

Title	An attention-based deep neural network model to detect cis-regulatory elements at the single-cell level from multi-omics data
Author(s)	村上, 賢
Citation	大阪大学, 2025, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/101797
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文内容の要旨
Synopsis of Thesis

氏名 Name	村上 賢
論文題名 Title	An attention-based deep neural network model to detect cis-regulatory elements at the single-cell level from multi-omics data (アテンション機構を用いた深層学習モデルによるマルチオミクスデータからの一細胞レベルシス調節領域の決定)
論文内容の要旨 〔目的(Objective)〕	
<p>Cis-regulatory elements (cREs) play a crucial role in regulating gene expression and determining cell differentiation and state transitions. To capture the heterogeneous transitions of cell states associated with these processes, detecting cRE activity at the single-cell level is essential. However, current analytical methods can only capture the average behavior of cREs in cell populations, thereby obscuring cell-specific variations. To address this limitation, we develop novel computational method to detect cRE activity at the single-cell level.</p>	
〔方法ならびに成績(Methods/Results)〕	
<p>We proposed an attention-based deep neural network framework that integrates DNA sequences, genomic distances, and single-cell multi-omics data to detect cREs and their activities in individual cells. Our model shows higher accuracy in identifying cREs within single-cell multi-omics data from healthy human peripheral blood mononuclear cells than other existing methods. Furthermore, it clusters cells more precisely based on predicted cRE activities, enabling a finer differentiation of cell states. When applied to publicly available single-cell data from patients with glioma, the model successfully identified tumor-specific SOX2 activity. Additionally, it revealed the heterogeneous activation of the ZEB1 transcription factor, a regulator of epithelial-to-mesenchymal transition-related genes, which conventional methods struggle to detect. Overall, our model is a powerful tool for detecting cRE regulation at the single-cell level, which may contribute to revealing drug resistance mechanisms in cell sub-populations.</p>	
〔総括(Conclusion)〕	
<p>We proposed a new method for detecting cRE activity at the single-cell level using deep neural networks equipped with attention mechanisms. Our model integrates DNA sequence information, chromatin accessibility, and genomic distance within the model architecture, leading to a more accurate detection of cRE activity compared to previous methods.</p>	

論文審査の結果の要旨及び担当者

(申請者氏名) 村上 賢		
論文審査担当者	(職)	氏 名
	主 査 大阪大学教授	村上 賢
	副 査 大阪大学教授	日比野 浩
副 査 大阪大学教授	石井 優	
論文審査の結果の要旨		
<p>エンハンサーに代表されるcis-regulatory elements (cRE)は遺伝子発現調節に重要な領域であるが、その活性には同一細胞種内であっても不均一性があることが知られており、この不均一性が細胞種分化や腫瘍内不均一性の獲得の機序の一つとして重要であることが報告されている。しかし現在の実験手法ではcRE活性を一細胞レベルで決定することは困難であった。そこで申請者は本研究において、アテンション構造を持つニューラルネットワークにより、DNA配列情報・シングルセルATAC-seq・ゲノム距離情報を柔軟に統合し、遺伝子発現を一細胞レベルで予測するような機械学習モデルを構築した。そして本モデルを解析することにより、従来手法よりも高い精度でcRE領域を決定可能な手法を構築した。さらにこの手法を脳腫瘍グリオーマ由来のシングルセルデータに適用し、腫瘍特異的なSOX2の転写因子活性や、上皮間葉移行に関連する腫瘍内部のZEB1転写因子の不均一な活性を検出できることを検証した。本手法は腫瘍内部の転写制御の不均一性を解析する有用な手法であると考えられ、博士（医学）の学位授与に値する。</p>		