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Abstract

Technological advancements over recent centuries have been profoundly influ-
enced by scientific discoveries, ranging from Newton’s laws and Navier-Stokes
equations to the Black-Scholes model for financial markets. Discoveries in sci-
ence are achieved in diverse formats using various approaches. This thesis fo-
cuses on data-driven methods for deriving certain types of differential equations,
which are ubiquitous and interpretable symbolic representations that govern
system dynamics in a wide range of fields. Data-driven methods are particu-
larly compelling due to their flexibility and accuracy (over first-principles based
methodology), as they can be tailored to fit data with minimal prior knowl-
edge. However, some difficulties still remain in developing an automatic, robust
data-driven approach for identifying governing differential equations. For exam-
ple, optimizing for the true sparsity of system dynamics, which are determined
by only a few key physical variables, becomes challenging particularly when the
training data is of poor quality, as this naturally leads to inaccuracies in the com-
puted features. Another critical aspect is controlling the size of search space.
A large search space may yield an overcomplete set of candidate models but
prolong optimization time. Conversely, while a smaller search space facilitates
faster optimization of the best model, it risks being incomplete, increasing the
possibility of missing the true governing equation. This thesis is crafted with the
aim of addressing these problems and other intricate challenges, advancing the
field of data-driven discovery and neural-based solutions for partial differential
equations (PDEs) through three major contributions in the following.

First, we propose a noise-aware physics-informed machine learning frame-
work that integrates physics-informed neural networks (PINNs) with sparse
identification of nonlinear dynamics (SINDy) to discover governing PDEs from
noisy measurement data. This framework, which is effective even without a
discretized mesh, introduces an interpretable derivative preparation step where
feature importance of candidate terms is learned prior to initial PDE identifica-
tion, mitigating overfitting risks. By incorporating denoising PINNs that utilize
projections of noise provided by fast Fourier transform (FFT), the framework
enhances data quality for determining PDE coefficients more accurately.

Second, we develop a novel uncertainty-penalized Bayesian information crite-
rion (UBIC) for reliably identifying true governing PDEs with high success rates.
Unlike conventional criteria such as AIC (Akaike information criterion) and BIC
(Bayesian information criterion), which are demonstrated to favor overly com-
plex PDEs, UBIC leverages a penalty for uncertainty in parameter estimation
alongside traditional model complexity, defined by the count of nonzero parame-
ters. Bayesian regression is employed to quantify this uncertainty. Additionally,
PINN-based PDE simulations are conducted to validate the UBIC-selected PDE
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against the other potential PDE. Numerical results demonstrate UBIC’s supe-
rior performance in achieving robust PDE discovery.

Finally, we present an accurate neural network-based solver for nonlinear
PDEs. By employing advanced multi-task training techniques (e.g., uncertainty-
weighted loss and gradient surgery) as well as cross-stitch modules, the net-
work effectively leverages shared representations across parameterized PDE
families, resulting in improved generalization. Additionally, adversarial train-
ing is incorporated to focus on high-loss regions, enhancing the solver’s per-
formance in dynamically changing domain regions. Experimental validation
demonstrates the solver’s success in reducing error on unseen data, excelling in
high-dimensional, stochastic, and nonlinear PDE scenarios, and outperforming
existing approaches.

In summary, this thesis addresses key challenges in data-driven discovery
and numerical solutions of differential equations—such as noise, sparsity, un-
certainty, and generalization—by introducing innovations including noise-aware
physics-informed machine learning, uncertainty-penalized information criteria,
and enhanced neural solvers. These contributions improve upon state-of-the-art
approaches and are anticipated to provide foundational tools for diverse scien-
tific and engineering applications, paving the way for future breakthroughs in
the automated discovery and solution of governing equations.
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Chapter 1

Introduction

1.1 Data-driven discovery of governing equations
and symbolic regression

Scientific discovery has always been a cornerstone of the development of knowl-
edge and technology. With the recent advancements in machine learning and
deep learning, the process of scientific discovery has been driven more and more
by data, facilitating the conventional practices of first principles and trial and
error. Tailored to scientific data, symbolic regression algorithms [1] can extract
meaningful insights or knowledge succinctly, offering interpretable models in
theoretically arbitrary forms that can vary in complexity, ranging from simple
mathematical expressions (see the example in Figure 1.1) found ubiquitously
across various fields of physics to ordinary and partial differential equations
(ODEs and PDEs) in engineering. There has always been a demand for these
interpretable models. In the physical sciences, mathematical models that re-
spect physics enable reasoning about natural phenomena in ways that blackbox
models, like deep neural networks, cannot. In high-stakes fields like healthcare,
non-interpretable models, regardless of their accuracy, may never be permitted
for deployment [2].

Udrescu and Tegmark [3] demonstrated that their AI-Feynman symbolic
regression algorithm, which combines neural network learning with techniques
exploiting symmetry and separability information to accelerate a brute-force
search of mathematical expressions, can accurately identify all 100 well-known
equations from the Feynman Lectures on Physics. Similarly impressive results
in data-driven discovery of governing ODEs and PDEs were also shown by [4],
leading to the entirely new research field of SINDy—sparse identification of non-
linear dynamics—where the central assumption is that the governing equation
consists of only a few dominant variables. These remarkable results have indeed
brought more attention to the field of data-driven scientific discovery.

It is important to understand that equations can be represented by more than
just tree-based expressions; scientific discovery can be achieved using a variety
of methods applied to different data structures. Figure 1.2 offers a categoriza-
tion of symbolic regression methods, though this is by no means an exhaustive
list. For regression-based methods, governing expressions can be identified by
solving systems of linear or nonlinear equations. When using tree-based ex-
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1.2. SINDy: Sparse identification of nonlinear dynamics

Mul

k q1 q2 Pow

r -2

Figure 1.1: Example tree expression for the Coulomb force F between two
charged particles (q1 and q2) with a constant k, where F = k q1q2r2 . r is the
distance between the centers of the two charges. Mul and Pow stands for multi-
plication and power, respectively. Notes that a binary tree may be used, but the
resulting height and number of leaves, which determine the tree’s complexity,
will change.

pressions, governing equations are discovered through approaches like genetic
programming or reinforcement learning, where a powerful neural network, such
as a transformer [5], can act as the agent.

1.2 SINDy: Sparse identification of nonlinear
dynamics

Given snapshots of a dynamical system, sparse identification of nonlinear dy-
namics (SINDy) is a data-driven approach for identifying governing equations
from the data, requiring minimal prior knowledge about the system. A vanilla
SINDy leverages a sparsity-promoting regression, e.g., LASSO (the least abso-
lute shrinkage and selection operator) [6], on a library of nonlinear candidate
functions against temporal derivatives to find the governing equations presum-
ably consisting of a few dominant variables that actually dictate the dynamics.
Generally speaking, SINDy performs better when the snapshots are not noisy
or can be measured accurately. Thus it is a commonly good practice to develop
robust SINDy variants. To obtain the true governing equation without any
dispensible candidate terms, model selection is a very important step in SINDy
and symbolic regression methods in general. For model selection, what criterion
that defines the balance between goodness-of-fitting and model complexity to
be used and how to practically extract the optimal model out of the criterion is
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1.3. Core challenges in data-driven discovery of governing equations

Symbolic 
regression 
methods

Regression-
based

Linear

Non linear

Expression 
tree-based

Genetic 
programming

Reinforcement 
learning

Transformer 
neural network

Physics-
inspired

AI-Feynman

Figure 1.2: Comprehensive taxonomy of symbolic regression methods. Please
see [1] for exemplar methods in each category.

very crucial. This is also true for evaluating symbolic regression methods.

1.3 Core challenges in data-driven discovery of
governing equations

Noisy data. Generally, underlying dynamics are poorly captured by machine
learning algorithms if the training data used to train them are of low quality.
Noisy data negatively impacts the process of data-driven discovery, especially
for differential equations, mainly because the features—the data and derivatives
derived from it—are of poor quality.

Overfitting. Depending on the type of sparsity-promoting regression and
model selection criterion used, there can be challenges in setting hyperparam-
eters accurately to eventually select the true model. The issue of overfitting
becomes more pronounced when the snapshot data is noisy, making it difficult
to perform regression that captures the underlying dynamics with only a few
true terms, without including other dispensable variables.

Missing of true variables. This problem is tied to machine learning and
centers on the possibility that the overcompleteness assumption could be vio-
lated. This raises the question: how can we ensure the inclusion of correct,
high-quality features as inputs to the algorithms? Without effective features, it
is difficult to develop a good model. Enlarging the search space may alleviate

14



1.4. Sparsity-promoting regression

this issue but often leads to prolonged training time. Additionally, using a large
set of candidate terms is also challenging and may not yield the optimal model
efficiently.

Miscellaneous Scientific equation discovery methods have often been de-
signed for specific types of equations, such as ODEs, PDEs, or equations without
derivatives as main features. Creating a generalized method that can handle
a wide range of equations is challenging but valuable, as it would help scien-
tists identify and understand the governing equations relevant to their research.
Furthermore, developing guidelines on which definitions of sparsity to consider
and which regularized loss functions work best for various symbolic regression
methods would provide researchers with a clear path to extract insights from
their data.

1.4 Sparsity-promoting regression

Sparsity-promoting regression optimizes for important terms that capture un-
derlying dynamics using a regularized solver, such as STRidge (sequential thresh-
old ridge) [7] or LASSO, depending on the objective function. This becomes
even more difficult in noisy environments, where achieving a robust method is
challenging. Accurately identifying these important terms is not an easy task
(an NP-hard problem), as it requires searching over a large space of mathe-
matical operations and determining the appropriate constants to best fit the
data.

It is natural that early sparsity-promoting regression methods relied on reg-
ularized regression, developed to prevent overfitting—examples include Ridge
[8] and LASSO. Ridge regression, also known as l2 regularization, is one form
of regularization used with linear regression models to reduce errors from over-
fitting on training data. Specifically, Ridge regression corrects multicollinearity
among candidate terms, which is especially relevant when the terms are deriva-
tives (particularly high-order derivatives). These derivatives often have small
values, leading to large coefficients that should be regularized by Ridge penalty.

LASSO, also called regression with l1 regularization, works by shrinking
some coefficients to zero, effectively eliminating certain independent variables
from the model. Both LASSO and Ridge regression reduce model complexity,
but in different ways. LASSO simplifies the model by reducing the number of
independent variables that influence the output, while Ridge regression reduces
the influence (or weight/coefficient) each variable has on the output. As a result,
Ridge regression itself alone cannot be used to achieve true sparsity. However,
LASSO can be sensitive to its regularization hyperparameter, which can leave
us unsure about the true governing form of the model. Since we also do not
know in advance the number of active terms in a solution provided by LASSO,
we may unfortunately miss the actual model complexity.
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1.5 Information criterion to prevent overfitting
in model selection

At the time of writing this thesis, no perfect information criterion exists that
can determine the optimal complexity of the governing equation for every phys-
ical system. Researchers typically use data-splitting strategies like k-fold cross-
validation or revert to common information criteria, such as the Akaike In-
formation Criterion (AIC) [9] and Bayesian Information Criterion (BIC) [10],
which are more suitable when data-splitting strategies are not affordable due to
a limited amount of measurement data.

One issue with cross-validation is that the validation set may exhibit a slight
distributional shift compared to the training set, raising concerns about whether
the resulting distribution sufficiently supports a data-driven discovery process.

A major challenge in defining an information criterion lies in balancing model
accuracy with model complexity to accurately identify the true governing equa-
tion. Excessive complexity may lead to overfitting, while insufficient complexity
may fail to capture the essential structure of the data. Defining an appropriate
measure of model complexity is crucial to guiding the selection of models that
are both parsimonious and representative of the true dynamics.

Conventional criteria, such as AIC and BIC, struggle with the task of PDE
discovery due to two fundamental issues.

Independence assumption AIC and BIC rely on the assumption that data
points are independently and identically distributed (i.i.d.). However, data gov-
erned by PDEs inherently exhibit dependencies in space and time, violating the
i.i.d. assumption.

Disproportionate data size The number of training data points signifi-
cantly can exceed the number of terms in the PDE due to the dense sampling
of spatio-temporal data points. This imbalance can lead to an overestimation
of the likelihood in AIC/BIC, compromising their reliability for PDE model
selection.

It is worth noting that these criteria are derived from information theory
and are not specifically designed to identify sparse governing equations. Since
information criteria depend on the candidate terms—which, in the context of
this thesis, are mostly derivatives—these less common or unnatural time-series
terms may contribute to the ineffectiveness of AIC and BIC.

1.6 New technical contributions

The novel technical contributions in this thesis are presented in 3 folds.

1. The first contribution is a noise-aware physics-informed machine learning
framework [11] that combines physics-informed neural network (PINN)
[12] learning with SINDy to discover the governing PDE from noisy mea-
surement data, even when it does not originate from a discretized mesh.
The derivative preparation step in this framework is interpretable, as the
feature importance of candidate terms is learned by the neural network
before the initial PDE identification step is applied, reducing the risk
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1.7. Thesis’s organization

of overfitting during neural network training. Additionally, the frame-
work incorporates denoising PINNs, which use projected (initial) noise
extracted via fast Fourier transform (FFT) to produce higher-quality data
for determining PDE coefficients.

2. The second technical contribution is the uncertainty-penalized Bayesian
information criterion (UBIC) [13, 14, 15]. This criterion is designed to
identify the true governing equation with high success rates, without re-
quiring simulations of all possible PDEs, thereby expediting the PDE dis-
covery process. Conventional criteria like AIC and BIC, under similar
circumstances, have been shown to favor overly complicated PDEs. To
address this, UBIC adopts a more conservative approach by incorporat-
ing not only the count of nonzero parameters as a complexity penalty but
also the uncertainty associated with them, referred to as PDE uncertainty.
Bayesian regression is utilized to quantify this uncertainty. Additionally,
we introduce a physics-informed neural network learning framework as
a simulation-based method to further validate the UBIC-selected PDE
against other potential candidates. Numerical results demonstrate the
successful application of UBIC for data-driven PDE discovery from noisy
spatio-temporal data.

3. The third contribution advances neural network-based solvers for PDEs
addressing performance challenges in highly nonlinear domains. This is
achieved through a new framework that integrates multi-task learning
techniques—such as uncertainty-weighted loss [16], gradient surgery [17],
and cross-stitch modules [18]—to exploit shared representations across re-
lated PDEs generated by varying parameterization coefficients, thereby
enhancing generalization. Moreover, adversarial training is employed to
create high-loss samples that mimic the original training data distribu-
tion, enabling the network to prioritize difficult regions with pronounced
nonlinearity. Experimental results reveal that the framework’s effective-
ness, showing substantial error reduction on unseen data across diverse
PDE scenarios, including high-dimensional and stochastic cases, and out-
performing previous methods.

1.7 Thesis’s organization

The rest of this thesis is structured as follows: Chapter 2 reviews founda-
tional literature, including SINDy and its variations, such as PDE-FIND and
evolutionary-based PDE discovery frameworks, alongside sparse regression tech-
niques for developing parsimonious models. Since the success of these methods
depends on data quality, we explore denoising techniques such as FFT and ro-
bust principal component analysis (RPCA) [19]. Additionally, we introduce
information criteria, essential for selecting the optimal model from a collection
of parsimonious options along the Pareto front. The chapter concludes with a
discussion of PINNs and deep operator learning as alternatives for solving or
simulating PDEs in a mesh-less manner.

Chapters 3 through 5 present our novel contributions to the field. Chapter 3
proposes a robust framework that integrates PINN learning with SINDy to facil-
itate PDE discovery from noisy data that may not originate from a discretized
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1.7. Thesis’s organization

mesh. Chapter 4 introduces a new uncertainty-guided information criterion,
designed to conservatively uphold the parsimony of governing equations by in-
corporating quantified uncertainty in PDEs. Chapter 5 explores improving the
generalization of PINNs using advanced machine learning techniques, such as
adversarial and multi-task learning. Finally, Chapter 6 summarizes the thesis
and outlines directions for future research.
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Chapter 2

Literature Review

2.1 SINDy and its variants

2.1.1 Mathematical overview of SINDy for ODEs

Here the problem of dynamical system discovery is formulated through the lens
of sparse regression and compressed sensing. The central assumption is that
most physical systems have only a few relevant terms that dictate the dynamics,
making the governing equations sparse in a high-dimensional nonlinear function
space. Let us consider dynamical systems in the following ODE form:

dx

dt
= f(x(t)); (2.1)

where the vector x(t) denotes the state of a system at time t, and f(x(t)) is the
dynamical constraint defining motion of the system. Throughout this thesis we
often assume an access to some measurements of at least the state variables in
space and time. The goal is to find the governing function f from the data:

X =




x⊺(t1)
x⊺(t2)

...
x⊺(tm)



. (2.2)

Based on X we can compute its corresponding time derivatives Ẋ (e.g., using
finite difference) and then construct a large candidate library Θ(X) consisting
nonlinear functions of X, as comprehensively illustrated in Figure 2.1. There
is tremendous freedom of choice in constructing the entries in this matrix of
nonlinearities. Since we believe that only a few of these nonlinearities are active,
we set up a sparse regression to determine the sparse vectors of coefficients as
follows:

Ẋ = Θ(X)Ξ. (2.3)

In order to solve for the sparse Ξ, LASSO might yield a satisfying solution,
however, it may not computationally efficient for very large datasets. Therefore,
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III.  Identified System

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system to explore the identification of chaotic dynamics:

ẋ = �(y � x) (18)
ẏ = x(⇢� z)� y (19)
ż = xy � �z. (20)

For this example, we use the standard parameters � = 10,� = 8/3, ⇢ = 28, with an initial condition⇥
x y z

⇤T
=
⇥
�8 7 27

⇤T .

2
4x(t) y(t) z(t) x(t)2 x(t)y(t) x(t)z(t) y(t)2 y(t)z(t) z(t)2 · · ·

3
5 (21)

Full Simulation

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 0.01

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 10

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

Figure 3: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top)
and long-time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared
with the sparse identified systems (middle, right) for various additive noise. The trajectories are
colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.
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I.  True Lorenz System

M
odel O

ut

Figure 2.1: Schematic of SINDy by [4] demonstrated on the Lorenz system.

Brunton et al. [4] decided to use the sequential thresholded least-squares (STLS)
algorithm in Code (2.1).

Code 2.1: Sequential thresholded least squares algorithm for sparse regression
in Matlab

% Compute Sparse r e g r e s s i on : s e q u en t i a l l e a s t squares
% i n i t i a l guess : Least=squares
Xi = Theta \ dXdt ;

% Lambda i s a s p a r s i f y i n g t h r e s h o l d .
for k=1:10

% f ind sma l l c o e f f i c i e n t s
sma l l i nd s = (abs ( Xi ) < lambda ) ;

% th r e s h o l d i n g
Xi ( sma l l i nds ) = 0 ;

for ind = 1 : n
% f ind b i g c o e f f i c i e n t s
b ig inds = (abs ( Xi ) >= lambda ) ;

% Regress onto remaining terms
Xi ( b ig inds , ind ) = Theta ( : , b i g ind s ) \ dXdt ( : , ind ) ;

end
end

The algorithms starts with a least-squares solution for Ξ and then thresh-
old all coefficients smaller than some cutoff value λ. Once the indices of the
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Figure 2.2: Discovery of the Lorenz system where σ = 10, β = 8/3, and ρ =
28 using SINDy [4] with the different noise levels. The leftmost subfigure is
the full simulation of the Lorenz system without noise interference. The noise
interference is intensified by ϵ, making Ẋ noisy but keeping X (relatively) clean
to imitate realistic scenarios in which Ẋ = Θ(X)Ξ + ϵZ. Each entry of Z is
sampled from the standard Gaussian distribution N (0, 1).

remaining non-zero coefficients are obtained, we reapply another least-squares
solution for Ξ onto the remaining indices. These new coefficients will be thresh-
olded again using λ, and the procedure continues until the non-zero coefficients
converge. STLS is computationally efficient, and rapidly converges to in a small
number of iterations. STLS requires a single parameter λ to determine the de-
gree of sparsity in Ξ. Successful identification of the Lorenz system is shown in
Figure 2.2. We evaluate a (correct) discovery result (for one equation) ξ̂ using its

percentage coefficient error (%CE) given Ei∈S

[
100×

∣∣∣ξ̂i − ξtruei

∣∣∣ /
∣∣ξtruei

∣∣
]
; where

S is a set of indices of the true terms. If the system of interest is composed of
multiple equations, we report the average error over the equations. For example,
the %CE of the identified system is 1.39× 10−4 for the case where ϵ is 0.01.

Nevertheless, more recent studies have demonstrated that sensitivity to the
threshold λ is quite problematic and cannot be resolved easily. For instance,
when ϵ = 1, wrong equations that do not represent the true form of the Lorenz
system are selected if the threshold is not set properly, as shown below. A
threshold that is too large results in an overly sparse system where true terms
are removed, while a threshold that is too small leads to overfitting—the failure
to eliminate irrelevant terms. Therefore, selecting an appropriate threshold that
identifies the true system is not a trivial task.

Too sparse: λ = 1

ẋ = −9.997x+ 9.998y

ẏ = −2.910x

ż = −2.667z + 1.000xy

Correct: λ = 0.1

ẋ = −9.997x+ 9.998y

ẏ = 28.002x− 1.000y − 1.000xz

ż = −2.667z + 1.000xy

Overfitting: λ = 0.01

ẋ = 0.012− 9.997x+ 9.998y

ẏ = 28.002x− 1.000y − 1.000xz

ż = −0.069− 2.664z + 1.000xy

Remark that this sensitivity problem is prevalent, occurring at different noise
levels and also in cases where the governing equations are PDEs.
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Figure 2.3: Schematic of PDE-FIND by [7] demonstrated on the Navier-Stokes
Equations.

2.1.2 PDE-FIND: Data-driven discovery of PDEs

Rudy et al. [7] extended the capability of SINDy to discover governing PDEs
from data, proposing the PDE-FIND (PDE functional identification of nonlinear
dynamics) framework, also known as SINDy for (nonlinear) PDEs, which have
the following parametrized form:

ut = N (u, ux, uxx, . . . , x, µ). (2.4)

N is an unknown right-hand side (RHS) that is the governing nonlinear operator
of u, its derivatives, and parameters in µ. For example, a Burgers’ equation may
have been formulated as N = µuxx−uux. The goal is to find N given time series
measurements of the system at a certain number of spatial locations in x. Recall
that the central assumption is that N consists of only a few terms, making the
functional form sparse relative to the large space of possible candidate terms.

Upon discretization of (2.4), we construct the following system of linear
equations:

Ut = Θ(U,Q)ξ; (2.5)

Ut is the time derivative, Θ(U,Q) is the candidate library constructed by
additional information Q, and ξ is the sparse vector of PDE coefficients. Then
our goal can be transformed in into a sparse regression problem with a λ0-
controlled penalty on the number of active nonzero terms (support size) as
follows:

ξ̂ = argmin
ξ

∥∥Ut −Θ(U,Q)ξ
∥∥2
2

+ λ0∥ξ∥0 . (2.6)

Recall that the resulting ξ̂ is subject to the value of λ0 chosen. According to [7],
λ0 is set proportional to the conditional number κ of the candidate library, more
specifically λ0 = λ′0κ(Θ(U,Q)). The entire discovery process is illustrated in
Figure 2.3. Since (2.6) is non-convex and the l0-norm is not differentiable, Rudy
et al. [7] has also proposed a relaxed algorithm for solving the sparse regression

22



2.1. SINDy and its variants

Algorithm 1 STRidge(Θ,Ut, λ2, tol, iters)

ξ̂ = argminξ

∥∥Ut −Θ(U,Q)ξ
∥∥2
2

+ λ2∥ξ∥22 # Ridge regression

bigcoeffs = {j : |ξ̂j | ≥ tol} # Select large coefficients

ξ̂[∼bigcoeffs] = 0 # Apply hard threshold
# recursive call with fewer coefficients
ξ̂[bigcoeffs] = STRidge(Θ[:,bigcoeffs],Ut, λ2, tol, iters− 1)
return ξ̂
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Figure 2.4: Visualizing (clean) Burgers’ equation.

problem. The STRidge algorithm apply Ridge solver with hard-thresholding
iteratively as detailed in Algorithm 1.

A successful discovery result of PDE-FIND, demonstrated on the Burgers’
equation (see Figure 2.4 for a visualization of the state variable in space and
time), is evaluated in Table. However, there are two major concerns with the
PDE-FIND framework. The first concern is that how to properly set λ′0 is
unclear. In the noisy case, if we set λ′0 = 10−7, we get an overfitted PDE (with
indispensible candidates like u2ux and uuxx in addition to the true ones) as a
result. Furthermore, if we set λ′0 = 0.01 for the clean case, we obtain a too
sparse solution with only one term, uux. The other issue is related to the noise
robustness of the framework. It turns out that when λ′0 = 0.001, an overly
sparse solution (consisting just uux) is also identified when our measurements
of u are more noisy, with ϵ = 2. Lowing λ′0 does not help, as it failed to explore
the true model with two active terms, resulting in a wrong overfitted equation:
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2.1. SINDy and its variants

Case Identified PDE (λ′0 = 0.001) %CE
Clean ut = −1.000403uux + 0.100145uxx 0.0927± 0.0524

Noisy (ϵ = 1) ut = −1.007779uux + 0.103338uxx 2.057± 1.280

Table 2.1: Identified equations (and their performance) obtained using PDE-
FIND to discover the governing Burgers’ equation. The results are created using
code adapted from the implementation provided by [7].
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ut at t = 1, FiniteDifference
= 0 (Clean)
= 1
= 2

Figure 2.5: Noise interference negatively affects the quality of computed time
derivatives [7].

ut = −1.053748uux + 0.559418uuxx − 0.581526u2uxx.
Noise interference affects the quality of computed derivatives, thereby re-

ducing the success rate of data-driven discovery algorithms. As seen in Figure
2.5, noise introduces inaccuracies and fluctuations that distort the true signal,
making it difficult to accurately capture the system’s underlying dynamics. To
build a robust discovery algorithm, a noise-tolerant (or noise-insensitive) and
easy-to-use differentiation method is essential. The hyperparameters of the dif-
ferentiation method should be easy to configure and less sensitive to reliably deal
with noise. Note that one must be careful not to apply too much denoising, as
it may alter the structure of governing equations or change their parameters
substantially.

2.1.3 Evolutionary-based PDE discovery frameworks

Evolutionary-based PDE discovery frameworks were developed to relax the over-
completeness assumption, which posits that all true terms are included in the
candidate library (i.e., the feature matrix for SINDy and PDE-FIND). In an
evolutionary-based framework, a PDE can be represented more flexibly than by
relying on a large, typically fixed candidate library. Generally, the larger the
candidate library, the more difficult it becomes to optimize for the best sparse
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Figure 2.6: Schematic of the DLGA-PDE framework (adapted from [20]) of
using deep and genetic learning algorithms to discover the best PDE governing
scientific data.

PDE form.
Xu et al. [20] proposed DLGA-PDE, a PDE discovery framework based on

deep and genetic learning algorithms. In the framework, a PDE is represented
as a linear combination of modules, each being a product of derivative terms
(including the 0-order term, which is the data itself), calculated using automatic
differentiation applied on a multi-layer perceptron neural network. A PDE is
also referred to as a “genome” to fit within the context of genetic algorithms,
which are used to optimize the best-fit PDE, as shown in Figure 2.6. Having a
population of genomes are indeed more flexible than manually crafting possible
candidate terms. We next discuss the essential steps of the DLGA-PDE frame-
work, which include encoding a PDE, crossover, mutation, and the processes of
selection and evolution. Encoding a PDE as a genome is based on the principles
outlined as follows.

Encoding a PDE

Definition 1 (Encoding) Numbers are used to represent the corresponding
order of derivatives. For example:

u↔ 0,
∂u

∂x
↔ 1,

∂2u

∂x2
↔ 2,

∂3u

∂x3
↔ 3.

Definition 2 (Module) Each PDE term is considered as a module. Here, it
is assumed that there is only multiplication in a module. In fact, most PDEs can
be split into a series of multiplication and addition combinations. For example:

u
∂u

∂x
↔ [0, 1], u

(
∂2u

∂x2

)2

↔ [0, 2, 2].

Definition 3 (Genome) Combining these modules yields the genome of a PDE,
with modules connected by a plus sign. Note that there are two parts to the
genome component of the PDE: one is the module group on the left-hand side,
and the other is the module group on the right-hand side, which is enclosed in
braces. Since only temporal derivatives are on the left-hand side, the term on the
left-hand side is encoded in the same way. We mostly consider cases in which
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2.1. SINDy and its variants

the left-hand side has a single term, i.e., a genome length of 1 on the left-hand
side. Extending this approach to a broader range of PDEs is straightforward.
For example, the genome of the contaminant transport equation is

ut = −vxux +DLuxx ↔ [1], {[1], [2]}.

Similarly, the genome of the wave equation is

utt = Auxx ↔ [2], {[1], [2]}.

Definition 4 (Fitness) The fitness function for the DLGA-PDE framework is

Fitness = MSE + λ · len(genome);

MSE =
1

N

∥∥Ut −ΘG(U)ξLS

∥∥2
2
.

ΘG(U) is is the candidate library (each column is seperated by +.) of RHS in
the evaluated PDE.
ξLS is its corresponding vector of coefficients, computed using least squares.

Crossover

For each genome, a portion of its modules can be swapped with modules from
another genome based on a specified probability to create the next generation.

Example:

Input: [1], {[1], [2]} ↔ [1], {[1, 3], [0, 2]}
Output: [1], {[1, 3], [2]} and [1], {[1], [0, 2]}

Here↔ refers to an act of crossover. According to [20], the crossover rate is 80%.
The process of crossover increases the possibility of different gene combinations.

Mutation

Mutation alters certain genes within a genome, leading to the creation of a new
genome. Here, three types of mutation methods are defined.

Definition 5 (Mutation) There are three types of mutation.

� Order mutation: With a certain probability, the order of derivatives in a
gene is reduced by 1. Specifically, if the order is 0, it can mutate to any
random higher order.

Input: [1], {[1, 2], [3]} → Output: [1], {[0, 2], [3]}

Input: [1], {[1, 3], [0]} → Output: [1], {[1, 3], [2]}

� Add mutation: (Add-module Mutation) With a certain probability, a ran-
dom module is added into the genome.

Input: [1], {[1, 2], [3]} → Output: [1], {[1, 2], [3], [0, 0]}
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2.1. SINDy and its variants

Generations Structure of the best-discovered child
1 ut, u

2, ux, uxxx, uuxx, u
2uxx

2 ut, u, u
2
x, uuxx, uux, uxxuxxx

4 ut, uxx, uuxxx, u
2
xx, uxxx

5 ut, uxx, uuxxx, u
2
xx, uuxxuxxx, u

6 ut, uxx, u
2
x, uxx, u

3

36 ut, uuxxx, u
2
xx, u, u

3

39 ut, uxx, u
2
x, uuxxuxxx, u

3

40 ut, uxx, u, u
3

100 ut, uxx, u, u
3

Table 2.2: The best child found in each generation when DLGA-PDE is utilized
to discover the Chaffee-Infante equation, which contains exactly uxx, u, and u3

as the true terms. This table is sourced from [20].

� Delete mutation: With a certain probability, a module is deleted from the
genome.

Input: [1], {[1, 2], [4], [0, 1], [1, 3]} → Output: [1], {[1, 2], [4], [0, 1]}

Order Mutation adjusts the order of derivatives within the genome, while Add-
module Mutation and Delete-module Mutation modify the genome’s length.
These three mutation types can occur independently, providing varied avenues
for altering the genome. This diversity in mutation methods enhances the po-
tential for diverse transformations within the genome, aiding in the discovery of
the best model.

Selection and evolution

In the process of crossover, each parent genome crosses over twice, producing
twice as many genomes as the parent genome. For example, 50 parents will
produce 100 children via crossover. The children then undergo the process of
mutation. The children’s fitness will be calculated and sorted from smallest to
largest. The top half of the children are chosen as a new generation of parents.
We set the number of genomes and the number of generations. After certain
epochs, the best model in terms of the fitness is obtained.

Experimental results

Xu et al. [20] presented experimental results demonstrating that the DLGA-
PDE framework performs quite well, identifying the true structure of well-known
equations such as the KdV Equation, Burgers Equation, and Chaffee-Infante
Equation. Table 2.2 lists how the framework gradually finds the true parsimo-
nious form of the Chaffee-Infante PDE over generations of evolutionary learning.

One advantage of the fitness function (in Definition 4) is its computational
efficiency and thus its ability to quickly yield decent model selection results.
However, the selection of the best model is sensitive to the value of λ chosen
for the fitness function, as demonstrated in Table 2.3. An excessively large λ
lead to an overly sparse best model. At this stage, additional quantities or
insights (such as quantified uncertainty of the PDE discussed in Chapter 4) or
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2.2. Treatment of noisy data

λ = 1× 10−3 λ = 1× 10−4

−0.9053uux (Incorrect) −1.00037uux + 0.10118uxx (Correct)
−0.38103ux −1.00089uux + 0.0049u2xuxx + 0.10016uxx

−1.00037uux + 0.10118uxx −1.00157uux − 0.00359uxuxx + 0.1uxx
−1.01857uux + 0.15675uuxx −0.00574uxuxx − 1.00291uux + 0.10045uxx
−1.01392uux + 0.03792u3xx 0.01277u2ux − 1.00741uux + 0.10103uxx
−1.01181uux − 0.16657uxuxx 0.00246u3 − 1.00079uux + 0.10162uxx

−1.39506u2ux 0.00136u2 − 1.00069uux + 0.10152uxx
0.17544u2uxx − 0.99174uux −0.99622uux − 0.00191ux + 0.10095uxx
−0.97383uux + 0.22702u2xuxx −1.00078uux + 0.00031u3xx + 0.10067uxx
−1.63194u2ux + 0.11492uxx −0.99833uux − 0.00229u3xx + 0.10107uxx

Table 2.3: Over generations of evolutionary learning within the DLGA-PDE
framework, the top 10 models in terms of fitness with differnt λs are listed. The
results are created using code adapted from the implementation guided by [20].

numerical simulation might be required to assist in selecting the best model.
For example, we could simulate the identified PDEs and compare the simulated
state variables against our (noisy) measured data.

2.2 Treatment of noisy data

As shown in Figure 2.5, preprocessing noisy data is highly advisable to mitigate
the negative effects of noise interference. This step is beneficial as it allows
for the derivation of PDEs from higher-quality data. Denoising the data prior
to derivative computation increases the chances of identifying the true PDE
structure from a set of higher-quality candidate models. Since several methods
are applicable to achieve this goal, we discuss some of them relevant to this
thesis.

A frequency-domain approach, such as denoising using the Discrete Time
Fourier Transform (DFT), is a classic and computationally efficient method
for noise filtering. In this method, noise—typically associated with low-power
components in the Fourier domain—is removed, while retaining the frequency
components that represent the underlying signal. This approach is especially
effective when the signal is dominated by high-power frequencies that are easily
distinguishable from the remaining components.

One common approach involves polynomial-based techniques for derivative
computation. These methods approximate noisy data with polynomials, reduc-
ing the impact of noise by smoothing derivative values (e.g., [7]). Similarly,
spline-based models have proven effective for denoising by constructing smooth,
flexible representations of data that suppress noise while preserving underlying
trends [21]. Another notable method is Robust Principal Component Analy-
sis (PCA), which separates noise components from data by decomposing the
dataset into low-rank and sparse components [22].

An alternative class of denoising techniques operates with minimal assump-
tions about noise statistics, setting them apart from traditional approaches like
Kalman filtering. Among these, the regularized K-SVD (K-Singular Value De-
composition) algorithm is particularly noteworthy. This dictionary learning
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Figure 2.7: Denoising Using FFT: (Top) Noise is introduced to the composed
of two sine waves. (Middle) In the Fourier domain, the prominent peaks can
be identified and the noise is filtered out. (Bottom) The denoised signal is
reconstructed by inverse Fourier transforming on the two dominant peaks. This
figure is generated using the Python code provided by Brunton and Kutz [23].

method computes sparse representations of data, which are then used to recon-
struct denoised observations effectively. Such techniques are advantageous in
applications requiring robust data preprocessing, for example, the data-driven
discovery of PDEs.

2.2.1 Discrete Fourier Transform (DFT)

The DFT is essentially a discretized version of the Fourier series for vectors
of data

[
f1 f2 . . . fN

]⊺
obtained by discretizing the continuous function

f(x) at a regular spacing, ∆x. Although the FFT is always used for practical
computations due to its efficiency—O(N logN), it is helpful to introduce the
fundamental formulation of the DFT:

f̂k =

N−1∑

j=0

fje
−2πi jkN . (2.7)

The inverse discrete Fourier transform (iDFT) is given by

fk =
1

N

N−1∑

j=0

f̂je
2πi jkN , (2.8)

The DFT is a linear operator (i.e., a matrix) that maps the data points into the

frequency domain: {f1, f2, . . . , fn} 7→
{
f̂1, f̂2, . . . , f̂n

}
.
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Figure 2.8: Example of denoising data using RPCA. (Left) The clean state
variable u of the Burgers’ PDE. (Middle) The noisy state variable with sparse
noise added. (Right) The low-rank component L decomposed using RPCA.
The implementation of RPCA used to create this figure is sourced from [23].

FFT Example: Noise Filtering

We consider an example (by Brunton and Kutz [23]) of applying FFT to denoise
a distorted signal of time. The clean function is given as

f(t) = sin(2πf1t) + sin(2πf2t); (2.9)

where f1 = 50 Hz and f2 = 120 Hz. We consider t ∈ [0, 1], discretized with
∆t = 0.001. Gaussian white noise is added to this signal (The top panel of
Figure 2.7). The FFT of the noisy signal computes its frequency spectrum,
revealing the power spectral density (PSD), which indicates the signal power at
each frequency. As shown in the middle panel, two prominent peaks at 50 Hz
and 120 Hz are observed. Note that the PSD is expressed by 1

N f̂ ⊙ conj(f̂).
Noise can be removed by zeroing out frequency components with power

below a threshold. After applying an inverse FFT to the filtered spectrum, the
reconstructed/denoised signal aligns well with the original signal.

2.2.2 Robust Principal Component Analysis

Robust Principal Component Analysis (RPCA) was developed to address the
limitations of traditional Principal Component Analysis (PCA), which is highly
sensitive to outliers and corrupted data. RPCA decomposes a given data matrix
X into two components: X = L + S; where L is a low-rank matrix capturing
the underlying structure of the data. S is a sparse matrix representing outliers
or noise.

The objective of RPCA is to find L and S by solving the following optimiza-
tion problem:

min
L,S

rank(L) + ∥S∥0 subject to X = L+ S. (2.10)

Here rank(L) ensures that L is low-rank. ∥S∥0 is the ℓ0-norm counts the number
of non-zero entries in S, ensuring its sparsity.

However, neither the rank(L) nor the ∥S∥0 terms are convex, and this is not
a tractable optimization problem. Similar to the compressed sensing problem,
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it is possible to solve for the optimal L and S with high probability using the
convex relaxation:

min
L,S
∥L∥∗ + λ∥S∥1 subject to X = L+ S. (2.11)

The nuclear norm ∥L∥∗ is the sum of singular values, which serves as a proxy
for rank. The solution to the relaxed optimization problem converges to the
solution of the RPCA objective with high probability if λ = 1/

√
max(n,m),

where n and m are the dimensions of X. This assumes that L is not sparse, S
is not low-rank, and the entries are randomly distributed such that they do not
have a low-dimensional column space.

The objective of RPCA is known as principal component pursuit (PCP),
and may be solved using the augmented Lagrange multiplier (ALM) algorithm.
Specifically, an augmented Lagrangian may be constructed:

L(L, S, Y ) = ∥L∥∗ + λ∥S∥1 + ⟨Y,X − L− S⟩+
µ

2
∥X − L− S∥2F .

A general solution would solve for the Lk and Sk that minimize L, update
the Lagrange multipliers Yk+1 = Yk + µ(X − Lk − Sk), and iterate until the
solution converges. However, for this specific system, the alternating directions
method (ADM) provides a simple procedure to find L and S. First, a shrinkage
operator Sτ (x) = sign(x) max(|x|−τ, 0) is constructed. Next, the singular value
threshold operator SVTτ (X) = USτ (Σ)V ∗ is constructed.

The use of RPCA to extract the low-rank component from distorted mea-
surement data of the Burgers PDE is demonstrated in the Figure 2.8. This
serves as an example of how RPCA can be applied to denoise data prior to
PDE identification processes. The Frobenius norm distances from the clean
u to the noisy u and to the low-rank component 8.88 are 3.09, respectively.
Therefore, it is better to perform PDE discovery algorithms on the low-rank
component L, as it is of higher quality.

2.2.3 Weak PDE formulation for robust PDE discovery

Due to the difficulty in accurately computing derivatives especially for high-
order ones in noisy scenarios, we can recover the governing equation through
its weak formulation [24], bypassing the direct computation of candidate terms,
which are mostly derivatives. In fact, this formulation is a general approach
for handling noisy measurement data. We will illustrate the procedure with
examples where we approximate the single (first-order) temporal derivative of
the state variable using a linear combination of terms as follows

∂tu =
∑

j=1

ξjNj(u, ∂xu, ∂2xu, . . . ). (2.12)

To setup the weak formulation of the problem, we proceed by multiplying (2.12)
by a smooth weight w and integrate the result over a spatio-temporal domain
Ωk. This procedure is repeated for every k, yielding

q0 =
∑

j=1

ξjqj ; where qkj =

∫

Ωk

w · Nj dΩ. (2.13)
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qj is a column vector whose height depends on the number of spatio-temporal
subdomains. By performing integration by parts, the action of taking derivatives
can be transferred from the noisy data u onto the smooth weight w, thereby
dramatically reducing the negative effect of noise on the derivative terms. Fur-
thermore, the weight function can be chosen to eliminate the terms with latent
variables, yielding a new problem that can be solved using standard regression
techniques.

We then demonstrate how to construct the weak formulation of the problem
of discovering the Kuramoto-Sivashinsky equation: ∂tu+u∂xu+∂2xu+∂4xu = 0.
The PDE contains a fourth-order spatial derivative, which is extremely sensitive
even to small amounts of noise. Considering just a subdoamin Ωk, the weakly
formulated (true) terms are given in the following.

qk0 =

∫

Ωk

w∂tu dΩ, qk1 =

∫

Ωk

wu∂xu dΩ, qk2 =

∫

Ωk

w∂2xu dΩ, qk3 =

∫

Ωk

w∂4xu dΩ

w is a scalar weight. An example of the subdomain would be Ωk = {(x, t) :
|x− xk| ≤ Hx, |t− tk| ≤ Ht}, which is centered around randomly chosen points
(xk, tk). Using integration by parts, we take all derivatives on a smooth noiseless
w instead of the noisy data u, yielding

qk0 = −
∫

Ωk

u∂tw dΩ, qk1 = −
∫

Ωk

1

2
u2∂xw dΩ,

qk2 =

∫

Ωk

u∂2xw dΩ, qk3 =

∫

Ωk

u∂4xw dΩ,

provided that w satisfies the conditions required for the boundary terms to
vanish. Numerical experiments by Reinbold et al. [24] demonstrated that the
weak formulation, which involves integrals of the data rather than derivatives,
is significantly more robust to noise than the standard problem formulation.
While the weak formulation may not completely eliminate all derivatives in some
models, it can reduce the order of the remaining derivatives, a property that is
particularly advantageous when dealing with noisy data. The weak formulation
presented here will be utilized again in Chapter 4.

2.3 Information criteria for model selection

Model selection is a crucial process in statistical modeling, where one aims to
select the best model from a set of candidate models. Two commonly used cri-
teria for model selection are the Akaike Information Criterion (AIC) [9] and the
Bayesian Information Criterion (BIC) [10]. Both criteria provide methods for
balancing model fit with model complexity, helping to avoid overfitting while
capturing the underlying data structure. Here, we discuss the theoretical foun-
dations, interpretations, and comparative aspects of AIC and BIC in the context
of statistical and machine learning models.

2.3.1 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) was introduced by Hirotugu Akaike
in 1973 as an information-theoretic approach to model selection. AIC is based
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on the concept of information theory, aiming to minimize the Kullback–Leibler
information loss when approximating a true model with a fitted model. The
AIC for a model with s parameters, fit to N observations, is given by:

AIC =
1

N

(
RSS + 2sσ̂2

)
, (2.14)

where RSS represents the residual sum of squares, and σ̂2 is an estimate of
the variance of the Gaussian error term. Typically, σ̂2 is estimated using the
full model that includes all predictors. This AIC formulation accounts for the
fact that the training error tends to underestimate the test error. The penalty
term increases with the number of predictors in the model, counterbalancing the
decrease in training RSS. AIC can also be expressed in terms of the maximum
value of a model’s log-likelihood function:

AIC = 2s− 2 log
(
L̂
)
, (2.15)

where L̂ is the maximum likelihood function of the model. AIC provides a trade-
off between goodness of fit and model complexity by adding a penalty term
proportional to the number of parameters. This penalty discourages overfitting,
as models with more parameters are penalized. In practice, the model with the
lowest AIC is generally preferred. In practice, the AIC requires a correction for

finite sample sizes given by AICc = AIC + 2(s+1)(s+2)
N−s−2 . Note that, usually, a

lower value of the information criterion indicates a better model.

2.3.2 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC), also known as the Schwarz criterion,
was proposed by Gideon Schwarz in 1978. BIC is derived from a Bayesian
perspective (but ends up looking similar to AIC) and can be used to approximate
the Bayes factor for model selection. It is defined as:

BIC =
1

N

(
RSS + log(N)sσ̂2

)
, (2.16)

or, in terms of likelihood, as:

BIC = s log(N)− 2 log
(
L̂
)
. (2.17)

Unlike AIC, BIC imposes a heavier penalty for model complexity due to the
log(N) term, which grows with the sample size. This makes BIC more con-
servative, often favoring simpler models. The model with the lowest BIC is
generally selected.

2.3.3 Comparison of AIC and BIC

AIC and BIC are similar in form but differ in their theoretical foundations and
implications for model selection. AIC is derived from an information-theoretic
approach and focuses on minimizing prediction error, aiming to select the model
that best describes an unknown, high-dimensional reality. BIC, on the other
hand, is derived from a Bayesian framework and incorporates sample size into
its penalty term, favoring simpler models as the sample size increases. This
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2.3. Information criteria for model selection

Figure 2.9: Schematic of Pareto front for evaluating the number of terms [25].
Note that the standard AIC score has an asymptotic penalty of 2s for the
number of terms, resulting in a slope of at least 2 for large s.

distinction means that BIC is more likely to select models closer to the true
parsimonious model, particularly with large datasets.

In practice, AIC tends to select slightly more complex models, while BIC
often favors more parsimonious ones. Both criteria, however, can help in select-
ing models that balance fit and complexity, with AIC being especially useful
in predictive modeling contexts and BIC in contexts where model simplicity is
prioritized.

Both AIC and BIC are widely used across various fields, including economet-
rics, machine learning, and bioinformatics. In regression analysis, for instance,
these criteria assist in selecting the optimal number of predictors by penaliz-
ing overly complex models that may lead to overfitting. However, practitioners
should consider the limitations of each criterion: AIC may select overly com-
plex models in small-sample scenarios, whereas BIC may favor overly simplistic
models if the sample size is limited. Thus, model selection often involves eval-
uating both criteria while considering the specific goals and constraints of the
modeling task.

2.3.4 Application of AIC and BIC to PDE discovery

The application of information criteria in the data-driven discovery of PDEs
is relatively straightforward. After obtaining multiple candidate PDEs, for in-
stance, through the sparse regression methods discussed earlier, each potential
PDE is ranked using AIC or BIC. Generally, a lower information criterion value
indicates a better ranking for the corresponding PDE. At this stage, the RSS

terms in (2.14) and (2.16) can take the form of
∥∥∥U− Û

∥∥∥
2

F
or
∥∥∥Ut − Ût

∥∥∥
2

F
, where

Û is the simulated state variable (an approximation of the measurement data)
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Figure 2.10: Model selection using relative AICc for single variable, x, poly-
nomial system. a) 3 computationally generated time series. b) Combinatorial
model possibilities with with those selected by SINDy highlighted in blue. c)
Relative AICc criteria for all possible models (black dots), and those found by
SINDy (blue circles). Lower plot magnifies strong and weakly supported AICc
range, containing only correct model (magenta circle). This figure is sourced
from [25].

for a potential PDE, and Ût is an estimation of the computed time derivative.
The distinction lies in their evaluation focus: the first choice [25, 26] directly as-
sesses how closely the simulated state variable aligns with the measurement data
(because the governing PDE should describe the system state over time), while
the second choice (ours) [11, 13] evaluates the regression model that represents
the PDE instead. The second approach is computationally faster, as it does not
require PDE simulations. However, it can be more challenging to identify the
best model among a cluster of multiple parsimonious PDEs. In contrast, the
first approach, being a direct comparison, often allows the best model to stand
out more clearly. Nonetheless, this method necessitates PDE simulations, which
are currently infeasible for arbitrary PDE forms and domains.

The complexity penalty remains unchanged for both choices, and we essen-
tially ask the same question: Does the PDE explain the measured data parsimo-
niously, using only the necessary variables in line with the principle of Occam’s
razor? Figure 2.9 highlights the trade-off between model complexity and er-
ror. Simple models with no terms have high error, while adding more terms
reduces error as the model better fits the data. However, as the number of
terms approaches the number of free parameters, overfitting becomes a concern,
especially in noisy data, leading to poor predictions for validation experiments.
The goal is to find the best model among parsimonious models—those with
minimal terms that sufficiently reduce error—aligning with Occam’s razor.
However, interpreting the Pareto front is not an easy task, as there may not be
a clear “elbow” point to select but rather a cluster of models to choose from.

Mangan et al. [25], an early work on using sparse regression and informa-
tion criteria for SINDy, presents a complete discovery process guided by the
corrected AIC, as demonstrated in Figure 2.10. This figure provides an ex-
ample application of how to use the information criterion for ODE discovery
(extendable to PDE discovery). However, their model selection process can be
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computationally expensive, even when simulating tens of potential models to
discover the Burgers’ PDE. It is important to stress again that these poten-
tial models are essentially represented by regression models that approximate
temporal derivatives (e.g., first-order, second-order, etc.). If we can evaluate
these regression models in such a way that the best model is indeed the correct
governing equation, we could avoid simulating all potential models, expediting
the discovery process substantially. This problem will be addressed by the new
uncertainty-guided information criterion in Chapter 4.

2.4 Physics-informed machine learning

Although significant advances have been made in simulating multiphysics prob-
lems using numerical methods to solve PDEs, challenges remain. Traditional
solvers often struggle to integrate noisy data effectively due to the complexity
of discretized mesh generation. Solving inverse problems, particularly those in-
volving hidden physical processes, also requires unique approaches and costly
computation. Machine learning offers an alternative approach, though training
deep neural networks usually requires extensive data, which may not always be
available in scientific applications. Training these networks can, nonetheless,
be guided by enforcing physical laws as additional priors. This method, known
as physics-informed learning, combines (noisy) data with mathematical models
and implements them through neural networks. Moreover, specialized network
architectures can be designed to obey certain physical invariants, potentially im-
proving accuracy, training efficiency, and generalization compared to traditional
numerical methods. How much domain-specific knowledge or physics needed to
develop a physics-informed machine learning method depends on the data size of
the physical problem, which can be classified into the three categories shown in
Figure 2.11. The more data available, the less need there is to explicitly specify
the governing physics when training neural networks. Nonetheless, some con-
sideration should also be given to maintaining the interpretability of the build
model.

2.4.1 Physics-informed neural networks (PINNs)

Physics-informed neural networks (PINNs) [12] combine information from mea-
surement data and governing equations in the form of PDEs by embedding these
PDEs (directly) into the neural network’s loss function. This approach is possi-
ble because numerical derivatives can be computed using automatic differentia-
tion, allowing the entire network to be trained via gradient-based optimization.

To better understand how the PINN’s loss function is formulated, we pro-
vide an example using a PINN to solve a forward problem governed by Burgers’
PDE, which appears in many applied mathematics fields, such as fluid mechan-
ics, nonlinear acoustics, and traffic flow. This fundamental PDE can be derived
from the Navier-Stokes equations by omitting the pressure gradient term. With
low viscosity values, Burgers’ equation can lead to shock waves that are chal-
lenging for traditional numerical methods to resolve. We consider the following
Burgers’ equation with Dirichlet boundary conditions in one spatial dimension
x ∈ [−1, 1]:
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Figure 2.11: Schematic to illustrate three possible scenarios of physical problems
categorized by the amount of data available, as described by Raissi et al. [27].

ut + uux −
0.01

π
uxx = 0,

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0

Suppose that t ∈ [0, 1]. We proceed by approximating u by a neural network F
parameterized by θ. Then to update θ such that the network solves the equation,
we sample collocation points (tf , xf ) within the spatial-temporal domain of
interest then put the PDE optimization constraint:

Lif = ∂tF iθ + F iθ∂xF iθ −
0.01

π
∂2xF iθ = 0;

where F iθ = Fθ(tif , xif ). This constraint naturally gives rise to the PDE-constrained
loss function, defined as:

MSEf =
1

Nf

Nf∑

i=1

∣∣∣Lif
∣∣∣
2

(2.18)

Another important loss function to satisfy boundary and initial conditions
is also formulated as a simple squared loss:

MSEu =
1

Nu

Nu∑

i=1

∣∣∣ui −Fθ(tiu, xiu)
∣∣∣
2

; (2.19)

where (tu, xu) represents data sampled from the boundaries or at the initial
time step. By combining (2.18) and (2.19), the PINN is trained by minimizing
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BC: Boundary condition
IC: Initial condition
𝑓: PDE constraint

Input: Collocation points 
(𝑡, 𝑥)

Ouput: Approximation
𝑢(

Neural network

Given PDE

Figure 2.12: Overview of how the physics-informed loss function is formulated.
This figure is adapted from [28].

the mean squared loss function MSEf + MSEu Note that constructing physics-
informed loss functions is highly flexible in practice, allowing PINNs to be ex-
tended to solve other equations, such as ODEs or higher-dimensional PDEs.

The experimental results of using the PINN to solve Burgers’ PDE are vi-
sualized in Figure 2.13. The top panel displays the predicted spatio-temporal
solution, û(t, x), along with the locations of initial and boundary training data
points. Unlike traditional numerical methods for solving partial differential
equations, this prediction is achieved without discretizing the spatio-temporal
domain. A detailed evaluation of the predicted solution is shown in the bot-
tom panel of Figure 1, where we compare the exact and predicted solutions at
different time points: t = 0.25, 0.50, and 0.75. With only a handful of initial
and boundary data, the PINN accurately captures the complex nonlinearity of
Burgers’ equation, a sharp internal layer (around t = 0.4), which is notoriously
difficult for classical numerical methods to resolve accurately, as it typically
requires extensive spatio-temporal discretization.

2.4.2 Deep operator learning

In the previous section, we discuss PINNs, originally proposed to numerically
solve a specific PDE. In this section, we introduce a new neural network archi-
tecture called DeepONet (deep operator network) [29], which can learn nonlin-
ear continuous operators for complex systems. While the success of PINNs is
grounded in the theory of neural networks as universal function approximators,
DeepONet relies on a lesser-known but powerful theory: a neural network with
a single hidden layer can accurately approximate any nonlinear continuous oper-
ator. DeepONet has a small generalization error and is suitable for a wide range
of applications. Additionally, DeepONets can be integrated with the physics-
informed principles embedded in PINNs (see the physics-informed DeepONet
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Figure 2.13: Top panel: Predicted solution u(t, x) along with the initial and
boundary training data. In addition we are using 10, 000 collocation points gen-
erated using a Latin Hypercube Sampling strategy. Bottom panel: Comparison
of the predicted and exact solutions corresponding to the three temporal snap-
shots. The relative l2-error for this case is 6.7 × 10−4. This figure was created
by Raissi et al. [12].

[30] for more details) to enable real-time, accurate predictions and handle ex-
trapolation in multiphysics applications. It is worth noting that, loosely speak-
ing, an operator (acting on a function space) maps functions to other functions.
In contrast, a functional maps functions to numerical values, such as an integral
over a function or a derivative evaluated at a specific point.

DeepONet architecture is constructed upon the universal approximation the-
orem for operator Theorem 1 [31], which has been generalized in Theorem 2
[29] to account for diverse classes of neural networks. Theorem 1 suggests the
potential for neural networks to learn nonlinear operators from data, similar to
how standard neural networks learn functions from data. However, this theo-
rem does not provide guidance on how to learn operators efficiently. The overall
accuracy of neural networks can be analyzed by categorizing the total error into
three primary types: approximation, optimization, and generalization errors.
While the universal approximation theorem guarantees a small approximation
error for a sufficiently large network, it does not address the critical issues of
optimization and generalization errors, which often dominate the total error in
practical applications. For a neural network to be effective, it should not only
achieve low approximation error but also be easy to train (yielding low opti-
mization error) and generalize well to unseen data (yielding low generalization
error).
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Theorem 1 (Universal Approximation Theorem for Operator) Suppose
that σ is a continuous non-polynomial function, X is a Banach Space, K1 ⊂ X,
K2 ⊂ Rd are two compact sets in X and Rd, respectively, V is a compact set in
C(K1), G is a nonlinear continuous operator, which maps V into C(K2). Then
for any ϵ > 0, there are positive integers n, p, m, constants cki , ξ

k
ij , θ

k
i , ζk ∈ R,

wk ∈ Rd, xj ∈ K1, i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . ,m, such that

∣∣∣∣∣∣∣∣∣∣∣

G(u)(y)−
p∑

k=1

n∑

i=1

cki σ




m∑

j=1

ξkiju(xj) + θki




︸ ︷︷ ︸
branch

σ(wk · y + ζk)︸ ︷︷ ︸
trunk

∣∣∣∣∣∣∣∣∣∣∣

< ϵ

holds for all u ∈ V and y ∈ K2. Here C(K) is the Banach space of all continuous
functions defined with ∥f∥C(K) = maxx∈K

∣∣f(x)
∣∣.

Theorem 2 (Generalized Universal Approximation Theorem for Operator)
X is a Banach Space, K1 ⊂ X, K2 ⊂ Rd are two compact sets in X and Rd,
respectively, V is a compact set in C(K1), G is a nonlinear continuous operator,
which maps V into C(K2)—G : V 7→ C(K2). Then, for any ϵ > 0, there exists
positive integers m, p, continuous vector functions g : Rm 7→ Rp, continuous
vector functions f : Rd 7→ Rp, and x1, x2, . . . , xm ∈ K1, such that

∣∣∣G(u)(y)−
〈
g(u(x1), u(x2), . . . , u(xm)), f(y)

〉∣∣∣ < ϵ

holds for all u ∈ V and y ∈ K2. ⟨·, ·⟩ denotes the dot product in Rp. Further-
more, the functions g and f can be chosen as diverse classes of neural networks,
which satisfy the classical universal approximation theorem of functions, for
example, (stacked/unstacked) fully connected neural networks, residual neural
networks, and convolutional neural networks (CNNs).

DeepONet is designed to achieve low total errors, as it significantly enhances
generalization through a dual-subnetwork design: the branch network, which
processes the input function, and the trunk network, which processes the lo-
cations at which the output function is evaluated. The core innovation is our
formulation of a new operator, G, as a neural network capable of inferring quan-
tities of interest from new, unseen data. We can interpret the nature of operator
G by projecting the results of G(u)(y) onto a dictionary of derivatives and ap-
plying sparse regression techniques, such as SINDy or PDE-FIND, to obtain
the underlying system in the form of ordinary or partial differential equations
(ODEs or PDEs). Figure 2.14 illustrates two versions of DeepONet. The stacked
version is inspired by Theorem 1, and the unstacked version is motivated by
Theorem 2. Note that one data point is a triplet (u, y,G(u)(y)), and thus a
specific input u may appear in multiple data points with different values of y.
u(x) is generated as the value of a Gaussian random field (GRF) at a point x.

A straightforward application of DeepONets is to use them for learning an
explicit operator in a ODE system. Consider the following pedagogical example:

ds(x)

dt
= g(s(x), u(x), x); x ∈ (0, 1].
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Figure 2.14: Schematic of DeepONet architectures for enhancing generalization
[29]. (A) Operator learning setup: To enable the network to learn an operator
G : u 7→ G(u), the network takes two inputs: [u(x1), u(x2), . . . , u(xm)] and
random location y. (B) Training data illustration: For each input function u,
we require evaluations at the same scattered sensors x1, x2, . . . , xm. However,
we impose no constraints on the number for evaluating the output functions,
allowing flexibility in the output data structure. (C) Stacked DeepONet: The
network consists of one trunk network and p stacked branch networks. The
trunk network is designed as a single-layer network of width p. Each branch
network having one hidden layer of width n. (D) Unstacked DeepONet: The
network includes a single trunk network and a single branch network. The
unstacked DeepONet is a special case of the stacked DeepONet, where all branch
networks share the same set of parameters, reducing the model complexity while
maintaining generalization performance.

Given an initial condition s(0) = 0, our goal is to predict s(x) over the entire
domain [0, 1] for any input function u(x). We start by considering a linear
problem where we choose g(s(x), u(x), x) = u(x), which is equivalent to learning
the antiderivative operator:

G : u(x) 7→ s(x) = s0 +

∫ x

0

u(τ)dτ.

In Figure 2.15, DeepONets are trained to learn the antiderivative opera-
tor, showing small generalization errors and, consequently, low test errors. The
training trajectory of an unstacked DeepONet with bias is plotted in the left
panel, demonstrating negligible generalization error. For both stacked and un-
stacked DeepONets, adding bias to the branch networks reduces both training
and test errors. DeepONets with bias also display reduced uncertainty, indi-
cating greater stability during training from random initialization. Although
unstacked DeepONets exhibit slightly higher training error than stacked Deep-
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Figure 2.15: Errors in DeepONets trained to learn the antiderivative operator
are examined [29]. (A) Shows the training progress of an unstacked DeepONet
with bias. (B) Compares training/test errors for stacked and unstacked Deep-
ONets, with and without bias, against the best error achieved by Feedforward
Neural Networks (FNNs).

ONets, they achieve lower test error due to their smaller generalization error,
making unstacked DeepONets with bias the most effective configuration. Addi-
tionally, unstacked DeepONets have fewer parameters than stacked DeepONets,
allowing for faster training with reduced memory usage.

42



Chapter 3

Noise-aware
physics-informed machine
learning (nPIML) for
robust data-driven
discovery of PDEs

3.1 Overview of the nPIML framework

I proposed a noise-aware physics-informed machine learning (nPIML) framework
[11] to close the gap in the applicability of PINNs for discovering governing PDEs
when the exact terms in the PDEs are not exactly known. This approach is dis-
tinct from using PINNs to solve inverse problems, as described in the previous
section. The framework is composed of three main steps: (I) derivative prepa-
ration, (II) initial PDE identification, and (III) denoising and fine-tuning using
PINN. The mechanism involves using a solver network to prepare derivative
candidate terms/features. Then, we apply PDE-FIND to identify the equation
structure. Finally, we train PINNs with a denoising mechanism to fine-tune
PDE coefficients (previously initialized by PDE-FIND), obtaining the optimal
governing equation. The schematic of the nPIML framework for robust PDE
discovery is illustrated in Figure 3.1.

Our new contributions are as follows: We introduce training with a prese-
lector network to impose the weakly physics-informed constraint on the solver
network. The constraint is calculable without labeled supervision. The prese-
lector is capable of extracting feature importance scores to provide an auxiliary
view for candidate selection. We also propose dPINNs (denoising PINNs) built
based on discrete Fourier transform and projection networks to handle both
noisy (x, t) and u, hence the noise-robustness property of the framework. While
a majority of previous works only experiment with noise in u, we also consider
noise in x and t, which can occur in GPS coordinate measurements [32] and
manual, non-digital timing in physical experiments [33], respectively.
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Figure 3.1: Exemplary discovery scheme of the noise-aware physics-informed
machine learning (nPIML) framework: (1) physics-regularized derivative prepa-
ration by multi-task learning of the solver and preselector. (2) Initial identifi-
cation of the hidden PDE by STRidge. (3) Applying the denoising DFT to
(x, t)&u then finetuning the initial PDE coefficients on the denoised variables
using PINN. Here, we assume that the discovered governing equation is Burgers’
PDE.

We focus on the following general form of nonlinear PDE in the dynamical
system perspective:

ut = Nξ[Θ]; Θ =
[
u ux uxx · · · x

]
.

Nξ is the governing function parameterized by the vector of coefficients ξ. The
function depends on Θ, which may consist of the spatial variable x, the deriva-
tives and any indispensable terms. In regards to Nξ, Θ is the smallest possible
library, merely composed of the necessary terms.

Figure 3.1 conceptualizes the three principal procedures for uncovering ξ
preferably in a low-dimensional space by walking through an example of dis-

covering Burgers’ PDE. Step (1) , we numerically equivalizes u and Nξ[Θ] to

the solver and preselector neural network’s output Fθ(x, t) and Fθs(ΦDs(θ)).
ΦDs(θ) ∈ C(Nf+Nr)×C is the library of C linearly independent atomic/ba-
sis candidates from which the preselector learns to embed physics by infer-
ring the system evolution. The candidates are evaluated on a multiset Ds ={

(xi, ti)
Nf+Nr

i=1

}
. Step (2) , the well-fitted networks, θ̂ and θ̂s, put together a

larger library of potential k-degree polynomial features Pk(ΦMval(θ̂)) of which
an initial analytical expression of Burgers’ PDE, worked out approximately by

STRidge [7], is made. Step (3) , θ̂ is henceforth transferred to the PINN that

is optimally finetuned with the PDE, initialized by nonzero coefficients ξ̂, on
the denoised variables x̃, t̃ and ũ, offered by the projection networks PΩ(x,t)

and
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3.1. Overview of the nPIML framework

PΩu
. The noise-reduction mechanism functions as a series of affine transfor-

mations, controlled by β(x,t) and βu, of the dataset with the projected noises
PΩ(x,t)

(S(x,t)) and PΩu
(Su), after applying the frequency-based denoising DFT.

3.1.1 Derivative preparation

The solver network (Fθ) is weakly physics-constrained via joint training with
the preselector network (Fθs). Facilitating the co-training, the solver network

is pretrained on the dataset D =
{

(xi, ti, ui)
Nf

i=1

}
to approximate the mapping

function. Therefore, the partial derivative candidate values are assured of be-
coming close to the valid values. At the pretraining stage, the solver network
minimizes the mean square error (MSE)

LD
sup(θ) =

1

Nf

Nf∑

i=1

(Fθ(xi, ti)− ui)2; (xi, ti, ui) ∈ D, (3.1)

where Nf is the number of labeled subsamples. If u is complex-valued, the
sum of the MSEs from the real and imaginary parts is taken as the supervised
loss function. Since a futile search over infinitely feasible ΦDs(θ) setups would
be intractable, we presume the ability to build an overcomplete basis candidate
library given to the preselector network for deciding the predictive set of features
by minimizing

LDs
unsup(θ, θs) =

1

Nf +Nr

Nf+Nr∑

i=1

(
∂Fθ
∂ti
−Fθs(ΦDs

i (θ)))2;

ΦDs
i (θ) =

[
Fθ(xi, ti) ∂Fθ

∂xi

∂2Fθ

∂x2
i
· · · xi

]
,

(3.2)

where Nr is the number of random unsupervised subsamples within the domain
that may disjoint the supervised set D. We attain Ds by fusing up the spatio-
temporal measurements without supervision. Each derivative term’s input is
usually omitted for notational convenience. Inspired by the assumption that
low-order partial derivatives are commonly included more than the higher ones,
we embed the thresholded self-gated mechanism, parameterized by W b, to the
preselector forward pass, emphasizing the priority of simple models as follows:

Fθs(ΦDs(θ)) = Fθrs (FW b(ΦDs(θ))),

FW b(ΦDs(θ)) = ΦDs(θ)⊙AT (ΦDs(θ),W b),

AT
j (ΦDs(θ),W b) = max(Aj(ΦDs(θ),W b)− T , 0),

Aj(ΦDs(θ),W b) =

∑Nf+Nr

i=1 σ(
∑C
k=1 ΦDs

ik (θ)Wkj + bj)

Nf +Nr
.

(3.3)

⊙ refers to Hadamard product (broadcast multiplication). AT (ΦDs(θ),W b)
is interpreted as the thresholded vector-valued feature importance the prese-
lector perceive. The self-gated mechanism utilizes the activation function σ
to compute the expected importance of each candidate in terms of (unnor-
malized) probability across Nf + Nr samples. Note that we only consider
the real part of ΦDs(θ)W + b in the case of complex-valued PDEs. T is a
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3.1. Overview of the nPIML framework

threshold for allowing the effective basis candidates. The threshold is initial-
ized to be surely less than the minimal candidate importance, specifically we

set T = κminj A(1)
j (ΦDs(θ),W b), where 0 < κ < 1, before the joint gradi-

ent update at the first epoch (superscript (1)). The parameter W b consists of
W ∈ CC×C and b ∈ C1×C (weights and biases of the linear layer), serving as
the share of the preselector’s parameters:

θs = (W b, θrs); Fθs = Fθrs ◦ FW b . (3.4)

Excluding W b, the rest of the preselector network’s parameters get referred to
as θrs . We devise RDs(θ,W b) as a L0-regularization on AT for selecting the
expressive subset with priority to lower-order candidates in favor of Occam’s ra-
zor principle. The regularization, encouraging the sparse and simple preselector
learned representations, reads

RDs(θ,W b) = λ1(
∥∥∥AT (ΦDs(θ),W b)

∥∥∥
0

+ λ2

C∑

j=1

wjAT
j (ΦDs(θ),W b)).

(3.5)

w is the weighting by derivative orders directly applied to the feature impor-
tance. For instance, suppose that jth basis candidate associates to the second-
order derivative uxx. Then we have wj = 2. For nonderivative terms, we assign
wj = 1. λ1 is the parameter that controls the regularization intensity. λ2 closes
the gap between the derivative orders such that the high-order derivatives are
not always deselected. To practically minimize RDs(θ,W b) with LDs

unsup(θ, θs)
by a gradient-based optimizer, we have to overcome the obstacle that the L0-
norm is not yet readily differentiable with respect to its input vector. Unlike
how [34] mask candidates (with 0 or 1) before automatic differentiation, we
require the smooth approximation of L0 for achieving the thresholded feature
importance. Adapted from SL0 algorithm [35], we estimates

∥∥∥AT (ΦDs(θ),W b)
∥∥∥
0
≈ C −

C∑

j=1

exp

(
−(AT

j (ΦDs(θ),W b))2

2(ηV(AT (ΦDs(θ),W b)))2

)
, (3.6)

where V is the unbiased variance estimator over the C basis candidates. η deter-
mines the trade-off between the accuracy and smoothness: the smaller η gives
the closer approximation, and the larger η gives the smoother approximation. η
is initialized at 1.0 and learned with the gradients. We now denote the differen-
tiable regularization function as RDs

η (θ,W b). Combining (3.1), (3.2), (3.5) and
(3.6), we view the multi-task learning of the weakly physics-informed solver and
the coordinating simplicity-guided preselector inherently as the semi-supervised
multi-objective optimization formulated as follows:

θ̂, θ̂s, η̂ = argmin
θ,θs,η

L(D,Ds)
mt (θ, θs, η);

L(D,Ds)
mt (θ, θs, η) = MT (LD

sup(θ),LDs
unsup(θ, θs) +RDs

η (θ,W b)).

(3.7)

The parameters of both networks are concurrently updated with the expectancy
that the preselector network distills the hidden PDE function Nξ, and informs
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3.1. Overview of the nPIML framework

physics back to the solver. MT is a function that reasonably manipulates learn-
ing by multiple losses.

3.1.2 Initial PDE identification

Depicted by (2) of Figure 3.1, we train STRidge [7] on top of the candidates

and their polynomial features up to k degree: Pk(ΦM(θ̂)), which is evaluated on
metadataM. For example, assume that k = 2, the nonconstant interaction-only
polynomial features of u, ux and uxx are formed as

P2(
[
u ux uxx

]
) =

[
u ux uxx uux uuxx uxuxx

]
. (3.8)

The metadata M =
{

(xMi , tMi )NM
i=1

}
can be samples from a desired domain of

interest, e.g., linearly discretized samples within a bounded rectangle domain
are generated with the equal spaces as follows: ∆x = mini,j;(i̸=j)

∣∣xi − xj
∣∣ and

∆t = mini,j;(i̸=j)
∣∣ti − tj

∣∣. If x is in a higher dimension, the equal space is
computed separately for each spatial direction. In fact, naively equating ∀i ∈{

1, 2, . . . , Nf
}
, (xMi , tMi ) = (xi, ti) is also viable for identifying the governing

PDE as N̂ξ̂[Pk(ΦMval(θ̂))E ], where ξ̂ and E are found by the following selection
criterion:

ξSTR = argmin
ξ

∥∥∥∥
∂Fθ̂
∂tMval

− Pk(ΦMval(θ̂))ξ

∥∥∥∥
2

+ λ0

∥∥∥ξ
∥∥∥
0

;

λ0 = µλSTRε, E =

{
fi+1 | i ∈ N∥ξSTR∥

0

∧ ξSTRfi+1
̸= 0

}
,

ξ̂ =
[
ξSTRf1

· · · ξSTRf|E|

]⊺
, E =

[
ef1 · · · ef|E|

]
.

(3.9)

ε = ε(Pk(ΦM(θ̂))) is the significand of the condition number (written in the sci-
entific notation) of the polynomial candidate library. Mval is a 20% split of the
fullM. For a tolerance tol, ξ is estimated by solving a relaxed λSTR-regularized
ridge regression problem on Pk(ΦM(θ̂)), whose column is normalized by its L2-
norm unless noted otherwise, with hard thresholding. To attain ξSTR, tol is
iteratively refined with respect to different values of λ0 ∝ λSTR using a variable
dtol that initializes tol. µ > 0 is assigned data-dependently. After applying
STRidge, N̂ξ̂ is the linear combination of the effective polynomial candidates

chosen by E . N∥ξSTR∥
0

denotes
{

0, 1, . . . ,
∥∥ξSTR

∥∥
0
− 1
}

. E is an indexed set,

and ej is an elementary column vector whose entries are all zero except for the
nonzero jth polynomial candidate. The matrix E reduces the dimensionality
such that we focus solely on the effective candidates, which hopefully capture
the ideal Θ. ξ̂ successively stores the nonzero coefficients in ξSTR. If the li-
brary is overcomplete under the evaluation on M, there exists E such that
ΘM ≈ Pk(ΦM(θ̂))E .

The pair values of (λ1, λSTR) are grid searched with BIC as the guidance
score. The pairs whose PDEs are in agreement with the corresponding prese-
lectors, according to Definition 6, are expected.

Definition 6 (Agreement) If Pk is regarded as the candidate building func-
tion and every nonzero f thi+1 term can be written as a polynomial of certain jth
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3.1. Overview of the nPIML framework

candidates whose jth is taken from the set of threshold-passing basis candidate
indices

{
j | Ij > 1

C

}
, we determine that the initial discovered PDE of a par-

ticular pair of (λ1, λSTR) is in the “agreement” with the λ1-trained preselector
network.

The likely models, from which we can voluntarily choose one as the initial dis-
covered PDE, are conceived of being in their agreements and relatively sparse
(small

∥∥ξSTR
∥∥
0

= |E|) while conveying sufficiently low BIC scores defined as
follows:

BIC(ξSTR, θ̂) =
∥∥∥ξSTR

∥∥∥
0

logNM − 2 log L̂(ξSTR, θ̂);

log L̂(ξSTR, θ̂) =
−NM

2

(
1 + log 2π + log

RSS(ξSTR, θ̂)

NM

)
,

RSS(ξSTR, θ̂) =

NM∑

i=1

∣∣∣∣∣
∂Fθ̂
∂tMi

− Pk(ΦM
i (θ̂))ξSTR

∣∣∣∣∣

2

.

(3.10)

log L̂(ξSTR, θ̂) is the maximized (natural) log-likelihood of the θ̂-produced model
parameterized by ξSTR. RSS denotes the real-valued residual sum of squares
because the absolute value of each (complex-valued) residual term is considered.
Let us mention that our BIC terminology can be treated as pseudo-BIC in the

sense that the calculation compares to the estimated system evolution
∂Fθ̂

∂tM
≈ ut

not u, which the simulated solution of the initial discovered PDE should closely
approximate. With that said, we can optionally calculate an real-valued RSS

for a complex-valued PDE by the comparison to
∥∥∥ ∂Fθ̂

∂tM

∥∥∥
2

instead.

We shall see that the heuristics search for the agreed PDEs with the minimal
BIC score is questionable in terms of future applications, where there may be
no expert to supervise an acceptable range of (λ1, λSTR). Nevertheless, we
observe that the BIC decay rate (per one increasing candidate), e.g., ∆BIC

∆∥ξSTR∥
0

between different estimated PDEs from λSTR-varying STRidge with a fixed λ1,
can assist as an explicit information metric, which inspires us to design the
automatic complexity selection algorithm of the optimal number of effective
candidates.

Pedagogically, suppose that the preferred initial PDE exemplifies Burgers’
PDE; we write the effective candidate matrix concerning the training set of
labeled subsamples D as

ΦD
E (θ̂) = Pk(ΦD(θ̂))E =

[
∂2Fθ̂

∂x2 Fθ̂(x, t)
∂Fθ̂

∂x

]
. (3.11)

3.1.3 dPINNs: Denoising and finetuning using PINNs

As illustrated by (3) of Figure 3.1, we introduce the denoising PINNs (dPINNs)

for achieving the precise recovery of PDE coefficients ξ∗ under uncertainties.
We take the weakly physics-constrained solver Fθ̂ and the initial PDE N̂ξ̂ to

build the dPINNs, minimizing the vigorous physics-informed loss LD̃
sup(θ̂) +
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3.1. Overview of the nPIML framework

LD̃′

unsup(θ̂, N̂ξ̂) on the denoised dataset D̃ =
{

(x̃i, t̃i, ũi)
Nf

i=1

}
. The physics loss is

generally given by

LD̃′

unsup(θ̂, N̂ξ̂) =
1

Nf

Nf∑

i=1

(
∂Fθ̂
∂t̃i
− N̂ξ̂[(ΦD̃′

E (θ̂))i])
2, (3.12)

where the unsupervised set D̃′ =
{

(x̃i, t̃i)
Nf

i=1

}
is viewed simply as the slice of

D̃ without the supervision. Let us now continue the Burgers’ example, we can
derive the physics-constraint as

N̂ξ̂[(ΦD̃′

E (θ̂))i] = Pk(ΦD̃′

i (θ̂))E ξ̂

= ξ̂1
∂2Fθ̂
∂x̃2i

+ ξ̂2Fθ̂(x̃i, t̃i)
∂Fθ̂
∂x̃i

.
(3.13)

To continually denoise D during the dPINNs’ learning, we subtract the trans-
formed noises, initially precomputed by the Discrete Fourier Transform (DFT)
algorithm, from both (x, t) and u. The denoising mechanism is formulated as
the double affine transformations of the entire training dataset given by

(x̃, t̃) = (x, t)− β(x,t) ⊙ PΩ(x,t)
(S(x,t)); S(x,t) = (Sx, St),

ũ = u− βu ⊙ PΩu
(Su),

(3.14)

where PΩ(x,t)
and PΩu

are the projecting functions parameterized by Ω(x,t) and
Ωu, capturing the unknown noise distributions. β(x,t) and βu are updated pro-

portional to the unbiased standard deviations (
√
V(x),

√
V(t)) and

√
V(u), con-

trolling the relevant comparable intensity of the noise corrections. The denois-
ing DFT algorithm, which considers power spectrum density (PSD), is meant to
deduct small power frequencies components. The starting noises Su and S(x,t)

are obtained by limiting frequencies whose power is less than the threshold ζ. To
attain the low-PSD noise for the signal ψ ∈ {x, t, u}, we compute the following
quantities:

Sψ = ψ −DFT−1(DFT ζ(ψ));

DFT ζk (ψ) =

{
DFTk(ψ); if PSDk(ψ) > ζ

0; otherwise,

PSDk(ψ) =
1

Nf

∥∥DFTk(ψ)
∥∥2
2
,

P̃ SDk(ψ) =
PSDk(ψ)− E(PSD(ψ))√

V(PSD(ψ))
,

ζ = E(PSD(ψ)) + αmax
k

(P̃SDk(ψ))
√
V(PSD(ψ)).

(3.15)

Here, k denotes an index in the frequency domain. ζ is defined according to the
α portion of the maximal normalized PSD. E and V calculates the sample mean
and variance over k. We precompute S(x,t) and Su since the gradients cannot
flow to α.
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3.2. Experiments and discussion on different canonical PDEs

We remark that, in the nPIML framework, noise in x and t is treated in the
same manner as noise in u. Our so-called “noise-reduced” variables are opti-
mized to minimize the physical constraint loss, rather than the ideal denoising
objective, which aims to bring variables closer to their clean counterparts (a
difficult task without access to the ground truth), partly because x and t, when
sorted, are essentially increasing functions, leaving us little to no meaningful
nonlinearity to exploit.

3.2 Experiments and discussion on different canon-
ical PDEs

We experimented with 5 canonical PDEs, including 3 ordinary PDEs and 2
complex-valued PDEs, to investigate the accuracy and robustness of our pro-

posed method. We present the results of (1) Derivative preparation and (2)

Initial PDE discovery and discuss the regularization hyperparameter effects

on finding the appropriate initial PDE. Later, we show the tolerance of (3)

dPINNs against noise in both (x, t)&u for each PDE. Please refer to [11] for full
details on the experimental setting.

In the noisy experiments, we presume that a matrix, say z, gets perturbed,
right after the time of its subsampling, by the p% biased (no Bessel’s correction)
standard deviation (std) of Gaussian noise Z simulated as follows:

noise(z, p) =
p · std(z)

100
× Z; ∀i, j(Zij ∼N (0, 1)). (3.16)

Suppose that 1% noise is exerted, subsampled u and (x, t) get polluted in turn

with noise(u, 1) and (noise(x,1)√
2

, noise(t,1)√
2

).

The metric to measure how far an estimate ξest from the ground truth ξ
is mean(δ) ± std(δ) over all j effective coefficients in ξest. If only the correct
candidates are identified, δj = δj(ξ

est, ξ) is the %coefficient error (%CE):

δj =
∣∣∣ξestj − ξj

∣∣∣ /
∣∣ξj
∣∣× 100%; j ∈

{
1, . . . , cols(Θ)

}
. (3.17)

cols(Θ) represents the number of columns of Θ.

3.2.1 Canonical PDEs

Burgers’ PDE

The equation [36] arises in sub-areas of applied mathematics, such as fluid me-
chanics and traffic flow. We consider the following Burgers’ equation dataset
simulated with Dirichlet boundary conditions.

ut + uux − νuxx = 0; ν =
0.01

π
, x ∈ [−1, 1], t ∈ [0, 1]. (3.18)

The viscosity of fluid ν was set to 0.01
π is so small that the shock wave emerges.

Spectral methods and standard finite differences are used to accurately simulate
the PDE with this small viscosity.

50



3.2. Experiments and discussion on different canonical PDEs

Korteweg–De Vries (KdV) PDE

The KdV equation [37] is a nonlinear dispersive PDE for describing the motion
of unidirectional shallow water surfaces. For a function u(x, t) the actual form
of KdV we consider is expressed as

ut + 6uux + uxxx = 0; x ∈ [0, 50], t ∈ [0, 50]. (3.19)

KdV was known to have soliton solutions, representing two one-way moving
waves with different amplitudes. Such characteristics challenge discovery meth-
ods to distinguish and yield the sparsest governing PDE that generalizes the
situation. The PDE is also an excellent prototypical example to test discover-
ing the relatively high-order spatial derivative uxxx.

Kuramoto–Sivashinsky (KS) PDE

The KS or flame equation is a chaotic nonlinear PDE with a spatial fourth-order
derivative term, primarily to model the diffusive instabilities in a laminar flow.
The PDE reads

ut + uux + uxx + uxxxx = 0; x ∈ [0, 100], t ∈ [0, 100]. (3.20)

The solution was generated with an initial condition u(x, 0) = cos
(
x
16

)
(1 +

sin
(
x
16

)
), integrated up to the wide temporal bound of [0, 100] using a spectral

method. As a result, the PDE solution we obtained is chaotic and complex,
making it difficult for a vanilla neural network to learn the entire solution ac-
curately while also minimizing the residual physics loss. When encountering
the whole chaotic domain of KS, the PDEs produced by STRidge could be
inaccurate and unstable, especially with the complication of noise.

Quantum Harmonic Oscillator (QHO) PDE

The quantum harmonic oscillator is the Schrodinger equation with a parabolic
potential 0.5x2. The PDE is given by

iut +
1

2
uxx −

x2

2
u = 0; x ∈ [−7.5, 7.5], t ∈ [0, 4]. (3.21)

We construct the basis candidate matrix that includes the parabolic potential.

Nonlinear Schrodinger (NLS) PDE

The nonlinear Schrodinger equation is used to study nonlinear wave propaga-
tion. The PDE and its true discretization read as

iut +
1

2
uxx + u∥u∥22 = 0; x ∈ [−5, 5], t ∈ [0,

π

2
]. (3.22)

We include candidate terms depending on the magnitude of the solution, e.g.,
∥u∥22, which may appear in the correct identification of the dynamics of the
complex-valued function.
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Figure 3.2: Burgers: Learned feature importance with varied λ1

3.2.2 Effect of Regularization Hyperparameters on Initial
PDE Identification

For each canonical PDE, we specify the domain of interest from which the meta-
data M is generated for the initial PDE extraction. We then concentrate on
the multi-perspective assessment of the different discovered PDEs by STRidge
while varying the two major regularization hyperparameters: λ1 of the preselec-
tor network and λSTR of STRidge algorithm. Before the finetuning process, we
present how accurate the initial discovered PDEs concerning the following three
cases distinguished by the noise conditions: noiseless dataset, noiseless (x, t)
but noisy u, and noisy (x, t)&u in which the spatial-temporal (x, t) becomes
mesh-free.

Initial Discovered Burgers’ PDE

We trained the preselector network with varying λ1 to perceive the significance
of each candidate. The distributed feature importance values (Ij for each jth

basis candidate) are presented in Figure 3.2. Although several choices of the
expressive subset of passing-threshold candidates are contributed, identifying
the optimal set is still not obvious by merely adjusting λ1. Hence, STRidge
was subsequently employed multiple times with diverse levels of regularization
intensity λSTR. For convenience, we simply set ∀i ⩽ Nf + Nr, (x

M
i , tMi ) =

(xi, ti) for all Burgers’ experimental cases that differed in the noise conditions.
The cross results, Table 3.1, are assessed for obtaining the initial discovered PDE
that agrees with the corresponding preselector and sparse with a sufficiently low
BIC score.

Assigning the λ1 = 0.99 is so high that the true candidate, i.e., u, is lacking
from the passing-threshold candidates. Accordingly, the resulting PDEs cannot
match the particular importance scores. The preselector properly focuses on
the true candidates when λ1 is set to 10−1 and 10−2. Notice that uxx consis-
tently passes the threshold with marginal values, conveying the small viscosity
estimates. As seen in Table 3.1, for λ1 > 0, 10−2 gave the best initial result,
covering the sparse PDE with the lowest BIC among the agreed models. We
shall examine to find out what BIC level should be considered sufficiently low.

Deciding on the value of λSTR requires an akin principle: the values that
are too low or high are likely to yield incorrect forms. For example, λSTR = 100

is immensely high, outputting the too sparse and noninformative PDE with

52



3.2. Experiments and discussion on different canonical PDEs

λ1/λSTR 10−6 10−3 100

0.99
[uxx, uux,
uuxxx, uxuxx]

[uxx, uux] [uux]

(-8,723.69) (-7,636.39) (15,823.14)

10−1 [uxx, uux,
uuxxx, uxuxx]

[uxx, uux] [uux]

(-8,456.28) (-7,154.65) ✓ (15,824.98)

10−2 [uxx, uux,
uuxxx, uxuxx]

[uxx, uux] [uux]

(-8,294.55) (-7,178.84) ✓✓✓ (15,824.29)

0
(Supplement)

[uxx, uux,
uuxxx, uxuxx]

[uxx, uux] [uux]

(-8,437.81) ✓ (-7,243.32) ✓ (15,827.68)

Table 3.1: Burgers regularization hyperparameter selection: Concerning
the coefficient selection criteria, STRidge’s λ0, controlling the L0-penalty, is set
to 104λSTRε, and dtol equals 2 for the three noise conditions. The assignment
of (µ, λSTR, dtol) is purely for gathering the likely different PDEs. Each PDE is
accompanied by the “(BIC)” score. Blue indicates the agreement. Bold means
the lowest BIC score, compared to the scores acquired by the same λ1. Among
the agreed models, we check (✓) the sparse PDEs with

∥∥ξSTR
∥∥
0
⩽ 4, which

demonstrate sufficiently low BIC score. The PDE with ✓✓✓ is regarded as the
initial guess.

the single effective uux, delivering the high BIC scores. λSTR = 10−3 is more
suitable, suggesting the sparse models, which conform with the preselectors and
offer the low BIC scores that vastly improve from those given by λSTR = 100.
Conditioned by λ1 > 0, ut = 0.003063uxx−0.986174uux contains the few terms
and offers the minimal BIC among the acceptable PDEs; thus, taken as our
initial guess (✓✓✓) to be finetuned. By the disagreements, the sparsity-promoting
preselectors, trained with λ1 > 0, all entail that λSTR = 10−6 gives overly
parameterized models with the minor improvements per the increased indepen-
dent candidates. If we were to independently have the mere consideration on
λ1 = 0 or technically diminutive to a certain value, none of the basis candi-
dates would probably get deselected, and the resulting PDEs would be all in
their agreements. The justification, whether including uuxxx and uxuxx worth
the reduction in BIC, would turn ambiguous, though the PDE outcome by
(λ1, λSTR) = (0, 10−3): ut = 0.003063uxx − 0.985882uux captures the ground
on a par with our PDE guess (✓✓✓). If the preselector were not at all constructed,
the concern would still persist.

To shed light on how we might achieve automatic model selection, we exam-
ine the Pareto front between the relative BIC and model complexity, as shown
in Figure 3.3. The decrease in the relative BIC plateaus (with only small, in-
significant improvements observed thereafter) once the true form of the Burgers’
PDE is reached. These empirical numerical results suggest that the governing
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equation can be identified automatically by applying a knee detection algorithm
to the trade-off between the relative BIC and the number of active terms in the
PDE coefficient vector.
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Figure 3.3: Burgers: Pareto front between the relative BIC and model complex-
ity. The PDEs formable using the threshold-passing candidates of the preselec-
tor network trained with λ1 = 10−2.
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Figure 3.4: KdV: Learned feature importance with varied λ1

We inspect how the preselector weights each basis candidate in Figure 3.4.
Trained with λ1 = 2(10−5) or 2(10−6), the preselector can capture the true
candidates while the relatively high value of λ1 = 2(10−4) solely let ux pass the
threshold. u and uxxx barely pass the threshold if λ1 = 2(10−5), nonetheless
their effectivenesses become vivid when λ1 ⩽ 2(10−6).

STRidge was leveraged multiple times on the candidate library built onM.
For KdV, we regarded the metadata as the linear discretization of the entire
spatio-temporal domain; NM = 64, 128, facilitating the disambiguation of the
different wave amplitudes. The found PDEs for the several pairs of (λ1, λSTR)
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λ1/λSTR 10−5 10−3 10−1

2(10−4)
[ux, uxxx, uux,
uuxxx, uxuxx]

[uxxx, uux] [ux]

(-651,496.23) (-593,260.84) (-493,869.28)

2(10−5)
[ux, uxxx, uux,
uuxxx, uxuxx]

[uxxx, uux] [ux]

(-651,650.73) (-593,259.27) ✓ (-493,885.29)

2(10−6)
[ux, uxxx, uux,
uuxxx, uxuxx]

[uxxx, uux] [ux]

(-651,782.07) (-593,389.01) ✓✓✓ (-493,868.73)

0
(Supplement)

[ux, uxxx, uux,
uuxxx, uxuxx]

[uxxx, uux] [ux]

(-651,733.37) (-593,275.19) ✓ (-493,851.71)

Table 3.2: KdV regularization hyperparameter selection: STRidge’s λ0
is set to 102λSTRε, and dtol equals 1 for the three noise conditions.

are listed in Table 3.2. By pondering the PDEs that harmonize with λ1 > 0,
we neglect the selection of the PDEs with the minimal BIC (for a particular
λ1) because they neither agree with the L0-penalized feature importance nor
be sparse as expected. The reduced BIC per an increasing effective term of
transition from λSTR = 10−3 to λSTR = 10−5 is much less when compared
with moving from λSTR = 10−1 to λSTR = 10−3, signifying the inefficiency
of including the unnecessary terms. Remark that setting λSTR = 10−1 gives
the PDEs, each describing a one-way traveling wave which can be considered
as the relaxed form of KdV PDE, still not well fit the overall character of
the dataset. Based on the mentioned justification, we thus prefer λSTR =
10−3, and choose the agreed PDE with the better BIC, taking the form of
ut = −0.989065uxxx − 5.961087uux as our initial guess (✓✓✓). The selected PDE
is noticed as a more precise to the ground truth than the PDE based λ1 =
0, which is ut = −0.988350uxxx − 5.959614uux. Also, just naively, the BIC
cannot elucidate the overfitting hurdle without the auxiliary knowledge gained
by varying λ1 > 0.

In Figure 3.5, we plot the KdV Pareto front created via the aid of the best-
subset regressors: FROLS and L0BnB analogous to what is explained in the
previous example. Visually, we are inclined to stop after the transition to the
agreed PDE between the preselector and STRidge at an elbow point, where the
BIC decay rate is minimized. This observation becomes even more pronounced
when the weak-formulation representation is used with STRidge, as shown in
the right panel.

Initial discovered KS PDE

In this example, we focus on on the samples from a more stable sub-region at
the beginning of the evolution, where the solver can accurately approximate as
indicated by the relative L2 error plots in Figure 3.6. We assumed that the
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(b) Weak formulation: an ensemble of 3
instances, each having NM = 64, 128 inte-
gration domain centers.

Figure 3.5: KdV: Pareto front between the relative BIC and model complexity.
The preselector network is trained with either λ1 = 2(10−5) or 2(10−6).
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Figure 3.6: KS: Training relative L2 error of the learned (from Nf = 80, 000)

solver θ̂ against temporally varying sub-regions of the KS training set bounded
by [0, 100] × [0, 44], revealing a local optimum around the stability domain at
the beginning of the evolution.

unknown PDE governs persistently throughout the evolution; nevertheless, the
presumption does not universally hold, since specific coefficients of the chaotic
behavior can be distinct over time. Based on the encountered evidences, as
a result, the first 21,504 (1,024×21) discretized points within [0, 100] × [0, 8],
were instead used with randomly generated nonoverlapping 10,752 unsuper-
vised points for the training in the noiseless experiment. The temporally-wise
increased number of training samples to be the first 30,000 polluted discretized
points, where t ⩽ 11.6, were used with randomly generated disjoint 15,000
unsupervised points for both the noisy experiments. The validation sets were
commonly left unaffected.

We investigate the learned feature importance of the preselector for ranking
each potential atomic candidate, helping us choose the right PDE as presented
in Figure 3.7. It is intriguing to discern that uxxxx is one of the essential terms
for every choice of λ1, despite its order being 4, implying the possibility of
including the high-order derivative.

We list the possible PDEs provided by STRidge for the various set of reg-
ularization hyperparameters in Table 3.3. The metadata was specified as the

56



3.2. Experiments and discussion on different canonical PDEs

0.0

0.2

0.4

0.6

0.8

1.0
λ1 = 2(10−2) λ1 = 2(10−3)

u ux uxx uxxx uxxxxuxxxxx
0.0

0.2

0.4

0.6

0.8

1.0
λ1 = 2(10−4)

u ux uxx uxxx uxxxxuxxxxx

λ1 = 0

F
ea

tu
re

im
p

or
ta

n
ce

Basis candidates

Figure 3.7: KS: Learned feature importance with varied λ1
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λ1/λSTR 10−5 10−3 10−1

2(10−2)

[uxx, uxxxx, uux,
uuxxx, uuxxxxx,
uxuxx, uxxuxxx,
uxxuxxxxx]

[uxx, uxxxx, uux] [uux]

(-153,326.24) (-141,117.36) (-67,989.30)

2(10−3)

[uxx, uxxxx, uux,
uuxxx, uuxxxxx,
uxuxx, uxxuxxx,
uxxuxxxxx]

[uxx, uxxxx, uux] [uux]

(-153,661.00) (-141,032.21) ✓✓✓ (-67,956.02)

2(10−4)

[uxx, uxxxx, uux,
uuxxx, uuxxxxx,
uxuxx, uxxuxxx,
uxxuxxxxx]

[uxx, uxxxx, uux] [uux]

(-151,328.93) (-138,842.33) ✓ (-68,022.47)

0
(Supple-
ment)

1[uxx, uxxxx, uux,
uuxxx, uuxxxxx,
uxuxxxx, uxxuxxx,

uxxuxxxxx, uxxxuxxxx]

[uxx, uxxxx, uux] [uux]

(-146,610.75) (-135,102.20) ✓ (-67,942.84)

1To avoid the minor details of cluttered discoveries, STRidge gets recursively reiterated with

small magnitude coefficient removal until ∀j,
∣∣∣ξ̂j∣∣∣ > 10−1.

Table 3.3: KS regularization hyperparameter selection: STRidge’s µ is set
to (2(102), 5(103), 5(103)), and dtol equals (1, 1, 50) for the three noise conditions.
For the noisy (x, t)&u case, each polynomial candidate is normalized by its L1-
norm to get the better three-term PDE in terms of the BIC score.

21,000 samples (NM) within the [0, 100]× [0, 8] boundary generated by a Latin
Hypercube Strategy. It alludes to us that the λSTR = 10−5 founded PDEs
cannot correspond to any specified λ1 > 0 feature importance because of the
inclusion of uxxx, which may be inessential. Conversely, if we were to solely con-
template on the resulting PDEs associated with λ1 = 0, we would suspect that
some terms are missing from [uxx, uxxxx, uux], as the big PDE model comprising
[uuxxx, uuxxxxx, . . . , uxxxuxxxx] whose coefficient magnitudes were all compara-
ble in size, e.g., of order > 10−1, demonstrated the lowest BIC score. The
dilemma signifies that the unaided BIC, whose value varies dominantly by the
changing log-likelihood term, cannot righteously balance the model complex-
ity and accuracy, partly because no parsimonious governing PDE is involved
behind the criterion assumption. In fact, the well-matched BIC is achievable
by the simpler model built on the three correct candidates in λ1 = 2(10−3).
We mark the correct PDE expression ut = −0.989019uxx − 0.962360uxxxx −
0.966931uux found by λ1 = 0 as inferior to the selected model (✓✓✓) in terms
of discovery precision. λSTR = 10−1 offers us the sparse PDEs, still, their
BIC scores are much higher along with the clear BIC worthy enhancements
observed when comparing against λSTR = 10−3, thus designated as the con-
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(b) Weak formulation: an ensemble of 3
instances, each having NM = 21, 000 inte-
gration domain centers.

Figure 3.8: KS: Pareto front between the relative BIC and model complexity.
The preselector network is trained with λ1 = 2(10−3).

dition giving the underfitted models. We take the PDE with the lowest BIC
ut = −0.989305uxx − 0.970189uxxxx − 0.978123uux as our starting PDE (✓✓✓),
after assessing the agreed models for each λ1 > 0 row. On the subsequent learn-

ing (3) of Figure 3.1, the first (repolluted, if noisy) 21,504 data points were

employed to finetune dPINNs.
Figure 3.8 reveals that transitioning to the discovered PDE of the actual form

still results in a satisfactory (and best in the KS example) BIC improvement per
candidate over the optimal 2-complexity PDE built on [uux, uuxxx]. After that,
progress immediately stagnates (undoubtedly for the weak-formulation-based
library), suggesting that 3 is the optimal number of nonzero terms to select.

3.2.3 Finetuning PDE coefficients by dPINNs

Based on the results in Table 3.4, nPIML establishes superior results over nPIML
without the denoising DFT and projection networks for the noisy cases, espe-
cially when both (x, t) and u are contaminated. For the clean dataset, the
denoising mechanism seems to not over perturb backwardly through converg-
ing β(x,t), βu → 0, maintaining the effectiveness of the dPINNs’ learning, on
a par to the nPIML without the denoising that exactly matches the noiseless
hypothesis. Indeed, nPIML can outperform nPIML without the denoisers since

the shifting to the more propitious finite set, e.g.,
{

(x∗i , t
∗
i , u

∗
i )
Nf

i=1

}
, is still tech-

nically probable. In Burgers’ example, nPIML surpasses vanilla PINN for all
experimental cases regardless of the denoising modules, implying the superior-
ity and benefits of the precomputed initialization followed by finetuning θ̂ and
ξ̂. Moreover, if the genuine PDE is known beforehand, training PINN from
scratch eventually leads to the good close-formed discovery accuracy on a par
with CWF, better than PDE-FIND (STRidge), DLrSR and WF. The accuracy
enhancement points out the usefulness of automatic differentiation and physics-
informed learning. Still, in KS example, IPI+CWF sets an impressive baseline
error that is better than the dPINNs, which finetunes the 4th-order derivative
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3.2. Experiments and discussion on different canonical PDEs

Dataset Method # Train samples (Nf ) Noiseless u + Noiseu u + Noiseu & (x, t) + Noise(x, t)
PDE-FIND (STRidge) 256×1001 19.2070±19.0686 Failed (−0.0698uux) Not applicable2

DLrSR 256×100 19.2070±19.0686 Failed (−0.0698uux) Not applicable
WF3 256×100 18.7103±17.7589 18.5517±17.6983 Not applicable
CWF 256×100 0.3135±0.2825 0.3316±0.1370 Not applicable
CWF (Subsampled) 128×504 0.5283±0.4245 0.1476±0.0220 Not applicable

Burgers PINN5 3,000 0.3256±0.1921 0.9212±0.8589 4.0893±2.9622
nPIML: IPI6 3,000 2.5730±1.1904 7.0093±2.6069 55.2051±15.8919
nPIML: IPI+WF 3,000 18.5244±17.6550 19.2048±18.1213 24.9787±24.9340
nPIML: IPI+CWF 3,000 0.7741±0.6189 0.7253±0.7113 7.8921±5.0705
nPIML w/o Denoise7 3,000 0.1264±0.0605 0.4271±0.2451 2.9920±2.2222
nPIML 3,000 0.0557±0.0170 0.3360±0.1251 0.8546±0.4806
PDE-FIND (STRidge) 128×501 0.5194±0.1733 Failed (−5.4128uux) Not applicable
DLrSR 128×501 0.5194±0.1733 Failed (−5.3521uux) Not applicable
WF 128×501 1.5526±0.9140 1.5529±0.8999 Not applicable
CWF 128×501 <(0.0001±0.0001) 0.0203±0.0027 Not applicable

CWF (Subsampled) 26×101 Failed (−5.4090uux) Failed (−5.4412uux) Not applicable
KdV nPIML: IPI 2,000 0.8710±0.2224 2.9887±1.16128 3.7460±1.41588

nPIML: IPI+WF 2,000 0.9660±1.5963 1.8076±2.0034 1.4701±1.7390
nPIML: IPI+CWF 2,000 0.2347±0.0693 0.1177±0.1143 0.9487±0.4943
nPIML w/o Denoise 2,000 0.6413±0.3904 1.2547±0.8369 2.9378±1.6140
nPIML 2,000 0.0890±0.0568 0.2845±0.2463 0.4344±0.2696
PDE-FIND (STRidge) 1024×251 0.7557±0.5967 52.2843±1.4005 Not applicable
DLrSR 1024×251 0.7571±0.5966 Failed9 Not applicable
WF 1024×251 0.1521±0.0598 0.1487±0.0658 Not applicable
CWF 1024×251 0.0004±0.0004 0.0128±0.0038 Not applicable
CWF (Subsampled) 1024×21 Failed (−1.2218uux) Failed (−0.9uxx − uux) Not applicable

KS nPIML: IPI ⩽30,000 2.0794±0.7842 10.7558±3.3449 14.0475±4.0048
nPIML: IPI+WF ⩽30,000 0.7265±0.5199 0.3557±0.3068 2.1058±1.7677
nPIML: IPI+CWF ⩽30,000 0.1913±0.1347 0.5944±0.5621 1.2546±1.488
nPIML w/o Denoise ⩽30,000 1.7417±1.1171 8.8925±5.2704 9.2365±6.5974
nPIML ⩽30,000 0.4775±0.2751 2.9320±1.4401 3.6493±3.968

1All the discretized points are shown in the mesh representation: # in x × t. 2Because a
mesh is required for taking polynomial derivatives used in PDE-FIND. 3An instance of WF,
having 10,000 integration domain centers, is used with STRidge whose (λ0, λSTR, dtol) =
(10−5, 10−2, 5). 4We subsample every 2nd point (5th point for KdV) in both x and t. For

KS, we take the first 21,504 (1,024×21) discretized points. 5ξ̂ is initialized at
[
exp(−7.0), 1.0

]⊺
before training PINN. 6The results until (2) of Figure 3.1, Initial PDE Identification, with

polynomial library. 7The results from (3) of Figure 3.1, dPINNs, but without the denoising

DFT module and projection networks. 8λ1 is assigned to 2(10−5) instead of 2(10−6). 9DLrSR
with the original and unvarying λ0 discovers the following mismatched PDE: ut = −0.60uux−
0.39uxx − 0.10uuxxx − 0.49uxxxx.

Table 3.4: Summary of the robust discovery results by nPIML: The noise
is 1% of standard deviation. Generally, the adopted λ1s for the noisy experi-
ments are identical to the noiseless condition unless noted otherwise. Underline
and bold indicate the best error among the mesh-based and mesh-free methods.
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Figure 3.9: Close visualization of how the projection networks react to the high
noise at x ∈ [−0.16, 0.16], around the abrupt transition caused by the shock
waves.

directly and thus risks suffering from local optima of the coefficients. CWF
offers the precise approximation of found coefficients, better than WF, for the
mesh data with fine resolution but struggles to uncover the genuine governing
PDE in the scarce subsampled mesh data. This observation naturally allows for
incorporating our dPINNs’ learning with the (convolutional) weak formulation
to get the best from both methods in future investigations.

3.2.4 Denoising Visualization

We sought to apprehend how the projection networks respond to high noise visu-
ally by letting dPINNs expose the strongly contaminated dataset, where u and
(x, t) are polluted with noise(u, 5) and noise((x, t), 5). Specifically, we finetuned

the dPINNs pretrained by θ̂, taken from the 1%Noise+(x, t)&u case of Burgers’
PDE. The initialized PDE was resolved by LS based on the intentionally uplifted
5% noisy (x, t), expressing the form as follows: ut = 0.000606uxx−0.403049uux.
For such high noise, we find it is useful that PΩ(x,t)

(x, t) and PΩu
(u) should not

be only activated by the final Tanh but also unbiased standardized and then
scaled down to be 0.01 times the values to denoise gradually from small to larger
noise magnitude since denoising the considerable amount at the beginning of
the dPINNs’ learning can ultimately cause the divergence. α and (β′

(x,t), β
′
u) are

initialized at 0.1 and (10−3, 10−3). We display how the projection networks de-
noise closely around t = 0.46, 0.97 in Figure 3.9. By the proximate examination
near the dynamically changing region, where there are only a few supervised
samples, the naive PDE estimation: ut = 0.012378uxx − 0.948156uux neglect-
ing the noise effect is observed when the denoising components are ablated. In
comparison, the projection networks can shift the polluted samples towards the
direction that drives the approximated solution by dPINNs to better captures
the exact characteristics of Burgers’ PDE when the denoising components are
utilized. For example, the noisy samples get redirected (mostly) to the right in
Figure 3.9a and left in Figure. 3.9b. With the denoising process, the optimized
PDE carries the better form of ut = 0.008550uxx − 0.972390uux.
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3.3. Summary

3.3 Summary

We have introduced the interpretable nPIML framework for deriving the nonlin-
ear PDE governing a physical system as an analytical expression. The proposed
method addresses challenges related to suboptimal derivatives, sensitivity to reg-
ularization hyperparameters, and noisy datasets. The weakly physics-informed
solver network is the primary building block for derivative computation. Giv-
ing rise to the automatic PDE selection algorithm, multi-perspective assess-
ment of the diverse sets of regularization hyperparameters is feasible through
the physics-learning preselector network and the sparse regression. Addition-
ally, dPINNs are introduced to fine-tune the PDE coefficients using an affine-
transformed, noise-reduced dataset provided by projection networks. Numeri-
cal results demonstrate that the proposed method is both accurate and robust,
even in scenarios with limited labeled samples and noisy data across five classic
canonical PDEs.

Nonetheless, the proposed framework exhibits some limitations. For in-
stance, there is no explicit denoising mechanism at the early derivative prepa-
ration and sparse regression stages; thus, particular noise of an unknown dis-
tribution may fake those initial processes and let the entire framework fail.
The predicament that underlying physics remains mysterious initially causes
the projection networks to be inoperable, as the affine transformation can yield
the unwanted ũ ≈ 0⃗, and solely assigning an appropriate threshold for denoising
DFT is not either trivial or readily beneficial. Towards future improvements,
researchers may conduct extensive studies on grounded topics such as the ef-
fect of parameter initialization on the discovery stability or a border class of
inferable PDEs that is not restricted by the linear assumption.
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Chapter 4

Uncertainty-penalized
Bayesian information
criterion (UBIC)

4.1 Overview

Model selection from a set of potential PDEs often relies on metrics such as AIC
and BIC, which evaluate model fit based on point estimates of their parameters.
However, numerical results in Chapter 3 indicate that these metrics tend to favor
more complex models as they minimize the information criteria, potentially
leading to overfitting and the unnecessary inclusion of terms in the selected
PDE. More specifically, when adjusting the number of nonzero terms in a linear
model fitted to an overcomplete candidate library, AIC and BIC values typically
decrease as model complexity increases, even beyond the parsimonious region.

To address this issue, we propose the uncertainty-penalized Bayesian infor-
mation criterion (UBIC), a novel BIC-based metric that accounts not only for
typical model complexity (the number of nonzero terms) but also for the quanti-
fied uncertainty of the estimated coefficients. Unlike traditional criteria, UBIC
employs Bayesian linear regression to obtain a posterior distribution for the co-
efficients of each candidate PDE, offering a more robust measure of uncertainty.
This method calculates the posterior mean and covariance of the coefficients
and uses them to derive their coefficient of variation (CV) as a measure of
PDE uncertainty. By integrating this uncertainty, UBIC adaptively balances
the trade-off between overfitting and underfitting, enabling the identification of
parsimonious and stable governing PDEs and consistently outperforming AIC
and BIC.

The proposed framework begins with data denoising and progresses through
identification of potential PDEs and model selection to ultimately identify the
optimal PDE, as illustrated in Figure 4.1. Furthermore, the selected PDE can
be validated using physics-informed (simulation-based) model selection, lever-
aging a PINN as a differentiable PDE solver. PINNs enable flexible solutions
by embedding physical laws as learning constraints, providing a supplemental
method for validating the UBIC-selected PDE by comparing its simulated state
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Figure 4.1: Schematic of data-driven discovery process of PDEs using UBIC

solutions against observed data.
The integration of uncertainty quantification into the model selection process

through UBIC represents a significant advancement in distinguishing between
overfitted and underfitted models. It offers a systematic, reliable, and efficient
approach for discovering governing equations.

4.2 UBIC for data-driven identification of PDEs
and ODEs

4.2.1 Problem Formulation

Let us assume without loss of generality that the system state u in a two-
dimensional (2D) spatio-temporal grid of spatially distributed physical systems
satisfies

∂tu = N (u, ∂xu, ∂
2
xu, . . . ; ξ). (4.1)

We aim to discover N , a linear or nonlinear operator involving spatial deriva-
tives of the state variable u only. The parametric dependency ξ is a constant
vector-valued coefficient. For convenience, we consider ∂xu ≡ ux and other
notations alike. Since our observed input ũ may be disturbed with noise, or
mathematically given as ũij = u(xi, tj) + z(xi, tj), we begin our PDE discovery
approach by denoising on ũ. Noise z(xi, tj) ∼ ϵσu

100Z(0, 1) is drawn from stan-
dard Gaussian distribution, and scaled proportionally to ϵ% of the standard
deviation (sd) σu calculated over the domain.
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4.2.2 Denoising Data

Suppose the spatio-temporal grid is in a 2D space, we turn ũ into a zero-mean
array stacking flattened patches, regarded as signals Sp(ũ) ∈ Rp2×f ; where p and
f determine the patch size and the number of features. We seek the dictionary
D ∈ Rp2×c, whose each column is denoted by dj , along with corresponding
sparse code A to approximate Sp(ũ) by its sparse representation DA ≈ Sp(ũ).
To achieve the approximation, we solve the ρ-regularized dictionary learning
problem:

min
D,A

∥∥Sp(ũ)−DA
∥∥2
F

+ ρ∥A∥2F
subject to

∥∥dj
∥∥
2

= 1, j = 1, . . . , c

∥al∥0 ≤ L, l = 1, · · · , f.

(4.2)

A couple of optimized D and A is obtain through regularized K-SVD training
iterations. With the final fixed D, the ultimate sparse code A is then found

using the orthogonal matching pursuit (OMP) algorithm with ⌊p210⌋ transforming
sparsity to reconstruct the denoised observed data û = S−1

p (DA) from the
patches, via the inverse function S−1

p . ∥·∥F denotes the Frobenius matrix norm.
We define Gû(xi, tj) = ûij as the denoised state function.

If we encounter 3D or 4D spatio-temporal data, the denoised û is instead
achieved efficiently by applying 2D Savitzky-Golay filters, which can be used
with SVD (singular value decomposition).

4.2.3 PDE Identification

Best-subset regression is subsequently used to recover a sequence of potential
parsimonious PDEs (with their corresponding coefficients) represented by best-
subset solutions with a maximal bound on support sizes (i.e., the number of
nonzero terms).

We presume an overcomplete library Φ(û) collecting candidate terms (with
a maximum derivative order) of the denoised observed data. The library Φ(û)
is supposed to embed the information on the initial and boundary conditions.
According to the weak formulation [24], i-th numerical value of j-th candidate
(column-wise) in Φ(û) ∈ RNΩ×Nq is given by integrating over a local spatio-
temporal subdomain Ωi, whose (rectangular) lengths are Hx and Ht.

Φ(û) =
[
· · · qj · · ·

]
, j = 1, . . . , Nq;

qij =

∫

Ωi

wϕj dΩ, i = 1, . . . , NΩ.
(4.3)

ϕj is regarded as a candidate function, for example, G2û and ∂2xGû. NΩ is the
number of domain centers; ∀i, (xci , t

c
i ). The smooth weight, e.g., w = (x2 −

1)2(t2 − 1)2; where x = (x − xci )/Hx, t = (t − tci )/Ht conditioned by (x, t) ∈
[−1, 1]2, is a viable function for discovering the Burgers’ PDE as it vanishes
along the boundary ∂Ωi. Note that higher polynomial orders are possible. By
integration by parts on Equation (4.3), numerical noisy derivative evaluation
of ϕj is supposed to be carried out on the noiseless w instead. We use the
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4.2. UBIC for data-driven identification of PDEs and ODEs

implementation provided in the PySINDy package. Remark that the noise-
tolerant representation by the convolutional weak formulation (CWF) [38] could
be leveraged at the library construction stage as well.

We attain an estimate ξ̂k of the PDE coefficients with its support set,

supp(ξ̂k) = {ξ̂kj |
∣∣∣ξ̂kj
∣∣∣ > 0} of a sk support size (cardinality), by solving the

best-subset selection problem:

ξ̂k = argmin
ξk

∥∥∥∥∥∥
q0 −

Nq∑

j=1

qjξ
k
j

∥∥∥∥∥∥

2

2

, subject to
∥∥∥ξk
∥∥∥
0

= sk; (4.4)

where qi0 =
∫
Ωi
w∂tGû dΩ and q0 ≈

∑Nq

j=1 qjξ
k
j = Φ(û)ξk. Best-subset solvers,

we experiment with to yield potential PDEs for an increasing sequence of sup-
port sizes (sk)Ns

k=1 (Ns ≤ Nq), are based on MIO, SOS-1-formulated (type-1
specially ordered sets) [39] MIO-SINDy, FROLS (forward regression with or-
thogonal least squares) [40, 41] and L0BnB (branch-and-bound framework for
sparse regression) [42].

4.2.4 Uncertainty-penalized Bayesian Information Crite-
rion (UBIC) for Adaptive Model Selection

We now find the best support size presented in Equation (4.4) within a given
range. The base information criterion, on which we rely to penalize the maxi-
mized log-likelihood value of a regression model by its complexity, is the BIC:

BIC(ξ̂k) = −2 logL(ξ̂k) + log(NΩ)sk;

logL(ξ̂k) = −NΩ

2
log

(
2π

NΩ

∥∥∥q0 − Φ(û)ξ̂k
∥∥∥
2

2

)
− NΩ

2
.

(4.5)

L is the model likelihood function. Our motivating assumption is that the true
governing PDE is reliable and thus parameterized by the stable vector-valued
coefficient whose uncertainty is relatively lower (a good parsimony indicator)
than those that characterize the other potential PDEs. Addressing the issue
that the PDE with the lowest BIC is not necessarily the best PDE [11], we define
the UBIC by penalizing the BIC formula by tunable quantified uncertainty as
follows:

UBIC(ξk, λU) = BIC(ξkµ) + λU log(NΩ)Uk

= −2 logL(ξkµ) + log(NΩ)(sk + λUUk).
(4.6)

Uk represents an estimated total uncertainty for ξk, scaled proportionally to
log(NΩ), similar to the penalizing complexity in the BIC, for convenient uni-
fication. Like L(ξkµ) and sk, Uk is considered as an indicator of the PDE’s

parsimony. The data-dependent λU controlling influence of Uk on model selec-
tion is adaptively adjusted by Algorithm 2. A lower UBIC conveys a better-
discovered PDE. A Bayesian linear regression probabilistic view is placed on
ξk with Gaussian conjugate prior N (ξk | ξk0 ,Vk

0). Using Bayes rule for linear
Gaussian systems, we derive the posterior as follows:

66



4.2. UBIC for data-driven identification of PDEs and ODEs

p(ξk | Φ(û), q0, σ
2
q ) ∼ N (ξk | ξk0 ,Vk

0)N (q0 | Φk(û)ξk, σ2
qINΩ

)

= N (ξk | ξkµ,Vk);

ξkµ = Vk(Vk
0)−1ξk0 +

1

σ2
q

Vk Φk(û)T q0,

Vk = σ2
q (σ2

q (Vk
0)−1 + Φk(û)TΦk(û))−1.

(4.7)

Later presented experimental results are produced with ξk0 ∈ Rsk (a vector

containing nonzero terms in ξ̂k) and Vk
0 = Isk as an identity matrix of size

sk =
∥∥∥ξ̂k
∥∥∥
0
. Note that ξk0 = 0⃗, reducing the posterior mean to ridge estimate, is

also a feasible option. Columns of Φk(û) correspond to sk effective candidates,
which are used to calculate BIC(ξkµ). By maximum likelihood estimation (MLE)

for the error variance, we set σ2
q = E[(q0 − Φ(û)ξ̂k)2]. Based on the obtained

posterior, the uncertainty Uk is defined as follows:

Uk =
CVk

mink CVk
; CVk =

∥∥∥diag(Vk)◦
1
2

∥∥∥
1∥∥∥ξkµ

∥∥∥
1

=

∑sk
i=j

√
Vk
ij∥∥∥ξkµ

∥∥∥
1

. (4.8)

We compute CVk (the relative standard deviation) of the covariance matrix Vk

by taking an element-wise square (the ◦ 12 exponent) root on its diagonal vector

(diag) and then the l1-norm division by
∥∥∥ξkµ
∥∥∥
1
. When all the true terms are in-

cluded, the Bayesian linear model relies on them to approximate q0, leaving the
contribution of unnecessary terms on improving the approximate error dimin-

ished and uncertain with potentially high-variance coefficients. As
∑sk
i=j

√
Vk
ij

sums the posterior standard deviation of every effective candidate, the more
unnecessary candidates get included, the more the PDE risks becoming uncer-
tain and overfitted and getting penalized more in Equation (4.6). Each CVk is
rescaled by the minimum mink CVk, resulting in Uk whose value is comparable
to sk.

Once every Uk is obtained, we converge the UBIC by Algorithm 2, iter-
atively decreasing λU from its maximum bound λmax

U derived to maintain the

influence of the log-likelihood value (by not overly penalizing −2 logL(ξ̂k) in
Equation (4.6)) for all the discovered PDEs. We compute λmax

U based on the
following constraint:

∀k ≤ Ns, logNΩ(sk + λUUk) ≤
∣∣∣−2 log L̂(ξkµ)

∣∣∣ ; λU ≥ 0,

λmax
U = max

k

1

Uk
(
2
∣∣∣log L̂(ξkµ)

∣∣∣
logNΩ

− sk).

(4.9)

Algorithm 2 finds a proper λU = 10λ by reducing λ iteratively. We track
the current and competitive optimal support sizes (sk∗ , skc), and test the stop-
ping condition at line 12, which essentially checks whether we have the in-
creased complexity with unsatisfactory improvement (see τ), or the decreased
complexity with already satisfying improvement. τ = τ0 might be included in
the stopping condition by choice. Also, τ0 can be set adaptively, yet offering
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4.2. UBIC for data-driven identification of PDEs and ODEs

Algorithm 2 Find the optimal complexity sk∗ by tuning λU

Input: Φ(û), q0 and ξ̂k

Parameter: τ0: Improvement threshold (default = 0.02) and Nδ: maximum
number of iterations (default = 3)
Output: The optimal support size s∗k and tuned UBIC’s
hyperparameter λU

1: Compute ∀k ≤ Ns, Vk, ξkµ and Uk,

with Gaussian prior N (ξk | ξ̂k, I∥ξ̂k∥
0

)

2: Assign λ← log10 max(λmax
U , 0) {−∞ if λmax

U ≤ 0}
3: Assign δ ← λ

Nδ
and λc ← λ− δ {next trial value of λ}

4: Compute ∀k, Ik ← UBIC(ξk, 10λ) using ξkµ and Uk

5: Find sk∗ where k∗ ← argmink Ik
6: while λc ≥ 0 do
7: Compute ∀k, Ick ← UBIC(ξk, 10λ

c

)
8: Find skc where kc ← argmink Ick
9: Assign ∆s← skc − sk∗

10: Assign ∆BIC← BIC(ξk
c

µ )− BIC(ξk
∗

µ )

11: Assign τ ← τk
c

k∗ ; τk
c

k∗ =
∣∣∣∆BIC/(BIC(ξk

∗

µ )∆s)
∣∣∣

12: if (∆s > 0 but (∆BIC > 0 or τ < τ0)) or
(∆s < 0 but ∆BIC > 0 and τ > τ0) then

13: break{stopping condition detected}
14: end if
15: Assign λ← λc and λc ← λ− δ
16: Assign ∀k, Ik ← Ick and k∗ ← kc {sk∗ ← skc}
17: end while
18: if

∣∣∣BIC(ξk
∗

µ )− BIC(ξk
∗−1
µ )

∣∣∣ /
∣∣∣BIC(ξk

∗−1
µ )

∣∣∣ < τ0 then

19: Consider an increased or decreased τ0 value to prevent overfitted or un-
derfitted models, respectively

20: end if
21: return sk∗ , λU = 10λ and ∀k, Ik {used in plotting}

the same correct selection as the default value. Such an effective heuristic is
τ0 = P75(S); S = {τk2k1 | k1, k2 = argmin(r) s.t. r = sk2 − sk1 > 0, and ∀sk0 <
sk1 , BIC(ξk

2

µ ) < BIC(ξk
1

µ ) < BIC(ξk
0

µ )}, the 75th percentile of successive im-
provement factors respecting just BIC-decreasing models. If an overfitted model
is detected by line 18, we retry with a stricter percentile of S, e.g., P80(S). On
the contrary, lessening τ0 helps discern selecting a supposedly underfitted 1-
support-size PDE. The cost of computing UBIC scores is controlled by limiting
the maximum support size sNs

because the best subsets for all the support sizes
have to be prepared in advance.
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coeffcients

4.3 UBIC for data-driven identification of para-
metric PDEs with varying coeffcients

Here, we shift our focus to a scenario where the coefficients of the governing
equations are not necessarily constant. These coefficients may vary with respect
to either space or time. The question arises: How can we adapt the original
formulation of the UBIC to make it applicable to this parametric PDE discovery?
To precisely pinpoint necessary changes, we will systematically revisit and refine
the data-driven discovery steps to address the challenges of parametric PDEs.

4.3.1 Problem Formulation

We consider the following parametric form of governing PDEs:

ut = F(u, ux, uxx, . . . ;ψ(x, t)) =
∑

j=1

Fj(u, ux, uxx, . . . )ψj(x, t). (4.10)

We aim to identify the nonlinear operator F , which involves spatial derivatives
of the state variable u, whose discretization U ∈ RNx×Nt on a spatio-temporal
grid is given. F is parameterized by ψ(x, t), which we assume reducible to either
ψ(x) or ψ(t)—spatially or temporally varying functions.

4.3.2 Best-subset Regression

Suppose, without loss of generality to spatially varying cases, Equation (4.10)
is formulated as systems of linear equations, with temporal dependency. Given
there are Nt time steps and Nx spatial points, the linear system evaluated at a
time t = ti is expressed by

Ui
t = Qiξi =

Nq∑

j=1

ξijq
i
j ; Qi =


qi

1 · · · qi
j · · ·


 ∈ RNx×Nq . (4.11)

Ut is the first-order time derivative numerically computed with Kalman smooth-
ing. Every Qi comprises overcomplete Nq candidate terms, each term poten-
tially serving as a true Fj . We define the candidate library Q as a block-diagonal
matrix constructed by all Qi matrices, building a single system for the para-
metric PDE discovery problem: Ut = QΞ. We solve for the solution with sk
support size (the number of nonzero terms), satisfying

Ξ̂ = argmin
Ξ

Nt∑

i=1

∥∥∥Ui
t −Qiξi

∥∥∥
2

2
+ λ
∥∥∥ξi
∥∥∥
2

2
such that

∥∥∥ξi
∥∥∥
0

= sk,∀k ≤ Ns; (4.12)

where U and Q are the validation data on which Ξ ∈ RNqNt (a tall column vec-

tor collecting every ξi) is evaluated. We set λ = 1
Nt

∑Nt

i=1

∥∥∥Ui
t −QiξiLS

∥∥∥
2

2
/
∥∥ξiLS

∥∥2
2
;

where ξiLS is the least-squares solution—leveraging all of the candidate terms,
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to balance between the residual sum of squares (RSS) loss and the L2-norm
penalty. For each time step, the best-subset solver based on mixed-integer op-
timization (MIOSR) [43] is used to impose sparsity, gathering ξi of consecutive
support sizes with zero L2-norm penalty (not a sensitive hyperparameter). We
prefer MIOSR over SGTR to ensure that potential PDEs with some support
sizes are not overlooked. We achieve the group sparsity by controlling that the

support set {j |
∣∣∣ξij
∣∣∣ > 0}, is the same, say sk, for every time step. Since we

cannot infer the optimal number of nonzero terms solely from Equation (4.11),
the model selection step is performed next.

4.3.3 Model Selection

We minimize an information criterion to select the optimal support size s∗ in
the strictly increasing sequence of all available support sizes, (sk)Ns

k=1. An in-

formation criterion is expressed by −2 logL(Ξ̂) + C(aN , Ξ̂,P); where L is the
likelihood function, and C(aN , Ξ̂,P) is the total complexity penalty defined with
aN , a sequence of positive numbers. For example, 2sk and log(N)sk; where
N = NxNt, is the complexity penalty for AIC and BIC, respectively. P is any
other necessary information, e.g., the complexity measures of ICOMP (infor-
mational complexity criterion) [44] or the UBIC’s quantified PDE uncertainty.
Considering a particular support size of sk, we propose an extension of the orig-
inal UBIC (incorporating a fixed threshold ζ = 10−5 to prevent underflowing)
for the parametric PDE discovery as follows:

UBIC = N log

(
2π

N

∥∥∥Ut −QΞ̂µ

∥∥∥
2

2
+ ζ

)
+ log(N)(U + sk);

U = 10λ
∗V, V =

V

Vmax
, V = ΣNt

i=1Ri, andRi =
Σskj=1σ

i
j∥∥∥ξ̂iµ

∥∥∥
1

.
(4.13)

Following Algorithm 2, we compute the uncertainty U of the sk-support-size
PDE using the tuned data-dependent λ∗ and the scaled coefficient of variation
V. At each time step, V accumulates an instability ratio Ri, defined as the to-
tal posterior standard deviation divided by the L1-norm of the posterior mean
coefficient vector. Both the posterior covariance matrix (∈ Rsk×sk) and mean
coefficient vector (∈ Rsk) are obtained using Bayesian automatic relevance de-
termination (ARD) regression [45]. Vmax is the maximum value of V over all
available support sizes. With the temporal (or spatial) accumulation, we essen-
tially derive the extended UBIC for the parametric PDE discovery. After the
best PDE has been decided, a PINN may be employed to simulate the state
variable, on which UBIC is calculated to additionally verify the validity of the
equation.

Spectral density based transformation. The validation data Q in fre-
quency space is obtained by applying discrete Fourier transformation over the

temporal axis to every Qj =


q1

j · · · qi
j · · ·


 ∈ RNx×Nt , and removing
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canonical PDEs and ODEs

    
(a) Burgers (b) KdV (c) KS (d) NS 

  
(e) RD (f) GS 

 1 

Figure 4.2: 2D visualization of the noiseless datasets

entries corresponding to low-power frequencies—less than the ninety percentile.
The transformation is beneficial not only when deciding the optimal coefficient
vector with sk support size, but also when selecting the optimal s∗. We general-

ize the RSS to
∥∥∥T (Ut)− T (QΞ̂µ)

∥∥∥
2

2
; where T transforms Ut and QΞ̂µ to new

representations, i.e., mapping T (Ut) = Ũt. Every Ũi
t is a numerical result from

a trapezoidal integration applied along the spatial axis (the frequency/temporal
axis for a spatially-dependent PDE) of estimated power spectral density (PSD)
using a periodogram. The integration limits the sample number and therefore
facilitates the model selection step, as [11, 13] have shown that conventional
information criteria tend to select overfitted PDEs when the number of samples
is large. The PSD representation is noise-tolerant with its clear characteristics,
exhibiting larger values for true data-generating frequencies. The integration is
ablated if the estimated PSD is a one-dimensional vector.

4.4 Experiments and discussion on different
canonical PDEs and ODEs

The PDE dataset description is given in Table 4.1. We plot 2D visualization of
the datasets we experimented with in Figure. Experiments were run on a 2.6
GHz 6-Core Intel i7 CPU with 32 GB RAM. For reproducibility, the data and
code are available at https://github.com/Pongpisit-Thanasutives/UBIC.

4.4.1 Burgers’ PDE

We tested the PDE solution with the initial condition: u(x, 0) = e−(x+2)2 . To
denoise ũ, we ran regularized KSVD with ρ = 0.05 on the stack Sp(ũ) created
with square patches of size 8×8. For sparse encoding during the training, OMP
was configured with one target sparsity.
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We gathered an overcomplete set of candidate functions, ϕj(·) ∈ {(Gd1û ∂d2x Gû)(·) |
d1 + d2 ≥ 1; d1, d2 = 0, 1, 2}. For transforming to the integral weak forms
(Φ(û), q0), we stick with 10000 domain centers throughout this paper. Exhaus-

tive all subsets selection solved Equation (4.4), attaining ξ̂k for every k ≤ Nq = 8
(no constant term) in 0.29 secs (seconds).

Figure 4.3(a) shows the BIC scores of the found PDEs, where the support
sizes are arranged in increasing order. After the 2-support-size PDE, the im-
provement in BIC becomes stagnant. However, the model selection based on
BIC does not choose the 2-support-size PDE as the optimal choice. This is
because the BIC scores continue decreasing beyond the plateau, and it is the
5-support-size PDE that yields the lowest BIC score. We inspect that the log-
likelihood dominates the BIC score, when the number of samples in the library
NΩ is large, causing the penalization by only the support size sk (model com-
plexity) not strong enough for identifying the true governing PDE.

To use the proposed UBIC, we quantify the uncertainty Uk for all the best
subsets, as plotted in Figure 4.3(a). These uncertainty values are incorporated
to further penalize the obtained BIC scores, preferring the parsimonious PDE
with the stable coefficient estimates. The PDE with a support size of 2 (2
effective candidates) exhibits the highest stability (inversely proportional to the
PDE uncertainty). Algorithm 2 suggests the UBIC scores with λU = 100 = 1.
The UBIC-selected PDE aligns with the true Burgers’ PDE form.

4.4.2 Korteweg-De Vries (KdV) PDE

We generated the two-soliton u with the initial condition u(x, 0) = − sin
(
πx
20

)
.

We denoise using regularized KSVD with ρ = 0.01 on the stack Sp(ũ) created
with 25×25 patches. We set the OMP algorithm with one target sparsity during
the training.

Next, the candidate functions ϕj(·) were chosen from {(Gd1û ∂d2x Gû)(·) | d1 +
d2 ≥ 1; d1 = 0, 1, 2 and d2 = 0, 1, 2, 3, 4} before building their weak forms and
q0. We exhaustively searched for all the optimal subsets respecting every support
size, achieving ∀k ≤ Nq = 14, ξ̂k in 19.04 secs.

In Figure 4.3(b), we observe that the true equation favored by the UBIC
with tuned λU = 102.28 stands out, in accordance with the minimal uncertainty,
from the other potential PDEs.

4.4.3 Kuramoto-Sivashinsky (KS) PDE

Following the PDE-FIND paper [7], we experimented with the identical chaotic
PDE generated with the initial condition: u(x, 0) = cos

(
x
16

)
(1 + sin

(
x
16

)
). We

used the same regularized KSVD settings as detailed in the KdV example.
Given that the set of candidate functions adopted in the KdV example was

considered to build a weak-form library for recovering the KS PDE, we com-
pleted the same best-subset regression strategy in 32.22 secs.

As seen in Figure 4.3(c), the lowest BIC and UBIC score with λU = 1
determine the true equation form.
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(a) Burgers (b) KdV (c) KS (d) NV 

 1 

Figure 4.3: We plot the BIC, uncertainty Uk and UBIC with tuned λU = 10λ

for the model selection in the Burgers, KdV, KS, and NS examples arranged
from left to right. We use an arrow (→) to locate where the IC is minimized.
“✓” indicates that the UBIC selects the true PDE form.

4.4.4 Navier-Stokes (NS) PDE

We consider the explicit form of the NS equation given in the 3D spatio-temporal
grid. As seen in Table 4.1, w denotes the vorticity. The components of the
velocity field are denoted by u (x-component) and v (y-component), which are
both treated as known terms to construct an overcomplete library. We generated
the dataset according to the instructions given in the PDE-FIND paper and
focused on the bounded spatial domain (x, y) ∈ [2, 8.48] × [0.3, 3.68] after the
cylinder. We were left with NΩ = 8342750 data points for each variable—w, u,
and v—to which we add 1%-sd noise after the subsampling.

To obtain each noise-reduced variable, we applied 2D Savitzky-Golay filters
for spatial denoising at every time step, then employed the denoising SVD.
As experimented in the PDE-FIND, we specifically retained the top singu-
lar values, which were 26, 20, and 20 for w, u, and v (reshaped as metrics
with 325 × 170 rows and 151 columns), respectively. The process enhanced
the variables’ quality, thereby preserving the correct equation form to be cap-
tured at the discovered 4-support-size PDE. The 19 non-weak terms included
the following variables: ψ1 ∈ {w, u, v}, the spatial derivatives of the vorticity
w: ψ2 ∈ {wx, wxx, wy, wyy}, and ψ1ψ2 (all possible polynomial interactions in-
cluded). Every best subset, whose cardinality ranges from 1 to 10 was initially
approximated by the MIQP (mixed-integer quadratic programming) with the
l0-norm based budget constraint [43]. The computational runtime taken was
99.48 secs. We then performed an all-subsets exhaustive search over the top
candidates, each at least existing in one of the 10 best subsets.

Despite the underlying PDE form being dependent on the 4 candidate terms,
it is the most stable one, as illustrated in Figure 4.3(d) (bottom). Undoubtedly,
the quantified uncertainty associated with each discovered PDE is a beneficial
indicator for finding the correct model by the UBIC with λU = 106.11.
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Table 4.2: The better is underlined (%CE) or on bold (RBIC).

Dataset w/o Denoising w/ Denoising
%CE RBIC %CE RBIC

Burgers 0.79001 −6919 0.9108 −12236
KdV 17.34 −16614 9.2987 −22419
KS 0.4508 −43121 0.3813 −43533
NS False Eq. −4379570 11.43 −28710947

RD:
ut
vt

3.1177
3.3251

−14790
−15729

2.1639
2.2967

−14963
−15916

GS:
ut
vt

0.02621
0.01108

−106720
−114432

0.05542
0.01096

−113852
−120588

1In this case, we testify that the PDEs discovered by the STRidge algorithm are indecisive:
∂tu = −0.9482u∂xu and ∂tu = 0.09918∂2

xu−1.0089u∂xu when the l0-penalty hyperparameter
(see PDE-FIND [7]) is set to 10−1 and 10−3, respectively. Similar results were found in the
nPIML paper [11].

4.4.5 Denoising Effect

The positive effect of denoising is evident from the overall drop (shaded area)
in BIC, observed throughout the previous examples. We evaluate the trade-off
by the maximum reduction in the BIC: RBIC = mink BIC(ξ̂kµ) −maxk BIC(ξ̂kµ)
in Table 4.2. In Figure 4.3(c), the reduction in BIC scores is not as pronounced
as what is demonstrated in the Burgers and KdV examples, implying the chal-
lenge of restoring the chaotic solution of the KS PDE. In the NS example, the
omission of the true PDE when no denoising processes were performed causes a
noticeable gap in the BIC values between the two cases, as illustrated in Figure
4.3(d), confirming the usefulness of the denoising step to the model selection.
RBIC or the area between trade-offs is a prospective metric for tuning denoising
hyperparameters, possibly facilitating a clearer identification of the governing
PDE.

4.4.6 Discovery Accuracy

We evaluate the proximity of each discovered ξ̂kj to the ground truth ξj by the

percentage relative coefficient error: 100 ×
∣∣∣ξ̂kj − ξj

∣∣∣ /
∣∣ξj
∣∣. The %CE reported

in Table 4.2 denotes the average over every effective coefficient. In most of the
cases, ξ̂k obtained on the denoised data delivers a lower %CE than when we
omit the denoising step.

4.4.7 Robust Adaptive Model Selection

We fully harness the capability of our proposed method in such extremely noisy
scenarios that, without the denoising step, the true governing PDE would be
omitted or poorly recovered from the best subsets. Figure 4.4 shows that we
correctly identify the governing PDEs selected using the adaptive UBIC despite
the severe noise interference. Particularly in the Burgers example, neither the
BIC nor the uncertainty alone can recover the true equation form.
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(a) Burgers (b) KdV (c) KS 

 

Figure 4.4: Robust adaptive model selection by the UBIC with the preceding
denoising step under the extremely noisy scenarios.

We also tried ablating the denoising step to solely justify the usability of
the UBIC with just the weak formulation and the adaptive model selection.
As illustrated in Figure 4.5, the correct identification of the governing PDEs
emphasizes the advantage of incorporating penalizing uncertainty information
for the model selection.

4.4.8 Reaction-Diffusion (RD) PDE

The PDE governs a system that simulates double spiral waves on a periodic
domain, consisting of 7 actual terms. To countermeasure 10%-sd noise that
perturbed a stack of the u and v variables, 2D Savitzky-Golay filters were em-
ployed for spatial denoising at each time step, the results were then collected to
construct the noise-reduced data.

The candidate library encompassed the following variables and their trans-
formations: ψ1 ∈ {u, v, u3, v3, u2v, uv2}, the spatial derivatives (up to second-
order) of either u or v: ψ2 ∈ {ux, uy, uxx, uyy, uxy, vx, vy, vxx, vyy, vxy}, or ψ1ψ2

(polynomial interaction). To identify the best subset for each cardinality from
1 to 10, an initial approximation was obtained (in 2.56 + 2.62 secs for ut and
vt) using the MIQP with the budget constraint based on the l0-norm. We then
ensured the optimality of the subsets with support sizes not greater than 10,
respecting the set of unique effective candidates.

As evidenced by Figure 4.6(a), the uncertainty positively correlated with
the support size, as implied by Equation (4.8). The uncertainty alone without
the base BIC in Equation (4.6) is thus not enough for model selection. The
1-support-size PDE exhibits the least uncertainty. Nevertheless, an intriguing
observation emerges at the 7-support-size PDE, where the uncertainty drops
relatively to the surrounding PDEs plotted alongside. This local minimum is
exploited by the tuned UBIC with λU = 101.32 for ut and λU = 100 for vt to
successfully identify the 7 true candidates.

4.4.9 Gray-Scott (GS) PDE

The GS PDE governs the reaction-diffusion system in the 4D spatio-temporal
grid. For each variable in the noisy stack, we looped through the t-temporal
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(a) Burgers 

 
(b) KdV 

 
(c) KS 

 

Figure 4.5: Robust model selection by the UBIC without the preceding denoising
step under the highly noisy scenarios. For the Burgers and KS cases, we assign
τ0 = P75(S). For the KdV cases, we assign τ0 = P85(S).

and then z-spatial axes to perform spatial denoising using 2D Savitzky-Golay
filters. Hereafter, similarly to the NS example, each variable was reconstructed
via the denoising SVD, retaining the 10 most significant singular values.

We comprised an overcomplete candidate library with the variables (includ-
ing a constant term) and their transformations: {1, u, v, u3, v3, u2v, uv2}, the
spatial derivatives of u: {ux, uy, uz, uxx, uyy, uzz, uxy, uxz, uyz}, and the spatial
derivatives of v: {vx, vy, vz, vxx, vyy, vzz, vxy, vxz, vyz}. The best subsets were
approximated (in 0.18 + 0.18 secs for ut and vt) using the FROLS solver with
a maximum support size of 12. These subsets were guaranteed to be at their
optimum within all the effective candidates, each once delivered by the solver.

According to Figure 4.6(b), it is evident that the best subsets, which align
with the true complexity of the PDE system with support sizes of 6 and 5
for ut and vt, exhibit the minimal uncertainty values. The tuned UBIC (with
λ ≈ 1.51) leverages the uncertainty pattern to penalize the BIC values, hence
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(a) RD (b) GS 

 

Figure 4.6: Model selection results for the RD and GS PDEs.

the successful identification of the true PDE system.

4.5 Application of physics-informed neural net-
works for model selection

We simulated the PDE selected by the tuned UBIC and another potential PDE
with an additional candidate, using the PINN learning. The PINN architecture
comprised 4 hidden layers, each with 5 neurons. The learning rate parameter of
the L-BFGS optimization algorithm was initialized equal to 0.1. The number of
training epochs was set to 500 (taking approximately less than 1.5 hours when
training on a Quadro RTX graphics processing unit with 49152 MiB memory
to converge to the local optimum).

Comparing the two PDEs, we measured the proximity of their simulated
solutions to the denoised observed data using BIC. Table 4.4 warrants that
the sk∗ -support-size PDE has indeed the sufficient complexity in yielding the
lower-BIC simulated state variable than its competitor, the sk∗+1-support-size
PDE with the dispensable candidate. Ensuring our findings, we also solve the
PDEs on their entire spatio-temporal domain using the Chebfun and Dedalus
software, which is unlike the PINN approach that necessitates a train-validation
data split. The symbolic representation of the initial condition required by the
software is recovered using the PySR package [46].

In Table 4.5, we evaluate the UBIC-selected PDE by the Frobenius and
infinity matrix norms (lF and l∞) of the difference between its simulated solution
to the noiseless PDE solution. For the Burgers and KdV PDEs, the results
confirm that the simulated solution of the UBIC-selected PDE captures the
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Table 4.3: Nonoverlapping train and validation domains bounded for performing
the PINN-based model selection.

Dataset DTrain DVal

x t x t
Burgers [−8, 0] [0, 5] [0.0625, 7.9375] [5.1, 10]

KdV [−20, 19.84]1 [20.08, 40] [−19.92, 19.92]2 [0, 20]
KS [0.0982, 50.36] [0, 50] [50.46, 100.53] [50.4, 100]

1From even indices of the dataset’s discretized x.
2From odd indices of the dataset’s discretized x.

Table 4.4: Simulation-based model comparison between the PDEs with (opti-
mal) sk∗ and (suboptimal) sk∗+1 support sizes.

Dataset PINN1 Dedalus Chebfun

Burgers
sk∗ = 2

sk∗+1 = 3
−16439
−2020

−134490
−134150

−134490
−134160

KdV
sk∗ = 2

sk∗+1 = 3
247070
280799

−7320572

−7293862
−7084932

Divergence3

KS
sk∗ = 3

sk∗+1 = 4
339036
501440

783459
811910

783461
811906

1The simulated solution by PINN is evaluated on the validation set DVal detailed in Table 4.3.
2Before the simulation, the PDE coefficients are refitted using CWS [38] then added with a
small bias value of −10−4, which minimizes the resultant BIC scores. 3The solution obtained
by the spin function explodes (diverges) with a time-step of 10−5.

Table 4.5: Frobenius and infinity matrix norm-based errors (lF and l∞) between
the simulated solution of the UBIC-selected PDE and the noiseless PDE solu-
tion.

Dataset PINN1 Dedalus Chebfun Denoised û

Burgers
lF
l∞

0.335944
0.293584

0.481315
0.485626

0.481312
0.485622

2.85836
2.27481

KdV
lF
l∞

29.17992

36.40702
7.21427
8.03854

11.7038
14.5979

28.3743
41.0023

KS
lF
l∞

27.4813
29.4790

562.835
327.662

562.838
327.490

27.1081
17.8813

1The PINN learning without optimizing ξ̂κ (κ = k∗) is conducted on the entire domain. Only
for the KS case, the number of neurons per layer is 50, and pretraining the network to fit the
denoised observed data without minimizing any physical constraint is undergone. 2Before the
PINN-based simulation, the PDE coefficients are just refitted using CWS [38].
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Table 4.6: Parametric PDE datasets from [47].

Dataset PDE Varying coefficient Nx, Nt ϵ

Burgers
ut = a(t)uux + 0.1uxx
x ∈ [−8, 8] and t ∈ [0, 1]

a(t) = −(1 + sin(t)
4 ) 256, 256 4

AD
ut = a′(x)u+ a(x)ux + 0.1uxx

x ∈ [−5, 5] and t ∈ [0, 5]
a(x) = −1.5 + cos

(
2πx
5

)
256, 256 4

KS
ut = a(x)uux + b(x)uxx

+c(x)uxxxx
x ∈ [−20, 20] and t ∈ [0, 100]

a(x) = 1 + 0.25 sin
(
2πx
20

)

b(x) = −1 + 0.25e−
(x−2)2

5

c(x) = −1− 0.25e−
(x+2)2

5

512, 512 10−2

noiseless solution. For the KS PDE, it is more difficult to simulate the chaotic
solution better than the denoised û even though the slightly inaccurate PDE
coefficients (with %CE = 0.38) are used. Regarding the simulation methods, the
PINN-based solver, learning from both the physical constraint and the denoised
observed data û, performs competitively to the Dedalus or Chebfun software.

4.6 Experiments and discussion on parametric
PDEs

As detailed in Table 4.6, we experiment with three canonical parametric PDEs:
the time-dependent Burgers’ equation, the spatially-dependent advection-diffusion
(AD) PDE, and the spatially-dependent chaotic Kuramoto-Sivashinsky (KS)
PDE. Each entry of the noise-free simulated solution U is perturbed with ϵ%-
sd (standard deviation) Gaussian noise sampled from ϵ

100 × sd(U) × N (0, 1).
The noise levels are listed in Table 4.6. We apply a Savitzky-Golay filter to
smooth the resulting distorted data before computing partial derivatives. We
refer readers to [13] for a discussion on the positive effects of the data denoising.
The candidate terms include powers of u up to the cubic degree, which are mul-
tiplied by spatial derivatives of u up to the fourth order. All experiments were
run on an Intel i7 CPU with 32 GB of RAM. The code is publicly available at
https://github.com/Pongpisit-Thanasutives/parametric-discovery.
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Figure 4.7: Temporal dependent Burgers’ PDE. In (b), λ = 1.38.

We compare our method against the widely adopted SGTR baseline, which
evaluates models using corrected AIC (AICc) for finite sample size, under noisy
situations. In Figures 4.7(a), 4.8(a), and 4.9(a), although SGTR converges, it
fails to explore certain support sizes, including the true one of the Burgers’ PDE,
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Figure 4.8: Spatially-denpendent Advection-diffusion PDE. Dashed lines in (c)
denote the true spatially varying coefficients. In (b), λ = 1.65.
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Figure 4.9: Spatially-dependent chaotic Kuramoto-Sivashinsky. In (b), λ =
2.75.

raising concerns about how SGTR imposes sparsity through hard thresholding.
The AICc losses has led to the selection of too complex or overfitted models. In
contrast, our UBIC, calculated with the PSD-based transformation, utilizes the
quantified uncertainty to penalize overfitted models and identifies the correct
governing equations despite the high noise levels, consistently outperforming the
SGTR baseline, as shown in Figures 4.7(b), 4.8(b), and 4.9(b). Following the
model selection results by our UBIC, Figures 4.7(c), 4.8(c), and 4.9(C) present
the posterior coefficients with twice their standard deviation, representing about
the 95% confidence intervals. These intervals demonstrate regions (in space or
time) where the instability in estimating the posterior coefficients is relatively
high, offering insights that can further improve the PDE discovery method by
circumventing these unstable regions.

4.7 Summary

We extend the BIC to the parameter-adaptive UBIC, which accounts for model
uncertainty in selecting the governing PDE from noisy data. The quantified un-
certainty of the posterior model-coefficient vector enhances reliability in model
selection, preventing the overfitting issues that the BIC may overlook. Lever-
aging the derived analytical posterior, the proposed UBIC rapidly identifies the
true underlying equation, efficiently completing the task. To validate consis-
tency in model selection, we compare the PDE chosen by the UBIC with that of
a competitor PDE, including an additional candidate, to select the PDE with the
lower BIC value calculated between the PINN-simulated state and the denoised
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4.7. Summary

observed data. Finally, we demonstrate that PDE discovery from denoised data
effectively improves the BIC trade-off.

The extension of the vanilla UBIC is also proposed for identifying govern-
ing parametric PDEs. The extended UBIC, computed using the PSD-based
transformation, leverages accumulated PDE uncertainty to address the over-
fitting problem in the model selection step, disambiguating the true governing
parametric PDE from overfitted PDEs containing unnecessary candidate terms.
The ability to compute confidence intervals for varying coefficients enhances the
interpretability of potential models, providing comprehensive insights into their
stability.
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Chapter 5

Improving PINNs by
adversarial multi-task
training

5.1 Overview

A natural extension of the vanilla PINN is the incorporation of multi-task learn-
ing. While the traditional PINN is designed to solve a single instance of a PDE,
the coefficients of the PDE can often be parameterized and varied. In my earlier
work [48], I proposed a method that enables PINNs to handle multiple realiza-
tions of a PDE simultaneously. The multi-task approach captures how changes
in coefficients influence the solution, enhancing the network’s generalization ca-
pabilities, as later shown by Figure 5.4. By solving multiple realizations concur-
rently, the method has been shown to reduce errors, particularly in dynamically
changing regions.

5.2 Adversarial multi-task enhanced
physics-informed loss learning

5.2.1 Solving single forward partial differential equation

We consider the general form of PDEs as follows

N [u(t, x);λ] = 0, x ∈ RD, t ∈ R (5.1)

where u(t, x) denotes the latent solution and N [u(t, x);λ] is the underlying
partial differential equation which is parameterized by λ. The typical physics-
informed loss function [12] for solving PDE includes both the underlying equa-
tion and a boundary condition, given by

Leq =
1

Nf

Nf∑

i=1

∣∣∣N [û(tif , x
i
f ; θ);λ]

∣∣∣
2

+
1

Nb

Nb∑

j=1

∣∣∣û(tjb, x
j
b; θ)− u(tjb, x

j
b)
∣∣∣
2

(5.2)
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where û(tf , xf ; θ) and û(tb, xb; θ) together denote the predictions of a PDE solver
network, parameterized by θ, for the entire input space. Nf denotes the number
of interior collocation points. Nb denotes the data points for learning the initial
and boundary condition.

5.2.2 Auxiliary task generation

By setting λaux = αλ, we are able to acquire an auxiliary task to be learned
jointly. In practice, a good choice of α is achievable via either arbitrary as-
signment by human or Bayesian optimization to assuredly enforce the similar
solution behavior by minimizing the solver network loss, which we shall discuss
shortly. After acquiring λaux for each generated auxiliary task, we turn our focus
to how the solver network can learn from multiple physics-informed objectives
based on two effective multi-task learning strategies, uncertainty-weighted loss
[16] and gradient surgery [17], namely PCGrad update rule. In order to apply
a supervised weighting scheme, we proceed by the assumption that there ex-
ists a close neural network approximation û(tf , xf ; θ) at the desired accuracy or
equivalently

∥∥N [û(tf , xf ; θ);λ]
∥∥ < ϵ.

5.2.3 Uncertainty-weighted physics-informed loss function

We proceed by replacing the squared losses in [16] with the typical losses for
solving PDEs. We define our uncertainty-weighted physics-informed loss func-
tion (Uncert) as follows

Luncert =

NT∑

i=1

(
1

2σ2
i

Lieq + log σi) (5.3)

where NT refers to the number of tasks. Here, σi is a gradient-based trainable
(e.g. by utilizing ∇σi

Luncert) parameter which indicates each PDE solution
uncertainty. The uncertainty originates under the assumption that, for each
PDE p(ui(t, x)|ûi(t, x; θ)) = N (ûi(t, x; θ), σ2

i ) which fairly encapsulates both the
noisy and noise-free cases. Then σi, the scaling factor, is derived to maximize
the multi-task Gaussian likelihood.

5.2.4 PCGrad: Project conflicting gradients

Nevertheless, there are alternative approach for learning from multiple objec-
tives. We also apply the backpropagation algorithm with PCGrad updates
(Algorithm 1 in [17]) to calculate the modified gradients for the unweighted
equation losses. Consequently, we update the model parameters with

δPCθ =

NT∑

i=1

giPC [Option II]

{giPC} = PCGrad({∇θLieq})
(5.4)

where giPC refers to the resulting modified gradients by the PCGrad update for
the task i. Then, we use the δPCθ to update the solver network parameters, θ.
For a couple of tasks, PCGrad projects task i’s gradient onto the normal vector
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Figure 5.1: Overview of the cross-stitch network architecture for the adversarial
multi-task training.

of task j’s gradient, and vice versa, to deconflict the gradient directions during
training.

5.2.5 Multi-task learning architecture

From the multi-task learning architecture point of view, we leverage two parallel
baseline networks with cross-stitch modules to share the activations among all
single-task networks. The overall architecture is depicted in Figure 5.1. Assume
that we are considering two activation maps (actTask1, actTask2) at a particular
layer, which belong to Task1 and Task2 respectively. We note that Task1 is the
target PDE and Task2 is the generated auxiliary PDE, A trainable linear trans-
formation of these activation maps is applied, before feeding into the successive
layer for each PDE. The transformation can be formalized as

[
ãctTask1
ãctTask2

]
=

[
γ11 γ12
γ21 γ22

]
×
[
actTask1
actTask2

]
(5.5)

where every γ is gradient-based learnable to linearly control how much informa-
tion to share from Task1 to Task2 and vice versa. With γ, cross-stitch modules
adaptively retain the low-layer information, for example, γ11 determines how
much actTask1 influence the higher-layer activations of Task1.

5.2.6 Adversarial multi-task training

Additionally including the high-loss samples lets the solver network focus more
on the domain regions that are more challenging to regress for the solutions. The
generator periodically (every F iterations, See Algorithm 3.) produces the
additional high-loss samples by minimizing the loss function defined as follows

Lgen =
1

Nf

∥∥scale(h(tf , xf ; θg), lb, ub)− (tf , xf )
∥∥2
2
−

NT∑

j=1

Ljeq

scale(a, lb, ub) = (a− lb)⊘ (ub− lb)
{(tk, xk)} U∼ {scale(h(tif , x

i
f ; θg), lb, ub)}, |{(tk, xk)}| = pNf

{(ti, xi)} := concat({(ti, xi)}, {(tk, xk)})

(5.6)
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5.3. Experiments on canonical PDEs

Algorithm 3 Adversarial multi-task training

Require: Adversarial training frequency F , limit L and iterations E, Sam-
pling proportion p and Generator parameters θg
for iter = 0 to epochs− 1 do
if (iter mod F ) = 0 and iter ≤ ⌊ epochsL ⌋ then
for e = 0 to E − 1 do

Freeze the solver network parameters θ
Generator’s forward pass to obtain scale(h(tf , xf ; θg), lb, ub)
Reconstruct ∀i (ti, xi) as the solver’s input

Solver’s forward pass to obtain −∑NT

j=1 Ljeq
Calculate the adversarial loss Lgen
Backpropagate ∇θgLgen and update θg

end for
else

Freeze the generator parameters θg
Set the latest ∀i (ti, xi) as the solver’s input
Solver’s forward pass to obtain ∀j Ljeq
Backpropagate using either ∇θLuncert or δPCθ and update θ

end if
end for
Return: θ∗ and θ∗g

where h(tf , xf ; θg) denotes the transformed samples from the Nf interior collo-
cation points, (tf , xf ). The averaged squared l2-norm of Lgen helps the trans-
formed samples to maintain the characteristics of the training distribution. The
second term, −∑NT

i=1 Lieq, is not averaged, and therefore dominate the overall
loss magnitude for inducing the transformed samples to be from the regions that
are difficult to regress. We scale the generator’s outputs to the PDE domain
(bounded from below and above by the vector lb and ub) and then uniformly
pick a portion, p, of the scaled values to reconstruct {(ti, xi)} as the new training

set with total (1+p)Nf +Nb samples. The ⊘ and
U∼ notation refer to Hadamard

division and uniformly sampling elements from a set. The pseudocode for our
adversarial multi-task training is described in Algorithm 3.

5.3 Experiments on canonical PDEs

5.3.1 Burgers’ equation

We consider the following Burgers’ equation with Dirichlet boundary conditions.
The equation is known to be notoriously difficult to solve using traditional
numerical methods.

ut + uux −
(

0.01

π

)
uxx = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = − sin(πx), u(t,−1) = u(t, 1) = 0.

(5.7)

A Latin Hypercube Strategy (LHS) is chosen for sampling 10,000 interior
data points (Nf ) and 100 points of the the initial and boundary data (Nu).
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Table 5.1: Burgers’equation: Performance comparison

Method MAE MSE Rel. l2 error

PINN
2.3× 10−3

6.7× 10−3
2.1× 10−4

2.1× 10−3
2.4× 10−2

7.4× 10−2

ResNet
1.8× 10−3

2.8× 10−3
5.0× 10−5

1.7× 10−4
1.1× 10−2

2.1× 10−2

PCGrad w/ CS*
2.3× 10−3

7.1× 10−3
2.7× 10−5

9.3× 10−5
8.4× 10−3

5.7× 10−2

Uncert w/o CS*
6.4× 10−3

3.0× 10−3
2.2× 10−4

2.1× 10−4
2.5× 10−2

2.3× 10−2

Uncert w/ CS*
1.1× 10−3

1.8× 10−3
2.1× 10−5

1.5× 10−5
7.4× 10−3

6.3× 10−3

Uncert w/ CS* + Adv.**
4.1× 10−4

1.5× 10−3
1.0× 10−6

1.0× 10−5
1.6× 10−3

5.2× 10−3

Note: CS* refers to the cross-stitch module and Adv.** refers to the adversarial multi-task
training. These abbreviations are also used in the other tables. Indicated by the blue colour,
N (0, 0.01) (Gaussian noise) is added to the referenced solutions on the initial and boundary
condition, u(tb, xb), for testing the method robustness. The best performance is on boldface.

Figure 5.2: The average training loss ( 1
NT

∑NT

i=1 Lieq) plotted with mean squared
error (MSE) evaluated on Burgers’ equation test set in the case of (A) original
PINN (unweighted losses) (B) PCGrad and (C) Uncertainty-weighted loss. The
dotted black blocks indicate the overfitting areas. In (B) and (C), where the
multi-task learning is employed, the overfitting areas are either narrower (B) or
unnoticeable (c). During training the network does not have an access to any
validation or test sets.
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Table 5.2: Poisson equation: Performance comparison

Method MAE MSE Rel. l2 error
PINN 7.9× 10−4 8.8× 10−7 2.9× 10−2

ResNet 4.7× 10−4 2.7× 10−7 1.7× 10−2

PCGrad w/ CS 1.1× 10−4 2.0× 10−8 4.8× 10−3

Uncert w/o CS 3.9× 10−4 2.1× 10−7 1.5× 10−2

Uncert w/ CS 1.2× 10−4 2.0× 10−8 4.7× 10−3

PCGrad w/ CS + Adv. 1.4× 10−4 2.6× 10−8 4.7× 10−3

Uncert w/ CS + Adv. 9.5× 10−5 1.6× 10−8 4.1× 10−3

The exact solutions for testing are made available by [36]. We set λ = 0.01/π
and consider a nearby coefficient of the form λaux = αλ. Then, the Bayesian
optimization, with Luncert in Eq. (5.3) as the objective function, is applied
for searching the best-tuned α∗ under the (0, 1) range, obtaining α∗ ≈ 0.6. In
the other experiments, we have found that random assignments with minimal
tuning are sufficient for training the multi-task networks to outperform the
existing approaches. Our neural networks are optimized by full-batch Adam
[49] with 0.005 learning rate for 50,000 epochs. For the adversarial setting, we
assign F = 100, L = 2, E = 10 and p = 0.1.

The performance comparison amongst variations of our method, PINN [12]
and ResNet [50] is listed in Table 5.1. Both the multi-task modifications improve
the performance by reducing the MAE, MSE and relative l2 error. We select
the best performing strategy, which in this PDE, is the uncertainty-weighting
scheme, to undergo our adversarial training, and consequently, the MSE reaches
the order of 10−6. The adversarial training is found to successfully diminish the
losses around the domain regions with high nonlinearity. With the aleatoric
uncertainty quantification, Uncert carries out the similar performance against
the noisy initial and boundary solutions, signifying our method robustness. Our
ablation study of the cross-stitch units, comparing the fourth and fifth row in
Table 5.1 on both the noise-free and noisy cases, shows that the modules are
keys for enabling knowledge share between the neural networks, which reduces
the overfitting as shown in Figure 5.2.

5.3.2 Poisson equation

The equation is commonly encountered in fluid dynamics. The considering
equation is not temporally varying, but still, hard to solve analytically and
therefore a numerical approach is usually required.

uxx + uyy = f(x, y), x ∈ [0, 1], y ∈ [0, 1]

f(x, y) = − sin(πx) sin(πy)

u(x, 0) = 0, u(x, 1) = − sin(πx) sin(π)

u(0, y) = 0, u(1, y) = − sin(π) sin(πy)

(5.8)

We sample Nf = 8, 000 and Nb = 200 using LHS for training. To build
the test set with the shifted distribution, the input space of (x, y) is thoroughly
discretized, having ∆x = ∆y = 0.005. To generate an auxiliary task, we scale
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5.3. Experiments on canonical PDEs

Figure 5.3: 2D visualization of the Poisson equation’s estimated solutions by
(A) PINN and (B) our uncertainty weighting based multi-task network enhanced
with the adversarial training (the best variant of Table 5.2). At the second row,
the color bar indicates the absolute prediction error from the ground truth.

up the f(x, y), setting faux(x, y) = −2π2 sin(πx) sin(πy). We train our neural
networks using full-batch Adam with 0.005 learning rate for 50,000 epochs. For
the adversarial setting, we set F = 100, L = 5, E = 10 and p = 0.1.

The reported results in Table 5.2 shows that both the MTL modifications
show the greater performance compared to PINN and ResNet, still, there is
no significant difference between the strategies; thus the adversarial training
is conducted on both strategies. The similar results are found in the PCGrad
case whilst the performance boosts are seen in the uncertainty weighting case,
contributing to the highest prediction accuracy as shown in Figure 5.3. We also
found that the cross-stitch units are recommended to make the most out of the
designed MTL losses.

The reported results in Table 5.2 shows that both the MTL modifications
show the greater performance compared to PINN and ResNet, still, there is
no significant difference between the strategies; thus the adversarial training
is conducted on both strategies. The similar results are found in the PCGrad
case whilst the performance boosts are seen in the uncertainty weighting case,
contributing to the highest prediction accuracy as shown in Figure 5.3. We also
found that the cross-stitch units are recommended to make the most out of the
designed MTL losses.
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5.4. Summary

Table 5.3: Fokker-Planck equation: Performance comparison

Method MAE MSE Rel. l2 error
PINN 2.2× 10−3 8.4× 10−6 9.9× 10−3

ResNet 3.9× 10−3 2.6× 10−5 1.7× 10−2

PCGrad w/ CS 1.7× 10−3 4.9× 10−6 7.6× 10−3

Uncert w/o CS 1.8× 10−3 5.2× 10−6 7.8× 10−3

Uncert w/ CS 9.0× 10−4 1.4× 10−6 4.0× 10−3

Uncert w/ CS + Adv. 3.2× 10−4 1.9× 10−7 1.5× 10−3

5.3.3 1D Fokker-Planck equation

The 1D PDE describes a snapshot of the probability density functions evolution
of stochastic systems.

−[(ax− bx3)u(x)]x +
σ2

2
u(x)xx = 0, ∆x

Nf∑

i=1

u(xi) = 1

u(−2.2) = u(2.2) = 0, (a, b, σ,∆x) = (0.3, 0.5, 0.5, 0.01)

(5.9)

We can get the training set and the boundary set with the step length, ∆x =
0.01, and evaluate the solver network performance on the more fine-grained
points constructed with the smaller step length, ∆x = 0.005. We consider a to
be the PDE parameter λ and set λaux = 0.5 (a close value) to simply generate an
auxiliary equation. Our neural networks are optimized using full-batch Adam
with 0.01 learning rate for 30,000 epochs. For the adversarial setting, we set
F = 100, L = 3, E = 10 and p = 0.1.

Based on the performance comparison, which is provided in Table 5.3, we in-
spect that the neural network, trained with PCGrad, does not outperform PINN.
This might be because, in practice, we could fortuitously break the assumptions
of PCGrad [17], which essentially need to be held for the loss reduction guar-
antee. We choose the uncertainty-weighting scheme to further experiment with
our adversarial training and, in consequence, the performance is enhanced in
terms of the reduced MSE from 10−6 to 10−7.

5.4 Summary

We propose a novel approach that applies multi-task learning to the physics-
informed learning frameworks to produce better-generalized solutions. Com-
pared to previous work, our method significantly reduces test errors across
various PDE examples, spanning both low-dimensional and high-dimensional
settings. The combined use of multi-task learning and adversarial training en-
hances the network’s performance by enabling joint representation learning
across multiple target PDE instances and incorporating challenging samples.
This approach allows the network to focus more effectively on high-loss regions,
which are typically harder to learn.
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5.4. Summary

Figure 5.4: Comparison of the predicted and exact solutions. The predictions
at the first row are reproduced from the previous works (PINN or FBSNN [51]).
The predictions at the second row are from the best variant of our proposed
method for each PDE. The absolute errors (AEs or dotted yellow lines) around
the high-loss or dynamically changing regions are lower when our method is
employed.
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Chapter 6

Conclusion and future work

6.1 Summary and limitation

In this thesis, we introduced an interpretable and robust framework called
nPIML for nonlinear PDE discovery. The nPIML framework effectively ad-
dresses challenges in derivative computation, sensitivity to regularization, and
noisy data through a combination of the weakly physics-informed solver net-
work, preselector mechanisms, and sparse regression techniques. By leveraging
dPINNs and projection networks, the framework fine-tunes PDE coefficients and
enhances denoising, demonstrating both accuracy and robustness even in noisy
and data-limited scenarios. However, the proposed framework is not without
limitations. For example, it lacks an explicit denoising mechanism during the
early stages of derivative preparation and sparse regression. As a result, noise
with an unknown distribution could adversely affect these initial processes, po-
tentially causing the entire framework to fail.

Complementing the automatic model selection component of the nPIML
framework, the UBIC method extends the BIC by incorporating model uncer-
tainty, thereby enhancing the reliability and efficiency of model selection, even in
noisy data environments. The analytical posterior not only expedites the iden-
tification of the true governing equations but also mitigates the overfitting risks
associated with traditional BIC. Through comparative validation, UBIC demon-
strates consistent and effective model selection across various canonical PDEs.
There is still room for improving the UBIC. For instance, exploring innovative
applications of UBIC to guide users toward the true governing equation, even
when an overcomplete set of candidate terms is not initially available, presents a
interesting direction. One possible approach could involve using UBIC as the fit-
ness function in an evolutionary-based PDE-discovery framework. Additionally,
it would be highly beneficial for the research community to gain deeper insights
into which quantities are most effective for identifying governing equations.

We employ PINNs as a tool for performing simulation-based model selec-
tion in Chapter 4. Since PINNs offer a novel and flexible approach to solving
forward and inverse problems regarding PDEs, especially when the data is ir-
regularly sampled, improving their generalization capability remains a valuable
and ongoing research. In this thesis, we demonstrated that generalization can
be enhanced through adversarial multi-task learning. However, a notable limi-

92



6.2. Future work

Governing Equation

Burgers’PDE:
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Figure 6.1: The conceptual framework of an evolutionary-based PDE discovery
method, as future work, aims to overcome the potential violation of the over-
completeness assumption. (a) Data preprocessing. (b) Symbolic learning and
model selection.

tation of PINNs, in general, is their reliance on prior knowledge of the governing
PDE, which must be explicitly specified before training the network.

Overall, this thesis marks a significant advancement in tackling forward and
inverse problems related to differential equations, establishing a foundation for
more interpretable and effective frameworks in the modeling and data-driven
discovery of complex physical systems.

6.2 Future work

I plan to develop a compositional machine learning framework for the sparse
identification of governing equations. The primary objectives of this framework
are to achieve noise tolerance, computational efficiency, and, most critically, the
accurate recovery of governing equations. My approach will involve integrating
UBIC with an evolutionary-based or reinforcement-learning-based PDE discov-
ery framework to ensure that the identified PDEs are both parsimonious and
can be effectively optimized, even in cases where an overcomplete set of candi-
date terms is not initially available. To address the current limitation that the
overcompleteness assumption may be violated, I plan to implement an evolving
candidate library inspired by genetic algorithms. As illustrated in Figure 6.1,
this conceptual approach involves iteratively refining the library’s terms: older
terms with minimal contribution will be removed, while new terms with vary-
ing mathematical forms (e.g., derivative orders and polynomial degrees) will be
introduced to ensure distinctive functional behaviors. Throughout the learning
iterations, we will track the top-performing candidate terms using a reliable
information criterion, such as the proposed UBIC.

I am also interested in creating a noise-tolerant differentiation method that
requires minimal or, ideally, no hyperparameter tuning. Such a method would
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6.2. Future work

enhance the robustness of discovery approaches, reducing sensitivity to model
configurations and ensuring higher-quality results across diverse scenarios.

Ultimately, my goal is to identify the most effective information criterion for
the practical identification of governing physics. To this end, I aim to determine
which quantities or features are most impactful in tackling this challenging task.
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