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ARTICLE INFO ABSTRACT
Keywords: Comprehension and pragmatic deficits are prevalent in autism spectrum disorder (ASD) and are potentially
Autism spectrum disorder linked to altered connectivity in the ventral language networks. However, previous magnetic resonance imaging

Ventral language networks
White matter connectivity
Automated fiber quantification
Diffusion tensor imaging

studies have not sufficiently explored the microstructural abnormalities in the ventral fiber tracts underlying
comprehension dysfunction in ASD. Additionally, the precise locations of white matter (WM) changes in the long
tracts of patients with ASD remain poorly understood. In the current study, we applied the automated fiber-tract
quantification (AFQ) method to investigate the fine-grained WM properties of the ventral language pathway and
their relationships with comprehension and symptom manifestation in ASD. The analysis included diffusion/T1
weighted imaging data of 83 individuals with ASD and 83 age-matched typically developing (TD) controls. Case-
control comparisons were performed on the diffusion metrics of the ventral tracts at both the global and point-
wise levels. We also explored correlations between diffusion metrics, comprehension performance, and ASD
traits, and conducted subgroup analyses based on age range to examine developmental moderating effects. In-
dividuals with ASD exhibited remarkable hypoconnectivity in the ventral tracts, particularly in the temporal
portions of the left inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF). These
WM abnormalities were associated with poor comprehension and more severe ASD symptoms. Furthermore, WM
alterations in the ventral tract and their correlation with comprehension dysfunction were more prominent in
younger children with ASD than in adolescents. These findings indicate that WM disruptions in the temporal
portions of the left ILF/IFOF are most notable in ASD, potentially constituting the core neurological un-
derpinnings of comprehension and communication deficits in autism. Moreover, impaired WM connectivity and
comprehension ability in patients with ASD appear to improve with age.

1. Introduction core deficits in socio-communicative abilities and stereotypical/
restricted behaviors (American Psychiatric Association, 2013). Although

Autism spectrum disorder (ASD) is a heterogeneous neuro- language deficits have been removed from the core symptoms of autism,
developmental disorder that arises in early childhood, characterized by they remain pervasive among most patients with ASD, causing various

Abbreviations: AD, axial diffusivity; ADOS-2, autism diagnostic observation schedule, second edition; AFQ, automated fiber-tract quantification; AF, arcuate
fasciculus; ASD, autism spectrum disorder; AQ, autism-spectrum quotient; BET, brain extraction tool; DICOM, digital imaging and communications in medicine; DSM-
1V, diagnostic and statistical manual of mental disorders IV criteria; DT, diffusion tensor imaging; FA, fractional anisotropy; IFG, inferior frontal gyrus; IFOF, inferior
fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; FDR, false discovery rate; fMRI, function magnetic resonance imaging; FSL, FMRIB software library;
FSIQ, full-scale intelligence quotient; MD, mean diffusivity; MNI, Montreal neurological institute; MTG, middle temporal gyrus; MRI, magnetic resonance imaging;
NIfTI, the neuroimaging informatics technology initiative; RD, radial diffusivity; ROI, region of interest; STG, superior temporal gyrus; SCQ, social communication
questionnaire; SLF, superior longitudinal fasciculus; TD, typically developing; UF, uncinate fasciculus; VBM, voxel-based morphometry; VCI, verbal comprehension
index; WISC-IV, Wechsler intelligence scale for children, fourth edition; WM, white matter.
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difficulties in social interaction and daily living skills (Levy et al., 2010).
Specifically, comprehension and pragmatic abilities are the most
affected by autism (Hage et al., 2021). Moreover, a delay in language
development often serves as an early warning sign in ASD detection and
is more predictive than the onset of social ability or repetitive behaviors
(Herlihy et al., 2015; Kalandadze et al., 2018). Therefore, uncovering
the neurocognitive mechanisms underlying language disorders in ASD is
critical for diagnosis, screening, and intervention.

Recently, neuroimaging studies have posited that altered brain
connectivity may be the neurobiological basis for cognitive and behav-
ioral abnormalities in ASD (Just et al., 2012; Libero et al., 2016; Rane
et al., 2015). Diffusion tensor imaging (DTI) is a non-invasive neuro-
imaging technique widely used to explore the atypical structural con-
nectivity of ASD in vivo. It characterizes the microstructural properties of
white matter (WM) fibers by detecting the diffusion of water molecules
in brain tissues. The integrity and orientation of white matter (WM)
tracts can be evaluated using quantitative measures such as fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial
diffusivity (AD). FA and MD are two integrative measures commonly
used in previous diffusion tensor imaging (DTI) studies. FA is widely
accepted as a comprehensive measure of WM integrity and is sensitive to
microstructural changes in WM (Travers et al., 2012). Decreased FA may
indicate impaired axonal architecture, including alterations in myelin
and axonal density (Beaulieu, 2014). MD reflects tissue damage via the
mean eigenvalues of water diffusion (Beaulieu, 2014). MD effectively
characterizes tissue properties, such as the cytoskeleton, tissue water
content, and membrane permeability, and is closely linked to tissue
injuries such as inflammation, edema, or neoplasia (Alexander et al.,
2007). RD and AD are two primary directional metrics representing the
perpendicular and parallel diffusivity of the tensor, respectively (Beau-
lieu, 2002). Notably, RD correlates with the myelination process (Song
et al., 2005) and provides detailed information on axonal features (Aung
et al., 2013). Therefore, we applied two commonly used summary
measures (FA and MD) and one directional measure (RD) to better
characterize the WM microstructural changes in ASD. Tractography, an
efficient method for analyzing DTI data, can recreate the fiber tracts in
the brain and evaluate the microstructural profiles of each WM tract.

Despite an increasing number of ASD studies applying tractography,
findings on WM changes in language networks in ASD are inconclusive.
Previous studies have suggested that individuals with ASD have reduced
integrity in the ventral language networks, including the uncinate
fasciculus (UF), inferior longitudinal fasciculus (ILF), and inferior
fronto-occipital fasciculus (IFOF) (Andica et al., 2021; Fitzgerald et al.,
2018; Lei et al., 2019). Hypoconnectivity in the ventral tracts appears to
underpin comprehension and pragmatic dysfunction in individuals with
ASD (Mody et al., 2013). However, while some studies have not found
significant WM alterations (Hattori et al., 2019; Karahanoglu et al.,
2018; Kato et al., 2019), others have reported over-connectivity in the
ventral route in patients with ASD (Bode et al., 2011). The develop-
mental stage is likely a critical factor in these inconsistent findings. Brain
structural profiles show distinct patterns at different age ranges in in-
dividuals with ASD. For instance, Haghighat et al. (2021) reported that
children with ASD tend to exhibit hyper-connectivity, while both hypo-
and hyper-connectivity are observed in adolescents and adults. Addi-
tionally, pronounced morphological or microstructural alterations are
found in childhood but not in adolescence with ASD (Ameis et al., 2011;
Mizuno et al., 2019). However, given that most previous studies tend to
focus on specific age groups or mixed age groups with ASD, the
moderating effects of the developmental stage on brain connectivity in
ASD remain to be elucidated. Thus, identifying developmental changes
in microstructural alteration patterns in ASD across different age groups
will help clarify the inconsistent findings in previous studies. Moreover,
our recent meta-analysis of tractography studies (Li et al., 2022) indi-
cated that existing studies on language networks in autism have focused
more on the traditional dorsal pathway (such as arcuate fasciculus [AF]
and superior longitudinal fasciculus [SLF]) than on the ventral tracts.
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The elaborate relationships between WM characteristics and language
performance in ASD remain to be clarified.

Although the developmental stage of autism is a critical factor ac-
counting for inconsistent findings, there has been insufficient concern
across previous studies. Furthermore, conventional tractography only
examines the microstructural properties of WM fibers globally, whereas
WM changes in the autistic brain may vary along the trajectory of the
tract. Automated fiber-tract quantification (AFQ) is a novel tractography
approach for automatically reconstructing and segmenting each fiber
tract into multiple points and extracting diffusion metrics at both
pointwise and global average levels. This fine-grained analysis of spe-
cific segments can provide more precise information regarding the WM
changes in patients with ASD. However, to the best of our knowledge,
only a few studies have used AFQ to investigate abnormalities in WM
connectivity in individuals with ASD (Libero et al., 2016; Naigles et al.,
2017). These studies reported that diffusion metrics varied along focal
locations in language-related tracts (such as the SLF and ILF) in autism.
These findings verified the feasibility of the AFQ method for ASD
research. In previous studies, Libero et al. (2016) examined the micro-
structural alterations of major WM tracts in ASD without specifically
focusing on language performance. Naigle et al. (2017) investigated WM
variability at different language levels in preschool children with ASD
but did not compare these changes to typically developing (TD) controls.

In the present study, we conducted AFQ analysis to investigate
detailed patterns of WM alterations in autism. Given the extensive
research focused on the traditional dorsal pathway, we directed our
attention to the less explored ventral tracts. Our aim was to explore both
focal and widespread disruptions in ventral fibers in individuals with
ASD. Additionally, we aimed to elucidate the associations between WM
changes in the ventral pathway and comprehension performance
through correlation analyses. Recognizing that comprehension and
pragmatic problems are closely interwoven with the social communi-
cation deficits of ASD, we also examined the relationships between
autistic severity and WM properties. Our third goal was to examine
whether the altered pattern of WM tracts was affected by developmental
stage, using subgroup analyses. We hope that AFQ can provide new
insights into WM abnormalities in ASD and that information on these
location-specific properties could offer a new target for speech treatment
in ASD.

2. Materials and methods
2.1. Participants

We recruited participants with ASD (age range: 6-16 years) at Osaka
University Hospital and University of Fukui Hospital in Japan. Pediatric
neurologists made autism diagnoses based on the Diagnostic and Sta-
tistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria.
Symptom assessments of patients with ASD were conducted by expert
clinical psychologists using the Autism Diagnostic Observation
Schedule, Second Edition (ADOS-2). TD controls were recruited from the
local community via advertisements. They had no history of develop-
mental, neurological, or psychiatric disorders and had never received
special support education. Intelligence was evaluated for all participants
using the Wechsler Intelligence Scale for Children, Fourth Edition
(WISC-1V). The verbal comprehension index (VCI) subscale of the WISC-
IV was used to assess the language comprehension ability of the subjects.
Three standard subtests of the VCI (similarities, vocabulary, and
comprehension) were used to measure language performance on lexical
category/semantic content, conceptualization, and implications. ASD
traits were estimated for participants using the Social Communication
Questionnaire (SCQ) at Osaka University and the Autism-Spectrum
Quotient (AQ) at the University of Fukui. Participants were excluded
based on the following criteria: full-scale IQ < 70 points, history of head
injury or any neurological illness, or left-handedness (examined by the
Edinburgh Handedness Inventory).
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The current study was approved by the Ethics Committees of Osaka
University and the University of Fukui (Assurance no. K22213). Written
informed consent was obtained from all participants and their parents
after a complete explanation of the study.

2.2. Magnetic resonance imaging acquisition

Participants underwent diffusion/T1 weighted imaging via 3-Tesla
scanners at Osaka University Hospital or University of Fukui Hospital.
The magnetic resonance imaging (MRI) acquisition protocols for the two
sites are summarized in Table 1. As shown in Table 1, high-resolution,
three-dimensional (3D), and silent T1-weighted (T1W) axial protocols
were conducted at each site. Diffusion-weighted images were acquired
using a single-shot spin-echo echo-planar imaging sequence with 25 (at
the Osaka University) or 30 (at the University of Fukui) directional
diffusion encodings (b = 1000 s/mm?), as well as an acquisition without
diffusion weighting (b = 0 s/mm?). All participants underwent scans
without sedation, receiving instructions about the MRI sessions and
being required to stay awake. Head stabilization during scanning was
carefully considered using cushions and foam pillows at both
institutions.

2.3. Data pre-processing

First, all raw digital imaging and communications in medicine
(DICOM) images were converted into the neuroimaging informatics
technology initiative (NIfTT) format using the MRIcron software (https
://www.nitrc.org/projects/mricron/). Data quality was checked using
the MANGO toolbox (v4.1; https://mangoviewer.com/mango.html),
and scans with artifacts or distortions were excluded.

Routine preprocessing procedures for the diffusion datasets were
conducted using the FMRIB Software Library (FSL) (v5.0.9;
https://www.fmrib.ox.ac.uk/fsl). First, the diffusion-weighted images
were aligned to the b0 image to maximize frame normalization. Second,
eddy-current distortion and head motion were corrected using a rigid-
body alignment to minimize data noise. Third, non-brain structures
were removed using a Brain Extraction Tool (BET). Simultaneously, a

Table 1
Site-specific scanning protocol.

Site Osaka Univ. 1 Osaka Univ. 2 Univ. of Fukui
No. of subjects 38 ASD; 34 TD 10 ASD; 11 TD 35 ASD; 38 TD
Scan T1 DTI T1 DTI T1 DTI
parameters
Scanner Discovery MR Signa Architect 3.0T Discovery MR
750w 3.0T 750w 3.0T
Head coil 24ch 48ch 32ch
TR (ms) 880 12,000 876.332 6000 6.38 8400
TE (ms) 0.016 75 0.02 75 1.99 84.2
FA (Def) 5 - 5 - 11 -
FOV (mm?) 240 128 x 100 128 x 256 256 x
128 128 256
Acquisition 240 x 256 x 256 x 256 256 x 256 x 256 x
Matrix 240 256 256 256 256
Number of 480 59 480 50 172 64
Slices
Voxel 1.0 x - 0.94 x - 1.0 x -
Dimension 1.0 x 0.94 x 1.0 x
(mm?®) 1.0 0.50 1.0
Slice - 3 - 3 - 2
Thickness
(mm)
Number of 25 25 30
Directions
b value (s) 0/ 0/ 0/
1000 1000 1000

TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view; DTI,
diffusion tensor imaging.
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brain mask was generated to restrict the operational range of the
diffusion algorithm. Specifically, a more stringent fractional intensity
threshold (0.5) was applied during brain extraction to rigorously address
truncation artifacts, which commonly occur at the brain-skull interface.
Finally, the diffusion tensor model was fitted using the DTIFIT command
to obtain the diffusion metrics (fractional anisotropy [FA], mean diffu-
sivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) and sO
images (T2 images without diffusion weighting).

The preprocessing of T1-weighted images comprised two steps. (1)
Non-brain structures were removed using the BET function in the FSL.
(2) The anterior commissure-posterior commissure (AC-PC) plane was
aligned using the mrAnatAverageAcpcNifti command in the VistaSoft
package (v1.0; https://github.com/vistalab/vistasoft). The resulting T1
images were used as references for realigning the diffusion-weighted
images (aligning T1 images to SO images) to reduce the displacement
of DTI data.

2.4. Automated fiber quantification

The preprocessed datasets were further analyzed using AFQ software
(https://github.com/yeatmanlab/AFQ), an open-source MATLAB tool-
kit that can automatically reconstruct and segment the main fiber tracts
in the individual brain.

The standard AFQ pipeline involves six main steps (Yeatman et al.,
2012). (1) Deterministic fiber tractography across the entire brain using
a streamlined tracking algorithm. Termination criteria for fiber tracking
were: FA value <0.2 and turning angle >30 degrees. (2) Tract seg-
mentation using waypoint regions of interest (ROIs) (Wakana et al.,
2007). The waypoint ROIs were in the MNI space and transformed into
the individual’s native space based on non-linear transformation to
minimize the heterogeneity across individual brains. (3) Fiber refine-
ment based on the probabilistic tract atlas (Hua et al., 2008). Fibers
passing through the low-probability voxels were expurgated as
non-proposed tracts. (4) Tract cleaning using iterative procedure. Fibers
with deviated properties (fiber length > mean length + 4 SDs; distance
from the tract core > 5 SDs) were filtered out as outliers for each fiber
group. (5) Fiber clipping based on the two waypoint ROIs of each fiber
bundle. The central trajectory of each fiber group was defined as the
tract core, which was more consistent across individuals. (6) Tract
quantification and metrics extraction. Clipped fibers were resampled
into 100 equidistant nodes, and the diffusion metrics (including FA, MD,
AD, and RD) at each node were calculated via spline interpolation. The
mean measurements of the fiber core were computed using the weighted
average across the entire fiber bundle.

We applied FA, MD, and RD to evaluate the WM connectivity for
each participant’s brain at point-wise and global levels. Additionally, we
focused on three ventral WM tracts in the bilateral hemisphere (IFOF,
ILF, and UF). These fiber tracts are consistently considered the ventral
pathway of language networks and are critical for comprehension pro-
cessing from visual to meaning (Friederici, 2020; Hagoort, 2019).

2.5. Statistical analysis

First, we compared the demographic and clinical characteristics of
the ASD and TD groups using two-sample t-tests. Second, before starting
the statistical analyses of the diffusion metrics, we performed a
harmonization process to correct the site-specific effects introduced by
the different imaging parameters in the multisite datasets. The FA, MD,
and RD values for each subject were harmonized using the ComBat
method in MATLAB (Fortin et al., 2017). Age, sex, full-scale intelligence
quotient (FSIQ), and VCI were included as covariates in the ComBat
harmonization model to control for potential confounding effects. Third,
we performed between-group comparisons of corrected FA, MD, and RD
values at the entire tract and point-wise levels using two-sample t-tests.
In the point-wise analysis, false discovery rate (FDR) correction was
applied for multiple comparisons. Only significant differences observed
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at more than three adjacent nodes were reported as effective results
(Banfi et al., 2019). Fourth, we evaluated the relationships between the
mean diffusion metrics in each tract and the four main cognitive indices
and ADOS scores in the ASD group using Pearson’s correlations. Addi-
tionally, further correlation analyses were performed between the
diffusion profiles of significantly altered fiber segments and the
VCI/ADOS scores in individuals with ASD. Finally, to investigate the
moderating effects of developmental stage, we divided the participants
into children (age range: 6.0 < years < 12.0) and adolescents (age range:
12.0 < years < 18.0) as done previously (Haghighat et al., 2021; Holiga
et al., 2019; Lee et al., 2017), and conducted two-sample t-tests and
correlation analyses at the subgroup level.

All statistical analyses were performed using Jeffreys’s Amazing
Statistics Program (JASP) (v.0.17.3; https://jasp-stats.org). The statis-
tical significance of the point-wise analysis was set at p < 0.05 with FDR
correction or p < 0.01 without correction (Helwegen et al., 2023). For
other statistical tests, p < 0.05 was considered the significance level.

3. Results
3.1. Demographic and clinical characteristics

The demographic and clinical characteristics of the participants are
summarized in Table 2. AFQ analyses involved datasets from 83 in-
dividuals with ASD (mean age: 11.03 + 2.18 years, 47 children, 36
adolescents) and 83 TD controls (mean age: 10.57 + 2.33 years, 56
children, 27 adolescents). There was no significant difference in age and
sex between the ASD and TD subjects (p > 0.05). The ASD group showed
prominent autistic traits compared to the TD group in the SCQ and AQ
(SCQ: p < 0.001, T = 7.862; AQ: p < 0.001, T = 9.915). Fifty-three
patients with ASD were assessed using the ADOS-2 scale (mean score:
10.12 + 4.21). Subjects with ASD exhibited significantly poorer per-
formance on FSIQ (p < 0.001, T = —4.118) and four main cognitive
indices (PRL: p = 0.014, T = —2.474; PSI: p = 0.002, T = —3.139; WML p
< 0.001, T = —3.355; VCL: p = 0.003, T = —3.032) compared to TD
participants. Notably, in the subgroup analysis, children with ASD
showed significantly lower scores than TD controls on the PSI, WMI, and
the comprehension subtest of the VCI (PSI: p = 0.002, T = —3.251; WML:
p < 0.001, T = —3.587; VCI-Comprehension: p = 0.035, T = —2.143).
However, in the adolescent group, the case-control differences tended to
be attenuated, and no statistical significance remained in most cognitive
indices or any of the VCI subscales (detailed information is provided in
Table 2).

3.2. Group comparative analyses on diffusion metrics

We successfully identified the target fiber tracts (bilateral UF, ILF,
and IFOF) in both groups using AFQ. We then applied ComBat harmo-
nization to the diffusion metrics (FA, MD, and RD) for each tract,
including age, sex, FSIQ, and VCI as confounding covariates. To confirm
the harmonization effect, we compared the inter-site differences of
diffusion profiles at each fiber tract before and after applying the
ComBat process via ANOVA analysis. The site effects in all DTI metrics
were successfully removed by the ComBat method (detailed information
is provided in Supplementary Table 1). Then, group comparison ana-
lyses of FA, MD, and RD were performed at the global-tract and point-
wise levels.

3.2.1. Group differences at the global-tract level

At the global tract level, compared with TD controls, individuals with
ASD showed significantly higher MD in the left IFOF (p = 0.035, T =
2.124) and left ILF (p = 0.027, T = 2.235) (Fig. 1A). In the subgroup
analyses, children with ASD had a significantly increased MD in the left
IFOF (p = 0.038, T = 2.103), while no significant alteration was found in
the adolescent group (Fig. 1B and C). For the mean FA of each fiber tract,
despite subjects with ASD exhibiting a decreasing tendency, the group
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Table 2
Demographic and clinical characteristics of the participants.
ASD TD p- value T-value
Subjects (n) 83 83 - -
Osaka Univ. (n) 48 45 - -
Univ. of Fukui(n) 35 38 - -
Sex (n. male / female) 77 /6 74/9 - -
Age (years) 11.03 10.57 0.132 1.515
(2.18) (2.33)
FSIQ 97.77 106.61 < —4.118
(14.83) (11.59) 0.001**
PRI 99.40 105.72 0.014* —2.474
(18.37) (13.40)
PSI 92.84 100.90 0.002** -3.139
(18.99) (12.69)
WMI 94.44 103.30 < —3.355
(19.66) (12.84) 0.001%**
VClI-total 99.35 107.35 0.003** —3.032
(17.49) (14.16)
VCI-Similarities 11.0 (3.81) 11.16 0.778 —0.282
(2.81)
VCI-Vocabulary 10.11 11.59 0.049* —1.984
(5.13) (3.12)
VCI-Comprehension 9.44 (4.03) 11.03 0.010** —2.607
(2.95)
ADOS-total 10.12 - - -
(4.21)
SCQ-total (Osaka) 11.91 1.81 (1.98) <0.001** 7.862
(8.01)
AQ-total (Fukui) 18.86 6.58 (5.12) <0.001** 9.915
(6.37)
Subgroup of age range
Children group (n, 6.0y 47 56 - -
< 12.0)
FSIQ 96.70 106.39 <0.001** —3.654
(13.89) (12.99)
PRI 101.55 106.53 0.095 —1.688
(14.88) (14.30)
PSI 94.06 101.86 0.002** —3.251
(12.90) (10.83)
WMI 92.43 103.53 <0.001** —3.587
(16.26) (14.38)
VClI-total 97.98 105.61 0.019* —2.379
(17.62) (14.93)
VCI-Similarities 10.87 10.95 0.920 —0.101
(4.53) (2.96)
VCI-Vocabulary 10.28 11.76 0.171 —1.381
(6.21) (3.25)
VCI-comprehension 9.24 (4.15) 10.93 0.035* —2.143
(3.12)
Adolescents group (n,12.0 36 27 - -
<y < 18.0)
FSIQ 99.17 106.07 0.046* —2.035
(16.07) (8.35)
PRI 96.51 104.19 0.107 —-1.635
(22.12) (11.61)
PSI 91.20 99.07 0.158 —1.429
(25.08) (15.68)
WMI 97.14 102.85 0.239 —1.190
(23.45) (9.49)
VClI-total 101.14 109.48 0.040* —2.102
(17.39) (12.77)
VCI-Similarities 11.18 11.63 0.537 —0.621
(2.61) (2.45)
VCI-Vocabulary 9.88 (3.25) 11.21 0.143 —1.486
(2.88)
VCI-comprehension 9.71(3.90) 11.26 0.126 —1.556
(2.60)

ASD, autism spectrum disorders; TD, typically developing; FSIQ, full scale in-
telligence quotient; PRI, perceptual reasoning index; PSI, processing speed
index; WMI, working memory index; VCI, verbal comprehension index; ADOS,
autism diagnostic observation schedule; SCQ, social communication question-
naire; AQ, autism-spectrum quotient; *p < 0.05, ** p < 0.01.
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Fig. 1. Group comparisons of mean MD profiles at the global tract level.

(A) Group differences in tract-level MD profiles between all ASD and TD subjects (pink for ASD and blue for TD). The ASD group showed a significantly increased MD
in the left IFOF and ILF. (B) Subgroup analysis of children in tract-level MD profiles (light pink for children with ASD and light blue for TD children). Children with
ASD showed increased MD in the left IFOF. (C) Subgroup analysis of adolescents in tract-level MD profiles (orange for adolescents with ASD and cyan blue for TD
adolescents). No significant group differences were observed between the TD adolescents and those with ASD. ASD, Autism spectrum disorder; TD, Typically

developing; MD, Mean diffusivity; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; UF, uncinate fasciculus; R, right; L, left. * indicates a
statistically significant difference between groups, p < 0.05.

difference failed to reach significance (details in Supplementary Fig. 1).
Meanwhile, no significant case-control differences were observed in the
mean RD of each ventral tract (Supplementary Fig. 2).

(p < 0.01 without correction) in a small area of the left IFOF (node.
70-72) in the ASD group relative to that in the TD group (Fig. 2B). These
results indicate that the temporal lobe positions (Ivanova et al., 2016) of
the left IFOF/ILF tend to show more significant alterations in autistic
3.2.2. Group differences at the point-wise level brains.

In point-wise analyses, we applied a relatively liberal significance
level (p < 0.01 without correction) due to the difficulty in achieving
statistically significant results that could survive FDR correction. We
found that patients with ASD presented with significant MD elevation (p
< 0.01 without correction) in two regions (node. 50-55, 76-79) of the
left ILF compared to TD controls (Fig. 2A). According to point-wise
comparison of the FA profiles, we observed a significant FA reduction

3.3. Correlation analyses between diffusion metrics and cognitive
assessments in ASD

3.3.1. Relationships between diffusion metrics and comprehension
performance

First, we examined the relationships between the mean diffusion
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Fig. 2. Point-wise comparison of diffusion profiles between ASD and TD groups. The red line indicates the ASD group, the blue line indicates the TD group, and the
red bars at the bottom represent fiber segments with significant group differences. Rendering of diffusion metrics (FA/MD) for the target fiber tract of one subject is
displayed in the lower left corner of each plane to provide a visualization of the tract properties.

(A) Significantly increased MD values in the temporal lobe portions of the left ILF (node. 50-55 and node. 76-79) in the ASD group (p < 0.01 without correction). (B)
Significantly decreased FA values in the temporal component of the left IFOF (node. 70-72) in the ASD group (p < 0.01 without correction). ASD, Autism spectrum
disorder; TD, Typically developing; FA, Fractional anisotropy; MD, Mean diffusivity; IFOF, Inferior fronto-occipital fasciculus; ILF, Inferior longitudinal fasciculus.
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measurements (FA, MD, RD) in each fiber tract and the four main
cognitive indices (VCI, PRI, PSI, WMI) within the ASD group. There were
significantly negative correlations between VCI scores and mean MD of
the left ILF (r = —0.237, p = 0.035; Fig. 3A), whereas no significant
correlations were found between the other core cognitive scales and
diffusion metrics (details in Supplementary Table 2). In the subgroup
analyses, the children group showed pronounced correlations between
the MD or RD in the left ILF and VCI (MD: r = —0.420, p = 0.006, Fig. 3B;
RD: r = —0.304, p = 0.049; Fig. 3C), while no significant correlations
remained in the adolescent group.

Additionally, we conducted correlation analyses of the diffusion
metrics and the three core subtests of the VCI scale (similarities, vo-
cabulary, and comprehension). The ASD group exhibited significant
negative correlations between the comprehension score and mean MD of
the left ILF (r = —0.241, p = 0.036, Fig. 4A). According to the subgroup
analyses, within the children group, the comprehension score was
negatively related to the average MD in the bilateral ILF (left: r =
—0.498, p < 0.001; right: r = —0.371, p = 0.016, Fig. 4B) and mean RD
in the left ILF (r = —0.370, p = 0.016), while no significant relationship
was observed in adolescents (Fig. 4C). Moreover, the relationships be-
tween the other two subtests of the VCI and the MD of the left ILF also
showed a trend towards significance in the children group (Similarities:
r = —0.298, p = 0.056; Vocabulary: r = —0.302, p = 0.052; details in
Supplementary Fig. 3B).

Moreover, we conducted further correlation analyses between the
VCI scores and average diffusion metrics of the fiber segments that
showed significant case-control differences in the point-wise compari-
son. In the total group, no significant correlations were found between
the segmental fiber microstructure and the total or any subtest of the VCI
scale (details in Supplementary Table 3). However, strong correlations
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were achieved in the subgroup analyses. The VCI total score was nega-
tively correlated with the mean MD of node. 50-55 in the left ILF within
the children group (r = —0.470, p = 0.001 without correction; Fig. 5A).
Additionally, for the VCI subtests, more significant negative correlations
were observed between the comprehension score and the mean MD of
node. 50-55 (r = —0.577, p < 0.001 without correction, Fig. 5B) and
node. 76-79 (r = —0.495, p = 0.002 without correction, Fig. 5B) in the
left ILF in children with ASD. In contrast, no significant correlations
were found between the VCI scores and the point-wise diffusion profiles
in the adolescent group (details in Supplementary Table 4).

3.3.2. Relationships between diffusion metrics and ASD symptom measures

We computed the correlations between the diffusion profiles of each
tract and the ADOS-2 scores at the whole-group and subgroup levels. In
the correlation analyses of the total group, we found that the ADOS-2
scores were positively correlated with the mean RD in the left ILF and
left IFOF (left ILF: r = 0.287, p = 0.043; left IFOF: r = 0.292, p = 0.040,
Fig. 6A). According to the subgroup analyses, ADOS-2 scores showed a
significantly positive correlation with the average MD in the left IFOF in
the children group (r = 0.443, p = 0.014; Fig. 6B). Moreover, in the
adolescent group, the ADOS-2 scores were negatively related to the
mean FA in the left IFOF (r = —0.512, p = 0.021; Fig. 6C) and left ILF (r
= —0.537, p = 0.012; Fig. 6C).These findings indicate that lower con-
nectivity in the ILF and IFOF is closely associated with worse clinical
symptoms of autism. Furthermore, in the point-wise correlation ana-
lyses, we did not find any significant associations between the diffusion
metrics of any fiber segment and the ADOS-2 scores (details in Supple-
mentary Table 6).
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Fig. 3. Correlations between diffusion profiles of ILF and full-scale VCI scores in ASD.

(A) Correlation between the mean MD of the left ILF and full-scale VCI scores in all subjects with ASD (significant negative correlation: r = —0.237, p = 0.035). (B)
Subgroup analysis of the correlations between the mean MD of the left ILF and full-scale VCI scores (brown for children with ASD, blue for adolescents with ASD). A
significant negative correlation was observed in children with ASD (r = —0.420, p = 0.006), whereas no significant correlation was observed in adolescents with ASD.
(C) Subgroup analysis of the correlations between the mean RD of the left ILF and full-scale VCI scores (brown for children with ASD, blue for adolescents with ASD).
A significant negative correlation was observed in children with ASD (r = —0.304, p = 0.049), while no significant correlation was observed in adolescents with ASD.
VCI: Verbal comprehension index; MD, Mean diffusivity; RD: Radial diffusivity; ILF, Inferior longitudinal fasciculus; ASD, Autism spectrum disorder. *p < 0.05, ** p

< 0.01.
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Fig. 4. Correlations between diffusion profiles of ILF and comprehension scores in ASD.

(A) Correlation between the mean MD of the left ILF and comprehension subtest scores in all subjects with ASD (significant negative correlation: r = —0.241, p =
0.036). (B) Correlations between the mean MD of the bilateral ILF (red for left ILF, blue for right ILF), and comprehension subtest scores in children with ASD (left
ILF: r = —0.498, p < 0.001; right ILF: r = —0.371, p = 0.016). (C) Subgroup analysis of the correlations between the mean RD of the left ILF and comprehension scores
(brown for children with ASD, blue for adolescents with ASD). A significant negative correlation was observed in children with ASD (r = —0.370, p = 0.016), while no
significant correlation was observed in adolescents with ASD. VCI: Verbal comprehension index; MD, Mean diffusivity; RD: Radial diffusivity; ILF, Inferior longi-

tudinal fasciculus; ASD, Autism spectrum disorder. *p < 0.05, ** p < 0.01.
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Fig. 5. Correlations between diffusion profiles of altered fiber segments in the left ILF and VCI scores in ASD children.

(A) Correlations between the mean MD of the altered fiber segments in the left ILF (red for nodes 50-55, blue for nodes 76-79) and full-scale VCI scores in children
with ASD (nodes 50-55: r = —0.470, p = 0.001; nodes 76-79: r = —0.369, p = 0.014). (B) Correlations between the mean MD of the altered fiber segments in the left
ILF (red for nodes 50-55, blue for nodes 76-79) and comprehension subtest scores in children with ASD (nodes 50-55: r = —0.577, p < 0.001; nodes 76-79: r =
—0.495, p = 0.002). Significance was set at p < 0.01 without correction. VCI: Verbal Comprehension Index; MD: Mean Diffusivity; ILF: Inferior Longitudi-

nal Fasciculus.

4. Discussion

In the current study, we investigated the precise patterns of WM
abnormalities in patients with ASD using the AFQ and explored their
associations with the severity of language comprehension disability and
autistic traits. First, according to the cognitive assessment results, we
discerned that individuals with ASD tended to show more deficits in
high-level comprehension ability than in elementary lexical processing.
Second, we found that subjects with ASD had impaired connectivity in
the left IFOF/ILF, with particularly pronounced alterations observed in
the temporal segments of these tracts. These findings indicate that WM

changes may vary depending on the specific fiber location in the autistic
brain. Moreover, decreased connectivity, indicated by elevated MD and
RD, in the bilateral ILF was related to lower comprehension scores in
children with ASD. In particular, the temporal portions of the left ILF
showed relatively stronger correlations with comprehension ability in
younger individuals with ASD. Additionally, compromised integrity of
the left IFOF/ILF, characterized by elevated MD and RD or reduced FA,
was associated with increased severity of ASD traits. These results sug-
gest that the left IFOF and ILF, especially their temporal portions, play a
pivotal role in the neuropathology of ASD, potentially underpinning
comprehension disability and clinical manifestations in autism.
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Fig. 6. Correlations between diffusion profiles of ventral tracts and ADOS-2 scores in ASD.

(A) Correlation between the mean RD of the left ILF/IFOF (red, left ILF; blue, left IFOF) and ADOS-2 scores in ASD group (left ILF: r = 0.287, p = 0.043; left IFOF: r =
0.292, p = 0.040). (B) Correlation between the mean MD of the left IFOF and ADOS-2 scores in children with ASD (significant positive correlation: r = 0.443, p =
0.014). (C) Correlations between the mean MD of the left ILF/IFOF (red, left ILF; blue, left IFOF) and ADOS-2 scores in adolescents with ASD (left ILF: r = —0.537,p =
0.012; left IFOF: r = —0.512, p = 0.021). ADOS-2, Autism Diagnostic Observation Schedule, second edition; RD: Radial diffusivity; MD, Mean diffusivity; ILF, Inferior
longitudinal fasciculus; IFOF, inferior fronto-occipital fasciculus; ASD, Autism spectrum disorder. *p < 0.05.

Subgroup analyses revealed that younger ASD cohorts manifested more
conspicuous comprehension difficulties and WM alterations than ado-
lescents. In children with ASD, reduced integrity of the ILF was signifi-
cantly correlated with poorer comprehension performance. However,
this significant correlation disappeared in the adolescent group. We
speculate that WM alterations in the ventral tract and their relationship
with comprehension ability may be dynamic in autism throughout
development. Our findings provide more refined and focal information
on the comprehension and WM characteristics of autism.

4.1. Altered structural connectivity in ventral language networks of ASD

Our findings of reduced integrity in the left IFOF/ILF in patients with
ASD are consistent with several systematic reviews of DTI studies (Ameis
and Catani, 2015; Vissers et al., 2012). Our recent meta-analysis (Li
et al.,, 2022) synthesized 33 tractography studies that demonstrated
elevated MD in ventral language networks in autism. These findings
provide further evidence that ASD is a disconnection syndrome that
involves atypical brain connectivity (Geschwind and Levitt, 2007;
Mohammad-Rezazadeh et al., 2016). Moreover, morphological abnor-
malities in the ventral route in autism have also been validated using
structural MRI. For example, several meta-analyses of VBM studies have
reported reduced volume and density of the ILF/IFOF in patients with
ASD (Duerden et al., 2012; Nickl-Jockschat et al., 2012). These micro-
structural and morphological alterations in ASD may arise from aberrant
brain maturation. Emerging evidence suggests that children with ASD
exhibit exaggerated synaptic pruning (Rafiee et al., 2022) and deficient
axonal myelination (Galvez-Contreras et al., 2020). However, the spe-
cific pathophysiological underpinnings of these MRI alterations in the
autistic brain remain poorly understood and require elucidation in
future studies utilizing multimodal methodologies.

Notably, the IFOF and ILF are long-range association tracts, and
microstructural abnormalities in the autistic brain may vary along the
white matter trajectory. Our point-wise level analysis verified that the

temporal lobe portions of the left [IFOF/ILF tend to show more promi-
nent underconnectivity in autism. As described by Geschwind and Levitt
(2007), the disconnection between multimodal higher-order association
cortices in the temporal-frontal lobe is considered a key point in autism.
In previous MRI studies, functional and morphological alterations in the
temporal regions were most pervasively observed in patients with ASD.
For instance, a recent meta-analysis of fMRI studies (Herringshaw et al.,
2016) indicated that participants with ASD exhibited concurrent hypo-
activation in the middle temporal gyrus (MTG) and superior temporal
gyrus (STG) during many language tasks, including lexical processing,
sentence comprehension, and pragmatic language processing para-
digms. Xiao et al. (2023) combined the analysis of resting-state f{MRI and
eye-tracking data, suggesting that the atypical functional connectivity of
superior temporal regions with other cortical regions is the core neural
mechanism underlying communication and language deficits in ASD.
Several systematic reviews on the neuroanatomical characteristics of
ASD have consistently indicated that the superior temporal sulcus and
Wernicke area are core regions most commonly affected in ASD
(Khandan Khadem-Reza et al., 2023; Liu et al., 2020).

Additionally, we did not detect any significant group differences in
the UF, although this is a ventral tract involved in verbal communication
and often reported to have abnormalities in prior ASD studies (Catani
et al., 2016; Jung et al., 2019). Previous findings on the microstructural
alterations of the UF in the autistic brain are inconsistent. Some studies
have reported reduced integrity in the UF in individuals with ASD
(Andica et al., 2021; Cheon et al., 2011) while others have found no
significant differences between case-control groups (Libero et al., 2016;
Boets et al., 2018; Kato et al., 2019). These inconsistencies may result
from individual variation and distinctive trajectories in the WM devel-
opment. Several lifespan studies have investigated the developmental
trajectories of major fiber tracts in the healthy brain, suggesting that the
UF tends to mature later than other association tracts (such as the ILF or
IFOF) (Lebel et al., 2012, 2008). Moreover, diffusion parameter changes
in WM maturation show large personal differences, with greater
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individual discrepancies in the UF than in other ventral tracts (Lebel and
Beaulieu, 2011). Thus, we speculate that the longer developmental
course and larger individual variation likely contribute to the discrepant
findings in prior research. The microstructural anomalies of the UF in
ASD remain to be elaborated in future studies using larger sample sizes
or long-term longitudinal designs.

Furthermore, our study revealed that the microstructural distur-
bances of the ventral tracts in ASD were more pronounced in MD than in
FA. Similar trends have been noted in previous DTI studies involving
children with ASD, where MD exhibited a remarkable increase, whereas
FA did not reach statistical significance (Ameis et al., 2011; Groen et al.,
2011). These discrepancies may stem from distinct neurobiological un-
derpinnings of FA and MD. MD represents the average rate of a mole-
cule’s diffusion movement and is sensitive to the maturation processes of
cellular membranes, such as changes in the cytoskeleton, tissue water
content, and membrane permeability (Beaulieu, 2014). FA is regarded as
a composite measure of WM integrity and reflects the directional
dependence of diffusion (Alexander et al., 2007). FA is associated with
numerous neural fiber factors and is easily affected by many unrelated
effects (Tournier, 2019). The ambiguous biological interpretations of FA
may have resulted in the absence of statistical significance regarding FA
changes in our results. Although the precise neurobiological meaning of
diffusion metrics remains unclear, FA and MD remain the most promi-
nent diffusion markers for detecting disruptions in white matter matu-
ration. Moreover, recent studies have suggested that atypical WM
maturation processes, such as abnormal myelination and decreased
oligodendrocyte generation, are the primary causes of aberrant neural
connectivity in autism (Galvez-Contreras et al., 2020). Therefore, illus-
trating the neurobiological distinctions underlying FA and MD through
more specific histological studies could provide crucial insights into the
etiology and precision of autism therapy.

4.2. WM changes of ventral pathway associated with hallmark of ASD

In the correlation analysis, the diffusion profiles in the IFOF/ILF
were significantly related to VCI, particularly the comprehension subtest
scores, but not to other cognitive indices such as PRI, PSI, and WML
Notably, we found that the temporal segments of the left ILF exhibited
more remarkable correlations with comprehension performance in
children with ASD. These results reveal noteworthy and specific asso-
ciations between verbal comprehension performance and WM integrity
of the IFOF/ILF (especially the temporal portions) in patients with
autism. The ILF and IFOF serve as primary fibers in the ventral language
pathway and support comprehension processes in a natural social
environment (Kljajevic, 2014). The IFOF has extensive branching in the
occipital, temporal, and frontal lobes, connecting critical regions for
semantic and syntactic processing, such as the STG/MTG (BA22), IFG
(BA45), and pars triangular/orbitalis (BA47) (Martensson et al., 2013;
Sarubbo et al., 2013; Thiebaut de Schotten et al., 2012; Young et al.,
2021). Disruptions in the IFOF may result in various problems in se-
mantic categorization, contextual comprehension, and pragmatic in-
formation extraction, which are critical for social communication
(Friederici, 2015; Friederici and Gierhan, 2013; Hage et al., 2021). Our
results showed notable correlations between the diffusion properties of
the left IFOF and ADOS-2 scores in subjects with ASD. Similarly, a
previous study observed that decreased FA in the IFOF was related to
heightened autistic traits as assessed by the AQ (Roine et al., 2015).
These findings suggest that under-connectivity in the IFOF may
contribute to the more severe clinical symptoms of ASD.

The ILF connects the occipital lobe with the temporal pole and
projects into crucial regions for visual-linguistic information mapping
and verbal declarative memory, such as the posterior occipitotemporal
regions, fusiform gyrus, and superior/inferior temporal gyrus (Herbet
etal., 2018; Latini et al., 2017; Martino et al., 2011). Impairments in the
ILF may cause difficulties in object naming, lexical-semantic access, and
visual-linguistic integration (Gil-Robles et al., 2013; Mandonnet et al.,
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2007; O’Rourke and de Diego Balaguer, 2020). We found that reduced
integrity of the ILF correlated with lower comprehension performance
and higher ADOS scores in subjects with ASD. In line with our findings, a
previous study on children with ASD with varying linguistic levels
suggested that the low language-ability group exhibited diminished
integrity in the bilateral ILF compared to the high language-ability
group (Nagile et al., 2017). Another study reported that reduced FA in
the right ILF was related to decreased phonological working memory
ability in individuals with ASD, which is critical for reading and
listening comprehension processing (Lu et al., 2016). Additionally, Mills
et al. (2013) reported that greater integrity of the ILF significantly
contributes to better morphological and narrative performance, which
are critical for social communication. Moreover, a few studies have
examined the relationships between the microstructure in the ventral
stream and the social communication subscale of autistic assessment
(Cheon et al., 2011; Poustka et al., 2012). Cheon et al. (2011) reported
remarkable correlations between the diffusion properties of the left ILF
and the ADOS social scores. Overall, microstructural alterations in the
ILF and IFOF may cause comprehension and pragmatic difficulties
frequently observed in ASD, leading to verbal communication and social
interaction deficits in autism.

4.3. Developmental moderating effects on the autistic brain

Our subgroup analysis revealed that adolescents with ASD showed
improved comprehension ability and fewer IFOF/ILF abnormalities than
children with ASD. These results indicate that ASD manifests as a dy-
namic developmental syndrome, wherein comprehension deficits and
impaired WM connectivity may be alleviated through ongoing brain
development. Our findings align with previous research indicating an
accelerated maturation of WM in individuals with ASD during early
years, followed by a decreased maturation rate in late childhood and
adolescence, ultimately resulting in subtle WM changes in adults (Gir-
ault and Piven, 2020; Karahanoglu et al., 2018). This atypical devel-
opmental trajectory is particularly prominent in the temporal and
frontal lobes of autistic brains (Cascio et al., 2013; McFadden and
Minshew, 2013). Moreover, the cortical development of ASD follows a
similar pattern, undergoing three distinct phases: overgrowth in early
childhood, a period of stagnant growth until adolescence, and eventu-
ally a few alterations in later adulthood (Courchesne et al., 2004; Nunes
et al., 2020; Zielinski et al., 2014). Khundrakpam et al. (2017) reported
that case-control differences in cortical thickness were maximal around
ten years of age but did not show statistical significance during the
pubertal stage. The narrowing gap may be due to neural maturation
within the typical brain, gradually catching up with that in the autistic
brain (Courchesne et al., 2011), and adolescence seems to be a turning
point in group differences (Lange et al., 2015). Therefore, we posit that
the atypical developmental patterns observed in the autistic brain likely
account for our results regarding diminishing WM alterations in ado-
lescents with ASD.

Notably, although the diffusion profiles in the ventral tracts tend to
normalize with age, neural abnormalities may not completely disappear.
Aberrant brain development in ASD could prompt belated neural circuit
reorganization involving processes that attempt to prune excessively
altered axon connections, synapses, and neurons to enhance neural
circuit function (Courchesne et al., 2011). Dysregulated connection
formation and neural activity may persistently affect long-term mani-
festations of autism. Previous resting-state fMRI studies examining
intrinsic functional connectivity have consistently revealed abnormal
connectivity in autistic brains during childhood (Di Martino et al., 2011;
Uddin et al., 2013a) and adulthood (Cherkassky et al., 2006; Mueller
et al., 2013). However, the nature and direction of connectivity differ-
ences in ASD likely vary depending on the developmental stage (Ecker
et al., 2015), with adolescents and adults with autism exhibiting
underconnectivity, whereas younger children appear to exhibit
over-connectivity (Uddin et al., 2013b). The structural and functional
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maturation trajectory and developmental moderating effects in autistic
brains need further clarification using long-term longitudinal studies.
Uncovering the developmental framework of the autistic brain has the
potential to provide a more comprehensive understanding of the
neurobiology of autism.

In the clinical setting, we noted that the severity and profile of
symptoms in individuals with ASD tend to be more heterogeneous with
age, which may result from the enhanced influence of environmental
factors (Ecker et al., 2015). The amplified degree of interindividual
variability during development may have led to the lack of case-control
differences observed in the adolescent group in the present study.
Nevertheless, less is known about how the heterogeneity in brain
characteristics and clinical symptoms of individuals with ASD changes
across developmental stages, which requires detailed elaboration in
future studies.

4.4. Limitations

Our study has some unavoidable limitations. First, we applied a
relatively liberal significance level to our point-wise analysis. Although
we utilized the FDR method to correct the statistical bias from multiple
comparisons, hardly any results survived the FDR correction. The
lenient statistical threshold may affect the persuasion of the point-wise
results. We believe that we will be able to determine whether these
findings are justifiable with larger and more homogeneous samples in
future studies. Second, although we revealed relatively detailed WM
changes in ASD through point-wise level analysis, specifying the exact
anatomical coordinates for these damaged nodes remains challenging.
This is a common limitation across previous AFQ studies (Dou et al.,
2020; Xu et al., 2022; Zhang et al., 2019) because the fiber segmentation
and quantification are processed in individual native space, and only the
central portion of the fiber tract is analyzed (Yeatman et al.,2012).
Advanced algorithms to provide more accurate node landmarks are
desirable for future studies. Third, although we controlled for sex dif-
ferences between groups, the large numeral gap between sexes might
have biased the results. The effects of sex on brain structure and function
should be carefully considered in future studies on ASD. Finally, the
current study did not include low-intellectual or non-verbal subjects
with ASD, who represent an extreme part of the autism spectrum. These
individuals exhibit more complex patterns of language deficits that
extend beyond comprehension abilities to include severe impairments in
speech production, with some cases lacking all spoken language
(Tager-Flusberg and Kasari, 2013). Additionally, a recent DTI study
reported that non-verbal autism likely has a distinctive pattern of WM
changes compared to verbal ASD, showing more remarkable disruption
in the ventral stream (Olive et al., 2022). However, it should be noted
that the WM microstructure alterations in non-verbal or low-intellectual
ASD remain less focused and under-researched. The neurological basis
of language deficits in these extreme cases of ASD is a crucial topic for
future studies to uncover the complete picture of the neuropathology
underlying autism.

5. Conclusions

We explored WM alterations in the ventral language pathway in
autism using global-tract and specific-location analyses via the relatively
novel tractography method, AFQ. To the best of our knowledge, AFQ has
rarely been employed to investigate WM changes in language networks
in ASD, and the relatively large-scale datasets used here present a
remarkable advantage. Participants with ASD exhibited pronounced
underconnectivity in the left IFOF and ILF. Specifically, the temporal
portions of the left IFOF/ILF showed more remarkable disturbances that
were likely the core impaired regions of the autistic brain. Additionally,
these WM changes in the ventral route were closely related to compre-
hension difficulties and symptom severity in autism, which may
constitute the neurological underpinnings of social communication
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deficits in ASD. Atypical WM features were more notable in younger
children with ASD than in adolescents. This finding suggests that WM
disturbances in autism are not static and may be alleviated with age
owing to developmental and environmental moderating effects. Our
findings provide detailed information on the neurobiological mecha-
nisms underlying comprehension and pragmatic deficits in autism. We
expect that our study will address the research gaps in language devel-
opment studies on ASD and contribute novel insights into behavioral
interventions for autism. Finally, age-related WM alterations and their
impact on language and social communication in autism should be
elaborated in future long-term longitudinal studies involving larger and
more diverse cohorts.
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