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Chapter 1

Introduction

Given a convex polytope as a subset of Rd, how many integral points are contained in it
and its integer dilates?

This question was investigated by Eugène Ehrhart in the 1960s and has since become
a subject of intense research. Ehrhart found that the counting function which maps the
magnitude of the dilation to the number of lattice points in the dilated polytope is a quasi-
polynomial if one of the dilates has all integral vertices. If the first dilate has all integral
vertices already (i.e., the polytope is a lattice polytope), the function is a polynomial.
Thus, we call this function the Ehrhart (quasi-)polynomial of a polytope.

The Ehrhart polynomial of a lattice polytope encodes a variety of geometric informa-
tion about it that goes beyond merely counting lattice points. For example, Alexander
Barvinok showed in [Bar94] that the coefficients of the Ehrhart polynomial could be com-
puted in polynomial time from the volumes of the faces of the polytope.

In the early 2000s, Ehrhart polynomials made a surprise appearance in number theory.
While studying a version of the Riemann hypothesis, the authors of [Bum+00] noticed
that one family of functions they investigated are the Ehrhart polynomials of the cross-
polytope. This prompted [Rod02] to study polynomials whose roots also have real part
−1

2
more closely. Both of these papers then led to [Bec+05], which initiated the study of

Ehrhart polynomial roots. In particular, they considered geometric properties of polytopes
whose Ehrhart polynomial roots have real part −1

2
. From there, the study of Ehrhart

polynomial roots can be split into two categories. Firstly, the study of the roots of classes
of polynomials, which include Ehrhart polynomials, as showcased in publications such as
[BD08; Bra08; Hig12; HHK19], and secondly, the study of specific families of polytopes
with a focus on their Ehrhart polynomial roots, as showcased in publications such as
[OS12; HKM17; HHY22]. In [HHK19], the term CL-polytope was coined for polytopes
with all Ehrhart polynomial roots on the canonical line, i.e. the set

{
−1

2
+ αi : α ∈ R

}
.

Chapter 4 falls into the first category. It uses techniques similar to those in [BD08] and
[Bra08] to prove a conjecture about Ehrhart polynomial roots from [BD08] in the case of
polynomials that have all roots on the canonical line.

Symmetric edge polytopes (also sometimes referred to as adjacency polytopes) are a
class of graph polytopes that have been the subject of intense study in recent years, for
example [HKM17; CD22; DDM22; KT22] to name a few. They are a family of reflexive

1



CHAPTER 1. INTRODUCTION 2

polytopes that are constructed from simple graphs. The dimension of a symmetric edge
polytope is equal to the number of edges of the largest spanning forests of its graph, making
this family of polytopes an ideal provider of examples of reflexive polytopes in high dimen-
sions. Since every CL-polytope is reflexive (a fact that follows from Ehrhart reciprocity),
symmetric edge polytopes also play a role in the study of CL-polytopes [HKM17].

In the study of CL-polytopes, one useful tool is the theory of interlacing polynomials.
Given real-rooted polynomials p and q of degrees d and d + 1 respectively, we say that
they interlace if their roots alternate on R. Interlacing polynomials have been making
appearances in mathematics for a long time, for example in form of the classical result that
orthogonal polynomials interlace, but only recently have all these results been collected
and organised [Fis06]. In recent years, the theory of interlacing polynomials has been used
to show that certain families of polytopes are CL-polytopes. In [HKM17], it was applied
to symmetric edge polytopes of complete bipartite graphs of types (1, n), (2, n), and (3, n).
In Chapter 5, we extend these results to complete multipartite graphs of type (1, 1, n),
(1, 2, n), and (1, 1, 1, n).

Since its advent, Ehrhart theory has seen several generalisations. One of these is
equivariant Ehrhart theory, introduced in [Sta11], which considers lattice polytopes that
are fixed by a group action on the lattice Zd. Instead of simply counting the number of
lattice points in the dilations of a polytope, we count for every element g in the acting
group only the number of lattice points in every dilation, fixed by g. Ehrhart polynomial,
Ehrhart series, and h∗-polynomial all have equivariant analogues where values from Z
(or Q in the case of Ehrhart polynomial coefficients) have been replaced by Z- ( or Q-
)valued class functions. One peculiarity however is that the equivariant analogue of the
h∗-polynomial need not be a polynomial, which is why we call it equivariant H∗-series.
Whenever the equivariant H∗-series is not a polynomial, it also has a coefficient which
does not correspond to an effective representation. Conversely, all currently available data
suggests that if the equivariant H∗-series is a polynomial, all of its coefficients correspond
to effective representations. This is known as the effectiveness conjecture and has been the
main focus of investigation into equivariant Ehrhart theory. In Chapter 6, we investigate
the effectiveness conjecture for symmetric edge polytopes coming from cycle graphs.

Another of the conjectures Stapledon has posed is concerned with the value of H∗[1].
It posits that if the equivariant H∗-series of a polytope is a polynomial, then H∗[1] is a
permutation representation. In Chapter 7 we investigate this question for hypersimplices
when the symmetric group acts via coordinate permutation. The equivariant Ehrhart
theory of hypersimplices has been studied before in [EKS24], but with a focus on the ef-
fectiveness conjecture. In particular, we propose the first closed formula for the coefficients
of the equivariant H∗-series under this action.

Every lattice polytope P gives rise to an Ehrhart ring defined by taking the cone over
P × {1} and forming the semigroup ring over the set of lattice points in that cone. This
correspondence gives rise to a correspondence of notions. For example, a lattice polytope
has the integer decomposition property if and only if its Ehrhart ring is normal. Famously,
the Gorenstein property for rings indirectly corresponds to reflexivity in polytopes [Hib92]
in the sense that a polytope is Gorenstein if one of its integer dilations is reflexive. The
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Gorenstein property has numerous generalisations, and a popular subject of study is to
attempt to understand them in terms of lattice polytopes. One of these properties is the
nearly Gorenstein property [HHS19] defined in terms of the trace ideal of the canonical
module. Both the canonical module and its trace ideal have combinatorial interpretations
in terms of lattice points in the cone over a lattice polytope and are thus closely related
to the integer decomposition property. We study the nearly Gorenstein property of lattice
polytopes in Part IV.

Summary of the thesis

Part I contains background on the objects we study in this thesis. In Chapter 2 we recall
some background about polytopes and Ehrhart theory and introduce the classes of poly-
topes that will play an important role later on. Alongside them, we will introduce the
methods we use to study them. Specifically, we will introduce symmetric edge polytopes
and Gröbner basis techniques, as well as CL-polytopes and the theory of interlacing poly-
nomials and some notions from ring theory. In Chapter 3 we will introduce equivariant
Ehrhart theory. In order to do that, we will first give some background in representation
theory.

Part II contains two chapters that deal with the roots of Ehrhart polynomials. For this
we will make heavy use of the theory of interlacing polynomials. In Chapter 4, we study
SNN-polynomials, as introduced in [BD08], whose roots have real parts −1

2
. We call this

class of polynomials C ∩S: The set S is the set of SNN-polynomials and C is the set of
real polynomials whose zeros all have real part −1

2
. In particular, in Theorem 7 we find

that in degree d the imaginary parts of the roots are bounded by those of the polynomial

pd0(z) =

(
z

d

)
+

(
z + d

d

)
.

This confirms a conjecture from [Bra08] in the case of C ∩S. Further, in Theorem 8 we
show that within this bound, every root can be obtained by a degree d polynomial in C ∩S.
The pd0 are not themselves Ehrhart polynomials of any polytope. Up to dimension 9, we
identify the standard reflexive simplex as being the polytope whose Ehrhart polynomials
have the largest spread across the canonical line. For higher dimensions, we show how that
might not be the case without providing a concrete polytope as a counterexample. Lastly,
in Proposition 20 we provide a sufficient criterion for a polynomial in C to be contained
in S in the form of inequalities on the roots.

In Chapter 5, we study symmetric edge polytopes from complete multipartite graphs.
The goal is to find further evidence for a conjecture from [HKM17]. First, we use Gröbner
basis techniques to derive a formula for the h∗-polynomials of complete tripartite graphs
(Theorem 10, Theorem 11). Then, in Proposition 22 we use this formula, as well as results
from [OT21] to compute the h∗-polynomials of the complete multipartite graphs of types
(1,m, n), (1, 1, 1, n), and (2, 2, n). Using techniques from [HKM17], in Theorem 9 we show
interlacing relationships among the Ehrhart polynomials of some of these graphs. Finally,
in Theorem 12 we develop a systematic approach to these techniques and show that their
effectiveness depends on the γ-polynomial, which limits their usefulness in the further
study of the conjecture from [HKM17].
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Part III contains two chapters that deal with equivariant Ehrhart theory. In Chapter 6,
we focus on testing the effectiveness conjecture. First, we consider the symmetric edge
polytopes of cycle graphs where the actions are induced by the actions of the automorphism
groups on the graphs. We confirm the conjecture in two cases (Theorem 13): firstly,
for cycle graphs of prime order under the action of the dihedral group, and secondly
for all cycle graphs under the action of the order 2 reflection subgroup of the dihedral
group. In Theorem 17 we also study a family of modified cross-polytopes with rational
coefficients under reflections across a hyperplane. All of these modified cross-polytopes
have a polynomial equivariant H∗-series, but one of them has a non-effective coordinate.
This shows that even if the effectiveness conjecture is true, it cannot be extended to the
rational case.

In Chapter 7, we study the equivariant Ehrhart theory of hypersimplices under the
action of the symmetric group. From [EKS24] it is already known that the effectiveness
conjecture holds, so we focus on a different conjecture, namely whether in the effective
case, H∗[1], the sum of all the coefficients of the equivariant H∗-series, is a permutation
representation. We show in Theorem 20 that this is indeed the case and detail an in-
terpretation via decorated ordered set partitions (DOSPs for short), which is known to
exist both in the non-equivariant case [Kim20] and in the case of a cyclic group action.
In Theorem 18 we also give an explicit description of the individual coordinates of the
equivariant H∗-series and show that they are not necessarily permutation actions.

Part IV contains one chapter. In it, the goal is to find a characterisation of the nearly
Gorenstein property for the Ehrhart rings of lattice polytopes. We start by defining the
floor polytope ⌊P ⌋ and the remainder polytope {P} of a given lattice polytope. Then in
Theorem 24 we show that every nearly Gorenstein lattice point with negated a-invariant
a can be written as the Minkowski sum ⌊aP ⌋+ {P}. We show that the converse does not
necessarily hold, but if P is representable as such a sum, then at least most of its integer
dilates are nearly Gorenstein. In Theorem 26 we show that for every nearly Gorenstein
polytope its facet data is encoded by some reflexive polytope. Lastly, in Theorem 27 we
give a full classification of nearly Gorenstein (0, 1)-polytopes in the case when they have
the integer decomposition property. Using that, we prove in Corollary 7 that all IDP
(0, 1)-polytopes are level. Furthermore, we characterise nearly Gorenstein edge polytopes
in the IDP (Corollary 8) case and nearly Gorenstein matroid base polytopes from graphic
matroids (Corollary 9).
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Chapter 2

Convex polytopes and Ehrhart
theory

In this chapter we will introduce our main object of study: convex polytopes. We will
start by introducing the most basic notions and give an overview of Ehrhart theory, the
methodology for the study of convex polytopes used throughout most of this thesis. We will
also introduce the classes of polytopes that will play a special role during our investigations.
For any undefined terms and notations throughout this chapter, we may refer to standard
texts like [BR15] and [Zie12].

2.1 Basic notions

Polytopes. A lattice of dimension d is an abelian group M ∼= Zd. For every M we get
the real vector space M ⊗Z R. In the following we will always identify M with Zd and
M ⊗ZR with Rd unless stated otherwise. Ehrhart theory is the study of convex polytopes
via counting lattice points it contains. We will start by defining convex polytopes.

Definition 1 (Convex polytope, lattice polytope, rational polytope). Let d be a positive
integer. Then a convex polytope P is the convex hull of a finite subset of Rd. If a convex
polytope can be written as the convex hull of elements of Zd (resp. Qd) exclusively, we
refer to it as a lattice polytope (resp. rational polytope).

Throughout this thesis, we will refer to convex polytopes simply as polytopes. While
rational non-lattice polytopes play a vital role in parts of this thesis, the focus in general
lies on lattice polytopes. We provide a number of useful examples.

Example 1 (Some useful families of lattice polytopes). Fix a positive integer d. Hence-
forth, we will refer to the i-th unit vector in Rd as ei.

(a) The standard (d− 1)-simplex is given by

∆d−1 := conv{e1, e2, . . . , ed}.

6



CHAPTER 2. CONVEX POLYTOPES AND EHRHART THEORY 7

(b) The standard reflexive d-simplex is given by

∆d
sr := conv

{
e1, e2, . . . , ed,−

d∑
i=1

ei

}
.

(c) The d-th cross-polytope is given by

♢d := conv{±e1,±e2, . . . ,±ed}.

(d) The d-th hypercube is given by

□d := conv

{
d∑

i=1

εiei : (ε1, ε2, . . . , εd) ∈ {−1, 1}d
}
.

(e) The d-th unit hypercube is given by

Ud := conv

{
d∑

i=1

εiei : (ε1, ε2, . . . , εd) ∈ {0, 1}d
}
.

(f) Let 0 < k < n be integers. The hypersimplex of type (k, n) is given by

∆n
k := conv{ei1 + ei2 + · · ·+ eik : {i1, i2, . . . , ik} ⊆ [n]}.

In particular, the hypersimplex of type (1, n) is identical with the standard (n− 1)-
simplex

There exists a natural notion of isomorphism for polytopes called unimodular equiva-
lence. Let M and N be two lattices and P ⊂M ⊗Z R and Q ⊂ N ⊗Z R polytopes. Then
P and Q are called unimodularly equivalent if there exists a map f : M → N such that
f(M ∩ P ) = N ∩ Q, f is invertible of M ∩ P , and for a fixed n ∈ N and every M -basis
B ⊂M , f(N) + n is an N -basis (see Figure 2.1).

Let (Rd)∗ denote the dual space of Rd. For n ∈ (Rd)∗ and x ∈ Rd, we denote by n(x)
their natural pairing. Given n ∈ (Rd)∗ and h ∈ R, a hyperplane in Rd is a subset Hn,h of
the form

Hn,h =
{
x ∈ Rd : n(x) = −h

}
.

Every hyperplane Hn,h defines a closed half-space H+
n,h by

H+
n,h =

{
x ∈ Rd : n(x) ≥ −h

}
.

A hyperplane Hn,h is called supporting hyperplane of a polytope P if

(i) P ⊂ H+
n,h or P ⊂ H+

−n,−h,

(ii) P ∩Hn,h is not empty.
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0

e2

e1

(x, y) 7→ x 0 e1

Figure 2.1: The polytopes ∆1 and U1 are unimodularly equivalent but lie in different
lattices.

Definition 2 (Face, dimension). A face of a polytope P is a subset of the form P ∩ H
whereH is a supporting hyperplane of P . Notice that P is a face of itself given by P ∩H0,0.

The dimension of a face F is the length d of the longest chain

F0 ⊊ F1 ⊊ · · · ⊊ Fd−1 ⊊ Fd = F

where the F0, F1, . . . , Fd−1 are faces. The dimension of the polytope P is its dimension as
a face.

Some authors regard the empty set as a face of dimension −1, but here, this case is
excluded. Faces of dimension 0 are called vertices, those of dimension 1 are called edges,
and those of codimension 1 facets. We denote the set of vertices of P by vert(P ) and the
set of facets by F(P ). In particular, P = conv{vert(P )}. We can also describe P in terms
of its facets. Assume P is is rational polytope. Then we can write

P = {x ∈ Rd : nF (x) ≥ −hF for all F ∈ F(P )} (2.1)

where hF is a rational number and nF is a primitive integer vector, i.e., the greatest
common divisor of its coordinates is 1. We call hF the height and nF the facet normal of
F . In particular, if P is a lattice polytope, hF is an integer. We call the set in Equation 2.1
call the hyperplane description or facet presentation of P . The set ∂P :=

⋃
F∈F(P ) F is

called the boundary of P and the set int(P ) := P \ ∂P is called the strict interior of P .

Constructions. Given one or several polytopes, it is always possible to construct new
polytopes. As we will see on many occasions, understanding polytopes in relationship with
each other often tremendously boosts our understanding of them.

Definition 3 (Polar dual, reflexivity). Given a polytope P ⊂ Rd of dimension d with
0 ∈ int(P ), its polar dual P ∗ is given by

P ∗ =
{
n ∈ (Rd)∗ : n(x) ≥ −1 for all x ∈ P

}
.

If P is a lattice polytope, it is called reflexive if P ∗ is also a lattice polytope.
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One can verify that (P ∗)∗ = P . The condition of having full dimension and including
the origin in the strict interior is a technicality that must be satisfied to guarantee that
P ∗ is a polytope. Whenever we encounter a polytope P that contains a lattice point
in its strict interior but does not satisfy these conditions, we consider an appropriate
unimodularly equivalent polytope.

Given two polytopes P,Q ⊂ Rd, we can define their Minkowski sum

P +Q = {x+ y : x ∈ P, y ∈ Q}.

One can check that P + Q is also a polytope. In particular, it is a lattice polytope if P
and Q are. For a non-negative integer k, the k-th dilation kP of P is given by

kP = {kx : x ∈ P}.

The 0-th dilation is just the origin and for every k > 1, kP coincides with the k-fold
Minkowski sum of P with itself.

The (direct) product of two polytopes P ⊂ Rd and Q ⊂ Re is defined as the Cartesian
product of P and Q and denoted by P × Q ⊂ Rd+e. Note that we can regard P × Q as
the Minkowski sum of polytopes, as follows. Let

P ′ = {(p, 0, . . . , 0︸ ︷︷ ︸
e

) ∈ Rd+e : p ∈ P} and Q′ = {(0, . . . , 0︸ ︷︷ ︸
d

, q) ∈ Rd+e : q ∈ Q}.

Then, we can see that P × Q = P ′ + Q′. Conversely, suppose two polytopes P ′, Q′ ⊂ Rd

satisfy the following condition: for all i ∈ [d] := {1, . . . , d}, we have that πi(P
′) = {0} or

πi(Q
′) = {0}, where πi : Rd → R is the projection onto the i-th coordinate. Then we can

regard P ′ +Q′ as the product of two polytopes.

The direct sum or free sum of two polytopes P ⊂ Rd and Q ⊂ Re is defined as

P ⊕Q = conv

{(p, 0, . . . , 0︸ ︷︷ ︸
e

) : p ∈ P} ∪ {(0, . . . , 0︸ ︷︷ ︸
d

, q) : q ∈ Q}

 ⊂ Rd+e .

Ehrhart theory. We define the lattice point enumerator of a set P ⊂ Rd as the function
EP : N→ N via

EP (k) = |kP ∩ Zd|.

If P is a lattice polytope, EP is a polynomial which we call the Ehrhart polynomial of P .
If P is a rational polytope, EP is a quasi-polynomial, i.e. a function

EP (k) = c0 (k) + c1(k) k + c2(k) k2 + · · ·+ cd(k) kd

such that there exists an integer p with ci(k) = ci(k + p) for all i and k. We call p the
period of P . If p = 1, then EP is a polynomial. A rational, non-lattice polytope whose
Ehrhart quasi-polynomial has period p = 1 is called a pseudo-integral polytope (PIP). The
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degree of the Ehrhart (quasi-)polynomial is equal to the dimension of its polytope. In
the lattice polytope case, the leading coefficient of EP is equal to the volume of P and
the coefficient with the second-highest degree is equal to half the boundary volume of P .
In both cases the volumes are suitably normalised (i.e. the volumes of the polytope and
each of its facets are defined with respect to the volume of the unit hypercubes in the
sublattices they lie in).

The Ehrhart (quasi-)polynomial also contains information about the number of lattice
points in the strict interior of P .

Proposition 1 (Ehrhart-Macdonald reciprocity [Mac71]). Let P be a rational polytope of
dimension d with Ehrhart quasi-polynomial EP . Then the following equality holds.

EP (−k) = (−1)dEint(P )(k)

The generating function of the Ehrhart (quasi)-polynomial is called its Ehrhart series
and can be written as

ehrP (t) =
∑
k≥0

EP (k) tk =
h∗P (t)

(1− tp)d+1
,

where h∗P (t) is a polynomial with non-negative integer coefficients of degree dp or less, and p
is the period of the Ehrhart (quasi-)polynomial. We call this polynomial the h∗-polynomial
of P .

If p = 1, EP can be easily inferred from h∗P via the equation

EP (k) =
d∑

j=0

h∗j

(
k + d− j

d

)
. (2.2)

where h∗k is the k-th coefficient of h∗P . When P is clear from context, we will usually just
omit the index.

Example 2 (Ehrhart polynomial of the d-simplex). Let d and k be positive integers. The
set of lattice points in k∆d is given by

{α1e1 + α2e2 + · · ·+ αd+1ed+1 : for all i, 0 ≤ αi ≤ k and α1 + α2 + · · ·+ αd+1 = k}

To get E∆d(k), we need to count the number of ways to partition k elements into d + 1
many parts. By stars and bars, we obtain

E∆k(k) =

(
k + d

d

)
.

Equation 2.2 implies that h∗
∆d(t) = 1.

A popular subject of study are the properties of the coefficients of the h∗-polynomial.
For example, it is known that h∗0 = 1, h∗d = |int(P )∩Zd|, h∗1 = |P ∩Zd| − d− 1, and h∗P (1)
is equal to the normalised volume of P , i.e., the volume of P expressed with respect to the
volume of ∆d. Another relationship is given by the following classical result due to Hibi.
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Theorem 1 (Hibi’s Lower Bound Theorem [Hib94]). Let P be a lattice polytope of dimen-
sion d with h∗-polynomial h∗(t) =

∑d
k=0 h

∗
k t

k. Further, suppose that h∗d ̸= 0. Then the
inequalities h∗1 ≤ h∗k hold for every 1 ≤ k < d.

A remarkable result by Hibi even shows us that the h∗-polynomial has a connection
with reflexivity.

Theorem 2 (Corollary 2.2 in [Hib92]). Let f be a degree d polynomial and set h∗(t) =
(1− t)d+1

∑
k≥0 f(k) tk. Then f satisfies the functional equation

f(z − 1) = (−1)df(−z) (2.3)

if and only if h∗ has palindromic coefficients, i.e., h∗(t) = td h∗
(
1
t

)
.

Ehrhart polynomials and h∗-polynomials behave nicely under certain polytope con-
structions. For example, for polytopes P ⊂ Rd and Q ⊂ Re, EP×Q = EP · EQ and
h∗P⊕Q = h∗P · h∗Q. For most other constructions however (like Minkowski-summation and
dilation), EP and h∗ are difficult to deduce in general.

Unimodular triangulations. The most basic way of computing Ehrhart polynomials
is straightforward: if your polytope has dimension d, count the number of lattice points
in the first d dilations and infer the coefficients of Ehrhart polynomial from it. In many
cases however, there is a better way. We need two key definitions.

Definition 4 (Unimodular simplex, unimodular triangulation). A unimodular simplex
of dimension d is a polytope which is unimodularly equivalent to ∆d. A unimodular
triangulation of a d-dimensional polytope P is a decomposition

P = S1 ∪ S2 ∪ · · · ∪ Sr

where every Si is a unimodular simplex of dimension d such that for any pair 1 ≤ i < j ≤ r,
Si ∩ Sj is either empty or a face of Si and Sj.

A polytope does not necessarily have a unimodular triangulation. For example, almost
by definition, only lattice polytopes can have one. However, in the case when a polytope
does admit a unimodular triangulation, the h∗-polynomial is fully encoded by it.

Definition 5 (Visible facets, half-open simplex). Fix integers d > 0 and 0 ≤ m ≤ d. Let
the facets of ∆d be denoted by F0, F1, . . . , Fd and assume ∆d lies in Rd. Let q ∈ Rd be a
point in general position, i.e., assume it does not lie on any of the supporting hyperplanes
of the Fi. We call a facet visible from q if for every point f ∈ Fi, the half-open line segment
[q, f) does not intersect P . The set of visible facets from q shall be denote by Vq. The
half-open simplex of dimension d viewed from q is defined as

Hq∆
d := ∆d \

⋃
F∈Vq

F.
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With an argument similar to that from Example 2, one can show that the lattice point
enumerator of this set is given by

EHd∆d(k) =

(
k + d− |Vq|

d

)
.

Equation 2.2 implies that h∗
Hq∆d(t) = t|Vq |.

Suppose P has a unimodular triangulation S1, S2, . . . , Sr. There exists a q ∈ P in
general position with respect to every Si. We can then define the half-open triangulation
viewed from q by

HqS1 ⊔HqS2 ⊔ · · · ⊔HqSr.

All the elements of the half-open triangulation are disjoint [KV08] and their union is
exactly P . This means that the Ehrhart polynomial of P is equal to the sum of the lattice
point enumerators of the half-open simplices. The same goes for the Ehrhart series and,
in particular, the h∗-polynomial.

2.2 Symmetric edge polytopes

We will now introduce a family of polytopes, first defined in [Mat+11], which we will study
in Chapters 5 and 7. Let G = (V,E) be a simple graph with vertex set V and edge set E.
We define the symmetric edge polytope of G as

PG =
{
±(ev − ew) ∈ R|V | : {v, w} ∈ E

}
.

The dimension of PG is equal to |V |−c(G) where c(G) is the number of connected compo-
nents of G. In practice it is never necessary to consider disconnected graphs because joining
connected components in a common vertex yields the same symmetric edge polytope. In
particular, if G1, G2, . . . , Gn are the 2-connected components of G, we get

PG = PG1 ⊕ PG2 ⊕ · · · ⊕ PGn .

This leads us to our first family of examples.

Example 3. Let G be a tree with d edges. Then

PG = ♢d

after an appropriate unimodular transformation.

The geometric and combinatorial properties of a symmetric edge polytope can usually
be expressed in terms of its underlying graph. One example is its facet structure.

Proposition 2 (Theorem 3.1 in [HJM19]). Let G = (V,E) be a finite simple connected
graph. Then f : V → Z is facet defining if and only if
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(i) for any edge e = {u, v} we have |f(u)− f(v)| ≤ 1, and

(ii) the subset of edges Ef = {e = {u, v} ∈ E : |f(u) − f(v)| = 1} forms a spanning
subgraph of G.

In Chapter 5 we will be studying symmetric edge polytopes of complete multipartite
graphs, i.e., graphs of the form

Ka1,a2,...,an = (A1 ⊔ A2 ⊔ · · · ⊔ An, {{u, v} : for u ∈ Ai and v ∈ Aj if i ̸= j})

where the ai are positive integers and the Ai are finite sets with |Ai| = ai for all i. The
facet description of symmetric edge polytopes from multipartite graphs is as follows.

Proposition 3 (Proposition 3.5 in [HJM19]). Let k ≥ 3 and G = Ka1,...,ak be a complete

k-partite graph with vertex set V =
⊔k

i=1Ai. Then λ : V → Z is facet defining if and only
if λ, up to a constant, satisfies one of the following conditions.

(i) λ(Ai) = {−1, 1} for some 1 ≤ i ≤ k and λ|Aj
= 0 for all i ̸= j, or

(ii) λ(V ) = {0, 1} and

(a) λ|Ai
is constant for every Ai, or

(b) there exists an i such that λ(Ai) = {0, 1} = λ
(⋃k

j=1Aj \ Ai

)
.

In particular, the symmetric edge polytope of G has 2
∑k

i=1 ai −
∑k

i=1(2
ai − 2)− 2 facets.

Gröbner bases and unimodular triangulations. Symmetric edge polytopes have
a unimodular triangulation, as stated in [HJM19]. It was obtained using an algebraic
technique which we will briefly introduce now. More detailed information can be found in
[Stu96].

Let k be a field and let k[t±1 , t
±
2 , . . . , t

±
d , s] be the Laurent monomial ring in d + 1

variables. We define the toric ring of a d-dimensional lattice polytope P as the subring

k[P ] = k[tps : p ∈ P ∩ Zd]

where tp = tp11 · · · t
pd
d and p = (p1, . . . , pd) ∈ P ∩Zd. Define now the ring k[xp : p ∈ P ∩Zd]

which associates a formal variable to every lattice point in P . We define the toric ideal
IP of k[P ] as the kernel of the map

π : k[xp : p ∈ P ∩ Zd]→ k[P ]

where π(xp) = tps. It is well known that toric ideals arising from polytopes in this way
are homogeneous binomial prime ideals.

A monomial ordering is a total ordering of monomials in a polynomial ring k[x1, . . . , xn]
such that three given monomials a, b, c, a < b and 1 < c imply ac < bc for every monomial
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c. There exist several standard examples, such as lex (lexicographic), deglex (degree-
lexicographic) and degrevlex (degree-reverse lexicographic), but we will focus only on the
last one. First we impose a total ordering on the variables of k[x1, x2, . . . , xn]. Without
loss of generality, assume xi < xj if and only if i < j. Then, given two monomials
xa := xa11 x

a2
2 · · ·xann and xb := xb11 x

b2
2 · · · xbnn , we say that xa < xb if either

∑n
i=1 ai <

∑n
i=1 bi

or
∑n

i=1 ai =
∑n

i=1 bi and aj > bj where j = min{i : ai ̸= bi}.
Given a polynomial p ∈ k[x1, x2, . . . , xn], the leading term of p, denoted lt(p), is

the largest term of p with respect to the chosen monomial ordering. For a subset S ⊆
k[x1, x2, . . . , xn], we define

ltS := {lt(p) : p ∈ S}.

This gives us the necessary tools for the following definition.

Definition 6 (Gröbner basis). Let I be an ideal in a polynomial ring k[x1, x2, . . . , xn]
equipped with a monomial ordering. A Gröbner basis BI of I is a finite subset of I such
that BI generates I and ltBI generates lt I.

A Gröbner basis BI is called square-free if every element in ltBI is square free, i.e., for
every element of ltBI , every variable xi has at most degree 1. A Gröbner basis is called
quadratic (resp. cubic) if every element in it is at most quadratic (resp. cubic).

Let IP be the toric ideal of a d-dimensional polytope P . Denote its Gröbner basis
by BP and assume BP is square-free. Then the elements of ltBP encode a unimodular
triangulation in the following way. In the ring k[xp : p ∈ P ∩ Zd], define the set

U :=

{
xS =

∏
p∈S

xp : |S| = d+ 1, xS ̸∈ lt IP

}
⊂ k[xp : p ∈ P ∩ Zd]

of square-free degree d+ 1 monomials not in lt IP . Then the set of polytopes

T := {conv{S} : xS ∈ U}

defines a unimodular triangulation of P . And since the condition xS ̸∈ lt IP is equivalent
to the condition that no m ∈ ltBP divides xS, we can think of T as being encoded by BP .

For symmetric edge polytopes, there exists a known square-free Gröbner basis.

Proposition 4 (Proposition 3.8 in [HJM19]). Let z < xe1 < ye1 < · · · < xek < yek be
an ordering on the edges. Then the following collection of three types of binomials forms
a Gröbner basis of the toric ideal of the symmetric edge polytope of G with respect to the
degrevlex ordering:

(1) For every 2k-cycle C, with fixed orientation, and any k-element subset I of edges of
C not containing the smallest edge∏

e∈I

pe −
∏

e∈C\I

qe.
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(2) For every (2k+ 1)-cycle C, with fixed orientation, and any (k+ 1)-element subset I
of edges of C ∏

e∈I

pe − z
∏

e∈C\I

qe.

(3) For any edge e
xeye − z2.

The leading monomial is always chosen to have positive sign.

The h∗-polynomials of symmetric edge polytopes. We almost have all necessary
parts for the machine that lets us compute h∗-polynomials from symmetric edge polytopes.
The only thing missing is a way to make the triangulation half-open. The authors of
[HJM19] found a solution in terms of graphs.

First, note that type (3) of the Gröbner basis elements implies that every unimodular
simplex comes from a monomial of the form z

∏
e∈E ve where ve is either xe or ye. The

variables xe and ye can be regarded as directed versions of e which go in opposite directions.
Consequently, every simplex in T can be identified with a directed spanning subgraph of
G. Now we fix a vertex r of G. Given a directed spanning tree T ∈ T , we call an edge e
of S ingoing if the unique path starting at the foot of e and ending in r, the path includes
e. Otherwise we call it outgoing. We denote the number of ingoing edges of S by in(S).
With all this information, one can compute the h∗-polynomial of PG.

Proposition 5 (Proposition 4.6 in [HJM19]). Let h∗G(t) =
∑d

i=0 h
∗
i t

i. Then

h∗i = |{T ∈ T : in(T ) = i}|.

Notice that there is a symmetry in these coefficients. Whenever there is a T ∈ T
with in(T ) = i, reversing all the edge gives a T ′ ∈ T with in(T ′) = d − i. Hence, the
h∗-polynomials of symmetric edge polytopes are palindromic, which means that they are
reflexive.

The authors use Proposition 5 to compute the h∗-polynomial in the case of complete
bipartite graphs.

Proposition 6 (Theorem 4.1 in [HJM19]). For all a, b ≥ 0 let h∗a,b(t) denote the h∗-
polynomial of the symmetric edge polytope of Ka+1,b+1. Then

h∗a,b(t) =

min{a,b}∑
i=0

(
2i

i

)(
a

i

)(
b

i

)
ti(1 + t)a+b+1−2i.

In Chapter 5 we will make use of two other results that both come from [OT21]. The
first one out of the two needs some preparation. A hypergraph H is a set V and a set E
of nonempty subsets of V called hyperedges. We can associate a bipartite graph Bip(H)
to H whose bipartite classes are given by elements of V and E respectively with an edge
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between a v ∈ V and an e ∈ E if v ∈ e. A hypertree is a function f : E → {0, 1, . . .} such
that there exists a spanning tree Γ of Bip(H) whose vertices e ∈ E have degree f(e) + 1.
In this case, we say that Γ induces f . The set of hypertrees of H shall be denoted by
ht(H). Let us now fix a total ordering of E. A hyperedge e is called internally active with
respect to f is there exists no e′ < e such that increasing f(e′) by 1 and decreasing f(e)
results in a different hypertree. A hyperedge that is not internally active with respect to
f is called internally inactive. We denote the number of internally inactive edges of f by
ι(f). The interior polynomial IH of H is then defined as

IH(t) =
∑

f∈ht(H)

tι(f).

Given a graph G = Bip(H) for some hypergraph H, we define IG = IH.
Next, recall that a cut of a graph G = (V,E) is a subgraph GC = (V,EC) of G where

C is a subset of V and EC ⊂ E is the set of edges of G with one end in C and one end
not in C. We denote the set of cuts of G by Cuts(G).

Lastly, we need two special graph constructions. Given a graph G with vertex set [d],

let Ĝ describe the the suspension of G, i.e., the graph on the set [d + 1] with the same
edge set as G but with the vertex d+ 1 connected to all the others. If G is bipartite with

bipartite classes V and W , its joint bipartite suspension
∼
G is the graph on [d + 2] such

that d + 1 connects to all the edges in V , d + 2 connects to all the edges in W and d + 1
and d+ 2 connect to each other. Like this, we can cite the following theorem.

Proposition 7 (Theorem 4.3 in [OT21]). Let G be a finite graph on the vertex set [d].

Then the symmetric edge polytope of Ĝ is unimodularly equivalent to a reflexive polytope
whose h∗-polynomial is

h∗
Ĝ

(t) = (1 + t)dfG

(
4t

(1 + t)2

)
,

where fG(t) = 1
2d−1

∑
H∈Cuts(G) I∼

H
(t).

The other useful theorem is the following.

Proposition 8 (Proposition 4.4 in [OT21]). Let G be a bipartite graph on [d] and let e be
an edge of G. Then we have

h∗G(t) = (1 + t)h∗G/e(t)

where G/e denotes the graph obtained from G by contracting the edge e.

2.3 CL-polytopes

We define the canonical line (CL for short) as the set

CL =

{
−1

2
+ αi : α ∈ R

}
⊂ C .
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Figure 2.2: The root distribution of the Ehrhart polynomial of a 20-dimensional polytope
studied in [OS12]. Notice the reflection symmetry across both R and CL, which tells us
that the underlying polytope is reflexive. It is, however, not a CL-polytope.

Theorem 2 implies the fact that a polytope is reflexive if and only if its Ehrhart polynomial
roots are distributed symmetrically across the canonical line (see Figure 2.2). A special
case of that are reflexive polytopes whose Ehrhart polynomial roots all lie on CL. We call
these polytopes CL-polytopes.

The prototypical family of CL-polytopes are the cross-polytopes, which also happen
to be symmetric edge polytopes (Example 3). There are several ways to prove that cross-
polytopes are in fact CL, but a historically relevant one follows from the main theorem in
[Rod02].

Theorem 3. Let f be a degree d and h a degree d− 1 polynomial. Also, assume

∞∑
k=0

f(k) tk =
h(t)

(1− t)d+1

holds. If the roots of h lie on the unit circle, then the roots of f all lie on CL.

The original statement also considers roots on lines parallel to CL, but for our purposes,
it is enough to present it like this. The h∗-polynomial of ♢1 is 1 + t. As a consequence,
using the fact that cross-polytopes are direct sums of copies of ♢1, the h∗-polynomial of
♢n is (1 + t)n. By Theorem 3 and the behaviour of h∗-polynomials with respect to direct
sums, it follows immediately that ♢n is CL-polytope.

Interlacing polynomials. The converse of Theorem 3 does not hold in general. Thus,
other methods of studying CL-polytopes have been employed. One that has become
popular in recent years is the technique of interlacing polynomials. We will define the
term and give some results.
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Definition 7. Let f and g be polynomials of degrees d and d + 1 respectively. Further,
let L be a totally ordered subset of C. We say that f L-interlaces g or f and g interlace
on L if all the roots a1, . . . , ad of f and b1, . . . , bd+1 of g lie on L and satisfy

b1 ≤ a1 ≤ b2 ≤ a2 ≤ · · · ≤ ad ≤ bd+1

with respect to the ordering on L.

The first result is an extension of Theorem 3.

Proposition 9 (Theorem 2.1.10, [Rod10]). Let f and g be CL-polynomials with degrees
d and d + 1 respectively. Let h∗f and h∗g be the polynomials (1 + t)d+1

∑
k≥0 f(k) tk and

(1 + t)d+2
∑

k≥0 g(k) tk respectively. Assume h∗f and h∗g also have degrees d and d+ 1 and
their roots interlace on the unit circle. Then f CL-interlaces g.

The next two theorems come from Steven Fisk’s vast work on interlacing polynomials
[Fis06]. They have been selected because we will make use of them in Chapter 4.

Proposition 10 (Lemma 1.26, [Fis06], “Leibnitz Rule”). Suppose that f , f1, g, g1 are
polynomials with positive leading coefficients, and with all real roots. Assume that f and g
have no common roots. If f1 R-interlaces f and g1 R-interlaces g, then f1g1 R-interlaces
fg1 +f1g which in turn R-interlaces fg, fg1, and f1g. In particular, fg1 +f1g has all real
roots.

Proposition 11 (Corollary 1.41, [Fis06]). Suppose that f1, f2, . . . and g1, g2, . . . are se-
quences of polynomials with all real roots that converge to polynomials f and g respectively.
If fn and gn R-interlace for all positive integers n, then f and g R-interlace.

Both these statements refer to interlacing on the real line, but can be transported to
any line of the form c1R+c2 for complex numbers c1, c2 by performing an appropriate
affine transformation. Further, since roots are invariant under scaling, positive leading
coefficients can always be obtained.

Next, we will recall some results from [HKM17]. This paper studies the Ehrhart
polynomials of symmetric edge polytopes of complete bipartite graphs. This family can be
seen as a natural extension of cross-polytopes, considering that PK1,d

is the cross-polytope
of dimension d. We start by citing the following useful result.

Proposition 12 (Lemmas 2.3, 2.4, 2.5 in [HKM17]). Let f, g, h1, . . . , hn be real polynomi-
als such that deg f = deg g+1 = deg hi+2 for all 1 ≤ i ≤ n which all satisfy Equation 2.3.
Assume the identity

f(x) = (2x+ 1)α g(x) +
n∑

i=1

αihi(x)

where α, αi > 0 for all i. Then
∑n

i=1 αihi CL-interlaces g if for every i, hi CL-interlaces
g. Also, the following are equivalent.

(a)
∑n

i=1 αihi CL-interlaces g,



CHAPTER 2. CONVEX POLYTOPES AND EHRHART THEORY 19

(b) g CL-interlaces f .

If this is the case, (2x+ 1)
∑n

i=1 αihi CL-interlaces f .

Among other things, it gives an alternative proof for the CL-ness of cross-polytopes.
We saw the h∗-polynomials of cross-polytopes before. Notice that that implies that the
Ehrhart polynomials E♢d := Cd are of the form

Cd(k) =
d∑

i=0

(
d

i

)(
d+ k − i

d

)
.

We call the polynomials Cd(k) cross-polynomials. They fulfil a recursive relation.

Proposition 13 (Example 3.3 in [HKM17]). For any n ≥ 2, cross-polynomials satisfy the
recursive relation

Cn(x) =
1

n
(2x+ 1)Cn−1(x) +

n− 1

n
Cn−2(x).

With Proposition 12, it follows that cross-polytopes are CL-polytopes.

The next results concern the Ehrhart polynomials of PKa,b
, denoted by Ea,b. In the

course of this thesis, we will continue using this notation and, by analogy, use Ea1,a2,...,ak

to denote the Ehrhart polynomial of the complete k-partite graph Ka1,a2,...,ak .

Proposition 14 (Proposition 4.5 in [HKM17]). The following relations hold:

E2,n(x) =
1

2
(2x+ 1)E1,n(x) +

1

2
E1,n−1(x),

E2,n(x) =
1

n
(2x+ 1)E2,n−1(x) +

1

2n
(nE1,n−1(x) + (n− 2)(2x+ 1)E1,n−2(x)) ,

E3,n+1(x) =
(2x+ 1)(3n2 + 13n+ 16)

8(n2 + 5n+ 6)
E2,n+1(x)

+
n313n2 + 18n

8(n− 1)(n2 + 5n+ 6)
E2,n(x) +

4n3 + 9n2 − 13n− 32

8(n− 1)(n2 + 5n+ 6)
E1,n+1(x).

With Proposition 12, the authors derived the following result.

Proposition 15 (Lemmas 4.6, 4.7, 4.8, Theorem 4.9 in [HKM17]). The following state-
ments hold.

(a) For every n ≥ 1, E1,n CL-interlaces E1,n+1.

(b) For every n ≥ 1, the Ehrhart polynomials of K1,n and (2k + 1)K1,n−1 CL-interlace
E2,n.

(c) For every n ≥ 1, E2,n CL-interlaces E2,n+1.

(d) For every n ≥ 1, E2,n CL-interlaces E3,n.

In particular, for every n ≥ 1 the Ehrhart polynomial of Km,n is a CL-polynomial if m ≤ 2.
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2.4 Algebraic aspects of polytopes

In this section, we will give some background from commutative algebra necessary to
understand the content of Part IV. We will focus more on the algebraic rather than the
combinatorial side, so the reader is advised to consult standard references such as [CLS24],
[Mat89], or [Eis13] for any undefined terms and notations.

Ehrhart rings. We begin by defining the codegree aP of a lattice polytope P by

aP := min{k ∈ N : int(kP ) ∩ Zd ̸= ∅},

i.e. the minimum positive integer you have to dilate P by until its interior contains lattice
points [Bat06]. Next, let CP be the cone over P , that is,

CP = R≥0(P × {1}) = {(x, k) ∈ Rd×R : nF (x) ≥ −khF for all F ∈ F(P )}.

In our discussion of Gröbner bases, we defined toric rings. A similar object is the Ehrhart
ring of P , defined as

A(P ) = k[CP ∩ Zd+1] = k[tpsk : k ∈ N and p ∈ kP ∩ Zd],

where tp = tp11 · · · t
pd
d and x = (x1, . . . , xd) ∈ kP ∩ Zd. Note that the Ehrhart ring of P

is a normal affine semigroup ring, and hence it is Cohen-Macaulay [BG09, Prop. 6.10].
Moreover, we can regard A(P ) as an N-graded k-algebra by setting deg(tpsk) = k for each
p ∈ kP ∩ Zd. The toric ring of P is a standard N-graded k-algebra.

We say that P has the integer decomposition property (i.e. P is IDP) if for all positive
integers k and all p ∈ kP ∩ Zd, there exist q1, . . . , qk ∈ P ∩ Zd such that p = q1 + · · ·+ qk.
It is known that k[P ] = A(P ) if and only if P has the integer decomposition property.

Gorensteinness and its generalisations. Let R be a finitely generated N-graded k-
algebra with unique graded maximal ideal m. We will assume that R is Cohen-Macaulay
and admits a canonical module ωR and, consequently, an anticanonical module ω−1

R . In
particular, every Ehrhart ring admits a canonical module. We call a(R) the a-invariant of
R, i.e.

a(R) = −min{i ∈ N : (ωR)i ̸= 0},
where (ωR)i is the i-th graded piece of ωR.

For Ehrhart rings, the canonical and anti-canonical modules as well as the a-invariant
can be interpreted in combinatorial terms. For a cone σ, we denote its strict interior by
int(σ). Note that

int(CP ) = {(x, k) ∈ Rd+1 : nF (x) > −khF for all F ∈ F(P )}.

Moreover, we define

ant(CP ) := {(x, k) ∈ Rd+1 : nF (x) ≥ −khF − 1 for all F ∈ F(P )}.

Then the following is true.
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Proposition 16 (see [HMP19, Proposition 4.1 and Corollary 4.2]). The canonical module
of A(P ) and the anti-canonical module of A(P ) are given by the following, respectively:

ωA(P ) =
〈
txsk : (x, k) ∈ int(CP ) ∩ Zd+1

〉
and ω−1

A(P ) =
〈
txsk : (x, k) ∈ ant(CP ) ∩ Zd+1

〉
.

Further, the negated a-invariant of A(P ) coincides with the codegree of P , i.e.

a(A(P )) = −min{k ∈ Z≥1 : int(kP ) ∩ Zd ̸= ∅}.

The canonical module is very closely related to the Gorenstein property. In the follow-
ing we will use them to study two of its numerous generalisations: nearly Gorensteinness
and levelness. For this, we will use trace ideals.

Definition 8 (Trace ideal). For a graded R-module M , let the trace ideal of M , trR(M),
be the sum of the ideals ϕ(M) over all ϕ ∈ HomR(M,R), i.e.

trR(M) =
∑

ϕ∈HomR(M,R)

ϕ(M).

When there is no risk of confusion about the ring, we simply write tr(M).

With this, we can define Gorensteinness and nearly Gorensteinness.

Definition 9 ([HHS19, Definition 2.2]). We say that R is nearly Gorenstein if tr(ωR) ⊇m.
In particular, R is Gorenstein if and only if tr(ωR) = R.

With the next proposition, the anti-canonical module enters the picture.

Proposition 17 ([HHS19, Lemma 1.1]). Let R be a ring and I an ideal of R containing
a non-zero divisor of R. Let Q(R) be the total quotient ring of fractions of R and I−1 :=
{x ∈ Q(R) : xI ⊆ R}. Then

tr(I) = I · I−1.

Lastly, we shall introduce levelness.

Definition 10 ([Sta07, Chapter III, Proposition 3.2]). We say that R is level if all the
degrees of the minimal generators of ωR are the same.

Segre products. Let R =
⊕

n≥0Rn and S =
⊕

n≥0 Sn be standard graded k-algebras
and define their Segre product R#S as the graded algebra

R#S = (R0 ⊗k S0)⊕ (R1 ⊗k S1)⊕ · · · ⊆ R⊗k S.

We denote a homogeneous element x⊗k y ∈ Ri ⊗k Si by x#y.
If P and Q are lattice polytopes, it is known that k[P ×Q] is isomorphic to the Segre

product k[P ]#k[Q].

Proposition 18 ([HMP19, Proposition 2.2 and Theorem 2.4]). Let R1, · · · , Rs be stan-
dard graded Cohen-Macaulay toric k-algebras with Krull dimension at least 2. Let R =
R1#R2# · · ·#Rs be the Segre product. Then the following is true.

ωR = ωR1#ωR2# · · ·#ωRs and ω−1
R = ω−1

R1
#ω−1

R2
# · · ·#ω−1

Rs
.



Chapter 3

Equivariant Ehrhart theory

Equivariant Ehrhart theory concerns the study of polytopes and their lattice points under
a given group action. In this chapter we introduce the necessary preliminaries and fix
the main setup following [Sta11]. We begin with some background on the representation
theory of finite groups [Isa94; CR66].

3.1 Representations of groups

Let G be a finite group and k a field. A finite dimensional k-representation of G is a
homomorphism ρ : G → GL(V ) from G to the group of invertible linear maps of an n-
dimensional k-vector space V . Fixing a basis for V identifies ρ(g) with an n× n matrix,
for each g ∈ G. Equivalently, a representation is a module V for the group ring kG
where g ∈ G ⊆ kG acts via the linear map ρ(g). The character of ρ is the function
χ : G→ k defined by the trace χ(g) = tr(ρ(g)). We say that a representation is irreducible
if it contains no proper G-invariant subspaces, indecomposable if it cannot be written as a
non-trivial direct sum of representations, and semisimple if it is a direct sum of irreducible
representations.

The representation ring R(G) is the set of formal differences with respect to direct
sums of isomorphism classes of representations of G. The term “formal difference” here
means that for two isomorphism classes of representations [V ] and [W ] we define the
element [V ]− [W ] which satisfy ([V ] + [W ])− [V ] = [W ]. The addition and multiplication
structure of R(G) are given by direct sums and tensor products respectively. So given [V ]
and [W ] in R(G) we have [V ]+[W ] = [V ⊕W ] and [V ] · [W ] = [V ⊗KW ]. Throughout this
thesis, we work with representations defined over C. In this case Maschke’s Theorem holds,
so all representations are semisimple. In particular, all indecomposable representations are
irreducible and any representation is a direct sum of irreducible representations. Therefore,
R(G) is a free Abelian group generated by the irreducible representations of G. Since the
isomorphism class of a representation is determined uniquely by its character, we identify
elements of R(G) with Z-linear combinations of characters.

Suppose G acts on a finite set S. Then the action induces a so-called permutation
representation constructed as follows. Let V be the vector space over some field k with

22
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basis {es : s ∈ S}. We define the permutation representation ρ : G→ GL(V ) by its action
on the basis ρ(g)(es) = eg(s). Each matrix ρ(g) is a permutation matrix, hence the character
of the representation is given by χ(g) = |{s ∈ S : g(s) = s}|. We say that a kG-module V
is a permutation representation if it is isomorphic to a permutation representation.

3.2 Group actions on lattices

Let M ∼= Zn+1 be a lattice with a distinguished basis and G a finite group. We say that G
acts on M if there is a homomorphism ρ : G→ GLn+1(Z) from G to the group of invertible
(n + 1) × (n + 1) matrices with entries in Z. Note, this action extends naturally to the
vector space MR = M⊗ZR. Assume that G fixes a lattice point m ∈M \{0}. We proceed
to describe how M decomposes into a disjoint union of G-invariant affine lattices.

By assumption M has a basis, so we denote by ⟨·, ·⟩ : M × M → Z the standard
inner-product. We construct a new inner-product by averaging over the group:

⟨u, v⟩G :=
1

|G|
∑
g∈G

⟨ρ(g)u, ρ(g)v⟩ ∈ Q .

Using the above inner-product, we observe two important properties about the orthogonal
space m⊥ ⊆MR. Firstly, we have that m⊥ is G-invariant, which follows from the fact that
⟨ρ(g)u, ρ(g)v⟩G = ⟨u, v⟩G for all u, v ∈ MR and g ∈ G. Secondly, we may choose a basis
for m⊥ that lies in M , since ⟨u, v⟩G ∈ Q for all u, v ∈ M . It follows that the lattice N
generated by m⊥ ∩M and m has rank n + 1. Therefore, N is a finite index subgroup of
M and we write [M : N ] for the index. We define the affine space (Mi)R and the affine
lattice Mi at height i ∈ Z as follows:

(Mi)R =
i

[M : N ]
m+m⊥ and Mi = (Mi)R ∩M.

Since m⊥ and M are G-invariant, we have that Mi is G-invariant for each i ∈ Z. Note
that M =

⋃
i∈ZMi is a disjoint union and for each v ∈Mi we have v +Mj = Mi+j.

Example 4. Let G = {1, σ} ≤ S4 be a subgroup of the symmetric group on four letters
with σ = (1, 2)(3, 4). The permutation representation ρ maps σ to the permutation matrix

ρ(σ) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ GL4(R).

In particular, this matrix lies in GL4(Z), hence G preserves the lattice M = Z[e1, e2, e3, e4].
Notice that m = e1 + e2 + e3 + e4 is fixed by the action of G. We compute a basis F that
decomposes ρ(σ) as a block diagonal matrix:

F =




1
1
1
1

 ,


1
−1
0
0

 ,


1
0
−1
0

 ,


1
0
0
−1


 and ρ(σ)F =


1 0 0 0
0 −1 −1 −1
0 0 0 1
0 0 1 0

 .
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The orthogonal lattice M0 is the 3-dimensional lattice generated by F \ {m}. Observe
that the sublattice N = Z[F ] has index 4 inside M . Therefore, the affine lattice M1 =
(1
4
m+ (M0)R) ∩M is equal to the lattice affinely generated by {e1, e2, e3, e4}.

3.3 Main setup

Let M ∼= Zn+1 be a lattice with a distinguished basis and G a finite group that acts on M
by ρ : G→ GLn+1(Z). Assume that there is a lattice point m ∈ M \ {0} fixed by G. Let
P ⊆ (M1)R be a rational G-invariant polytope. For each non-negative integer k ∈ Z≥0,
we obtain a permutation representation of the lattice points kP ∩M ⊆ Mk and denote
by χkP its character. The equivariant Ehrhart series is an element of the ring of formal
power series R(G)[[t]] given by:

ehrρ(P, t) =
∑
k≥0

χkP t
k =

H∗[t]

det[I − t · ρ]
=

H∗[t]

(1− t) det[I − t · ρ|M0 ]

where H∗[t] ∈ R(G)[[t]] is the equivariant H∗-series. The denominator det[I − t · ρ]
denotes the formal alternating sum

∑n+1
i=0 [ΛiMR](−t)i ∈ R(G)[t], where ΛiMR is the i-th

alternating power of the representation MR. If the character of the above alternating sum
is evaluated at an element g ∈ G, then the resulting polynomial is equal to det[I− t · ρ(g)]
where I is the identity matrix, see [Sta11, Lemma 3.1].

By assumption, MR = ⟨m⟩R ⊕ (M0)R is a G-invariant decomposition of MR. So,
for each g ∈ G, we may write ρ(g) = [1] ⊕ ρ(g)|M0 as a block diagonal matrix, hence
det[I − t · ρ(g)] = (1− t) det[I − t · ρ(g)|M0 ].

Remark 1. The equivariant Ehrhart series and H∗-series are a generalisation of the usual
Ehrhart series and h∗-polynomial. If the equivariant Ehrhart series is evaluated at the
identity element, then each character χkP (1G) is equal to the number of lattice points of
kP . Since det[I − t · ρ(1G)] = (1 − t)n+1, it follows that the equivariant Ehrhart series
evaluated at 1G is equal to the classical Ehrhart series ehr(P, t).

The equivariant Ehrhart series contains all the data about the Ehrhart series for fixed
sub-polytopes of P . Let M g

R = {x ∈ MR : g(x) = x} be the subspace of MR fixed by
g ∈ G. For each k ≥ 0 and g ∈ G, the value χkP (g) is the number of lattice points of kP
fixed by g. Equivalently, χkP (g) is the number of lattice points in the k-th dilate of the
fixed polytope P g = P ∩M g

R. Therefore, the evaluation of the equivariant Ehrhart series
at g ∈ G is the Ehrhart series ehr(P g, t).

Remark 2. The setup may be equivalently defined by fixing: a group action ρ|M0 of G on
a lattice M0

∼= Zn; a rational polytope P ⊆ (M1)R, where M1
∼= Zn is a lattice of the same

rank; and a lattice-preserving isomorphism between (M1)R and (M0)R, which induces an
action of G on P . We require that, for each g ∈ G, the polytope g(P ) = (−vg) +P differs
from P only by a translation vg ∈M0. So, for all g, h ∈ G we have that

(gh)(P ) + vgh = P = g(P ) + vg = g(h(P ) + vh) + vg = (gh)(P ) + g(vh) + vg,
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hence vgh = g(vh) + vg.
We recover the original setup by taking m ∈ |G| · P ⊆ (M|G|)R to be any G-invariant

lattice point of the |G|-th dilate of P . Explicitly, for all g ∈ G, we require g(m)+ |G| ·vg =
m. For example, such a point can always be constructed from any lattice point p ∈ P by
summing over the group: m =

∑
g∈G (g(p) + vg). We define M to be the lattice generated

by M0 and M1 where M0 is a lattice that contains the origin and M1 is the affine lattice at
height 1 such that the orthogonal projection of (M1)R onto (M0)R sends 1

|G|m ∈ (M1)R to
0 ∈ M0 and differs from the lattice-preserving isomorphism by a translation. Concretely,
we may take M = Z×M0

∼= Zn+1 and define the action of G on M by the matrix

ρ(g) =

[
1 0
vg ρ|M0(g)

]
. Note that ρ is indeed a group homomorphism. That is, for all g

and h in G we have

ρ(g)ρ(h) =

[
1 0
vg ρ|M0(g)

] [
1 0
vh ρ|M0(h)

]
=

[
1 0

g(vh) + vg ρ|M0(gh)

]
= ρ(gh)

since g(vh) + vg = vgh.
Let λ ∈ Z>0 be the smallest positive integer such that λ

|G|e is a lattice point. The value
of λ coincides with the index of the sublattice N in M from the original setup.

Example 5 (Continuation of Example 4). Recall G = {1, σ} ≤ S4, with σ = (1, 2)(3, 4),
acting by a permutation representation on M = Z4. Let P = conv{e1, e2, e3, e4} ⊆
(M1)R be a G-invariant 3-dimensional simplex. The permutation character χkP counts the
number of lattice points of kP ⊆Mk fixed by each g ∈ G. Explicitly, we have

χkP (1) =

(
k + 3

3

)
and χkP (σ) =

{
k
2

+ 1 if 2 | k,
0 otherwise.

Computing the equivariant Ehrhart series, we have∑
k≥0

χkP (1)tk =
1

(1− t)4
and

∑
k≥0

χkP (σ)tk =
1

(1− t2)2
.

For each g ∈ G, we observe that the equivariant Ehrhart series is given by 1
det[I−t·ρ(g)] .

Therefore, the equivariant H∗-series is a polynomial given by H∗[t] = 1.

Example 6. Following the alternative setup in Remark 2, let G = {1, σ} be the group
with two elements that acts on a rank 3 lattice M0 = Z[e1, e2, e3] by the map

σ 7→

−1 −1 −1
0 0 1
0 1 0

 .
Let P = conv{0, e1, e2, e3} and notice that σ(P ) = (−e1)+P , hence the above map defines
a valid setup. This setup is equivalent to the setup in Example 5, which can be seen as
follows. By averaging the vertex 0 ∈ P over G, we obtain the G-invariant point m = 1

2
e1,
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verified by the fact that m = σ(e) + e1. We define the lattice M = Z[e0, e1, e2, e3] and
identify the affine sublattice of M containing P with the affine span of {e0+e1, e0+e2, e0+
e3}. In particular, the polytope P is identified in MR as conv{e0, e0 + e1, e0 + e2, e0 + e3}.
The action of G on P extends to an action of G on M given by

σ 7→


1 0 0 0
1 −1 −1 −1
0 0 0 1
0 0 1 0

 .
The point m in MR is identified with e0 + 1

2
e1 which spans a 1-dimensional G-invariant

subspace. Observe that the vertices of P ⊆ MR are a basis for the lattice M . Rewriting
the action of G in terms of this basis identifies it with Example 5.

Effectiveness of the equivariant H∗-series. We say that the equivariant H∗-series
H∗[t] =

∑
i≥0H

∗
i t

i ∈ R(G)[[t]] is effective if each H∗
i ∈ R(G) is the isomorphism class of

a representation of G. In other words, H∗
i is a non-negative sum of irreducible represen-

tations of G. One of the main problems in equivariant Ehrhart theory is to understand
when H∗[t] is effective.

Conjecture 1 ([Sta11, Conjecture 12.1]). Let G be a finite group that acts on a lattice
and P a G-invariant lattice polytope. Let Y be the toric variety with ample line bundle L
associated to P . Then the following are equivalent:

(1) L admits a G-invariant section that defines a non-degenerate hypersurface of Y ,

(2) H∗[t] is effective,

(3) H∗[t] is a polynomial.

It is known that (1) ⇒ (2) ⇒ (3), see [Sta11], and a counterexample has been con-
structed by Santos and Stapledon [EKS24, Theorem 1.2] showing that (2) ⇏ (1) and
(3) ⇏ (1). It is currently open whether (3)⇒ (2).

Another conjecture of interest asks about the character obtained by summing up the
coefficients of the H∗-series.

Conjecture 2 ([Sta11, Conjecture 12.2]). Let P be a lattice polytope. If the equivariant
H∗-series H∗[t] is effective, then H∗[1] is a permutation representation.



Part II

On CL-polytopes
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Chapter 4

The roots of the Ehrhart
polynomials of CL-polytopes

In this chapter we study the distribution of the roots of Ehrhart polynomials of CL-
polytopes. The work in this chapter is motivated by the way roots of Ehrhart polynomials
are studied in [Bra08] and [BD08] and the first main result confirms a conjecture in [BD08]
in the case of CL-polynomials. The chapter also includes brief discussions about attain-
ability of roots, CL-polytopes whose Ehrhart polynomial roots have large magnitude, and
a more refined set of inequalities on the magnitude of the Ehrhart polynomial, which
is satisfied by many – possibly all – CL-polytopes. The content of this chapter is fully
contained in the author’s paper [Köl25].

4.1 Background on Ehrhart polynomial roots and the

main results

The study of the bounds of Ehrhart polynomial roots goes back to [Bec+05] and starts
with the following theorem.

Theorem 4 (Theorem 1.2 in [Bec+05]). (a) The roots of Ehrhart polynomials of lattice
polytopes of dimension d are bounded in norm by 1 + (d+ 1)!.

(b) All real roots of Ehrhart polynomials of d-dimensional lattice polytopes lie in the
half-open interval

[
−d,

⌊
d
2

⌋)
.

The authors noticed that this bound was far from being optimal and conjectured, based
on experimental data, the following.

Conjecture 3 (Conjecture 1.4 in [Bec+05]). All roots α of Ehrhart polynomials of lattice
polytopes of dimension d satisfy −d ≤ Re(α) ≤ d− 1.

This conjecture holds true for the real roots of Ehrhart polynomials of degree 5 or less,
but has been disproven in general by counterexamples in [Hig12] and [OS12]. Meanwhile,
Braun gave an improvement of the bound in Theorem 4.
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Theorem 5 (Theorem 1 in [Bra08]). If P is a lattice polytope of dimension d, then all
the roots of EP lie inside the disc with centre −1

2
of radius d

(
d− 1

2

)
.

Braun obtained this result by studying a larger class of polynomials, called Stanley
non-negative polynomials (SNN-polynomials). They are defined as the class of non-zero
polynomials f such that h∗(t) = (1 − t)deg f+1

∑
k≥0 f(k) tk has only non-negative coef-

ficients. Notice that for every (not necessarily reflexive) lattice polytope P , EP lies in
S. SNN-polynomials were also used in [BD08] to give a bound for the imaginary part of
Ehrhart polynomial roots.

Theorem 6 (Theorem 2.3 in [BD08]). For the polynomial Md(t) =
(
t+d
d

)
+
(
t
d

)
, which is

not an Ehrhart polynomial, if βd is the root of Md(t) of maximal norm, then∣∣∣∣βd +
1

2

∣∣∣∣ =
d2

π
+O(1)

as d goes to infinity.

The authors also conjecture the following.

Conjecture 4 (Conjecture 2.4 in [BD08]). The root of the polynomial Md(t) with largest
norm has the maximal imaginary part among all roots of degree d polynomials in S.

In this study, we will use a similar idea to study the roots of CL-polytopes and define
the class C ⊂ R[z] of CL-polynomials. Its elements are the polynomials of the form

f(z) = b(z)(z2 + z + c0)(z
2 + z + c1) · · · (z2 + z + cm), (4.1)

where the ck are real numbers ≥ 1
4

and

b(z) =

{
a if deg f is even,

a(2z + 1) otherwise

for a non-zero real number a. Notice that if P is a CL-polytope, EP does indeed fall into
this class: if −1

2
+αi is a root of EP with α > 0, then so is −1

2
−αi and EP is divisible by

z2 + z + 1
4

+ α2. If EP has odd degree, then −1
2

is necessarily a root, thus EP is divisible
by 2z + 1. Furthermore, notice that every f ∈ C satisfies Equation (2.3) and thus

h∗(t) = (1− t)deg f+1
∑
k≥0

f(k) tk

is a palindromic polynomial.
However, not every CL-polynomial is an SNN-polynomial. For example, for f(z) =

2
15

(
z2 + z + 13

4

) (
z2 + z + 1

4

)
, we get h∗(t) = 1 + 2

3
t− 2

15
t2 + 2

3
t3 + t4. Hence, we will focus

on the class C ∩S.
Our first result proves Conjecture 4 in the case of CL-polynomials.
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Theorem (Theorem 7). The root of the polynomial Md(t) with largest norm has the
maximal imaginary part among all roots of degree d polynomials in C ∩S.

In Section 3 we present a sufficient condition for a given f ∈ C to lie in S.

Theorem (Proposition 20). Let f be a CL-polynomial of degree d. Assume that the ck
are ordered by size. Then f ∈ S if the ck satisfy

1

4
≤ ck ≤

{
2k + 2, d is odd
2k + 1, d is even.

While this condition is only sufficient, we find a number of examples of CL-polytopes
whose Ehrhart polynomials satisfy it.

4.2 Possible roots of polynomials in C ∩S

Let Ωd denote the set of points z ∈ CL such that there exists a polynomial f ∈ C ∩S of
degree d with f(z) = 0. In the course of this section, we will characterise the sets Ωd for
every non-negative integer d, using techniques from [Bra08]. We start with some helpful
definitions.

Let a bracketed term with a lower integer index refer to the Pochhammer symbol
(x)j = x(x − 1)(x − 2) · · · (x − j + 1) where (x)0 := 1. For positive integers d and j, we
define the functions

pdj (z) =

{
(z + d− j)d + (z + j)d if 2j ̸= d,

(z + j)d if 2j = d.

If a degree d polynomial f is in C, with the help of Equation (2.2), it can be expressed in
terms of the pdj ;

d! f(z) =

⌊ d
2
⌋∑

k=0

h∗kp
d
k(z),

where h∗k refers to the k-th coefficient of the polynomial

h∗(t) = (1− t)d+1

d∑
k=0

h∗k t
k.

Notice however, that for j > 0, the pdj themselves are not in C.
Lastly, let f be a polynomial with root set A = {α1, α2, . . . , αd}. Let the CL-span of f

denote the set clspan f = conv{A ∩CL}. If clspan f is non-empty, it is an interval of CL.
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4.2.1 An upper bound for the roots of CL-polynomials

The main result in this subsection is a proof of Conjecture 4 in the case of CL-polytopes.
Notice that the polynomials Md mentioned in this conjecture are equal to the polynomials
pd0 above.

We start with a useful lemma telling us that CL-polynomials take on either exclusively
real values or imaginary values on CL, depending on their degree.

Lemma 1. Let f ∈ C be a degree d polynomial. Then for every z0 ∈ CL, we find that
f(z0) ∈ R id.

Proof. We can use once again the functional equation in Lemma 2,

f(z − 1) = (−1)df(−z).

Further, we can use that for any z0 ∈ CL, −z0−1 = z0 holds. Since f has real coefficients,
the equality

f(z0) = f(z0) = f(−z0 − 1) = (−1)df(z0)

holds, which implies the statement.

Remark 3. Notice that this result holds more generally for polynomials with palindromic
h∗-polynomials, which includes polynomials not in C.

Lemma 1 enables us to find roots of pdd
∣∣
CL

using a variant of the intermediate value
theorem. We use this to study the limit behaviour and the extremal roots these functions.
In the following, we will use the convention that t is a real number. Its purpose will be to
parametrise CL via it− 1

2
.

Lemma 2. Let d and j be non-negative integers with 2j ≤ d. Then

(a) limt→∞ pdj
(
it− 1

2

)
i−d =∞,

(b) For 2j ̸= d, pdj
(
it− 1

2

)
= 0 if and only if

(
it− 1

2
+ d− j

)
d−2j
∈ R id−2j+1.

(c) clspan pdj ⊂ clspan pdj−1 for every j with 0 < 2j ≤ d.

Proof. We begin with (a).

pdj

(
it− 1

2

)
=

{(
it− 1

2
+ d− j

)
d

+
(
it− 1

2
+ j
)
d

if 2j ̸= d,(
it− 1

2
+ j
)
d

if 2j = d.

Observe that this results in a degree d polynomial with leading coefficient 2idt if 2j < d
and idt if 2j = d. Multiplying by i−d makes the leading coefficient positive, which proves
the statement.

For (b), we start by noticing the identity

(z +m− n)m = (−1)m(z + n)m (4.2)
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where m and n are non-negative integers. Next, we rewrite pdj as follows.

pdj (z) = (z + j)2j

(
(z − j)d−2j + (z + d− j)d−2j

)
= (z + j)2j p

d−2j
d−j (z) . (4.3)

Since
(
it− 1

2
+ j
)
2j
̸= 0 for all t, pdj and pd−2j

d−j have the same CL-span. It follows that

pdj
(
it− 1

2

)
= 0 if and only if(

it− 1

2
+ d− j

)
d−2j

= −
(
it− 1

2
+−j

)
d−2j

= (−1)d−2j+1

(
it− 1

2
+ d− j

)
d−2j

.

The second equality follows from Equation (4.2). From these equalities, we can see that(
it− 1

2
+ d− j

)
d−2j

is an element of R id−2j+1.

For (c), we first notice that if d = 2j, pdj has an empty CL-span. Without loss of
generality, we can assume that d is odd. Thanks to (b), we have

(i) pdj−1

(
it− 1

2

)
= 0 if and only if

(
it− 1

2
− j + 1

)
d−2j+2

∈ R,

(ii) pdj
(
it− 1

2

)
= 0 if and only if

(
it− 1

2
− j
)
d−2j
∈ R.

We make another observation: Statement (b) is equivalent to the following statement.

(b’) For 2j ̸= d, pdj
(
it− 1

2

)
= 0 if and only if

∑d−2j−1
k=0 arg

(
it− 1

2
+ d− j − k

)
∈ {0, π},

where arg(z) denotes the complex argument of z.

We reverse the order of the sum.

d−2j−1∑
k=0

arg

(
it− 1

2
+ d− j − k

)
=

d−2j−1∑
k=0

arg

(
it+ j +

1

2
+ k

)
.

Hence, we see that for positive t, we get 0 < arg
(
it+ j + 1

2
+ k
)
< π

2
. Also for each k,

arg
(
it+ j + 1

2
+ k
)

is monotonic and tends to π
2

as t tends to ∞. Thus we can rewrite
the arguments with error terms εk(t)

arg

(
it+ j +

1

2
+ k

)
=
π

2
− εk(t).

Summarising all this, we can restate (i) and (ii) for positive t.

(i’) pdj−1

(
it− 1

2

)
= 0 if and only if (d−2j)π

2
−
∑d−2j−1

k=0 εk(t) ∈
{

0, π
2

}
,

(ii’) pdj
(
it− 1

2

)
= 0 if and only if (d−2j−2)π

2
−
∑d−2j−2

k=1 εk(t) ∈
{

0, π
2

}
.

Since d is odd,
{

(d−2j)π
2

, (d−2j−2)π
2

}
=
{

π
2
, 3π

2

}
. As a consequence, t > 0 is a root of pdj−1 if

and only if
∑d−2j−1

k=0 εk(t) ∈
{

π
2
, 3π

2

}
.
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Since the εk(t) are monotonic functions, there exists an a > 0 such that{∑d−2j−1
k=0 εk(t) = π

2
if t = a,∑d−2j−1

k=0 εk(t) < π
2

if t < a.

We can conclude that the CL-span of pdj−1 is bounded by the values ±ia− 1
2
. Finally, we

see that {∑d−2j−2
k=1 εk(t) < π

2
if t = a,∑d−2j−2

k=1 εk(t) < π
2

if t < a,

which implies that the values ±ia− 1
2

lie outside the CL-span of pdj .

Finally, we may discuss the bound of the roots.

Theorem 7. For every degree d polynomial f ∈ C ∩S, clspan f ⊆ clspan pd0.

Proof. Let b > 0 be a real number such that ib− 1
2
̸∈ clspan pd0. By Lemma 2(c), we also

get ib− 1
2
̸∈ clspan pdj for every integer j with 0 < 2j ≤ d. Write

i−d d! f

(
ib− 1

2

)
=

⌊ d
2
⌋∑

k=0

h∗k i
−d pdk

(
ib− 1

2

)
where the h∗k are non-negative real numbers. Lemma 2(a) indicates that i−d d! f

(
ib− 1

2

)
is greater than 0 and thus not a root.

4.2.2 The standard reflexive simplex

Theorem 1 shows that the polynomials pd0 are not themselves Ehrhart polynomials of
any polytope. Hence it is natural to ask which CL-polytopes have Ehrhart polynomials
with large extremal roots. In dimension at most 9, this question can be answered by the
standard reflexive simplex (see Example 1(b)).

We can write ∆d
sr as a union of simplices

conv

(
{0} ∪

{
e1, e2, . . . , ed,−

d∑
k=1

ek

}
\ {e}

)

where e is an element of
{
e1, e2, . . . , ed,−

∑d
k=1 ek

}
. This is a unimodular triangulation

into d + 1 elements and implies that ∆d
sr has lattice volume d + 1. Thus h∗

∆d
sr

(1) = d + 1

(see Introduction) and using Hibi’s Lower Bound Theorem, we can see that h∗k = 1 for
every coefficient of ∆d

sr.

Proposition 19. For every reflexive polytope P of dimension d ≤ 9, clspanEP ⊆ clspanE∆d
sr
.
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Proof. There are two cases: d ≤ 5 and 5 < d ≤ 9. In the case d ≤ 5, we verify with a
computer that

clspan pd1 ⊂ clspanE∆d
sr
⊂ clspan pd0.

Let ia − 1
2

be the boundary point of clspanE∆d
sr

in the upper half plane. Lemma 2(a)
implies that for j > 0 and b ≥ a,

i−dpdj

(
ib− 1

2

)
> 0.

Assume the Ehrhart polynomial of P is given by

EP (z) =

⌊ d
2
⌋∑

k=0

h∗k p
d
k(z).

Since h∗0 = 1,

i−dEP

(
ib− 1

2

)
> i−dE∆d

sr

(
ib− 1

2

)
≥ 0.

In the case 5 < d ≤ 9, we can verify with a computer that

clspan pd2 ⊂ clspanE∆d
sr
⊂ clspan pd1.

Let ia − 1
2

be the boundary point of clspanE∆d
sr

in the upper half plane. Lemma 2(a)
implies that for j > 1 and b ≥ a,

i−dpdj

(
ib− 1

2

)
> 0.

Assume the Ehrhart polynomial of P is given by

EP (z) =

⌊ d
2
⌋h∗

k pdk(z)∑
k=0

.

Since h∗0 = 1 and, by Hibi’s Lower Bound Theorem, h∗k ≥ h∗1 for k > 1, we get

i−dEP

(
ib− 1

2

)
≥ h∗1

d∑
k=1

i−dpdk

(
ib− 1

2

)
+ i−dpd0

(
ib− 1

2

)
> i−dE∆d

sr

(
ib− 1

2

)
≥ 0.

For higher degrees, it is no longer true that clspan pd2 ⊂ clspanE∆d
sr
⊂ clspan pd1 and

thus Hibi’s Lower Bound Theorem can no longer guarantee that the h∗k for k ≥ 3 are large
enough to balance out h∗3. In particular, in degree 10, for 2 ≤ m ≤ 14 the polynomial

f(z) = p50(z) + p51(z) +mp52(z) + p53(z) + p54(z) + p55(z)

is a CL-polynomial whose extremal roots have a larger absolute imaginary part than those
of the Ehrhart polynomial of ∆sr. We still conjecture the following.
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Conjecture 5. Let P be a reflexive polytope of dimension d whose h∗-polynomial is uni-
modal, i.e., satisfies the inequalities

h∗0 ≤ h∗1 ≤ · · · ≤ h∗⌊ d
2
⌋ ≥ · · · ≥ h∗d−1 ≥ h∗d

where h∗k is the k-th coefficient of h∗P . Then clspanEP ⊆ clspanE∆d
sr
.

Remark 4. The following table compares the maximal roots iβd − 1
2

of E∆d
sr

to the
maximal roots iαd − 1

2
of pd0 to the bounds from Theorems 6 and 5. The values were

obtained using SAGEMATH [The22].

d αd βd
d2

π
d(d− 1

2
)

2 0.866 0.645 1.273 3
3 2.398 1.658 2.865 7.5
4 4.603 3.040 5.093 14
5 7.457 4.761 7.958 22.5
6 10.952 6.811 11.459 33
7 15.085 9.186 15.597 45.5
8 19.857 11.882 20.372 60
9 25.267 14.899 25.783 76.5
10 31.313 18.236 31.831 95
20 126.802 69.147 127.324 390
30 285.956 151.904 286.479 885
100 3182.575 1622.493 3183.099 9950
150 7161.449 3627.845 7161.972 22425

4.2.3 Connectedness of the set of possible roots

We return to the characterisation of the sets Ωd we defined in the very beginning of this
section. After establishing a sharp bound, it is natural to ask, which values on CL within
that bound can be assumed by the roots of an appropriate degree d polynomial in C.

Lemma 3. For any positive integer d, pd0 CL-interlaces pd+1
0 .

Proof. Equation (2.2) tells us that

h∗pd0
(t) = (1 + t)d+1

∑
k≥0

pd0(k) tk = d!
(
1 + td

)
.

An analogous results holds for pd+1
0 . The roots of h∗

pd0
and h∗

pd+1
0

are exp
(

(1+2n)π
d

i
)

and

exp
(

(1+2n)π
d+1

i
)

respectively, where n ranges from 0 to d−1 (resp. d). These roots interlace

on the unit circle and hence, by Proposition 9, they interlace on CL.

Lemma 4. For any positive integer d and every positive real number w, pd0 CL-interlaces
by pd+1

0 + w(2z + 1)pd0.
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Proof. Since w is positive, we can without loss of generality assume that w = 1. We start
with the case when d is odd. From Lemma 3 we know that pd0 CL-interlaces pd+1

0 . Further,
2z + 1 trivially CL-interlaces (2z + 1)2. Since

pd+1
0

(
−1

2

)
=

(
−1

2
+ d+ 1

)
d+1

+

(
−1

2

)
d+1

is not a root, pd+1
0 does not share a root with (2z+1)2. Hence, by Proposition 10, (2z+1)pd0

interlaces (2z + 1)(pd+1
0 + (2z + 1)pd0). Dividing 2z + 1 from both expressions yields the

statement.
In the case where d is even, pd+1

0 has a root at −1
2

due to symmetry. The root has
multiplicity 1, because if it had a higher multiplicity, pd0 would need to have two roots
at −1

2
as well due to interlacing, but we already saw that this is not the case. Hence we

define polynomials

gk(z) = z2 + z +
1

4
+ ε2k

where ε1 > ε2 > · · · is a sequence of positive reals that goes to 0. The roots of gk are
−1

2
± ϵki. Hence, they are CL-interlaced by 2z+ 1 and with appropriately chosen ϵk, none

of them have a common root with pd+1
0 . Hence, by Proposition 10, (2z + 1)pd0 interlaces

(2z + 1)pd+1
0 (z) + pd0(z) gk(z). Using Proposition 11, we get that (2z + 1)(pd+1

0 (z) + (2z +
1)pd0(z)) interlaces (2z + 1)pd+1

0 (z) and dividing by 2z + 1 again yields the statement.

Lemma 5. Let f be a degree d SNN-polynomial. Then (2z + 1)f(z) is also an SNN-
polynomial.

Proof. Since by Equation (2.2) f is a non-negative linear combination of polynomials(
z+d−k

d

)
, we may restrict ourselves to these. Using z = (z + d − k + 1) − (d − k + 1) and

then (
z + d− k

d

)
=

(
z + d− k + 1

d+ 1

)
−
(
z + d− k
d+ 1

)
,

we get

z

(
z + d− k

d

)
= k

(
z + d− k + 1

d+ 1

)
+ (d− k + 1)

(
z + d− k
d+ 1

)
and thus

(2z + 1)

(
z + d− k

d

)
= (2k + 1)

(
z + d− k + 1

d+ 1

)
+ (2(d− k) + 1)

(
z + d− k
d+ 1

)
.

This is a positive linear combination of polynomials
(
z+(d+1)+k

d+1

)
. Hence, (2z+ 1)f(z) is an

SNN-polynomial.

With these three lemmas, we can prove the main statement of this subsection. For
simplicity, we will use the convention

h∗f (t) = (1 + t)d
∑
k≥0

f(k) tk

for any degree d polynomial f .
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Theorem 8. For every positive integer d, Ωd is connected.

Proof. In the case d = 1, Ω1 = {−1
2
} is a singleton and hence connected.

Consider the case d = 2. Let c be a positive real number. Then h∗fc(t) = 1 + ct + t2

corresponds to an SNN-polynomial fc whose roots are −1
2
±

√
c2−4c−12
2c+4

. For 0 ≤ c ≤ 6, the
roots of fc lie on CL and f0 is exactly p20, which marks the boundary of Ω2. The roots of
f6 are both −1

2
. Since the root depend continuously on c, Ω2 is connected.

The proof for higher degrees d + 1 can be built inductively. First, take an element
z0 ∈ Ωd and a degree d polynomial f ∈ C ∩S with f(z0) = 0. The polynomial g(z) =
(2z + 1) f(z) is a degree d + 1 polynomial with g(z0) = 0 and it is in C. By Lemma 5, g
lies also in S and thus, z0 ∈ Ωd+1.

Now, pick z0 = ci − 1
2
∈ clspan pd+1

0 \ Ωd in the upper half plane. Denote the roots

of pd0 by bki − 1
2

where bm < bn if m < n. Analogously, we denote the roots of pd+1
0

by aki − 1
2
. From Lemma 3, it follows that ad < bd < c < ad+1. Define the function

g(z) = (2z + 1)pd0(z). Lemmas 1 and 2(a) imply

i−d−1pd+1
0 (z0) < 0 and i−d−1(2z0 + 1)pd0(z0) > 0

Thus, for an appropriate number w > 0, the linear combination

λ(z) = pd+1
0 (z) + w(2z + 1)pd0(z)

satisfies λ(z0) = 0. In particular, λ ∈ S. Since by Lemma 3 λ is interlaced by pd0, it follows
that λ ∈ C. Thus z0 ∈ Ωd+1.

4.3 Inequalities for C ∩S

In Equation (4.1), we define CL-polynomials in terms of parameters ck ≥ 1
4
. Every ck

corresponds to a pair of roots −1
2
±
√
ck − 1

4
i, which is a fact we used several times

throughout the previous section. Thus, Theorem 7 can be interpreted as an inequality
that gives a necessary condition for the ck to correspond to an SNN-polynomial.

Theorem (Restatement of Theorem 7). Let f be a CL-polynomial of degree d with
parameters ck. If f ∈ S, the inequality

ck ≤ md
0

is satisfied for every k, where md
0 is the maximal parameter of pd0.

However, this is very far from being sufficient. For example, the polynomial f(z) =
1

400
(z2 + z + 20)2 has its roots at around −1

2
± 4.44i, which by the table in Remark 4 lies

within Ω4, but

h∗f (t) = 1− 379

100
t+

564

100
t2 − 379

100
t3 + t4.

In the following, we give a sufficient condition. We base it on a computational lemma.
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Lemma 6. Let d be a positive integer and j ≤ d be a non-negative integer. Further, let
c ≥ 1

4
be a real number. Then

(z2 + z + c)

(
z + d− j

d

)
= α

(
z + d− j + 2

d+ 2

)
+ β

(
z + d− j + 1

d+ 2

)
+ γ

(
z + d− j
d+ 2

)
where

α = j2 + j + c,

β = 2(dj − j2 + d+ 1− c),
γ = d2 − 2dj − j + j2 + d+ c.

Proof. By adapting the technique used in Lemma 5,

(z + c)

(
z + d− j

d

)
= (j + c)

(
z + d− j + 1

d+ 1

)
+ (d− j + 1− c)

(
z + d− j
d+ 1

)
.

Equation (2.2) implies that ∑
k≥0

(
k + d− j

d

)
tk =

tj

(1− t)d+1
,

which means that we can write∑
k≥0

(k + c)

(
k + d− j

d

)
tk =

(j + c)tj + (d− j + 1− c)tj+1

(1− t)d+2
.

We can use the same identity to compute
∑

k≥0 k
2
(
k+d−j

d

)
tk by applying it twice with

c = 0 both times.

∑
k≥0

k2
(
k + d− j

d

)
tk =

j2tj+

(
j(d+ 2− j) + (d+ 1− j)(j + 1)

)
tj+1 + (d+ 1− j)2tj+2

(1− t)d+3

Summing up gives the values for α, β, and γ as stated.

Proposition 20. Let f be a CL-polynomial of degree d. Assume that the ck are ordered
by size. Then f ∈ S if the ck satisfy

1

4
≤ ck ≤

{
2k + 2, d is odd
2k + 1, d is even.

(4.4)

Proof. The proof proceeds inductively. The idea is to take a degree d element f of C ∩S
and multiply it with z2 + z+ c where c is chosen so that it preserves non-negativity of the
coefficients of the h∗f . That is in particular the case when the three factors from Lemma 6,
α = j2 +j+c, β = 2(dj−j2 +d+1−c), and γ = d2−2dj−j+j2 +d+c, are non-negative.
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Since c is positive, α and γ are always non-negative. For β, the largest possible choice for
c is d+ 1 since j ranges from 0 up to d.

To complete the induction, we only have to look at the cases of d = 1 and d = 2.
We start with the former. If f has degree 1, it is of the form z + 1

2
and h∗f (t) = 1 + t.

Thus c0 ≤ 2, c1 ≤ 4, c2 ≤ 6 etc. If f has degree 2, it is of the form z2 + z + c0 and has
h∗f (t) = c0 + 2(1− c0)t+ c0t

2. Thus, c0 ≤ 1, c1 ≤ 3, c2 ≤ 5 etc.

The class of CL-polynomials that satisfy this proposition trivially includes the Ehrhart
polynomials E[−1,1]d of reflexive hypercubes since they satisfy

c1 = c2 = · · · = cd =
1

4
.

It is possible to construct further examples.

Example 7. Let P be a CL-polytope of dimension d. Then there exists a non-negative
integer n, such that the Ehrhart polynomial of P × [−1, 1]n satisfies Inequalities (4.4).

If EP is defined by the parameters c1, c2, . . . , cd, then EP×[−1,1]n is defined by the
parameters 1

4
, 1
4
, . . . , 1

4
, c1, c2, . . . , cd where 1

4
appears n times. For the ck, this changes the

equations to
1

4
≤ ck ≤

{
2(k + n) + 2, d is odd
2(k + n) + 1, d is even.

which is always satisfied for a sufficiently large n.

Using the same idea, we also get another example.

Example 8. Let P be a CL-polytope of dimension d and let Q be a CL-polytope of
dimension 2m + 1. Then there exists a non-negative integer n, such that the Ehrhart
polynomial of P ×Qn satisfies Inequalities (4.4).

However, there exist counter-examples as well. The Ehrhart polynomial of standard
reflexive 4-simplex ∆4

sr can be written as

E∆4
sr

(k) =
5

24
(x2 + x+ 0.505558989151154)(x2 + x+ 9.49444101084885),

which does not satisfy the inequalities.



Chapter 5

The CL-property of symmetric edge
polytopes from complete
multipartite graphs

In this chapter we investigate the Ehrhart polynomial roots of symmetric edge polytopes
from complete multipartite graphs. We compute the h∗-polynomials of a number of classes
of symmetric edge polytopes of complete multipartite graphs and confirm a conjecture from
[HKM17] for some of them. Also we systematise the interlacing methods from [HKM17]
and show their limitations. The content of this chapter is entirely contained in the author’s
paper [Köl24].

5.1 A conjecture about interlacing polynomials and

the main result

In [HKM17], the authors studied the roots of the Ehrhart polynomials of symmetric edge
polytopes of the complete bipartite graphs K2,n and K3,n and were able to prove that
both these classes are CL-polytopes. This extends the case of cross-polytopes, which are
the symmetric edge polytopes of K1,n. They accomplished that by using the technique of
interlacing polynomials, i.e., polynomials whose roots alternate on a given totally ordered
set. For an in-depth treatment of the theory of interlacing polynomials, see [Fis06]. The
authors gave the following conjecture.

Conjecture 6 (Conjecture 4.10 in [HKM17]). (i) For any complete multipartite graph
Ka1,...,ak the Ehrhart polynomial Ea1,...,ak has its roots on CL.

(ii) Suppose a1 ≤ · · · ≤ ak. Any two Ehrhart polynomials Ea1,...,ak and Ea1,a2,...,ak−1

interlace on CL.

After finding a general formula for the h∗-polynomial of symmetric edge polytopes of
complete tripartite graphs in the Section 5.2, we confirm Conjecture 6 partially in our
main result.

40
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Theorem 9. The following statements hold for every positive integer n.

(a) E1,n CL-interlaces E1,1,n.

(b) E1,1,n CL-interlaces E1,1,n+1.

(c) E1,1,n CL-interlaces E1,2,n.

(d) E1,1,n CL-interlaces E1,1,1,n.

(e) E3,n CL-interlaces E4,n if E1,n+1 CL-interlaces E3,n.

(f) E1,2,n CL-interlaces E1,3,n if E1,n+1 CL-interlaces E1,2,n.

(g) E1,2,n CL-interlaces E2,2,n if E1,n+1 CL-interlaces E1,2,n.

In particular, for every positive integer n, Ex,y,z,n is a CL-polynomial for x + y + z ≤ 3
and x, y, z ≥ 0.

Finally, in Section 5.4, we investigate a connection between the γ-vector of the h∗-
polynomial of an Ehrhart polynomial and the existence of recursive relations that can be
used to prove interlacing. In particular, in Theorem 12 and Corollary 1, we show that
the type of recursive relations in [HKM17] and Proposition 23 can be found for arbitrary
complete bipartite graphs.

5.2 A Reduced Gröbner Basis

We start by describing an edge ordering. First we denote the multipartite classes of vertices
of Ka1,...,ak by A1, A2, . . . , Ak and then we pick an ordering of the vertices which satisfies
the following condition. If v ∈ Ai and w ∈ Aj, then v < w if and only if i < j. Let
e = {v, w} and e′ = {v′, w′} be edges in Ka1,...,ak . Without loss of generality, we may
assume v < w and v′ < w′. Then e < e′ if and only if v < v′ or v = v′ and w < w′.

Let a, b be vertices with an edge between them. We will denote by xa,b the directed
edge from a to b and by xb,a the edge going the other way. The variable which corresponds
to the unique interior lattice point of PKa1,...,ak

will be denoted by z.

Theorem 10. With the described edge ordering, the Gröbner basis from Proposition 4
is at most cubic for every complete multipartite graph Ka1,a2,...,ak . The elements of the
reduced Gröbner basis are of the following form.

(1) Let a ∈ Ai and b ∈ Aj with i ̸= j. Then the following polynomial is a Gröbner basis
element.

xa,bxb,a − z2

(2) Let a ∈ Ai, b ∈ Aj, c ∈ Aℓ with i, j, ℓ all different. Then the following polynomial is
a Gröbner basis element.

xa,bxb,c − zxa,c
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(3) Let a, b, c, d be vertices such that the edges {a, b}, {b, c}, {c, d}, {a, d} all exist and a
is the smallest vertex. Then the following polynomial is a Gröbner basis element if
and only if b and d lie in the same Ai.

xb,cxc,d − xb,axa,d

We call these polynomials Gröbner basis elements of type (3a). Furthermore, the
following polynomial is a Gröbner basis element if and only if b < d.

xb,cxd,a − xb,axd,c

We call these polynomials Gröbner basis elements of type (3b). In particular, a, b, c, d
lie across either 2, 3, or 4 multipartite classes.

(4) Let a, b, c, d, e be vertices such that the edges {a, b}, {b, c}, {c, d}, {d, e}, {a, e} all
exist. Then the following polynomial is a Gröbner basis element if and only if a, b, c ∈
A1 ∪ A2, a, c lie in the same Ai, and b is the smallest vertex in A1 or A2.

xa,bxb,cxd,e − z xd,cxa,e

In particular, a, b, c, d, e lie across either 3 or 4 multipartite classes.

(5) Let a, b, c, d, e, f be vertices such that the edges {a, b}, {b, c}, {c, d}, {d, e}, {e, f},
{a, f} all exist. Then the following polynomial is a Gröbner basis element if and
only if

(i) c and f lie in the same Ai,

(ii) b > d, or b and e lie in the same Ai, or c < e,

(iii) a and d lie in the same Ai, or f < d.

xa,bxb,cxd,e − z xd,cxa,e
In particular, a, b, c, d, e lie across either 3, 4, or 5 multipartite classes.

More generally, for every complete multipartite graph Ka1,...,ak which contains K2,2,2 as
a subgraph, the Gröbner basis in Proposition 4 has an element of degree 3 regardless of the
edge ordering.

Proof. One can check that all the listed elements indeed come from directed cycles in the
way described in Proposition 4. To check the reducedness of a Gröbner basis element p,
it is enough to find another element q of lower degree such that lt(q)| lt(p), where lt(p)
and lt(q) are the leading terms of p and q respectively. Since all elements are of degree at
least 2, we can see that (1), (2), and (3) are indeed not redundant. For (4) and (5) we
may notice that the given restrictions correspond to indivisibility of the polynomials by
the leading terms of Gröbner basis elements of type (2) or (3).

Now we can go on to show that no further elements are contained in the Gröbner basis.
Firstly, let C be a directed cycle of length 7 or greater. Assume the set I which defines
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the leading term of the polynomial pC,I contains two adjacent directed edges (a, b) and
(b, c). One can check that there exists an element of type (2) or (3) whose leading term
contains these edges unless a and c both lie in Ai and b is the smallest vertex in Aj with
{i, j} = {1, 2}. In this case, C cannot be even because I contains the smallest edge. That
means that there exists a vertex d not in A1 or A2. Further, we assume that (a, b) and
(b, c) are the only pair of adjacent edges in C. Due to the size constraint of I, every vertex
other than b is part of one directed edge in I. Thus, there exists a directed edge (d, e) or
(e, d) whose associated variable forms the leading term of a Gröbner basis element of type
(4) together with xa,b and xb,c.

Next, let C be a directed cycle of length 8 or greater. We assume that the set I
which defines the leading term of the polynomial pC,I contains no adjacent directed edge.
Thus, C is necessarily an even cycle. We denote the vertices of the cycle in order by
a0, b0, a1, b1, . . . , an, bn such that a0 is the smallest vertex and we can assume up to orien-
tation that (bi, ai+1) ∈ I for 0 ≤ i ≤ n− 1 and (bn, a0) ∈ I. If a1 and bi for i > 1 lie in the
same multipartite class, we get a smaller cycle C ′ containing a0, b0, a1, bi, ai+1, . . . , bn with
I ′ ⊂ I such that lt(pC′,I′)| lt(pC,I). Thus, we may assume that a1 and bi for i > 1 all lie in
the same multipartite class. This puts a2 in a different class from bn. As a consequence,
the directed cycle C ′ on the vertices a0, b0, a1, b1, a2, bn with I ′ = {(b0, a1), (b1, a2), (bn, a0)}
yields a polynomial pC′,I′ whose leading term divides that of pC,I .

Lastly, we prove the second part of the theorem. Let K2,2,2 be a subgraph of Ka1,...,ak .
Then there exists a directed 6-cycle with vertices a, b, c, d, e, f with edges

(a, b), (b, c), (c, d), (d, e), (e, f), (f, a)

such that (a, b) is the smallest edge of K2,2,2. This gives rise to the polynomial c =
xb,cxd,exf,a − xb,axd,cxf,e which is an element of the Gröbner basis. We can verify that
there does not exist another Gröbner basis element whose leading monomial divides that
of c.

If we want to use this Gröbner basis to find a unimodular triangulation, we may notice
that not all elements need to be considered. We know that for every unimodular simplex
in the triangulation, its vertices that lie in the boundary of PG all lie within the same facet.
Further we know by Proposition 3 that these facets are given by labelings of the vertices of
Ka1,...,ak which satisfy specific conditions. Indeed, edge configurations induced by Gröbner
basis elements of types (1), (2), and (4) do not occur in any facet-inducing spanning
subgraph. Configurations induced by elements of type (5) only appear in spanning trees
of type (ii). Among the configurations induced by elements of type (3), both varieties
appear in facet-inducing spanning subgraphs of type (i), whereas in type (ii) only type
(3b) elements appear.

5.2.1 Simplices in type (i) facets

To start, we will establish some terminology and notation. Let G = (V,E) be a graph and
PG its symmetric edge polytope. As seen in Proposition 3, a facet of PG is induced by an
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integer valued function on V . We will henceforth call such a function a labeling on V . We
will denote it with a lowercase Greek letter such as λ. Following this, we call a vertex v
ℓ-labled if λ(v) = ℓ. The facet of PG induced by λ shall be denoted by Fλ. The spanning
subgraph of G induced by λ shall be denoted by G|λ. The simplices in the unimodular
triangulation of PG will be denoted by the symbol ∆ and the associated directed spanning
tree by T∆. For the unimodular triangulation itself, we will write T . Given a labeling λ,
the set T λ ⊂ λ is the set of simplices which lie in Fλ. Lastly, we define the set T (i) as the
union of all the T λ where λ is a type (i) facet, and the set T (ii) analogously.

The following definition should be viewed with an eye toward Gröbner basis elements
of type (3b): Let λ be a facet-inducing labeling and let A and B be sets of vertices such
that no a ∈ A lies in the same multipartite class as a b ∈ B. Further, assume that
λ(a) = λ(b) − 1 for every a ∈ A and b ∈ B, and that λ|A and λ|B are constant. The
spanning subgraph corresponding to this situation would contain a directed edge from
every element of A to every element of B. The following definition tells us which subsets
of edges from A to B can be included in “legal” spanning trees with respect to the Gröbner
basis from Theorem 10.

Definition 11. Let A and B be disjoint finite totally ordered sets. A planar spanning
tree between A and B is a subset E of A×B such that

(i) |E| = |A ∪B| − 1,

(ii) every element of A and B is contained in at least one element of E,

(iii) if (a, b) and (a′, b′) are elements of E, then a < a′ implies b < b′.

The number of planar spanning trees is
(
a+b−2
b−1

)
where a and b are the cardinalities of A

and B respectively.

Proposition 21. Let Ka1,a2,...,ak be a complete multipartite graph with multipartite classes
of vertices A1, A2, . . . , Ak and let PKa1,a2,...,ak

be its associated symmetric edge polytope.

Then the polynomial h
(i)
a1,a2,...,ak =

∑
∆∈T (i)

tin(T∆) is given by

h(i)a1,a2,...,ak
(t) =

a−ai−1∑
i=0

a1−1∑
j=1

p(a, a1, i, j)

(
a1 + j − i− 2

j − 1

)(
ti+j+1 + ta−i−j−2

)
+

k∑
m=2

a−am−1∑
i=0

am−1∑
j=1

p(a, am, i, j)

(
a− am + j − i− 2

a− am − i− 1

)(
ti+j + ta−i−j−1

)
where in(T ) is the number of ingoing edges of T , a = a1 + a2 + · · ·+ ak and

p(x, y, i, j) =

(
x− y − 1

i

)(
y − 1

j

)(
y + i− j − 1

i

)
.
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Proof. We fix a labeling λ :
⊔k

j=1Aj → {−1, 0, 1} corresponding to a facet of type (i).
This means that for one Am we get λ|Am

= {−1, 1} and all the remaining vertices are
mapped to 0. For the graph Ka1,a2,...,ak |λ this means that every vertex v ̸∈ Am has an
edge (v, w) if w is 1-labeled and an edge (w, v) if w is −1-labeled. On the other hand,
all the vertices in Am only have edges leading into them or out of them, depending on
their labeling. Consider now a spanning tree T∆ with ∆ ∈ T λ. Within T∆, the Gröbner
basis elements of type (3a) block every vertex 0-labeled vertex v (with one exception) from
having edges of the form (v, w) and (w, v) at the same time. The exception is the smallest
0-labeled vertex in the graph, which we will denote by v0. Thus, we obtain two subsets of⊔
Aj \ Am: the subset P of vertices v whose edges are of the form (v, w), and the subset

N of vertices v whose edges are of the form (w, v). In particular, P ∩ N = {v0}. With
these conditions Am naturally splits into two disjoint subsets A+

m = {v ∈ Am : λ(v) = 1}
and A−

m = {v ∈ Am : λ(v) = −1}. Taking the Gröbner basis elements of type (3b) into
account, T∆ is the disjoint union of a planar spanning tree between P and A+

m and a planar
spanning tree between N and A−

m.
Next, we want to count the number of ingoing edges. Let r denote the smallest vertex

in
⊔
Aj and let v be some element in P different from r. The edge e containing v in the

unique path from r to v is ingoing. In a similar way, if v is any element in A−
m different

from r, the edge containing v in the unique path from r to v is also ingoing. Every other
edge is outgoing. We get a total of four cases:

(a) m = 1 and λ(minAm) = 1,

(b) m = 1 and λ(minAm) = −1,

(c) m > 1 and λ(minAm) = 1,

(d) m > 1 and λ(minAm) = −1.

Notice that if Case (a) applies, the direction of all edges can be reversed and it results in
another spanning tree T∆′ with ∆′ ∈ T (i) for which Case (b) applies and vice versa. The
same holds for Cases (c) and (d). Thus, we get in(T∆′) = a− 1− inT∆, which means that
when we count the elements in T (i) with the number of their respective ingoing edges, we
can fix without loss of generality the value for λ(minAm).

m = 1 : We choose λ(minA1) = λ(r) = 1. Let i denote the number of vertices in
P \N and let j denote the number of vertices in A−

1 . The number of ingoing edges in this
situation is i + 1 + j. This gives rise to the first line of the formula h(i): we sum over all
possible choices of i and j and multiply the number of ways to pick P \N , the number of
ways to pick A−

1 , the number of planar spanning trees between P and A+
1 , the number of

planar spanning trees between N and A−
1 , and polynomial ti+j+1 + ta−i−j−2, which counts

the number of ingoing edges in Cases (a) and (b).
m > 1 : We choose λ(minAm) = 1. Again, we let i denote the number of vertices in

P \N and let j denote the number of vertices in A−
1 . In this case the number of ingoing

edges is i + j because r itself is an element of P now and thus cannot be counted in. By
an analogous statement to the on in the previous case and by summing over all the Am

with m > 1, we get the second line of the formula which concludes the proof.
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Figure 5.1: The 13 types of facet graphs of Ka,b,c.

5.2.2 Simplices in type (ii) facets

The situation for type (ii) facets is more complicated. To make things easier, we first
define a labeling in normal form to be any facet-inducing labeling ν such that for every
multipartite class Ai of Ka1,a2,...,ak and every v, w ∈ Ai that ν(v) = 1 and ν(w) = 0 implies
v < w. Further, define the opposite labeling of a facet-inducing λ to be the labeling λ̄
such that the edge set of Ka1,a2,...,ak |λ̄ consists of all the reversed edges of Ka1,a2,...,ak |λ. In
the case of type (ii) facets, that means that λ̄(v) = 1 − λ(v) vor every v. Lastly, for any
facet-inducing labeling λ, the associated labeling in nomral form is the labeling in normal
form νλ such that for every multipartite class of vertices Ai, |λ|Ai

−1(1)| = |νλ|Ai

−1(1)|.
We collect some facts about these objects.

Lemma 7. Let λ be a facet-inducing labeling of a type (ii) facet and let ∆,∆′ ∈ T λ be
simplices. Further, let r denote the smallest vertex in Ka1,a2,...,ak . The following statements
hold.

(a) in(T∆) = in(T∆′). Because of this, we write in(λ) to refer to the number of ingoing
edges of the spanning trees of the simplices in T λ.

(b) in(λ̄) = a− in(λ− 1) where a = a1 + a2 + · · ·+ an.

(c) in(ν) = |ν−1(0)| where ν denotes a labeling in normal form.
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(d) The number of simplices in Fλ is equal to the number of simplices in Fνλ and Fν̄λ.

(e) Then in(λ) = in(νλ) if r is 1-labeled and inλ = in(ν̄λ̄) if r is 0-labeled.

Proof. The crucial insight is the fact that for any given simplex ∆ ∈ T λ, the number of
ingoing edges does not depend on ∆: in(T∆) = |λ−1(0))\{r}|. This can be easily observed
by considering that every edge of a 0-labeled vertex points away from it – and if it is the
one connecting it to the part of the tree which contains r, that is an ingoing while the
others are outgoing. (a) and (c) are immediate corollaries of this. (b) is true because by
reversing every edge, the outgoing edges become ingoing and vice versa. For (d) we may
notice that a permutation π of the vertices of Ka1,a2,...,ak within the multipartite classes
Ai induces a map from facets to facets. If, in addition, we make sure that for all ℓ-labeled
vertices with ℓ ∈ {0, 1}, w < v implies that π(w) < π(v), then π induces a mapping of
the simplices in T (ii). For (e), we get two cases: λ(r) = 1 and λ(r) = 0. By default, if A1

contains a single 1-labeled vertex, r will be 1-labeled under νλ. Thus, if λ(r) = 1, the first
half of the statement follows from (c). If λ(r) = 0, λ̄(r) = 1 and in(λ̄) = in(νλ̄). Thus,
ν̄λ̄(r) = 0 and the statement follows.

Now we define q(ν) = |{λ : ν = νλ, λ(r) = 1}| and r(ν) = |T ν |. Since ν is uniquely
defined by the number of 0-labeled vertices in every multipartite class, we can identify it
with the tuple (ν1, ν2, . . . , νk) which readily gives us a formula for q:

q(ν1, ν2, . . . , νk) =
k∏

i=1

(
ai − δ1,i
νi

)
where δ1,i denotes the Kronecker delta, whose function here is to exclude r for the choice.
With the previous lemma, we get

h(ii)a1,a2,...,ak
=

∑
∆∈T (ii)

tin(T∆) =
∑

labelings in
normal form ν

q(ν)r(ν)(tν1+ν2+···+νk + ta−1−ν1−ν2−···−νk)

where a = a1 + · · ·+ ak again.
To understand r, some more work is necessary. In particular, we will restrict ourselves

to the tripartite case. Figure 5.1 shows the 13 different types of facet graphs that are
possible. We call these graphs class graphs. Its vertices and edges are called class vertices
and class edges. Every class vertex named Oj (resp. Ij) represents the set of 0-marked
(resp. 1-marked) vertices in the corresponding layer. Every class edge represents the edges
of the directed complete bipartite graph between the two corresponding classes of vertices.

Next, we investigate what class graphs tell us about spanning trees corresponding to
unimodular simplices. Firstly, we notice that not every class edge can contain edges in such
a spanning tree. The Gröbner basis elements of type (5) give configurations with involve
6 class vertices and 3 class edges. More precisely, the class edges {O1, I2}, {O2, I3}, and
{O3, I1} cannot all be non-empty at the same time, which turns the last class graph in
Figure 5.1 into three reduced class graphs, each of them missing one of these class edges.
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Let us now assume a reduced class graph. Let A be a class vertex connected to class
vertices B and C. Without loss of generality, assume that for every b ∈ B and every
c ∈ C, b < c. The Gröbner basis elements of type (3b) imply that for two distinct vertices
a, a′ ∈ A where a is connected to a vertex in B and a′ is connected to a vertex in C,
a < a′. In particular there can be only one vertex in â ∈ A which connects to both
classes. We denote the set of vertices in A which connect to B (resp. C) by AB (resp.
AC). Analogously, we define the subsets BA and CA of vertices which connect to A. Thus
we end up with planar spanning trees between the sets BA and AB as well as CA and AC

respectively.
Notice that all reduced class graphs are paths of length 3, 4, or 5. Thus, consider

a class path with vertices C1, C2, . . . , Cn of sizes c1, c2, . . . , cn. We define the following
function

c (c1, c2, . . . , cn)

=

c2−1∑
j2=0

c3−1∑
j3=0

· · ·
cn−1∑

jn−1=0

(
c1 + j2 − 1

j2

)(
cn−1 − jn−1 + cn − 2

cn − 1

) n−2∏
i=2

(
ci − ji + ji+1 − 1

ji+1

)
.

Although this formula looks complicated, its function is fairly straightforward: Every
binomial coefficient

(
ci−ji+ji+1−1

ji+1

)
counts the number of planar spanning trees between the

sets CiCi+1
and Ci+1Ci

where the former has cardinality ji+1 and the latter has cardinality
ci+1 − ji+1. With this, we get a formula for r in the case of complete tripartite graphs
Ka,b,c.

r(ν1, ν2, ν3) =



c(b, a, c) ν1 = 0, ν2 = b, ν3 = c

c(a, b, c) ν1 = 0, ν2 = b, ν3 = 0

c(a, c, b) ν1 = 0, ν2 = 0, ν3 = c

c(ν3, a, b, c− ν3) ν1 = 0, ν2 = b, ν3 ̸∈ {0, c}
c(ν2, a, c, b− ν2) ν1 = 0, ν2 ̸∈ {0, b}, ν3 = c

c(ν1, c, b, a− ν1) ν1 ̸∈ {0, a}, ν2 = b, ν3 = 0

c(ν1, b, c, a− ν1) ν1 ̸∈ {0, a}, ν2 = 0, ν3 = c

c(b− ν2, ν3, a, ν2, c− ν3) ν1 = 0, ν2 ̸∈ {0, b}, ν3 ̸∈ {0, c}
c(a− ν1, ν3, b, ν1, c− ν3) ν1 ̸∈ {0, a}, ν2 = 0, ν3 ̸∈ {0, c}
c(ν1, c− ν3, b, a− ν1, ν3) ν1 ̸∈ {0, a}, ν2 = b, ν3 ̸∈ {0, c}
c(a− ν1, ν2, c, ν1, b− ν2) ν1 ̸∈ {0, a}, ν2 ̸∈ {0, b}, ν3 = 0

c(ν1, b− ν2, c, a− ν1, ν2) ν1 ̸∈ {0, a}, ν2 ̸∈ {0, b}, ν3 = c

c(a− ν1, ν2, c− ν3, ν1, b− ν2, ν3)
+c(ν1, c− ν3, ν2, a− ν1, ν3, b− ν2)
+c(b− ν2, ν1, ν3, ν2, a− ν1, c− ν3) ν1 ̸∈ {0, a}, ν2 ̸∈ {0, b}, ν3 ̸∈ {0, c}
0 otherwise

We can finally assemble the h∗-polynomial of PKa,b,c
.



CHAPTER 5. SEPS FROM COMPLETE MULTIPARTITE GRAPHS 49

I1 O1

I2 O2

I3 O3

I4 O4

Figure 5.2: The O2-labeled class vertex has degree 3.

Theorem 11. The h∗-polynomial of PKa,b,c
is given by

h∗a,b,c(t) = h
(i)
a,b,c + h

(ii)
a,b,c(t).

Here, h
(i)
a,b,c is given by

h
(i)
a,b,c(t) =

b+c−1∑
i=0

a−1∑
j=1

p(a+ b+ c, a, i, j)

(
a+ j − i− 2

j − 1

)(
ti+j+1 + ta+b+c−i−j−2

)
+

a+c−1∑
i=0

b−1∑
j=1

p(a+ b+ c, b, i, j)

(
a+ c+ i− j − 1

a+ c− i− 1

)(
ti+j + ta+b+c−i−j−1

)
+

a+b−1∑
i=0

c−1∑
j=1

p(a+ b+ c, c, i, j)

(
a+ b+ i− j − 1

a+ b− i− 1

)(
ti+j + ta+b+c−i−j−1

)
with

p(x, y, i, j) =

(
x− y − 1

i

)(
y − 1

j

)(
y + i− j − 1

i

)
,

and h
(ii)
a,b,c is given by

h
(ii)
a,b,c(t) =

a−1∑
ν1=0

b∑
ν2=0

c∑
ν3=0

q(ν1, ν2, ν3)r(ν1, ν2, ν3)
(
tν1+ν2+ν3 + ta+b+c−1−ν1−ν2−ν3

)
with

q(ν1, ν2, ν3) =

(
a− 1

ν1

)(
b

ν2

)(
c

ν3

)
and r(ν1, ν2, ν3) as stated above.

For general complete multipartite graphs, the number of possible class graphs grows
rapidly as k grows. Furthermore, in the complete tetrapartite case, class graphs which are
not paths start to appear, see e.g. Figure 5.2.
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5.3 New Recursive Relations

In this section, we gather new evidence for Conjecture 6. First, we state the relevant
h∗-polynomials.

Proposition 22. The h∗-polynomials of the symmetric edge polytopes of graphs K1,m,n,
K1,1,1,n, and K2,2,n, are given as follows.

(a) h∗1,m,n(t) =
∑min(m,n)

i=0

(
2i
i

)(
m
i

)(
n
i

)
ti(1 + t)m+n−2i

(b) h∗1,1,1,n(t) = 3(n− 1)n(1 + t)n−2t2 + 2(2n+ 1)(1 + t)nt+ (1 + t)n+2

(c) h∗2,2,n(t) = 20
(
n
3

)
(1 + t)n−3t3 + 2

(
3n
2

)
(1 + t)n−1t2 + 2

(
3n+1

1

)
(1 + t)n+1t+ (1 + t)n+3

Proof. Notice that (a) is a direct consequence of Propositions 6 and 8. The formula in (b)
can be obtained by applying Proposition 7. The graph G = K1,1,n gives rise via suspension

to the graph Ĝ = K1,1,1,n. We denote the the vertices in the first two tripartite classes of G
by a and b respectively. The remaining vertices shall be denoted by the integers 1, . . . , n.
First, we need to understand the cuts GC of G. There are two primary types: one type
where without loss of generality a, b ̸∈ C, and one type where a ∈ C, b ̸∈ C. Thus, for
every subset S ⊆ [n] we get a cut set C1 = S and a cut set C2 = S∪{a}. Assume |S| = m.
Now we need to understand the hypertrees associated to the joint bipartite suspensions
∼
GCi

for i = 1, 2, which we regard as functions f : {n+ 3}∪Ci → {0, 1, . . .}. In the order of
the hyperedges, it is convenient to regard n+3 as the smallest edge. This way, it can never
be an internally inactive edge and we can focus on the elements of Ci instead. One can
check that a hyperedge e ∈ Ci is internally inactive if and only if f(e) > 0. Without loss
of generality, we can assume that every inducing spanning tree of a hypertree contains the
edge {n+ 3, n+ 4} and for every c ∈ Ci the edge {n+ 4, c}. From here, one can check that

the interior polynomial of
∼
GC1 is

(
m
2

)
t2+2mt+1 and that of

∼
GC2 is m(n−m)t2+(n+1)t+1.

Summing up, we get

fG(t) =
1

2n+1

n∑
i=0

(
n

m

)(((
m

2

)
+m(n−m)

)
t2 + (2m+ n+ 1)t+ 2

)
=

3(n− 1)n

24
t2 +

2n+ 1

2
t+ 1.

Thus, we obtain the h∗-polynomial of the symmetric edge polytope of K1,1,1,n:

h∗1,1,1,n(t) = 3(n− 1)n(1 + t)n−2t2 + 2(2n+ 1)(1 + t)nt+ (1 + t)n+2

For (c), one can use the description of h∗a,b,c of Theorem 11 to derive the coefficients
of h∗2,2,n. Then these coefficients can be checked against those of (c). Since this is a very
tedious process, the reader may consult the corresponding file on

https://github.com/maxkoelbl/seps_multipartite_graphs/.

https://github.com/maxkoelbl/seps_multipartite_graphs/


CHAPTER 5. SEPS FROM COMPLETE MULTIPARTITE GRAPHS 51

It was programmed with SAGEMATH [The22].

In the following we will denote the Ehrhart polynomial of PKa1,...,ak
by Ea1,...,ak .

Proposition 23. For every n ≥ 2 there exist non-negative rational numbers α1, . . . , α35

such that the following statements hold.

E1,1,n(x) = α1 (2x+ 1)E1,n(x) + α2E1,n−1(x),

E1,1,n+1(x) = α3 (2x+ 1)E1,1,n(x) + α4E1,1,n−1(x) + α5E1,n(x),

E1,2,n(x) = α6 (2x+ 1)E1,1,n(x) + α7E1,1,n−1(x) + α8E1,n(x),

E1,2,n+1(x) = α9 (2x+ 1)E1,2,n(x) + α10E1,2,n−1(x) + α11E1,1,n(x) + α12E1,n+1(x)

E1,1,1,n(x) = α13 (2x+ 1)E1,1,n(x) + α14E1,1,n−1(x) + α15E1,n(x)

E4,n(x) = α16 (2x+ 1)E3,n(x) + α17E3,n−1(x) + α18E2,n(x) + α19E1,n+1(x),

E3,n+1(x) = α20 (2x+ 1)E3,n(x) + α21E3,n−1(x) + α22E2,n(x) + α23E1,n+1(x),

E2,2,n(x) = α24 (2x+ 1)E1,2,n(x) + α25E1,2,n−1(x) + α26E1,1,n(x) + α27E1,n+1(x),

E1,3,n(x) = α28 (2x+ 1)E1,2,n(x) + α29E1,2,n−1(x) + α30E1,1,n(x) + α31E1,n+1(x),

E1,1,1,n+1(x) = α32 (2x+ 1)E1,1,1,n(x) + α33E1,1,1,n−1(x) + α34E1,1,n(x) + α35E1,n+1(x).

Proof. With the formulas in Propositions 6 and 22, these relations can be obtained algo-
rithmically1. We explain the method of proof using the first relation. The proof follows
that of Proposition 4.5 in [HKM17]. Since taking the generating function of a polynomial
is a linear operation, addition and scalar multiplication translate immediately to Ehrhart
series. For (a), we need the Ehrhart series of E1,1,n, (2x+ 1)E1,n, and E1,n−1. Notice that
multiplying an Ehrhart polynomial by x corresponds to differentiating its Ehrhart series
and then multiplying t to it. Since the Ehrhart series of E1,n can be written as (1+t)n

(1−t)n+1 ,
we get

(2nt+ t+ 1)(t+ 1)n

(t3 − t2 − t+ 1)(1− t)n

for the Ehrhart series of (2x+ 1)E1,n. Next, we form the equation

1 =
α
∑

k≥0(2k + 1)E1,n(k)tk + α0

∑
k≥0E1,n−1(k)tk∑

k≥0E1,1,n(k)tk
.

Note that there need not be any solutions for α and α0. The right-hand side is a rational
function of two polynomials where the numerator polynomial involves α and α1. Since
the right-hand-side is assumed to be equal to one, obtaining a solution is equivalent to a
finding asolution of the system of equations

ni(α, α0) = di

1The code for computing explicitly all the coefficients is also available on

https://github.com/maxkoelbl/seps_multipartite_graphs/.

It was also written using SAGEMATH.

https://github.com/maxkoelbl/seps_multipartite_graphs/
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where ni is the i-th degree coefficient of the numerator polynomial and di is the i-th degree
coefficient of the denominator polynomial. Since ni and di both depend on n, α and α0

do as well. We get α = n+2
2(n+1)

and α0 = n
2(n+1)

.

With this, we can prove our first main result, Theorem 9.

Proof. The six labeled statements in this theorem rest entirely on the recursive relations
from Proposition 23, the relation from Proposition 13, and Proposition 12. The concluding
statement follows from the labeled statements and Proposition 15.

5.4 Recursive Relations and the γ-vector

Looking at the recursive relations in Propositions 14 and 23, we may notice that as the
parameters a1, . . . , ak−1 of the multipartite graphs increase, then so does the complexity
of the formulas surrounding them. The results of this section show that this is not a
coincidence. We will show how the existence of a recursion as well as, to some extent,
the number of terms it has, are related with the γ-vectors of the h∗-polynomials of all the
Ehrhart polynomials involved.

Definition 12. Let h be a palindromic polynomial of degree d. We define the γ-vector as

the polynomial
∑⌊ d2⌋

i=0 γit
i such that h(t) =

∑⌊ d2⌋
i=0 γi(1 + t)d−2iti. We call the degree of the

γ-vector the γ-degree of h.

Lemma 8. For every integer d ≥ 1 and every integer n ≥ 0, the following equation holds.∑
k≥0

(
n∑

i=0

(−1)i
(
n

i

)
Cd+2(n−i)(k)

)
tk =

(1 + t)d(4t)n

(1− t)d+2n+1

Proof. There are two key insights. The first is the well-known fact that the generating

function of Cd is (1+t)d

(1−t)d+1 . The second is that the generating function of C2(x)− C0(x) can

be written as 4t
(1−t)3

= (1+t)2

(1−t)3
− 1

1−t
, which can be checked easily.

The first insight tells us that for real numbers c0, c1, . . . , cn, the generating function of∑n
i=0 ciCi can be written as

1

1− t

n∑
i=0

ci
(1 + t)i

(1− t)i
.

Using the second insight tells us that

(1 + t)d(4t)n

(1− t)d+2n+1
=

1

1− t
(1 + t)d

(1− t)d

(
(1 + t)2

(1− t)2
− 1

)n

.

Finally, with the binomial theorem, we get

1

1− t

n∑
i=0

(−1)i
(
n

i

)
(1 + t)d+2(n−i)

(1− t)d+2(n−i)
,

which concludes the proof.
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Proposition 24. Let p be a polynomial of degree d and let h be a polynomial defined by

h(t) = (1− t)d+1
∑
k≥0

p(k)tk.

If h is a palindromic polynomial with γ-vector γ, we get

p(x) =

deg γ∑
i=0

(−1)iciCd−2i(x).

where ci =
∑deg γ

j=i
1
4j

(
j
i

)
γj. We call the polynomial

∑deg γ
i=0 (−1)icix

i the cross-polynomial
coefficients of p.

Proof. We rewrite the generating function of p.

h(t)

(1 + t)d+1
=

∑d
i=0 γi

1
4i

(1 + t)d−2i(4t)i

(1 + t)d+1

Splitting up the sum and applying Lemma 8, we get∑
k≥0

γ0Cd(k)tk

+
∑
k≥0

(γ0
4
Cd(k)− γ1

42
Cd−2(k)

)
tk + . . .

+
∑
k≥0

(
n∑

i=0

(−1)i
γn
4n

(
n

i

)
Cd+2(n−i)(k)

)
tk

Rearranging to sort the sum by the Ci yields the claim.

In the setting of Proposition 24, we call the γ-degree of h the cross-degree of p.

Theorem 12. Let f be a degree d+1 polynomial with cross-degree m+1, let g be a degree
d polynomial with cross-degree m, and let hi be degree d− 1 polynomials with cross degree
i for 1 ≤ i ≤ m. Then there exist real numbers α, α1, α2, . . . , αm which satisfy

f(x) = (2x+ 1)αg(x) +
m∑
i=1

αihi(x).

Proof. Using Proposition 13, we can see that the degree d+ 1 polynomial (2x+ 1)g(x) has
cross-degree m+ 1. Thus, the right-hand side of the equation can be written as

αcg,0Cd+1

+(−αc(2x+1)g,1 + α1ch1,0 + α2ch2,0 + · · ·+ αmchm,0)Cd−1

−(−αc(2x+1)g,2 + α2ch2,1 + · · ·+ αmchm,1)Cd−3

...

+(−1)m(−αc(2x+1)g,m+1 + αmchm,m)Cd−2m+1
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where c(2x+1)g,i is the i-th cross-polynomial coefficient of (2x+ 1)g(x) and the chj ,i are the
cross-polynomial coefficients of the hj. This means that in order to get the left-hand side,
all we need to do is choose α, αm, αm−1, . . . , α1 in order.

For complete bipartite graphs, Proposition 6 shows that the γ-degree of the h∗-polynomial
of Km,n is min{m,n} − 1. Thus, we get the following immediate corollary.

Corollary 1. Let n be a positive integer. For 1 ≤ m ≤ n there exist unique α, α0,
α1, . . . alpham−1 and β, β0, β1, . . . , βm−1 in R such that the following equations are satis-
fied.

Em+1,n+1(x) = (2x+ 1)αEm,n+1(x) +
m−1∑
i=0

αiEm−i,n+i(x)

Em,n+1(x) = (2x+ 1) β Em,n(x) +
m−1∑
i=0

βiEm−i,n+i−1(x)

Remark 5. This corollary alone are not enough to prove Conjecture 6 for all Km,n for two
crucial reasons. Firstly, as m increases, the number of interlacings having to be satisfied
increases too, and they are between polynomials whose cross-degrees puts them outside
the scope of Theorem 12. This is noticeable in the last four statements of Theorem 9
where the interlacing of cross-degree 3 polynomials by cross-degree 2-polynomials depend
on the interlacing of a cross-degree 2-polynomial by a cross-degree 0 polynomial.

Secondly, there is no guarantee that the coefficients α, α1, . . . , αm are non-negative,
although explicit computations for low m in the context of Corollary 1 always yield positive
coefficients. In fact, for m ≥ 4, explicit computations reveal that α2, . . . , αm−2 are always
negative. In the case m = 4, we get α2 = n−n3

8(5n3+39n2+100n+96)
. To see the parameters for

every 1 ≤ m ≤ 10, we refer once again to the corresponding SAGEMATH code on

https://github.com/maxkoelbl/seps_multipartite_graphs/.

We close the chapter by stating a conjecture.

Conjecture 7. Let a1 ≤ a2 ≤ · · · ≤ ak ≤ n be positive integers and let m denote the
cross-degree of the Ehrhart polynomial of the symmetric edge polytope of Ka1,a2,...,ak . Then
we conjecture the inequalities ⌊∑k

i=1 ai
2

⌋
≤ m+ 1 ≤

k∑
i=1

ai.

hold. Furthermore, the Ehrhart polynomial of the symmetric edge polytope of the graph
K1k,n interlaces that of K1k+1,n, where 1k represents a list of ones.

https://github.com/maxkoelbl/seps_multipartite_graphs/
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Chapter 6

The equivariant Ehrhart Theory of
order-two symmetries

In this chapter we study the equivariant Ehrhart theory of two families of polytopes: the
symmetric edge polytopes of the cycle graph under the induced action of the automor-
phism group of the graph, and rational cross-polytopes under the action of coordinate
reflections. We compute the equivariant Ehrhart series in each case to verify the effective-
ness conjecture. In particular, in Example 9 we see that pseudo-integral polytopes need
not satisfy the effectiveness conjecture if the assumption that P is a lattice polytope is
dropped. The content of this chapter is fully contained in the author’s paper [CHK23]
with Oliver Clarke and Akihiro Higashitani.

6.1 The main results

We fix the setup of the first main result. Let Γ = (V,E) be an undirected graph and Z|V | a
lattice whose basis elements ev are associated to the vertices v ∈ V . Throughout this chap-
ter, we will consider the symmetric edge polytope PΓ ⊂ R|V | and its automorphism group
of Γ, denoted Aut(Γ). One can see that Aut(Γ) naturally induces a permutation represen-
tation ρΓ on R|V |, which leaves PΓ invariant. We focus on the case when Γ is the cycle graph
Cd for some integer d ≥ 3. In this case, Aut(Cd) ∼= D2d =

〈
r, s | s2 = rd = (sr)2 = 1

〉
is

the dihedral group of order 2d.
We identify D2d with the automorphism group of Cd. We fix the generator s ∈ D2d, in

the presentation of the group, to be a reflection that fixes the fewest number of vertices
of Cd. Let ρd := ρCd

: D2d → GL(Rd) denote the associated permutation representation.
From now on, we label the vertices of Cd with {v0, . . . , v⌈(d−2)/2⌉, w0, . . . , w⌈(d−2)/2⌉}, where
w0 = v0 if d is odd, so that: (v0, v1, . . . , v⌈(d−2)/2⌉) and (w0, w1, . . . , w⌈(d−2)/2⌉) are distinct
paths in Cd; for each 0 ≤ i ≤ ⌈(d−2)/2⌉ the s-orbits are {vi, wi}; if d is odd, then v0 = w0

is the unique fixed vertex of s; if d is even, then v0 and w0 are neighbours; and r is the
rotation that maps w0 to w1 (see Figure 6.1).

We state the first main result.

Theorem 13 (Theorems 15 and 16). Let d ≥ 3 be an integer. Then

56
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v0

w0

w1

v1

w(d−2)/2

v(d−2)/2

s s

r
r

v0 = w0

w1

v1

w(d−1)/2

v(d−1)/2

Figure 6.1: The vertex labelings for even (left) and odd (right) cycle graphs and the action
of the generators of the dihedral group.

(i) the H∗-series of H∗
(d) of Pd with respect to the action of the dihedral group D2d is

effective if d is prime,

(ii) the H∗-series of H∗
(d) of Pd with respect to the action of the group {1, s} is effective.

Our second main theorem explores the limits of the effectiveness conjecture. Let k, d ∈
Z be positive integers with k odd and d ≥ 2. Throughout this section we consider the
polytope

P (k, d) = conv

{
±e1, . . . ,±ed−1,±

k

2
ed

}
⊆MR ∼= Rd .

Theorem 14 (Theorem 17 and Example 9). With the setup above, we have H∗[t] =∑d
j=0(ajχ1 + bjχ2)t

j where

aj =

(
d− 2

j

)
+

1

2
(k + 1)

(
d− 1

j − 1

)
and bj =

1

2
(k − 1)

(
d− 1

j − 1

)
−
(
d− 2

j − 1

)
and

(
n
k

)
is defined to be zero if k < 0 or k > n.

In particular, the equivariant Ehrhart H∗-series of P (1, 2) is H∗[t] = χ1 + (χ1−χ2)t+
χ1t

2 and hence not effective.

6.2 Symmetric edge polytopes of cycle graphs

Studying the equivariant Ehrhart theory of Pd := PCd
under the action of D2d involves

understanding the Ehrhart series of the individual sub-polytopes P g
d fixed by the individual

elements g ∈ D2d. Let us begin with the trivial element 1 ∈ D2d.
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Proposition 25 ([OS12, Theorem 3.3]). The Ehrhart series of Pd is given by

ehr(Pd, t) =
h
(d)
0 + h

(d)
1 t+ · · ·+ h

(d)
d−1t

d−1

(1− t)d

where: h
(d)
0 = 1; for 1 ≤ j ≤ ⌊d

2
⌋, we have

h
(d)
j = (−1)j

j∑
i=0

(−2)i
(
d

i

)(
d− 1− i
j − i

)
=

{
2d−1 if d is odd and j = d−1

2
,

h
(d−1)
j−1 + h

(d−1)
j otherwise;

and for each d
2
< j < d, the coefficients are h

(d)
j = h

(d)
d−1−j.

For odd cycle graphs C2ℓ+1, all reflections in D4ℓ+2 are conjugate and so the corre-
sponding fixed polytopes are unimodularly equivalent. Hence, it suffices to compute the
fixed polytope for a single reflection, say s ∈ D4ℓ+2.

Proposition 26. Let ℓ ≥ 1 be an integer. The fixed sub-polytopes P s
2ℓ+1 and P s

2ℓ+2 are
unimodularly equivalent to the cross-polytope of dimension ℓ dilated by the factor 1

2
and

their Ehrhart series are given by

ehr(P s
2ℓ+1, t) = ehr(P s

2ℓ+2, t) =
(1 + t2)ℓ

(1− t)(1− t2)ℓ
.

Proof. We start by giving a full description of the vertices of P s
2ℓ+1 and P s

2ℓ+2. Each
s-orbit is given by {vi, wi} for each 0 ≤ i ≤ ℓ. Note, the s-orbit that is an edge of
C2ℓ+1 is {vℓ, wℓ} ∈ E, while those of C2ℓ+2 are {v0, w0} and {vℓ, wℓ}. The s-orbits of the
vertices of P2ℓ+1 and P2ℓ+2 are hence given by {±(ewi

− ewi+1
),±(evi − evi+1

)} as well as
{ewℓ
−evℓ , evℓ−ewℓ

}. In the case of P2ℓ+2, we have the additional vertex {ew0−ev0 , ev0−ew0}.
By Lemma 5.4 in [Sta11], P s

2ℓ+1 (resp. P2ℓ+2) is given by the convex hull of points of

the form
∑

p∈I p

|I| where I is an s-orbit of the vertices of P s
2ℓ+1 (resp. P2ℓ+2). The orbits

{ew0−ev0 , ev0−ew0} and {ewℓ
−evℓ , evℓ−ewℓ

} correspond to the origin and do not contribute
to the description of P s

2ℓ+1 (resp. P2ℓ+2). The remaining orbits yield

P s
2ℓ+1 = P s

2ℓ+2 = conv

{
±1

2
(evi + ewi

− evi+1
− ewi+1

) : 0 ≤ i ≤ ℓ− 1

}
.

One can see that the points {evi + ewi
− evi+1

− ewi+1
} form a lattice basis for the fixed

subspace (note that it does not matter whether v0 and w0 are identical or not), and with
respect to that basis, P s

2ℓ+1 is unimodularly equivalent to the cross-polytope of dimension
ℓ dilated by the factor 1

2
. By [BJM13, Theorem 1.4] and the fact that the Ehrhart series

of the interval [−1
2
, 1
2
] is 1+t2

(1−t)(1−t2)
, the result follows by induction on ℓ.

Remark 6. For even cycle graphs C2ℓ+2, there is another type of reflection: one that fixes
two antipodal vertices. For such a reflection sr ∈ D4ℓ+4, the fixed sub-polytope P sr

2ℓ+2

cannot be studied using the same method as in Proposition 26. The one-element sr-orbits



CHAPTER 6. THE EET OF ORDER-TWO SYMMETRIES 59

are {v0} and {wℓ} and the other orbits are {vi, wi−1}. By a similar argument as above,
the vertices of the sub-polytope P sr

2ℓ+2 are of the form

± 1

2
(evi + ewi−1

− evi+1
− ewi

) for i = 1, . . . , ℓ− 1,

± 1

2
(ev1 + ew0 − 2ev0) and ± 1

2
(evℓ + ewℓ−1

− 2ewℓ
).

For ℓ = 1, this is unimodularly equivalent to a dilated square containing the origin in its
interior. For ℓ > 1, one can cut through the points ±(ev1 + ew0 − 2ev0) and ±(ev1 + ew0),
which yields a subpolytope of 2P sr

2ℓ+2 containing the origin and four of its vertices. Again,
this is unimodularly equivalent to a square containing the origin. Hence, P sr

2ℓ+2 is not
unimodularly equivalent to a dilated cross-polytope.

We have computed the invariant polytopes of the symmetric edge polytope fixed by
reflections of D2d. The remaining conjugacy classes are the rotations. For odd d, the
irreducible characters of D2d are determined by the following table:

1 rk srk

ψ1 1 1 1
ψ2 1 1 −1

χj 2 2 cos 2jkπ
d

0

.

where j ranges from 1 to d−1
2

and k ranges from 1 to d.

In general, the fixed polytope P rk

d with respect to a rotation rk is very difficult to
compute directly. Not only does the description of the vertices of P rk

d depend on the cycle
decomposition of the permutation action of rk on the basis vectors of R|V |, but also on the
adjacency of these vertices in the cycle graph.

However, the rotation rk ∈ D2d, where k and d are coprime, does not fix any vertex
of Cd. Therefore, the induced action on Pd fixes only the origin, whose Ehrhart series is
simply a geometric series ehr({0}, t) = 1 + t + t2 + · · · = 1

1−t
. This yields the following

result when d is prime.

Theorem 15. Let p ≥ 3 be a prime number. The H∗-series H∗
(p) of Pp with respect to the

action of the dihedral group D2p is a polynomial of degree p− 1 and its coefficients H∗
(p),j

are given by

H∗
(p),j =

1

2p

{
(h

(p)
j − 1 + p(g

(p)
j + 1))ψ1 + (h

(p)
j − 1− p(g(p)j − 1))ψ2 + (2h

(p)
j − 2)χ if 2 | j,

(p+ h
(p)
j − 1)ψ1 + (p+ h

(p)
j − 1)ψ2 + (2h

(p)
j − 2)χ if 2 ∤ j.

with where h
(p)
j follows the notation from Proposition 25, g

(p)
j :=

(
(p−1)/2

j/2

)
, and χ =

∑
j χj.

In particular, H∗
(p) is effective.

To prove Theorem 15, we require the following technical lemma.



CHAPTER 6. THE EET OF ORDER-TWO SYMMETRIES 60

Lemma 9. Let d ≥ 3 be an odd integer and let 0 ≤ j ≤ d−1
2

be even. Define

g
(d)
j =

(
(d− 1)/2

j/2

)
and h

(d)
j = (−1)j

j∑
i=0

(−2)i
(
d

i

)(
d− 1− i
j − i

)
.

Then the inequality h
(d)
j ≥ d · (g(d)j − 1) + 1 holds.

Proof. In the case of j = 0, the statement follows because h
(d)
0 = g

(d)
0 = 1. Hence, we let

0 < j ≤ d−1
2

. In particular, we have d ≥ 5.
We start by observing the recurrence relations

g
(d)
j = g

(d−2)
j−2 + g

(d−2)
j and h

(d)
j ≥ h

(d−2)
j−2 + 2h

(d−2)
j−1 + h

(d−2)
j

for 0 < j ≤ d−1
2

and g
(d)
0 = h

(d)
0 = 1. The inequality for h

(d)
j is an equality if j < (d− 1)/2.

If j = d−1
2

then we get

h
(d)
d−1
2

= 4h
(d−2)
d−3
2

> 2h
(d−2)
d−3
2

+ 2h
(d−2)
d−5
2

= h
(d−2)
d−5
2

+ 2h
(d−2)
d−3
2

+ h
(d−2)
d−1
2

.

For j > 0, we prove the statement by induction on odd d. Assume h
(d)
j > d·(g(d)j −1)+1.

Then, by the recurrences, we have:

h
(d+2)
j ≥ h

(d)
j−2 + 2h

(d)
j−1 + h

(d)
j > d(g

(d)
j−2 − 1) + 1 + 2h

(d)
j−1 + d(g

(d)
j − 1) + 1

= d(g
(d+2)
j − 2) + 2 + 2h

(d)
j−1.

At the same time, we can write:

(d+ 2)(g
(d+2)
j − 1) + 1 = d(g

(d+2)
j − 2) + 2 + 2(g

(d)
j−2 + g

(d)
j ) + d− 3.

Hence it remains to prove that h
(d)
j−1 ≥ g

(d)
j−2 + g

(d)
j + d−3

2
.

Here, by our assumption, we let j := 2k and d := 2n + 1, where k ≥ 1, n ≥ 2 and
2k ≤ n. Since h

(d)
ℓ ≥

(
d−1
ℓ

)
holds for any ℓ, we get the following inequalities:

h
(d)
j−1 = h

(2n+1)
2k−1 ≥

(
2n

2k − 1

)
≥
(

2n

k

)
≥
(
n+ 1

k

)
+ n− 1

=

(
n

k

)
+

(
n

k − 1

)
+ n− 1 = g

(d)
j−2 + g

(d)
j +

d− 3

2
.

This concludes the proof.

Proof of Theorem 15. For the reflection s, we obtain

det(I − t · ρp(s)) = det



1− t 0 0 · · ·

0
1 −t
−t 1

0 · · ·

0 0
1 −t
−t 1

· · ·
...

...
...

. . .


= (1− t)(1− t2)

p−1
2 .
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For the rotation r, note that p is odd, so we get det(I− t ·ρp(r)) = 1+(−t)p = 1− tp. Since
p is a prime number, recall that the rotation r, and any power rk with 1 ≤ k ≤ p−1, fixes
only the origin. That is P rk

p = {0}, and so ehr(P r
p , t) = 1

1−t
. Using this and the description

of the Ehrhart series in Propositions 25 and 26, we obtain:

H∗
(p)[t](1) = h

(p)
0 + h

(p)
1 t+ · · ·+ h

(p)
p−1t

p−1,

H∗
(p)[t](s) = (1 + t2)

p−1
2 ,

H∗
(p)[t](r) =

1− tp

1− t
= 1 + t+ · · ·+ tp−1,

where h
(p)
j are the values specified in Proposition 25.

Consider now the character of the regular module RD2p, which is given by ψ1 + ψ2 +
2
∑

j χj. It is well known that this character evaluates to zero at every element of D2p

except at 1 where it evaluates to 2p. Hence, we deduce that the composite character
χ =

∑
j χj, obtained by adding together all irreducible two-dimensional characters of D2p,

is given by:
1 rk srk

χ p− 1 −1 0
.

The coefficients H∗
(p),j of the H∗-series are given by

H∗
(p),j =

1

2p

{
(h

(p)
j − 1 + p(g

(p)
j + 1))ψ1 + (h

(p)
j − 1− p(g(p)j − 1))ψ2 + (2h

(p)
j − 2)χ if 2 | j,

(p+ h
(p)
j − 1)ψ1 + (p+ h

(p)
j − 1)ψ2 + (2h

(p)
j − 2)χ if 2 ∤ j.

It remains to show that these quantities are non-negative integers. Non-negativity follows
from Lemma 9 and integrality follows immediately from the fact that H∗[t] is an element
of R(D2p)[[t]].

In the last part of this section, we study the equivariant Ehrhart theory of the order
2 subgroups associated to the reflections described in Proposition 26. Fix the subgroup
S2 = {1, s} of D2d. We write χ1 and χ2 for the trivial and non-trivial characters of S2

respectively.

Theorem 16. Let d ≥ 3 be an integer and let ℓ = ⌊d/2⌋ and b ∈ {0, 1} be integers such
that d = 2ℓ + 1 + b. The equivariant H∗-series of Pd under the action of S2, denoted
H∗

(d)[t], is a polynomial of degree d− 1 and its coefficients H∗
(d),j are given by

H∗
(d),j =

1

2

[
(h

(d)
j + g

(d)
j )χ1 + (h

(d)
j − g

(d)
j )χ2

]
.

where h
(d)
j follows the notation from Proposition 25 and g

(d)
j are the coefficients of the

polynomial (1 + t)b(1 + t2)ℓ := g
(d)
0 +g

(d)
1 t+ · · ·+g

(d)
d−1t

d−1. In particular, H∗
(d)[t] is effective.

Proof. By a similar argument to the proof of Theorem 15, we obtain

det(I − t · ρd(s)) = (1− t)1−b(1− t2)ℓ+b.
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By the description of ehr(Pd, t) in Proposition 26, we have:

H∗
(d)[t](1) = h

(d)
0 + h

(d)
1 t+ · · ·+ h

(d)
d−1t

d−1,

H∗
(d)[t](s) = (1 + t)b(1 + t2)ℓ = g

(d)
0 + g

(d)
1 t+ · · ·+ g

(d)
d−1t

d−1.

For the coefficients H∗
(d),j of the H∗-series, we obtain

H∗
(d),j =

1

2

[
(h

(d)
j + g

(d)
j )χ1 + (h

(d)
j − g

(d)
j )χ2

]
.

It remains to show that H∗
(d) is effective, for which it suffices to show that h

(d)
j ≥ g

(d)
j . If d

is odd, this follows directly from Lemma 9. If d is even, we start with the case where j is
also even. We can use that in this case, g

(d)
j = g

(d−1)
j , giving us

h
(d)
j ≥ h

(d−1)
j−1 + h

(d−1)
j ≥ h

(d−1)
j ≥ g

(d−1)
j = g

(d)
j .

For the case where j is odd, we may assume without loss of generality that j ≤ ℓ− 1. In
this case, we use g

(d)
j = g

(d)
j−1 and the fact that H∗

(d)(1) is unimodal, to conclude

h
(d)
j ≥ h

(d)
j−1 ≥ g

(d)
j−1 = g

(d)
j .

So we have shown that H∗
(d)[t] is effective, completing the proof.

6.3 Rational cross-polytopes

In this section we prove Theorem 17 which gives a complete description of the equivariant
H∗-series of P (k, d) under the action of a reflection group. We observe in Example 9 that
a rational analogue of Conjecture 1 does not hold for rational polytopes with period one.

The Ehrhart series ehr(P (k, d), t) has the following explicit description.

Proposition 27 (An application of [BJM13, Theorem 1.4]). For each k odd and d ≥ 2
we have

ehr(P (k, d), t) = (1− t) ehr([k/2,−k/2], t)
(1 + t)d−1

(1− t)d
=

(1 + (k − 1)t+ kt2)(1 + t)d−2

(1− t)d+1
.

In the following, we will refer to (1 + (k − 1)t + kt2)(1 + t)d−2 by h̃P (k,d). We denote
by G = {1, σ} the group of order two. We fix its two irreducible characters: the trivial
character χ1 and non-trivial character χ2. Fix some index i ∈ [n]. We let G act on the
lattice Z[e1, . . . , ed] by a coordinate reflection σ(ei) = −ei and σ(ej) = ej for all j ∈ [n]\{i}.

Proposition 28. If i ∈ {1, 2, . . . , d− 1}, then H∗[t] = χ1 · h̃P (k,d)(t).



CHAPTER 6. THE EET OF ORDER-TWO SYMMETRIES 63

Proof. The reflection σ acts on P (k, d) by the diagonal matrixA = Diag(1, . . . , 1,−1, 1, . . . , 1)
where −1 appears in position i. Therefore, we may compute det(I−tA) = (1−t)d−1(1+t).

We proceed by taking cases on d; either d = 2 or d > 2. Fix d = 2. In this case, the
fixed polytope P (k, 2)σ is a line segment [k/2,−k/2] and so its Ehrhart series is

ehr(P (k, 2)σ, t) =
1 + (k − 1)t+ kt2

(1− t)(1− t2)
=

h̃P (k,2)(t)

(1− t) det(I − tA)
.

On the other hand, the identity element e ∈ G acts by the identity matrix I and so
det(I − tI) = (1− t)3. Clearly, this fixes the entire polytope P (k, d), so its Ehrhart series
is given by

ehr(P (k, 2), t) =
1 + (k − 1)t+ kt2

(1− t)3
=

h̃P (k,2)(t)

(1− t) det(I − tI)
.

And so we have that H∗[t] = χ1 · h̃P (k,2)(t) and we are done for the case d = 2.

Next, let d > 2. The fixed polytope P (k, d)σ is equal to P (k, d−1) in a one-dimension-
higher ambient space, and so, by Proposition 27, its Ehrhart series is given by

ehr(P (k, d)σ, t) =
(1 + (k − 1)t+ kt2)(1 + t)d−3

(1− t)d
(1 + t)

(1 + t)
=

h̃P (k,d)(t)

(1− t) det(I − tA)
.

On the other hand the identity element e ∈ G fixes the entire polytope P (k, d) and so its
Ehrhart series is

ehr(P (k, d), t) =
h̃P (k,d)(t)

(1− t)d+1
=

h̃P (k,d)(t)

(1− t) det(I − tI)
.

And so it follows that H∗[t] = χ1 · h̃P (k,d)(t) and we are done for the case d > 2.

Proposition 29. If i = d, then H∗[t] =
∑d

j=0(ajχ1 + bjχ2)t
j where

aj =

(
d− 2

j

)
+

1

2
(k + 1)

(
d− 1

j − 1

)
and bj =

1

2
(k − 1)

(
d− 1

j − 1

)
−
(
d− 2

j − 1

)
and

(
n
k

)
is defined to be zero if k < 0 or k > n.

Proof. The identity e ∈ G acts by the identity matrix I, hence det(I − tI) = (1− t)d. So,
by Proposition 27, we have

ehr(P (k, d), t) =
(1 + (k − 1)t+ kt2)(1 + t)d−2

(1− t)d+1
=

(1 + (k − 1)t+ kt2)(1 + t)d−2

(1− t) det(I − tI)
.

On the other hand, the reflection acts by the diagonal matrix A = Diag(1, . . . , 1,−1)
hence det(I − tA) = (1 − t)d−1(1 + t). Observe that the fixed polytope P (k, d)σ is a
(d− 1)-dimensional cross-polytope, therefore we have

ehr(P (k, d)σ, t) =
(1 + t)d−1

(1− t)d
=

(1 + t)d

(1− t) det(I − tA)
.
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Write H∗[t] =
∑d

j=0(ajχ1 + bjχ2)t
j for some aj and bj. By evaluating H∗[t] at each group

element g ∈ G, we have H∗[t](g) = ehr(P (k, d)g, t)(1− t) det(I − tρ(g)). It follows that{
aj + bj =

(
d−2
j

)
+ (k − 1)

(
d−2
j−1

)
+ k
(
d−2
j−2

)
,

aj − bj =
(
d
j

)
=
(
d−2
j

)
+ 2
(
d−2
j−1

)
+
(
d−2
j−2

)
for j ∈ {0, 1, . . . , d} where

(
n
k

)
is defined to be zero if k < n or k > n. By solving this, we

obtain the desired conclusion.

Example 9. Consider the case d = 2 and k = 1. The polytope P (1, 2) is given by

P (1, 2) = conv{(1, 0), (−1, 0), (0, 1/2), (0,−1/2)}.

The group G = {1, σ} acts by a coordinate reflection: σ(e2) = −e2 and σ(e1) = e1. The
equivariant Ehrhart H∗-series is H∗[t] = χ1 + (χ1 − χ2)t + χ1t

2. In particular, H∗[t] is
polynomial but not effective since χ1 − χ2 is not the character of a representation of G.

Remark 7. Consider the dilate of the polytope 2P (1, 2) with the same group action as in
Example 9. In this case the equivariant H∗-series is given by H∗[t] = χ1 · (1 + 4t+ 3t2) =
χ1 · h̃2P (k,d)(t). The example P (1, 2) does not extend to an example of a lattice polytope
since all lattice points of P (1, 2) are fixed by G. However, if G is a non-trivial group acting
non-trivially on a full dimensional lattice polytope, then at least one lattice point of P is
not fixed by G. Concretely, we can say the following about two dimensional polytopes.

Suppose that G is the group of order 2 and irreducible characters χ1 and χ2. Assume
G acts on a 2-dimensional lattice M and let P be a G-invariant lattice polytope with
a polynomial equivariant H∗-series given by H∗[t] = χ1 + (aχ1 + bχ2)t + cχ1t

2 for some
a, b, c ∈ Z. By Corollary 6.7 in [Sta11], H∗[t] is effective. Moreover, since χ1 corresponds to
a trivial permutation representation and χ1+χ2 corresponds to the regular representation,
which is a permutation representation as well, the linear coefficient of H∗[t] is itself a
permutation representation if a ≥ b ≥ 0. To see that this is satisfied, one first should
notice that 2P σ is a lattice polytope by Corollary 5.4 in [Sta11] and so it is either a line
segment or a point whose vertices have coordinates lying in 1

2
Z. If P σ is a non-lattice

point, then the result follows from a simple computation. So, by Lemma 7.3 in [Sta11] and
our assumption that H∗[t] is a polynomial, we only need to consider the case where P σ

contain a lattice point. So, it follows that P σ is unimodularly equivalent to a line segment
[v, w] ⊆ R with v, w ∈ 1

2
Z. By taking cases on whether v or w lie in Z we can show that

the Ehrhart series has the form

ehr(P σ, t) =
1 + rt+ st2

(1− t)(1− t2)

with r, s ≥ 0. Evaluating H∗[t] at σ and comparing coefficients gives us a− b = r ≥ 0

Let G = (Z /2Z)d = ⟨σ1, σ2, . . . , σd⟩ be the group of coordinate reflections of Rd.
Explicitly, for each i, j ∈ {1, 2, . . . , d} we have σi(ei) = −ei and σi(ej) = ej if i ̸= j. Let
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χ1 denote the trivial character of G and χ2 denote the character satisfying χ2(σd) = −1
and χ2(σi) = 1 for all i ∈ {1, 2, . . . , d− 1}. The polytope P (k, d) is invariant under G. By
Propositions 28 and 29 it follows that the equivariant H∗-series H∗[t] of P is a polynomial
whose coefficients are integer multiples of χ1 and χ2. Moreover, we obtain the following
result.

Theorem 17. With the setup above, we have H∗[t] =
∑d

j=0(ajχ1 + bjχ2)t
j where

aj =

(
d− 2

j

)
+

1

2
(k + 1)

(
d− 1

j − 1

)
and bj =

1

2
(k − 1)

(
d− 1

j − 1

)
−
(
d− 2

j − 1

)
and

(
n
k

)
is defined to be zero if k < 0 or k > n.

Example 10. Let d ≥ 3 and k = 1. The polytope P (k, d) has Ehrhart series

ehr(P (1, d), t) =
(1 + t+ t2 + t3)(1 + t)d−3

(1− t)d+1
.

We note that this coincides with the Ehrhart series of the lattice polytope Qd ⊆ R3×Rd−3

given by Qd = conv{e1, e2, e3,−e1−e2−e3}⊕[−1, 1]⊕(d−3). By a result of Stapledon [Sta11,
Proposition 6.1], the equivariant H∗-series of the simplex S = conv{e1, e2, e3,−e1−e2−e3}
is always effective. If a group G = {1, σ} acts on Qd with an action that factors σ(x, y) =
(σ|R3(x), σ|Rd−3(y)) such that σ|Rd−3 acts by a coordinate reflection, then the equivariant
H∗-series of Qd is (1 + t)d−3 times the H∗-series of S, meaning that it is effective.

On the other hand, if we take the polytope P (1, d) with respect to the action of
G = {1, σ} given by σ(ed) = −ed and σ(ei) = ei for all i ∈ {1, . . . , d − 1} then the
equivariant H∗-series is not effective.



Chapter 7

The equivariant Ehrhart Theory of
the hypersimplex

In this chapter we study the equivariant Ehrhart theory of hypersimplices under the action
of the symmetric group. The authors of [EKS24] already showed that the equivariant H∗-
series is effective in that case, but we find a new, more direct proof. Further, we show
that H∗[1] is a permutation action, confirming Conjecture 2 in this case. The content of
this chapter is fully contained in the author’s paper [CK24] with Oliver Clarke.

7.1 The main results

Let 0 < k < n be integers and let ∆n
k be the hypersimplex of type (k, n). In the following,

we will consider the action of the symmetric group Sn on Rn via coordinate permutation.
Note that ∆n

k is fixed by this action.
Fix σ ∈ Sn a permutation with cycle type (s1, . . . , sr). For each 0 < k < n and m ≥ 0,

we define the set of functions

Φk(σ,m) =

{
f : [r]→ {0, 1, . . . , k − 1} :

r∑
i=1

f(i)si = m

}
.

By convention, we define Φℓ(σ,m) = ∅ for all m < 0. For each h ≥ 0, we define the set

Ih =

{
I = (I1, I2, . . . , Ik−1) ∈ Zk−1

≥0 :
k−1∑
i=1

i · Ii = h

}
.

For each I ∈ Ih, we write |I| = I1 + I2 + · · · + Ik−1. The number of functions |Φk(σ,m)|
is the evaluation of the permutation character of Sn.

Proposition 30. Fix 0 < k < n and m ≥ 0. Let χ be the permutation character of Sn

acting on the set of function functions {f : [n] → {0, 1, . . . , k − 1} :
∑n

i=1 f(i) = m} by
(σ · f)(i) = f(σ−1(i)). Then χ(σ) = |Φk(σ,m)|.

Proof. Follows immediately from the definition.

66
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With this, we can state our first main result.

Theorem 18. Fix 0 < k < n and σ ∈ Sn with cycle type (s1, s2, . . . , sr). For each m ≥ 0,
the m-th coefficient of the equivariant H∗-series of H∗

∆n
k
is

H∗
m(σ) =

k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
|Φk−h(σ,m(k − h)− h)|.

In particular, H∗ has degree
⌊
(k−1)n

k

⌋
.

The Ehrhart theory of hypersimplices is closely related to a class of combinatorial
objects called decorated ordered set partitions (DOSPs for short) which we shall introduce
now.

Definition 13. A (k, n)-DOSP is an ordered partition (L1, . . . , Lr) of {1, 2, . . . , n} to-
gether with a sequence of positive integers (ℓ1, . . . , ℓr) such that ℓ1 + ℓ2 + · · ·+ ℓr = k. We
write a DOSP as a sequence of pairs D = ((L1, ℓ1), . . . , (Lr, ℓr)). A DOSP is defined up
to cyclic permutation. So, for example, we have D = ((L2, ℓ2), . . . , (Lr, ℓr), (L1, ℓ1)). We
say D is hypersimplicial if |Li| > ℓi for each i ∈ {1, . . . , r}.

For every DOSP D, Early [Ear17] defines the winding number w(D) ∈ {0, 1, . . . , n−1},
see Definition 14, and conjectured that the h∗-polynomial is given by

h∗∆n
k
(t) =

∑
D

tw(D)

where the sum is taken over all hypersimplicial (k, n)-DOSPs. This conjecture was proved
by Kim [Kim20].

In [EKS24], this result is brought to the equivariant realm.

Theorem 19 ([EKS24, Theorem 3.33]). Let 0 < k < n and let the cyclic group Cn act on
Rn via cyclic permutation of the coordinates. Further, let H∗

m denote the m-th coordinate
of the equivariant H∗-series of the hypersimplex of type (k, n) under the action of Cn.
Then H∗

m is the permutation representation of the (k, n)-DOSPs with winding number m
where Cn acts by cyclically permuting the set [n].

In particular, this satisfies Stapledon’s Conjecture 2. Under the full action of the sym-
metric group, an analogous result does not hold because in general, the coefficients of the
equivariant Ehrhart series of any given hypersimplex are not permutation representations.
Our second main result shows that something similar is still true.

Theorem 20 (Theorem 22). The character H∗[1] of the equivariant H∗-polynomial of ∆n
k

under the action of Sn is equal to the permutation character of Sn acting on the set of
hypersimplicial (k, n)-DOSPs.
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7.2 Coefficients of the equivariant H∗-polynomial

The goal of this section is to prove Theorem 18.

7.2.1 Katzman’s method

In this section, we apply the method used by Katzman [Kat05] to obtain a formula for the
coefficients of the equivariant H∗-series. First, we introduce two pieces of useful notation.
Given σ ∈ Sn with cycle type (s1, . . . , sr), we define the formal power series

uσ =
∑
i≥0

uσi t
i =

k∏
i=1

1 + tsi + t2si + · · · =
k∏

i=1

1

1− tsi
∈ Z[[t]].

If σ is clear from context, then we write u for uσ and ui for uσi . For each subset S ⊆ [r],
we write ΣσS =

∑
i∈S si. If the permutation σ is clear from context then we write ΣS for

ΣσS.

Lemma 10. Fix 0 < k < n and σ ∈ Sn with cycle type (s1, . . . , sr). For each i ∈ [n], let
λi be the number of length i cycles of σ. For each m ≥ 0 we have

H∗
m(σ) =

∑
S⊆[r]

(−1)|S|
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
u(m−ΣS)(k−h)−h.

Proof. By conjugating σ, we may assume without loss of generality that

σ = (1 2 . . . s1)(s1 + 1 s1 + 2 . . . s1 + s2) . . . (n− sr + 1 n− sr + 2 . . . n).

Fix d ≥ 0. We have that (d∆n
k)σ ∩ Zn is equal to(x1, . . . , x1︸ ︷︷ ︸

s1

, x2, . . . , x2︸ ︷︷ ︸
s2

, . . . , xr, . . . , xr︸ ︷︷ ︸
sr

) ∈ Zn :
r∑

i=1

xisi = kd, 0 ≤ xi ≤ d for all i ∈ [r]

 .

So there is a bijection between the set solutions (x1, x2, . . . , xr) ∈ {0, 1, . . . , d}r to
∑r

i=1 xisi =
kd and (d∆n

k)σ ∩ Zn. Consider the polynomial

fd(t) =
r∏

i=1

(1 + tsi + t2si + · · ·+ tdsi) =
r∏

i=1

1− t(d+1)si

1− tsi
.

For each solution (x1, . . . , xr) to the above equation, we have a term tkd = tx1s1tx2s2 . . . txrsr .
Moreover, each term tkd in the expansion of fd(t) arises from such a solution. So we have
that |(d∆n

k)σ ∩ Zn | is equal to the coefficient of tkd in fd(t), which we denote by [fd]kd.
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For each si ≥ k, we have that t(d+1)si does not divide tkd. It follows that [fd]kd is equal
to the coefficient of tkd in the formal power series:

[fd]kd =

[
k−1∏
j=1

(1− t(d+1)j)λj

r∏
i=1

1

1− tsi

]
kd

=

k−1∏
j=1

λj∑
h=0

(−1)h
(
λj
h

)
t(d+1)jh

r∏
i=1

1

1− tsi


kd

=

[
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)(
λ2
I2

)
· · ·
(
λℓ−1

Ik−1

))
t(d+1)h

r∏
i=1

1

1− tsi

]
kd

=
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)(
λ2
I2

)
· · ·
(
λℓ−1

Ik−1

))
ukd−(d+1)h.

So the Ehrhart series of (∆n
k)σ is given by

∑
d≥0

[fd]kdt
d =

∑
d≥0

(
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
ukd−h(d+1)

)
td =

H∗[t](σ)∏r
i=1 1− tsi

,

where the right-most equality follows from definition of the equivariant H∗-series. So, by
clearing the denominator, we obtain a formula for the coefficients of equivariant H∗-series.
For each m ≥ 0, we have

H∗
m(σ) =

[
r∏

i=1

(1− tsi)
∑
d≥0

(
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
ukd−h(d+1)

)
td

]
m

=
∑
S⊆[r]

(−1)|S|
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

iℓ−1

))
u(m−ΣS)(k−h)−h.

This concludes the proof of the result.

We illustrate the steps in the above proof with the following example.

Example 11. Let k = 3. In this case, we consider the sets I0, I1, and I2, which are given
by

I0 = {(0, 0)}, I1 = {(1, 0)}, I2 = {(2, 0), (0, 1)}.

So, we have

[fd]3d =

[(
1− λ1td+1 +

((
λ1
2

)
− λ2

)
t2(d+1)

)
uσ
]
3d

= u3d−λ1u2d−1+

((
λ1
2

)
− λ2

)
ud−2.
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The Ehrhart series of (∆n
3 )σ is given by

H∗[t](σ)∏r
i=1(1− tsi)

=
∑
d≥0

(
u3d − λ1u2d−1 +

((
λ1
2

)
− λ2

)
ud−2

)
td.

The coefficient of tm in the H∗ series is given by

H∗
m =

∑
S⊆[k]

(−1)|S|
(
u3(m−ΣS) − λ1u2(m−ΣS)−1 +

((
λ1
2

)
− λ2

)
um−ΣS−2

)
.

7.2.2 Permutation representation interpretation

In this section we prove Theorem 18. To do this, we use the sets of functions Φk(σ,m), see
Section 7.1, to give an interpretation of terms appearing in formula for H∗

m in Lemma 10.

Lemma 11. Fix 0 < k < n and σ ∈ Sn with cycle type (s1, . . . , sr). With our usual
notation, we have ∑

S⊆[r]

(−1)|S|um−kΣS = |Φk(σ,m)|.

Proof. We prove the result by induction on r. For the base case, assume r = 1, i.e., σ
is an n-cycle. We have Σ∅ = 0 and Σ{1} = n, and u = 1 + tn + t2n + · · · = 1/(1 − tn).
Therefore the left-hand sum is given by

∑
S⊆[r]

(−1)|S|um−kΣS = um − um−kn =

{
1 if m ∈ {0, n, 2n, . . . , (k − 1)n},
0 otherwise.

On the other hand, there are exactly k functions f : [r]→ {0, 1, . . . , k− 1}, and, any such
function f satisfies

∑
i f(i)si = f(1)n. Therefore

|Φk(σ,m)| =

{
1 if m ∈ {0, n, 2n, . . . , (k − 1)n}
0 otherwise

=
∑
S⊆[r]

(−1)|S|um−kΣS,

and we are done with the base case.
For the induction step, let σ be a permutation with cycle type (s1, s2, . . . , sr+1) and

assume that the result holds for any permutation with r disjoint cycles. Let τ be a
permutation with cycle type (s1, . . . , sr). For ease of notation, we define s := sr+1. We
note that uσ = uτ (1 + ts + t2s + . . . ), so it follows that uσi =

∑
j≥0 u

τ
i−sj. Then have the
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following chain of equalities:∑
S⊆[r+1]

(−1)|S|uσm−kΣσS =
∑
S⊆[r]

(−1)|S|
(
uσm−kΣσS − uσm−kΣσS−ks

)
=
∑
S⊆[r]

(−1)|S|
(
uσm−kΣτS − uσm−kΣτS−ks

)
=
∑
S⊆[r]

(−1)|S|
∑
j≥0

(
uτm−kΣτS−sj − uτm−kΣτS−s(j+k)

)
=
∑
S⊆[k]

(−1)|S|
k−1∑
j=0

uτm−kΣτS−sj

=
k−1∑
j=0

|Φk(τ,m− sj)|.

To conclude the proof, we note that there is a natural bijection between the sets

Φk(σ,m)↔
k−1⊔
j=0

Φk(τ,m− sj)

f 7→ f |[r] ∈ Φk(τ,m− sf(k))(
i 7→

{
f(i) if i ∈ [r]

j if i = r + 1

)
←[ f ∈ Φk(τ,m− sj) for some j ∈ {0, 1, . . . , k − 1}.

It follows that |Φk(σ,m)| =
∑k−1

j=0 |Φk(τ,m − sj)| =
∑

S⊆[r+1](−1)|S|uσm−kΣσS. This con-
cludes the proof of the result.

With this result, we can give a proof of Theorem 18.

Proof of Theorem 18. By Lemma 11, we have∑
S⊆[r]

(−1)|S|um(k−h)−h−(k−h)ΣS = |Φk−h(σ,m(k − h)− h)|.

By Lemma 10, we have

H∗
m(σ) =

∑
S⊆[r]

(−1)|S|
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
u(m−ΣS)(k−h)−h

=
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))∑
S⊆[r]

(−1)|S|um(k−h)−h−(k−h)ΣS

=
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
|Φk−h(σ,m(k − h)− h)|.
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We will now prove that H∗ is indeed a polynomial of degree ⌊(k − 1)n/k⌋. Let σ ∈ Sn

be a permutation with cycle type (s1, . . . , sr) and fix h ≥ 0. For any function f : [r] →
{0, 1, . . . , k − h− 1}, we have

r∑
i=1

f(i)si ≤ (k − h− 1)n.

If m satisfies (k − 1)n < km then we have

r∑
i=1

f(i)si ≤ (k−h−1)n <
(k − h− 1)km

k − 1
= km− khm

k − 1
= m(k−h)− hm

k − 1
< m(k−h)−h,

hence the set Φk(σ,m(k − h) − h) is empty. Thus the coefficient H∗
m(σ) = 0 for all

m > (k − 1)n/k, so the H∗ series is a polynomial.
On the other hand, let e ∈ Sn be the identity. The set Φk(e,mk) is non-empty if and

only if m satisfies (k − 1)n ≥ km. Therefore, the degree of the H∗-polynomial is at least
⌊(k − 1)n/k⌋, which concludes the proof.

7.3 Decorated ordered set partitions

In this section we show thatH∗(∆n
k ;Sn)[1] is a permutation character of Sn acting naturally

on the set of hypersimplicial (k, n)-DOSPs. From Section 7.1 we recall the definition of
the set Ih. Our main result gives a formula for the number of hypersimplicial σ-fixed
(k, n)-DOSPs.

Theorem 21 (Theorem 22). Let 2 ≤ k < n and H∗ be the equivariant H∗-polynomial of
∆n

k under the action of Sn. Then H
∗[1] is equal to the permutation character of the action

of Sn on hypersimplicial (k, n)-DOSPs. Let σ ∈ Sn be a permutation with r disjoint cycles,
and write λi for the number cycles of length i. Then the number of σ-fixed hypersimplicial
(k, n)-DOSPs is

H∗[1](σ) = g
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
(k − h)r−1

where g = gcd({k} ∪ {i ∈ [n] : λi ≥ 1}).

In the following sections we state and prove Theorem 21 in two steps. First, we use
Theorem 18 to show that the above formula for H∗[1] holds. We count the total number
of σ-fixed (k, n)-DOSPs, including non-hypersimplicial DOSPs. We observe that this total
corresponds to the h = 0 term in the above sum, which is equal to gkr−1. Second, we
give an explicit formula for the number of σ-fixed non-hypersimplicial DOSPs using the
inclusion-exclusion principle. We simplify the formula using the falling factorial identity



CHAPTER 7. THE EET OF THE HYPERSIMPLEX 73

for Stirling numbers to prove the theorem. In the remainder of this section, we give an
alternative but equivalent definition for DOSPs under the action of Sn and define a notion
of directed distance within a DOSP.

Alternative DOSP definition. Fix k < n. Let Ψ = {f : [n] → Z /k Z} be the set of
functions modulo the equivalence relation f ∼ g if and only if f − g is constant. Then
there is an action of Sn on Ψ given by (σ · f)(i) = f(σ−1(i)) for each σ ∈ Sn and f ∈ Ψ.
We now describe the natural Sn-set isomorphism between Ψ and the set of (k, n)-DOSPs.
Given a DOSP D = ((L1, ℓ1), (L2, ℓ2), . . . , (Lt, ℓt)), its corresponding function is fD(i) = 0
if i ∈ L1 and fD(i) = ℓ1 + ℓ2 + · · · + ℓj−1 if i ∈ Lj with j ≥ 2. It is straightforward to
check that the map D 7→ fD is an isomorphism of Sn-sets.

Definition 14 (Distance in DOSPs, winding and turning number). Let i, j ∈ [n] and let
D = ((L1, ℓ1), . . . , (Lt, ℓt)) be a (k, n)-DOSP. We define the directed distance dD(i, j) from
i to j in D as follows. Without loss of generality, we may assume i ∈ L1. Suppose that
j ∈ Lu for some u ∈ [t]. Then dD(i, j) := ℓ1 + ℓ2 + · · · + ℓu−1 ∈ {0, 1, . . . , k − 1}. The
winding number of D is w(D) = (dD(1, 2) + dD(2, 3) + · · ·+ dD(n− 1, n) + dD(n, 1))/k. If
we think of the DOSP as a function f : [n]→ Z /k Z, then, for each i, j ∈ [n], the directed
distance df (i, j) = f(j)− f(i) by taking a representative in {0, 1, . . . , k − 1} ⊆ Z.

Fix a permutation σ ∈ Sn. Given a σ-fixed DOSP f : [n] → Z /k Z, we define the
turning number τ of f to be the τ ∈ Z /k Z such that τ + f(i) = (σ · f)(i) for any i ∈ [n].
This notion is well-defined since σ fixes f . See Figure 7.1 for an example with turning
number 3.

Recall that the cycle sets of σ are denoted C1, C2, . . . , Cr and partition [n] into sets of
size s1, . . . , sr respectively. For every i ∈ [r], we fix a distinguished element qi ∈ Ci.

Lemma 12. Fix 2 ≤ k < n and let σ ∈ Sn be a permutation with cycle type (s1, s2, . . . , sr).
Let g = gcd(s1, . . . , sr, k). If D is a σ-fixed (k, n)-DOSP with turning number τ , then
gτ = 0.

Proof. Suppose that f : [n]→ Z /k Z is a σ-fixed DOSP with non-zero turning number τ .
Notice that (σsi · f)(qi) = f(qi). So we have siτ = 0 for every 1 ≤ i ≤ r. Since τ ∈ Z /k Z
we have kτ = 0, and it follows that gτ = 0.

7.3.1 Interpreting terms with DOSPs

Throughout, we fix k < n and write H∗[t] = H∗(∆n
k ;Sn)[t] for the equivariant H∗-

polynomial. By Theorem 18, let d = ⌊(k − 1)n/k⌋ be the degree of H∗. We have that

H∗[1](σ) =
d∑

m=0

k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
|Φk−h(σ,m(k − h)− h)|.

The h = 0 term in the above sum is
∑d

m=0 |Φℓ(σ,mℓ)|, which we will show corresponds to
the number of σ-fixed (k, n)-DOSPs. We subsequent sections, we show that the remaining
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terms count the number of non-hypersimplicial (k, n)-DOSPs. Hence, the overall value
H∗[1] is the number of σ-fixed hypersimplicial (k, n) DOSPs.

For ease of notation, let us write functions as tuples. The function f : [n]→ {0, . . . , k−
1} is written as (f(1), f(2), . . . , f(n)) ∈ {0, . . . , k − 1}n.

Example 12. Consider the case n = 6, k = 3, and take the permutation σ = (1 2 3 4)(5 6).
In this case we have the functions

4⋃
m=0

Φ3(σ, 3m) = {(0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 2, 2)}.

Indeed there are three DOSPs that are fixed by σ, which are given by

D1 = ((123456, 3)), D2 = ((1234, 2), (56, 1)), D3 = ((1234, 1), (56, 2)).

Lemma 13. Fix 0 < k < n. Let σ ∈ Sn be a permutation with cycle type (s1, . . . , sr)
and define g = gcd(k, s1, s2, . . . , sr). Then the number of σ-fixed DOSPs is gkr−1. In
particular, there is a bijection between the set of σ-fixed DOSPs and the set

{(α1, α2, . . . , αr) : 0 ≤ α1 ≤ g − 1, 0 ≤ αi ≤ k − 1, 2 ≤ i ≤ r}.

Proof. Throughout, we consider DOSPs as functions f : [n] → Z /k Z up to equivalence.
If σ is the identity permutation, then every DOSP is fixed by σ. The number of σ-fixed
DOSPs is kn−1, because we may take f(1) = 0 and freely choose the values f(i) ∈ Z /k Z
for each i ∈ {2, 3, . . . , n}. Note that each such choice gives a distinct DOSP.

Now suppose that σ is not the identity. Let C1, C2, . . . , Cr be the cycle sets of σ.
Without loss of generality, we may assume that s1 > 1 and 1 ∈ C1. We define q1 = σ(1)
and, for each i ∈ {2, . . . , r}, let us fix a distinguished element qi ∈ Ci. Let f : [n]→ Z /k Z
be a σ-fixed (k, n)-DOSP. Without loss of generality we assume that f(1) = 0. We will
show that the sequence of integers

α = (α1, α2, . . . , αk) = (df (1, q1), df (1, q2), . . . , df (1, qr))

uniquely determines the DOSP. By assumption f(1) = 0. By definition, we have f(q1) =
df (1, q1). Since D is invariant under σ, it follows that

dD(1, σ(1)) = dD(σ(1), σ2(1)) = · · · = dD(σs1−1(1), σs1(1)) = dD(1, q1).

So the value f(σi(1)) for each element of C1 = {1, σ(1), σ2(1), . . . , σs1−1(1)} is determined
by df (1, q1). Explicitly, we have f(σi(1)) = i · df (1, q1) mod k. By a similar argument,
the value f(σi(q2)) for each element of C2 = {q2, σ(q2), σ

2(q2), . . . , σ
s2−1(q2)} is determined

by df (1, q2). To see this, observe that f(q2) = df (1, q2) and, since f is invariant under
σ, it follows that df (q2, σ(q2)) = df (1, σ(1)). We deduce that the DOSP f is uniquely
determined by α.

We now consider the possible vectors α. By definition, we have that df (1, q1) =
df (1, σ(1)) is the turning number of f . By Lemma 12 we have that g · df (1, q1) ≡ 0
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mod k. The possible values for df (1, q1) · g are β · k for each β ∈ {0, 1, . . . , g − 1}. Hence,
the possible values for df (1, q1) are βk/g for each 0 ≤ β < g. For each such value of
α1 = df (1, q1), we may freely choose the values α2, . . . , αk in {0, 1, . . . , k− 1}. Each choice
gives a distinct DOSP and every σ-fixed (k, n)-DOSP arises in this way. So the total
number of DOSPs is gkr−1.

Proposition 31. Let σ ∈ Sn be a permutation with cycle type s1, s2, . . . , sr, and fix k ∈ [n].
Define

Φ =

{
(f1, f2, . . . , fr) ∈ {0, 1, . . . , k − 1}r :

r∑
i=1

fisi ≡ 0 mod k

}
,

and let g := gcd(s1, s2, . . . , sr, k). Then |Φ| = gkr−1.

Proof. Consider the homomorphism of abelian groups

φ : (Z /k Z)r → Z /k Z, (f1, f2, . . . , fr) 7→
r∑

i=1

fisi.

The image of φ is the subgroup of Z /k Z generated by s1, s2, . . . , sr. By Bezout’s identity

⟨s1, s2, . . . , sk⟩ = ⟨gcd(s1, s2, . . . , sr, k)⟩ = ⟨g⟩ ⊆ Z /k Z .

So we have | Im(φ)| = k/g. Therefore

|Φ| = | ker(φ)| = kr

k/g
= gkr−1.

The two results above, give us the following.

Corollary 2. Fix 0 < k < n. Let σ ∈ Sn be a permutation with cycle type s1, . . . , sr and
define g = gcd(k, s1, s2, . . . , sr). There is a bijection between the set of all σ-fixed DOSPs
and the set

Φ :=

⌊(k−1)n/k⌋⋃
m=0

Φk(σ,mk). Therefore
∑
m≥0

|Φk(σ,mk)| = gkr−1.

Proof. Suppose that σ has cycle type (s1, s2, . . . , sr). By Lemma 13, the number of σ-fixed
(k, n)-DOSPs is gkr−1. By Proposition 31, we have that |Φ| = gkr−1, and we are done.

Lemma 14. Let σ ∈ Sn be a permutation with cycle type (s1, s2, . . . , sr). Fix h ∈
{0, 1, . . . , k − 1}. Define g′ = gcd(s1, s2, . . . , sr, k − h). Then we have

∑
m≥0

|Φk−h(σ,m(k − h)− h)| =

{
g′(k − h)r−1 if g′ divides h,

0 otherwise.
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Proof. Consider the homomorphism of abelian groups

φ : (Z /(k − h)Z)r → Z /(k − h)Z, (f1, f2, . . . , fr) 7→
r∑

i=1

fisi.

Observe that there is a natural bijection between
⋃

m≥0 Φk−h(σ,m(k− h)− h) and the set
Φ := {f ∈ (Z /(k − h)Z)r : φ(f) = −h mod (k − h)}. By Bezout’s identity, it follows
that the image of φ is principally generated by g′. It follows that

|Φ| =

{
| ker(Φ)| = g′(k − h)r−1 if − h ∈ ⟨g′⟩ ⊆ Z /(k − h)Z,
0 otherwise.

In the first case, we have that −h ∈ ⟨g′⟩ if and only if g′ divides h.

Proposition 32. Fix 0 ≤ h < k and some positive integers s1, . . . , sr. For each 0 ≤ i < k
define gi = gcd(k − i, s1, . . . , sr). Then gh|h if and only if g0|h.

Proof. Define g̃ = gcd(s1, . . . , sr), so gh = gcd(k − h, g̃) and g0 = gcd(k, g̃). We have gh|h
if and only if (k − h)|h and g̃|h. On the other hand g0|h if and only if k|h and g̃|h. So it
suffices to show that (k−h)|h if and only if k|h, which easily follows from the assumption
that k > h ≥ 0.

Proposition 33. Let σ ∈ Sn be a permutation with cycle type (s1, . . . , sr). For each h ≥ 0,
define g := gcd(k, s1, . . . , sr) and gh := gcd(k − h, s1, . . . , sr). We have

H∗[1](σ) =
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
gh(k − h)r−1d(g, h),

where d(g, h) = 1 if g divides h and d(g, h) = 0 otherwise.

Proof. Follows immediately from Theorem 18, Lemma 14, and Proposition 32.

Corollary 3. Let σ ∈ Sn be a permutation with cycle type (s1, . . . , sr). For each h ≥ 0,
define g := gcd(k, s1, . . . , sr). We have

H∗[1](σ) = g
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
(k − h)r−1.

Proof. For each h ≥ 0, define gh := gcd(k− h, s1, . . . , sr). Consider the formula in Propo-
sition 33. Let h ≥ 0 and I ∈ Ih. Assume that the product of binomials

(
λ1

I1

)
· · ·
(
λk−1

Ik−1

)
is

nonzero. For each s ∈ [k − 1] such that λs ≥ 1, we have that g|s. Therefore each nonzero
term of 1 · I1 + · · · + (k − 1) · Ik−1 is divisible by g, hence g divides h and so d(g, h) = 1.
Since g divides h, we have that gh = gcd(k − h, s1, . . . , sr) = gcd(k, s1, . . . , sr) = g. The
result immediately follows.
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7.3.2 Counting non-hypersimplicial DOSPs

We start this subsection by recalling some facts about Stirling numbers of the second kind,
which, for brevity, we will refer to simply as Stirling numbers. Given non-negative integers
n and k, the Stirling number

{
n
k

}
is the number of partitions of the set [n] into k non-empty

unlabelled parts. For example the set [3] is partitioned into 2 non-empty parts in three
ways: (1|23), (2|13), (3|12). Therefore

{
3
2

}
= 3. The Stirling numbers satisfy the following

defining relation, which is similar to binomial coefficients.

Proposition 34. For all n ≥ 0, we have
{
n
n

}
= 1. For each n ≥ 1, we have

{
n
0

}
=
{
0
n

}
=

0. And for all 0 < k < n, we have the following recurrence relation:{
n+ 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
.

Proof. Consider a partition of [n+1] into k non-empty parts and remove the element n+1.
If this results in a partition of [n] into k parts, but one of them may be empty. If that is
the case, we may consider it a partition into k − 1 non-empty parts. Otherwise, we get a
partition into k non-empty parts. There are k choices to recover the original partition.

We also require the following identity, which involves falling factorials.

Proposition 35. The Stirling numbers satisfy the relationship

n∑
k=1

{
n

k

}
(x)k = xn

where (x)k =
∏k−1

i=0 (x− i) denotes the kth falling factorial.

Proof. The proposition can be proven via induction on k using the identity from Propo-
sition 34 as well as the identity x(x)k = (x)k+1 + k(x)k.

In this section we count the number of non-hypersimplicial σ-fixed (k, n)-DOSPs.
Throughout this section, we define the following collection of Laurent polynomials. Let
j ≥ 1 be an integer. Define the Laurent polynomial Fj(y) ∈ Q[y, y−1] as follows:

Fj(y) :=

(
1

y

)j−1 j∑
h=1

(−1)h+1

{
j

h

}
(y + 1)(y + 2) · · · (y + h− 1).

These Laurent polynomials are, in fact, constants.

Lemma 15. We have Fj(y) = (−1)j+1.

Proof. For each h ≥ 0, notice that

(−1)h+1(y + 1)(y + 2) · · · (y + h− 1) =
(−y)h
y

.

By Proposition 35, with x = −y, we get Fj(y) = (−y)j−1

yj−1 , which concludes the proof.
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{1, 3, 5}

{7, 9}

{2, 4, 6}

{8, 10}

{2, 4, 6}

{8, 10}

{1, 3, 5}

{7, 9}

σ

Figure 7.1: A σ-fixed DOSP of type (6, 10) where σ acts with cycles of length 6 and 4
on the subsets [6] and [10] \ [6]. The turning number is 3. Note that this DOSP is not
hypersimplicial because of the placement of the 2-element sets.

Throughout this section, we will frequently make use of the alternative definition of
DOSPs in terms of functions [n] → Z /k Z. See the beginning of Section 7.3 and Defini-
tion 14.

Setup for counting non-hypersimplicial DOSPs. Fix k < n and σ ∈ Sn. We denote
by D the set of σ-fixed non-hypersimplicial DOSPs and by Dτ ⊆ D the subset of DOSPs
with turning number τ ∈ Z /k Z. We define the set Λ of non-empty unions of cycles in σ:

Λ = {Ci1 ∪ Ci2 ∪ · · · ∪ Cis : {i1, i2, . . . , is} ⊆ [r], s > 0}.

For each u = Ci1∪Ci2∪· · ·∪Cis ∈ Λ, we will denote the corresponding set {i1, i2, . . . , is} ⊆
[r] by ind(u). Furthermore, we define the subset Dτ

u ⊆ Dτ of DOSPs containing a tuple
(L, ℓ) such that:

• |L| ≤ ℓ (we call such a set a bad set),

• L completely lies in u, and

• for every Ci ⊆ u, L ∩ Ci is non-empty.

In other words, Dτ
u is the set of all σ-fixed DOSPs D such that u is a disjoint union of

bad sets of D, and those bad sets form a single σ orbit. Note, for any D ∈ Dτ there exists
u ∈ Λ such that D ∈ Dτ

u. Explicitly, D is non-hypersimplicial so it has a bad set, say
(L, ℓ), then D ∈ Dτ

u where u = L ∪ σ(L) ∪ σ2(L) ∪ · · · ∪ σo(σ)−1(L) is the σ-orbit of L.

Lemma 16. Fix 2 ≤ k < n and let σ ∈ Sn be a permutation with cycle type (s1, s2, . . . , sr).
Define g = gcd(s1, . . . , sr, k) and let τ ∈ Z /k Z such that gτ = 0. Fix h ∈ [k − 1] and
let J ∈

(
Λ
h

)
be a non-empty subset of Λ such that the elements of J are pairwise disjoint.

Then ∣∣∣∣∣⋂
u∈J

Dτ
u

∣∣∣∣∣ =
((k − i)/o(τ) + h− 1)!

((k − i)/o(τ))!
o(τ)j−1(k − i)r−j
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where o(τ) denotes the order of τ , j is the number of elements in
⋃

u∈J ind(u), and i is
the number of elements in

⋃
u∈Ju.

Before giving the proof, we will outline the concepts in the proof with an example.

Example 13. Fix k = 12, n = 24, and σ ∈ Sn with cycle type (3, 3, 6, 3, 9). This means
that r = 5 and g = 3. For simplicity, we assume that the cycle sets are

C1 = {1, 2, 3}, C2 = {4, 5, 6}, C3 = {7, 8, . . . , 12}, C4 = {13, 14, 15}, C5 = {16, 17, . . . , 24}.

For each cycle Ci, we fix a distinguished element qi ∈ Ci. Explicitly, we choose qi to be
the smallest element: q1 = 1, q2 = 4, q3 = 7 etc. Let us fix a subset J = {u1, u2} where
u1 = C1 ∪ C2 and u2 = C4. This gives us⋃

u∈J

u = {1, 2, 3, 4, 5, 6, 13, 14, 15} and
⋃
u∈J

ind(u) = {1, 2, 4},

hence i = 9 and j = 3. Lastly we fix τ = 8 ∈ Z /12Z meaning that o(τ) = 3. We will give
an overview of the proof of Lemma 16, which counts the number of non-hypersimplicial
DOSPs in Dτ

u1
∩ Dτ

u2
. To do this, we construct DOSPs in this set. We imagine starting

with an empty DOSP (L1 = {}, . . . , L12 = {}) of k = 12 empty sets. We then consider
the possible ways to place the cycles into the DOSP. Note that the turning number τ = 8
is fixed, so each σ-orbit consists of o(τ) = 3 sets of the DOSP. We will place the cycles
into the DOSP with three steps.

Our first step is to distribute u1 across a single σ-orbit of o(τ) = 3 sets of 2 elements
each and to adorn each of these three sets with a decoration ℓi ≥ 2 so that each set is
a bad set of the resulting DOSP. Our second step is to distribute u2 across 3 singletons,
which we note always result in bad sets in the final DOSP. The third step is to put the
rest of the elements into the remaining spaces. See Figure 7.2 for a specific instance.

Step 1. A σ-fixed DOSP D with turning number τ is completely determined by the
values the function fD takes on the distinguished elements qi. In Figure 7.2, the qi are
the underlined elements. As a starting point, we will assume that fD(q1) = 0, or in other
words 1 ∈ L1. This choice fixes the positions of the elements in C1 = {1, 2, 3}. Since τ = 8,
it follows that fD(u1) = {0, 4, 8}, meaning that we have o(τ) = 3 choices for the position
of 4 = q2 ∈ u1. Once we have placed u = C1 ∪ C2, we mark the positions 0, 1, 4, 5, 8, 9 as
filled, this guarantees that each set in the resulting DOSP containing elements of u1 are
bad sets. In Figure 7.2, these filled sets include the white circles.

Step 2. The placement of the element 13 = q4 ∈ u2 is restricted to the locations {2, 6, 10}
and {3, 7, 11} because {1, 5, 9} (the white spaces in Figure 7.2) need to remain clear. This
gives us 6 choices for q4. Notice that we count possible locations for a qi in sets of 3. This
corresponds to the factor o(τ)j−1 in the formula in the lemma.

Step 3. Finally, we must choose placements for the remaining cycles C3 and C5. After
having placed u1 and u2, there are only 3 spaced left in the DOSP. So, we have 3 choices
for q3 = 7 and q5 = 16, which corresponds to 9 choices to finish off the DOSP. This part
corresponds to the right-most factor (k − i)r−j in the formula from the lemma.
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{1,5}

{9, 12, 16, 19, 22}

{14}

{3,4}

{8, 11, 18, 21, 24}
{13}

{2,6}

{7, 10, 17, 20, 23}

{15}

Figure 7.2: A DOSP with the setup of Example 13, the choices for the qi are fD(1) = 0,
fD(4) = 4, fD(7) = 10 fD(13) = 7, fD(16) = 3, are the underlined elements. The bold
sets are the bad sets corresponding to u1 and u2

Proof of Lemma 16. For the purpose of this proof, we will endow the set Z /k Z with a
total ordering induced by identifying it with the set {0, 1, . . . , k−1}. We write the elements
of J as u1, u2, . . . , uh. Let

D = ((L1, ℓ1), (L2, ℓ2), . . . , (Lt, ℓt)) ∈
⋂
u∈J

Dτ
u

be a DOSP. Without loss of generality, we may assume that L1 ⊆ u1. Since the turning
number of D is τ , we may assume that fD(L1) = 0 and fD(σ(L1)) = τ . For each ua with
a ∈ {2, . . . h}, there exists a set L of D such that 0 < fD(L) < τ with L ⊆ ua and we
write pa = fD(L) for the value of this function on L. We also fix p1 = 0. Let us count the
number of DOSPs D, as above, such that p2 < · · · < ph.

Suppose that we are given the values of function fD(L) for each set L ⊆ ua over all
ua. Let us count the number of ways to distribute the elements of the ua into the DOSP
if ua is already placed. For each b ∈ ind(ua), there are k/o(τ) different possible values for
fD(qb). So, in total, there are o(τ)j−1 possible choices for the positions of the q’s, where
the first q is put in the first position and the other q’s, of which there are j− 1, are placed
relatively to the first.

Now let us count the number of ways to position the sets u1, . . . , uh in the DOSP. The
position of u1 and its corresponding sets of the DOSP is fixed. Then we use a stars and
bars argument to place the remaining spaces between the ua’s:

(L(u1)) □ (L(u2)) □ (L(u3)) □ . . . □ (L(uh)) □,

where L(ua) is the set of the DOSP with fD(L(ua)) = pa and the boxes represent some
number of spaces. Since each set L(ua) is a bad set, it takes up at least |L(ua)| spaces of
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the DOSP. Since ua is a σ-orbit of bad sets, we have that each set that partitions ua is
bad and together they take up |ua| spaces of the DOSP. So the bad sets whose union is
u1 ∪ · · · ∪ uh take up i spaces of the DOSP. Hence, in total there are k− i spaces to place
between the ua’s. However, whenever we place one space, its σ-orbit has length o(τ). So
we are free to choose the positions of (k − i)/o(τ) spaces and the rest are determined. So
by stars and bars there are

(
(k−i)/o(τ)+h−1

(k−i)/o(τ)

)
=
(
(k−i)/o(τ)+h−1

h−1

)
many ways place the spaces.

So far, we have fixed the position of all cycles of σ in u1, . . . , uh, i.e., we have placed j
cycles into the DOSP. There are r− j remaining cycles. Placing a cycle Cc into the DOSP
is equivalent to choosing the position of qc. Each qc can be placed into the k − i spaces.
Hence, there are (k − i)r−j DOSPs with the given ua positions.

Finally there are (h − 1)! different total orderings of p2, . . . , ph and each gives the
same number of DOSPs. So, the total number of σ-fixed non-hypersimplicial DOSPs with
turning number τ is:(

(k − i)/o(τ) + h− 1

h− 1

)
(h−1)!o(τ)j−1(k−i)r−j =

((k − i)/o(τ) + h− 1)!

((k − i)/o(τ)!
o(τ)j−1(k−i)r−j.

We proceed to counting the total number of σ-fixed non-hypersimplicial DOSPs.

Lemma 17. Fix 2 ≤ k < n and let σ ∈ Sn be a permutation with cycle type (s1, s2, . . . , sr).
For each i ∈ [n], let λi be the number of length i-cycles of σ. Let g = gcd(s1, . . . , sr, k)
and define the set T = {τ ∈ Z /k Z : gτ = 0}. The number of σ-fixed non-hypersimplicial
DOSPs is

∑
τ∈T

k−1∑
h=1

(−1)h+1

k−1∑
i=h

i∑
j=1

κih(τ)o(τ)j−1(k − i)r−j

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

){jh
}
. (7.1)

where κih(τ) := ((k−i)/o(τ)+h−1)!
((k−i)/o(τ))!

.

Proof. Let τ ∈ Z /k Z satisfy gτ = 0 and let Dτ be the set of non-hypersimplicial σ-fixed
DOSPs with turning number τ . The number of σ-fixed non-hypersimplicial DOSPs is∑

τ∈T

|Dτ |.

By the inclusion-exclusion principle, we have

|Dτ | =

∣∣∣∣∣⋃
u∈Λ

Dτ
u

∣∣∣∣∣ =
∑
h≥1

(−1)h+1
∑
J∈(Λ

h)

∣∣∣∣∣⋂
u∈J

Dτ
u

∣∣∣∣∣.
Given a non-empty subset J ⊆ Λ, suppose we have u1, u2 ∈ J . For a DOSP D to lie
both in Du1 and Du2 , it means there exist (not necessarily distinct) sets L1 and L2 whose



CHAPTER 7. THE EET OF THE HYPERSIMPLEX 82

σ-orbits are u1 and u2 respectively. In particular, if u1 ∩ u2 ̸= ∅, the σ-orbits must be
the same and u1 = u2. Hence, we may always assume that the sets ui contained in J are
disjoint. It also follows that h is bounded by the number of sets Li, which is k. In the case
h = k, every Li satisfies |Li| = ℓi = 1, which means that n = k, a contradiction. Thus
1 ≤ h ≤ k − 1. We introduce one more notation:

Λ(h, i, j) =

{
J ∈

(
Λ

h

)
:

∣∣∣∣∣⋃
u∈J

u

∣∣∣∣∣ = i and

∣∣∣∣∣⋃
u∈J

ind(u)

∣∣∣∣∣ = j

}

This is the set of h-element subsets of Λ involving exactly j distinct cycles and contain a
total of i elements across all cycles. The cardinality of Λ(h, i, j) is exactly∑

I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

){jh
}
,

which follows from the argument that there are
{
j
h

}
ways to partition j distinct cycles into

h sets and that we choose I1 many fixed points of σ, I2 many 2-cycles of σ, and so on,
such that |I| = j and 1 · I1 + 2 · I2 + · · ·+ (k− 1) · Ik−1 = i. With this, we apply Lemma 16
and rearrange the previous formula:

|Dτ | =
k−1∑
h=1

(−1)h+1

k−1∑
i=h

r∑
j=1

∑
J∈Λ(h,i,j)

∣∣∣∣∣⋂
u∈J

Dτ
u

∣∣∣∣∣
=

k−1∑
h=1

(−1)h+1

k−1∑
i=h

r∑
j=1

∑
J∈Λ(h,i,j)

((k − i)/o(τ) + h− 1)!

((k − i)/o(τ))!
o(τ)j−1(k − i)r−j

=
k−1∑
h=1

(−1)h+1

k−1∑
i=h

r∑
j=1

∑
J∈Λ(h,i,j)

κih(τ)o(τ)j−1(k − i)r−j

=
k−1∑
h=1

(−1)h+1

k−1∑
i=h

r∑
j=1

κih(τ)o(τ)j−1(k − i)r−j
∑

J∈Λ(h,i,j)

1

=
k−1∑
h=1

(−1)h+1

k−1∑
i=h

r∑
j=1

κih(τ)o(τ)j−1(k − i)r−j

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

){jh
}
.

7.3.3 Proof of the main result

With the results from the previous section, we are now ready to give a proof of Theorem 21,
which we restate in the following way.
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Theorem 22. Fix 2 ≤ k < n and σ ∈ Sn be a permutation with cycle type (s1, s2, . . . , sr).
For each i ∈ [n], let λi be the number of length i cycles of σ. Let g = gcd(s1, . . . , sr, k).
The number of σ-fixed non-hypersimplicial DOSPs is

gkr−1 −H∗[1](σ) = −g
k−1∑
h=1

(∑
I∈Ii

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
(k − i)r−1.

In particular, we have that H∗[1](σ) is equal to the number of σ-fixed hypersimplicial
(k, n)-DOSPs.

Proof. Like before, let κih(τ) refer to ((k−i)/o(τ)+h−1)!
((k−i)/o(τ))!

. Define the set T = {τ ∈ Z /k Z : gτ =

0} and note that |T | = g. By Lemma 17, we have that the number of σ-fixed non-
hypersimplicial DOSPs is

∑
τ∈T

k−1∑
h=1

(−1)h+1

k−1∑
i=h

i∑
j=1

κih(τ)o(τ)j−1(k − i)r−j

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

){jh
}
.

We reorder the sums in this expression to obtain

∑
τ∈T

k−1∑
h=1

(−1)h+1

k−1∑
i=h

i∑
j=1

κih(τ)o(τ)j−1(k − i)r−j

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

){jh
}

=
∑
τ∈T

k−1∑
i=1

i∑
j=1

i∑
h=1

(−1)h+1κih(τ)o(τ)j−1(k − i)r−j

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

){jh
}

=
∑
τ∈T

k−1∑
i=1

i∑
j=1

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

) (k − i)r−jo(τ)j−1

i∑
h=1

(−1)h+1κih(τ)

{
j

h

}
.

Next, we apply Lemma 15 to the above expression by setting y = (k− i)/o(τ). Note that
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o(τ)j−1 = (k − i)j−1 · (1/y)j−1. So, the above expression is equal to the following

∑
τ∈T

k−1∑
i=1

i∑
j=1

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

) (k − i)r−jo(τ)j−1

i∑
h=1

(−1)h+1κih(τ)

{
j

h

}

=
∑
τ∈T

k−1∑
i=1

i∑
j=1

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

) (k − i)r−j(k − i)j−1Fj((k − i)/o(τ))

=
∑
τ∈T

k−1∑
i=1

i∑
j=1

∑
I∈Ii
|I|=j

(
λ1
I1

)
· · ·
(
λk−1

Ik−1

) (k − i)r−1(−1)j+1

=− g
k−1∑
i=1

(∑
I∈Ii

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
(k − i)r−1.

Finally, we recall that the number of σ-fixed (k, n)-DOSPs is equal to gkr−1, so we have
H∗[1](σ) is the number of σ-fixed hypersimplicial (k, n)-DOSPs. This completes the proof.

7.3.4 Recurrence relation

In this section, we show that H∗(∆n
k ;Sn)[1](σ) satisfies a recurrence relation similar to

that for Eulerian numbers. Given k ∈ Z, a tuple λ = (λ1, λ2, . . . , λn) ∈ Zn
≥0, and r ≥ 1,

we define

B(k, λ, r) = g(k, λ)
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
(k − h)r−1

where g(k, λ) = gcd({k} ∪ {i ∈ [n] : λi ≥ 1}).
Suppose that σ ∈ Sn has cycle type (s1, . . . , sr) and for each i ∈ [n] we denote by λi

the number of cycles of σ of length i. Then, by Theorem 21, we have H∗(∆n
k ;Sn)[1](σ) =

B(k, λ, r).

Proposition 36. We have B(k, λ, r) = 0 if k < 1, B(1, λ, r) = gkr−1, and B(k, λ, r) =
gkr−1 if λ1 = · · · = λk−1 = 0. Suppose that there exists a ∈ [k − 1] such that λa ≥ 1.
Define λ′ = (λ1, . . . , λa−1, λa − 1, λa+1, . . . , λn). Then, we have

B(k, λ, r) =
g(k, λ)

g(k, λ′)
B(k, λ′, r)− g(k, λ)

g(k − a, λ′)
B(k − a, λ′, r).

Proof. The first part of the result follows easily from the definition of B(k, λ, r). For the
recurrence relation, fix a ∈ [k − 1] such that λa ≥ 1. To simplify notation, we write
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g = g(k, λ), g′ = g(k, λ′), and g′′ = g(k − a, λ′). First, we apply Pascal’s identity

B(k, λ, r) = g

k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λk−1

Ik−1

))
(k − h)r−1

= g
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λa − 1

Ia

)
· · ·
(
λk−1

Ik−1

))
(k − h)r−1

+ g
k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λa − 1

Ia − 1

)
· · ·
(
λk−1

Ik−1

))
(k − h)r−1.

The first sum coincides with (g/g′)B(k, λ′, r). For the second sum, we re-index as
follows

B(k, λ, r)− g
g′
B(k, λ′, r) = g

k−1∑
h=0

(∑
I∈Ih

(−1)|I|
(
λ1
I1

)
· · ·
(
λa − 1

Ia − 1

)
· · ·
(
λk−1

Ik−1

))
(k − h)r−1

= g
k−1−a∑
h=0

 ∑
I∈Ih+a

(−1)|I|
(
λ′1
I1

)
· · ·
(

λ′a
Ia − 1

)
· · ·
(
λ′k−1

Ik−1

) (k − h− a)r−1

= g

(k−a)−1∑
h=0

(∑
I∈Ih

(−1)|I|+1

(
λ′1
I1

)
· · ·
(
λ′k−1

Ik−1

))
((k − a)− h)r−1

= − g

g′′
B(k − a, λ′, r).

So we have shown that B satisfies the recursive relation and concludes the proof.

Remark 8. The recurrence relation in Proposition 36 differs a little from the typical one
for Eulerian numbers given by A(n, k) = (k+ 1)A(n− 1, k) + (n− k)A(n− 1, k− 1). The
evaluation of H∗(∆n

k ;Sn)[1] at the identity is equal to A(n − 1, k − 1), which is equal to
B(k, (n, 0, . . . , 0), n).

7.4 The second hypersimplex

In this section we give a complete description of the coefficients of the H∗-polynomial
for the second hypersimplex ∆n

2 . We interpret these coefficients in terms of DOSPs, see
Definition 13, as well as actions of Sn on subsets and partitions of [n].

Notation. For each m ∈ [n], we denote by ρm the character of the permutation repre-
sentation of Sn acting on

(
[n]
m

)
. So, we have ρm(σ) = |{S ⊆ [n] : |S| = m, σ(S) = S}|. By

taking complements, we have ρn−m = ρm for each m. And so ρn−1 = ρ1 = χ
nat = λ1 is the

character of the natural representation and ρn = χ
0 is the trivial character. We define τm

to be the character of the permutation representation of Sn acting on the set of partitions
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of [n] into two parts: one of size m and the other of size n − m. Note that, unless n is
even and m = n/2, we have that ρm = τm.

With this notation, we have the following characterisation of the coefficients of the
equivariant H∗ polynomial of ∆n

2 .

Theorem 23. Let n > 2. The coefficients of the equivariant H∗-polynomial of the hyper-
simplex ∆n

2 :

• H∗
0 = χ

0 is the trivial character,

• H∗
1 = ρ2 − ρ1,

• H∗
m = ρ2m for each 2 ≤ m ≤ ⌊n/2⌋.

The evaluation at one is given by H∗[1] = χ
0 +τ2 +τ3 + · · ·+τ⌊n/2⌋, which is a permutation

character. If n is odd, then the leading coefficient is H∗
(n−1)/2 = ρ1. Otherwise, if n is

even, then the leading coefficient is H∗
n/2 = χ

0.

Before we prove the theorem, we note that the formula of coefficients H∗
m in Theorem 18

has a simple description in the special case when h = k − 1.

Proposition 37. Let σ ∈ Sn and m ≥ 0. We have

|Φ1(σ,m)| =

{
1 if m = 0,

0 otherwise.

Proof. The set Φ1(σ,m) consists of functions f : [r] → {0} such that
∑r

i=1 f(i)si = m.
There is only one such function, which belongs to the set Φ1(σ, 0).

To prove Theorem 23, we also require the following result about Sn representations.

Lemma 18. Let n be even. The following equation of Sn-representations holds

n/2∑
m=0

ρ2m =

n/2∑
m=0

τm.

Proof. Fix a permutation σ with cycle type s1, s2, . . . , sr. It suffices to show that the
number of subsets of [n] with even size that are fixed by σ is equal to the number of
two-part partitions of [n] that are fixed by σ. Suppose that A ⊔ B = [n] is a two-part
partition, then we write AB := {A,B} for the partition of [n] into A and B. Given a
partition AB of [n], we write σ(AB) for the partition of [n] with parts σ(A) and σ(B).
We define the sets

Lσ = {A ⊆ [n] : |A| is even, σ(A) = A} and Rσ = {AB : A ⊔B = [n], σ(AB) = AB}.

We will show that |Lσ| = |Rσ|.
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We first consider the special case where each cycle of σ has odd length. Each element
A ∈ Lσ is the union of the supports of cycles of σ. Since |A| is even and each cycle has
odd length, it follow that A is the union of an even number of cycle supports. The indices
of the cycles whose supports form A uniquely determine A, and any even subset of cycles
forms a unique set A. So we have

|Lσ| = |{S ⊆ [r] : ΣS is even}|
= |{S ⊆ [r] : |S| is even}|
= 2r−1.

On the other hand, for each subset S ⊂ [r], we obtain a partition TU where T is the
union of supports of the cycles in σ indexed by S and U = [n] \ T is the complement of
T . Observe that every σ-invariant partition arises in this way because each cycle has odd
length. Moreover, each partition arises from a subset S ⊆ [k] or its complement [k] \ S.
So we conclude that |Rσ| = 2k−1 = |Lσ|. This concludes the special case.

Suppose that σ contains a cycle of even length. Without loss of generality we assume
that s := sr is even. We prove |Lσ| = |Rσ| by induction on r. For the base case with
r = 1, we have that σ = (σ1 σ2 . . . σn) is an n-cycle where n is even. It is easy to see that

Lσ = {∅, [n]} and Rσ = {{∅, [n]}, {σ1σ3 . . . σn−1, σ2σ4 . . . σn}}.

So we have |Lσ| = 2 = |Rσ|.
For the induction step, assume that r > 1 and consider a permutation τ that has

cycle type s1, s2, . . . , sr−1. Without loss of generality, let us assume that τ is equal to the
permutation σ restricted to [n− sr]. Define the set S = [n] \ [n− sr]. It is easy to see that

Lσ = Lτ ⊔ {A ∪ S : A ∈ Lτ}

and so we have |Lσ| = 2|Lτ |. On the other hand, let us consider a partition AB ∈ Rτ . If
σ(A) = A, then we have that the partitions (A ∪ S)B and A(B ∪ S) lie in Rσ. On the
other hand, if σ(A) = B, then write (c1, c2, . . . , csr) for the cycle of σ supported on S.
Then we have

(A∪{c1, c3, . . . , csk−1})(B∪{c2, c4, . . . , csk}) and (A∪{c2, c4, . . . , csk})(B∪{c1, c3, . . . , csk−1})

are elements of Rσ. Every element of Rσ arises uniquely in one of the ways described
above. So it follows that |Rσ| = 2|Rτ |. By induction, we have |Lτ | = |Rτ | and so we
deduce that |Lσ| = |Rσ| and we are done.

Proof of Theorem 23. Fix σ ∈ Sn with cycle type (s1, . . . , sr) and denote by C1, . . . , Cr

the cycle sets of σ such that |Ci| = si for each i ∈ [r]. Let us consider the coefficients
given by Theorem 18 and Proposition 37 for the second hypersimplex ∆n

2 . We have

H∗
m(σ) = |Φ2(σ, 2m)| − λ1|Φ1(σ,m− 1)| =

{
|Φ2(σ, 2m)| if m ̸= 1,

|Φ2(σ, 2m)| − λ1 if m = 1.
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The value λ1 is equal to the number of fixed points of σ. So λ1(σ) = ρ1(σ) is the character
of the natural representation of Sn. On the other hand, the set Φ2(σ, 2m) contains all
functions f : [r]→ {0, 1} such that

∑r
i=1 f(i)si = 2m. There is a natural correspondence

between f ∈ Φ2(σ, 2m) and subsets F ⊆ [n] with |F | = 2m and σ(F ) = F , which is given
by

f 7→ F =
⋃

i:f(i)=1

Si.

So |Φ2(σ, 2m)| = ρ2m is equal to the permutation character of Sn acting on
(
[n]
2m

)
. This

proves that H∗
0 = χ

0, H
∗
1 = ρ2 − ρ1, and H∗

m = ρ2m for each 2 ≤ m ≤ ⌊n/2⌋. By
Theorem 18, if n is odd then the leading coefficient is H∗

(n−1)/2 = ρn−1 = ρ1, otherwise if
n is even then the leading coefficient is H∗

n/2 = ρn = χ
0.

It remains to show that H∗[1] = χ
0 + τ2 + · · · + τ⌊n/2⌋. If n is odd the result follows

from the above and the fact that ρm = τm for each m ∈ [n]. On the other hand if n is
even, then result follows from Lemma 18.

Corollary 4. Fix n and let 0 ≤ m ≤ ⌊n/2⌋. Then the coefficient H∗
m of the equivariant

H∗-polynomial of ∆n
2 is a permutation character if and only if m ̸= 1. Moreover, the

trivial character does not appear in H∗
1 .

Proof. Suppose m ̸= 1. By Theorem 23, we have that H∗
m is the permutation character

ρ2m if m > 0 and χ
0 if m = 0. Otherwise, let m = 1 and assume by contradiction that

H∗
1 is a permutation character. For any permutation character ρ, a consequence of the

Orbit-Stabiliser Theorem is that ⟨χ0, ρ⟩ = 1
n!

∑
σ∈Sn

ρ(σ) is equal to the number of orbits
of the action. By Theorem 23, we have H∗

1 = ρ2−ρ1. Since Sn acts transitively on [n] and
the 2-subsets of [n], the action associated to H∗

1 has ⟨χ0, ρ2 − ρ1⟩ = ⟨χ0, ρ2⟩ − ⟨χ0, ρ1⟩ = 0
orbits, a contradiction. This completes the proof.

Theorem 23 also allows us to give a complete combinatorial proof of the effectiveness
of the H∗-polynomial.

Corollary 5. Fix n. Each coefficient of H∗(∆n
2 , Sn) is an effective representation.

Proof. Let m ∈ {0, 1, 2, . . . , ⌊n/2⌋} and consider the tm coefficient H∗
m of H∗(∆n

2 , Sn). If
m ̸= 1, then H∗

m is a permutation character, hence it is effective. Otherwise if m = 1
then let V and W be CSn modules with characters ρ1 and ρ2 respectively. Explicitly,
we assume V has basis ei with i ∈ [n] and action σ(ei) = eσ(i); and W has basis fI with

I ∈
(
[n]
2

)
and action σ(fI) = fσ(I). Define the map φ : V → W given by φ(ei) =

∑
j ̸=i fij.

It is straightforward to show that φ is an injective CSn-module homomorphism, hence
H∗

1 = ρ2 − ρ1 is effective.

Remark 9. The coefficients of the H∗-polynomial may be interpreted as permutation
characters of DOSPs. The set of (2, n)-DOSPs consists of: the trivial DOSP (([n], 2));
and the DOSPs with two parts ((A, 1), (B, 1)), where {A,B} is a partition of [n]. The
trivial DOSP is fixed by every element of Sn, hence it is naturally associated with H∗

0 .
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For each 2 ≤ m ≤ ⌊(n + 1)/2⌋ − 1, by Theorem 23, we have H∗
m = ρ2m = τ2m is the

permutation character of Sn acting on partition {A,B}, where |A| = 2m. Hence H∗
m(σ)

counts the number of σ-fixed DOSPs ((A, 1), (B, 1)) such that |A| = 2m. Suppose that
n is odd. Then H∗

1 + H∗
(n−1)/2 = τ2 counts the number of σ-fixed DOSPs with |A| = 2.

Hence the character H∗[1] counts the number of σ-fixed DOSPs that do not have a set of
size one. Since a (2, n)-DOSP is hypersimplicial if and only if it has no set of size one. On
the other hand, if n is even, then fix an odd value m. The permutation character of Sn

acting on the set of DOSPs with |A| = m does not immediately arise from a coefficient of
the H∗-polynomial.

Remark 10. Each coefficient of the h∗-polynomial of the hypersimplex has a combinatorial
interpretation in terms of DOSPs. Explicitly h∗m is the number of hypersimplicial (k, n)-
DOSPs with winding number m. We note that the winding number is not invariant under
the action of Sn so the same interpretation does not apply in the most general setting.
However, the winding number is invariant under the cyclic group Cn ≤ Sn. It is shown in
[EKS24] that the coefficient H∗(∆n

k ;Cn)m is the number of σ-fixed hypersimplicial (k, n)-
DOSPs with winding number m. In the case k = 2, this result can be deduced from
Theorem 23 as follows. If D = ((A, 1), (B, 1)) is a DOSP, then we define the set J(D) of
jumping points to be the set of i ∈ [n] such that i, i+1 belong to different sets of D. Since
k = 2, the winding number of D is equal to half the number of jumping poitns. For m = 0
and m ≥ 2, the restriction ResSn

Cn
ρ2m(σ) counts the number of σ-fixed partitions {A,B} of

[n] with |A| = 2m. For each such partition there is a unique DOSP with jumping points
A. This DOSP is σ-fixed and has winding number m. Every such DOSP arises in this way
and so H∗

m is the number of σ-fixed DOSPs with winding number m. In the case m = 1,
we have that ResSn

Cn
(ρ2− ρ1) is isomorphic to the permutation representation of Cn acting

on the set of 2-subsets ij ∈
(
[n]
2

)
such that |i− j| > 1. For each such 2-subset, we obtain

a σ-fixed hypersimplicial DOSP, which concludes the proof.



Part IV

On nearly Gorenstein polytopes
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Chapter 8

Nearly Gorenstein polytopes

The Ehrhart ring of a lattice polytope P is Gorenstein if and only if there exists a positive
integer k such that kP is reflexive, cf. [BN08]. In this chapter, we work towards a
characterisation of lattice polytopes by the nearly Gorensteinness of their Ehrhart rings.
We find both necessary and sufficient conditions as well as a full classification in the case of
IDP (0, 1)-polytopes. The content of this chapter is fully contained in the author’s paper
[Hal+23] with Thomas Hall, Koji Matsushita, and Sora Miyashita.

8.1 The main results

Let P ⊂ Rd be a lattice polytope with codegree a. We define its floor polytope and
remainder polytopes as

⌊P ⌋ := conv(int(P ) ∩ Zd) and {P} := conv(ant(CP )1−a ∩ Zd),

respectively. Note that ⌊P ⌋ coincides with conv(int(CP )1 ∩ Zd). Our first result gives a
necessary condition and a sufficient condition for a lattice polytope to be nearly Gorenstein.

Theorem 24 (Proposition 39 and Theorem 28). Let P ⊂ Rd be a lattice polytope with
codegree a.

1. If P is nearly Gorenstein, then it has the Minkowski decomposition P = ⌊aP ⌋+{P}.

2. Conversely, if P = ⌊aP ⌋+ {P}, then there exists some K such that, for all integers
k ≥ K, the polytope kP is nearly Gorenstein.

The next main result gives facet presentations for the floor and remainder polytopes
appearing in the Minkowski decomposition of a nearly Gorenstein polytope.

Theorem 25 (Theorem 31). Let P ⊂ Rd be a lattice polytope with codegree a. Suppose
that P = ⌊aP ⌋+ {P}. Then

⌊aP ⌋ = {x ∈ Rd : nF (x) ≥ 1− ahF for all F ∈ F(P )} and
{P} = {x ∈ Rd : nF (x) ≥ (a− 1)hF − 1 for all F ∈ F(P )}.

Furthermore, if ⌊P ⌋ ≠ ∅, then {P} is reflexive.
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These results allow us to prove the next main result. It reveals that the primitive inner
normal vectors of a nearly Gorenstein polytope come from boundary points of reflexive
polytopes.

Theorem 26. Let P ⊂ Rd be a nearly Gorenstein polytope. Then there exists a reflexive
polytope Q ⊂ Rd such that

P = {x ∈ Rd : n(x) ≥ −hn for all n ∈ ∂Q∗ ∩ (Zd)∗},

where hn are integers. Moreover, the inequalities defined by n ∈ vert(Q∗) are irredundant.
Furthermore, the number of facets of a nearly Gorenstein polytope is bounded by a constant
depending on the dimension d.

The final main result is a classification of IDP (0, 1)-polytopes, which generalises prior
work on nearly Gorenstein Hibi rings [HHS19] and Ehrhart rings of stable set polytopes
arising from perfect graphs [HS21; Miy22].

Theorem 27 (Theorem 34). Let P be a (0, 1)-polytope which has the integer decomposition
property. Then, P is nearly Gorenstein if and only if P = P1×· · ·×Ps, for some Gorenstein
(0, 1)-polytopes P1, . . . , Ps which satisfy |aPi

−aPj
| ≤ 1, where aPi

and aPj
are the respective

codegrees of Pi and Pj, for 1 ≤ i < j ≤ s.

8.2 Nearly Gorensteinness of lattice polytopes

Throughout this section, the lattice polytope P has the facet presentation (2.1).

Definition 15. We say that P is Gorenstein (resp. nearly Gorenstein) if the Ehrhart ring
A(P ) is Gorenstein (resp. nearly Gorenstein).

There are well-known equivalent conditions of Gorensteinness in terms of the lattice
polytope P itself. For instance, P is Gorenstein if and only if there exists a positive integer
a such that a lattice translation of aP is reflexive, i.e. aP has a unique interior lattice
point which has lattice distance 1 to all facets of aP .

In this section, we will determine a necessary condition for P to be nearly Gorenstein, in
terms of the polytope P itself. This condition demands that P has a particular Minkowski
decomposition. By taking a dual perspective, we see exactly the connection to reflexive
polytopes. Next, we will show that if P satisfies the aforementioned necessary condition
and is in some sense “big enough”, then P will be nearly Gorenstein. We end the section
by investigating the nearly Gorensteinness of Minkowski indecomposable lattice polytopes.
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8.2.1 Necessary conditions

The main aim of this subsection is to show the first half of Theorem 24. Before we
proceed, let us first introduce some helpful notation. For a subset X of Rd+1 and k ∈ Z,
let Xk = {x ∈ Rd : (x, k) ∈ X} be the k-th piece of X. Note the subtlety in our notation:
while X is a subset of Rd+1, its k-th piece Xk is a subset of Rd. Moreover, for a lattice
polytope P , we denote its codegree by aP – see below Proposition 16 for the definition.
When it is clear from context, we simply write a instead of aP .

Proposition 38. Let P ⊂ Rd be a lattice polytope with codegree a. Then P is nearly
Gorenstein if and only if

(CP ∩ Zd+1) \ {0} ⊆ int(CP ) ∩ Zd+1 +ant(CP ) ∩ Zd+1 . (8.1)

In particular, if P is nearly Gorenstein, then

P ∩ Zd = int(CP )a ∩ Zd +ant(CP )1−a ∩ Zd . (8.2)

The converse also holds if P is IDP.

Proof. By definition, P is nearly Gorenstein if and only if the trace tr(ω) of the canonical
ideal ω of A(P ) contains the maximal ideal m of A(P ). By Proposition 17, this trace is
exactly the product ωA(P ) · ω−1

A(P ). Then, Proposition 16 tells us the monomial generators

of ω and ω−1 in terms of the lattice points of int(CP ) and ant(CP ). We finally note that
the maximal ideal m can be generated by the monomials txsk, where (x, k) are lattice
points in CP \ {0}. From this, it is clear to see that P is nearly Gorenstein if and only if
(8.1) holds.

We next prove that (8.2) follows from nearly Gorensteinness of P . First, note that the
right hand side of (8.1) is contained in CP ∩ Zd+1 by definition. Therefore, when we take
the 1-st piece of all three sets, we obtain the equality

P ∩ Zd = (int(CP ) ∩ Zd+1 +ant(CP ) ∩ Zd+1)1.

Note that when P is Gorenstein, int(CP )a ∩ Zd and ant(CP )−a ∩ Zd are singleton sets;
therefore, the result easily follows. Otherwise, we claim that ant(CP )1−b ∩Zd is empty for
all b ≥ a+ 1. Since int(CP )b is empty for b < a, we obtain the desired result.

Finally, we show that the converse holds when P is IDP. Let (x, k) ∈ CP ∩ Zd \{0}.
Since P is IDP, there are x1, . . . , xk ∈ P ∩ Zd such that (x, k) = (x1, 1) + · · · + (xk, 1).
Further, each xi ∈ P ∩ Zd can be written as the sum of lattice points in int(CP ) and
ant(CP ). Therefore, (8.1) holds and so P is nearly Gorenstein.

We now collate a couple of easy facts about the floor and remainder polytopes and
reformulate part of Proposition 38 into the following statement.

Lemma 19. Let P ⊂ Rd be a lattice polytope with codegree a. Then:

1. ⌊aP ⌋ ⊆ {x ∈ Rd : nF (x) ≥ 1− ahF for all F ∈ F(P )};
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2. {P} ⊆ {x ∈ Rd : nF (x) ≥ (a− 1)hF − 1 for all F ∈ F(P )};

3. If P is nearly Gorenstein, then P ∩ Zd = ⌊aP ⌋ ∩ Zd +{P} ∩ Zd;

4. If P is IDP and P ∩ Zd = ⌊aP ⌋ ∩ Zd +{P} ∩ Zd, then P is nearly Gorenstein.

Proof. Statements (1) and (2) follow immediately from the definition of the floor and
remainder polytope. To prove statements (3) and (4), notice that the lattice points of
int(CP )a coincide with those of ⌊aP ⌋ and the lattice points of ant(CP )1−a coincide with
those of {P}. Then simply substitute this into Proposition 38.

The following proposition is the first half of Theorem 24:

Proposition 39. If P is nearly Gorenstein, then P = ⌊aP ⌋+{P}, where a is the codegree
of P .

Proof. Let x ∈ ⌊aP ⌋ and y ∈ {P}. By statements (1) and (2) of Lemma 19, we have
that, for all facets F of P , nF (x + y) ≥ 1 − ahF + (a − 1)hF − 1 = −hF . So, x + y ∈ P .
Therefore, we obtain that ⌊aP ⌋+ {P} ⊆ P .

On the other hand, let v be a vertex of P . Since P is a lattice polytope, v ∈ P ∩ Zd.
Thus, by statement (3) of Lemma 19, can write v as the sum of an element of ⌊aP ⌋ ∩ Zd

and an element of {P} ∩ Zd. This implies P ⊆ ⌊aP ⌋+ {P}.

Example 14. Consider the stop sign polytope, given by

P = conv{(1, 0), (2, 0), (3, 1), (3, 2), (2, 3), (1, 3), (0, 2), (0, 1)}.

0 1 2 3 4
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4

1 2 3
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Figure 8.1: The stop sign polytope P (left) with its floor polytope ⌊P ⌋ (middle) and
remainder polytope {P} (right).

First, we note that aP = 1. Next, we may compute the floor and remainder polytopes:

⌊P ⌋ = conv{(1, 1), (2, 1), (1, 2), (2, 2)} and {P} = conv{(1, 0), (0, 1), (−1, 0), (0,−1)}.

By taking the Minkowski sum of these polytopes, we see that P satisfies the necessary
condition to be Gorenstein given by Proposition 39, i.e. P = ⌊P ⌋ + {P}. On the other
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hand, it is straightforward to verify that every lattice point of P can be written as the
sum of a lattice point of ⌊P ⌋ and a lattice point of {P}. Since P is IDP (as is true for all
polygons), statement (4) of Lemma 19 informs us that P is nearly Gorenstein.

Finally, we remark that the remainder polytope {P} is reflexive. This is not coinci-
dence, as we will prove in Proposition 31.

8.2.2 A sufficient condition

In this subsection, we will explore sufficient conditions for a lattice polytope to be nearly
Gorenstein; in particular, we will prove the second half of Theorem 24.

We first note that the converse of Proposition 39 does not hold in general.

Example 15 (compare [MP05, Example 1.1]). Let f = 1
3
(e1 + · · · + e6) ∈ R6, where

e1, . . . , e6 is a basis of the lattice Z6. Define a new lattice L := Z6 +f ·Z, and consider the
lattice polytope

Q := conv{e1, . . . , e6, e1 − f, . . . , e6 − f}

with respect to the lattice L. Set P := 2Q. Since ⌊P ⌋ = {P} = Q, it’s easy to see that P =
⌊P ⌋+ {P}, meeting the necessary condition of Proposition 39 for nearly Gorensteinness.

On the other hand, Q is not IDP. In particular, 2Q ∩ L ̸= (Q ∩ L) + (Q ∩ L). Thus,
P = 2Q fails the necessary condition of statement (3) in Lemma 19, and so P is not nearly
Gorenstein.

So, we need to make more assumptions about P in order to be guaranteed nearly
Gorensteinness. This brings us to the following result, which is the second half of Theo-
rem 24:

Theorem 28. Let P ⊂ Rd be a lattice polytope satisfying P = ⌊aP ⌋ + {P}, where a is
the codegree of P . Then there exists some integer K ≥ 1 (depending on P ) such that for
all k ≥ K, the polytope kP is nearly Gorenstein.

In order to prove the above, we rely on a few key ingredients. The first ingredient is
an extension of known results from the reflexive case, which appear in [Hib92].

Lemma 20. Let P ⊂ Rd be a lattice polytope satisfying P = ⌊aP ⌋ + {P}, where a is the
codegree of P . Then the following statements hold:

1. kP = ⌊(k + a− 1)P ⌋+ {P}, for all k ≥ 1;

2. ⌊k′P ⌋ = ⌊aP ⌋+ (k′ − a)P , for all k′ ≥ a.

Before we give the proof, we will restrict these statements to the reflexive case for the
sake of comparison. First, we have a = 1. Next, since ⌊P ⌋ is the origin, P = {P}. So, for
reflexive polytopes, the statement (1) is equivalent to kP = ⌊kP ⌋+ P . After cancellation
by P , we obtain the reflexive version of statement (2): ⌊kP ⌋ = (k − 1)P .
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Proof of Lemma 20. Let k ≥ 1 be an integer. Throughout this proof, we repeatedly use
the two inequalities appearing in statements (1) and (2) of Lemma 19. We also use the
inequalities appearing in the facet presentations for P and its dilates.

We first prove the “⊇” part of statement (1), i.e. that

kP ⊇ ⌊(k + a− 1)P ⌋+ {P}, for all k ≥ 1. (8.3)

Let x ∈ ⌊(k+a−1)P ⌋ and y ∈ {P}. Then nF (x+y) ≥ (1−(k+a−1)hF )+((a−1)hF−1) =
−khF , for all facets F of P . Thus, x+ y ∈ kP .

Next, we note that kP = (k − 1)P + ⌊aP ⌋+ {P}. We substitute this into (8.3), then
cancel {P} from both sides to obtain ⌊(k + a− 1)P ⌋ ⊆ (k − 1)P + ⌊aP ⌋.

We now prove the reverse inclusion of the above. Let x ∈ (k−1)P and y ∈ ⌊aP ⌋. Then,
nF (x+y) ≥ −(k−1)hF +(1−ahF ) = 1− (k+a−1)hF . Therefore, x+y ∈ ⌊(k+a−1)P ⌋.
Thus, we obtain the equality ⌊(k + a− 1)P ⌋ = (k − 1)P + ⌊aP ⌋. Setting k′ := k + a− 1
then gives us statement (2). Adding {P} to both sides gives us statement (1).

The main ingredient in proving Theorem 28 is a result of Haase and Hofmann, which
allows us to guarantee that the second condition of statement (4) of Lemma 19 holds.

Theorem 29 ([HH17, Theorem 4.2]). Let P,Q ⊂ Rd be rational polytopes such that the
normal fan N (P ) of P is a refinement of the normal fan N (Q) of Q. Suppose also that for
each edge E of P , the corresponding face E ′ of Q has lattice length ℓE′ satisfying ℓE ≥ dℓE′.
Then (P +Q) ∩ Zd = (P ∩ Zd) + (Q ∩ Zd).

In order to guarantee the first condition of statement (4) of Lemma 19, we need this
next result:

Theorem 30 ([VGB97, Theorem 1.3.3]). Let P ⊂ Rd be a lattice polytope. Then (d−1)P
is IDP.

We are now ready to give the proof.

Proof of Theorem 28. We first wish to find a suitable K which satisfies

kP ∩ Zd = ⌊kP ⌋ ∩ Zd +{kP} ∩ Zd, for all k ≥ K.

Let a be the codegree of P . Looking at statement (2) of Lemma 20, we see that (k− a)P
is a Minkowski summand of ⌊kP ⌋; thus, we get a crude lower bound on the length of the
edges of ⌊kP ⌋: for k ≥ a, every edge E of ⌊kP ⌋ has lattice length ℓE ≥ k − a. Denote
by L the maximum edge length of {aP} and set K := dL + a. Note that for k ≥ a, the
polytopes {kP} and {aP} coincide. So, for all k ≥ K, every edge E of ⌊kP ⌋ will have
lattice length ℓE ≥ k − a ≥ dL.

Further, statement (2) of Lemma 20 implies that, for k ≥ a+1, the normal fanN (⌊kP ⌋)
coincides with N (P ). Hence, N (⌊kP ⌋) is a refinement of the normal fan of {kP}. Thus,
we may apply Theorem 29, obtaining that kP ∩ Zd = ⌊kP ⌋ ∩ Zd +{kP} ∩ Zd.

Finally, since a, L ≥ 1, we see that K ≥ d − 1. Thus, by Theorem 30, we have that
kP is IDP. Therefore, by statement (4) of Lemma 19, we can conclude that kP is nearly
Gorenstein for all k ≥ K.
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Remark 11. We say that a graded ring R is Gorenstein on the punctured spectrum
[HHS19] if tr(ωR) contains mk for some integer k ≥ 0. If k = 0, this is just the Gorenstein
condition; if k = 1, it is the nearly Gorenstein condition. Now, for a lattice polytope
P ⊂ Rd, it can be shown that its Ehrhart ring A(P ) is Gorenstein on the punctured
spectrum if there exists a positive integer K such that kP ∩ Zd coincides with (int(CP ) ∩
Zd+1 +ant(CP )∩Zd+1)k, for all k ≥ K. Therefore, using Theorem 28, it’s straightforward
to show that all lattice polytopes P satisfying P = ⌊aP ⌋ + {P} are Gorenstein on the
punctured spectrum.

8.2.3 Decompositions of nearly Gorenstein polytopes

In this subsection, we first prove Theorem 25. This naturally leads to an investigation of
whether nearly Gorenstein polytopes decompose into the Minkowski sum of Gorenstein
polytopes (Questions 1 and 2). We prove Theorem 26, which leads to a way to system-
atically construct examples of nearly Gorenstein polytopes. This is then used to find a
counterexample to Questions 1 and 2. Finally, we conclude the section with a result about
indecomposable nearly Gorenstein polytopes.

Theorem 31 (Theorem 25). Let P ⊂ Rd be a lattice polytope which satisfies P = ⌊aP ⌋+
{P}, where a is the codegree of P . Then we have

⌊aP ⌋ = {x ∈ Rd : nF (x) ≥ 1− ahF for all F ∈ F(P )} and

{P} = {x ∈ Rd : nF (x) ≥ (a− 1)hF − 1 for all F ∈ F(P )}.
In particular, the right hand sides of the equalities are lattice polytopes. Furthermore, if
a = 1, then {P} is a reflexive polytope.

Proof. Label the two polytopes on the right-hand sides as Q1 and Q2, respectively. It’s
straightforward to see that ⌊aP ⌋ = conv(Q1 ∩ Zd) and {P} = conv(Q2 ∩ Zd). Thus,
⌊aP ⌋ ⊆ Q1 and {P} ⊆ Q2. Ultimately, we want to prove the reverse inclusions but first,
we must show an intermediate equality: P = Q1 + Q2. Let x ∈ Q1 and y ∈ Q2. Then,
for all facets F of P , we have nF (x + y) ≥ 1 − ahF + (a − 1)hF − 1 = −hF . Thus,
x+ y ∈ P and so, Q1 +Q2 ⊆ P . Conversely, if we combine this with our assumption that
P = ⌊aP ⌋+ {P}, we obtain that, in fact, P = Q1 +Q2.

We now use the above equality to obtain that ⌊aP ⌋ = Q1 and {P} = Q2, as follows.
Assume towards a contradiction that Q1 ̸⊆ ⌊aP ⌋, i.e. there exists a vertex v of Q1 which
doesn’t belong to ⌊aP ⌋. Choose a normal vector n ∈ (Rd)∗ which achieves its minimal
value h1 over Q1 only at v (i.e. n lies in the interior of the cone σv in the (inner) normal
fan N (Q1) which corresponds to v). Denote by h2 the minimal evaluation of n over Q2

Then, the minimal evaluation of n over P is h1 + h2. However, for all x ∈ ⌊aP ⌋ and
y ∈ {P}, we have that n(x+y) > h1 +h2. This contradicts the fact that P = ⌊aP ⌋+{P}.
Therefore, the vertices of Q1 coincide with the vertices of ⌊aP ⌋; in particular, ⌊aP ⌋ = Q1.
We similarly obtain that {P} = Q2.

Next, since ⌊aP ⌋ and {P} are lattice polytopes by definition, we note that Q1 and Q2

are lattice polytopes in this situation.
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Finally, suppose we are in the case when P has an interior lattice point, i.e. a = 1.
By substituting this into the second equality, we see that the remainder polytope {P} is
indeed reflexive as all its facets lie at height 1.

In contrast, when P has no interior points, the remainder polytope {P} is not neces-
sarily even Gorenstein.

Example 16. Consider the polytope

P = conv{(0, 0, 0), (2, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (2, 0, 1), (1, 1, 1), (0, 1, 1)}.

We can verify that P is nearly Gorenstein and IDP, but the remainder polytope {P} is
not Gorenstein. However, {P} can be written as the Minkowski sum of

conv{(0, 0, 0), (1, 0, 0), (0, 1, 0)} and conv{(−1,−1,−1), (−1,−1, 0)},

which are both Gorenstein.

We see similar behavior when studying the nearly Gorensteinness for certain restricted
classes of polytopes. This motivated us to pose the following question.

Question 1. If P is nearly Gorenstein, then can we write P = P1 + · · · + Ps for some
Gorenstein lattice polytopes P1, . . . , Ps?

We recall that P is (Minkowski) indecomposable if P is not a singleton and if there exist
lattice polytopes P1 and P2 with P = P1 + P2, then either P1 or P2 is a singleton. Note
that if P is not a singleton, then we can write P = P1 + · · ·+Ps for some indecomposable
lattice polytopes P1, . . . , Ps.

Then, Question 1 can be rephrased as:

Question 2. If P has an indecomposable non-Gorenstein lattice polytope as a Min-kowski
summand, then is P not nearly Gorenstein?

This question has a positive answer for IDP (0, 1)-polytopes, which is shown in Sec-
tion 8.3. For the remainder of this section, we will build up some machinery which allows
for the efficient construction of nearly Gorenstein polytopes. We then use this in Exam-
ple 17 to give an answer to Questions 1 and 2.

Theorem 32 (Theorem 26). Let P ⊂ Rd be a nearly Gorenstein polytope. Then there
exists a reflexive polytope Q ⊂ Rd such that

P = {x ∈ Rd : n(x) ≥ −hn for all n ∈ ∂Q∗ ∩ (Zd)∗},

where hn are integers. Moreover, the inequalities defined by n ∈ vert(Q∗) are irredundant.
Furthermore, the number of facets of a nearly Gorenstein polytope is bounded by a constant
depending on the dimension d.
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Before we dive into the proof, it will be useful to have the following lemma.

Lemma 21. Let P be a lattice polytope satisfying P = ⌊aP ⌋+{P}, where a is the codegree
of P . Then aP = ⌊aP ⌋+ {aP}. Moreover, {aP} = (a− 1)P + {P}.

Proof. We first wish to show that (a−1)P +{P} ⊆ {aP}. Let x ∈ (a−1)P and y ∈ {P}.
Then, by Lemma 19 (2), nF (x + y) ≥ −(a− 1)hF + (a− 1)hF − 1 = −1, for all facets F
of P . So, x+ y ∈ {aP}. Thus, (a− 1)P + {P} ⊆ {aP}.

We can add ⌊aP ⌋ to both sides of the inclusion to get aP ⊆ ⌊aP ⌋+ {aP}.
We next wish to show the reverse inclusion of the above. Let z ∈ ⌊aP ⌋ and w ∈ {aP}.

Then nF (z + w) ≥ (1 − ahF ) − 1 = −ahF , for all facets F of P . So, z + w ∈ aP .
Therefore, ⌊aP ⌋ + {aP} ⊆ aP . Combining the two inclusions gives the desired equality:
aP = ⌊aP ⌋+ {aP}.

Moreover, we obtain that ⌊aP ⌋ + {P} + (a − 1)P = ⌊aP ⌋ + {aP}. Since Minkowski
addition of convex sets satisfies the cancellation law, we may cancel both sides by ⌊aP ⌋
to obtain the equality {aP} = (a− 1)P + {P}.

Proof of Theorem 32. We wish to study the (inner) normal fan N (P ) of P , as it’s enough
to show that its primitive ray generators all lie in ∂Q∗ ∩ (Zd)∗, for some reflexive polytope
Q ⊂ Rd. Let a be the codegree of P . Since dilation has no effect on the normal fan, we
may pass to the normal fan of aP . Now, by Lemma 21, aP has a Minkowski decomposition
into ⌊aP ⌋ and {aP}. Thus, N (aP ) is the common refinement of N (⌊aP ⌋) and N ({aP}).
By Proposition 31, we obtain that Q := {aP} is a reflexive polytope. Hence, the primitive
ray generators of N (Q) are vertices of the reflexive polytope Q∗ ⊂ (Rd)∗; in particular,
they are lattice points lying in the boundary of Q∗.

We next look at the contribution to N (aP ) coming from ⌊aP ⌋. Let n ∈ (Zd)∗ be
a primitive ray generator of N (⌊aP ⌋). Then, by definition of the remainder polytope,
n(x) ≥ −1, for all x ∈ Q. But now, this means that n lies in Q∗. So, since n ̸= 0 and
Q is reflexive, we obtain that n ∈ ∂Q∗ ∩ (Zd)∗. Therefore, we have now shown that the
primitive ray generators of N (P ) = N (aP ) contain the vertices of Q∗, and that they all
lie in ∂Q∗ ∩ (Zd)∗.

Finally, we note that the number of facets of a nearly Gorenstein polytope P ⊂ Rd

is bounded by cd := supQ |∂Q∗ ∩ (Zd)∗|, where Q runs over all d-dimensional reflexive
polytopes. Since there are only finitely reflexive polytopes in each dimension d, and
all polytopes only have a finite number of boundary points, we see that cd is a finite
number.

We will now detail how to construct nearly Gorenstein polytopes. First, choose a
reflexive polytope Q ⊂ Rd. Then, choose a (possibly empty) subset S ′ of the boundary
lattice points of Q∗ which are not vertices of Q∗. Now, for each n ∈ S := S ′ ∪ vert(Q∗),
choose the height hn ∈ Z. Construct a polytope P ′ defined by n(x) ≥ −hn for all n ∈ S,
and assert that none of these inequalities are redundant. Next, we can dilate P ′ to rP ′ so
that it’s a lattice polytope which contains an interior lattice point. By construction, its
remainder polytope {rP ′} coincides with the reflexive polytope Q. In practice, rP ′ has a
Minkowski decomposition into ⌊rP ′⌋ and {rP ′}, but we don’t yet have a proof that this
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always holds. Finally, we can use Theorem 28 to dilate rP ′ even further to P := krP ′ so
that P = ⌊P ⌋+ {P} is nearly Gorenstein.

Example 17. Consider the polytope

P = conv{(−4,−3,−4), (−3,−1,−3), (−2,−2,−3), (0, 1, 4), (0, 4, 1), (3, 1, 1)}.

Note that P has many interior lattice points, it has codegree 1. Its floor polytope is

⌊P ⌋ = conv{(−3,−2,−3), (0, 3, 1), (0, 1, 3), (2, 1, 1)}.

This is an indecomposable simplex, which is not Gorenstein. Its remainder polytope is

{P} = conv{(−1,−1,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1)},

which is clearly reflexive. We have P = ⌊P ⌋ + {P}. We use Magma [BCP97] to verify
that P ∩ Z3 = (⌊P ⌋ ∩ Z3) + ({P} ∩ Z3) and that P is IDP. Thus, we may conclude by
Lemma 19 that P is a nearly Gorenstein polytope.

It can be shown that P = ⌊P ⌋+{P} is the only non-trivial Minkowski decomposition of
P . Thus, we may conclude that the nearly Gorenstein polytope P cannot be decomposed
into Gorenstein polytopes. Therefore, we may answer Questions 1 and 2 in the negative.

We end this section by giving the following theorem about nearly Gorensteinness of
indecomposable polytopes, which plays an important role in the characterisation of nearly
Gorenstein (0, 1)-polytopes in Section 8.3.

Theorem 33. Let P be an indecomposable lattice polytope. Then, P is nearly Gorenstein
if and only if P is Gorenstein.

Proof. It is already clear that Gorensteinness implies nearly Gorensteinness, so we just
have to treat the converse implication. Suppose that P is nearly Gorenstein. By Propo-
sition 39, we have that P = ⌊aP ⌋ + {P}, where a is the codegree of P . Since P is
indecomposable, either (i) ⌊aP ⌋ is a singleton or (ii) {P} is a singleton.

We first deal with case (i). Consider aP . By Lemma 21, aP = ⌊aP ⌋ + {aP}. Thus,
aP is a translation of {aP}. By Proposition 31, {aP} is reflexive. Thus, P is Gorenstein.

The argument for case (ii) is similar. We consider {aP}. By Lemma 21, {aP} =
(a − 1)P + {P}. Proposition 31 tells us that {aP} is reflexive; therefore, (a − 1)P is a
translation of a reflexive polytope. But this is an absurdity as it implies that (a− 1)P has
an interior lattice point, contradicting that the codegree of P is a. Thus, this case cannot
occur.

8.3 Nearly Gorenstein (0, 1)-polytopes

In this section, we consider the case of (0, 1)-polytopes. We provide the characterisation
of nearly Gorenstein (0, 1)-polytopes which are IDP. Moreover, we also characterise nearly
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Gorenstein edge polytopes of graphs satisfying the odd cycle condition and characterise
nearly Gorenstein graphic matroid polytopes.

Beforehand, we need a technical lemma.

Lemma 22. Let R1, . . . , Rs be homogeneous normal affine semigroup rings over infinite
field k which have Krull dimension at least 2. Let R = R1# · · ·#Rs be the Segre products.
Then the following are true:

(1) If R is nearly Gorenstein, then Ri is nearly Gorenstein for all i.

(2) If Ri is level for all i, then R is level.

Proof. It suffices to prove the case s = 2. Let x1, . . . , xn be k-basis of (R1)1 and y1, . . . , ym
be a k-basis of(R2)1.

(1): In this case, by using Proposition 18, we get ωR
∼= ωR1#ωR2 and ω−1

R
∼= ω−1

R1
#ω−1

R2
.

Then we may identify ωR and ωR
−1 with ωR1#ωR2 and ω−1

R1
#ω−1

R2
, respectively.

It is enough to show that xi ∈ tr(ωR1) for any 1 ≤ i ≤ n. Since R is nearly Gorenstein,
there exist homogeneous elements v1#v2 ∈ ωR1#ωR2 and u1#u2 ∈ ω−1

R1
#ω−1

R2
such that

xi#y1 = (v1#v2)(u1#u2) = (v1u1#v2u2), by [Miy24, Proposition 4.2]. Thus, we get
xi = v1u1 ∈ tr(ωR1), so R1 is nearly Gorenstein. In the same way as above, we can show
that R2 is also nearly Gorenstein.

(2): First, ωR
∼= ωR1#ωR2 by Proposition 18. Let a1 and a2 be the a-invariants

of R1 and R2, respectively, and assume that a1 ≤ a2. Since R1 and R2 are level,
ωR1
∼= ⟨f1, · · · , fr⟩R1 and ωR2

∼= ⟨g1, · · · , gl⟩R2 where deg fi = −a1 and deg gj = −a2
for all 1 ≤ i ≤ r, 1 ≤ j ≤ l. Thus, since ωR

∼= ωR1#ωR2 , we may identify ωR with
⟨f1, · · · , fr⟩R1#⟨g1, · · · , gl⟩R2. We set

V := {ybgj : 1 ≤ j ≤ l, a ∈ Nm,
m∑
i=1

bi = a2 − a1},

where ya := ya11 · · · yamm . Then ωR = ⟨fi#v : 1 ≤ i ≤ r, v ∈ V ⟩R. Therefore, R is level.

8.3.1 The characterisation of nearly Gorenstein (0, 1)-polytopes

Lemma 23. Let P ⊂ Rd be a (0, 1)-polytope. Then, after a change of coordinates, we can
write P = P1 × · · · × Ps for some indecomposable (0, 1)-polytopes P1, . . . , Ps.

Proof. As mentioned in Section 8.2, we can write P = P ′
1+· · ·+P ′

s for some indecomposable
lattice polytopes P ′

1, . . . , P
′
s.

First, we show that we can choose P ′
1, . . . , P

′
s so that these are (0, 1)-polytopes. Suppose

that we can write P = P ′
1 + P ′

2 for some lattice polytopes P ′
1 and P ′

2. Then, for any
v ∈ P ′

1 ∩ Zd and for any u ∈ P ′
2 ∩ Zd, v + u is a (0, 1)-vector. Therefore, for any i ∈ [d],

πi(P
′
1 ∩ Zd) can take one of the following forms: (i) {wi} or (ii) {wi, wi + 1} for some

wi ∈ Z. In case (i), πi(P
′
2 ∩ Zd) is equal to {−wi}, {−wi + 1} or {−wi,−wi + 1}. In case

(ii), πi(P
′
2∩Zd) is equal to {−wi}. Thus, in all cases, P ′

1−w and P ′
2+w are (0, 1)-polytopes

and we have P = (P ′
1 − w) + (P ′

2 + w), where w = (w1, . . . , wd).
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Moreover, if we can write P = P ′
1+P ′

2 for some (0, 1)-polytopes P ′
1 and P ′

2, then we can
see that either πi(P

′
1) or πi(P

′
2) is equal to {0} for any i ∈ [d]. Therefore, after a change

of coordinates, we can write P = P1 × P2 for some (0, 1)-polytopes P1 and P2.

Now, we provide the main theorem of this section.

Theorem 34. Let P be an IDP (0, 1)-polytope. Then, P is nearly Gorenstein if and
only if you can write P = P1 × · · · × Ps for some Gorenstein (0, 1)-polytopes P1, . . . , Ps

with |aPi
− aPj

| ≤ 1, where aPi
and aPj

are the respective codegrees of Pi and Pj, for
1 ≤ i < j ≤ s.

Proof. It follows from Lemma 23 that we can write P = P1 × · · · × Ps for some indecom-
posable (0, 1)-polytopes P1, . . . , Ps. Thus, we have k[P ] ∼= k[P1]# · · ·#k[Ps]. Note that if
P is IDP, then so is Pi for each i ∈ [s], and A(P ) (resp. A(Pi)) coincides with k[P ] (resp.
k[Pi]). Therefore, since P is nearly Gorenstein, k[P ] is nearly Gorenstein, and hence k[Pi]
is also nearly Gorenstein from Lemma 22 (1). Furthermore, Pi is nearly Gorenstein. Since
Pi is indecomposable, Pi is Gorenstein by Theorem 33. Moreover, it follows from [HMP19,
Corollary 2.8] that |aPi

− aPj
| ≤ 1 for 1 ≤ i < j ≤ s.

The converse also holds from [HMP19, Corollary 2.8].

From this theorem, we immediately obtain the following corollaries:

Corollary 6. Question 1 is true for IDP (0, 1)-polytopes.

Corollary 7. Let P be an IDP (0, 1)-polytope. If k[P ] is nearly Gorenstein, then k[P ] is
level.

Proof. It follows immediately from Lemma 22 (2) and Theorem 34.

The result of Theorem 34 can be applied to many classes of (0, 1)-polytopes such as
order polytopes and stable set polytopes.

Order polytopes, which were introduced by Stanley [Sta86], arise from posets. Let Π
be a poset equipped with a partial order ⪯. The Ehrhart ring of the order polytope of
a poset Π is called the Hibi ring of Π, denoted by k[Π]. It is known that Hibi rings are
standard graded ([Hib87]). For a subset I ⊂ P , we say that I is a poset ideal of P if p ∈ I
and q ⪯ p then q ∈ I. According to [Sta86], the characteristic vectors of poset ideals in
RΠ are precisely the vertices of the order polytope of Π (hence order polytopes are (0, 1)-
polytopes). By this fact, we can see that the order polytope of a poset Π is indecomposable
if and only if Π is connected. Nearly Gorensteinness of Hibi rings have been studied in
[HHS19]. It is shown that k[Π] is nearly Gorenstein if and only if Π is the disjoint union
of pure connected posets Π1, . . . ,Πq such that their ranks of any two also can only differ
by at most 1. Moreover, in this case, k[Πi] is Gorenstein and k[Π] ∼= k[Π1]# · · ·#k[Πs].
Therefore, its characterisation can be derived from Theorem 34.

Stable set polytopes, which were introduced by Chvátal [Chv75], arise from graphs.
For a finite simple graph G on the vertex set V (G) with the edge set E(G), the stable
set polytope of G, denoted by StabG, is defined as the convex hull of the characteristic
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vectors of stable sets of G in RV (G), hence StabG is a (0, 1)-polytope. Here, we say that
a subset S of V (G) is a stable set if {v, u} /∈ E(G) for any v, u ∈ S. This implies that
StabG is indecomposable if and only if G is connected. Stable set polytopes behave well
for perfect graphs. For example, StabG is IDP if G is perfect (cf.[OH01]). Moreover, the
characterisation of nearly Gorenstein stable set polytopes of perfect graphs has been given
in [HS21; Miy22]. Let G be a perfect graph with connected components G1, . . . , Gs and let
δi denote the maximal cardinality of cliques of Gi. Then, it is known that StabG is nearly
Gorenstein if and only if the maximal cliques of each Gi have the same cardinality and
|δi − δj| ≤ 1 for 1 ≤ i < j ≤ s. In this case, as in the case of order polytopes, k[StabGi

]
is Gorenstein and k[StabG] ∼= k[StabG1 ]# · · ·#k[StabGs ]. Therefore, its characterisation
can also follow from Theorem 34.

Furthermore, by using this theorem, we can study the nearly Gorensteinness of other
classes of (0, 1)-polytopes.

8.3.2 Nearly Gorenstein edge polytopes

First, we define the edge polytope and edge ring of a graph. We refer the reader to
[HHO18, Section 5] and [Vil01, Chapters 10 and 11] for an introduction to edge rings.

Let G be a finite simple graph on the vertex set V (G) = {1, . . . , d} with the edge set
E(G). Given an edge e = {i, j} ∈ E(G), let ρ(e) := ei + ej, where ei denotes the i-th unit
vector of Rd for i ∈ [d]. We define the edge polytope PG of G as follows:

PG = conv{ρ(e) : e ∈ E(G)}.

The toric ring of PG is called the edge ring of G, denoted by k[G] instead of k[PG].
Let G1, . . . , Gs be the connected components of G. From the definition of edge poly-

tope, we can see that k[G] ∼= k[G1]⊗ · · · ⊗ k[Gs]. Therefore, in considering the character-
isation of nearly Gorenstein edge polytopes, we may assume that G is connected.

Moreover, for a connected graph G, PG is IDP if and only if G satisfies the odd cycle
condition, in other words, for each pair of odd cycles C and C ′ with no common vertex,
there is an edge {v, v′} with v ∈ V (C) and v′ ∈ V (C ′) (see [OH98; SVV94]).

Gorenstein edge polytopes have been investigated in [OH06]. We now state the char-
acterisation of nearly Gorenstein edge polytopes.

Corollary 8. Let G be a connected simple graph satisfying the odd cycle condition. Then,
the edge polytope PG of G is nearly Gorenstein if and only if PG is Gorenstein or G is the
complete bipartite graph Kn,n+1 for some n ≥ 2.

Proof. If PG is nearly Gorenstein, then Theorem 34 allows us to write PG = P1× · · · ×Ps

for some indecomposable Gorenstein (0, 1)-polytopes P1, . . . , Ps. Then, we have s ≤ 2
since PG ⊂ {(x1, . . . , xd) ∈ Rd : x1 + · · · + xd = 2}, where d = |V (G)|. In the case
s = 1, PG is Gorenstein. If s = 2, we can see that P1 = conv{e1, . . . , en} ⊂ Rn and
P2 = conv{e1, . . . , ed−n} ⊂ Rd−n for some 1 < n < d− 1. Therefore, we have G = Kn,d−n,
and it is shown by [HS21, Proposition 1.5] that for any 1 < n < d − 1, PKn,d−n

is nearly
Gorenstein if and only if d− n ∈ {n, n+ 1}. Since PKn,n is Gorenstein, we get the desired
result.
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8.3.3 Nearly Gorenstein graphic matroid polytopes

We start by giving one of several equivalent definitions of a matroid.

Definition 16. Let E be a finite set and let B be a subset of the power set of E satisfying
the following properties:

1. B ̸= ∅.

2. If A,B ∈ B with A ̸= B and a ∈ A \ B, then there exists some b ∈ B \ A such that
(A \ {a}) ∪ {b} ∈ B.

Then the tuple M = (E,B) is called a matroid with ground set E and set of bases B.

Let now G = (V,E) be a multigraph. The graphic matroid associated to G is the
matroid MG whose ground set is the set of edges E and whose bases are precisely the
subsets of E which induce a spanning tree of G. Given two matroids ME = (E,BE) and
MF = (F,BF ), their direct sum ME ⊕MF is the matroid with ground set E ⊔F such that
for each basis B of ME⊕MF , there exist bases BE ∈ BE and BF ∈ BF with B = BE ⊔BF .
If such a decomposition is not possible for a matroid M , we call it irreducible.

A graphic matroid with underlying multigraph G is irreducible if and only if its under-
lying graph is 2-connected. If it is not irreducible, its irreducible components correspond
precisely to the 2-connected components of G.

For any matroid M = (E,B), we can define its matroid base polytope (or simply base
polytope) by

BM = conv

{∑
b∈B

eb : B ∈ B

}
⊂ R|E|

where eb is the incidence vector in R|E| corresponding to the basis b. If BM comes from a
graphic matroid MG, we will call it BG.

An alternative definition of matroid base polytopes is as follows.

Definition 17 ([Gel+87, Section 4]). A (0, 1)-polytope P ⊂ Rd is called (matroid) base
polytope if there is a positive integer h such that every vertex v = (v1, . . . , vn) satisfies∑d

i=1 vi = h and every edge (i.e. dimension 1 face) of P is a translation of a vector ei− ej
with i ̸= j.

It is shown in [Gel+87, Theorem 4.1] that this definition is indeed equivalent to that of
a base polytope as given above and that the underlying matroid is uniquely determined.
This gives us the following two lemmas.

Lemma 24. Let G be a multigraph and let G1, . . . Gn be its 2-connected components. Then
BG can be written as a direct product of the base polytopes BG1 , . . . , BGn. Conversely, if
BG can be written as a direct product of polytopes P1, . . . , Pn, where no Pi is itself a
direct product, then these polytopes correspond to the base polytopes of the 2-connected
components G1, . . . , Gn of G.
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Proof. The first statement is trivially satisfied.
The converse follows from two key insights. Firstly, the fact that if a base polytope BM

associated to a (not necessarily graphic) matroid M can be written as a direct product
P1 × P2, then P1 and P2 are again base polytopes. Secondly, if a graphic matroid MG

can be written as a direct sum M1 ⊕M2, then M1 and M2 are again graphic matroids
corresponding to subgraphs of G which have at most one vertex in common.

The first insight follows from the alternative definition of a base polytope: Every edge
of BM is given by an edge in P1 and a vertex of P2, or vice versa. Hence, P1 and P2

must satisfy the definition as well, making them base polytopes with unique underlying
matroids M1 and M2. The second insight is a classical result and can be found, among
other places, in [Tru92, Lemma 8.2.2].

The following proposition is the polytopal version of a classical result due to White.

Lemma 25 ([Whi77, Theorem 1]). Matroid base polytopes are IDP.

We can now define Gorensteinness, nearly Gorensteinness, and levelness of a matroid
by identifying it with its base polytope. In [Hib+21] and [Köl20], a constructive, graph-
theoretic criterion of Gorensteinness for graphic matroids was found. Since the direct
product of two Gorenstein polytopes that have the same codegree is again Gorenstein, the
characterisation is presented in terms of 2-connected graphs.

Proposition 40 ([Köl20, Theorems 2.22 and 2.25]). Let G be a 2-connected multigraph.
Then the following are equivalent.

1. BG is Gorenstein with codegree a = 2

2. Either G is the 2-cycle or G can be obtained from copies of the clique K4 and Con-
struction 2.15 in [Köl20].

The following are also equivalent.

1. BG is Gorenstein with codegree a > 2

2. G can be obtained from copies of the cycle Ca and Constructions 2.15, 2.17, 2.18 in
[Köl20] with δ = a.

The full characterisation of nearly Gorenstein graphic matroids is thus an immediate
corollary of Theorem 34 and Proposition 40.

Corollary 9. Let G be a multigraph with 2-connected components G1, . . . , Gn, then the
following are equivalent.

1. BG is nearly Gorenstein

2. BG1 , . . . , BGn are Gorenstein with codegrees a1, . . . , an, where |ai − aj| ≤ 1 for 1 ≤
i < j ≤ s.
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[MP05] Mircea Mustaţa and Sam Payne. “Ehrhart polynomials and stringy Betti
numbers”. In: Math. Ann. 333 (2005), pp. 787–795.

[OH98] Hidefumi Ohsugi and Takayuki Hibi. “Normal polytopes arising from finite
graphs”. In: Journal of Algebra 207.2 (1998), pp. 409–426.

[OH01] Hidefumi Ohsugi and Takayuki Hibi. “Convex polytopes all of whose reverse
lexicographic initial ideals are squarefree”. In: Proc. Amer. Math. Soc. 129.9
(2001), pp. 2541–2546.

[OH06] Hidefumi Ohsugi and Takayuki Hibi. “Special simplices and Gorenstein toric
rings”. In: J. Combin. Theory Ser. A 113 (2006), pp. 718–725.

[OS12] Hidefumi Ohsugi and Kazuki Shibata. “Smooth Fano polytopes whose Ehrhart
polynomial has a root with large real part”. In: Discrete Comput. Geom. 47.3
(2012), pp. 624–628.

[OT21] Hidefumi Ohsugi and Akiyoshi Tsuchiya. “The h∗-polynomials of locally anti-
blocking lattice polytopes and their γ-positivity”. In: Discrete Comput. Geom.
66.2 (2021), pp. 701–722.

[Rod10] Miguel Antonio Rodriguez. The distribution of roots of certain polynomials.
Thesis (Ph.D.)–The University of Texas at Austin. ProQuest LLC, Ann Ar-
bor, MI, 2010.



BIBLIOGRAPHY 110

[Rod02] Fernando Rodriguez-Villegas. “On the zeros of certain polynomials”. In: Proc.
Amer. Math. Soc. 130.8 (2002), pp. 2251–2254.

[The22] The Sage Developers. SageMath, the Sage Mathematics Software System (Ver-
sion 9.6). https://www.sagemath.org. 2022.

[SVV94] Aron Simis, Wolmer V Vasconcelos, and Rafael H Villarreal. “On the ideal
theory of graphs”. In: Journal of Algebra 167.2 (1994), pp. 389–416.

[Sta86] Richard P Stanley. “Two poset polytopes”. In: Discrete Comput. Geom. 1
(1986), pp. 9–23.

[Sta07] Richard P Stanley. Combinatorics and commutative algebra. Vol. 41. Springer
Science & Business Media, 2007.

[Sta11] Alan Stapledon. “Equivariant Ehrhart theory”. In: Advances in Mathematics
226.4 (2011), pp. 3622–3654.
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