis even.

While this condition is only sufficient, we find a number of examples of CL-polytopes
whose Ehrhart polynomials satisfy it.

4.2 Possible roots of polynomials in €N S

Let €2; denote the set of points z € CL such that there exists a polynomial f € €N G of
degree d with f(z) = 0. In the course of this section, we will characterise the sets €, for
every non-negative integer d, using techniques from [Bra08]. We start with some helpful
definitions.

Let a bracketed term with a lower integer index refer to the Pochhammer symbol
(x); = x(z —1)(x —2) -+ (x — j + 1) where (z) = 1. For positive integers d and j, we
define the functions

! (24 j)a if 25 = d.

If a degree d polynomial f is in €, with the help of Equation (2.2), it can be expressed in
terms of the pf;
1£]
d f(2) =) hipi(2),
k=0

where hj refers to the k-th coefficient of the polynomial
d
he(t) = (L— )"y hpth,
k=0

Notice however, that for j > 0, the p? themselves are not in €.
Lastly, let f be a polynomial with root set A = {1, s, ..., aq}. Let the CL-span of f
denote the set clspan f = conv{A N CL}. If clspan f is non-empty, it is an interval of CL.
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4.2.1 An upper bound for the roots of CL-polynomials

The main result in this subsection is a proof of Conjecture 4 in the case of CL-polytopes.
Notice that the polynomials M; mentioned in this conjecture are equal to the polynomials
pd above.

We start with a useful lemma telling us that CL-polynomials take on either exclusively
real values or imaginary values on CL, depending on their degree.

Lemma 1. Let f € € be a degree d polynomial. Then for every zo € CL, we find that
f(Z()) € Rld

Proof. We can use once again the functional equation in Lemma 2,

flz=1) = (=1)*f(==2).

Further, we can use that for any 2y € CL, —z9 —1 = Z; holds. Since f has real coefficients,
the equality

f(z0) = f(z0) = f(=20 — 1) = (=1)"f(20)
holds, which implies the statement. O

Remark 3. Notice that this result holds more generally for polynomials with palindromic
h*-polynomials, which includes polynomials not in €.

Lemma 1 enables us to find roots of pZ‘CL using a variant of the intermediate value
theorem. We use this to study the limit behaviour and the extremal roots these functions.
In the following, we will use the convention that ¢ is a real number. Its purpose will be to

parametrise CL via it — %
Lemma 2. Let d and j be non-negative integers with 25 < d. Then

(a) limy_ o p (it — )i = o0,

(b) For2j #d, p? (it — 3) =0 if and only if (it — 5 +d —j)ddj c R4+

(c) clspanp? C clspanp?_l for every j with 0 < 2j < d.
Proof. We begin with (a).

pd(’lt—l): (Zt—§+d—])d+(2t—§+j)d 1f2j7éd,
’ 2 (it —3+17), if 2j = d.
Observe that this results in a degree d polynomial with leading coefficient 2i% if 2j < d
and 7% if 25 = d. Multiplying by i~ makes the leading coefficient positive, which proves

the statement.
For (b), we start by noticing the identity

(z4+m—n),, =(-1)"(2+n),, (4.2)



CHAPTER 4. CL-POLYTOPE EHRHART POLYNOMIAL ROOTS 32

where m and n are non-negative integers. Next, we rewrite p;l as follows.

P = (4 Dy (5= Dy + (A= g) = (400 PP (). (43)

Since (it — % + j) Y # 0 for all t, p;l and pji?j have the same CL-span. It follows that
p? (it — %) = 0 if and only if

1 1 1
(it——+d—j> :—<it——+—j) = (=1 23+1<t——+d j) .
2 d—2j 2 d—2j 2 d—2j

The second equality follows from Equation (4.2). From these equalities, we can see that
(it—14+d- 7)o ; is an element of R 4241,

For (c), we ﬁrst notice that if d = 2j, p has an empty CL-span. Without loss of
generality, we can assume that d is odd. Thanks to (b), we have

(i) pf_y (it —3) =0if and only if (it —5—j+1),,. ., €ER,
(i) pf (it — 3) = 0 if and only if (it — 5 —j), , € R.

We make another observation: Statement (b) is equivalent to the following statement.

(b") For 2j # d, pj (i 4 (it — 1) = 0 if and only 1fzd 25— larg(it—%—i-d—j—k) € {0, 7},
where arg(z) denotes the complex argument of z.

We reverse the order of the sum.
d—2j—1 1 d—2j—1 1
; arg(it—§+d—j—k>: ; arg(it—l—j+§+k>.

Hence, we see that for positive t, we get 0 < arg (z’t + 5+ % + k:) < 5. Also for each k,

arg (it + 7+ % + k) is monotonic and tends to I as t tends to co. Thus we can rewrite

2
the arguments with error terms e ()

, o1 ™
arg(zt—l—]+§+k> :§—5k(t).

Summarising all this, we can restate (i) and (ii) for positive t.
(i) p?_l ( t— -) = 0 if and only if (= 27)“ _ d 2J 1. {07 2}

(i) p? (it — %) = 0 if and only if w — d 2] 2e {O, 2}

Since d is odd, {(d QJ)W, (d- 2= 2)”} = {%,%°}. As a consequence, t > 0 is a root of p?_, if

and only if 072" e, (t) € {z, 31
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Since the €4 (t) are monotonic functions, there exists an a > 0 such that

{ I (1) = 7 ift=a,
Z;(Q]j_l ee(t) < 3§ ift<a.
We can conclude that the CL-span of p?_l is bounded by the values +ia — % Finally, we
see that A
Tt < T ift=a,
{ I e(t) < 5 ift <a,

which implies that the values +i1a — % lie outside the CL-span of p;l.

Finally, we may discuss the bound of the roots.
Theorem 7. For every degree d polynomial f € € NG, clspan f C clspan pg.

Proof. Let b > 0 be a real number such that ib — % ¢ clspanpd. By Lemma 2(c), we also
get 1b — % ¢ clspanp‘} for every integer j with 0 < 25 < d. Write

] 1) ]
i—d | ) — * —d, d .7 —
v d f (zb 2) ,;:0 hy 1% pi, (zb 2>

where the h} are non-negative real numbers. Lemma 2(a) indicates that i ~¢d! f (ib — %)
is greater than 0 and thus not a root.
O

4.2.2 The standard reflexive simplex

Theorem 1 shows that the polynomials pg are not themselves Ehrhart polynomials of
any polytope. Hence it is natural to ask which CL-polytopes have Ehrhart polynomials
with large extremal roots. In dimension at most 9, this question can be answered by the
standard reflezive simplex (see Example 1(b)).

We can write A¢ as a union of simplices

conv ({0} U {61,62, e €d, —Zek} \{e})

k=1

where e is an element of {el, €2y €dy — Y ey ek}. This is a unimodular triangulation

into d 4 1 elements and implies that A% has lattice volume d + 1. Thus h%, (1) =d +1

(see Introduction) and using Hibi’s Lower Bound Theorem, we can see that hj = 1 for
every coefficient of AY,.

Proposition 19. For every reflexive polytope P of dimension d < 9, clspan Ep C clspan Fxa .
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Proof. There are two cases: d < 5 and 5 < d < 9. In the case d < 5, we verify with a

computer that
clspan p‘f C clspan Faa  C clspan pg.

Let 1a — % be the boundary point of clspan Fxqs in the upper half plane. Lemma 2(a)
implies that for j > 0 and b > a,
1
—d_d
iP5 ( b— 5) > 0.

Assume the Ehrhart polynomial of P is given by

Z hi, D (2

1 1
iEp <z’b — 5) > i "B <z’b — 5) > 0.

In the case 5 < d <9, we can verify with a computer that

Since hy = 1,

clspan pg C clspan Eaa C clspan e,

Let 7a — % be the boundary point of clspan Eas in the upper half plane. Lemma 2(a)
implies that for j > 1 and b > a,
1
—d d | -
i pj (16—5) > 0.

Assume the Ehrhart polynomial of P is given by

L Jhkpk( z)

Ep(z)= Y

k=0

Since h{; = 1 and, by Hibi’s Lower Bound Theorem, hj > h] for & > 1, we get

d
1 1 1
i~*Ep <¢b— 5) >hy Y i <zb— —> +i7pf (zb— —) > i Ena <z’b— 5) > 0.
k=1

]

For higher degrees, it is no longer true that clspanp¢ C clspan Eaa C clspan p¢ and
thus Hibi’s Lower Bound Theorem can no longer guarantee that the hj for £ > 3 are large
enough to balance out hj;. In particular, in degree 10, for 2 < m < 14 the polynomial

f(2) = p3(2) + pi(2) +mp5(2) + p3(2) + p3(2) + P3(2)

is a CL-polynomial whose extremal roots have a larger absolute imaginary part than those
of the Ehrhart polynomial of A,.. We still conjecture the following.
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Conjecture 5. Let P be a reflexive polytope of dimension d whose h*-polynomial is uni-

modal, i.e., satisfies the inequalities

By <hi < Sha > >y > hy

where hy, is the k-th coefficient of hp. Then clspan Ep C clspan Faq .

Remark 4. The following table compares the maximal roots i8; — % of Eas to the
maximal roots icig — 3 of p to the bounds from Theorems 6 and 5. The values were

obtained using SAGEMATH [The22].

d Qg Ba £ dd-1)
2 | 0866 | 0645 | 1.273 3
3| 2398 | 1658 | 2.865 7.5
4 | 4603 | 3.040 | 5.093 14
5 | 7457 | 4761 | 7.958 22.5
6 | 10952 | 6811 | 11.459 33
7| 15085 | 9.186 | 15597 | 455
8 | 10.857 | 11.882 | 20.372 60
O | 25.267 | 14.809 | 25.783 | 76.5
10 | 31.313 | 18.236 | 31.831 95
20 | 126.802 | 69.147 | 127.324 | 390
30 | 285.956 | 151.904 | 286.479 | 885
100 | 3182.575 | 1622.493 | 3183.099 | 9950
150 | 7161.449 | 3627.845 | 7161.972 | 22425

4.2.3 Connectedness of the set of possible roots

We return to the characterisation of the sets {2; we defined in the very beginning of this
section. After establishing a sharp bound, it is natural to ask, which values on CL within
that bound can be assumed by the roots of an appropriate degree d polynomial in €.

Lemma 3. For any positive integer d, pt CL-interlaces pat,

Proof. Equation (2.2) tells us that

An analogous results holds for pd™.

g (t) =

1+td+12p

k>0

1

=d! (1+1t7).

The roots of h;g and h;g+1 are exp (%z) and

exp <(1:ﬁq’)”i respectively, where n ranges from 0 to d—1 (resp. d). These roots interlace
on the unit circle and hence, by Proposition 9, they interlace on CL. O

Lemma 4. For any positive integer d and every positive real number w, pd CL-interlaces
by patt 4+ w(2z 4+ 1)pd.
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Proof. Since w is positive, we can without loss of generality assume that w = 1. We start
with the case when d is odd. From Lemma 3 we know that pd CL-interlaces pgﬂ. Further,
2z + 1 trivially CL-interlaces (2z + 1)?. Since

1 1 1
d+1
p <——) = (—— +d+ 1) + (——)
’ 2 2 d+1 2 d+1

is not a root, p&™ does not share a root with (2z-+1)2. Hence, by Proposition 10, (2z+1)pd
interlaces (22 + 1)(pi™! + (22 + 1)pd). Dividing 2z + 1 from both expressions yields the
statement.

In the case where d is even, pi™ has a root at —% due to symmetry. The root has
multiplicity 1, because if it had a higher multiplicity, pd would need to have two roots
at —% as well due to interlacing, but we already saw that this is not the case. Hence we
define polynomials

1
(2) =2 247+

4
where €, > €9 > --- is a sequence of positive reals that goes to 0. The roots of g, are
—% + €,1. Hence, they are CL-interlaced by 2z 4 1 and with appropriately chosen €, none

of them have a common root with pg“. Hence, by Proposition 10, (22 + 1)pgd interlaces

(22 + D)pT™(2) + p&(2) gr(2). Using Proposition 11, we get that (2z + 1)(pd**(z) + (22 +
1)pd(2)) interlaces (2z + 1)pi™!(2) and dividing by 2z 4 1 again yields the statement. [

Lemma 5. Let f be a degree d SNN-polynomial. Then (2z 4+ 1)f(2) is also an SNN-
polynomial.

Proof. Since by Equation (2.2) f is a non-negative linear combination of polynomials

(*"**), we may restrict ourselves to these. Using z = (2 +d — k+ 1) — (d — k + 1) and

then
z+d—k\ [(z+d—-k+1 z24+d—k
( d )_< d+1 )_<d+1 )’
e et d—k d—k d—k
z4+d— z4+d—k+1 z24+d—
z( p >_k;( d41 )+(d—k+1)( Q41 )
and thus

(2z+1>(2+2_k> :(2k+1)(2+31f+1) +(2<d—k)+1)(ﬁi;k>.

This is a positive linear combination of polynomials (ZJ“(flﬂHk). Hence, (224 1) f(2) is an

SNN-polynomial. O]

With these three lemmas, we can prove the main statement of this subsection. For
simplicity, we will use the convention

Rty = 1+ 0"y f(k)t"

for any degree d polynomial f.
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Theorem 8. For every positive integer d, 24 is connected.

Proof. In the case d =1, Q; = {—%} is a singleton and hence connected.
Consider the case d = 2. Let ¢ be a positive real number. Then A} (t) = 1 + ct 4

corresponds to an SNN-polynomial f. whose roots are —% + —”22;4:4’12. For 0 < ¢ <6, the
roots of f. lie on CL and fj is exactly p3, which marks the boundary of . The roots of
fe are both —%. Since the root depend continuously on ¢, {25 is connected.

The proof for higher degrees d + 1 can be built inductively. First, take an element
2o € Qg and a degree d polynomial f € €N & with f(z9) = 0. The polynomial g(z) =
(22 4+ 1) f(2) is a degree d + 1 polynomial with g(z9) = 0 and it is in €. By Lemma 5, g
lies also in G and thus, zg € 4,1.

Now, pick zg = i — % € clspanpgJrl \ 4 in the upper half plane. Denote the roots
of pd by byi — % where b,, < b, if m < n. Analogously, we denote the roots of pgJrl
by api — % From Lemma 3, it follows that ay < by < ¢ < agyy1. Define the function
g(z) = (22 + 1)pd(z). Lemmas 1 and 2(a) imply

i (2) <0 and i (220 + 1)pl(20) > 0
Thus, for an appropriate number w > 0, the linear combination
Mz) = pg™ (=) + w(2z + 1)pg(2)

satisfies A(z9) = 0. In particular, A\ € &. Since by Lemma 3 ) is interlaced by pg, it follows
that A € €. Thus 29 € Qg41. O

4.3 Inequalities for €N G

In Equation (4.1), we define CL-polynomials in terms of parameters ¢, > %. Every ¢,

corresponds to a pair of roots —% + 4/ — ii, which is a fact we used several times

throughout the previous section. Thus, Theorem 7 can be interpreted as an inequality
that gives a necessary condition for the ¢, to correspond to an SNN-polynomial.

Theorem (Restatement of Theorem 7). Let f be a CL-polynomial of degree d with
parameters c;. If f € G, the inequality

cr < mg
is satisfied for every k, where md is the maximal parameter of p{.

However, this is very far from being sufficient. For example, the polynomial f(z) =

ﬁ(z2 + 2z + 20)? has its roots at around —% + 4.447, which by the table in Remark 4 lies
within Q4, but
379 564 379
Ri(t) =1— —t+—t* — — > +¢*.
(1) 00° 1000 1000

In the following, we give a sufficient condition. We base it on a computational lemma.
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Lemma 6. Let d be a positive integer and j < d be a non-negative integer. Further, let
c> i be a real number. Then

9 z+d—73\ [(z+d—7+2 z+d—j5+1 z24+d—j
(= +Z+d( d )_a< d+2 b d+2 AR

where

a=j3+j+e,
B=2dj—j*+d+1-c),
y=d"—2dj —j+j’+d+c

Proof. By adapting the technique used in Lemma 5,

(z+c)(z+j—j) :(HC)(HZHH) +(d—j+1—c)(2’;i1j>,

Equation (2.2) implies that
d o (1— t)dt+1’

which means that we can write

k+d—j o)t +(d—j+1—c)trt?
§]k+@( dioﬁ:cy ) é_éw LA

k>0

We can use the same identity to compute Zkzo k2 (Hg*j) t* by applying it twice with
¢ = 0 both times.

j2tj+(j(d+ 2—)+d+1-7)G+ 1))#’+1 +(d+1—j)*t*2

St =77

k>0

Summing up gives the values for «, 3, and v as stated. ]

Proposition 20. Let f be a CL-polynomial of degree d. Assume that the ¢y are ordered
by size. Then f € & if the ¢ satisfy

(4.4)

- < <
4—Ck— 2k 4+ 1, d is even.

1 {2k+2, d is odd
Proof. The proof proceeds inductively. The idea is to take a degree d element f of €N G
and multiply it with 22 + z 4+ ¢ where ¢ is chosen so that it preserves non-negativity of the
coefficients of the h}. That is in particular the case when the three factors from Lemma 6,

a=j2+j+c, f=2(dj—j*+d+1—c),and v = d* —2dj — j + j*> + d+ ¢, are non-negative.
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Since c is positive, a and ~ are always non-negative. For (3, the largest possible choice for
¢ is d + 1 since j ranges from 0 up to d.

To complete the induction, we only have to look at the cases of d = 1 and d = 2.
We start with the former. If f has degree 1, it is of the form z + % and h}(t) = 1+t
Thus ¢y < 2, ¢; < 4, ¢ < 6 ete. If f has degree 2, it is of the form z? + z + ¢y and has
Wi(t) = co +2(1 = co)t + cot®. Thus, ¢g <1, ¢1 < 3, ¢ <5 et O

The class of CL-polynomials that satisfy this proposition trivially includes the Ehrhart
polynomials Ej_; ;ja of reflexive hypercubes since they satisfy

1

Ch =C =+ =Cq = —.

It is possible to construct further examples.

Example 7. Let P be a CL-polytope of dimension d. Then there exists a non-negative
integer n, such that the Ehrhart polynomial of P x [—1,1]" satisfies Inequalities (4.4).
If Ep is defined by the parameters cy,cs,...,cq, then Epy 1 is defined by the

parameters }L, %, cee i, C1,Ca, ..., Cq Where }1 appears n times. For the ¢, this changes the
equations to

1 .

1o < 2(k +n) + 2, d'ls odd

4 2(k+n)+1, diseven.

which is always satisfied for a sufficiently large n.
Using the same idea, we also get another example.

Example 8. Let P be a CL-polytope of dimension d and let () be a CL-polytope of
dimension 2m 4+ 1. Then there exists a non-negative integer n, such that the Ehrhart
polynomial of P x Q™ satisfies Inequalities (4.4).

However, there exist counter-examples as well. The Ehrhart polynomial of standard
reflexive 4-simplex A can be written as

5
Ena (k) = ﬂ(:ﬁ + 2 + 0.505558989151154) (2 + x + 9.49444101084885),

which does not satisfy the inequalities.



Chapter 5

The CL-property of symmetric edge
polytopes from complete
multipartite graphs

In this chapter we investigate the Ehrhart polynomial roots of symmetric edge polytopes
from complete multipartite graphs. We compute the h*-polynomials of a number of classes
of symmetric edge polytopes of complete multipartite graphs and confirm a conjecture from
[HKM17] for some of them. Also we systematise the interlacing methods from [HKM17]
and show their limitations. The content of this chapter is entirely contained in the author’s
paper [Ko124].

5.1 A conjecture about interlacing polynomials and
the main result

In [HKM17], the authors studied the roots of the Ehrhart polynomials of symmetric edge
polytopes of the complete bipartite graphs K5, and Kj, and were able to prove that
both these classes are CL-polytopes. This extends the case of cross-polytopes, which are
the symmetric edge polytopes of K ,. They accomplished that by using the technique of
interlacing polynomials, i.e., polynomials whose roots alternate on a given totally ordered
set. For an in-depth treatment of the theory of interlacing polynomials, see [Fis06]. The
authors gave the following conjecture.

Conjecture 6 (Conjecture 4.10 in [HKM17]). (i) For any complete multipartite graph
a, the Ehrhart polynomial E,, . ., has its roots on CL.

Lyeess

(i1) Suppose a; < --- < ag. Any two Ehrhart polynomials E,, 4, and Egu ey, an-1

interlace on CL.

After finding a general formula for the A*-polynomial of symmetric edge polytopes of
complete tripartite graphs in the Section 5.2, we confirm Conjecture 6 partially in our
main result.

40
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Theorem 9. The following statements hold for every positive integer n.
(a) E,, CL-interlaces Ey 1 ,,.
(b) Ei1., CL-interlaces Ey 1 p41.
(¢) Ey1, CL-interlaces Eyo,,.
(d) Ey1, CL-interlaces Ey 1.
(e) Es, CL-interlaces Ey,, if Ey 11 CL-interlaces Ej.,.
(f) Era2n CL-interlaces Ey 3, if By CL-interlaces Ey op,.
(9) Eia, CL-interlaces Es gy, if Ey i1 CL-interlaces Ey o,,.

In particular, for every positive integer n, E,, ., s a CL-polynomial for x +y + 2 < 3
and x,y,z > 0.

Finally, in Section 5.4, we investigate a connection between the v-vector of the h*-
polynomial of an Ehrhart polynomial and the existence of recursive relations that can be
used to prove interlacing. In particular, in Theorem 12 and Corollary 1, we show that
the type of recursive relations in [HKM17] and Proposition 23 can be found for arbitrary
complete bipartite graphs.

5.2 A Reduced Grobner Basis

We start by describing an edge ordering. First we denote the multipartite classes of vertices
of Kgy,..ap by A1, As, ..., A and then we pick an ordering of the vertices which satisfies
the following condition. If v € A; and w € Aj;, then v < w if and only if ¢ < j. Let
e = {v,w} and ¢ = {v/,w'} be edges in K,, ... Without loss of generality, we may
assume v < w and v < w’. Then e < ¢’ if and only if v < v’ or v =" and w < w'.

Let a,b be vertices with an edge between them. We will denote by x,; the directed
edge from a to b and by z3, the edge going the other way. The variable which corresponds
to the unique interior lattice point of P, will be denoted by z.

,,,,, ap,

Theorem 10. With the described edge ordering, the Grobner basis from Proposition /
is at most cubic for every complete multipartite graph Kg, 4. qa.- The elements of the
reduced Grobner basis are of the following form.

P

(1) Let a € A; and b € A; with i # j. Then the following polynomial is a Grébner basis
element.
LabTha — Z2

(2) Let a € A;,be A;,c € Ay with i,7,¢ all different. Then the following polynomial is
a Grobner basis element.
LapThe — Zqc
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(3) Let a,b,c,d be vertices such that the edges {a,b},{b,c},{c,d},{a,d} all exist and a
1s the smallest vertex. Then the following polynomial is a Grobner basis element if
and only if b and d lie in the same A;.

Ty,cled — Thala,d

We call these polynomials Grobner basis elements of type (3a). Furthermore, the
following polynomial is a Grobner basis element if and only if b < d.

Ty,eld,q — Thald,c

We call these polynomials Grobner basis elements of type (3b). In particular, a,b,c,d
lie across either 2, 3, or 4 multipartite classes.

(4) Let a,b,c,d e be vertices such that the edges {a,b}, {b,c}, {c,d}, {d,e}, {a,e} all
exist. Then the following polynomial is a Grobner basis element if and only if a, b, c €
Ay U Ay, a,c lie in the same A;, and b is the smallest verter in Ay or As.

LapTlpclde — 2 Td,cla,e
In particular, a,b,c,d, e lie across either 3 or 4 multipartite classes.

(5) Let a,b,c,d,e, f be vertices such that the edges {a,b}, {b,c}, {c,d}, {d,e}, {e, f},
{a, f} all exist. Then the following polynomial is a Grébner basis element if and

only if

(i) ¢ and f lie in the same A;,

(i1) b > d, or b and e lie in the same A;, or ¢ < e,
(i11) a and d lie in the same A;, or f < d.

LapTlpclde — 2 Td,clae

In particular, a,b,c,d, e lie across either 3, 4, or 5 multipartite classes.

More generally, for every complete multipartite graph K,, .. ., which contains K29 as
a subgraph, the Grobner basis in Proposition 4 has an element of degree 3 regardless of the
edge ordering.

Proof. One can check that all the listed elements indeed come from directed cycles in the
way described in Proposition 4. To check the reducedness of a Grobner basis element p,
it is enough to find another element ¢ of lower degree such that 1t(q)|1t(p), where 1t(p)
and lt(q) are the leading terms of p and ¢ respectively. Since all elements are of degree at
least 2, we can see that (1), (2), and (3) are indeed not redundant. For (4) and (5) we
may notice that the given restrictions correspond to indivisibility of the polynomials by
the leading terms of Grobner basis elements of type (2) or (3).

Now we can go on to show that no further elements are contained in the Grobner basis.
Firstly, let C' be a directed cycle of length 7 or greater. Assume the set I which defines
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the leading term of the polynomial pe; contains two adjacent directed edges (a,b) and
(b,c¢). Ome can check that there exists an element of type (2) or (3) whose leading term
contains these edges unless a and ¢ both lie in A; and b is the smallest vertex in A; with
{i,7} = {1,2}. In this case, C' cannot be even because I contains the smallest edge. That
means that there exists a vertex d not in A; or As. Further, we assume that (a,b) and
(b, ¢) are the only pair of adjacent edges in C'. Due to the size constraint of I, every vertex
other than b is part of one directed edge in I. Thus, there exists a directed edge (d, e) or
(e,d) whose associated variable forms the leading term of a Grébner basis element of type
(4) together with z,, and zp..

Next, let C' be a directed cycle of length 8 or greater. We assume that the set [
which defines the leading term of the polynomial pc ; contains no adjacent directed edge.
Thus, C' is necessarily an even cycle. We denote the vertices of the cycle in order by
ag, bo,a1,b1,...,a,,b, such that ag is the smallest vertex and we can assume up to orien-
tation that (b;,a;41) € I for 0 <i <n—1and (b,,ap) € I. If a; and b; for i > 1 lie in the
same multipartite class, we get a smaller cycle C' containing ag, by, a1, b;, a; i1, - . ., b, with
I' C I such that 1t(per )| 16(pe.r). Thus, we may assume that a; and b; for ¢ > 1 all lie in
the same multipartite class. This puts a, in a different class from b,. As a consequence,
the directed cycle C” on the vertices ag, by, a1, by, ag, b, with I' = {(bg, a1), (b1, az), (bn,ao)}
yields a polynomial pc ;7 whose leading term divides that of pe ;.

Lastly, we prove the second part of the theorem. Let K599 be a subgraph of K,, .,
Then there exists a directed 6-cycle with vertices a, b, ¢, d, e, f with edges

(a,0), (b, ¢), (¢, d), (d,e), (e, [), ([, a)

such that (a,b) is the smallest edge of Ksy55. This gives rise to the polynomial ¢ =
TpcLdelfa — Thaldclfe Which is an element of the Grobner basis. We can verify that
there does not exist another Grobner basis element whose leading monomial divides that
of c. m

E*

If we want to use this Grobner basis to find a unimodular triangulation, we may notice
that not all elements need to be considered. We know that for every unimodular simplex
in the triangulation, its vertices that lie in the boundary of Py all lie within the same facet.
Further we know by Proposition 3 that these facets are given by labelings of the vertices of
K., .., which satisfy specific conditions. Indeed, edge configurations induced by Grobner
basis elements of types (1), (2), and (4) do not occur in any facet-inducing spanning
subgraph. Configurations induced by elements of type (5) only appear in spanning trees
of type (ii). Among the configurations induced by elements of type (3), both varieties
appear in facet-inducing spanning subgraphs of type (i), whereas in type (ii) only type
(3b) elements appear.

5.2.1 Simplices in type (i) facets

To start, we will establish some terminology and notation. Let G = (V, E) be a graph and
P its symmetric edge polytope. As seen in Proposition 3, a facet of Py is induced by an
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integer valued function on V. We will henceforth call such a function a labeling on V. We
will denote it with a lowercase Greek letter such as A. Following this, we call a vertex v
C-labled if A(v) = €. The facet of Pg induced by A shall be denoted by Fy. The spanning
subgraph of G induced by A shall be denoted by G|,. The simplices in the unimodular
triangulation of Py will be denoted by the symbol A and the associated directed spanning
tree by Ta. For the unimodular triangulation itself, we will write 7. Given a labeling A,
the set 7\ C A is the set of simplices which lie in F). Lastly, we define the set T ;) as the
union of all the 7y where A is a type (i) facet, and the set T ;) analogously.

The following definition should be viewed with an eye toward Grobner basis elements
of type (3b): Let A be a facet-inducing labeling and let A and B be sets of vertices such
that no a € A lies in the same multipartite class as a b € B. Further, assume that
Aa) = A(b) — 1 for every a € A and b € B, and that |, and A|; are constant. The
spanning subgraph corresponding to this situation would contain a directed edge from
every element of A to every element of B. The following definition tells us which subsets
of edges from A to B can be included in “legal” spanning trees with respect to the Grobner
basis from Theorem 10.

Definition 11. Let A and B be disjoint finite totally ordered sets. A planar spanning
tree between A and B is a subset F of A x B such that

(i) |El=[AUB| -1,
(ii) every element of A and B is contained in at least one element of E,

(iii) if (a,b) and (a’,0') are elements of E, then a < o’ implies b < ¥'.

a+b—2

) ) where a and b are the cardinalities of A

The number of planar spanning trees is (
and B respectively.

-----

of vertices Ay, A, ..., Ay and let Py, ,,
Then the polynomaial h&?m ,,,,, ap = ZAGTO t(Ta) s given by

. be its associated symmetric edge polytope.

,,,,, a

a—a;—1la;—1 ) ]
h<(1i1),a2 ..... ay, (t) = Z Z p(a7 ai, Z,]) (al )= 2) (ti+j+1 + ta—i_j_g)

i=0  j=1 J—1
k a—am—1am—1 a a +j i 9
. — am -t i+j | pa—i—j—1
DY ;pm,am,m( AN IR

where in(T') is the number of ingoing edges of T, a = a3 + as + -+ - + ax, and

penia= (),
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Proof. We fix a labeling \: |_|§:1 A; — {-1,0,1} corresponding to a facet of type (i).
This means that for one A,, we get A, = {—1,1} and all the remaining vertices are
mapped to 0. For the graph Kal’a27,._,ak|/\ this means that every vertex v € A,, has an
edge (v,w) if w is 1-labeled and an edge (w,v) if w is —1-labeled. On the other hand,
all the vertices in A,, only have edges leading into them or out of them, depending on
their labeling. Consider now a spanning tree Ta with A € T . Within Ta, the Grobner
basis elements of type (3a) block every vertex 0-labeled vertex v (with one exception) from
having edges of the form (v, w) and (w, v) at the same time. The exception is the smallest
0-labeled vertex in the graph, which we will denote by vy. Thus, we obtain two subsets of
L] A; \ A,.: the subset P of vertices v whose edges are of the form (v,w), and the subset
N of vertices v whose edges are of the form (w,v). In particular, PN N = {vy}. With
these conditions A, naturally splits into two disjoint subsets AF = {v € A,,: A(v) = 1}
and A = {v € A,,: A\(v) = —1}. Taking the Grobner basis elements of type (3b) into
account, Tx is the disjoint union of a planar spanning tree between P and A and a planar
spanning tree between N and A .

Next, we want to count the number of ingoing edges. Let r denote the smallest vertex
in | |A; and let v be some element in P different from r. The edge e containing v in the
unique path from r to v is ingoing. In a similar way, if v is any element in A different
from r, the edge containing v in the unique path from r to v is also ingoing. Every other
edge is outgoing. We get a total of four cases:

(a) m =1 and A(min A,,)
(b) m =1 and A(min 4,,)
m)

1,

1,
(¢) m > 1 and A(min A 1,
(d) m >1and A(min 4,,) = —1.

Notice that if Case (a) applies, the direction of all edges can be reversed and it results in
another spanning tree Tar with A" € T ;) for which Case (b) applies and vice versa. The
same holds for Cases (c¢) and (d). Thus, we get in(Ta/) = a — 1 —in Ta, which means that
when we count the elements in 7 ;) with the number of their respective ingoing edges, we
can fix without loss of generality the value for A(min A,,).

m = 1: We choose \(min A;) = A(r) = 1. Let i denote the number of vertices in
P\ N and let j denote the number of vertices in A7 . The number of ingoing edges in this
situation is i + 1 + j. This gives rise to the first line of the formula A®: we sum over all
possible choices of i and j and multiply the number of ways to pick P\ N, the number of
ways to pick A7, the number of planar spanning trees between P and A, the number of
planar spanning trees between N and A;, and polynomial ¢! 4 ¢4==7=2 which counts
the number of ingoing edges in Cases (a) and (b).

m > 1: We choose A\(min 4,,) = 1. Again, we let i denote the number of vertices in
P\ N and let j denote the number of vertices in A]. In this case the number of ingoing
edges is © + j because r itself is an element of P now and thus cannot be counted in. By
an analogous statement to the on in the previous case and by summing over all the A,,
with m > 1, we get the second line of the formula which concludes the proof. m
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Figure 5.1: The 13 types of facet graphs of K, .

5.2.2 Simplices in type (ii) facets

The situation for type (ii) facets is more complicated. To make things easier, we first
define a labeling in normal form to be any facet-inducing labeling v such that for every
multipartite class A; of Ky, 4, . 4, and every v, w € A; that v(v) = 1 and v(w) = 0 implies
v < w. Further, define the opposite labeling of a facet-inducing A to be the labeling A
such that the edge set of Ky, 45,45 consists of all the reversed edges of Kg, a,,..a,],- In
the case of type (ii) facets, that means that A(v) = 1 — A(v) vor every v. Lastly, for any
facet-inducing labeling A, the associated labeling in nomral form is the labeling in normal
form vy such that for every multipartite class of vertices A;, |A| Ai_1(1>| = |v\ Ai_1(1>|‘
We collect some facts about these objects.

Lemma 7. Let X\ be a facet-inducing labeling of a type (ii) facet and let A, A" € Ty be

77777 .- The following statements

hold.

(a) in(Ta) = in(Tas). Because of this, we write in(\) to refer to the number of ingoing
edges of the spanning trees of the simplices in T y.

(b) in(A\) =a —in(A — 1) where a = a; + ag + - + ay.

(c) in(v) = [v=1(0)| where v denotes a labeling in normal form.
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(d) The number of simplices in Fy is equal to the number of simplices in F,, and F, .
(e) Then in(\) =in(vy) if r is 1-labeled and in A = in(vy) if r is 0-labeled.

Proof. The crucial insight is the fact that for any given simplex A € T, the number of
ingoing edges does not depend on A: in(Tx) = |A~1(0))\ {r}|. This can be easily observed
by considering that every edge of a 0-labeled vertex points away from it — and if it is the
one connecting it to the part of the tree which contains r, that is an ingoing while the
others are outgoing. (a) and (c) are immediate corollaries of this. (b) is true because by
reversing every edge, the outgoing edges become ingoing and vice versa. For (d) we may
notice that a permutation 7 of the vertices of K, 4, 4, Within the multipartite classes
A; induces a map from facets to facets. If, in addition, we make sure that for all /-labeled
vertices with ¢ € {0,1}, w < v implies that w(w) < 7(v), then 7 induces a mapping of
the simplices in 7 (;;). For (e), we get two cases: A(r) =1 and A(r) = 0. By default, if A,
contains a single 1-labeled vertex, r will be 1-labeled under v,. Thus, if A(r) = 1, the first
half of the statement follows from (c). If A(r) = 0, A(r) = 1 and in(\) = in(v5). Thus,
U5(r) = 0 and the statement follows. O

Now we define q(v) = [{\: v = v\, A(r) = 1}| and r(v) = |T,|. Since v is uniquely
defined by the number of 0-labeled vertices in every multipartite class, we can identify it

with the tuple (v, s, ..., 1) which readily gives us a formula for ¢:
k
a; — 01
Vi, Vo, ..., V) = ’
q(vi, v ) H ( » )

where 47 ; denotes the Kronecker delta, whose function here is to exclude r for the choice.
With the previous lemma, we get

D = Do B0 = 3T () et
AET (i) labelings in

normal form v
where a = a; + - - - + a; again.

To understand r, some more work is necessary. In particular, we will restrict ourselves
to the tripartite case. Figure 5.1 shows the 13 different types of facet graphs that are
possible. We call these graphs class graphs. Its vertices and edges are called class vertices
and class edges. Every class vertex named O; (resp. [;) represents the set of 0-marked
(resp. 1-marked) vertices in the corresponding layer. Every class edge represents the edges
of the directed complete bipartite graph between the two corresponding classes of vertices.

Next, we investigate what class graphs tell us about spanning trees corresponding to
unimodular simplices. Firstly, we notice that not every class edge can contain edges in such
a spanning tree. The Grobner basis elements of type (5) give configurations with involve
6 class vertices and 3 class edges. More precisely, the class edges {Oy, I}, {Oa, I3}, and
{O3, I} cannot all be non-empty at the same time, which turns the last class graph in
Figure 5.1 into three reduced class graphs, each of them missing one of these class edges.
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Let us now assume a reduced class graph. Let A be a class vertex connected to class
vertices B and C. Without loss of generality, assume that for every b € B and every
¢ € C, b < c. The Grobner basis elements of type (3b) imply that for two distinct vertices
a,a’ € A where a is connected to a vertex in B and d’ is connected to a vertex in C,
a < a. In particular there can be only one vertex in @ € A which connects to both
classes. We denote the set of vertices in A which connect to B (resp. C) by Ap (resp.
Ac). Analogously, we define the subsets B4 and C4 of vertices which connect to A. Thus
we end up with planar spanning trees between the sets B4 and Ap as well as C'4 and Ac
respectively.

Notice that all reduced class graphs are paths of length 3, 4, or 5. Thus, consider

a class path with vertices C1,Cy, ..., C,, of sizes ¢y, co,...,c,. We define the following
function
c(er, e, n,0)

ca_lel + o —1 -1 — Jn—1 1+ Cn — 2 o i — Ji + Jiv1 — 1
SN S () (e ) ()

J2= 0]3 0 In—1= =0 i=2 j’L-‘r].

Although this formula looks complicated, its function is fairly straightforward: Every

binomial coefficient (Ci_ji;_rfl“_l) counts the number of planar spanning trees between the

sets Cic,,, and Cjy1, where the former has cardinality j;+1 and the latter has cardinality
Civ1 — Jiv1- With this, we get a formula for r in the case of complete tripartite graphs
Ka,b,c'

(b, a,c) v =0, =bv3=c
(a,b,c) v =0, =b,v3=0
(a,c,b) v =0,1,=0,13=c
(v3 ) vi = 0,1 =b,13¢{0,c}
(va, acb Vo) =0, &€{0,b},v3 =c
(1 ) v € {0,al,v2 =b,v3=0
c(vy, bca V1) v €{0,a},v1, =015 =c
(b
(a
(
(
(
(

c(b— vy, v3,a, 19, ¢ — V3) v =0,v9 ¢ {0,b},v3 € {0, c}
r(vi v vs) = cla —vy,v3,b,v1, ¢ — v3) v & {0,a}, v, =0,v3 € {0, c}

c(vy, ¢ —vg,b,a — vy, v3) v € {0,a}, v =b,v3 & {0,c}

cla — v, va,¢,11,b — 1) v € {0,a}, 5 € {0,b}, 3 =0

c(vy,b— 1, c,a — vy, 1) v € {0,a}, v, €{0,b},v3 =c

cla — vy, v9,¢ —v3,11,b — 19, 13)

+c(v1, ¢ — v3, 09,0 — vy, 13,0 — 1)

+c(b— v, vy, v3,00,a — vy, c—3) vy € {0,a}, e & {0,b},v3 & {0, ¢}

0 otherwise

We can finally assemble the h*-polynomial of Pk, , ..
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Figure 5.2: The Os-labeled class vertex has degree 3.

Theorem 11. The h*-polynomial of P, is given by

we(t) = B+ iy (0).
Here, h%c s given by
) b+c—1 a—1 a—f-]—Z—Q
h((zl,)b,c(t) = Z Zp(a +b+ c,a, Z,]) ( i1 ) (tz+]+1 + ta+b+cfzf]*2)
i=0 j=1
atc—1 b—1 . .
o fatcti—g—1 " e
b b t2+] ta+b+c i—j—1
+;;p<a+ e ,m)( we—ilq )( + )
a+b—1 c—1 . .
o faF+b+i—7—1\ .. o
b t1+] ta+b+c i—j—1
+;;p(a+ +c,c,m)( bt )( + )
with
o r—y—1W\(y—1\(y+i1—75—1
p(z,y,i,j) = . , , ,
1 J 1
and h%{c 15 given by
B a—1 b c
B0 = 3 3 5 avhs v, )r(on, v, ) (#0575 4 gobtec i
v1=0v2=0r3=0
with

q(v1,v2,13) = (a,/_l 1) (i) (53)

and (11,9, 13) as stated above.

For general complete multipartite graphs, the number of possible class graphs grows
rapidly as k£ grows. Furthermore, in the complete tetrapartite case, class graphs which are
not paths start to appear, see e.g. Figure 5.2.
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5.3 New Recursive Relations

In this section, we gather new evidence for Conjecture 6. First, we state the relevant
h*-polynomials.

Proposition 22. The h*-polynomials of the symmetric edge polytopes of graphs Ki m n,
Ki11m, and Ky 9, are given as follows.

(@) B3 (0) = S22 GO () ()L ymn
(b) hi11n(t) =3(n—1)n(l+1)" 2> +2(2n + 1)(1 +t)"t + (1 + 1)
(¢) hyon(t) =20(5)(L+8)" 363 4 2(%) (L4 )" 12 + 2(* ) (L + )"t + (1 4 ¢)" 3

Proof. Notice that (a) is a direct consequence of Propositions 6 and 8. The formula in (b)
can be obtained by applying Proposition 7. The graph G = K ; , gives rise via suspension
to the graph G=K 11,1,n- We denote the the vertices in the first two tripartite classes of G
by a and b respectively. The remaining vertices shall be denoted by the integers 1,...,n.
First, we need to understand the cuts G¢ of G. There are two primary types: one type
where without loss of generality a,b ¢ C, and one type where a € C', b ¢ C. Thus, for
every subset S C [n] we get a cut set C; = S and a cut set Cy = SU{a}. Assume |S| = m.
Now we need to understand the hypertrees associated to the joint bipartite suspensions
G, for i = 1,2, which we regard as functions f: {n+3}UC; — {0,1,...}. In the order of
the hyperedges, it is convenient to regard n+3 as the smallest edge. This way, it can never
be an internally inactive edge and we can focus on the elements of C; instead. One can
check that a hyperedge e € C; is internally inactive if and only if f(e) > 0. Without loss
of generality, we can assume that every inducing spanning tree of a hypertree contains the
edge {n+3,n+4} and for every ¢ € C; the edge {n+4, c}. From here, one can check that
the interior polynomial of G'¢, is (7)t*+2mt+1 and that of G, is m(n—m)t>+(n+1)t+1.
Summing up, we get

fa(t) = 2:“ zn: (Z) (((7;) +m(n — m)) 4+ (2m+n+ 1)t + 2)

=0

3n—1mn, 2n+1
= t t+ 1.
24 * 2 *

Thus, we obtain the A*-polynomial of the symmetric edge polytope of Kj 11 ,:

Pigan(t) =3 —Dn(l+ )" +2(2n + 1)(1 4+ t)"t + (1 + )"

For (c), one can use the description of b}, . of Theorem 11 to derive the coefficients
of h3,,,. Then these coefficients can be checked against those of (c). Since this is a very

tedious process, the reader may consult the corresponding file on

https://github.com/maxkoelbl/seps_multipartite_graphs/.
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It was programmed with SAGEMATH [The22]. O
In the following we will denote the Ehrhart polynomial of Pk, . by Eq -
Proposition 23. For every n > 2 there exist non-negative rational numbers oy, . .., ass

such that the following statements hold.

Ei1n(z) =01 (2v+ 1) By ,(2) + o By (),
Eiini(x) =a32e+ 1) By yn(x) + ag By g1 (x) + a5 By (2),
Eion(x) =a 20+ 1) Ey 1 0(x) + a7 By o1 (x) + ag By (2),
E1,2,n+1($) ag (2x+1) Ey 5 n( )+ a1 E1,2,n—1($) + gy E1,1,n($) + 12 By i ()
Ei11n(x) =013 20+ 1) By 1 0(2) + a4 Er g n—1(2) + a5 By (2)
Eyn(x) = 16 (20 4+ 1) B3 () + cn7 Es o1 () + cug Eo () + 019 By i (2),
Esni1(x) = a0 (20 + 1) B3 (2) + o1 B3 1 (%) + aigg B () + o3 By g1 (),
Eson(x) = gy (2 + 1) By 20 (2) + ags By 25—1(2) 4+ o6 B1 10 () + o7 By i1 (),
Ei3n(2) = ags (20 + 1) By 90 () + cgg By 2—1(2) 4+ 30 E11n(x) + ag1 By (),
Eyin(2) = ass (204 1) By 1a(2) + ass B1pin—1(2) 4+ ass B1yn(2) + ass By (2).

Proof. With the formulas in Propositions 6 and 22, these relations can be obtained algo-
rithmically’. We explain the method of proof using the first relation. The proof follows
that of Proposition 4.5 in [HKM17]. Since taking the generating function of a polynomial
is a linear operation, addition and scalar multiplication translate immediately to Ehrhart
series. For (a), we need the Ehrhart series of Ey 1, (2o + 1)E} ,,, and E,_;. Notice that
multiplying an Ehrhart polynomial by = corresponds to differentiating its Ehrhart series
and then multiplying ¢ to it. Since the Ehrhart series of F;, can be written as (l(j)tzil,
we get

2nt+t+1)(t+1)"
(B—t2—t+1)1—-1t)"

for the Ehrhart series of (2¢ 4+ 1)E} ,,. Next, we form the equation

(0% ZkZO(QIC + ].)El n(k)tk + g ZkZO Elvn_l(k’)tk
Zk>0 Ery n( )t .

Note that there need not be any solutions for a and ag. The right-hand side is a rational
function of two polynomials where the numerator polynomial involves o and «;. Since
the right-hand-side is assumed to be equal to one, obtaining a solution is equivalent to a
finding asolution of the system of equations

1=

ni(Oé,Oéo) =d,

IThe code for computing explicitly all the coefficients is also available on
https://github.com/maxkoelbl/seps_multipartite_graphs/.
It was also written using SAGEMATH.
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where n; is the i-th degree coefficient of the numerator polynomial and d; is the i-th degree
coefficient of the denominator polynomial. Since n; and d; both depend on n, a and «q

do as well. We get a = 28;21) and oy = O]

_n__
2(nt1)’

With this, we can prove our first main result, Theorem 9.
Proof. The six labeled statements in this theorem rest entirely on the recursive relations

from Proposition 23, the relation from Proposition 13, and Proposition 12. The concluding
statement follows from the labeled statements and Proposition 15. O]

5.4 Recursive Relations and the v-vector

Looking at the recursive relations in Propositions 14 and 23, we may notice that as the
parameters aq,...,a,_1 of the multipartite graphs increase, then so does the complexity
of the formulas surrounding them. The results of this section show that this is not a
coincidence. We will show how the existence of a recursion as well as, to some extent,
the number of terms it has, are related with the v-vectors of the h*-polynomials of all the
Ehrhart polynomials involved.

Definition 12. Let h be a palindromic polynomial of degree d. We define the y-vector as

the polynomial ZL OJ ~;t* such that h(t) = ZZL:()J 7 (1 +1)%=2¢. We call the degree of the
~y-vector the y-degree of h.

Lemma 8. For every integer d > 1 and every integer n > 0, the following equation holds.
- il p (L+0)4)"
5 (S0 (et ) =
k>0 \i=0

Proof. There are two key insights. The first is the well-known fact that the generating

function of Cy is %. The second is that the generating function of Cy(z) — Cy(z) can
be written as (14 N = % - 1 2, which can be checked easily.
The first insight telis us that for real numbers ¢y, cq, . .., ¢,, the generating function of

Y i ciC; can be written as

Using the second insight tells us that

(L4044 1 (1+1t) ((1+t)2 B 1)"
i .

(1 —t)d+2ntl 1 —¢ (1 —t)d

Finally, with the binomial theorem, we get
1 n ( 1)Z n (1 + t)d-l—Z(n—i)
1—t i) (1 —t)d+2n=i)’
1=0

which concludes the proof. O]
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Proposition 24. Let p be a polynomial of degree d and let h be a polynomial defined by
k>0
If h is a palindromic polynomial with ~y-vector v, we get

degy

ple) = 3 (~1)ieCozi(a).

=0

where ¢; = Z;ligﬂ L(@)y,. We call the polynomial 3087 (~1)’c;a’ the cross-polynomial

coefficients of p.
Proof. We rewrite the generating function of p.

h(t) Yy vig(1+ ) (4t)
(1+t)d+1 - (1—|—t)d+1

Splitting up the sum and applying Lemma 8, we get

> Calk)t"

k>0
7o gi! k

+) (ch(k:) - Ecd‘2<k)> 4

k>0

Z'.Yn

o3 (S0 (Dessenatn)

k>0 =0

Rearranging to sort the sum by the C; yields the claim. O]

In the setting of Proposition 24, we call the y-degree of h the cross-degree of p.

Theorem 12. Let f be a degree d+1 polynomial with cross-degree m—+1, let g be a degree
d polynomaual with cross-degree m, and let h; be degree d — 1 polynomaials with cross degree

i for 1 <1 < m. Then there exist real numbers o, oy, s, ..., a,, which satisfy
f(z) = 2z + Dag(z) + Z a;hi(z).
i=1

Proof. Using Proposition 13, we can see that the degree d+ 1 polynomial (2x + 1)g(x) has
cross-degree m + 1. Thus, the right-hand side of the equation can be written as

acy0Cay1
+(=acC@2at1)g,1 + Q1Chy 0 F Q2Chy0 + -+ F pChy0)Cat

—(—ac@er1)g2 + 2Chy 1 + -+ Ay 1)Cans

+<_1)m(_ac(2x+1)g,m+l + QmChym)Ca—2m+1
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where ¢(2,41)g, is the i-th cross-polynomial coefficient of (22 4 1)g(x) and the ¢, ; are the
cross-polynomial coefficients of the h;. This means that in order to get the left-hand side,
all we need to do is choose o, a,,, 1, . .., q in order. O

For complete bipartite graphs, Proposition 6 shows that the y-degree of the h*-polynomial
of Ky, is min{m,n} — 1. Thus, we get the following immediate corollary.

Corollary 1. Let n be a positive integer. For 1 < m < n there exist unique o, oy,
i, ... alpha,_1 and B, By, Bi,. .., Bm_1 in R such that the following equations are satis-

fied.

m—1

Em+17n+1(flf) = (Q.T + 1) (6] Em,n+1 (ZE) + Z a; Em—i,n—l—i (.’E)

m—1

Em,n—l—l(x) = (21’ + 1) 6 Em,n(x) + Bz Em—i,n—&—i—l(x)
=0

Remark 5. This corollary alone are not enough to prove Conjecture 6 for all &, ,, for two
crucial reasons. Firstly, as m increases, the number of interlacings having to be satisfied
increases too, and they are between polynomials whose cross-degrees puts them outside
the scope of Theorem 12. This is noticeable in the last four statements of Theorem 9
where the interlacing of cross-degree 3 polynomials by cross-degree 2-polynomials depend
on the interlacing of a cross-degree 2-polynomial by a cross-degree 0 polynomial.
Secondly, there is no guarantee that the coefficients «, aq, ..., «,, are non-negative,
although explicit computations for low m in the context of Corollary 1 always yield positive
coefficients. In fact, for m > 4, explicit computations reveal that as, ..., a,,_» are always
negative. In the case m = 4, we get ay = n_n? To see the parameters for

8(5nP+39n2+100n+96) °
every 1 < m < 10, we refer once again to the corresponding SAGEMATH code on

https://github.com/maxkoelbl/seps_multipartite_graphs/.
We close the chapter by stating a conjecture.

Conjecture 7. Let a; < ay < --- < ap < n be positive integers and let m denote the
cross-degree of the Ehrhart polynomial of the symmetric edge polytope of Kq, ay,...a,- Then
we conjecture the inequalities

Y y
RPN

=1

hold. Furthermore, the Ehrhart polynomial of the symmetric edge polytope of the graph
Kk, interlaces that of Kyk+1,, where 1% represents a list of ones.


https://github.com/maxkoelbl/seps_multipartite_graphs/

Part 111

On equivariant Ehrhart theory

95



Chapter 6

The equivariant Ehrhart Theory of
order-two symmetries

In this chapter we study the equivariant Ehrhart theory of two families of polytopes: the
symmetric edge polytopes of the cycle graph under the induced action of the automor-
phism group of the graph, and rational cross-polytopes under the action of coordinate
reflections. We compute the equivariant Ehrhart series in each case to verify the effective-
ness conjecture. In particular, in Example 9 we see that pseudo-integral polytopes need
not satisfy the effectiveness conjecture if the assumption that P is a lattice polytope is
dropped. The content of this chapter is fully contained in the author’s paper [CHK23]
with Oliver Clarke and Akihiro Higashitani.

6.1 The main results

We fix the setup of the first main result. Let I' = (V, E) be an undirected graph and Z!"! a
lattice whose basis elements e, are associated to the vertices v € V. Throughout this chap-
ter, we will consider the symmetric edge polytope Pr € RV and its automorphism group
of I, denoted Aut(I"). One can see that Aut(I") naturally induces a permutation represen-
tation pr on RVl which leaves Pr invariant. We focus on the case when I is the cycle graph
Cy for some integer d > 3. In this case, Aut(Cy) = Doy = (r,s | s> =1 = (sr)? =1) is
the dihedral group of order 2d.

We identify Dy, with the automorphism group of C;. We fix the generator s € Dy, in
the presentation of the group, to be a reflection that fixes the fewest number of vertices
of Cy. Let pg := pc,: Dag — GL(]Rd) denote the associated permutation representation.
From now on, we label the vertices of Cy with {vo, ..., vr@—2)/21, Wo, - . ., W[(a—2)/21 }, where
wo = v if d is odd, so that: (v, v, ..., v[@—2)/21) and (wo,ws, ..., wf4—2)/2]) are distinct
paths in Cy; for each 0 <i < [(d—2)/2] the s-orbits are {v;, w;}; if d is odd, then vy = wy
is the unique fixed vertex of s; if d is even, then vy and wy are neighbours; and r is the
rotation that maps wy to w; (see Figure 6.1).

We state the first main result.

Theorem 13 (Theorems 15 and 16). Let d > 3 be an integer. Then

26
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Figure 6.1: The vertex labelings for even (left) and odd (right) cycle graphs and the action
of the generators of the dihedral group.

(i) the H*-series of HEkd) of Py with respect to the action of the dihedral group Doy is
effective if d is prime,

(ii) the H*-series of HE“d) of Py with respect to the action of the group {1, s} is effective.
Our second main theorem explores the limits of the effectiveness conjecture. Let k,d €
Z be positive integers with k£ odd and d > 2. Throughout this section we consider the
polytope
k
P(k,d) = conv {:I:el, o Eeqq, :i:§ed} C Mg ~R?.

Theorem 14 (Theorem 17 and Example 9). With the setup above, we have H*[t] =
Zj:o(aﬂa +bjx2)t) where

O (P R RN P TS iy B ey

and (2) is defined to be zero if k <0 or k > n.
In particular, the equivariant Ehrhart H*-series of P(1,2) is H*[t] = x1+ (x1 — x2)t +

x1t? and hence not effective.

6.2 Symmetric edge polytopes of cycle graphs

Studying the equivariant Ehrhart theory of P; := P, under the action of Dy, involves
understanding the Ehrhart series of the individual sub-polytopes Py fixed by the individual
elements g € Dyy. Let us begin with the trivial element 1 € Dyg.
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Proposition 25 ([OS12, Theorem 3.3]). The Ehrhart series of Py is given by

e+ hPt+ - R
(1—t)

chr(Py,t) =

J ~ d—1 P C_ d-1
; (d\ (d—1—1i 2 if d is odd and j = %=
h(d):_ljg _22()< ): PR
’ (=1) - (=2) i J— hﬁ_ll) + h;d_l) otherwise;

and for each g < j < d, the coefficients are h§d) = hgd,)l,j.

For odd cycle graphs Cyyq, all reflections in Dy o are conjugate and so the corre-
sponding fixed polytopes are unimodularly equivalent. Hence, it suffices to compute the
fixed polytope for a single reflection, say s € Dyyio.

Proposition 26. Let { > 1 be an integer. The fived sub-polytopes Py, ., and Py, , are
unimodularly equivalent to the cross-polytope of dimension ¢ dilated by the factor % and
their Ehrhart series are given by

(1+1¢%)"
(1—-t)(1 =2t

ehr(steHat) = ehr( 286+27t) =

Proof. We start by giving a full description of the vertices of Py, , and Pj, ,. Each
s-orbit is given by {v;,w;} for each 0 < i < ¢. Note, the s-orbit that is an edge of
Corq is {vg, we} € E, while those of Cop, o are {vg, wo} and {v,, w,}. The s-orbits of the
vertices of Pyeyy and Py are hence given by {%(ew, — €w,, ), £(ey, — €y,,,)} as well as
{€w,—€u,, €v,—€w, }. In the case of Py 9, we have the additional vertex {e,, — ey, €y —Cuwp }-

By Lemma 5.4 in [Stall], Pj,,, (resp. Pae2) is given by the convex hull of points of

the form %

{€wy —€uys €vp —Cup } A0d { €y, —€y,, €y, — €y, } correspond to the origin and do not contribute
to the description of Py, ; (resp. Py2). The remaining orbits yield

where [ is an s-orbit of the vertices of Pj,,; (resp. Py2). The orbits

1 .
41 = Poyyo = cONV {:I:§(evi + €w; — €y — Cugyy): 0 <0 <l — 1} :
One can see that the points {e,, + €w, — €y,,, — €w,,, } form a lattice basis for the fixed
subspace (note that it does not matter whether vy and wy are identical or not), and with
respect to that basis, 5, is unimodularly equivalent to the cross-polytope of dimension

¢ dilated by the factor 5. By [BJM13, Theorem 1.4] and the fact that the Ehrhart series
1 1] is ( 1+¢2

—3 3] I8 gy the result follows by induction on /. O

of the interval |

Remark 6. For even cycle graphs Cys, 5, there is another type of reflection: one that fixes
two antipodal vertices. For such a reflection sr € Dypyy4, the fixed sub-polytope Py,
cannot be studied using the same method as in Proposition 26. The one-element sr-orbits
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are {vo} and {w,} and the other orbits are {v;, w;_1}. By a similar argument as above,
the vertices of the sub-polytope Py, , are of the form

+

(€v; + €w, y — €poy — €u,) for i=1,...0—1,

+

| =D —

1
(€4, + €wy — 264,) and =+ é(ew + ey, — 2€y,).

For ¢ = 1, this is unimodularly equivalent to a dilated square containing the origin in its
interior. For ¢ > 1, one can cut through the points %(e,, + €y, — 2€4,) and £(e,, + €y, ),
which yields a subpolytope of 2P/, , containing the origin and four of its vertices. Again,
this is unimodularly equivalent to a square containing the origin. Hence, Py , is not
unimodularly equivalent to a dilated cross-polytope.

We have computed the invariant polytopes of the symmetric edge polytope fixed by
reflections of Dyy. The remaining conjugacy classes are the rotations. For odd d, the
irreducible characters of Dy, are determined by the following table:

‘ 1 rk srk
Y |1 1 1
Wy | 1 1 -1
Xj | 2 2cos % 0

where j ranges from 1 to % and k ranges from 1 to d.

In general, the fixed polytope ng with respect to a rotation r* is very difficult to
compute directly. Not only does the description of the vertices of PJ § depend on the cycle
decomposition of the permutation action of r* on the basis vectors of RI"!, but also on the
adjacency of these vertices in the cycle graph.

However, the rotation r* € Dy, where k and d are coprime, does not fix any vertex
of Cy. Therefore, the induced action on Py fixes only the origin, whose Ehrhart series is
simply a geometric series ehr({0},¢) = 14 ¢ +t? +--- = 5. This yields the following
result when d is prime.

Theorem 15. Let p > 3 be a prime number. The H*-series HE“p) of B, with respect to the
action of the dihedral group Day, is a polynomial of degree p — 1 and its coefficients H(*p)j
are given by

e L0 =1 pg? + D)+ (0 = 1= plg” — 1D)a+ 207 —2x i 215,
P97 2p | (p+ Y — )i+ (p+ B — Dy + (20 — 2)x 215,

with where h;fn) follows the notation from Proposition 25, gj(»p) = <(p;/12)/2)7 and X = _; X;-
In particular, H ) 18 effective.

o

To prove Theorem 15, we require the following technical lemma.
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Lemma 9. Let d > 3 be an odd integer and let 0 < j < % be even. Define

P - (95T

Then the inequality h;d) >d- (gj(-d) — 1) + 1 holds.
Proof. In the case of j = 0, the statement follows because hé = géd) = 1. Hence, we let
0<g< %. In particular, we have d > 5.

We start by observing the recurrence relations

gD =g\ 4 g and B > R 2n(P 4 pl?

for 0 < j < d L and g(d) h(d) = 1. The inequality for h( ) is an equality if j < (d—1)/2.
If j = 21 then we get

pld = 4h<;‘ @2 > an\, +2hd W2 = hg +2hd Sy A
2 2

For j > 0, we prove the statement by induction on odd d. Assume hgd) > d- (g](.d) —1)+1.
Then, by the recurrences, we have:

R > D) 4 2n@ 4 bl > d(gl% — 1) + 1+ 20\ +d(gl —1) + 1
_ (d+2) (d)
= d(gj —2)+2+ 2h; 2
At the same time, we can write:

(d+2)(g§d+2)—1)+1:d(g<d+2)—2)+2+2(g§ ,+ 9\ +d -3,

Hence it remains to prove that h L > g](d) + gj(d) + &2 d 3.

Here, by our assumption, we let j =2k and d = 2n + 1, where £ > 1, n > 2 and
2k < n. Since héd) > (dzl) holds for any ¢, we get the following inequalities:

d 2n+1) 2n 2n n+1
_ (" n N @ , @, d-3
_(k)+(k—1)+” P

This concludes the proof. O
Proof of Theorem 15. For the reflection s, we obtain

[1—¢ 0 0

det(I —t - py(s)) = det — —(1-H)1 -t
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For the rotation r, note that p is odd, so we get det(/ —t-p,(r)) = 1+ (—t)? = 1—1P. Since
p is a prime number, recall that the rotation r, and any power r* with 1 < k < p— 1, fixes
only the origin. That is P} " = {0}, and so ehr(P;,t) = 14;. Using this and the description
of the Ehrhart series in Propositions 25 and 26, we obtain:

Hy[8(1) = B + b+ -+ 2P

(p

. p1
H(p)[t](5> = (]' + t2) 2,

* -1 -1
H,[t)(r) = =14t4--+t",

1—t

where hg-p ) are the values specified in Proposition 25.

Consider now the character of the regular module R Ds,, which is given by ¢y + 12 +
23" ;Xj- 1t is well known that this character evaluates to zero at every element of Doy,
except at 1 where it evaluates to 2p. Hence, we deduce that the composite character
X=> ; Xj» obtained by adding together all irreducible two-dimensional characters of D,
is given by:

|1 rk sk
X ‘ p—1 =1 0

The coefficients H (). of the H*-series are given by

o L 140 + D))+ (AP — 1= (g — D) + (20 —2)x i 2],
®)3 = 9p (p+ 0P — 1)t + (p+ b — 1)y + (20 — 2)x if 21 5.

It remains to show that these quantities are non-negative integers. Non-negativity follows
from Lemma 9 and integrality follows immediately from the fact that H*[¢] is an element

of R(Dqp)][t]]- ]

In the last part of this section, we study the equivariant Ehrhart theory of the order
2 subgroups associated to the reflections described in Proposition 26. Fix the subgroup
Sy = {1,s} of Dyy. We write y; and x, for the trivial and non-trivial characters of Sy
respectively.

Theorem 16. Let d > 3 be an integer and let £ = [d/2] and b € {0,1} be integers such
that d = 20 + 1+ b. The equivariant H*-series of P; under the action of Sy, denoted
H(*d) [t], is a polynomial of degree d — 1 and its coefficients Hfd) -~ are given by

)

* d d d d
Hy o= = (B + 6D+ (B — g ) xa| -

J J

where h§d) follows the notation from Proposition 25 and g](-d) are the coefficients of the
polynomial (1+1)°(1+12)" == géd) + gDt —i—g((id_)ltd_l. In particular, H([t] is effective.

Proof. By a similar argument to the proof of Theorem 15, we obtain

det(I —t- pa(s)) = (1 —t)'70(1 — £*)***,
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By the description of ehr(Py, t) in Proposition 26, we have:

Hig[)(1) = hg” + Bt 4 - b 1
* d d d _
Hpltl(s) = A+ )P (1 +2) = g8 + gl + - 4 g§P 401,

For the coefficients H (*d) i of the H*-series, we obtain

« d d d d
Higy =5 | (0 + 6+ (7 = g)xs | -
It remains to show that H () 18 effective, for which it suffices to show that hgd) > g](-d). Ifd
is odd, this follows directly from Lemma 9. If d is even, we start with the case where j is

also even. We can use that in this case, gj(d) = gﬁdil), giving us

d d—1 d—1 d—1 d—1 d
RO > BV 4 Y > R > gl = gl

For the case where j is odd, we may assume without loss of generality that 7 < /¢ —1. In

this case, we use ¢\ = gﬁ)l and the fact that Hp, (1) is unimodal, to conclude

(d) (d) (@ _ (d)
hi” 2 hiZy 2 g;5 =95

So we have shown that H(,[t] is effective, completing the proof. O

6.3 Rational cross-polytopes

In this section we prove Theorem 17 which gives a complete description of the equivariant
H*-series of P(k,d) under the action of a reflection group. We observe in Example 9 that
a rational analogue of Conjecture 1 does not hold for rational polytopes with period one.

The Ehrhart series ehr(P(k, d),t) has the following explicit description.

Proposition 27 (An application of [BJM13, Theorem 1.4]). For each k odd and d > 2
we have
1+t (14 (k—1)t+Ekt2)(1+t)%2

chr(P(k,d),t) = (1 —t)ehr([k/2, —k/2],t) 1—0d (1 —t)d+t

In the following, we will refer to (1 + (k — 1)t + kt?)(1 + ¢)*2 by ﬁp(hd). We denote
by G = {1,0} the group of order two. We fix its two irreducible characters: the trivial
character y; and non-trivial character ys. Fix some index i € [n]. We let G act on the
lattice Zley, . . ., e4] by a coordinate reflection o(e;) = —e; and o(e;) = e; for all j € [n]\{i}.

Proposition 28. Ifi € {1,2,...,d — 1}, then H*[t] = x1 - hpg.a)(t).
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Proof. The reflection o acts on P(k, d) by the diagonal matrix A = Diag(1,...,1,—-1,1,...,1)
where —1 appears in position i. Therefore, we may compute det(I —tA) = (1—t)4"1(1+¢).

We proceed by taking cases on d; either d = 2 or d > 2. Fix d = 2. In this case, the
fixed polytope P(k,2)? is a line segment [k/2, —k/2] and so its Ehrhart series is

SN U | R LR )
ehr(P(k,2)7,t) = (1—t)(1—12) (1 —t)det(l —tA)

On the other hand, the identity element e € G acts by the identity matrix I and so
det(I —tI) = (1 —t)3. Clearly, this fixes the entire polytope P(k,d), so its Ehrhart series
is given by .

14 (k— 1)t +kt* hpi2) (t)

ehr(P(k2).t) = —— 0 = U= det( —1])"

And so we have that H*[t] = y1 - hp(.2)(t) and we are done for the case d = 2.

Next, let d > 2. The fixed polytope P(k,d)? is equal to P(k,d—1) in a one-dimension-
higher ambient space, and so, by Proposition 27, its Ehrhart series is given by

oo (I E-Dt+EH1+0)2 (1 +1) e (t)
ehr(P(k, d)",1) = (1) (1+6)  (1—t)det(I—tA)

On the other hand the identity element e € G fixes the entire polytope P(k,d) and so its
Ehrhart series is

hpwa(t) hegea (t)
p

ehr(P(k,d),t) =

(1 —¢t)+1 (1 —t)det(I —tI)
And so it follows that H*[t] = x; - ilp(k7d)(t) and we are done for the case d > 2. [

Proposition 29. Ifi =d, then H*[t] = Z;lzo(an1 + b;x2)t! where

(7)ot ) = ()40

and (Z) is defined to be zero if k <0 or k > n.

Proof. The identity e € G acts by the identity matrix I, hence det(I —tI) = (1 —t)¢. So,
by Proposition 27, we have
1+ k=Dt + k)1 +6)42 (14 (k= 1)t + kt*)(1 + )42

ehr(P(k,d),t) = (1— ¢)d+ - (1 —t)det(I —tI)

On the other hand, the reflection acts by the diagonal matrix A = Diag(1,...,1,—1)
hence det(I — tA) = (1 — ¢)¥}(1 +¢). Observe that the fixed polytope P(k,d)? is a
(d — 1)-dimensional cross-polytope, therefore we have

(141)* (1+1)

ehr(P(k, d)7.1) = = 5a = T pydet(l — tA)
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Write H*[t] = Z;.lzo(ajxl + bjx2)t for some a; and b;. By evaluating H*[t] at each group
element g € G, we have H*[t](g) = ehr(P(k,d)?,t)(1 —t)det(l —tp(g)). It follows that

{aﬁbj—(]) + (k=157 + & (553,
a; —b; = (§) = (7)) +2(52) + (523)

for j € {0,1,...,d} where (}) is defined to be zero if k < n or k > n. By solving this, we
obtain the desired conclusion. O]

Example 9. Consider the case d = 2 and k = 1. The polytope P(1,2) is given by
P(L 2) = COHV{(L O)? (_17 O)7 (07 1/2)7 (Oa _1/2)}

The group G = {1,0} acts by a coordinate reflection: o(es) = —ey and o(e;) = e;. The
equivariant Ehrhart H*-series is H*[t] = x1 + (x1 — x2)t + x1t>. In particular, H*[f] is
polynomial but not effective since y; — x2 is not the character of a representation of G.

Remark 7. Consider the dilate of the polytope 2P(1,2) with the same group action as in
Example 9. In this case the equivariant H*-series is given by H*[t] = x1 - (1 + 4t + 3t?) =
X1 Egp(k7d) (t). The example P(1,2) does not extend to an example of a lattice polytope
since all lattice points of P(1,2) are fixed by G. However, if G is a non-trivial group acting
non-trivially on a full dimensional lattice polytope, then at least one lattice point of P is
not fixed by G. Concretely, we can say the following about two dimensional polytopes.

Suppose that G is the group of order 2 and irreducible characters x; and x2. Assume
G acts on a 2-dimensional lattice M and let P be a G-invariant lattice polytope with
a polynomial equivariant H*-series given by H*[t] = x1 + (ax1 + bx2)t + cx1t? for some
a,b,c € Z. By Corollary 6.7 in [Stall], H*[t] is effective. Moreover, since x; corresponds to
a trivial permutation representation and x; + x2 corresponds to the regular representation,
which is a permutation representation as well, the linear coefficient of H*[t] is itself a
permutation representation if ¢ > b > 0. To see that this is satisfied, one first should
notice that 2P is a lattice polytope by Corollary 5.4 in [Stall] and so it is either a line
segment or a point whose vertices have coordinates lying in %Z. If P? is a non-lattice
point, then the result follows from a simple computation. So, by Lemma 7.3 in [Stall] and
our assumption that H*[t] is a polynomial, we only need to consider the case where P?
contain a lattice point. So, it follows that P? is unimodularly equivalent to a line segment
[v,w] C R with v, w € %Z. By taking cases on whether v or w lie in Z we can show that
the Ehrhart series has the form

1+ rt + st?

ehr(P7,t) = =)

with r, s > 0. Evaluating H*[t| at o and comparing coefficients gives us a —b =17 >0

Let G = (Z/2Z)* = (04,09,...,04) be the group of coordinate reflections of R%
Explicitly, for each i,j € {1,2,...,d} we have o;(e;) = —e; and o;(e;) = e; if i # j. Let
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X1 denote the trivial character of G and x, denote the character satisfying yq(o4) = —1
and x2(o;) = 1 foralli € {1,2,...,d—1}. The polytope P(k,d) is invariant under G. By
Propositions 28 and 29 it follows that the equivariant H*-series H*[t] of P is a polynomial
whose coefficients are integer multiples of x; and xs. Moreover, we obtain the following
result.

Theorem 17. With the setup above, we have H*[t] = Z?:o(ajxl + bjx2)t! where

O O o i T T s

and (Z) is defined to be zero if k <0 or k > n.

Example 10. Let d > 3 and k = 1. The polytope P(k,d) has Ehrhart series

(I+t+#+°)(1+1)"°
(1—t)Ht '

chr(P(1,d),t) =

We note that this coincides with the Ehrhart series of the lattice polytope Q4 C R? x R4
given by Q4 = conv{ey, 3, €3, —e; —ea—e3 }®[—1, 1]%@=3) By a result of Stapledon [Stall,
Proposition 6.1], the equivariant H*-series of the simplex S = conv{ey, ey, e3, —e; —ea —e3}
is always effective. If a group G = {1,0} acts on @, with an action that factors o(z,y) =
(o|gs(x), 0|ga-3(y)) such that o|ga-s acts by a coordinate reflection, then the equivariant
H*-series of Qg is (1 + ¢)4=3 times the H*-series of S, meaning that it is effective.

On the other hand, if we take the polytope P(1,d) with respect to the action of
G = {1,0} given by o(eq) = —eq and o(e;) = ¢; for all i € {1,...,d — 1} then the
equivariant H*-series is not effective.



Chapter 7

The equivariant Ehrhart Theory of
the hypersimplex

In this chapter we study the equivariant Ehrhart theory of hypersimplices under the action
of the symmetric group. The authors of [EKS24] already showed that the equivariant H*-
series is effective in that case, but we find a new, more direct proof. Further, we show
that H*[1] is a permutation action, confirming Conjecture 2 in this case. The content of
this chapter is fully contained in the author’s paper [CK24| with Oliver Clarke.

7.1 The main results

Let 0 < k < n be integers and let A} be the hypersimplex of type (k,n). In the following,
we will consider the action of the symmetric group S,, on R" via coordinate permutation.
Note that A} is fixed by this action.

Fix o € S, a permutation with cycle type (s1,...,s;). For each 0 < k < n and m > 0,
we define the set of functions

Op(o,m) = {f: [r] = {0,1,...,k—1}: Zf(i)si:m}.

By convention, we define ®,(c,m) = @ for all m < 0. For each h > 0, we define the set

k-1
T, = {I:(II,IQ,...,Ikl) ez’;)l; Ziji:h}'
=1

For each I € Z;, we write |I| = I, + Iy + -+ + I;—1. The number of functions |4 (o, m)|
is the evaluation of the permutation character of S,,.

Proposition 30. Fix 0 < k < n and m > 0. Let X be the permutation character of S,
acting on the set of function functions {f : [n] — {0,1,...,k —1} : >0 | f(i) = m} by
(o f)i) = f(o™1(i)). Then X(o) = |®x(a,m)|.

Proof. Follows immediately from the definition. m

66
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With this, we can state our first main result.

Theorem 18. Fiz 0 < k < n and o € S,, with cycle type (s, Sa,...,s.). For each m > 0,
the m-th coefficient of the equivariant H*-series of HZZ is

o)=Y (Z(—l)” () (?)) Dy nlo,mlk — h) — B)].

h=0 \I€T,
. % (k—1)n
In particular, H* has degree LTJ

The Ehrhart theory of hypersimplices is closely related to a class of combinatorial
objects called decorated ordered set partitions (DOSPs for short) which we shall introduce
NOW.

Definition 13. A (k,n)-DOSP is an ordered partition (Li,...,L,) of {1,2,...,n} to-
gether with a sequence of positive integers (¢1,...,¢,) such that ¢; + 0y +---+ ¢, = k. We
write a DOSP as a sequence of pairs D = ((L1,¢1),..., (L ¢;)). A DOSP is defined up
to cyclic permutation. So, for example, we have D = ((La,(3),..., (L, ¢,), (L1,¢1)). We
say D is hypersimplicial if |L;| > ¢; for each i € {1,...,7}.

For every DOSP D, Early [Earl17] defines the winding number w(D) € {0,1,...,n—1},
see Definition 14, and conjectured that the hA*-polynomial is given by

h*AZ (t) = Z )
D

where the sum is taken over all hypersimplicial (k, n)-DOSPs. This conjecture was proved
by Kim [Kim20].
In [EKS24], this result is brought to the equivariant realm.

Theorem 19 ([EKS24, Theorem 3.33]). Let 0 < k < n and let the cyclic group C,, act on
R"™ wia cyclic permutation of the coordinates. Further, let H) denote the m-th coordinate
of the equivariant H*-series of the hypersimplez of type (k,n) under the action of C,.
Then H}, is the permutation representation of the (k,n)-DOSPs with winding number m
where C,, acts by cyclically permuting the set [n].

In particular, this satisfies Stapledon’s Conjecture 2. Under the full action of the sym-
metric group, an analogous result does not hold because in general, the coefficients of the
equivariant Ehrhart series of any given hypersimplex are not permutation representations.
Our second main result shows that something similar is still true.

Theorem 20 (Theorem 22). The character H*[1] of the equivariant H*-polynomial of A}
under the action of S, is equal to the permutation character of S, acting on the set of
hypersimplicial (k,n)-DOSPs.
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7.2 Coefficients of the equivariant H*-polynomial

The goal of this section is to prove Theorem 18.

7.2.1 Katzman’s method

In this section, we apply the method used by Katzman [Kat05] to obtain a formula for the
coefficients of the equivariant H*-series. First, we introduce two pieces of useful notation.

Given o € S, with cycle type (s1,...,s,), we define the formal power series
k Eo
uw =y ult' =14+t 2 = € 7Z[[t]].
; 1} 11 T4 € 2]

If o is clear from context, then we write u for u” and wu; for u¢. For each subset S C [r],
we write X795 = ), ¢ s;. If the permutation o is clear from context then we write 3.5 for
xS,

Lemma 10. Fiz 0 < k < n and o € S,, with cycle type (s1,...,s.). For each i € [n], let
A; be the number of length i cycles of o. For each m > 0 we have

H\(0) = 3 (-1)¢ k_: (IEZI:(_UU (?11) C:i)) U(m55) (b -

SClr] h=
Proof. By conjugating o, we may assume without loss of generality that
co=12...s1)(s1+1s14+2 ... 851+8)...n—s,+1n—s5.4+2 ... n).

Fix d > 0. We have that (dA}), NZ" is equal to

T
(:Ul,...,xll,xg,...,xg,...,xr,...,xr)EZ”:Zwisi:kd,OSxiSdfor all i € [r]

~~ ~~ d — i—1
S1 S92 Sp =
So there is a bijection between the set solutions (z1, g, ..., z,) € {0,1,...,d} to >\, x;s; =

kd and (dA}), NZ". Consider the polynomial

r r 1 — t(d+1)si
_ i 2s; | ... dsiy __
faty =T+t + e 4+t =] —

i=1 =1

For each solution (z1,. .., ,) to the above equation, we have a term tk¢ = ge1s1¢z2s2  gorsr,
Moreover, each term t*¢ in the expansion of f4(t) arises from such a solution. So we have
that |(dA7), NZ" | is equal to the coefficient of t*¢ in f,(t), which we denote by |fi]xa-
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For each s; > k, we have that ¢(4*1)% does not divide t*¢. It follows that [fy]xq is equal

to the coefficient of #*¢ in the formal power series:
[k—1 r 1
_ _ 4(d+1)5\ A
[falka = | (1=t ] - tSz]
Lj=1 i=1 kd
_k:—l Aj r
Yy , 1
— (_1)h( ])t(d+1)]hH —
| j=1h=0 h el o
[k—1 r
] () () () s
h=0 \I€Z, UVANE Ly e 1
Lh= h i= kd

k—
A A Ao
_ E I 2) .. (7 _ .
ar (IEI( ) (1—1 I, . Ukd—(d+1)h
= h

So the Ehrhart series of (A}), is given by
A A A H*[t)(0)
d_ IR AYPAN AL IR (Mt d =~ VIAVFJ
St = 3 (52 (0 () (1)) oo -
a>0 d>0 \h=0 \I€Z; i

where the right-most equality follows from definition of the equivariant H*-series. So, by
clearing the denominator, we obtain a formula for the coefficients of equivariant H *-series.
For each m > 0, we have

H; (o) = []1 1) ; (kzzz (g;h i (2) C:j)) ukdh(dﬂ)> td]

A Ak
— \S | II \ N
SCZM( Z (IEZZ}L (]1) <ie—1 )) U(m—x.5)(k—h)—h-
This concludes the proof of the result. O

We illustrate the steps in the above proof with the following example.
Example 11. Let £ = 3. In this case, we consider the sets Zy, Z;, and Z,, which are given

by
IO = {(070)}7 Il - {(170)}7 I2 - {(270)7 (07 1)}

So, we have

A A
[falsa = {(1 — Attt 4 <( 21) — /\2> t2(d+1)> UU} = U3d—/\1u2d—1+(< 21> — >\2> Ug—2.
3d
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The Ehrhart series of (A%), is given by

The coefficient of t" in the H* series is given by

A
H;, - Z (—1)|S| <u3(m—25) - )\1u2(m—25)—1 + (< 21> - )\2) Um—25—2> .

SCIk]

7.2.2 Permutation representation interpretation

In this section we prove Theorem 18. To do this, we use the sets of functions @, (o, m), see
Section 7.1, to give an interpretation of terms appearing in formula for A, in Lemma 10.

Lemma 11. Fiz 0 < k < n and o € S,, with cycle type (s1,...,s,). With our usual
notation, we have

Z (= 1) pss = |k (a,m)].

SClr]
Proof. We prove the result by induction on r. For the base case, assume r = 1, i.e., ¢

is an n-cycle. We have ) = 0 and {1} = n, and u = 1 +¢" +*" +--- = 1/(1 — t").
Therefore the left-hand sum is given by

Z (_1>|S|um—k25 = Um — Um—kn =

S 0 otherwise.

{1 it me{0,n,2n,...,(k—1)n},

On the other hand, there are exactly k functions f : [r] — {0,1,...,k—1}, and, any such
function f satisfies >, f(i)s; = f(1)n. Therefore

Do )| = {1 if m € {0,n,2n, .., (k= 1)n} _ S (1),

0 otherwise o

and we are done with the base case.

For the induction step, let o be a permutation with cycle type (s1,S2,...,8.11) and
assume that the result holds for any permutation with r disjoint cycles. Let 7 be a
permutation with cycle type (s1,...,s,). For ease of notation, we define s := s,,1. We

note that u” = u™(1 + ¢* + 2 + ...), so it follows that uf = > .. ul_,;. Then have the

>0 Wi—sj
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following chain of equalities:

Z (_1)‘5‘“%—@03 = Z (_1)|S| (ug@—kD’S - u?n—kE”S—ks)

SClr+1] SCr]
= Z (—1)|S| (Ufnszfs - ugnkaTsfks)
SClr]
= Z (_1)|S| Z (uTm—kZTS—sj - uTm—kZTS—s(j-&-k))
SClr] j20
k—1
= Z (=1 Zu:n—kETS—sj
SCIk] J=0

k—1
= Z |CI)/§(7',7’)’L - S])l
7=0

To conclude the proof, we note that there is a natural bijection between the sets

k—1

Op(o,m) < || Bilr,m — s)
j=0

f= flw € Pu(r,m —sf(k))

-y
pee 1IN arm ) forsome j e {01, k- 1),
Jj ifi=r+1

It follows that |®x(o,m)| = Zf;é |Pr(T,m — s7)| = ZSQ[T+1](—1)|S|u;,kZUS. This con-
cludes the proof of the result. O
With this result, we can give a proof of Theorem 18.

Proof of Theorem 18. By Lemma 11, we have

Z (_1)|S|um(k7h)7h7(kfh)25 = |®—n(o,m(k — h) — h)|.
SClr]

By Lemma 10, we have

Hio) = Y (1Y (Z(—l)f' () (?)) T

5C[r] h=0 \I€I,
k—1 A\ A\
fo—
- Z (Z(_l)ll ([1) <I 1)) Z (_1)|S|um(k—h)*h*(k—h)25
h=0 \IeT, 1 k=17 ] scr
k—1

I
|
VR
|
=
~
VR
O
N~
VR
=
Lo
~_
~_—
=
il
>
Q
2
5~
|
=
|
=
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We will now prove that H* is indeed a polynomial of degree |(k — 1)n/k]. Let 0 € S,
be a permutation with cycle type (si,...,s,) and fix h > 0. For any function f : [r] —
{0,1,...,k — h— 1}, we have

Zf i)s; < (k—h—1)n.

If m satisfies (k — 1)n < km then we have

(k:—h— 1)km khm hm
1 — T — — _— — —
E f(@) (k—h—1)n ] =km 1 m(k—nh) 7 < m(k—h)—h,

hence the set ®p(o,m(k — h) — h) is empty. Thus the coefficient H} (o) = 0 for all
m > (k — 1)n/k, so the H* series is a polynomial.

On the other hand, let e € S, be the identity. The set ®(e, mk) is non-empty if and
only if m satisfies (k — 1)n > km. Therefore, the degree of the H*-polynomial is at least
| (k — 1)n/k], which concludes the proof.

O

7.3 Decorated ordered set partitions

In this section we show that H*(A7};S,,)[1] is a permutation character of S, acting naturally
on the set of hypersimplicial (k,n)-DOSPs. From Section 7.1 we recall the definition of
the set Zj. Our main result gives a formula for the number of hypersimplicial o-fixed
(k,n)-DOSPs.

Theorem 21 (Theorem 22). Let 2 < k < n and H* be the equivariant H*-polynomial of
A under the action of S,. Then H*[1] is equal to the permutation character of the action
of S, on hypersimplicial (k,n)-DOSPs. Let o € S, be a permutation with r disjoint cycles,
and write \; for the number cycles of length i. Then the number of o-fized hypersimplicial

(k,n)-DOSPs is
92_: (I; i @1) C:ll)) (ke — by

where g = ged({k} U {i € [n] : \; > 1}).

In the following sections we state and prove Theorem 21 in two steps. First, we use
Theorem 18 to show that the above formula for H*[1] holds. We count the total number
of o-fixed (k,n)-DOSPs, including non-hypersimplicial DOSPs. We observe that this total
corresponds to the h = 0 term in the above sum, which is equal to gk"~!. Second, we
give an explicit formula for the number of o-fixed non-hypersimplicial DOSPs using the
inclusion-exclusion principle. We simplify the formula using the falling factorial identity
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for Stirling numbers to prove the theorem. In the remainder of this section, we give an
alternative but equivalent definition for DOSPs under the action of S,, and define a notion
of directed distance within a DOSP.

Alternative DOSP definition. Fix k < n. Let ¥ = {f: [n] — Z /kZ} be the set of
functions modulo the equivalence relation f ~ ¢ if and only if f — g is constant. Then
there is an action of S,, on W given by (o - f)(i) = f(o71(7)) for each 0 € S,, and f € V.
We now describe the natural S,-set isomorphism between ¥ and the set of (k,n)-DOSPs.
Given a DOSP D = ((L1, 1), (Lo, 63), ..., (L, 4t)), its corresponding function is fp(i) =0
ifi € Ly and fp(i) =6+ 0o+ -+ ;1 it i € L; with j > 2. It is straightforward to
check that the map D — fp is an isomorphism of S, -sets.

Definition 14 (Distance in DOSPs, winding and turning number). Let ¢, 5 € [n] and let
D = ((L1,6),...,(Ls, 41)) be a (k,n)-DOSP. We define the directed distance dp(i,j) from
1 to 7 in D as follows. Without loss of generality, we may assume ¢ € L;. Suppose that
j € L, for some u € [t]. Then dp(i,j) := b+l + -+ 4Lyq1 € {0,1,...,k —1}. The
winding number of D is w(D) = (dp(1,2) +dp(2,3)+ - +dp(n—1,n) +dp(n,1))/k. If
we think of the DOSP as a function f : [n] — Z /k Z, then, for each i, j € [n], the directed
distance d¢(i,7) = f(j) — f(i) by taking a representative in {0,1,...,k —1} C Z.

Fix a permutation ¢ € S,,. Given a o-fixed DOSP f : [n] — Z /kZ, we define the
turning number T of f to be the 7 € Z /k7Z such that 7+ f(i) = (o - f)(i) for any ¢ € [n].
This notion is well-defined since o fixes f. See Figure 7.1 for an example with turning
number 3.

Recall that the cycle sets of o are denoted C, Cy, ..., C, and partition [n] into sets of
size s1,..., S, respectively. For every ¢ € [r], we fix a distinguished element ¢; € C;.

Lemma 12. Fiz2 < k <n and let o0 € S,, be a permutation with cycle type (s1,S2, ..., Sy).
Let g = ged(sy,...,8:, k). If D is a o-fized (k,n)-DOSP with turning number T, then
gr = 0.

Proof. Suppose that f : [n] — Z /kZ is a o-fixed DOSP with non-zero turning number 7.
Notice that (6% - f)(q:;) = f(q:). So we have s;7 =0 for every 1 <i <. Since 7 € Z [k Z
we have k7 = 0, and it follows that gr = 0. [

7.3.1 Interpreting terms with DOSPs

Throughout, we fix k& < n and write H*[t] = H*(A}; S,)[t] for the equivariant H*-
polynomial. By Theorem 18, let d = [ (k — 1)n/k] be the degree of H*. We have that

Do EE () ()

The h = 0 term in the above sum is anzo |®¢(o, ml)|, which we will show corresponds to
the number of o-fixed (k,n)-DOSPs. We subsequent sections, we show that the remaining
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terms count the number of non-hypersimplicial (k,n)-DOSPs. Hence, the overall value
H*[1] is the number of o-fixed hypersimplicial (k,n) DOSPs.
For ease of notation, let us write functions as tuples. The function f : [n] — {0,..., k—

1} is written as (f(1), f(2),...,f(n)) € {0,..., k — 1}

Example 12. Consider the case n = 6, k = 3, and take the permutation o = (123 4)(56).
In this case we have the functions

4
|J @s(0.3m) = {(0,0,0,0,0,0),(1,1,1,1,1,1),(2,2,2,2,2,2)}.

m=0

Indeed there are three DOSPs that are fixed by o, which are given by
Dy = ((123456,3)), Dy = ((1234,2),(56,1)), D3 =((1234,1),(56,2)).

Lemma 13. Fiz 0 < k < n. Let o € S, be a permutation with cycle type (s1,...,S;)
and define g = ged(k, s1,89,...,5,). Then the number of o-fized DOSPs is gk"™'. In
particular, there is a bijection between the set of o-fired DOSPs and the set

{<a17a27"'7@r>:Og&lgg_lvogaigk_172SZ.ST}-

Proof. Throughout, we consider DOSPs as functions f : [n] — Z /kZ up to equivalence.
If o is the identity permutation, then every DOSP is fixed by o. The number of o-fixed
DOSPs is k"1, because we may take f(1) = 0 and freely choose the values f(i) € Z /kZ
for each i € {2,3,...,n}. Note that each such choice gives a distinct DOSP.

Now suppose that ¢ is not the identity. Let Ci,Cj,...,C, be the cycle sets of o.
Without loss of generality, we may assume that s; > 1 and 1 € C;. We define ¢; = o(1)
and, for each i € {2,...,r}, let us fix a distinguished element ¢; € C;. Let f : [n| = Z /kZ
be a o-fixed (k,n)-DOSP. Without loss of generality we assume that f(1) = 0. We will
show that the sequence of integers

a = (05170527 s 7&k) = (df(LQI)a df(17q2)> SRR df(LQT))

uniquely determines the DOSP. By assumption f(1) = 0. By definition, we have f(q;) =
d¢(1,¢q1). Since D is invariant under o, it follows that

dp(1,0(1)) = dp(a(1),0%(1)) = -+ =dp(c™'(1),0* (1)) = dp(1,q1).

So the value f(o'(1)) for each element of C; = {1,0(1),0%(1),...,0%71(1)} is determined
by ds(1,q). Explicitly, we have f(o'(1)) = i-ds(1,¢q1) mod k. By a similar argument,
the value f(0%(qz)) for each element of Cy = {qa,0(q2),0%(q2), - ..,0°2 1 (g2)} is determined
by ds(1,q2). To see this, observe that f(¢2) = df(1,¢2) and, since f is invariant under
o, it follows that ds(q2,0(q2)) = ds(1,0(1)). We deduce that the DOSP f is uniquely
determined by «.

We now consider the possible vectors a. By definition, we have that ds(1,q;)

d¢(1,0(1)) is the turning number of f. By Lemma 12 we have that ¢ - d(1,¢) 0
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mod k. The possible values for d¢(1,q1) - g are 8- k for each g € {0,1,...,9 — 1}. Hence,
the possible values for df(1,¢,) are fk/g for each 0 < § < g. For each such value of
a; = dys(1,q1), we may freely choose the values ao, ..., a4 in {0,1,...,k—1}. Each choice
gives a distinct DOSP and every o-fixed (k,n)-DOSP arises in this way. So the total
number of DOSPs is gk™ 1. O]

Proposition 31. Let o € S,, be a permutation with cycle type si, Sa, ..., S, and fix k € [n].
Define

<I>:{(fl,fg,...,fr)E{O,l,...,k—l}’”:ZfisiEO modk},
=1

and let g := ged(sy, So, ..., 8p, k). Then |®| = gk™ 1.

Proof. Consider the homomorphism of abelian groups
0 (Z/kZ) =LKL, (fi,fo .. ) > fisi.
i=1

The image of ¢ is the subgroup of Z /k Z generated by sq, o, ..., s,. By Bezout’s identity

(81,82, ..,8K) = (ged(sq, S2, ..., 80, k)) =(g9) CZ k7.

So we have | Im(y)| = k/g. Therefore

| @] = [ker(p)| =

The two results above, give us the following.

Corollary 2. Fix 0 < k <n. Let o € S, be a permutation with cycle type s1,...,s, and
define g = ged(k, s1, 89, ..., 5.). There is a bijection between the set of all o-fired DOSPs
and the set

L(k—=1)n/k]
o= Or(0,mk).  Therefore Z Dy (0, mk)| = gk L.

m=0 m>0

Proof. Suppose that ¢ has cycle type (s1, S2, ..., ;). By Lemma 13, the number of o-fixed
(k,n)-DOSPs is gk"!'. By Proposition 31, we have that |®| = gk"!, and we are done. []

Lemma 14. Let ¢ € S, be a permutation with cycle type (s1,S2,...,8.). Fix h €
{0,1,...,k —1}. Define ¢’ = ged(sy, S2, ..., 8-,k — h). Then we have

> |®pn(o,m(k — h) — h)| =

m>0

{g’(k —h) =t if ¢ divides h,
0

otherwise.
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Proof. Consider the homomorphism of abelian groups
i (Z)(k =ML = Z)(k=h)Z, (fi,fo - ) > fisi.
i=1

Observe that there is a natural bijection between (J,,~q Pr—n(o, m(k — h) — h) and the set

S:={fe(Z/(k—h)Z) : p(f) = —h mod (k— h)}. By Bezout’s identity, it follows
that the image of ¢ is principally generated by ¢'. It follows that

@] = {|ker<<1>>| C k=Rt i —helg) CZ/(h—h)Z,

0 otherwise.
In the first case, we have that —h € (¢’) if and only if ¢’ divides h. O
Proposition 32. Fiz 0 < h < k and some positive integers sq,...,s,. Foreach 0 <1 <k

define g; = ged(k — i, s1,...,5). Then gplh if and only if go|h.

Proof. Define § = ged(sy, ..., s,), so g, = ged(k — h, ) and go = ged(k, g). We have g, |h
if and only if (kK — h)|h and g|h. On the other hand go|h if and only if k|h and g|h. So it
suffices to show that (k — h)|h if and only if k|h, which easily follows from the assumption
that £k > h > 0. O

Proposition 33. Let o € S, be a permutation with cycle type (si,...,s,). For each h >0,
define g := ged(k, s1,...,s,) and g, = ged(k — h,sq,...,s,). We have

H*[1)(0) = ki (Z(—l)” (zl) (2’:;)) gn(k — h)""Yd(g, h),

h=0 \I€T;,
where d(g,h) = 1 if g divides h and d(g,h) = 0 otherwise.
Proof. Follows immediately from Theorem 18, Lemma 14, and Proposition 32. O

Corollary 3. Let 0 € S,, be a permutation with cycle type (s1,...,s,). For each h > 0,
define g := ged(k, s1,...,5s,). We have

H*[1](0) = gki (I;(_l)m Cll) (;:D) T

h=0

Proof. For each h > 0, define g;, := ged(k — h, s1,. .., ;). Consider the formula in Propo-
sition 33. Let h > 0 and I € Z;,. Assume that the product of binomials (’}11) e (?::11) is
nonzero. For each s € [k — 1] such that Ay > 1, we have that g|s. Therefore each nonzero
termof 113 + -+ (k—1) - Iy_; is divisible by g, hence g divides h and so d(g,h) = 1.
Since ¢ divides h, we have that g, = ged(k — h, s1,...,s,) = ged(k, s1,...,s.) = g. The
result immediately follows. O
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7.3.2 Counting non-hypersimplicial DOSPs

We start this subsection by recalling some facts about Stirling numbers of the second kind,
which, for brevity, we will refer to simply as Stirling numbers. Given non-negative integers
n and k, the Stirling number {Z} is the number of partitions of the set [n] into k£ non-empty
unlabelled parts. For example the set [3] is partitioned into 2 non-empty parts in three
ways: (1[23), (2[13), (3|12). Therefore {g} = 3. The Stirling numbers satisfy the following
defining relation, which is similar to binomial coefficients.

Proposition 34. For alln > 0, we have {Z} = 1. For eachn > 1, we have {g} = {2} =
0. And for all 0 < k < n, we have the following recurrence relation:

S B Y

Proof. Consider a partition of [n+ 1] into k non-empty parts and remove the element n+1.
If this results in a partition of [n] into k parts, but one of them may be empty. If that is
the case, we may consider it a partition into £ — 1 non-empty parts. Otherwise, we get a
partition into k non-empty parts. There are k choices to recover the original partition. [

We also require the following identity, which involves falling factorials.
Proposition 35. The Stirling numbers satisfy the relationship
> {1 fen=
k=1
where (), = Hf;ol (x — i) denotes the kth falling factorial.

Proof. The proposition can be proven via induction on k using the identity from Propo-
sition 34 as well as the identity z(z)r = ()k11 + k()% O

In this section we count the number of non-hypersimplicial o-fixed (k,n)-DOSPs.
Throughout this section, we define the following collection of Laurent polynomials. Let
j > 1 be an integer. Define the Laurent polynomial F}(y) € Q[y,y '] as follows:

1 j—1 7 j

Ew=(5) Sev{usnm e pen-.
h=1

These Laurent polynomials are, in fact, constants.

Lemma 15. We have F;(y) = (—1)7*%.

Proof. For each h > 0, notice that

(_y)h.

)" y+ )y +2) - (y+h—1) = y

By Proposition 35, with x = —y, we get F;(y) = (_y?j)f - 1, which concludes the proof. [
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{1,3,5} {2,4,6}

{7,9} {8,10}

{8,10} {7,9}
{2,4,6} {1,3,5}

Figure 7.1: A o-fixed DOSP of type (6,10) where o acts with cycles of length 6 and 4
on the subsets [6] and [10] \ [6]. The turning number is 3. Note that this DOSP is not
hypersimplicial because of the placement of the 2-element sets.

Throughout this section, we will frequently make use of the alternative definition of
DOSPs in terms of functions [n] — Z /kZ. See the beginning of Section 7.3 and Defini-
tion 14.

Setup for counting non-hypersimplicial DOSPs. Fix k <n and ¢ € S,,. We denote
by D the set of o-fixed non-hypersimplicial DOSPs and by D™ C D the subset of DOSPs
with turning number 7 € Z /k Z. We define the set A of non-empty unions of cycles in o:

A:{Ci1UOi2U"'UCisi {il,ig,...,is}g [T’],S>0}.

For each u = C;; UC;,U---UC;, € A, we will denote the corresponding set {i1, iz, ...,is} C
[r] by ind(u). Furthermore, we define the subset D] C D7 of DOSPs containing a tuple
(L, ) such that:

e |L| < ¢ (we call such a set a bad set),
e [ completely lies in u, and
e for every C; C u, L N C; is non-empty.

In other words, D] is the set of all o-fixed DOSPs D such that u is a disjoint union of
bad sets of D, and those bad sets form a single ¢ orbit. Note, for any D € D7 there exists
u € A such that D € D]. Explicitly, D is non-hypersimplicial so it has a bad set, say
(L,¢), then D € DI where u = LU o (L) Uo?(L)U---Uc°7Y(L) is the o-orbit of L.

Lemma 16. Fiz2 < k < n and let o € S, be a permutation with cycle type (s1, S2, ..., S;).
Define g = ged(sy,..., S, k) and let 7 € Z [kZ such that gt = 0. Fiz h € [k — 1] and
let J € (2) be a non-empty subset of A such that the elements of J are pairwise disjoint.

Then
L

ueJ

_ ((k—1)/o(r) + h— 1)l

((k —1)/o(7))! o(r) Nk — i)
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where o(7) denotes the order of T, j is the number of elements in |J,.,ind(u), and i is
the number of elements in | J,,,u.

Before giving the proof, we will outline the concepts in the proof with an example.

Example 13. Fix k = 12, n = 24, and ¢ € S, with cycle type (3,3,6,3,9). This means
that » = 5 and g = 3. For simplicity, we assume that the cycle sets are

Cy ={1,2,3}, Co = {4,5,6}, C5 = {7,8,...,12}, Cy = {13,14, 15}, Cs = {16,17,...,24}.

For each cycle C;, we fix a distinguished element ¢; € C;. Explicitly, we choose ¢; to be
the smallest element: ¢; = 1, ¢o = 4, g3 = 7 etc. Let us fix a subset J = {uy, us} where
u; = C1 Uy and us = Cy. This gives us

Ju=1{1,234,56,1314,15} and | Jind(u) = {1,2,4},

ueJ ueJ

hence i = 9 and j = 3. Lastly we fix 7 = 8 € Z /127 meaning that o(7) = 3. We will give
an overview of the proof of Lemma 16, which counts the number of non-hypersimplicial
DOSPs in D ND;,. To do this, we construct DOSPs in this set. We imagine starting
with an empty DOSP (L1 = {},..., L1z = {}) of k = 12 empty sets. We then consider
the possible ways to place the cycles into the DOSP. Note that the turning number 7 = 8
is fixed, so each o-orbit consists of o(7) = 3 sets of the DOSP. We will place the cycles
into the DOSP with three steps.

Our first step is to distribute u; across a single g-orbit of o(7) = 3 sets of 2 elements
each and to adorn each of these three sets with a decoration ¢; > 2 so that each set is
a bad set of the resulting DOSP. Our second step is to distribute us across 3 singletons,
which we note always result in bad sets in the final DOSP. The third step is to put the
rest of the elements into the remaining spaces. See Figure 7.2 for a specific instance.

Step 1. A o-fixed DOSP D with turning number 7 is completely determined by the
values the function fp takes on the distinguished elements ¢;. In Figure 7.2, the ¢; are
the underlined elements. As a starting point, we will assume that fp(q;) = 0, or in other
words 1 € L;. This choice fixes the positions of the elements in C; = {1,2,3}. Since 7 = 8§,
it follows that fp(ui) = {0,4, 8}, meaning that we have o(7) = 3 choices for the position
of 4 = g € u;. Once we have placed u = C U (s, we mark the positions 0,1,4,5,8,9 as
filled, this guarantees that each set in the resulting DOSP containing elements of u; are
bad sets. In Figure 7.2, these filled sets include the white circles.

Step 2. The placement of the element 13 = g4 € us is restricted to the locations {2, 6,10}
and {3,7,11} because {1,5,9} (the white spaces in Figure 7.2) need to remain clear. This
gives us 6 choices for ¢4. Notice that we count possible locations for a ¢; in sets of 3. This
corresponds to the factor o(7)’~! in the formula in the lemma.

Step 3. Finally, we must choose placements for the remaining cycles C3 and Cj5. After
having placed u; and wusy, there are only 3 spaced left in the DOSP. So, we have 3 choices
for g3 = 7 and ¢5 = 16, which corresponds to 9 choices to finish off the DOSP. This part
corresponds to the right-most factor (k —4)"™/ in the formula from the lemma.
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{1,5}
{15}

{7,10,17,20,23} {9,12,16,19,22}

{2,6} (3.4}

{13}

{8,11,18,21,24}

Figure 7.2: A DOSP with the setup of Example 13, the choices for the ¢; are fp(1) =0,
fo(4) =4, fp(7) =10 fp(13) =7, fp(16) = 3, are the underlined elements. The bold
sets are the bad sets corresponding to u; and us

Proof of Lemma 16. For the purpose of this proof, we will endow the set Z /kZ with a
total ordering induced by identifying it with the set {0, 1, ..., k—1}. We write the elements
of J as uq,us,...,u,. Let

D = ((L1,01), (Lo, ba), ..., (L, £)) € () D}

ueJ

be a DOSP. Without loss of generality, we may assume that L; C u;. Since the turning
number of D is 7, we may assume that fp(L;) =0 and fp(o(L;)) = 7. For each u, with
a € {2,...h}, there exists a set L of D such that 0 < fp(L) < 7 with L C u, and we
write p, = fp(L) for the value of this function on L. We also fix p; = 0. Let us count the
number of DOSPs D, as above, such that ps < --- < pp,.

Suppose that we are given the values of function fp(L) for each set L C u, over all
Uq. Let us count the number of ways to distribute the elements of the u, into the DOSP
if u, is already placed. For each b € ind(u,), there are k/o(7) different possible values for
fp(g). So, in total, there are o(7)?~! possible choices for the positions of the ¢’s, where
the first ¢ is put in the first position and the other ¢’s, of which there are j — 1, are placed
relatively to the first.

Now let us count the number of ways to position the sets uq, ..., u; in the DOSP. The
position of u; and its corresponding sets of the DOSP is fixed. Then we use a stars and
bars argument to place the remaining spaces between the u,’s:

(L(u1)) O (L(uz)) O (L(us)) O ... O (L(us)) O,

where L(u,) is the set of the DOSP with fp(L(u,)) = p, and the boxes represent some
number of spaces. Since each set L(u,) is a bad set, it takes up at least |L(u,)| spaces of
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the DOSP. Since u, is a o-orbit of bad sets, we have that each set that partitions u, is
bad and together they take up |u,| spaces of the DOSP. So the bad sets whose union is
up U - - - Uy take up i spaces of the DOSP. Hence, in total there are k — i spaces to place
between the u,’s. However, whenever we place one space, its g-orbit has length o(7). So
we are free to choose the positions of (k —7)/o(7) spaces and the rest are determined. So
by stars and bars there are ((k_(;g)f fj)(;gz;’;_l) = ((k_i)/ }‘;(_Tl)%_l) many ways place the spaces.

So far, we have fixed the position of all cycles of ¢ in uq, ..., uy, i.e., we have placed j
cycles into the DOSP. There are r — j remaining cycles. Placing a cycle C. into the DOSP
is equivalent to choosing the position of ¢.. Each ¢. can be placed into the k — i spaces.
Hence, there are (k —i)" DOSPs with the given u, positions.

Finally there are (h — 1)! different total orderings of po,...,p, and each gives the
same number of DOSPs. So, the total number of o-fixed non-hypersimplicial DOSPs with
turning number 7 is:

((k - Z>/Z(i-)1+ h — 1) (h_l)!O(T)jfl(k_i)rfj _ ((k — 7’)/0(7—) +h— 1)'

(O

O
We proceed to counting the total number of o-fixed non-hypersimplicial DOSPs.

Lemma 17. Fiz2 < k < n and let o0 € S, be a permutation with cycle type (s1,S2, ..., Sy).
For each i € [n], let \; be the number of length i-cycles of o. Let g = ged(sy, ..., S, k)
and define the set T = {1 € Z |k Z: gt = 0}. The number of o-fized non-hypersimplicial
DOSPs is

;g(—l)hﬂ22%(7)0(7)9‘—1(1@ — ) ; Cll) (2’:_11) {2} (7.1)

((k—i)/o(T)+h—1)!
((k=i)/o(r))!~

Proof. Let 7 € Z /kZ satisfy g7 = 0 and let D7 be the set of non-hypersimplicial o-fixed
DOSPs with turning number 7. The number of o-fixed non-hypersimplicial DOSPs is

> o7l

T€T

where K (T) ==

By the inclusion-exclusion principle, we have

UL SEIEDS

u€A h>1 Je(d)

D] = 2.

ueJ

Given a non-empty subset J C A, suppose we have uy,us € J. For a DOSP D to lie
both in D,, and D,,, it means there exist (not necessarily distinct) sets L; and Ly whose
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o-orbits are u; and wuy respectively. In particular, if u; N uy # (), the o-orbits must be
the same and u; = uy. Hence, we may always assume that the sets u; contained in J are
disjoint. It also follows that h is bounded by the number of sets L;, which is k. In the case
h = k, every L; satisfies |L;| = ¢; = 1, which means that n = k, a contradiction. Thus
1 < h<k-—1. We introduce one more notation:

_ ]}

A(h,i,j) = {Je (2) Ju

ucJ
This is the set of h-element subsets of A involving exactly j distinct cycles and contain a
total of i elements across all cycles. The cardinality of A(h,i,j) is exactly

S ()G [

=3

U ind(u)

ueJ

=7 and

which follows from the argument that there are { z} ways to partition j distinct cycles into
h sets and that we choose I; many fixed points of o, I, many 2-cycles of o, and so on,
such that [I[| =jand 1- 1 +2-Io+---+ (k—1)-I;_; = i. With this, we apply Lemma 16
and rearrange the previous formula:

=YY Y N
h=1 i=h j=1 JeA(h,i,j)luc
k—1 r
Sy Wy
i=h j=1 JeA(h,i,j) '

T
— =

RS Y welry e - i

i=h j=1 JeA(h,j)

D T L B WYL e U e S

[
it
LA

h—1 i=h j—1 JEM(hyirf)
k—1 . k-1 r . i - )\1 )\kfl ]
=SS sy i [ () () [ L
h=1 i=h j=1 |I‘6L 1 k-1
=)

7.3.3 Proof of the main result

With the results from the previous section, we are now ready to give a proof of Theorem 21,
which we restate in the following way:.
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Theorem 22. Fiz 2 < k <n and o € S, be a permutation with cycle type (s1,Sa2,...,S;).
For each i € [n], let \; be the number of length i cycles of 0. Let g = ged(sy, ..., S, k).
The number of o-fixed non-hypersimplicial DOSPs is

gk — H*[1)(0) = _gki (Z(_l)fl CD . C:j» (k— i),

h=1 I1€Z;

In particular, we have that H*[1](0) is equal to the number of o-fized hypersimplicial
(k, n)-DOSPs.

Proof. Like before, let i (1) refer to % Define theset T'= {1 € Z |k Z: g1 =
0} and note that |T'| = g. By Lemma 17, we have that the number of o-fixed non-
hypersimplicial DOSPs is

T;:(—nhﬂggﬂzmow*(k_z)r—j ZC)Q’:) {2}

S S wmeerte - [ 2 (30 () [ {2

€T h=1 i=h j=1 I€T;

[1|=j
k-1 i i A A J
- VRt i I — 4y o R G
> DD UMy T k=) (h> <fk1> {h}
€T i=1 j=1 h=1 \II|€L
=j

:Z'_l i ZGDG’:) (k;_i)r—jo(f)j—li(—l)"“mi(ﬂ{i}-

h=1

Next, we apply Lemma 15 to the above expression by setting y = (k —i)/o(7). Note that
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o(t)™t = (k—14)~1- (1/y)’~!. So, the above expression is equal to the following
k-1 i \ \ Z j
1 k—1 N ;
Z ([ ) e <[ ) (/{) Z) JO<7->J 12(_1)h+1 h(T){h}
rel i=1 j=1 | Iez; N1 k—1 P’
1l=j
k—1 i
A A '
TeT i=1 j=1 I€T; 1 k—1
H|=j
k—1
- > Cl) @H) (k=) (=1
reT i=1 j=1 \ 1e7; \'! k—1
=y
k—1 \ \
S (e () ()i
oS (e () () e

Finally, we recall that the number of o-fixed (k,n)-DOSPs is equal to gk" !, so we have
H*[1](o) is the number of o-fixed hypersimplicial (k,n)-DOSPs. This completes the proof.
O

7.3.4 Recurrence relation

In this section, we show that H*(A}; S, )[1](0) satisfies a recurrence relation similar to
that for Eulerian numbers. Given k € Z, a tuple A = (A1, Ay, ..., A,) € Z%;, and 7 > 1,

we define
G-
where g(k, \) = ged({k} U {i € [n] : A > 1}).

Suppose that o € S, has cycle type (s1,...,s,) and for each i € [n] we denote by \;
the number of cycles of ¢ of length i. Then, by Theorem 21, we have H*(A}; S,)[1](0) =
B(k,\, 7).

Proposition 36. We have B(k,\,7) =0 if k < 1, B(1,\,;r) = gk" ', and B(k,\,r) =

k—1
Bk, A1) —gk:/\z<z

h=0 \I€Z

gkt if A\ = -+ = \y_1 = 0. Suppose that there exists a € [k — 1] such that N\, > 1.
Define N = (A1, ..., a1, A — 1, Aas1, - -, An). Then, we have
gk, A) : 9(k,\) :
B(k, A\, Bk, X, ——————B(k—a,\,r).
(kA7) = S Bk ) = S Bl — 0, X,

Proof. The first part of the result follows easily from the definition of B(k, A,r). For the
recurrence relation, fix a € [k — 1] such that A, > 1. To simplify notation, we write
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g=gk,N), ¢ =gk X)), and ¢’ = g(k — a, \'). First, we apply Pascal’s identity

Bk, A7) =g : <§(_1)|] Gll) - G:_D) h— pyt
—g ;Z (g(_l)u (?11) (Aa[: 1) G:;)) (h— pyt
+g :) (IEZ;(_l)m (21) C:D (?:D) b hy

The first sum coincides with (g/¢")B(k, N, r). For the second sum, we re-index as
follows

B(k, )\,r)—gB(k;, NP =g S (IEZZ(_UH Gll) . (? - D . (?:D) (b hy
S e () (5 ) () e
- g‘k:ol (I%;(_l)fm C_;l) (?f:)) ((k — a) — b

So we have shown that B satisfies the recursive relation and concludes the proof. O]

Remark 8. The recurrence relation in Proposition 36 differs a little from the typical one
for Eulerian numbers given by A(n, k) = (k+1)A(n—1,k) + (n—k)A(n — 1,k —1). The
evaluation of H*(A};S,)[1] at the identity is equal to A(n — 1,k — 1), which is equal to
B(k, (n,0,...,0),n).

7.4 The second hypersimplex

In this section we give a complete description of the coefficients of the H*-polynomial
for the second hypersimplex AZ. We interpret these coefficients in terms of DOSPs, see
Definition 13, as well as actions of S,, on subsets and partitions of [n].

Notation. For each m € [n], we denote by p,, the character of the permutation repre-
sentation of S,, acting on ([m"]) So, we have p,,(0) = |{S C [n] : |S| =m, o(S) = S}|. By
taking complements, we have p,,_,, = p,, for each m. And so p,_1 = p1 = Xpat = A1 is the
character of the natural representation and p,, = Xj is the trivial character. We define 7,
to be the character of the permutation representation of .S,, acting on the set of partitions
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of [n] into two parts: one of size m and the other of size n — m. Note that, unless n is
even and m = n/2, we have that p,, = 7.

With this notation, we have the following characterisation of the coefficients of the
equivariant H* polynomial of AZ.

Theorem 23. Let n > 2. The coefficients of the equivariant H*-polynomial of the hyper-
simplex AL :

o Hij = X is the trivial character,
L Hik = pP2 — P1,
o H* = pon, for each 2 <m < [n/2].

The evaluation at one is given by H*[1] = Xo+mo+ 13+ - “+Tiny2), which is a permutation
character. If n is odd, then the leading coefficient is H(*n_l)/2 = p1. Otherwise, if n is
even, then the leading coefficient is H;:/z = Xp.

Before we prove the theorem, we note that the formula of coefficients H}, in Theorem 18
has a simple description in the special case when h = k£ — 1.

Proposition 37. Let 0 € S,, and m > 0. We have

1 ifm=0,
0 otherwise.

’(1)1(0—7 m)’ = {

Proof. The set ®1(co,m) consists of functions f : [r] — {0} such that >_._, f(i)s; = m.

There is only one such function, which belongs to the set ®(co,0). O
To prove Theorem 23, we also require the following result about S,, representations.

Lemma 18. Let n be even. The following equation of S, -representations holds

n/2 n/2
D Pom =) T
m=0 m=0
Proof. Fix a permutation ¢ with cycle type s1,89,...,s,.. It suffices to show that the

number of subsets of [n] with even size that are fixed by o is equal to the number of
two-part partitions of [n] that are fixed by o. Suppose that AU B = [n] is a two-part
partition, then we write AB := {A, B} for the partition of [n] into A and B. Given a
partition AB of [n|, we write o(AB) for the partition of [n] with parts o(A) and o(B).
We define the sets

L? ={ACn]:|A|]iseven, 0(A) = A} and R° = {AB: AU B = [n], 0(AB) = AB}.

We will show that |L7| = |R7|.
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We first consider the special case where each cycle of ¢ has odd length. Each element
A € L7 is the union of the supports of cycles of 0. Since |A| is even and each cycle has
odd length, it follow that A is the union of an even number of cycle supports. The indices
of the cycles whose supports form A uniquely determine A, and any even subset of cycles
forms a unique set A. So we have

|L7| = |{S C [r] : £S5 is even}|
= |{S C[r] : |S] is even}|
=21

On the other hand, for each subset S C [r], we obtain a partition TU where T is the
union of supports of the cycles in ¢ indexed by S and U = [n] \ T is the complement of
T. Observe that every o-invariant partition arises in this way because each cycle has odd
length. Moreover, each partition arises from a subset S C [k] or its complement [k] \ S.
So we conclude that |R?| = 2¥~! = |L°|. This concludes the special case.

Suppose that o contains a cycle of even length. Without loss of generality we assume
that s := s, is even. We prove |L?| = |R?| by induction on r. For the base case with
r = 1, we have that ¢ = (01 09 ... 0,) is an n-cycle where n is even. It is easy to see that

L? ={0, [n]} and R ={{0,[n]}, {o105...04_1,0204...0,}}.

So we have |L?| =2 = |R?|.

For the induction step, assume that » > 1 and consider a permutation 7 that has
cycle type s, So, ..., 5._1. Without loss of generality, let us assume that 7 is equal to the
permutation o restricted to [n — s,]. Define the set S = [n]\ [n — s,]. It is easy to see that

L=L"U{AUS:Aec L}

and so we have |L7| = 2|L7|. On the other hand, let us consider a partition AB € R™. If
0(A) = A, then we have that the partitions (AU S)B and A(B U S) lie in R?. On the
other hand, if 0(A) = B, then write (¢y,co,...,cs.) for the cycle of o supported on S.
Then we have

(AU{c1,c3, ... s 1)) (BU{ca,Cay ..y cs 1) and (AU{co, ca, ..., cs, })(BU{c1 ¢, .0 Csp—1})

are elements of R?. Every element of R arises uniquely in one of the ways described
above. So it follows that |R?| = 2|R7|. By induction, we have |L7| = |R"| and so we
deduce that |L7| = |R?| and we are done. O

Proof of Theorem 23. Fix o € S,, with cycle type (si,...,s,) and denote by C1,...,C,
the cycle sets of o such that |C;| = s; for each i € [r]. Let us consider the coefficients
given by Theorem 18 and Proposition 37 for the second hypersimplex AL. We have

|Dy(0, 2m)| it m#1,

Hi(0) = |@a(0.2m)| = Xa|a(o,m = 1)| = {@2(0 oo ns ]
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The value A; is equal to the number of fixed points of 0. So Ai(¢) = p1(0) is the character
of the natural representation of S,. On the other hand, the set ®9(0,2m) contains all
functions f : [r] — {0,1} such that >, f(i)s; = 2m. There is a natural correspondence
between f € ®y(0,2m) and subsets F' C [n] with |F| = 2m and o(F) = F, which is given
by
feF=J s
itf(i)=1

So |®y(0,2m)| = pay, is equal to the permutation character of S, acting on (g;l) This
proves that Hf = Xo, Hf = ps — p1, and H}, = pa, for each 2 < m < |n/2]. By
Theorem 18, if n is odd then the leading coefficient is HE“n_l) /2 = Pn-1 = P1, otherwise if
n is even then the leading coefficient is H jo = Pn = Xo.

It remains to show that H*[1] = Xo 4 72 4 -+ + T|n/2)- If n is odd the result follows
from the above and the fact that p,, = 7,, for each m € [n]. On the other hand if n is

even, then result follows from Lemma 18. O

Corollary 4. Fiz n and let 0 < m < |n/2|. Then the coefficient H}, of the equivariant
H*-polynomial of AL is a permutation character if and only if m # 1. Moreover, the
trivial character does not appear in HY.

Proof. Suppose m # 1. By Theorem 23, we have that H} is the permutation character
pom if m > 0 and Xy if m = 0. Otherwise, let m = 1 and assume by contradiction that
H;} is a permutation character. For any permutation character p, a consequence of the
Orbit-Stabiliser Theorem is that (Xo,p) = 4 > ¢ p(0) is equal to the number of orbits
of the action. By Theorem 23, we have Hf = ps — p;. Since S, acts transitively on [n| and
the 2-subsets of [n], the action associated to H has (Xg, p2 — p1) = (Xo, p2) — (Xo, p1) =0
orbits, a contradiction. This completes the proof. O

Theorem 23 also allows us to give a complete combinatorial proof of the effectiveness
of the H*-polynomial.

Corollary 5. Fiz n. Each coefficient of H*(AL,S,) is an effective representation.

Proof. Let m € {0,1,2,...,|n/2]} and consider the t" coefficient H}, of H*(A},S,). If
m # 1, then H is a permutation character, hence it is effective. Otherwise if m = 1
then let V' and W be C.S, modules with characters p; and p, respectively. Explicitly,
we assume V' has basis e; with i € [n] and action o(e;) = €,(;); and W has basis f; with
Ie ([Z]) and action o(fr) = fo(1). Define the map ¢ : V.— W given by ¢(e;) = >, fij-
It is straightforward to show that ¢ is an injective C.S,,-module homomorphism, hence
H = ps — py is effective.

O

Remark 9. The coefficients of the H*-polynomial may be interpreted as permutation
characters of DOSPs. The set of (2,1n)-DOSPs consists of: the trivial DOSP (([n],2));
and the DOSPs with two parts ((A,1),(B,1)), where {A, B} is a partition of [n|. The
trivial DOSP is fixed by every element of S, hence it is naturally associated with H.
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For each 2 < m < |(n+1)/2] — 1, by Theorem 23, we have H} = pa, = Tay, is the
permutation character of S, acting on partition {A, B}, where |A| = 2m. Hence H}, (o)
counts the number of o-fixed DOSPs ((A, 1), (B,1)) such that |A| = 2m. Suppose that
n is odd. Then HY + H{, ,y,, = 7> counts the number of o-fixed DOSPs with 4| = 2.
Hence the character H*[1] counts the number of o-fixed DOSPs that do not have a set of
size one. Since a (2,n)-DOSP is hypersimplicial if and only if it has no set of size one. On
the other hand, if n is even, then fix an odd value m. The permutation character of .5,
acting on the set of DOSPs with |A| = m does not immediately arise from a coefficient of

the H*-polynomial.

Remark 10. Each coefficient of the A*-polynomial of the hypersimplex has a combinatorial
interpretation in terms of DOSPs. Explicitly A}, is the number of hypersimplicial (k,n)-
DOSPs with winding number m. We note that the winding number is not invariant under
the action of S, so the same interpretation does not apply in the most general setting.
However, the winding number is invariant under the cyclic group C, < S,. It is shown in
[EKS24] that the coefficient H*(A}; Cy,)pm is the number of o-fixed hypersimplicial (k,n)-
DOSPs with winding number m. In the case k£ = 2, this result can be deduced from
Theorem 23 as follows. If D = ((A, 1), (B, 1)) is a DOSP, then we define the set J(D) of
Jumping points to be the set of i € [n] such that 7, i+ 1 belong to different sets of D. Since
k = 2, the winding number of D is equal to half the number of jumping poitns. For m =0
and m > 2, the restriction Resgz p2m(0) counts the number of o-fixed partitions {A, B} of
[n] with |A| = 2m. For each such partition there is a unique DOSP with jumping points
A. This DOSP is o-fixed and has winding number m. Every such DOSP arises in this way
and so 7, is the number of o-fixed DOSPs with winding number m. In the case m = 1,
we have that Resg’; (p2 — p1) is isomorphic to the permutation representation of C), acting

on the set of 2-subsets ij € ([g]) such that |i — j| > 1. For each such 2-subset, we obtain
a o-fixed hypersimplicial DOSP, which concludes the proof.
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On nearly Gorenstein polytopes
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Chapter 8

Nearly (Gorenstein polytopes

The Ehrhart ring of a lattice polytope P is Gorenstein if and only if there exists a positive
integer k such that kP is reflexive, cf. [BNO§]. In this chapter, we work towards a
characterisation of lattice polytopes by the nearly Gorensteinness of their Ehrhart rings.
We find both necessary and sufficient conditions as well as a full classification in the case of
IDP (0, 1)-polytopes. The content of this chapter is fully contained in the author’s paper
[Hal4-23] with Thomas Hall, Koji Matsushita, and Sora Miyashita.

8.1 The main results
Let P C R? be a lattice polytope with codegree a. We define its floor polytope and
remainder polytopes as

| P| := conv(int(P) N Z%) and {P} = conv(ant(Cp),_, N Z9),

respectively. Note that |P| coincides with conv(int(Cp); N Z%). Our first result gives a
necessary condition and a sufficient condition for a lattice polytope to be nearly Gorenstein.

Theorem 24 (Proposition 39 and Theorem 28). Let P C R? be a lattice polytope with
codegree a.

1. If P is nearly Gorenstein, then it has the Minkowski decomposition P = |aP]|+{P}.

2. Conversely, if P = |aP| +{P}, then there exists some K such that, for all integers
k > K, the polytope kP is nearly Gorenstein.

The next main result gives facet presentations for the floor and remainder polytopes
appearing in the Minkowski decomposition of a nearly Gorenstein polytope.

Theorem 25 (Theorem 31). Let P C R? be a lattice polytope with codegree a. Suppose
that P = |aP| + {P}. Then

laP| = {x € RY: np(z) > 1 — ahp for all F € F(P)} and
{P} = {2z € R*: np(x) > (a — 1)hp — 1 for all F € F(P)}.
Furthermore, if | P| # @, then {P} is reflexive.

91
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These results allow us to prove the next main result. It reveals that the primitive inner
normal vectors of a nearly Gorenstein polytope come from boundary points of reflexive
polytopes.

Theorem 26. Let P C R? be a nearly Gorenstein polytope. Then there exists a reflexive
polytope Q C RY such that

P ={z e R n(z) > —h, for aln € 0Q* N (Z%)*},

where h,, are integers. Moreover, the inequalities defined by n € vert(Q*) are irredundant.
Furthermore, the number of facets of a nearly Gorenstein polytope is bounded by a constant
depending on the dimension d.

The final main result is a classification of IDP (0, 1)-polytopes, which generalises prior
work on nearly Gorenstein Hibi rings [HHS19] and Ehrhart rings of stable set polytopes
arising from perfect graphs [HS21; Miy22].

Theorem 27 (Theorem 34). Let P be a (0, 1)-polytope which has the integer decomposition
property. Then, P is nearly Gorenstein if and only if P = Py X- - -X P, for some Gorenstein
(0,1)-polytopes Py, ..., Ps which satisfy |ap, —ap,| < 1, where ap, and ap, are the respective
codegrees of P; and Pj, for 1 <1< j <s.

8.2 Nearly Gorensteinness of lattice polytopes

Throughout this section, the lattice polytope P has the facet presentation (2.1).

Definition 15. We say that P is Gorenstein (resp. nearly Gorenstein) if the Ehrhart ring
A(P) is Gorenstein (resp. nearly Gorenstein).

There are well-known equivalent conditions of Gorensteinness in terms of the lattice
polytope P itself. For instance, P is Gorenstein if and only if there exists a positive integer
a such that a lattice translation of aP is reflerive, i.e. aP has a unique interior lattice
point which has lattice distance 1 to all facets of aP.

In this section, we will determine a necessary condition for P to be nearly Gorenstein, in
terms of the polytope P itself. This condition demands that P has a particular Minkowski
decomposition. By taking a dual perspective, we see exactly the connection to reflexive
polytopes. Next, we will show that if P satisfies the aforementioned necessary condition
and is in some sense “big enough”, then P will be nearly Gorenstein. We end the section
by investigating the nearly Gorensteinness of Minkowski indecomposable lattice polytopes.



CHAPTER 8. NEARLY GORENSTEIN POLYTOPES 93

8.2.1 Necessary conditions

The main aim of this subsection is to show the first half of Theorem 24. Before we
proceed, let us first introduce some helpful notation. For a subset X of R4™ and k € Z,
let X = {x € R%: (z,k) € X} be the k-th piece of X. Note the subtlety in our notation:
while X is a subset of R¥*?, its k-th piece X}, is a subset of R%. Moreover, for a lattice
polytope P, we denote its codegree by ap — see below Proposition 16 for the definition.
When it is clear from context, we simply write a instead of ap.

Proposition 38. Let P C RY be a lattice polytope with codegree a. Then P is nearly
Gorenstein if and only if

(Cp NZHH)\ {0} C int(Cp) N ZH +ant(Cp) N Z4H . (8.1)
In particular, if P is nearly Gorenstein, then
PNZ"=int(Cp)y N Z* +ant(Cp)1_, N Z*. (8.2)
The converse also holds if P is IDP.

Proof. By definition, P is nearly Gorenstein if and only if the trace tr(w) of the canonical
ideal w of A(P) contains the maximal ideal m of A(P). By Proposition 17, this trace is
exactly the product wa(p) -wAT(lp). Then, Proposition 16 tells us the monomial generators
of w and w™! in terms of the lattice points of int(Cp) and ant(Cp). We finally note that
the maximal ideal m can be generated by the monomials t*s*, where (x,k) are lattice
points in Cp \ {0}. From this, it is clear to see that P is nearly Gorenstein if and only if
(8.1) holds.

We next prove that (8.2) follows from nearly Gorensteinness of P. First, note that the
right hand side of (8.1) is contained in Cp N Z*™ by definition. Therefore, when we take
the 1-st piece of all three sets, we obtain the equality

PNZ* = (int(Cp) N Z +ant(Cp) N Z4H1),.

Note that when P is Gorenstein, int(Cp), N Z% and ant(Cp)_, N Z% are singleton sets;
therefore, the result easily follows. Otherwise, we claim that ant(Cp);_, N Z% is empty for
all b > a+ 1. Since int(Cp); is empty for b < a, we obtain the desired result.

Finally, we show that the converse holds when P is IDP. Let (z,k) € Cp N Z*\{0}.
Since P is IDP, there are x1,...,7; € PN Z* such that (z,k) = (21,1) + --- + (23, 1).
Further, each z; € P N Z% can be written as the sum of lattice points in int(Cp) and
ant(Cp). Therefore, (8.1) holds and so P is nearly Gorenstein. O

We now collate a couple of easy facts about the floor and remainder polytopes and
reformulate part of Proposition 38 into the following statement.

Lemma 19. Let P C R? be a lattice polytope with codegree a. Then:
1. |aP] C {x € R: np(x) > 1 — ahp for all F € F(P)};
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2. {P} C{z € R*: np(x) > (a — )hp — 1 for all F € F(P)};
3. If P is nearly Gorenstein, then P NZ% = |aP| N Z* +{P} N Z%;
4. If P is IDP and PNZ% = [aP| NZ*+{P} N7Z?, then P is nearly Gorenstein.

Proof. Statements (1) and (2) follow immediately from the definition of the floor and
remainder polytope. To prove statements (3) and (4), notice that the lattice points of
int(Cp), coincide with those of [aP] and the lattice points of ant(Cp);_, coincide with
those of {P}. Then simply substitute this into Proposition 38. O]

The following proposition is the first half of Theorem 24:

Proposition 39. If P is nearly Gorenstein, then P = |aP|+{P}, where a is the codegree
of P.

Proof. Let x € |aP] and y € {P}. By statements (1) and (2) of Lemma 19, we have
that, for all facets F of P, np(x +vy) > 1 —ahp+ (a — 1)hgp — 1 = —hp. So, x +y € P.
Therefore, we obtain that |aP| + {P} C P.

On the other hand, let v be a vertex of P. Since P is a lattice polytope, v € P N Z%.
Thus, by statement (3) of Lemma 19, can write v as the sum of an element of [aP| N Z*
and an element of { P} N Z%. This implies P C |aP| + {P}. O

Example 14. Consider the stop sign polytope, given by

P = conv{(1,0),(2,0),(3,1),(3,2),(2,3),(1,3), (0,2), (0,1)}.

i,
3| 2
2 35 1
1 2 0
0 1 -1

0 1 2 3 4 12 3 10 1 2
Figure 8.1: The stop sign polytope P (left) with its floor polytope [P] (middle) and
remainder polytope {P} (right).
First, we note that ap = 1. Next, we may compute the floor and remainder polytopes:

|P| = conv{(1,1),(2,1),(1,2),(2,2)} and {P} = conv{(1,0),(0,1),(~1,0), (0, —1)}.

By taking the Minkowski sum of these polytopes, we see that P satisfies the necessary
condition to be Gorenstein given by Proposition 39, i.e. P = |P] + {P}. On the other
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hand, it is straightforward to verify that every lattice point of P can be written as the
sum of a lattice point of | P| and a lattice point of {P}. Since P is IDP (as is true for all
polygons), statement (4) of Lemma 19 informs us that P is nearly Gorenstein.

Finally, we remark that the remainder polytope {P} is reflexive. This is not coinci-
dence, as we will prove in Proposition 31.

8.2.2 A sufficient condition

In this subsection, we will explore sufficient conditions for a lattice polytope to be nearly
Gorenstein; in particular, we will prove the second half of Theorem 24.
We first note that the converse of Proposition 39 does not hold in general.

Example 15 (compare [MP05, Example 1.1]). Let f = %(e1 + -+ + €5) € R®, where
e, ..., e is a basis of the lattice Z°. Define a new lattice L = Z° + f - Z, and consider the
lattice polytope

Q = conv{ey,...,es,e1 — f,...,e6 — [}

with respect to the lattice L. Set P := 2Q). Since | P| = {P} = Q, it’s easy to see that P =
| P| + {P}, meeting the necessary condition of Proposition 39 for nearly Gorensteinness.

On the other hand, @ is not IDP. In particular, 2Q N L # (Q N L) + (Q N L). Thus,
P = 2Q) fails the necessary condition of statement (3) in Lemma 19, and so P is not nearly
Gorenstein.

So, we need to make more assumptions about P in order to be guaranteed nearly
Gorensteinness. This brings us to the following result, which is the second half of Theo-
rem 24:

Theorem 28. Let P C R? be a lattice polytope satisfying P = |aP| + {P}, where a is
the codegree of P. Then there exists some integer K > 1 (depending on P) such that for
all k > K, the polytope kP is nearly Gorenstein.

In order to prove the above, we rely on a few key ingredients. The first ingredient is
an extension of known results from the reflexive case, which appear in [Hib92].

Lemma 20. Let P C R be a lattice polytope satisfying P = |aP| + {P}, where a is the
codegree of P. Then the following statements hold:

1. kP=|(k+a—1)P|+{P}, forall k> 1;
2. |K'P|=|aP|+ (K —a)P, for all k' > a.

Before we give the proof, we will restrict these statements to the reflexive case for the
sake of comparison. First, we have a = 1. Next, since | P| is the origin, P = {P}. So, for
reflexive polytopes, the statement (1) is equivalent to kP = |kP]| + P. After cancellation
by P, we obtain the reflexive version of statement (2): |kP]| = (k —1)P.



CHAPTER 8. NEARLY GORENSTEIN POLYTOPES 96

Proof of Lemma 20. Let k > 1 be an integer. Throughout this proof, we repeatedly use
the two inequalities appearing in statements (1) and (2) of Lemma 19. We also use the
inequalities appearing in the facet presentations for P and its dilates.

We first prove the “D” part of statement (1), i.e. that

kP D |(k+a—1)P|+{P}, foral k> 1. (8.3)

Letz € |(k+a—1)P| and y € {P}. Then np(z+y) > (1—(k+a—1)hp)+((a—1)hp—1) =
—khp, for all facets F' of P. Thus, z +y € kP.

Next, we note that kP = (k —1)P + |aP| + {P}. We substitute this into (8.3), then
cancel { P} from both sides to obtain |(k+a—1)P| C (k—1)P + |aP].

We now prove the reverse inclusion of the above. Let © € (k—1)P and y € |aP]|. Then,
np(x+y) > —(k—1)hp+(1—ahp) = 1—(k+a—1)hp. Therefore, x+y € |(k+a—1)P].
Thus, we obtain the equality [(k+a—1)P] = (k—1)P + [aP]. Setting ¥ =k +a—1
then gives us statement (2). Adding {P} to both sides gives us statement (1). O

The main ingredient in proving Theorem 28 is a result of Haase and Hofmann, which
allows us to guarantee that the second condition of statement (4) of Lemma 19 holds.

Theorem 29 ([III117, Theorem 4.2]). Let P,Q C R* be rational polytopes such that the
normal fan N'(P) of P is a refinement of the normal fan N (Q) of Q. Suppose also that for
each edge E of P, the corresponding face E' of Q) has lattice length £ g satisfying (g > dlg:.
Then (P +Q)NZ% = (PNZY 4+ (QNZY).

In order to guarantee the first condition of statement (4) of Lemma 19, we need this
next result:

Theorem 30 ([VGBI7, Theorem 1.3.3]). Let P C R? be a lattice polytope. Then (d—1)P
is IDP.

We are now ready to give the proof.
Proof of Theorem 28. We first wish to find a suitable K which satisfies
kPNZ*= [kP|NZ*+{kP}NZ" forall k> K.

Let a be the codegree of P. Looking at statement (2) of Lemma 20, we see that (k — a)P
is a Minkowski summand of |kP]; thus, we get a crude lower bound on the length of the
edges of |kP]: for k > a, every edge E of |kP| has lattice length ¢ > k — a. Denote
by L the maximum edge length of {aP} and set K := dL + a. Note that for k > a, the
polytopes {kP} and {aP} coincide. So, for all k > K, every edge E of |kP] will have
lattice length {g > k —a > dL.

Further, statement (2) of Lemma 20 implies that, for k¥ > a+1, the normal fan N'(|kP])
coincides with N'(P). Hence, N'(|kP]) is a refinement of the normal fan of {kP}. Thus,
we may apply Theorem 29, obtaining that kP N Z* = |kP| N Z% +{kP} N Z°.

Finally, since a, L > 1, we see that K > d — 1. Thus, by Theorem 30, we have that
kP is IDP. Therefore, by statement (4) of Lemma 19, we can conclude that kP is nearly
Gorenstein for all £ > K. O



CHAPTER 8. NEARLY GORENSTEIN POLYTOPES 97

Remark 11. We say that a graded ring R is Gorenstein on the punctured spectrum
[HHS19] if tr(wg) contains m* for some integer k > 0. If k = 0, this is just the Gorenstein
condition; if £ = 1, it is the nearly Gorenstein condition. Now, for a lattice polytope
P C R% it can be shown that its Ehrhart ring A(P) is Gorenstein on the punctured
spectrum if there exists a positive integer K such that kP N Z? coincides with (int(Cp) N
Z fant(Cp) N Z4Y), for all k > K. Therefore, using Theorem 28, it’s straightforward
to show that all lattice polytopes P satisfying P = |aP| + {P} are Gorenstein on the
punctured spectrum.

8.2.3 Decompositions of nearly Gorenstein polytopes

In this subsection, we first prove Theorem 25. This naturally leads to an investigation of
whether nearly Gorenstein polytopes decompose into the Minkowski sum of Gorenstein
polytopes (Questions 1 and 2). We prove Theorem 26, which leads to a way to system-
atically construct examples of nearly Gorenstein polytopes. This is then used to find a
counterexample to Questions 1 and 2. Finally, we conclude the section with a result about
indecomposable nearly Gorenstein polytopes.

Theorem 31 (Theorem 25). Let P C R? be a lattice polytope which satisfies P = |aP] +
{P}, where a is the codegree of P. Then we have

laP| = {z € R®: np(z) > 1 — ahp for all F € F(P)} and
{P}={2x € R*: np(x) > (a — 1)hp — 1 for all F € F(P)}.

In particular, the right hand sides of the equalities are lattice polytopes. Furthermore, if
a =1, then {P} is a reflexive polytope.

Proof. Label the two polytopes on the right-hand sides as ); and )9, respectively. It’s
straightforward to see that |aP] = conv(Q, N Z%) and {P} = conv(Q, N Z%). Thus,
laP| C @y and {P} C Q2. Ultimately, we want to prove the reverse inclusions but first,
we must show an intermediate equality: P = Q1 + Q2. Let z € ()1 and y € Q)5. Then,
for all facets F' of P, we have np(z +y) > 1 — ahp + (a — 1)hp — 1 = —hp. Thus,
x+y € P and so, Q1 + Q2 C P. Conversely, if we combine this with our assumption that
P = |aP| + {P}, we obtain that, in fact, P = Q1 + Q2.

We now use the above equality to obtain that |aP] = @ and {P} = @, as follows.
Assume towards a contradiction that Q; € |aP], i.e. there exists a vertex v of ()7 which
doesn’t belong to |aP|. Choose a normal vector n € (R%)* which achieves its minimal
value hy over (Qy only at v (i.e. n lies in the interior of the cone o, in the (inner) normal
fan A(Q1) which corresponds to v). Denote by hy the minimal evaluation of n over Q-
Then, the minimal evaluation of n over P is hy + hy. However, for all € |aP| and
y € {P}, we have that n(x+y) > hy + hy. This contradicts the fact that P = |aP] 4+ {P}.
Therefore, the vertices of )1 coincide with the vertices of |aP]; in particular, |aP]| = Q1.
We similarly obtain that {P} = Q.

Next, since |aP] and {P} are lattice polytopes by definition, we note that 1 and Q-
are lattice polytopes in this situation.
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Finally, suppose we are in the case when P has an interior lattice point, i.e. a = 1.
By substituting this into the second equality, we see that the remainder polytope {P} is
indeed reflexive as all its facets lie at height 1.

O

In contrast, when P has no interior points, the remainder polytope {P} is not neces-
sarily even Gorenstein.

Example 16. Consider the polytope
P = conv{(0,0,0), (2,0,0), (1,1,0), (0,1,0), (0,0,1), (2,0,1), (1,1, 1), (0, 1, 1)}.

We can verify that P is nearly Gorenstein and IDP, but the remainder polytope {P} is
not Gorenstein. However, { P} can be written as the Minkowski sum of

conv{(0,0,0),(1,0,0),(0,1,0)} and conv{(—1,—1,—1),(—1,—1,0)},
which are both Gorenstein.

We see similar behavior when studying the nearly Gorensteinness for certain restricted
classes of polytopes. This motivated us to pose the following question.

Question 1. If P is nearly Gorenstein, then can we write P = P, + --- + P, for some
Gorenstein lattice polytopes Py, ..., Ps?

We recall that P is (Minkowski) indecomposable if P is not a singleton and if there exist
lattice polytopes P, and P, with P = P; + P, then either P, or P; is a singleton. Note
that if P is not a singleton, then we can write P = P, + - - - + P, for some indecomposable
lattice polytopes Py, ..., P;.

Then, Question 1 can be rephrased as:

Question 2. If P has an indecomposable non-Gorenstein lattice polytope as a Min-kowski
summand, then is P not nearly Gorenstein?

This question has a positive answer for IDP (0, 1)-polytopes, which is shown in Sec-
tion 8.3. For the remainder of this section, we will build up some machinery which allows
for the efficient construction of nearly Gorenstein polytopes. We then use this in Exam-
ple 17 to give an answer to Questions 1 and 2.

Theorem 32 (Theorem 26). Let P C R? be a nearly Gorenstein polytope. Then there
exists a reflexive polytope Q@ C R such that

P = {z € R*: n(z) > —h, for alln € 0Q* N (ZM)*},

where h,, are integers. Moreover, the inequalities defined by n € vert(Q*) are irredundant.
Furthermore, the number of facets of a nearly Gorenstein polytope is bounded by a constant
depending on the dimension d.
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Before we dive into the proof, it will be useful to have the following lemma.

Lemma 21. Let P be a lattice polytope satisfying P = |aP|+{P}, where a is the codegree
of P. Then aP = |aP] + {aP}. Moreover, {aP} = (a —1)P + {P}.

Proof. We first wish to show that (a —1)P+{P} C {aP}. Let z € (a—1)P and y € {P}.
Then, by Lemma 19 (2), np(x +y) > —(a — 1)hp + (a — 1)hp — 1 = —1, for all facets F’
of P. So, z +y € {aP}. Thus, (a —1)P + {P} C {aP}.

We can add |aP] to both sides of the inclusion to get aP C |aP] + {aP}.

We next wish to show the reverse inclusion of the above. Let z € |aP| and w € {aP}.
Then np(z + w) > (1 — ahp) — 1 = —ahp, for all facets F' of P. So, z + w € aP.
Therefore, |aP]| + {aP} C aP. Combining the two inclusions gives the desired equality:
aP = |aP]| + {aP}.

Moreover, we obtain that |aP]| + {P} + (a — 1)P = [aP]| + {aP}. Since Minkowski
addition of convex sets satisfies the cancellation law, we may cancel both sides by |aP|
to obtain the equality {aP} = (a — 1)P + {P}. O

Proof of Theorem 32. We wish to study the (inner) normal fan N'(P) of P, as it’s enough
to show that its primitive ray generators all lie in 0Q* N (Zd)*, for some reflexive polytope
Q C R Let a be the codegree of P. Since dilation has no effect on the normal fan, we
may pass to the normal fan of aP. Now, by Lemma 21, a P has a Minkowski decomposition
into |aP] and {aP}. Thus, N (aP) is the common refinement of N'(|aP]) and N ({aP}).
By Proposition 31, we obtain that @) := {aP} is a reflexive polytope. Hence, the primitive
ray generators of N'(Q) are vertices of the reflexive polytope @* C (R%)*; in particular,
they are lattice points lying in the boundary of Q*.

We next look at the contribution to N (aP) coming from |aP|. Let n € (Z%)* be
a primitive ray generator of N'(|aP]|). Then, by definition of the remainder polytope,
n(x) > —1, for all x € Q. But now, this means that n lies in Q*. So, since n # 0 and
Q is reflexive, we obtain that n € 9Q* N (Z%)*. Therefore, we have now shown that the
primitive ray generators of N (P) = N (aP) contain the vertices of Q*, and that they all
lie in 0Q* N (Z)*.

Finally, we note that the number of facets of a nearly Gorenstein polytope P C R?
is bounded by cq = supg [0Q* N (Z%)*|, where Q runs over all d-dimensional reflexive
polytopes. Since there are only finitely reflexive polytopes in each dimension d, and
all polytopes only have a finite number of boundary points, we see that ¢y is a finite
number. O]

We will now detail how to construct nearly Gorenstein polytopes. First, choose a
reflexive polytope @ C R%. Then, choose a (possibly empty) subset S’ of the boundary
lattice points of @* which are not vertices of @*. Now, for each n € S = 5" U vert(Q*),
choose the height h, € Z. Construct a polytope P’ defined by n(x) > —h,, for all n € S,
and assert that none of these inequalities are redundant. Next, we can dilate P’ to rP’ so
that it’s a lattice polytope which contains an interior lattice point. By construction, its
remainder polytope {rP’} coincides with the reflexive polytope Q. In practice, 7P’ has a
Minkowski decomposition into |rP’| and {rP’'}, but we don’t yet have a proof that this
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always holds. Finally, we can use Theorem 28 to dilate r P’ even further to P := krP’ so
that P = | P] + {P} is nearly Gorenstein.

Example 17. Consider the polytope
P = conv{(—4,—-3,—4),(-3,—-1,-3),(-2,-2,-3),(0,1,4),(0,4,1),(3,1,1) }.
Note that P has many interior lattice points, it has codegree 1. Its floor polytope is
| P| = conv{(—3,—-2,-3),(0,3,1),(0,1,3),(2,1,1)}.
This is an indecomposable simplex, which is not Gorenstein. Its remainder polytope is
{P} = conv{(—1,—-1,-1),(1,0,0),(0,1,0),(0,0,1)},

which is clearly reflexive. We have P = |P| + {P}. We use Magma [BCP97] to verify
that PNZ* = (|P] NZ* + ({P}NZ?) and that P is IDP. Thus, we may conclude by
Lemma 19 that P is a nearly Gorenstein polytope.

It can be shown that P = | P|4+{P} is the only non-trivial Minkowski decomposition of
P. Thus, we may conclude that the nearly Gorenstein polytope P cannot be decomposed
into Gorenstein polytopes. Therefore, we may answer Questions 1 and 2 in the negative.

We end this section by giving the following theorem about nearly Gorensteinness of
indecomposable polytopes, which plays an important role in the characterisation of nearly
Gorenstein (0, 1)-polytopes in Section 8.3.

Theorem 33. Let P be an indecomposable lattice polytope. Then, P is nearly Gorenstein
if and only if P is Gorenstein.

Proof. Tt is already clear that Gorensteinness implies nearly Gorensteinness, so we just
have to treat the converse implication. Suppose that P is nearly Gorenstein. By Propo-
sition 39, we have that P = |aP| + {P}, where a is the codegree of P. Since P is
indecomposable, either (i) |aP] is a singleton or (ii) {P} is a singleton.

We first deal with case (i). Consider aP. By Lemma 21, aP = |aP| + {aP}. Thus,
aP is a translation of {aP}. By Proposition 31, {aP} is reflexive. Thus, P is Gorenstein.

The argument for case (ii) is similar. We consider {aP}. By Lemma 21, {aP} =
(a —1)P + {P}. Proposition 31 tells us that {aP} is reflexive; therefore, (a — 1)P is a
translation of a reflexive polytope. But this is an absurdity as it implies that (a — 1) P has
an interior lattice point, contradicting that the codegree of P is a. Thus, this case cannot
occur.

]

8.3 Nearly Gorenstein (0, 1)-polytopes

In this section, we consider the case of (0, 1)-polytopes. We provide the characterisation
of nearly Gorenstein (0, 1)-polytopes which are IDP. Moreover, we also characterise nearly
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Gorenstein edge polytopes of graphs satisfying the odd cycle condition and characterise
nearly Gorenstein graphic matroid polytopes.
Beforehand, we need a technical lemma.

Lemma 22. Let Ry,..., Ry be homogeneous normal affine semigroup rings over infinite
field k which have Krull dimension at least 2. Let R = Ri# - - - # R, be the Segre products.

Then the following are true:
(1) If R is nearly Gorenstein, then R; is nearly Gorenstein for all i.
(2) If R; is level for all i, then R is level.

Proof. 1t suffices to prove the case s = 2. Let xy,...,x, be k-basis of (Ry); and y1,...,ynm
be a k-basis of(R2);.

(1): In this case, by using Proposition 18, we get wr = wg, #wg, and w;zl = w}_zll#wg;.
Then we may identify wr and wr™! with wg, #wg, and w;hl#w}_%;, respectively.

It is enough to show that z; € tr(wg,) for any 1 < i < n. Since R is nearly Gorenstein,
there exist homogeneous elements v1#ve € wp, #wr, and uiF#Hus € w}}f#w}}; such that
iy = (n#v)(m#Huz) = (nugFveug), by [Miy24, Proposition 4.2]. Thus, we get
x; = viuy € tr(wg,), so Ry is nearly Gorenstein. In the same way as above, we can show
that Ry is also nearly Gorenstein.

(2): First, wg = wg,#wgr, by Proposition 18. Let a; and as be the a-invariants
of Ry and Ry, respectively, and assume that a; < as. Since R; and R, are level,
wr, = (f1,-, fr)R1 and wg, = (g1, -, q) R where deg f; = —a; and degg; = —ay
forall 1 <7 <r, 1 <5 <[ Thus, since wg = wg,#wr,, we may identify wr with

<f1a"' >fr>Rl#<g1,-" ,gz>R2. We set

V= {ybgjjlgjgl,aENm, Zbi:a2_a1}7

=1

where y® == y{* -+ - y2m. Then wg = (fi#v: 1 <i <r,v € V)R. Therefore, R is level. [

8.3.1 The characterisation of nearly Gorenstein (0, 1)-polytopes

Lemma 23. Let P C R? be a (0,1)-polytope. Then, after a change of coordinates, we can
write P = Py X -+ X Py for some indecomposable (0, 1)-polytopes Py, ..., Ps.

Proof. As mentioned in Section 8.2, we can write P = P/+- - -4 P. for some indecomposable
lattice polytopes PJ, ..., P..

First, we show that we can choose P, ..., P! so that these are (0, 1)-polytopes. Suppose
that we can write P = P| 4+ Pj for some lattice polytopes P, and Pj. Then, for any
v € PlNZ" and for any u € Py NZ% v+ uis a (0,1)-vector. Therefore, for any i € [d],
m:(P! N Z%) can take one of the following forms: (i) {w;} or (ii) {w;, w; + 1} for some
w; € 7. In case (i), m(Py N 7Z%) is equal to {—w;}, {—w; + 1} or {—w;, —w; + 1}. In case
(i), m;(PyNZ%) is equal to {—w;}. Thus, in all cases, P/ —w and Pj+w are (0, 1)-polytopes
and we have P = (P] — w) + (P + w), where w = (wy, ..., wg).
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Moreover, if we can write P = P|+ Py for some (0, 1)-polytopes P| and Py, then we can
see that either m;(P]) or m;(P4) is equal to {0} for any i € [d]. Therefore, after a change
of coordinates, we can write P = P; X P for some (0, 1)-polytopes P; and Ps. ]

Now, we provide the main theorem of this section.

Theorem 34. Let P be an IDP (0,1)-polytope. Then, P is nearly Gorenstein if and
only if you can write P = Py X «-- X Py for some Gorenstein (0,1)-polytopes Py, ..., Ps
with lap, — ap,| < 1, where ap, and ap, are the respective codegrees of P; and P;, for
1<i<j<s.

Proof. 1t follows from Lemma 23 that we can write P = P; X --- X P, for some indecom-
posable (0, 1)-polytopes Py, ..., P;. Thus, we have k[P] = k[P, |# - - - #k[P;]. Note that if
P is IDP, then so is P; for each i € [s], and A(P) (resp. A(F;)) coincides with k[P] (resp.
k[P,]). Therefore, since P is nearly Gorenstein, k[P] is nearly Gorenstein, and hence k[P}]
is also nearly Gorenstein from Lemma 22 (1). Furthermore, P, is nearly Gorenstein. Since
P, is indecomposable, P; is Gorenstein by Theorem 33. Moreover, it follows from [HMP19,
Corollary 2.8] that |ap, —ap,| < 1for 1 <i<j<s.

The converse also holds from [HMP19, Corollary 2.8]. O

From this theorem, we immediately obtain the following corollaries:
Corollary 6. Question 1 is true for IDP (0, 1)-polytopes.

Corollary 7. Let P be an IDP (0, 1)-polytope. If k[P] is nearly Gorenstein, then k[P] is
level.

Proof. 1t follows immediately from Lemma 22 (2) and Theorem 34. O

The result of Theorem 34 can be applied to many classes of (0, 1)-polytopes such as
order polytopes and stable set polytopes.

Order polytopes, which were introduced by Stanley [Sta86], arise from posets. Let II
be a poset equipped with a partial order <. The Ehrhart ring of the order polytope of
a poset II is called the Hibi ring of II, denoted by k[II]. It is known that Hibi rings are
standard graded ([Hib87]). For a subset I C P, we say that [ is a poset ideal of P if p € I
and ¢ < p then ¢ € I. According to [Sta86], the characteristic vectors of poset ideals in
R™ are precisely the vertices of the order polytope of II (hence order polytopes are (0, 1)-
polytopes). By this fact, we can see that the order polytope of a poset II is indecomposable
if and only if II is connected. Nearly Gorensteinness of Hibi rings have been studied in
[HHS19]. It is shown that k[II] is nearly Gorenstein if and only if IT is the disjoint union
of pure connected posets II,...,1II; such that their ranks of any two also can only differ
by at most 1. Moreover, in this case, k[I;] is Gorenstein and k[II] = k[II;]# - - - #k[I1].
Therefore, its characterisation can be derived from Theorem 34.

Stable set polytopes, which were introduced by Chvétal [Chv75], arise from graphs.
For a finite simple graph G on the vertex set V(G) with the edge set E(G), the stable
set polytope of GG, denoted by Stabg, is defined as the convex hull of the characteristic



CHAPTER 8. NEARLY GORENSTEIN POLYTOPES 103

vectors of stable sets of G in RV hence Stabg; is a (0, 1)-polytope. Here, we say that
a subset S of V(G) is a stable set if {v,u} ¢ E(G) for any v,u € S. This implies that
Stabg is indecomposable if and only if GG is connected. Stable set polytopes behave well
for perfect graphs. For example, Stabg is IDP if G is perfect (cf.[OHO01]). Moreover, the
characterisation of nearly Gorenstein stable set polytopes of perfect graphs has been given
in [HS21; Miy22|. Let G be a perfect graph with connected components Gy, ..., G, and let
0; denote the maximal cardinality of cliques of GG;. Then, it is known that Stabg is nearly
Gorenstein if and only if the maximal cliques of each G; have the same cardinality and
|0; = 6;] < 1for 1 <i<j<s. In this case, as in the case of order polytopes, k[Stabg,]
is Gorenstein and k[Stabg] = k[Stabg, |# - - - #k[Stabg,|. Therefore, its characterisation
can also follow from Theorem 34.

Furthermore, by using this theorem, we can study the nearly Gorensteinness of other
classes of (0, 1)-polytopes.

8.3.2 Nearly Gorenstein edge polytopes

First, we define the edge polytope and edge ring of a graph. We refer the reader to
[HHO18, Section 5] and [Vil01, Chapters 10 and 11] for an introduction to edge rings.

Let G be a finite simple graph on the vertex set V(G) = {1,...,d} with the edge set
E(G). Given an edge e = {i,j} € E(G), let p(e) == e; + e;, where e; denotes the i-th unit
vector of R? for i € [d]. We define the edge polytope Pg of G as follows:

Pg = convi{p(e): e € E(G)}.

The toric ring of P is called the edge ring of G, denoted by k[G] instead of k[Pg].

Let G1,...,G, be the connected components of G. From the definition of edge poly-
tope, we can see that k|G| = k|G| ® - - - @ k[G]. Therefore, in considering the character-
isation of nearly Gorenstein edge polytopes, we may assume that G is connected.

Moreover, for a connected graph G, Py is IDP if and only if G satisfies the odd cycle
condition, in other words, for each pair of odd cycles C' and C” with no common vertex,
there is an edge {v,v'} with v € V(C) and v € V(C") (see [OHI8; SVV94]).

Gorenstein edge polytopes have been investigated in [OH06]. We now state the char-
acterisation of nearly Gorenstein edge polytopes.

Corollary 8. Let G be a connected simple graph satisfying the odd cycle condition. Then,
the edge polytope Pg of G is nearly Gorenstein if and only if Pg is Gorenstein or G s the
complete bipartite graph K, ,+1 for some n > 2.

Proof. 1f Pg is nearly Gorenstein, then Theorem 34 allows us to write Pg = P} X --- X P
for some indecomposable Gorenstein (0, 1)-polytopes P, ..., P;. Then, we have s < 2
since P C {(x1,...,74) € R%: 2y + --- 4+ 24 = 2}, where d = |[V(G)]. In the case
s = 1, Pg is Gorenstein. If s = 2, we can see that P, = conv{ey,...,e,} C R" and
Py = conv{ey,...,eq n} C R¥™ for some 1 < n < d — 1. Therefore, we have G = K dn,
and it is shown by [HS21, Proposition 1.5] that for any 1 <n < d —1, Pk, ,_, is nearly
Gorenstein if and only if d —n € {n,n 4 1}. Since P, , is Gorenstein, we get the desired
result. O]
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8.3.3 Nearly Gorenstein graphic matroid polytopes

We start by giving one of several equivalent definitions of a matroid.

Definition 16. Let E be a finite set and let B be a subset of the power set of F satisfying
the following properties:

1. B+£2.

2. If A,B € Bwith A# B and a € A\ B, then there exists some b € B\ A such that
(A\{a}) U{b} € B.

Then the tuple M = (E, B) is called a matroid with ground set E and set of bases B.

Let now G = (V, E) be a multigraph. The graphic matroid associated to G is the
matroid Mg whose ground set is the set of edges £ and whose bases are precisely the
subsets of F which induce a spanning tree of G. Given two matroids Mg = (E, Bg) and
My = (F,Bp), their direct sum Mg & Mp is the matroid with ground set £ LI F' such that
for each basis B of Mg ® My, there exist bases Bg € B and Br € Br with B = Bg L Bp.
If such a decomposition is not possible for a matroid M, we call it irreducible.

A graphic matroid with underlying multigraph G is irreducible if and only if its under-
lying graph is 2-connected. If it is not irreducible, its irreducible components correspond
precisely to the 2-connected components of G.

For any matroid M = (F, B), we can define its matroid base polytope (or simply base

polytope) by
By = conv{z ey: B e B} C R

beB

where e, is the incidence vector in RIZ! corresponding to the basis b. If By, comes from a
graphic matroid Mg, we will call it Bg.
An alternative definition of matroid base polytopes is as follows.

Definition 17 ([Gel+87, Section 4]). A (0,1)-polytope P C R? is called (matroid) base
polytope if there is a positive integer h such that every vertex v = (vy,...,v,) satisfies

Z?Zl v; = h and every edge (i.e. dimension 1 face) of P is a translation of a vector e; — ¢
with ¢ # 7.

It is shown in [Gel+87, Theorem 4.1] that this definition is indeed equivalent to that of
a base polytope as given above and that the underlying matroid is uniquely determined.
This gives us the following two lemmas.

Lemma 24. Let G be a multigraph and let Gy, ... G, be its 2-connected components. Then
Be can be written as a direct product of the base polytopes Bg,, ..., Bg,. Conversely, if
Bg can be written as a direct product of polytopes Pi,...,P,, where no P; is itself a
direct product, then these polytopes correspond to the base polytopes of the 2-connected
components G1,...,G, of G.
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Proof. The first statement is trivially satisfied.

The converse follows from two key insights. Firstly, the fact that if a base polytope Bj,
associated to a (not necessarily graphic) matroid M can be written as a direct product
P, x P, then P, and P, are again base polytopes. Secondly, if a graphic matroid Mg
can be written as a direct sum M; & M,, then M; and M, are again graphic matroids
corresponding to subgraphs of G which have at most one vertex in common.

The first insight follows from the alternative definition of a base polytope: Every edge
of By, is given by an edge in P, and a vertex of P, or vice versa. Hence, P, and P
must satisfy the definition as well, making them base polytopes with unique underlying
matroids M; and Ms. The second insight is a classical result and can be found, among
other places, in [Tru92, Lemma 8.2.2]. H

The following proposition is the polytopal version of a classical result due to White.
Lemma 25 ([Whi77, Theorem 1]). Matroid base polytopes are IDP.

We can now define Gorensteinness, nearly Gorensteinness, and levelness of a matroid
by identifying it with its base polytope. In [Hib+21] and [K6120], a constructive, graph-
theoretic criterion of Gorensteinness for graphic matroids was found. Since the direct
product of two Gorenstein polytopes that have the same codegree is again Gorenstein, the
characterisation is presented in terms of 2-connected graphs.

Proposition 40 ([K6120, Theorems 2.22 and 2.25]). Let G be a 2-connected multigraph.
Then the following are equivalent.

1. Bg is Gorenstein with codegree a = 2

2. FEither G is the 2-cycle or G can be obtained from copies of the clique K4 and Con-
struction 2.15 in [K0l20).

The following are also equivalent.
1. Bg is Gorenstein with codegree a > 2

2. G can be obtained from copies of the cycle C, and Constructions 2.15, 2.17, 2.18 in
[K6120] with § = a.

The full characterisation of nearly Gorenstein graphic matroids is thus an immediate
corollary of Theorem 34 and Proposition 40.

Corollary 9. Let G be a multigraph with 2-connected components G1,...,G,, then the
following are equivalent.

1. Bg is nearly Gorenstein

2. Bg,,-..,Bg, are Gorenstein with codegrees ay, ..., a,, where |a; —aj] <1 for1 <
1< g <s.
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