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Abstract

This dissertation focuses on methods for reconstructing 3D biological
tissue shapes from medical images, addressing challenges associated
with intra-individual dynamic deformation and inter-individual static
variation. Dynamic deformation arises from movements caused by spon-
taneous motion or external forces, while static variation reflects indi-
vidual anatomical differences. These challenges require distinct ap-

proaches to restore 3D tissue shapes accurately.

The first study proposes a method for reconstructing 3D ultrasound
images during surgery. It uses a biplane probe to track tissue movement
caused by compression. This approach enables real-time correction of
non-cyclic motion and achieves high accuracy without relying on exter-

nal position sensors, improving the system’s practicality.

The second study develops a tool to efficiently generate labeled datasets
by allowing operators to deform template shapes based on 3D med-
ical images. This method reduces annotation time and enables non-
specialist users to produce datasets suitable for training machine learn-
ing models. These datasets have been shown to enhance model per-
formance compared to those generated by conventional expert-based

methods.

The third study presents a statistical model for estimating muscle



attachment sites using patient-specific bone shapes. By incorporating
anatomical variation observed across multiple specimens, this method
enables accurate estimation of attachment sites, supporting applications

such as personalized musculoskeletal modeling.

These studies provide practical solutions for addressing the effects of
motion and deformation in 3D tissue shape reconstruction. The results
improve the accuracy and efficiency of data generation and shape anal-
ysis in medical image processing, supporting diagnosis and treatment
planning applications.
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Chapter 1

Introduction

1.1 Background

Medical image analysis plays a crucial role in modern healthcare by pre-
cisely understanding patient-specific anatomical features, thereby en-
hancing the quality of diagnosis and treatment ( , ;

, ; , ). Among the various appli-
cations, three-dimensional (3D) shape reconstruction is indispensable
for preoperative planning ( , ), intraoperative guidance
( , ), and postoperative assessment ( , ).
This technology has widespread use in fields such as radiation therapy
and robotic surgery ( , ). However, accurate recon-
struction of 3D shapes faces significant challenges, including the com-
plexity of anatomical structures, dynamic deformations caused by mo-

tion or external forces, and static inter-individual variations in anatomy.

This study addresses the challenges of 3D shape reconstruction by
proposing novel approaches to handle dynamic and static deformations.
Specifically, it focuses on improving the accuracy and efficiency of

shape reconstruction methods by targeting two fundamental problems:



(1) correcting dynamic deformations caused by fast dynamics such as
motion from respiration, postural changes, or external forces during
imaging, and (2) managing static deformations that account for inter-
individual anatomical variations. It should be noted that dynamic de-
formation encompasses both fast dynamics, as mentioned above, and
slow dynamics caused by gradual changes such as aging or disease pro-
gression. However, as slow dynamics cannot be captured through sin-
gle imaging and require longitudinal databases, they are treated equiv-
alently to static deformation in image processing. Therefore, this study
intentionally focuses on fast dynamics and static deformation while ex-

cluding detailed discussions of slow dynamics.

1.2 Addressing Dynamic Deformations

Dynamic deformations in medical imaging often arise from periodic
physiological processes such as respiration ( , ) or car-
diac motion ( , ). Existing methods leverage this periodic-
ity to achieve high-precision corrections. However, periodicity cannot
be assumed in scenarios such as intraoperative imaging, where organ
motion is induced by external forces or instrument manipulation. This
research addresses the challenge of compensating for non-cyclic dy-

namic deformations.

The first objective of this dissertation is to develop a method for ac-
curate 3D shape reconstruction in such cases. The proposed method
utilizes a bi-plane ultrasound probe to acquire cross-sectional images
in two orthogonal planes, enabling real-time compensation for motion
without relying on external position sensors. This technique achieves

precise reconstruction even in non-cyclic motion, enhancing its appli-

2



cability in clinical environments.

1.3 Addressing Static Deformations

Static deformations involve inter-individual anatomical variations and
require different approaches for effective handling. This study focuses

on two specific objectives under this category:

Template-to-Target Adaptation (One-to-one Shape Transformation)

One-to-one shape transformation involves adapting a template model
to match a specific individual’s anatomy. Traditional methods, such as
multi-atlas approaches ( , ), align multiple templates to
the target anatomy through optimization-based deformation. However,
these methods often lack control over the deformation process, resulting
in undesirable or anatomically inappropriate transformations. To over-
come this limitation, this research introduces a fully controllable defor-
mation interface that allows operators to manipulate the template model
directly. The proposed tool enables non-experts to efficiently adapt tem-
plates to target images, generating high-quality annotated datasets in a
fraction of the time required by traditional approaches. This signifi-
cantly improves the efficiency and accuracy of template-to-target adap-

tation.

Statistical Modeling of Anatomical Variations (Many-to-one Shape Transfor-
mation)

Many-to-one transformations are essential for capturing and modeling

anatomical variations across individuals. Previous methods, such as



Statistical Shape Models (SSM) ( , ) and Ac-
tive Appearance Models (AAM) ( , ), have been widely
used to analyze global shapes or pixel-based variations. However, these
approaches are unsuited for handling localized structures, such as the
closed surfaces representing muscle attachment regions on bone sur-
faces. This research bridges this gap by constructing a statistical model
of muscle attachment regions using data from multiple specimens. The
proposed method estimates patient-specific attachment regions based
on bone shape, enabling high-precision reconstruction of these regions.
This advancement facilitates a better understanding of inter-individual
anatomical variations and their integration into 3D reconstruction pro-

CESSes.

1.4 Significance of This Dissertation

This dissertation addresses critical challenges in 3D biological tissue
shape reconstruction by proposing methods to manage dynamic defor-
mations caused by motion and static anatomical variations between in-
dividuals. The research introduces techniques for real-time shape re-
covery without reliance on external tracking devices, efficient dataset
generation through template deformation, and statistical modeling of

anatomical features.

These methods improve the accuracy and efficiency of 3D recon-
struction and dataset creation, particularly in applications requiring patient-
specific anatomical modeling. This work provides a basis for further ad-
vancements in medical image analysis and related computational meth-

ods by focusing on practical implementations and data-driven approaches.



1.5 Structure of the Dissertation

This dissertation is organized as follows. Chapter 2 addresses the chal-
lenge of non-cyclic dynamic deformations caused by external forces
during surgery. It introduces a method for real-time 3D shape recon-
struction using a biplane ultrasound imaging system. Chapter 3 focuses
on efficient musculoskeletal shape generation through a novel deforma-
tion tool, enabling the creation of annotated datasets with high accuracy
and reduced time. Chapter 4 presents a statistical modeling approach
for estimating muscle attachment regions, incorporating inter-individual
anatomical variations to enhance musculoskeletal simulations. Finally,
Chapter 5 summarizes the findings and discusses future directions, in-
cluding the integration of these methods into platforms for personalized

medicine.



Chapter 2

3D Shape Reconstruction Addressing
Displacement Caused by External
Forces

Original title: Position sensor-less reconstruction of 3D
ultrasound image of the prostate using biplane tran-
srectal ultrasound (TRUS) probe

2.1 Overview

This study presents a novel method for three-dimensional ultrasound
(3D-US) reconstruction using a bi-plane transrectal ultrasound (TRUS)
probe designed for 3D guidance of focal therapy. The bi-plane TRUS
probe simultaneously acquires two orthogonal cross-sectional images,
enabling precise compensation for prostate motion induced by exter-
nal pressure during probe sweeping. The proposed method addresses
the challenge of non-cyclic, dynamic deformations in clinical scenar-
10s. Importantly, the reliability and effectiveness of this method have
been rigorously validated through phantom and cadaver experiments.

These experiments have demonstrated that the reconstruction accuracy



of this method is equivalent to or exceeds that of position sensor-based
approaches. These findings highlight the potential clinical utility of this
method in scenarios requiring accurate 3D reconstruction without peri-

odic motion assumptions.

2.2 Background

In recent years, focal therapy has emerged as a promising treatment ap-
proach for prostate cancer, aiming to selectively ablate cancerous tissue
while preserving healthy prostate tissue, as opposed to performing a to-
tal prostatectomy ( , ; ,

). A definitive diagnosis of prostate cancer typically involves a
biopsy procedure, where suspected areas and 12-16 systematic loca-
tions within the prostate are sampled under ultrasound (US) guidance.
For focal therapy to be successful, accurate three-dimensional (3D) lo-
calization of the tumor boundaries and biopsy sites is essential, neces-
sitating precise 3D mapping of tissue sampling points. To meet these
needs, new systems have been developed to enhance the accuracy of

biopsy targeting and tissue sampling.

One such system is the MR-US fusion biopsy system ( ,

; ; ; , ), which leverages the
high sensitivity of magnetic resonance (MR) imaging to better identify
potential tumor sites prior to biopsy. In this method, MR imaging is
performed in advance to localize suspected cancerous regions, and these
locations are targeted during the biopsy, with the trajectory of the biopsy
needle monitored in real-time on the MR image. This setup enables
the quantification of sampling sites within the MR coordinate system

by mapping the needle trajectory to the MR image space, allowing for

7



accurate localization of biopsy sites.

The MR-US fusion biopsy system maps the MR and US images
through registration. At the start of the procedure, a 3D-US image
(referred to as the reference US image) that includes the prostate and
surrounding area is reconstructed. The prostate contour is extracted
from the reference US image and the MR image to establish a corre-
spondence between the coordinate systems. During the biopsy, this cor-
respondence is used to map the needle position in the MR coordinate

system and display it on the MR image in real-time.

However, differences in prostate positioning between the initial re-
construction of the reference US image and the biopsy procedure can
occur due to interventions like needle insertion. A 2D-3D registration
is performed between the real-time 2D-US images and the 3D reference
US image to account for these changes. This 2D-3D registration (where
2D refers to cross-sectional views rather than projections) determines
the relative positioning in real-time, allowing adjustments to the needle
position based on the updated prostate location ( , ;

, ). The accuracy of this correction relies heavily on the

precision of the reference US image.

Traditionally, systems such as Artemis ( , )(Eigen, USA)
and Biojet ( , ) (DK Technologies, USA) have used
3D position sensors to acquire the reference US image. This process
involves sweeping a tracked transrectal US (TRUS) probe to obtain a
series of 2D-US images, which are then reconstructed into a 3D vol-
ume. Such methods assume that the prostate remains stationary during
probe sweeping. However, Baumann et al. reported that the prostate

can shift by an average of 13.8 mm due to TRUS probe pressure dur-



ing procedures ( , ), suggesting that the prostate may
move during the acquisition of multiple images, potentially compromis-
ing the accuracy of the reconstructed reference US image. This move-
ment could limit the precision of needle positioning based on the cor-

rected reference image.

To address this, we have developed a novel method for reconstruct-
ing a reference US image that accounts for prostate movement during
probe sweeping. Our approach aims to enhance the accuracy of needle
targeting under the assumption that prostate movement may occur. This
study proposes a new reconstruction method that leverages a biplane
TRUS probe, which enables simultaneous imaging of two orthogonal
cross-sections in real time. Utilizing this feature, we acquire an image
sequence from one cross-section (parallel to the probe’s sweeping di-
rection) that includes the prostate’s midsagittal plane. This sequence

generates an extended field-of-view (EFOV) US image (
: ; : ).

The novelty of our approach lies in correcting prostate motion caused
by probe pressure during EFOV-US image reconstruction. Additionally,
we achieve 3D reconstruction without using position sensors by accu-
rately aligning the orthogonal cross-section images. In experiments, we
first compare the accuracy of our method to the position-sensor-based
approach using phantom models under ideal conditions for position-
sensor accuracy. Subsequently, we conduct cadaver studies simulat-
ing actual surgical conditions, where prostate movement is expected, to
compare needle placement accuracy between reconstructions based on
our method and those based on the position sensor. This study demon-

strates the effectiveness of our method in improving needle targeting



precision for prostate biopsies.

2.3 Materials and Method
2.3.1 Biplane TRUS probe

In this study, we employ a biplane TRUS probe capable of simulta-
neously capturing two orthogonal cross-sections, as illustrated in Fig.
2.1. This configuration allows for the acquisition of a vertical cross-
sectional image [, (highlighted by the pink frame on the left side of
Fig. 2.1), which is parallel to the probe’s axis, as well as a horizontal
cross-sectional image [, (highlighted by the green frame) that is per-
pendicular to it. The operator can view these two cross-sectional im-
ages concurrently on the display, as shown on the right side of Fig. 2.1.
Hereafter, the images captured at the same time ¢ from the vertical and

horizontal cross-sections will be denoted as I, ; and 1}, ;, respectively.

2.3.2 3D-US reconstruction

Figure 2.2 provides an overview of the proposed reconstruction method.
In this approach, the biplane TRUS probe is swept to maintain the ver-
tical cross-sectional plane on the same plane (the prostate’s midsagittal
plane). Adjacent vertical cross-sectional images are rigidly aligned to
create an extended field-of-view (EFOV) US image ( , ).
For an experienced urologist, maintaining this midsagittal plane during
sweeping is relatively straightforward. Following the aligned positions
of each vertical cross-section, the orthogonal horizontal cross-sectional
images are arranged within a 3D-US image space to reconstruct the ref-

erence US image.
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Figure 2.3 illustrates the reconstruction process when the prostate
shifts during probe sweeping. In Fig. 2.3(a), the positional relationship
is shown when the prostate moves due to probe pressure, along with
the acquired 2D-US images from the vertical cross-section. From ¢
to t3, the probe shifts leftward while simultaneously compressing the
prostate upwards. Figure 2.3(b) shows the positioning when using a lo-
cation sensor to align images [, ;) through I, ;,) based on the probe’s
measured position, while Fig. 2.3(c) shows the positioning achieved
using the proposed method. The prostate movement remains uncor-
rected when using the location sensor, leading to a distorted reference
US image reconstructed from the horizontal cross-sections. Conversely,
in the proposed method, motion correction between adjacent vertical
cross-sections ensures that horizontal cross-sections are appropriately
arranged. This enables the proposed method to robustly reconstruct a

reference US image, even when the prostate moves during sweeping.

The following is the mathematical formulation of this method. Let
the plane containing the EFOV-US image, precisely the midsagittal plane
of the prostate during sweeping, be the x-y plane. For the EFOV-US im-
age reconstruction, the positional relationship between adjacent vertical
cross-sectional images [, ;1) and I(, ;) (t = 1,2,3,...,n) is obtained
by performing rigid registration in three degrees of freedom within the
x-y plane. Here, the three degrees of freedom in rigid alignment are
determined by finding dx, dy, and df that minimize the cost C; as
shown below ( , ). The cost function C}
for aligning adjacent vertical cross-sectional images I, ;1) and I, s is

defined as follows:

C, = Z [Lw.t-1) (@0, yo) —f(v,t)(fl?ﬁ,,yf))f (2.1)

(-T/u 7yv)

11



where the transformed coordinates (), v, ) are obtained by applying a

rigid transformation to (z,, ¥, ). This transformation is represented as:

x, cosdf —sindf dx\ [z,
Yo | = | sindf cosdf dy n (2.2)
1 0 0 1 1

In this transformation, dz and dy are the translations in the x- and
y-directions, respectively, and df is the rotation angle around the z-axis.
This rigid transformation minimizes C; by optimally aligning the two
adjacent cross-sections. We use stochastic gradient descent ( ,

) to minimize the cost.

Next, the obtained displacement values dx, dy, and df in the 2D
coordinate system for the vertical cross-section are converted into dis-
placement values for the horizontal cross-section in the 3D coordinate
system. Let X2, and >J;, represent the 3D coordinate systems for the ver-
tical and horizontal cross-sections, respectively, where [, oy and (o
each have their origins on an axis z orthogonal to the z-y plane. The
transformation matrix d7, ;) for the relative position between adjacent
vertical cross-sections [, ;1) and [, ;) in the coordinate system 2, is

expressed as follows using dz, dy, and d6:
dT(v,t) = T(da:, dy, O) : RZ(dQ) (23)

where T'(z, y, z) denotes a 3D translation and R, () represents a rota-
tion about the z-axis in homogeneous coordinates. Given the transfor-
mation matrix 77 for mapping from 2, to XJ;, the positional relation-
ship d1{; ) for adjacent horizontal cross-sections ;1) and [, ;) in

Y’p, is obtained by:
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dT(h,t) = Ton - dT(v,t) (2.4)

The transformation matrix 77, ;) at any given time ¢ is then calculated

as:

t
Ty = | [ dTinm) (2.5)

n=1
Using T{; ;) for each time point ¢, we reconstruct all horizontal cross-

sectional images [, (t = 1,2,3,..., N).

The transformation 7}, is determined through prior calibration. First,
a position sensor marker is attached to the TRUS probe, and the trans-
formation matrices 7}, and 7}, from the TRUS probe to >.;, and >, re-
spectively, are obtained via standard ultrasound calibration ( ,

). Consequently, we derive T, as follows:

T = Tpv : Tp_hl (2.6)

2.3.3 Scanning Procedure

The proposed method assumes that prostate motion is restricted to in-
plane translations and rotations within vertical cross-sections during the
scanning process. To minimize unpredictable motion components re-
sulting from external probe pressure, the scanning procedure is designed
to withdraw the probe from within the body rather than applying pres-
sure from outside. This approach stabilizes the prostate’s movement and
ensures that it predominantly adheres to in-plane motion, a prerequisite

for accurate image alignment.
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Furthermore, excessive probe sweeping speed is avoided to reduce
the effects of motion blur in the acquired ultrasound images. Rapid
probe movements can lead to image artifacts, compromising the ex-
tended field-of-view (EFOV) quality and the reconstructed 3D-US im-
ages. To ensure the optimal quality of the input data, operators are
instructed to perform smooth and steady probe sweeps while maintain-
ing the vertical cross-sectional plane on the midsagittal plane of the

prostate.

These considerations are integral to the robustness and accuracy of
the proposed reconstruction method, enabling effective correction of
prostate motion during scanning and reliable arrangement of horizontal

cross-sections in the 3D-US image space.

2.4 Experiments and Results

In the experiments, we first conducted a preliminary study using a prostate
biopsy training phantom, Model 053 (CIRS, USA). This phantom is
structurally designed to sweep the probe while visually confirming the
prostate model without inducing prostate movement. Under these con-
ditions, reconstruction using a position sensor can be performed with
high accuracy since the prostate does not move. Therefore, this setup
provides ideal conditions for validating the accuracy of the position
sensor-based reconstruction method (hereafter referred to as the “phan-

tom experiment”).

Next, to simulate conditions closer to actual surgical procedures, we
conducted experiments on two cadavers to evaluate the accuracy of 3D-

US image reconstruction of the prostate region and subsequent 2D-3D
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alignment for estimating needle placement accuracy (hereafter referred
to as the ”cadaver experiment”). The cadaver experiment was approved
by the Ethics Review Committee for Research Involving Human Sub-
jects at Nara Institute of Science and Technology (Approval Number
2022-1-8).

For both experiments, we used the type 8808e biplane TRUS probe
(BK Medical, Denmark) and the Polaris Spectra optical position sensor

(Northern Digital, Canada).

2.4.1 Phantom experiments

Experimental setting

In the phantom experiment, we used a 3D-US image of the phantom
captured by an MRI scanner as the ground truth data. We then com-
pared the reconstruction results of the 3D-US images obtained using
the position sensor and the proposed method. During the sweeping pro-
cess, we ensured that no pressure was applied to the phantom with the

TRUS probe, preventing any movement of the phantom.

The evaluation was conducted by comparing the prostate region man-
ually extracted from each reconstructed 3D-US image to the prostate
region derived from the ground truth data. This comparison was quanti-
fied using the Dice coefficient ( , ) to assess spatial overlap and
the Average Symmetric Surface Distance (ASD) ( , ) to

measure the mean surface distance error.
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Experimental results

Figure 2.4 shows three cross-sectional views of the 3D-US images re-
constructed using MR imaging, the proposed method, and the position
sensor method. Table 2.1 presents the quantitative accuracy evaluation
results, using the MR-derived region as the ground truth. A qualitative
assessment of the three cross-sectional images revealed no significant

differences between the reconstruction methods.

In the accuracy evaluation in Table 2.1, the ASD was 0.66 mm for
the proposed method and 0.59 mm for the position sensor method, with
a difference of less than 0.1 mm. The Dice coefficient was 93.67 % for
the proposed method, slightly higher than the 93.32 % achieved by the
position sensor method. Overall, both methods demonstrated compara-

ble accuracy.

2.4.2 Cadaver experiments

Experimental setting

Figure 2.5(a) illustrates the setup for the cadaver experiment conducted
at the University of Southern California Hospital. Fresh cadavers with
natural prostate movement, similar to that of actual patients, were used.
For the reference US image reconstruction, approximately 250 and 300
pairs of orthogonal cross-sections were obtained from two cadavers,
with sweep lengths of approximately 5 cm and 6 cm, respectively. Due
to the difficulty in comparing the reconstructed images to a ground truth
shape in cadaver experiments, we assessed the needle placement estima-
tion error by acquiring 2D-US images for simulated biopsy punctures

after reconstructing the reference 3D-US image using both the position
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sensor and the proposed method. The alignment cost for the 2D-3D
registration ( , ) was computed as the sum of both cross-

sections because of the biplane TRUS probe.

Before the experiment, several metal markers were embedded within
the prostate of each cadaver. An example of a metal marker in the ul-
trasound image is shown in Fig. 2.5(b). 2D-US images were acquired
at locations where both cross-sectional views captured metal markers
to evaluate needle placement. Each pair of cross-sections contained
2-4 metal markers, and ten pairs of cross-sections were used for each
cadaver. In total, 27 points were evaluated for cadaver 1 and 24 for

cadaver 2.

Following 2D-3D alignment, corresponding metal markers in the
reference US image and each cross-sectional pair were manually ex-
tracted, and the Euclidean distance between their centroids was calcu-
lated to determine the marker position error. To prevent high-intensity
metal markers from influencing image alignment, the regions contain-
ing the metal markers were masked to exclude them from the alignment

calculation.

Experimental results

Figure 2.6 shows typical sagittal plane images reconstructed from the
two cadaver specimens. The sagittal plane includes the probe’s sweep-
ing direction and is parallel to the vertical cross-section (midsagittal
plane of the prostate). When comparing sagittal images, the reconstruc-
tions using the proposed method appeared more curved than those using
the position sensor, particularly in cadaver 2, where the difference was

more pronounced.
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Figure 2.7 presents a detailed comparison of the reconstruction re-
sults for cadaver 2, where significant differences were observed. In the
sagittal plane indicated by the green line on the left, the cross-sectional
planes are aligned in parallel when using the position sensor, whereas,
in the proposed method, they are arranged in a curved fashion, closely
resembling the schematic shown in Fig. 2.3. In comparing the prostate
contour traced by the urologist, the contour of the sagittal plane in the
3D-US image reconstructed with the proposed method (green dashed
line) more closely matched the original vertical cross-section contour
(pink dashed line) compared to the position sensor contour (light blue
dashed line). The average distance between the original and recon-
structed image contours was 0.86 mm with the proposed method, com-

pared to 1.55 mm with the position sensor.

The results of the marker position error are presented in Fig. 2.8 and
Table 2.2. In cadaver 1, the average marker position error decreased
from 2.72 mm with the position sensor method to 2.12 mm with the
proposed method, though this difference was not statistically signifi-
cant. In cadaver 2, the average error decreased from 5.10 mm to 2.70
mm, showing a statistically significant difference (p < 0.01) based on

the Wilcoxon rank-sum test.

Discussion

This study relates to various methods developed for reconstructing 3D-
US images from 2D-US images without position sensors using a free-
hand approach. These methods include techniques based on speckle
noise correlation( , ), deep learning-based positioning and

alignment( , ; , ), and methods us-
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ing inertial sensors. However, such approaches generally achieve a dif-
ferent level of accuracy than position sensors( , ). They
rely on a single cross-sectional image, which lacks reliable information
to estimate out-of-plane motion. This leads to cumulative errors and
instability in positional estimation. In contrast, the proposed method
achieves accuracy comparable to position sensors, as demonstrated in
the phantom experiment. This is likely due to its ability to directly mea-
sure out-of-plane motion using orthogonal 2D-US images, a significant
advantage over prior methods. While the proposed method is not im-
mune to cumulative errors—arising from its reliance on aligning adjacent
frames—the errors remain minimal in practice. The phantom experiment
revealed that even when cumulative errors occurred, they were negli-
gible, resulting in reconstruction accuracy nearly identical to that of
position sensor methods. This suggests that the proposed method’s de-
sign inherently limits the accumulation of such errors under controlled
conditions. Nonetheless, future improvements could involve exploring
strategies to mitigate cumulative errors further, such as incorporating
information from non-adjacent frames. However, when scanning dy-
namic tissues such as the prostate, using too-distant frames may lead
to inconsistencies due to non-rigid tissue deformation, potentially com-
promising reconstruction accuracy. Thus, carefully selecting frames tai-
lored to the specific characteristics of the scanned tissue is essential to
maximize precision while minimizing adverse effects from non-rigid

deformations.

The marker position errors in Fig. 2.8 and Table 2.2 represent align-
ment errors between the reference US image and real-time 2D-US im-
ages, reflecting the effectiveness of prostate motion correction during

interventions, such as biopsy needle insertion. The observed differences
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in marker position errors between the position sensor and our proposed
method are attributed to variations in the reconstruction accuracy of the
reference US image, given that both approaches use the same 2D-3D
alignment algorithm for real-time imaging. Figure 2.7 shows that signif-
icant prostate displacement due to TRUS probe pressure was observed
in cadaver 2, leading to lower reconstruction accuracy with the position
sensor-based method. However, the proposed method demonstrated ac-
curate reconstruction by correcting for this prostate movement, achiev-

ing better alignment in cases of substantial motion.

Concerning clinical accuracy requirements, Karnik et al. proposed
that an alignment error of less than 2.5 mm is clinically significant for
focal therapy, as treatable tumors typically have a radius of at least 5
mm ( , ). While the result for cadaver two slightly
exceeded this threshold at 2.7 mm, the proposed method nonetheless
demonstrated significant accuracy improvements over the position sen-
sor, suggesting clinical relevance. Although rigid alignment was em-
ployed for 2D-3D registration in this study, De Silva et al. noted that
incorporating non-rigid alignment to account for prostate deformation
can improve accuracy by approximately 0.8 - 1.6 mm over rigid align-
ment. Thus, introducing non-rigid alignment into the proposed method
could achieve the desired clinical accuracy and enhance its application

in a surgical setting.

A limitation of the proposed method is that it performs rigid align-
ment across the entire vertical cross-sectional image during EFOV-US
image generation, which does not account for potential prostate defor-
mation during probe sweeping. This approach may inadvertently cap-

ture the motion of surrounding tissues, potentially reducing reconstruc-
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tion accuracy. An automated method for extracting the prostate region
from 2D-US images, using deep learning-based recognition techniques
( , : , , ), could allow more precise
alignment by focusing exclusively on prostate tissue, thereby improv-
ing reconstruction accuracy. Additionally, since deformation may oc-
cur during probe sweeping, automated prostate recognition could en-
able the selective use of minimally deformed 2D-US images or provide
warnings when deformation is detected. Incorporating these automated
contour extraction techniques into the reconstruction process remains

an important direction for future research.

The cadavers used in this study were thawed frozen specimens, which
better preserve the physical properties of living tissue than formalin-
fixed specimens, thereby providing high reliability of results even with
a single specimen ( , ). In this setting,
the proposed method demonstrated comparable or superior accuracy to
that of a position sensor across both cadavers, with significant improve-
ment observed in one cadaver, indicating potential clinical utility for

biopsy guidance and needle placement.

Another critical consideration is that the proposed method relies on
EFOV-US imaging, which requires the 2D-US images to remain in a
single plane during probe sweeping. For standard EFOV-US imaging,
guidelines can be drawn directly on the body surface to assist in main-
taining a single plane; however, this is more challenging with a TRUS
probe inside the rectum. Nonetheless, the TRUS probe allows limited
movement, mainly pivoting around the anus, and by visually monitoring
the horizontal cross-section from the biplane TRUS probe, urologists

can feasibly maintain the required conditions. In the cadaver experi-
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ment, position sensor data analysis showed minimal rotation (average of
0.4°) and out-of-plane movement (average of 0.6 mm), confirming that
sweeping was performed with high precision within the same plane.
Furthermore, within the urologist’s observation range, the prostate in
the horizontal cross-sectional images did not deviate from the midsagit-
tal line, ensuring consistency during the procedure. This indicates that
similar conditions could be achieved in actual surgeries. However, the
accuracy of the proposed method is not guaranteed if the scanning pro-
cedure deviates from these conditions. For example, excessive probe
pressure or rapid sweeping speeds may introduce unpredictable motion
components or image artifacts, reducing reconstruction accuracy. While
the scanning procedure described in Section 2.3.3 was strictly followed
in this study, we did not evaluate the performance of the reconstruc-
tion method under conditions that deviate from these guidelines. Inves-
tigating the method’s robustness under non-ideal scanning conditions

remains an important direction for future research.

2.5 Conclusion

In this study, we have developed a 3D-US reconstruction method that
provides an accurate reference US image by compensating for prostate
movement during probe sweeping. By utilizing the biplane TRUS probe’s
real-time, dual orthogonal cross-sectional imaging, the proposed method
captures out-of-plane motion using the orthogonal image, enabling motion-
corrected reconstruction of the prostate. In cadaver experiments using
specimens with properties close to living tissues, the proposed method
achieved accuracy comparable or superior to that of a position sensor-

based approach. This success demonstrates the potential for clinical ap-
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Table 2.1: Reconstruction accuracy of 3D US-image by the proposed method and
optical position sensor using MRI as ground truth.

Average Symmetric Dice

Surface Distance Coefficient

(ASD) [mm] [%]
Proposed method 0.66 93.67
Position sensor 0.59 93.37

Table 2.2: Table of marker position error [mm] in cadaver experiments.

Cadaver 1 Cadaver 2
Position Proposed Position Proposed
Sensor Method Sensor Method

Ave. 2.72 2.12 5.10 2.70
Max. 7.05 5.92 13.19 4.44
Std.  1.68 1.14 3.10 1.07

plication in sensor-free biopsy guidance and needle placement, offering

a promising future for this method in the medical field.

The proposed method provides a sensor-free system that offers com-
parable accuracy to position sensors while significantly enhancing pro-
cedural efficiency. Position sensor-based systems can be cumbersome,
as optical systems require careful avoidance of marker occlusion, and
mechanical systems restrict the working area, complicating procedures.
In contrast, our method streamlines the process without compromising
accuracy, potentially allowing for more precise focal therapy and im-
proving patients’ quality of life post-treatment. This reassurance about

the method’s practicality can instill confidence in its potential use.
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Figure 2.1:

Biplane TRUS probe. Horizontal (green) and vertical (pink) cross-

sectional images, which are perpendicular each other, are obtained simultaneously

and displayed in real-time.

N o5 -

o/
, N
e

Alignment of horizontal
o planes I, in the 3D-US
Extended-field-of-view (EFOV) US coordinate system

N

Figure 2.2:

Reconstructed volume

Overview of 3D-US reconstruction using biplane US probe. Tem-

porally adjacent two vertical cross-sectional images are rigidly registered to recon-
struct the EFOV-US image and their positional relations are used to localize the hor-
izontal images and finally reconstruct 3D-US images. This procedure is performed
under the assumption that the probe is swept so as to keep the vertical images on the
mid-sagittal plane of the prostate. This assumption is quite realistic for experienced

urologists.
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Figure 2.3: Schematic diagrams of compensation of unwanted effects of prostate
motion. (a) Typical motion of the prostate caused by pressure of probe motion.
(b) Spatial arrangement of vertical cross-sections in the position sensor coordinate

system. (c) Spatial arrangement of vertical cross-sections in the proposed method,
in which the prostate motion is corrected.
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Figure 2.4: Comparison of reconstructed 3D-US images by phantom experiments.
Three orthogonal cross-sectional images are shown. (a) MR images used as ground
truth. (b) Reconstruction by the proposed method. (c) Reconstruction using optical
position sensor.
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Figure 2.5: Cadaver experiment. (a) Experimental setup. Optical markers were at-
tached to the biplane probe. The optical camera of the position sensor was arranged
so as to minimize occlusions of the markers. (b) Metal marker (shown by arrow)
imaged in US image. Metal makers were embedded in the cadaver prostate.
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Cadaver 1 Cadaver 1
Optical position sensor Proposed

Cadaver 2 Cadaver 2
Optical position sensor Proposed

Figure 2.6: Comparison of reconstructed 3D-US images on the sagittal plane be-
tween proposed method and optical position sensor. See Fig. 7 for the prostate
region in the reconstructed images. Curved parts are indicated by arrows.
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3D-US image reconstructed by proposed method

Figure 2.7: Comparison of sagittal sections of reconstructed 3D-US images and
original vertical cross-sectional image of cadaver 2. Upper: Original vertical image
and superimposed expert trace of the prostate on it. Middle: Position sensor-based
reconstruction and comparison of prostate contours. Bottom: Proposed reconstruc-
tion and comparison of prostate contours. See texts for explatation of dotted con-
tours in the cross-sectional images.
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Figure 2.8: Box plots of marker position error in the cadaver experiments and
results of statistical significance test.
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Chapter 3

Efficient Musculoskeletal Shape
Generation Through Controlled
Deformation

Original title: Efficient Musculoskeletal Annotation Us-
ing Free-Form Deformation: A Novel Approach for
Dataset Creation

3.1 Overview

Constructing training datasets for automatic muscle segmentation tra-
ditionally requires skilled operators, leading to high costs and limited
scalability. To overcome these challenges, we developed a novel tool
that allows non-experts to efficiently adapt a template three-dimensional
(3D) anatomical model to target magnetic resonance images (MRI) us-
ing a controllable free-form deformation interface. This approach sim-
plifies the annotation process by enabling independent adjustments in
axial, sagittal, and coronal directions, allowing for simultaneous adap-
tation of all muscle structures. Experiments revealed that tool-assisted

annotations by non-experts achieved a Dice coefficient exceeding 0.75
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compared to expert annotations, with no significant errors such as mis-
labeling or omissions, demonstrating the high accuracy of our tool. Ad-
ditionally, datasets generated with this tool enabled automatic segmen-
tation networks to achieve performance comparable to or surpassing
those trained on expert-annotated datasets. This method significantly
enhances the efficiency and accessibility of high-quality dataset gener-
ation, addressing the need for scalable solutions in medical image anal-

ysis.

3.2 Background

Because the volume of muscle is an important determinant of its force-
producing capacity, quantification of individual muscle volume in vivo
is of considerable interest in the fields of health, medicine, and sports
( , ; , ). Muscle volume or cross-
sectional area has been assessed by segmenting muscles using magnetic-
resonance (MR) images ( , : , ;

) or computed-tomography images( , ; ,

; , ). Segmentation is typically performed manu-
ally by experts. However, manual segmentation (the task of tracing the
contour of each muscle slice-by-slice) is time-consuming—particularly

when the number of muscles is large.

Recently, automatic segmentation techniques based on deep neu-
ral networks and artificial intelligence (AI) have been revolutionized
( : ; : ; :

). These technique have been applied to muscle segmentation:

once the network is trained with a dataset of several dozen cases, it
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can instantaneously recognize individual muscles from medical images
with similar accuracy to an expert (Dice coefficient of 0.8 — 0.9) (

; , ). Such Al-based methods are promising;
however, to train a network for different body parts or subject groups,
manual segmentation or annotation tasks are necessary to create a train-
ing dataset. Thus, there is a growing need for techniques that assist in

the annotation and efficient creation of datasets.

Several annotation-assistance methods, including classical techniques
and recently developed Al-assisted methods, have been proposed for
image processing. Classical techniques such as “graph cuts” and “snakes”
help operators to trace the boundaries of objects of interest by utilizing
the local intensity features of the image( , :

, ). However, these approaches often struggle to effectively
annotate structures with unclear boundaries, such as muscles. In con-
trast, Al-assisted techniques provide an interactive framework where Al
iteratively suggests segmentations based on expert corrections through
simple scribbling or clicking, continuing until the expert is satisfied(

) 5 , 5 , ). This in-
creases the efficiency of the annotation process but typically requires
substantial pre-training and may not provide satisfactory results unless
the operational conditions of the trained model (such as imaging modal-

ity and acquisition area) are satisfied.

In the aforementioned studies, researchers assumed that datasets should
be created according to expert judgment. However, the reliance on ex-

perts inevitably incurs time and human-resource costs. Therefore, in
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the present study, we developed a system that allows segmentation even
by non-experts. A key innovation is allowing non-experts to annotate
muscles by deforming a template 3D anatomical model that includes
full musculoskeletal elements to fit the target MR image. If the tem-
plate model can be deformed while maintaining the topology of inter-
nal structures, it can serve as an alternative to the anatomical knowledge

typically provided by experts.

The manipulation of a complex object shape has been performed
with free-form deformation (FFD) ( , ), which is a power-
ful modeling tool for describing deformation by manipulating the loca-
tions of the control points. FFD manipulation is implemented in several
modeling software programs, where users can intuitively deform an ob-
ject (2D image or 3D surface data) by dragging control points with a

mousec.

Although a single set of control points is normally established in
FFD, handling these control points across three cross-sectional (axial,
coronal, and sagittal) interfaces, which are commonly used for reading
3D medical images, is challenging (see Fig. 3.1). For example, when
a user moves a control point on an axial plane (as indicated by the red
arrows 1n Figs. 3.1a and b), the moved control point disappears from
the planes in the other directions (as indicated by the cyan arrows on
the coronal and sagittal planes in Fig. 3.1b), where it was originally

located, making it difficult to track the control point.

We address this challenge by creating three independent sets of con-
trol points corresponding to the axial (red), sagittal (yellow), and coro-
nal (green) directions (Fig. 3.2d). The entire deformation field is cal-

culated by multiplying the three deformation fields. With respect to
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a specific direction (e.g., axial), only the corresponding set of control
points (e.g., red control points) is displayed and can be manipulated
within that plane (Fig. 3.2a). In this setting, manipulating a control
point on a certain plane (indicated by the red arrow in Fig. 3.2b) does
not affect the control points associated with other planes (indicated by
the yellow and green arrows in Fig. 3.2b). This approach allows the
intricate deformation of the template through manipulation across all
three planes (as demonstrated by the red, yellow, and green grids in Fig.

3.2c) without losing track of the control points.

The template model can be deformed by the entire deformation field,
presented interactively to the user, and superimposed on the target MR
image. The user is asked to deform the model by manipulating the con-
trol points to ensure that the model accurately fit the MR images. Al-
though it is unrealistic to expect non-experts without anatomical knowl-
edge to manually segment each muscle individually, graphically fitting
the template model to the target MR image can be intuitively accom-
plished, even by non-experts. Importantly, once this task is completed,
annotation of all the muscles in the template model is simultaneously

achieved, making the process highly efficient.

In this study, we conducted several key tasks to ensure the effective-
ness of our system. First, non-experts without specialized anatomical
knowledge were engaged in segmentation of dozens of MR image data,
and the system’s effectiveness was verified. Second, we trained a deep
neural network using the dataset obtained in this study and assessed its
ability to perform automatic segmentation. Furthermore, we compared
the performance of this network with that of a network traditionally

trained using a dataset annotated by individuals with anatomical knowl-
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edge. The objective of these investigations was to demonstrate how
our system can streamline the creation of training datasets for Al-based
automatic segmentation, optimizing both the time-efficiency and cost-

effectiveness of the annotation process.

3.3 Materials and Methods

Image data collection

We collected MR images of the upper-extremity musculoskeletal sys-
tem from 88 healthy male participants (age 22.7 + 2.6 years, height
172.0 £ 5.2 cm, weight 64.0 £ 9.1 kg). The experiment was approved by
the Ethics Committee of the National Institute of Information and Com-
munications Technology (Approval Number: B160051702, Approval
Date: January 18, 2018) and was conducted in accordance with the
Declaration of Helsinki. All the participants provided written informed

consent before participating in the study.

The imaging protocol utilized a 3-T MR system (MAGNETOM Vida,
Siemens Healthineers) with a T1-weighted VIBE (Volumetric Inter-
polated Breath-hold Examination) Dixon sequence (acquisition plane:
coronal; field of view: 448 mm x 448 mm; slice thickness: 1.5 mm;
resolution: 1.0 mm X 1.0 mm X 1.5 mm; repetition time: 5.88 ms, echo
time: 2.46 ms for in-phase image and 1.23 ms for opposed-phase im-
age; flip angle: 5°). The scanning sequence was repeated three or four
times by moving the bed from the neck to the wrist to cover the target
region of the left upper limb. To reduce the distortion around the bound-
ary of the field of view, the center of the image was moved by 196 or

248 mm with image overlaps of 250 or 200 mm, respectively. Three
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or four images were reconstructed as having a large field of view using
the composing software installed in the console application (Syngo MR
XA10, Siemens Healthineers). Opposed-phase images were used in this
study because they provide better visibility of the anatomical structures

around the muscle attachment area.

3.3.1 Template model

We devised a novel segmentation support tool that utilizes the FFD of
a template human musculoskeletal model. Two template models were
used in this study: one for the left upper arm (Fig. 3.3a) and another
for the left shoulder (Fig. 3.3b). Fig. 3.3c presents the 24 elements
comprising the template models. The models were created by an expert
who manually segmented the muscles and bones from a participant’s
MR image in a conventional manner using the 3D Slicer platform (

, ) over a period of > 50 h. They comprised 1-mm-grid
3D volume data, with each voxel having one of the 25 labels (24 ele-

ments and background).

3.3.2 Deformation of template model

Our system overlays the template model and the MR image to be seg-
mented in each view of the three cross-sectional (axial, coronal, and
sagittal) interfaces (Fig. 3.2). To allow the user to manipulate the con-
trol points without losing sight of them, we introduced three sets of
control points (red, yellow, and green) corresponding to the axial, sagit-
tal, and coronal directions, respectively (Fig. 3.2). Each set of control
points (e.g., red points) is visible only in view of the corresponding

plane (e.g., axial) and is allowed to move within the plane. This con-
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straint ensures that all the control points are on the prescribed planes,
preventing users from losing sight. The system interactively displays
deformations in response to the user actions conducted thus far in all
three directions. During this process, the template model is deformed
by the entire deformation field, which is calculated by multiplying the
three individual deformation fields (Fig. 3.2d). Each field is determined
by the current locations of the control points in each direction. No-
tably, the F'F' D0 is a function provided by the Visualization Toolkit
(VTK) library( , ), where three FFDs are concate-
nated. Internally, this is equivalent to sequentially applying each FFD

in a cascade manner.

3.3.3 Implementation and workflow

We developed a segmentation tool (Seg Muscle) as a plugin for the
widely used 3D Slicer platform ( , ) —a powerful med-
ical image processing software program. Thus, users can leverage the
extensive functionality of 3D Slicer while benefiting from the unique
features of our plugin. The typical workflow for the segmentation task

using our plugin in 3D Slicer is as follows:

1. The user loads the target medical image into 3D Slicer.

2. The user selects our plugin, chooses the appropriate template anatom-
ical model, and then positions it over the target image using intu-

itive mouse operations.

3. The user manipulates the control points on the template model to

fit the target image.
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4. As the user adjusts the control points, the software updates the
shape of the template model in real time, providing immediate

feedback on the quality of the fit.

5. Once satisfied with the fit, the user saves the results, and the pro-
cess 1s complete. If not satisfied, the user can employ the current
deformation result as the initial value and then finely adjust the fit

using denser control points in the subsequent step.

3.3.4 Tool-assisted segmentation

Non-experts performed segmentation tasks on the data from 87 partic-
ipants using our tool. These non-experts were four individuals experi-
enced in using general office applications on a personal computer but
with limited anatomical knowledge. They were instructed to initially
fit the template model in a certain direction (e.g., axial), then adjust it
in the next direction (e.g., coronal), and finally adjust it in the remain-
ing direction (e.g., sagittal). They were asked to perform at least two
rounds of this process for each participant’s data. Deforming the tem-
plate model while preserving its topology has the advantage of allowing
non-experts to effectively perform segmentation. However, fine-tuning
each muscle in our system is difficult because manipulating a control
point simultaneously changes the shape of multiple muscles. There-
fore, to avoid wasting time, we informed the operators that fine-tuning
the individual muscles was not necessary. No time restrictions were
imposed. On average, segmentation took approximately 2 h per partici-
pant, with the shortest time being approximately 30 min and the longest

approximately 4 h.
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3.3.5 Refinement of segmentation

We also created conventional manual segmentation data. These data
were created by medical students, physical therapists, or equivalents
with a basic understanding of musculoskeletal anatomy and experience
in reading medical images. This process refined the results of the tool-
assisted segmentation described above. They manually modified the
boundary of each muscle individually using the 3D Slicer platform,
without our plugin. They were instructed to complete the task within 1
h per element. On average, about 20 hours were spent per participant’s
data. After this process, an expert with approximately eight years of
experience in manually segmenting muscles from medical images re-
viewed and further adjusted the data. In total, data for 20 participants
were created in accordance with a previous study in which a deep neural
network with a dataset of 20 participants exhibited good classification

performance ( , ).

3.3.6 Dataset for network training

The dataset used for training the network consisted of MR image data
and corresponding label data. The MR image data comprised 400 — 450
axial images per participant, each having dimensions of 448 mm x 264
mm, with a 1-mm gap. These images covered all the elements listed in
Fig. 3.3c. The label data consisted of 1-mm-grid 3D volume data, where
each voxel was assigned one of 23 labels (22 elements and background),
in which the three parts of the pectoralis major were combined. The

following three datasets were used.
1. Expert-20: This is a conventional manual segmentation dataset
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consisting of the refined label data of 20 participants. It served
as the ground truth because of the involvement of an expert in the

process.

2. Tool-20: This dataset consists of tool-assisted segmentation labels
for the same 20 participants as the Expert—20 dataset. It allowed
comparison between the manual and tool-assisted segmentation

methods for the same set of participants.

3. Tool-87: The third dataset consisted of tool-assisted segmentation
labels for all 87 participants. This dataset provided insights into
the effects of applying the tool-assisted method to a larger number

of participants.

3.3.7 Automated segmentation network

We employed a 2D U-Net with an added dice loss function, which is
widely used in deep learning( , : , ).
The 2D U-Net was chosen because it is one of the most widely adopted
architectures for medical image segmentation problems. This selec-
tion allows us to highlight the performance differences attributable to
the quality of the datasets (Expert—20, Tool-20, and Tool-87), using a
widely recognized and standardized architecture. For implementation,
we used the PyTorch framework. In addition, we applied data augmen-

tation during training using the albumentation library.

The training parameters were as follows: a learning rate of 0.0001,
the Adam optimization algorithm, a batch size of 8, 30 epochs, mixed-
precision training enabled, learning rate scheduling with ReduceLROn-

Plateau, and early stopping if there was no improvement in the vali-
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dation metric for five consecutive evaluations conducted 10 times per
epoch across epochs. The experiments were performed on a computer
with the following specifications: CPU, Intel(R) Xeon(R) E5-2698 v4
@ 2.20GHz; GPU, Tesla V100 DGXS 32GB; RAM, 256GB; OS, Ubuntu
18.04.

We trained the network using one of three datasets to obtain a clas-
sifier capable of classifying every voxel into 23 labels (22 elements and
background) for a given set of MR image data. To evaluate the perfor-
mance of the classifier, we employed 5-fold validation. For the Expert-
20 and Tool-20 datasets, the classifier was trained using data from 16
participants in each fold. The classification results for the data of the re-
maining four participants in each fold were compared with the ground
truth. The procedure for the Tool-87 dataset was similar to that for the
Tool-20 dataset. However, for the Tool-87 dataset, the classifier was
trained using the data from 83 participants in each fold. This included
the same 16 participants as the Tool-20 dataset and 67 additional par-
ticipants. The agreement between the classification results and ground

truth was quantified using the Dice coefficient.

Declaration of Generative AI and Al-assisted technologies in the
writing process

During the preparation of this manuscript, we used the GPT-4 model
developed by OpenAl to improve readability and language. After using
this tool, the authors reviewed and edited the content as required. We

take full responsibility for the content of the manuscript.
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3.4 Results

Quality of tool-assisted segmentation

Figure 3.4 shows representative axial cross-sectional images comparing
the initial template labels (Fig. 3.4a), tool-assisted labels from non-
experts (Fig. 3.4b), and ground-truth labels from experts (Fig. 3.4c) for
the same participant data. The initial template labels (Fig. 3.4a) indicate
a state in which only the location is roughly aligned with the MR image.
Because no deformation was performed yet, the agreement between the
initial template labels and ground-truth labels was poor; quantitative
analysis using 20 participants’ data revealed that Dice coefficient was
52.6% + 6.53% (Fig. 3.4e). Figure 3.4b shows the state after segmenta-
tion by a non-expert using our tool. Importantly, tool-assisted labels do
not include beginners’ mistakes, such as adjacent muscles being labeled
as opposite to each other, which is attributed to the tool’s ability to de-
form the template while maintaining the topology. In the visual inspec-
tion, the tool-assisted labels (Fig. 3.4b) exhibited good agreement with
the ground-truth labels (Fig. 3.4c) for most of the elements, although
there were mismatches for a few muscles, e.g., the pectoralis minor (red
arrow in the upper panel of Fig. 3.4b) and the medial part of the triceps
brachii (red arrow in the lower panel of Fig. 3.4b). Quantitative analysis
of data from 20 participants indicated that the Dice coefficient increased
to 78.2% + 4.38% with tool-assisted segmentation by non-experts (Fig.
3.4e).
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3.4.1 Network training and classification result

The network was trained using each of the three datasets to obtain the
classifier. The training time for N = 20 and N = 87 datasets was approx-
imately 1.5 and 9 h, respectively. The obtained classifier could classify
muscles and bones from the MR images of one participant within ap-
proximately 30 — 40 s (35 ms per slice), excluding file loading. Figure
3.5 shows representative classification results for each classifier. Con-
sistent with previous studies, the classifier trained with the Expert—20
dataset exhibited good performance (compare Figs. 3.5a and d), al-
though there was an underestimation for a few muscles (see the red ar-
row in Fig. 3.5a). The classifier trained with the Tool-20 dataset exhib-
ited discrepancies for several muscles (red arrows in Fig. 3.5b), likely
owing to its relatively coarse segmentation compared with the Expert—
20 dataset. Interestingly, training with a larger dataset (i.e., Tool-87)

mitigated these discrepancies (see Fig. 3.5¢).

Figure 3.6 quantitatively illustrates the differences in classification
performance among the three classifiers. Figure 3.6a shows the Dice
coefficient between the classification results and ground truth for the
22 musculoskeletal elements averaged from the data of 20 participants.
Although there were differences in the Dice coefficient among different
muscles, it was consistently smaller for the Tool-20 classifier than for
the Expert—20 classifier; however, it increased from Tool-20 to Tool—
87. The data averaged over 22 elements are presented as box plots
in Fig. 3.6b. The average and standard deviation of the Dice coeffi-
cient for the Expert-20, Tool-20, and Tool-87 classifiers were 78.6%
+ 6.99%, 72.1% + 9.86%, and 80.7% =+ 2.78%, respectively. Wilcoxon

signed-rank tests with Bonferroni correction indicated that the Dice co-
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efficient for the Tool-20 classifier was significantly smaller than that
for the Expert-20 classifier (Z = 3.92, corrected P < 0.001) and that it
increased from Tool-20 to Tool-87 (Z = 3.92, corrected P < 0.001),
surpassing that of Expert—20 (Z = 2.54, corrected P = 0.033).

3.5 Discussion
Effectiveness of the proposed tool

Our study highlights the effectiveness of the proposed tool in allowing
non-experts to perform segmentation. It is important to note that non-
experts can rapidly generate accurate labels without conspicuous errors
such as mislabeling of adjacent muscles or omission of musculature.
Although the segmentation quality was relatively coarse compared with
the precision achieved by experts, the quality (Dice coefficient of ap-
proximately 78%) reached a level similar to that of the network trained
with Expert-20. Asking non-experts to manually segment each mus-
cle individually is unrealistic; however, our results suggest that they
can effectively fit the template model to the target MR image graphi-
cally, which serves as a form of segmentation. Another advantage of
this template-model approach is that once the deformation is complete,
the segmentation of all the muscles is accomplished simultaneously.
Typically, the time required for manual segmentation is proportional
to the number of elements involved; however, with the proposed tool,
the number of muscles ceases to be a limiting factor. Consequently, our

tool reduces labor costs and enhances scalability.

However, it is also important to consider the limitations regarding the

generalizability of the template. While a single template successfully
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facilitated segmentation across 87 cases in this study, this was due to
the relatively uniform characteristics of the subject group. In scenarios
where there is greater variability among subjects, such as differences in
disease conditions or age groups, it may be necessary to prepare multi-
ple templates to achieve accurate segmentation. Furthermore, while this
study addressed variations in limb positioning by handling the shoulder
and arm separately, more extreme variations in limb positioning might
require the creation of new, dedicated templates. Even in such cases,
the overall labor cost with the tool remains lower compared to manual

segmentation without the tool.

3.5.1 Effect of training data accuracy and quantity on classifi-
cation performance

Although the proposed tool has many advantages, it is not without lim-
itations. Because the design is aimed at preserving the topology of the
template, the generated labels may not perfectly capture the detailed
shape of an individual. In fact, there was a tendency for more under- or
over-segmentation for the tool-assisted labels than for the ground-truth
labels. Accordingly, when using an equivalent amount of participant
data, the Tool-20 classifier exhibited significantly inferior performance
to the Expert—20 classifier. However, as demonstrated by the Tool—87
classifier, increasing the number of participants can increase the accu-
racy beyond that of the Expert—20 classifier. This outcome implies that
with regard to network performance, accumulating more data can com-
pensate for issues in data quality. Of course, gathering a large amount
of high-quality data is ideal. However, considering that this is expen-
sive and time-consuming, our findings suggest that there is also a viable

strategy for acquiring a large amount of data that can be easily col-
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lected, even if the quality of the data is slightly inferior. Although it is
an estimate, Expert-20 required > 400 h of expert time, whereas Tool—
87 needed approximately 178 h of non-expert time. This indicates that

tool-assisted segmentation is a viable option.

However, there is no assurance that gathering large amounts of rel-
atively coarse data will always be beneficial. If the errors in the coarse
dataset are biased in a certain direction relative to the true values, the
network trained with this dataset could mistakenly recognize the mus-
cle in that direction. Thus, the increased accuracy observed in this study
suggests that the errors in tool-assisted labels are uniformly distributed
around the true value. This uniform error distribution may be due to the
tool’s constraints. The limited manipulability from the coarse grid and
the design that deforms all labels simultaneously likely reduce arbitrary
bias. Overestimation in one area tends to be balanced by underestima-
tion in an adjacent area, resulting in a more evenly spread error. While
these tool characteristics might explain the observed error distribution,
this hypothesis requires further investigation. Although verifying this
is beyond the scope of this study, researchers should be aware of these
potential benefits when using the tool. Future work could explore this
hypothesis further to provide more definitive guidelines and detection

mechanisms.

3.5.2 Opportunities for the tool usage

Although networks for automatic muscle segmentation have been devel-
oped, an important consideration is the need for a segmentation dataset
of body parts. To model the entire body, segmentation data for muscles

throughout the body are essential. To date, most studies have focused on
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the lower limbs ( , : , : , ;
, ; , ), and a few studies have focused

on the upper limb ( , ; ; " )
) and trunk ( , ). Thus, to realize the automatic
recognition of the entire body, we still need to create a segmentation
dataset for these parts. Additionally, the accuracy of recognition can be
influenced by not only the body part but also the attributes of the indi-
vidual, such as age, sex, and pathology( , ; ,
). Hence, to build a universal network, a dataset encompassing a
wide range of attributes is necessary, whereas to build a specialized net-
work targeting specific groups, datasets tailored to these attributes are
needed. Therefore, manual segmentation remains a critical task in many

instances, for which our tool can be effectively utilized.

3.5.3 Modality-free approach

An Al-assisted segmentation tool is also available for dataset creation(

, ; , ; , ). With the as-
sistance of Al, users can interactively perform segmentation using sim-
ple operations. However, the Al must be trained on the modalities and
body parts of the data being analyzed. In contrast, our tool offers a
modality-free approach for both the template model and segmentation
target image. As the template model is merely labeled volume data,
where each voxel is assigned one of the musculoskeletal element la-
bels, it can be created from any image source. For instance, a template
can be generated from a specialized source such as the Visible Korean
Human dataset( , ), which contains high-resolution and

specialized images. Once created, regardless of the modality used in
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its development, a template can be used in our tool to segment various
3D medical images, including MRI, CT, and 3D-US, further broadening
the applicability of the tool. Although we used templates created from
MR images to segment the MR images in this study, our tool is flexible,
allowing it to accommodate a wide range of medical imaging scenarios

and requirements.

Considering that the dual-modality-free nature of this tool signifi-
cantly broadens its range of applications and enhances its value to the
medical and image-processing communities, we have provided the tool
as a plugin for 3D Slicer. It can be used free of charge for academic or

non-commercial purposes.

3.5.4 Comparative evaluation of tool-assisted vs. manual seg-
mentation

While the proposed tool has demonstrated its utility in enabling non-
experts to create segmentation labels, the scope of comparisons per-
formed in this study is limited. Specifically, we compared tool-assisted
segmentation by non-experts with manual segmentation by experts but
did not evaluate two additional potential groups: tool-assisted segmen-
tation by experts and manual segmentation by non-experts. This limits
our ability to independently assess the effects of tool usage and exper-

tise level on segmentation quality.

Notably, non-experts’ manual segmentation of individual muscles is
virtually impossible without extensive training. To perform such a task,
a non-expert would require prolonged and intensive guidance from a
skilled expert, effectively elevating their proficiency to at least an in-

termediate level. At that point, the individual could no longer be clas-
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sified as a non-expert. Consequently, segmentation labels created by
non-experts without using the tool do not exist, making experiments
involving this group infeasible. Conversely, based on observations dur-
ing preliminary experiments, expert tool-assisted segmentation is ex-
pected to produce higher-quality labels in less time than non-expert
tool-assisted segmentation. However, when used to generate training
datasets for deep learning, our findings suggest that the performance
of networks trained with tool-assisted labels created by non-experts al-
ready surpasses those trained with manually segmented labels created
by experts. This raises questions about whether the additional cost of
involving experts with the tool would result in sufficient performance

gains to justify the effort.

Future research should address these gaps by systematically evaluat-
ing the effects of expertise and tool usage on segmentation quality and
network performance. Additionally, cost-effectiveness should be a cen-
tral consideration, as the current results suggest that the proposed tool
offers significant advantages in terms of scalability and efficiency, even

when used by non-experts.

3.5.5 Future research directions

Future research should focus on refining the algorithm to increase the
label accuracy while maintaining the modality-free nature and cost-
effectiveness of the tool. Integrating the proposed tool with other seg-
mentation techniques and evaluating its performance on diverse medical
imaging datasets can verify its efficacy and broaden its applicability. In
addition, developing a more advanced network that leverages the char-

acteristics of the datasets created by our tool, such as the error variance,
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is crucial for achieving more precise recognition.

Moreover, the development of techniques for constructing person-
alized musculoskeletal models based on the shapes recognized by net-
works is vital. This is because the diagnosis of motor functions and
recommendations for physical training programs rely on not only rec-
ognized shapes but also the ability of the musculoskeletal model to
simulate individuals’ movements. A pipeline was developed to cre-
ate personalized skeletal models from automatically recognized bone
geometries ( , ) using OpenSim ( ,

). Efforts are also being made to create finite-element muscle mod-
els ( , ) and fiber models ( ,
) from the three-dimensional muscle geometries. In the future,
rather than developing recognition technologies and model construction
techniques separately, it will be necessary to develop them considering

that both should function complementarily.

3.6 Conclusions

We addressed the challenges of medical image annotation — particu-
larly in musculoskeletal structures — by developing an innovative tool
that allows non-experts to efficiently generate accurate labels. Our re-
sults indicated the effectiveness of the proposed system for reducing the
time and cost associated with the annotation process while maintaining
adequate quality for deep learning-based automatic segmentation. Fur-
thermore, the versatility and adaptability of our system across different
imaging modalities and anatomical structures were demonstrated, high-
lighting its potential to contribute to the advancement of medical image

analysis. By providing a practical solution to the challenges of annota-
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tion, our research can support the development of systems for evaluating
individual musculoskeletal functions by constructing subject-specific

musculoskeletal models from medical images.

iy [

Coronal S

Figure 3.1: Difficulty in FFD with one set of control points. (a) One set of control
points is shared for axial, sagittal, and coronal views. (b) If a user moves a control
point in a certain plane (red arrow), that point disappears from the other plane (cyan
arrows).
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Figure 3.2: FFD based on three independent sets of control points. (a) Three differ-
ent sets of control points are set for the template model. (b) Manipulating a control
point on a certain plane (red arrow) does not affect the control points associated with
other planes (yellow and green arrows). (c) Users can deform the template from the
other planes also (yellow and green) without losing sight of the control points. (d)
Whole deformation field is calculated by multiplying the three deformation fields.
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Figure 3.3: Template model for the upper-extremity musculoskeletal system: (a)
left upper arm; (b) left shoulder; (c) name and color of each element.
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Figure 3.4: Figure 4. Results of tool-assisted segmentation. Representative axial
cross-sectional images with (a) initial template labels, (b) tool-assisted labels, and
(c) ground-truth labels for the same MR image. (d) Locations of the axial cross-
sectional images. (e) Dice coefficient comparing initial template labels and tool-
assisted labels with ground-truth labels.
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Expert-20 Tool-20 Tool-87 Ground truth
(Expert)

Figure 3.5: Segmentation results for three classifiers. Representative axial cross-
sectional images comparing the classification results for the (a) Expert-20, (b)
Tool-20, and (c) Tool-87 datasets and (d) the ground truth for the same MR im-
age.
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Figure 3.6: Classification performance for the Expert—20, Tool-20, and Tool-87
classifiers. (a) Dice coefficient between the classification result and the ground
truth for the 22 musculoskeletal elements averaged among the 20 participants’ data.
(b) Each dot corresponds to individual participant data averaged over 22 elements.
Boxes denote the 1st and 3rd quartiles, and the median is marked with a horizontal
line in each box.
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Chapter 4

Statistical Modeling of Anatomical
Variations for Personalized Muscle
Attachment Estimation

Original title: Estimation of attachment regions of hip
muscles in CT image using muscle attachment proba-
bilistic atlas constructed from measurements in eight
cadavers

4.1 Overview

Patient-specific musculoskeletal modeling is critical for preoperative
planning and postoperative orthopedic surgery and rehabilitation evalu-
ation. However, identifying muscle attachment regions, often invisible
in CT and MRI, remains challenging. This study introduces a method
to estimate patient-specific muscle attachment regions using statistical
modeling based on cadaver data. Muscle attachment probabilistic at-
lases (PAs) were constructed by integrating attachment data from eight
cadavers onto an average bone surface via non-rigid registration. These

atlases enable the estimation of patient-specific attachment regions by
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mapping average regions to patient bone shapes derived from CT scans.
Experimental results showed that the proposed method improved Dice
similarity coefficients by over 10 % and reduced boundary distance er-
rors by an average of 1.1 mm compared to previous methods. By effec-
tively capturing inter-individual variations and enabling high-precision
estimation of attachment regions, this method advances the understand-
ing and reconstruction of localized anatomical features, addressing crit-

ical challenges in musculoskeletal modeling.

4.2 Background

One of the important application areas of musculoskeletal modeling
is biomechanical simulation for assessment of surgical outcome in or-
thopaedic surgery and rehabilitation medicine ( , ;

, ; , ). A string muscle model has been
widely utilized such as “OpenSim” by Stanford Univ ( , )
or AnyBody Technology ( , ), etc. However, these
models employ a generic anatomy model and do not reflect the patient
specific anatomy. In order to obtain a patient specific musculoskeletal
model that allows biomechanical simulation, it is crucial to locate the

regions that each muscle attaches to the bones.

A difficulty in application of the patient-specific biomechanical sim-
ulation comes from the fact that the muscle attachment regions are
typically invisible in CT and MR images. Several previous studies
conducted cadaver experiments to directly record the attachment re-
gions using a three-dimensional (3D) position sensor during dissection

( ; ), ( : ), ( :
). Carbone et al reported TLEM 2.0 which is a dataset for mus-
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culoskeletal modeling of lower extremity including the attachment sites
of 55 muscles and bone surfaces measured from one fresh male cadaver
( , ). Ito et al. measured the attachment regions of the
short external rotators on twenty hips and analyzed inter-subject vari-
ations via viewpoint normalized photograph of specimens ( ,

). They reported that attachment sites of the conjoined tendon and
piriformis have considerably larger variability among individuals than
previously thought. However, estimation of the attachment sites from

medical images was not addressed.

In current imaging technologies, in-vivo direct measurement of the
patient-specific muscle attachment regions is not reliable from medical
images. In several studies, therefore, cadaver experiments were con-
ducted for their measurement, and then the measurement results were
used to estimate patient-specific attachment regions of an unseen sub-
ject. Kaptein et al estimated the attachment regions with a morphing-
based method using landmark registration of implanted metal screws
in three cadavers ( , ). Pellikaan et al
employed the same approach using registration between the vertices
on bone surface in two cadavers ( , ). They per-
formed pair-wise cross validation experiments between two specimens,
and their focus did not include inter-subject variations of the muscle

attachment regions.

We propose a framework for statistical modeling of the muscle at-
tachment regions from measurement of multiple cadavers and its ap-
plication to estimating patient-specific muscle attachment regions using
bone shapes derived from a patient CT image. In order to model the

inter-subject variations in 3D, we use probabilistic atlas (PA), which
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has been typically used for representing variations of organ locations
and shapes. ( , ), ( , ) The attachment
regions of each cadaver specimen are measured in 3D and normalized to
a surface of an average bone shape by using a non-rigid registration so
that the PA of muscle attachment regions is represented on an average
bone surface. We evaluate the estimation accuracy of the attachment

areas using PA.

Contributions of this paper are as follows; 1) construction of PA of
the muscle attachment regions, 2) application of the PA to estimation of
patient-specific attachment regions from medical images, and 3) eval-
uation of the proposed framework using the data physically measured
in eight cadavers. We plan to contribute the PA and the average bone
shape to registered users in order to allow patient-specific biomechani-

cal simulation for a wider user-base.

4.3 Materials and Method

4.3.1 Data measurement

Figure 4.2 shows a workflow of the process of collecting the ground
truth data of muscle attachment regions. Before dissection, the bone
regions in CT images were extracted using our automated segmenta-
tion method ( , ) to reconstruct the bone shape models
. During dissection, locations of each muscle attachment region were
recorded using an in-house measurement system similar to a surgical
navigation system. Then, the measured attachment regions were nor-
malized by warping the bone shape of specimen to an average bone

shape.
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Data conditions

Eight fresh cadaver specimens of the lower extremity including three
males and five females with the age at death of 67.5 4= 14 y.0. were
used in the experiments. We acquired CT images of all the specimens
prior to the experiment with the slice interval of 0.3 mm (in-plane pixel
size varies between 0.68 mm to 0.85 mm). Figure 4.1 shows volume
renderings of the CT images of the cadaver specimens. Variations in
the muscle shape in the cadaver specimens can be observed. The left
leg of all specimens and right leg of three specimens were recorded (see
Fig. 4.1).

Recording cadaver data

For the recording of the muscle attachment regions, we developed a
measurement system as a plug-in module of 3D Slicer (https://
www.slicer.org/) ( , ). The system was con-
nected to an optical tracker (Polaris, Northern Digital Inc., Canada) with
OpenlGTLink ( , ). 3D Slicer is an open source plat-
form for medical image processing, and OpenlGTLink helps to connect

trackers and imaging devices.

The recording was performed as follows. First, as shown in Fig.
4.3 (a), the optical markers were attached to the pelvis and femur with
a fixation device used in a real surgical setup. Next, the coordinate
system of the bone shape model was registered to the optical tracker
coordinate system by paired-point registration using anatomical land-
marks followed by iterative closest point (ICP) registration, which was
performed using a module included in Slicer IGT ( , ).

Figure 4.3 (b) and (c) shows the point set for these registrations. The

61


https://www.slicer.org/
https://www.slicer.org/

average fiducial registration error (FRE) of the rough registration was
4.374+1.87 mm and of ICP was 0.56+0.15 mm. Then, dissection of in-
dividual muscles and tracing of the boundary of the muscle attachment

region were repeated by the orthopedic surgeons.

The recorded points of muscle attachment boundaries were manu-
ally refined to remove outlier measurements due to tracking noise and
project the points onto the bone surface in order to fill the gap between
the measured points and the bone surface that occurred due to soft tis-

sues remained on the bone.

Geometric normalization

For the purpose of geometric normalization, the measured muscle at-
tachment regions of each cadaver specimen were mapped to the aver-
age bone shape. Surface-based non-rigid registration was performed
between the average and each specimen’s bone shapes and the com-
puted deformation field was applied to map the vertices of the muscle
attachment region to the average bone shape coordinate system. The av-
erage bone shape was constructed from clinical CT images, 200 female
( , ). Note that the dataset for average model construc-
tiondid not include the cadaver specimens used in the data recording.
We used image registration tool kit (IRTK) provided by Rueckert et.
al. (https://biomedia.doc.ic.ac.uk/software/irtk/)

( , ) for the non-rigid registration.
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4.3.2 Data analysis

Constructing muscle attachment PA

Figure 4.4 shows the workflow of construction of muscle attachment
PA and average attachment regions, and their utilization for estimation
of the attachment region of a target patient. In Fig. 4.4, R,,(m =
1,2,...,N) denotes a muscle attachment region on a bone shape S,),,
where NV is the number of learning data. R,, is a binary vector whose
length is the number of vertices included in bone shape .5,,, indicat-
ing whether each vertex in .5, is inside (1) or outside (0) of an attach-
ment region. S, is the average bone shape from clinical CTs and
Ts, s,,. indicates a non-rigid transformation from S, to Sg... R,
denotes a geometrically normalized attachment region of R,,. In the
learning phase, as shown in the upper row of Fig. 4.4, the muscle at-
tachment PA was constructed by averaging the normalized attachment

region { R}, R}, ..., R} as follow:

1 N
Py(z) = ~ > R, (4.1)
m=1

As shown in Fig.4.5 (a), in order to avoid discontinuities occurring in
a simple averaging method with a small number of training data, we
smoothed the PA by convolution of Gaussian kernel (Fig. 4.5 (b)). We
applied Gaussian kernel of standard deviation ¢ = 2.0 mm to Py(x)

and finally obtained muscle attachment PA P(x).

Obtaining and utilizing average muscle attachment regions

The average muscle attachment region R, was calculated by thresh-

olding the muscle attachment PA. The threshold value was determined
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so that the area of the average attachment region was equal to the av-
erage area, which is indicated in the third column in Table 4.1. The
areas of the attachment regions obtained by thresholding the muscle
attachment PA by all possible threshold values (with 0.01 step) were
computed and the threshold value that yielded the area closest to the

average area was selected.

The obtained average muscle attachment regions were utilized for
estimating the attachment region of a specific patient. As shown in
the lower row of Fig. 4.4, the average muscle attachment region was
mapped to the target bone shape S;, which was reconstructed from a
CT image of the unseen patient, using the deformation field computed

by non-rigid registration between the average and target bone shapes.

4.3.3 Experimental conditions

Target muscles and shape model resolution

Ten muscle attachments were measured, which were insertion and ori-
gin of the gluteus maximus, gluteus medius and gluteus minimus, in-
sertion of piriformis, obturator internus and quadratus femoris, and ori-
gin of vastus lateralis. Where the insertion of obturator internus was
an attachment of a conjoined tendon consisting of obturator internus,
gemellus superior and gemellus inferior. Two measurements of the in-
sertion of quadratus femoris and one of origin of vastus lateralis was
missed in recording due to mechanical trouble. The reference bone of
the origin of the gluteus maximus, gluteus medius and gluteus minimus
was the pelvis, and the other attachments were on the femur. The aver-
age bone shapes had 244,526 and 266,648 vertices in the femoral and

pelvis models, respectively. The ground-truth and the estimated muscle
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attachment region are represented as a binary value (zero: back ground,
one: muscle attachment) at each vertex on the average bone shape, and
the muscle attachment PA is represented as a continuous-value from 0.0
to 1.0 indicating the probability. The spatial resolution of the femur
model was about 4.9 vertices/mm? and the pelvis model was about 5.5
verticess/mm?. The density of vertices was sufficiently high for describ-
ing details of the muscle attachment region because the average area of
the smallest muscle attachment (insertion of obturator internus muscle)

was more than 50 mm?.

Evaluation methods

The accuracy of the proposed estimation method of the patient spe-
cific muscle attachment region was evaluated by leave-one-out cross-
validation. We compared our proposed method to a previous method
that uses pairwise morphing proposed by Pellikaan et al( ,

). In order to evaluate the previous method, all combinations of
pairwise morphing between the reference and target of the muscle at-
tachment measurement data were tested. Given eight left and three
flipped right cadavers, 55 (%) combinations were tested. Two eval-
uation metrics were used to evaluate accuracy of the estimation: 1)
Dice coefficient ( , ) for evaluating overlap of the estimated and
ground truth region, 2) Average boundary distance which was a mean

of the symmetric absolute distance of closest points on the boundary

( ; ).
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4.4 Results

Table 4.1 shows the average and standard deviation of the area and
boundary length of each attachment region of cadaver specimens. The
measurements on the right side of the specimen were mirror transformed
so that it was dealt with in the same manner as the left one. Most attach-
ment regions were measured in eight left and three right hips, however
the origin of vastus lateralis and two insertions of quadratus femoris

were missed due to a system trouble at recording.

Figure 4.6 shows the results of construction of the muscle attachment
PA. The probability value is color-coded in Fig. 4.6. Red area indicates
the area with high probability, green middle and blue low. The origin
of the gluteus medius muscle has a large red area, that indicates sharing
a large common region among patients. On the other hand, there are
no red area in the insertion of the gluteus minimus and the obturator

internus, indicating relatively large variations.

Table 4.2 shows comparison between the proposed estimation method
and the previous Pellikaan’s method. Average of Dice coefficient of the
proposed method was more than 10 % larger than Pellikaan’s method
in most cases except for the origin of the gluteus medius (6.1 % larger)
and the origin of the gluteus minimus (6.3 % larger), and the average
symmetrical boundary distance of the proposed method was 1.4 mm

smaller than Pellikaan’s method in average.

Figure 4.7 shows boxplot of Dice coefficient (upper) and average
boundary distance (lower) on each muscle attachment; in these figures,
asterisks indicates results of Wilcoxon rank sum test; the single asterisk

(*) indicates that the p-value was less than 0.05 and the double aster-
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isk (**) indicates that the p-value was less than 0.01. As shown in Fig.
4.7, the accuracy improved significantly on eight muscle attachments in
Dice coefficient and six muscle attachments in average boundary dis-

tance out of ten attachments.

Two muscle attachments (origin of Vastus Lateralis and insertion of
Quadratus Femoris) did not show significant differences on the both
error metrics, however the average Dice similarity coefficient of these
attachment regions were, respectively, 13.4 % and 12.2 % higher than
previous method and the average symmetric boundary distance were 1.2

mm and 0.8 mm smaller as shown in Table 4.2.

Figure 4.8 shows results of a representative case which had an ac-
curacy near the mean value among all of muscle attachments. The pre-
vious pairwise method produced different estimation results depending
on the choice of the reference subject. The Dice coefficient was 70.1 %
for the best subject (left upper) and 11.5 % for the worst (left lower),
and the average was 47.3 % for the worst (right), while the proposed
method resulted in 55.4 %. The proposed method produced a better

result than the average produced by the previous method.

4.5 Discussion and Conclusion

In this paper, we conducted cadaver experiments to measure 10 attach-
ment regions of hip muscles and built a probabilistic atlas of the muscle
attachment regions, as shown in Fig. 4.6, which is the main contribu-
tion of this study. The muscle attachment PA clarified the variations of
the location of the muscle attachments. To the best of our knowledge,

there is no study analyzing the inter-subject variations of the muscle
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attachment in the normalized bone space. Moreover, we proposed a
framework to statistically estimate the muscle attachment region using
the muscle attachment PA. Our goal is to estimate patient-specific mus-
cle attachment region from CT image. Comparison with the previous
method ( , ) suggested that the muscle attachment PA
is useful to estimate patient-specific muscle attachment regions based

on bone shape models reconstructed from CT image.

As observed in the comparison results with the previous pairwise
estimation method, the proposed method had better stability and higher
accuracy than the previous method. As shown in Fig. 4.8, the result of
the previous method greatly depend on the choice of the target-source
pair for the registration, while the proposed method stably estimated
in all cases. Even though increasing the accuracy, the process for the
estimation of the proposed method is basically the same as the previous

method once the muscle attachment PA is built.

The proposed method has limitation for the muscle attachment with
large variation. Two muscle attachments which did not show significant
differences in both error metrics had the first and third largest standard
deviation of the surface area (see Table 4.1). There is a possibility that
an estimation by simple thresholding of muscle attachment PA with the

average area was not stable in these cases.

We believe that the outer surface of the muscle body or the directions
of muscle fibers would become a better predictor for estimating these
attachment regions with larger variability, which is in the scope of our
ongoing work. An automated method for segmentation of individual
muscles ( , ) and estimation of muscle fiber orientations

from CT 1mages ( , ) that we developed should help to
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improve the estimation accuracy.
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Volume
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Left leg
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Figure 4.1: Volume rendering images of CT volume of the cadaver specimens used
in the experiments. The check marks at the bottom indicate the side for which the
measurement of muscle attachment regions was conducted.
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Figure 4.2: Workflow of collecting the ground truth data of muscle attachment re-
gions. The red arrow in the middle box (manual refinement) indicates the gap be-
tween the bone surface and measured points due to soft tissues that could not be
completely removed. The blue arrow indicates outlier points caused by the mea-
surement noise.
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Table 4.2: Average and standard deviation of Dice coefficient [%] and average
symmetrical boundary distance [mm] of the proposed and previous methods.

Dice coefficient [%]

Average symmetrical
boundary distance [mm]

All muscle attachments

Proposed 58.0 +20.5 45+25
Previous (Pairwise) 46.3 +24.2 5.6 +£3.1
Insertion of Gluteus Maximus

Proposed 59.9 +15.1 54+£38
Previous (Pairwise) 479 +17.6 7.6 £5.2
Insertion of Gluteus Medius

Proposed 62.9 + 144 35+09
Previous (Pairwise) 498 +17.6 44+ 1.1
Insertion of Gluteus Minimus

Proposed 50.6 £234 3.6 1.7
Previous (Pairwise) 34.5 +£23.6 49+24
Insertion of Piriformis

Proposed 49.6 + 20.1 20=£0.7
Previous (Pairwise) 32.1 +20.6 27+09
Insertion of Obturator Internus

Proposed 26.1 + 18.8 39+33
Previous (Pairwise) 14.8 +22.1 58+44
Origin of Vastus Lateralis

Proposed 577+ 12.6 43 +2.7
Previous (Pairwise) 443 £ 18.9 51 +1.7
Insertion of Quadratus Femoris

Proposed 593 £ 115 3.7£09
Previous (Pairwise) 47.1 £15.1 45+14
Origin of Gluteus Maximus

Proposed 61.2 + 122 49+1.6
Previous (Pairwise) 493 +17.2 6.8 +24
Origin of Gluteus Medius

Proposed 777 +5.6 6.3+2.0
Previous (Pairwise) 74.3 £ 6.0 6.0+ 1.8
Origin of Gluteus Minimus

Proposed 754 +£63 7.0£ 1.6
Previous (Pairwise) 68.8 £7.3 77+1.2
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(a) C)

Figure 4.3: Registration between the optical tracker coordinate system and the
bone shape model coordinate system. (a) Attachment of the optical marker to the
pelvic bone. (b) Anatomical landmark points for initial paired point registration.
(c) Result of ICP registration with 30 points on the pelvic bone. The color of each

sphere indicates the fiducial registration error at each point. The radius of the sphere
is 2.0 mm.
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Figure 4.4: Workflow of estimation of muscle attachment region using probabilistic
atlas. See texts for detailed explanations.
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(@) (b)

Figure 4.5: Effect of the Gaussian convolution in building the PA of muscle attach-
ment. (a) shows the result of simple averaging, (b) shows the result after applying
smoothing with the Gaussian kernel of o=2.0mm.

74



e

Origin of Origin of Origin of
Gluteus Gluteus Medius Gluteus
Maximus Minimus

\

99 «%

Insertion of Insertion of Insertion of Insertion of Insertion of
Gluteus Gluteus Medius Gluteus Piriformis Obturator
Maximus Minimus Internus

1.0 0.5 0.0
HE T
Probability of muscle attachment area
Origin of Vastus Insertion of
Lateralis Quadratus
Femoris

Figure 4.6: Probabilistic atlas of muscle attachment regions. Red area shows the
area with high probability, blue low, and green middle.
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Figure 4.8: Representative case which has accuracy close to average among all
attachments. Green line shows the ground truth, red line the estimation result by the
proposed method, and blue lines the results by the previous pairwise method.
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Chapter 5

Summary and future directions

5.1 Summary

In this paper, we have developed techniques for dynamic and static de-
formations through research on restoring 3D biological tissue shapes
that correspond to deformations and movements based on medical im-
ages and have demonstrated their usefulness. The results of this re-
search focus on correcting dynamic displacement deformations within
individuals, statistical analysis of shape differences between individ-
uals, and the efficient generation and application of data using these

techniques.

Dealing with dynamic deformation

Our novel method for 3D shape recovery stands out for its ability to
correct dynamic displacement deformations of organs during surgery.
By utilizing a biplane ultrasound probe, we achieved real-time, high-
precision recovery without the need for a position sensor, significantly
enhancing operability compared to traditional sensor-dependent meth-

ods. This breakthrough is expected to pave the way for sensor-less
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biopsy guidance systems, more precise needle insertion, and ultimately,

improved patient outcomes.

Handling static deformation

Our data generation tool is a game-changer, enabling the efficient cre-
ation of high-quality annotation data even by non-experts. This tool’s
intuitive interface and quick operation have significantly improved the
speed and quality of label data generation in medical image analysis.
We have also demonstrated its ability to enhance automatic segmenta-
tion performance using deep learning. With its versatility across anatom-
ical structures and imaging modalities, this tool is poised to revolution-

ize medical image analysis.

Statistical analysis of anatomical variations

Third, we constructed a statistical model of muscle attachment sites
from multiple specimens and accurately estimated muscle attachment
positions based on the patient’s unique bone shape. This model was
confirmed to be more valuable than conventional methods for estimat-
ing patient-specific anatomical shapes and was shown to be capable of

highly accurate estimation that absorbs anatomical variations.

Significance of this research

The results of this research contribute to improving the accuracy and
efficiency of medical image analysis by developing 3D shape recovery
technology that can handle both dynamic and static deformation. This

is expected to promote personalized medicine and enhance diagnostic
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and treatment support. In addition, shape recovery and data generation
technology utilizing statistical models is necessary to promote new de-

velopments in medical image analysis.

5.2 Future Directions

5.2.1 Construction of an integrated platform for the realization
of personalized medicine

Our research has not only addressed individual challenges such as dy-
namic deformation correction technology, efficient annotation tools, and
statistical analysis of anatomical variations, but also set the stage for an
integrated platform that can revolutionize personalized medicine. This
platform, which will enable real-time analysis of patient-specific dy-
namic and static shape information, is designed to provide highly per-
sonalized surgical support and treatment planning simulations based on

each individual’s anatomical characteristics.

5.2.2 Advancing Personalized Musculoskeletal Simulation

Building on the findings of Studies 2 and 3, we have developed a novel
pipeline for automatically constructing individualized whole-body mus-
culoskeletal simulation models. This pipeline, presented at domestic
conferences, although unfortunately has not written a journal paper, uti-
lizes Al to automatically extract skeletal and muscle belly shapes from
MRI data and extrapolate the structure up to the attachment sites. Un-
like conventional pipelines, which assume simplified string-based mus-
cle models ( , : , ), our

approach faithfully captures individual-specific musculoskeletal geom-
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etry and muscle paths, offering a new generation of high-fidelity simu-
lation models. We have successfully constructed musculoskeletal mod-
els for nearly 90 individuals using this pipeline. Leveraging these data,
we created a statistical shape model of the musculoskeletal system, en-
abling the approximation of musculoskeletal models without requiring
MRI imaging. This approach achieves a volume error of approximately
5%, offering a practical and efficient method for generating personal-
ized models while reducing the cost and time associated with MRI ac-
quisition. However, the simulation performance of these statistically
predicted models compared to those generated directly from MRI data
still needs to be verified. Future work will focus on evaluating the simu-
lation accuracy of the approximate models and improving the predictive
method to achieve higher simulation fidelity. These advancements are
expected to enhance further the applicability of musculoskeletal simu-

lation models in both research and clinical settings.
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