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Abstract

Geometric analysis on Riemannian manifolds under lower bounds of Ricci curvature has
been generalized to weighted Riemannian manifolds. In this thesis, we review some recent
developments on weighted Riemannian manifolds under lower bounds of N-weighted Ricci
curvature with e-range. Especially, we present analyses of harmonic functions, eigenfunctions,
and porous medium equations. In particular, for harmonic functions, we address an LP-Liouville
type theorem (Theorem 3.2.4), a Cheng type Liouville theorem (Theorem 3.3.4), and a gradient
estimate (Theorem 3.4.1). As for eigenfunctions, we give a Cheng type upper bound of the
bottom spectrum (Theorem 3.5.1). Regarding the porous medium equations, we provide an
Aronson-Bénilan type gradient estimate (Theorem 4.1.1). This thesis is based on [36-38] by
the author.
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CHAPTER 1

Introduction

1.1. LOWER BOUNDS OF WEIGHTED RICCI CURVATURE

1.1.1. Riemannian geometry and its synthetic notion. In this thesis, we focus on the
lower bounds of Ricci curvature. Under lower bounds of Ricci curvature, there are numerous
researches in view of geometry and analysis. We first review some classical results (see also
Peterson [105]). Before the 1970’s, Myers [89] gave an upper bound of the diameter and
Bochner [8] estimated the first Betti number. In 1971, Cheeger-Gromoll [21] obtained a splitting
theorem. Their proof used an upper bound of Laplacian of the distance function, which is now
referred to as the Laplacian comparison theorem. In the 1980’s, Gromov [45] (see also Gallot
[40]) obtained a Betti number estimate using a volume comparison property, which is now called
the Bishop-Gromov volume comparison (see also Bishop-Crittenden [7]). In the beginning of
2000’s, Perelman solved the Poincaré conjecture by using the Ricci flow and metric geometry
(see e.g., [102-104]).

Synthetic notions of sectional curvature bounded from above and below on non-smooth
spaces appeared in the theory of metric geometry, and had been deeply studied. As for the
synthetic notion of Ricci curvature, one of the pioneering works was done by Cheeger-Colding
(see e.g., [17-20]). They studied limit spaces of Riemannian manifolds with Ricci curvature
bounded from below. Especially, Cheeger-Colding [17] obtained the Cheeger-Gromoll splitting
theorem for this limit space. As applications, they showed the Gromov conjecture [44] for the
limit spaces (see also Fukaya-Yamaguchi [39]). Recently, the Cheeger-Colding theory was es-
sentially used to show the existence of Kahler-Einstein metrics on compact complex manifolds
(see e.g., Cheng-Donaldson-Sun [22-24] and Tian [123,124]). Although Cheeger-Colding con-
sidered the limit spaces of convergent sequences of Riemannian manifolds with Ricci curvature
bounded from below, we can now directly analyze such limit spaces, which are metric spaces
equipped with measures, under some synthetic notion of Ricci curvature bounded from below.
The optimal transport theory took an important role in formulating this synthetic notion of
lower bounds of Ricci curvature on metric measure spaces.

1.1.2. Optimal transport and weighted Ricci curvature. To explain the synthetic notion
of lower bounds of Ricci curvature on metric measure spaces, we introduce a generalization of
Ricci curvature to a weighted Riemannian manifold, which is a Riemannian manifold (M, g)
equipped with a weighted measure ¢~/ dvg. Here, v, is the Riemannian volume measure and
f € C®(M). For an n-dimensional weighted Riemannian manifold and a parameter N &€
(—00, 1] U [n, 00|, the N-weighted Ricci curvature is defined as follows:

df @df
N—-n"

In the unweighted case f = 0, Ric?f coincides with the Ricci curvature Ric, for (M, g). As a
pioneering work, Lichnerowicz [75] generalized the Cheeger-Gromoll splitting theorem in the
weighted case with N = oco. After that, the case N = oo appeared in the analysis of linear
diffusion operators by Bakry—Emery [4]. Hence, the weighted Ricci curvature is also called the

Ricjcv := Ricy +Hess f —
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Bakry-E’mery-Rz’cez’ curvature. The case N = oo is also meaningful in several other fields, such
as Ricci flow and convex geometry. In the context of Ricci flow, if there is a potential f such
that Ricy® = Kg, the Riemannian manifold is called a gradient Ricci soliton, which is related
to self-similar solutions of the Ricci flow. In addition, if we consider Euclidean space equipped
with a measure (R",| - |,e~v,), the condition Ric} > 0 implies that the weighted measure
et v, is a log-concave measure. This class of measures appears in the field of convex geometry.
Especially, the characteristic function of a convex set is log-concave. The case N € [n,00)
was introduced by Bakry [6] and Qian [108]. In particular, a Bishop-Gromov type volume
comparison theorem under Ric} > Kg was obtained in [108]. On a weighted Riemannian
manifold, if we assume

(1) Ricﬁ,pv > Ky,

comparison geometric results similar to those of Riemannian manifolds with Ric, > K¢ and
dim(M) < N hold true. The parameter N is called the effective dimension.

It turned out that lower bounds of the weighted Ricci curvature have characterizations
in view of the optimal transport theory. In the 18th century, optimal transport theory was
first introduced by Monge. This theory defines a distance on the set of probability measures,
which is called the Wasserstein distance. It has many applications in various fields not only
mathematics. The relation between Ricci curvature and the Wasserstein space, which is a
space of probability measures equipped with the Wasserstein distance, was investigated by Otto
[101]. Later, Otto-Villani [100] showed some functional inequalities, and pointed out that lower
bounds of Ric}” imply the convexity of the relative entropy with respect to the measure e Vg
by a heuristic argument. Cordero-Erausquin-McCann-Schmuckenschlager [29, 30| rigorously
investigated this connection and proved that lower bounds of Ric}” imply the convexity of
entropy along Wasserstein geodesics. This convexity is called the displacement convexity. In the
weighted case N = oo, the inverse implication was proved by von Renesse-Sturm [126]. Since
the convexity of entropies can be formulated without the differentiable structure of spaces, this
convexity was employed to formulate a synthetic notion of lower bounds of Ricci curvature on
metric measure spaces. Indeed, Lott-Villani [77] and Sturm [119,120] formulated the synthetic
notion of Ric}® > K g by the convexity of the relative entropy along Wasserstein geodesics, and

Ricjcv > Kg with N € [n,00) by the convexity of the Rényi entropies. These conditions
are called the curvature dimension condition CD(K, N). We emphasize that this CD(K, N)
condition is defined even on non-smooth spaces. In particular, the stability of C D(K, N) under
some notions of convergences, such as the measured Gromov-Hausdorff convergence and the
D-convergence, were investigated in [77,119,120].

Another important application of CD(K, N) is geometric analysis on Finsler manifolds (see
c.g., Ohta [92] and Ohta-Sturm [96,97]). Later, the Riemannian curvature dimension condition
RCD(K, N) was formulated by adding some assumptions to the CD(K, N') condition (sce e.g.,
Ambrosio-Gigli-Savaré [2]). In general, a Finsler manifold satistying the C'D(K, N) condition
does not satisfy the RC'D(K, N) condition. While the Cheeger-Gromoll type isometric splitting
theorem is not obtained for Finsler manifolds under CD(K, N), it was generalized to RCD
spaces by Gigli [42]. Subsequently, generalizations of the Cheeger-Colding theory on RCD
spaces have been intensively developed. Actually, Cheeger-Colding [18] suggested studying
metric spaces possibly with measures under some synthetic notion of Ricci curvature bounded
from below, and RCD space gave an answer to this research direction. Nowadays, the theory
of RCD space is regarded as a generalization of the Cheeger-Colding theory.

Developments of geometric analysis under lower bounds of RicﬁcV , including those mentioned
above, are also inspired by the theory of convex geometry. Especially, the curvature dimension
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condition implies a Brunn-Minkowski type inequality. In convex geometry, it was known that
the classical Brunn-Minkowski inequality implies the isoperimetric inequality on the Euclidean
space. Since the isoperimetric inequality is an important inequality, which originates from
ancient Greece, researches on the isoperimetric inequality is also very active in the weighted
case. Bakry-Ledoux [5] showed a Lévy-Gromov type isoperimetric inequality in the case N =
0o. We review some rigidity results of the isoperimetric inequality. In the case N = oo on
smooth spaces, Morgan [85] showed that the rigidity case is when the space isometrically
splits to a product R x ¥, and R is equipped with the Gaussian measure. In a non-smooth
framework, Cavalletti-Mondino [15] obtained the rigidity under RC'D(K, N) with N € [2, c0).
An important step to obtain the Bakry-Ledoux type isoperimetric inequality [5] was to obtain
a Poincaré-Lichnerowicz type inequality, which is an inequality for lower bounds of the first
eigenvalue of the Laplacian. We briefly review researches on the rigidity of the Poincaré-
Lichnerowicz type inequality. In the unweighted case f = 0, Obata [90] showed that only
the sphere attains the equality. Ketterer [53] investigated the weighted case N € [n,00) in a
non-smooth framework, and showed that the equality is attained by the spherical suspensions.
In the weighted case N = 0o, Cheng-Zhou [27] showed that the equality is also attained by a
product R x ¥, and R is equipped with the Gaussian measure, which is the same phenomenon
as the case of the isoperimetric inequality. Although Cheng-Zhou [27] considered only smooth
manifolds, Gigli-Ketterer-Kuwada-Ohta [43] generalized their result to the RC'D(K, 00) spaces.

1.2. THE CASE EFFECTIVE DIMENSION N € (—o0, 1]

1.2.1. Constant curvature bounds. For the case N € (—o0,0), Ohta [93] showed the equiv-
alence between C'D(K, N) and Ric]fv > Kg. Also for the case N = 0, Ohta [94] introduced
CD(K,0), and showed its equivalence with Ric?c > Kg. At the same time, Kolesnikov-Milman
[56] also considered the case N € (—o00,0].

We note that the case N € (—o0,1] is weaker than the case N € [n,00]. Indeed, for
N € (—o00,1) and N’ € (n,00), we have

Ricjcv ‘< Ricj"co < Ricjpv < Ric}.

Hence, we see that Ric}v "> K g implies Ric}v > Kg. Very recently, De Luca-De Ponti-Mondino-
Tomasiello [33] revealed a new relation between N € (—o0,0) and physics. Non-smooth frame-
work for the case N € (—o0,0) has been also investigated. Especially, Magnabosco-Rigoni-
Sosa [81] and Oshima [99] studied the stability under some notions of convergences. Later,
Magnabosco-Rigoni [80] studied the local-to-global property.

Furthermore, when we consider some inequalities such as the Poincaré-Lichnerowicz in-
equality and the isoperimetric inequality in the case N € (—o00,0), some particular spaces
appear in the rigidity situation. As for the Poincaré-Lichnerowicz type inequality, Ohta [93]
and Kolesnikov-Milman [55] independently obtained the weighted case with N € (—o0,0), and
its rigidity case was obtained by Mai [82]. For the isoperimetric inequality in the weighted case
N € (—00,0), Milman [85] showed the inequality and Mai [83] obtained the rigidity.

1.2.2. Variable curvature bounds. Wylie [135] obtained a splitting theorem under Ric; > 0,
which asserts that a manifold splits to a warped product, unlike a Riemannian product in the
case N € (—o0,1)U[n, 0o]. After that, Wylie-Yeroshkin [136] further pushed forward researches
of the case N = 1, and introduced the following variable curvature bound:

(2) Ricy > Ke#g.
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Under this curvature bound, they obtained the Laplacian comparison theorem, the Bishop-
Gromov type volume comparison theorem, and several applications such as a Myers type di-
ameter estimate. In addition, they introduced an affine connection, which we call the Wylie-
Yeroshkin type connection. It turned out that the Ricci curvature for the Wylie-Yeroshkin type
connection coincides with Ric}». The relation between the displacement convexity of entropies
and the curvature bounds (2) was obtained by Sakurai [113] in the smooth setting.

For the case N € (—o0, 1], Kuwae-Li [58] introduced the curvature bound:

(3) Ric) > Kew v g.
This coincides with (2) when N = 1. Further generalization of them to the case N € (—o0, 1]U
[n, 0o] was given by Lu-Minguzzi-Ohta [79], where they introduced the curvature bound:

N 4(e=1)f
(4) Ric; > Ke =1 g.
Here, € € R is a parameter in some interval, which is called the e-range. This curvature bound
with e-range is a generalization of the curvature bound (3) in the case N € (—o0, 1). Moreover,
it is also a generalization of the constant curvature bound (1) in the case N € [n,00). Under (4),
Kuwae-Sakurai [59] studied the rigidity cases of several comparison geometric results such as
the Laplacian comparison property and the Bishop-Gromov type volume comparison property.
Displacement convexity of entropies under (4) was investigated by Kuwae-Sakurai [61].

We note that researches of the Cheeger-Gromoll type isometric splitting theorem for mani-
folds with boundary also evolved. In particular, unlike the case without boundary, in the case
with boundaries, we have a splitting to a warped product with a warping function depending on
the parameter € € R in the e-range under (4). We briefly review related researches on manifolds
with boundary. First, in the unweighted case f = 0 with boundary, Kasue [52] obtained the
splitting theorem by generalizing the proof of Cheeger-Gromoll [21], and also Croke-Kleiner
[31] showed it by following the line of a simpler proof of the Cheeger-Gromoll splitting theorem
by Eschenburg-Heintze [35]. After that, Sakurai [109-112] gave a further generalization of
them including the weighted case with N € (—o0, 1]. Finally, Kuwae-Sakurai [60] obtained the
case with e-range.

Recently, another motivation for the case N = 1 arose from general relativity theory. Wang-
Wang-Zhang [130] showed, if a Lorentz manifold (R x M, —V?2dt*+g) with V € C>(M) satisfies
the null energy condition, (M, g) satisfies the substatic condition V Ric,+HessV + (AV)g >
0. In particular, the deSitter-Schwarzschild manifolds and the Reissner-Nordstrom manifolds
satisfy the substatic condition. Regarding the relation between the subtstatic condition and
the case N = 1, Li-Xia [62] introduced a family of affine connections that interpolate the
Wylie-Yeroshkin type connection and the affine connection whose Ricci curvature is the static
Ricci tensor. Notably, the non-negativity of the static Ricci tensor coincides with the substatic
condition. Furthermore, Borghini-Fogagnolo [9] pointed out that the relation between Ric} and
the substatic condition, and also showed a volume comparison theorem and a splitting theorem
on manifolds under the substatic condition. We note that their Riccati inequality also appeared
in a prior work by Brendle [10]. Recently, Ketterer [53], McCann [84] and Cavalletti-Manini-
Mondino [14] conducted rescarches on the characterization of the null energy condition in view
of the optimal transport theory.

1.3. HARMONIC FUNCTIONS

1.3.1. On Riemannian manifolds. A classical Liouville theorem asserts that bounded har-
monic functions on R™ must be constant. On Riemannian manifolds, a breakthrough under
lower bounds of Ricci curvature was given by Yau [137] as follows:

12



Theorem 1.3.1 ([137]). Let (M, g) be a complete Riemannian manifold. We assume
Ric, > 0.
Then any positive harmonic function must be a constant function.

There are several ways to obtain this Liouville property. We review some of them. One
may take an approach of gradient estimates (see e.g., [67]). Saloff-Coste [114] obtained the
Liouville property under a volume doubling property and a local Poincaré inequality. Note that
lower bounds of Ricci curvature imply those conditions. Also, the Alexandrov-Backlmann-Pucci
type estimate (ABP estimate, for short) gives an alternative proof of the Liouville theorem.
In particular, Cabré [13] conducted an ABP estimate on Riemannian manifolds under lower
bounds of sectional curvature, and showed a Krylov-Safonov type Harnack inequality, which
vields the Liouville property. This was generalized by Kim [54] to more general manifolds
including Riemannian manifolds under lower bounds of Ricci curvature.

Cheng [26] replaced the boundedness condition with the sublinear growth condition of
harmonic functions, and obtained the following Liouville property:

Theorem 1.3.2 ([26]). Let (M, g) be a complete Riemannian manifold. We assume
Ric, > 0.
Then any sublinear growth harmonic function must be a constant function.

We can prove this by the method of gradient estimate (see [67]). A probabilistic proof of
Cheng’s result was given by Stafford [118]. If we denote the space of harmonic functions with
polynomial growth at most d by H¢(M), we see that Theorem 1.3.2 implies

dim (H4(M)) =1
for any d < 1. According to Li [66], this leads to Yau’s conjecture (see e.g., [139, Problem 48]):
Conjecture 1.3.3 (Yau). Let (M, g) be a Riemannian manfiold. We assume
Ric, > 0.
Then H?(M) is finite dimensional for any d > 1.

This conjecture motivated the analysis of harmonic functions with polynomial growth.
Among them, Li-Tam [69] gave a sharp estimate for the case d = 1, and its rigidity was proved
by Cheeger-Colding-Minicozzi [16]. Finally, this Yau’s conjecture was proved by Colding-
Minicozzi [28].

While the Yau type Liouville property implies the L*-Liouville property, researches on the
LP-Liouville property are also active. Actually, Yau [138] showed the LP-Liouville theorem for
the case p € (1,00). For the case p = 1, Garnett [41] showed it if manifolds have bounded
geometry. Later, Li-Schoen [68] obtained the L!-Liouville theorem under lower bounds of Ricci
curvature, and Li [64] improved them using the theory of heat equation. The case p € (0, 1)
was also given by Li-Schoen [68] under lower bounds of Ricci curvature as follows:

Theorem 1.3.4 ([68]). Let (M,g) be an n-dimensional complete non-compact weighted Rie-
mannian manifold. Then there ezists a constant § > 0 depending only on n such that the
following assertion holds:

We assume that there exists ¢ € M such that

Ric, > 5d,1_2g
when dg := d(q, -) is sufficiently large. Let u be a non-negative LP-function with p € (0,00) with
Au > 0. Then u is identically zero.
13



1.3.2. On weighted Riemannian manifolds. Li [74] studied the Liouville theorem for sym-
metric diffusion operator Ay := A — (Vf,V:), which is also called the weighted Laplacian.
His motivation came from the relation between the symmetric diffusion operator and the
Schrodinger operator, and its relation with probability theory and potential theory. He con-
sidered an f-harmonic function, i.e., a function u such that Ayu = 0. We remark that an
f-harmonic function is also called weighted harmonic function. In particular, Li [74] obtained
the Yau type Liouville theorem and the L'-Liouville theorem for the case N € [n,00). The
LP-Liouville theorem for the case p € (1,00) was proved by Pigola-Rigoli-Setti [106] (see also
[107]). For the case N = oo, Wu [132] showed the Yau type Liouville theorem under an ad-
ditional assumption that |V f]| is bounded, and also Wu [133] generalized LP-Liouville theorem
with p € (0,1] under an additional assumption that f is bounded. Although there are several
ways to prove the Yau type Liouville theorem, Li [74] and Wu [132] employed the method of
gradient estimate.

Later, Brighton [11] gave further progress in this context for the case N = oco. He ap-
plied the method of Yau’s gradient estimate to a specific function and showed that bounded
f-harmonic functions must be constant under Ric® > 0 without any assumptions on f. After
that, Munteanu-Wang [87] employed an argument similar to [11], and obtained a gradient
estimate of f-harmonic functions under Ric}® > 0 and an additional assumption concerning
the linear growth rate of f. It should be noted that, not only using a Brighton type gradient
estimate, Munteanu-Wang [87] combined them with the De Giorgi-Nash-Moser theory to ob-
tain the gradient estimate. This gradient estimate implies the Yau type Liouville theorem for
positive f-harmonic functions under Ric}® > 0 if f is of sublinear growth. In addition, they
combined the De Giorgi-Nash-Moser theory with the weighted Bochner formula, and showed a
Cheng type Liouville theorem for f-harmonic functions with sublinear growth under an addi-
tional assumption that f is bounded. We note that, in the proof of this Cheng type Liouville
theorem, they did not use the Brighton type gradient estimate. Also, for the space of f-
harmonic functions, they gave an estimate of its dimension and proved especially its finiteness.
After [87], Munteanu-Wang [88] further pursued the study on gradient estimates, where they
replaced the assumption Ric;'ro > (0 with Ric‘f’c > Kg.

For the case N € (—o0, 1], much less is known. It seems that the method of gradient
estimates does not work straightforwardly in the case N € (—oo, 1]. To overcome this difficulty,
the author [38] took an approach to utilize the arguments in Munteanu-Wang [87], and showed
a Cheng type Liouville theorem for sublinear growth f-harmonic functions for the case N €
(—00,0) under an additional assumption that f is bounded. The case N € [0, 1] was excluded
in [38] since the author did not know a suitable Bochner formula in this case. As for the
LP-Liouville theorem, the author [38] also showed them in the case p € (0,1) and N € (—o0, 1]
under a strong assumption on f. There is another progress on harmonic maps in the case
N € (—00,0]. Actually, Cheng [26] also showed a Liouville type theorem for harmonic maps,
and an alternative proof using the probabilistic theory was given also by Stafford [118], and
this was generalized to the case N € (—o0, 0] by Kuwae-Li-Li-Sakurai [57].

1.3.3. Related topics: Cheng type upper bound of the first eigenvalue. It is worth
mentioning that Munteanu-Wang [87] used the Brighton type Liouville theorem to show the
rigidity of the Cheng type inequality, which estimates the upper bound of the bottom spectrum.
We briefly review the history of this Cheng type inequality. Cheng [25] first obtained an upper
bound of the first eigenvalue of the Laplacian as follows:

14



Theorem 1.3.5 ([25]). Let (M,g) be an n-dimensional complete non-compact Riemannian
manifold. For K >0, we assume

Ric, > —Kyg.

Then we have
(n—1)K
—

Cheng [25] obtained this by calculating the upper bounds of space forms. Its rigidity was
obtained by Li-Wang [70,71]. Although the calculation on space forms is necessary, a part of
Cheng’s proof can also be simplified using the heat kernel comparison (see e.g., [117]). We also
note that this Cheng’s inequality is also obtained as an application of a gradient estimate (see
¢.g.,[67]). This method of gradient estimate was generalized by Wang [127] and Wu [131] to
the case N € [n,00]. We remind that Wu [132] assumed the boundedness of |V f| in the case
N = oco. On the other hand, by using the Bishop-Gromov type volume comparison theorem,
Munteanu-Wang (87, 88| and Su-Zhang [121] obtained Cheng type inequalities for the case
N = oo with some additional assumption on f, and they also obtained the rigidity. Especially,
in Munteanu-Wang [87], the rigidity of Cheng’s inequality was applied to study the topology of
steady gradient Ricci solitons. As for the LP-spectrum, Wang [128] obtained an upper bound
by using the volume comparison theorem. In the weighted case N € (—o0, 1] U [n, oo with
e-range, the author [37] obtained an upper bound, while its sharpness and rigidity are left for
future work. Recently, Cheng type inequalities for the case N = 1 gained some attention in
view of the substatic condition (see also [9]).

AM(M) <

1.4. POROUS MEDIUM EQUATION

1.4.1. Heat flow as a gradient flow. The solution of the heat equation d,u = Au can be
regarded as a gradient flow of the relative entropy with respect to the Wasserstein distance,
which we call the Wasserstein gradient flow. On Euclidean space, this was shown by Jordan-
Kinderlehrer-Otto [51]. Later, so called the Otto calculus proposed by Otto [101] enabled us
to see those relations more intuitively. Actually, it turned out that the Wasserstein gradient
flow of the relative entropy for the weighted measure e~/v, is the solution of the weighted
heat equation J,u = Aju, which is also known as the Fokker-Planck equation. Although the
Wasserstein space does not have any differential structure, the Otto calculus introduced a
differential structure heuristically. We note that the rigorous treatment is very active, and the
general theory of gradient flow on metric spaces took an important role (see e.g., [1]).

On Riemannian manifolds, lower bounds of Ricci curvature and the behavior of heat flows
arc closely related. Indeed, von Renesse-Sturm [126] showed that the lower bound of Ricci
curvature and the contraction of the heat flow are equivalent. This contraction is measured in
view of the Wasserstein distance, and also referred to as the Wassrstein expansion bound. Erber-
Kuwada-Sturm [34] further pursued this study. In particular, they formulated the (K, N)-
convexity of the relative entropy as the entropic curvature dimension condition CD¢(K, N). In
a non-smooth framework, they showed C' D¢(K, N') implies the Wasserstein expansion bound. In
addition, they also showed that CD¢(K, N) yields the Bakry-Ledoux gradient estimate. Later,
Ohta [93] investigated the (K, N)-convexity for N € (—o0,0). It turned out that the argument
in [34] showing that C'D¢(K, N) implies the Bakry-Ledoux type gradient estimate does not
hold in the case N € (—o00,0), and the technical difficulty comes from the lack of expansion
bounds of the gradient flows of general (K, N)-convex functions. Not only the Bakry-Ledoux
type gradient estimate, the Li-Yau type gradient estimate is not yet obtained for the case
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N € (—00,0). Gradient estimates for the case N € (—o00,0) are listed as one of the open
questions in [93] (sce also [95]).

1.4.2. Porous medium equation as a gradient flow. Porous medium equation d,u = Au™
with m > 1, which is a generalization of the heat equation, appears in many fields, not only
mathematics. Especially, the porous medium equation on Euclidean space is well investigated
(see e.g., [125]). Recently, there is a growing interest in view of the Wasserstein distance.
It is pointed out by Otto [101] that the porous medium equation can be interpreted as the
Wasserstein gradient flow of the Rényi entropy.

One of the particular features of the heat flow is the stability of the Gaussian measures
along the heat flow. As a generalization of this property, Ohara-Wada [91] showed the stabil-
ity of the ¢-Gaussian measures along the porous medium equation. After that, Takatsu [122]
obtained some functional inequalities as a generalization of inequalities by Otto-Villani [100],
and showed that the equality is attained by the ¢-Gaussian measures. In Ohta-Takatsu [98],
they investigated the relation between the displacement convexity for a more general class of
entropies and lower bounds of Ricﬁcv . In particular, Ric?f with N € (—o0,0) was used to charac-
terize this convexity. They also applied the general theory to this displacement convexity, and
obtained a contraction property of porous medium equation on compact Riemannian manifolds.

1.4.3. Aronson-Bénilan estimate. In Aronson-Bénilan [3], they obtained a gradient esti-
mate for the porous medium equation d;u = Au™ on Euclidean space R" as follows:

1 n
>
~ 2n(m—1)+2

Later, Li-Yau [72] obtained a gradient estimate for the heat equation. If we let m N\, 1 in
the Aronson-Bénilan type estimate, it coincides with the Li-Yau type estimate. On compact
Riemannian manifolds, the Aronson-Bénilan type estimate was obtained in Vazquez [125].
After that, Lu-Ni-Vazquez-Villani [78] generalized the Aronson-Bénilan type gradient estimate
to non-compact Riemannian manifolds. We note that, similarly to the Li-Yau gradient estimate,
they obtained a local gradient estimate. We may consider their Aronson-Bénilan type local
gradient estimate as a counterpart of the Li-Yau gradient estimate for the heat equation. The
results in [78] were improved by Huang-Huang-Li [49]. Their improvements of the Aronson-
Bénilan gradient estimate are compatible with the recent progress of gradient estimates for
the heat equation obtained by Davies [32], Hamilton [48] and Li-Xu [63]. The weighted case
with N € [n,00) was obtained by Huang-Li [50]. Furthermore, the author [36] obtained the
case N € (—oo, —ﬁ) U [n, oo] with e-range. This can be regarded as a gradient estimate for
the case N € (—o0,0). As the porous medium equation becomes the heat equation by letting
m N\, 1, we see m_—_zl — —00, and the range (—oo, m‘—_zl) degenerates. An approach different from
the Li-Yau gradient estimate is needed to obtain a gradient estimate for the heat equation in
the case N € (—o00,0), which is left for future work.

(5) V- (mu™?*Vu)

1.5. ORGANIZATION

The aim of this thesis is a comprehensive understanding of the following assertions:

(i) LP-Liouville theorem (Theorem 3.2.4);
(ii) Liouville theorem for sublinear growth f-harmonic functions (Theorem 3.3.4);
(iii) Gradient estimate for f-harmonic functions (Theorem 3.4.1);
(iv) Cheng type eigenvalue estimate (Theorem 3.5.1);
(v)

v) Aronson-Bénilan gradient estimate (Theorem 4.1.1);
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under lower bounds of N-weighted Ricci curvature with e-range. In the unweighted case f = 0,
they are all obtained via the method of gradient estimate. Although some of the classical
properties written in this thesis are not generalized to our settings, we consider that they also
help us to grasp the current situation on this topic.

Section 2.1 is devoted to introducing the weighted Ricci curvature with e-range, and the
rest of Chapter 2 is devoted to listing some results related to harmonic functions, eigenvalue
estimates, and the porous medium equation in the case N € [n,00]. In section 2.1, we in-
troduce weighted Ricci curvature and list several examples, and basic theorems such as the
Laplacian comparison property (Proposition 2.1.15) and the Bishop-Gromov type volume com-
parison property (Proposition 2.1.19). We also address the Bochner inequality for the case
N € (—00,0) U {oo} (Propositions 2.1.6 and 2.1.7). Section 2.2 is divided into several subsec-
tions. In subsection 2.2.1, we study functional inequalities which are useful in the analysis of
harmonic functions. We provide the Li-Schoen type Poincaré inequaliy (Theorem 2.2.1), the
Neumann-Sobolev inequality (Theorems 2.2.11 and 2.2.15), and the Saloff-Coste type Sobolev
inequality (Theorem 2.2.7). We note that, in the case N = oo, some different assumptions on
the weight functions are employed. After that, we address the consequences of the De Giorgi-
Nash-Moser theory. In particular, the mean value inequality (Propositions 2.2.16 and 2.2.17)
and the Harnack inequality (Theorem 2.2.18) are spelled out. In subsection 2.2.2, we present
several Liouville type theorems and gradient estimates, especially the various types in the case
N = oco. In the next section 2.3, we list Cheng type eigenvalue estimates. Several types are
presented in the case N = oo (Theorems 2.3.1 to 2.3.6). In section 2.4, we study gradient
estimates of Li-Yau type (Theorem 2.4.1) and Aronson-Bénilan type (Theorem 2.4.3).

Chapter 3 is devoted to the analysis of harmonic functions and related topics under lower
bounds of Ricﬁcv with e-range for N € (—o0,1] U [n,00]. In subsection 3.1.1, to obtain the
Neumann-Sobolev type inequality (Theorem 3.1.7), we provide a Neumann-Poincaré type in-
equality (Proposition 3.1.1), a Saloff-Coste type Sobolev inequality (Proposition 3.1.2), and a
Li-Schoen type Poincaré inequality (Proposition 3.1.6). In subsection 3.1.2, using Neumann-
Poincaré inequality and Neumann-Sobolev inequality, we address the mean value inequality
(Theorem 3.1.8). This is obtained by the De Giorgi-Nash-Moser theory. As applications of
the mean value inequality, we provide an LP-Liouville type theorem (Theorem 3.2.4) in section
3.2, and a Cheng type Liouville theorem (Theorem 3.3.4) in section 3.3. In section 3.4, we
use a Harnack type inequality, which is obtained from the mean value inequality, and obtain a
gradient estimate (Theorem 3.4.1). In section 3.5, we give a Cheng type inequality (Theorem
3.5.1) as related topics. We consider it natural to be interested in the analysis of eigenfunction
since Munteanu-Wang [87] applied the Brighton type Liouville theorem to obtain the rigidity
property of the Cheng type inequality. In our case, as far as we know, unlike the case in [87],
the analysis of harmonic functions and eigenfunctions of the weighted Laplacian do not interact
with each other.

Chapter 4 is devoted to the analysis of porous medium equation under lower bounds of
Ric} with e-range for N € (=00, 1] U [n,0c]. In section 4.1, we obtain a local Aronson-Bénilan
type gradient estimate (Theorem 4.1.1), and this allows us to obtain a global estimate on non-
compact spaces. In section 4.2, we give an alternative proof of the global estimate (Theorem
4.2.1) on compact manifolds.
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CHAPTER 2

Preliminaries

In this chapter, we review basic comparison geometric results under lower bounds of weighted
Ricci curvature. Some of them are generalized in the subsequent chapters. Those which are not
generalized are also useful to understand the backgrounds of geometric analysis on harmonic
functions, eigenfunctions and porous medium equations.

2.1. WEIGHTED RICCI CURVATURE

In this section, we introduce the lower bounds of weighted Ricci curvature with e-range,
and provide some comparison geometric results related to the weighted Ricci curvature. These
are useful throughout the rest of this thesis.

Let (M, g, f) be an n-dimensional weighted Riemannian manifold. We denote the weighted
measure and the weighted Laplacian as follows:

mp=e v, Api=A— (V[ V),
where v, is the Riemannian volume measure. For N € (—o0, 1]U [n, +00], the N-weighted Ricci
curvature is defined by
df @ df
N-—-n'
where the last term is considered to be 0 when N = oo, and when N = n, we only consider
constant functions for f.

Remark 2.1.1. In the case N € (n,00) NN, Lott [76] pointed out that RiC]fV on (M, g, f)
coincides with the Ricci curvature on a specific warped product. We consider a sphere S¥—"
equipped with the canonical metric gsy—.. On the product M x S¥~", we set a warped product
metric

Ric} := Ricy +Hessf —

f
G:=g+ e;ﬁggzv_n.

Let Ricg denote the Ricci curvature on (M x SV~ @), and X denote the horizontal lift to
M x SV=™ of a vector field X on M. Then we have

Ricg(X, X) = Ric} (X, X).
We present several known examples below for the case N € (—o0,0) U {oo}.

Example 2.1.2. The Euclidean space equipped with a Gaussian measure:

1 _la)?
R™ |-, e 2 dr
(2m)"

Example 2.1.3 ([86]). For a > 0, the Cauchy distribution m™* on R™ is defined as follows:

m™® = (14 |of?) "5

satisfies Ricy” > g.

da.
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Then we see that (R", |- |, m™®) satisfies Ric;* > 0 (see Milman [86]).

Example 2.1.4 ([82]). A one-dimensional space

I N-1
R, |- I ; %
| |,c081< 1—NI> dx

for K >0 and N < 0 satisfies Ric} = Kg (sec Mai (82, Example 3.1]).

Example 2.1.5 ([86]). For n > 2, let H" denote the Haar measure on R"*!. For a > —n and
z € R™! with |z| < 1, the harmonic measure m”™ on S" is defined as follows:

1
mr*(y) .= —dH"(y).
2 (Y) [y — e (v)
We denote the canonical metric on S" by gs«. Then the space (S", ggn, mj) satisfies Ric;* >

(n —1—"2) g (see Milman [86, Theorem 1.1]).

We turn to the Bochner formulas and their applications. We have the following Bochner
identity for the weighted case with N = oc:

Proposition 2.1.6. Let (M, g, f) be an n-dimensional complete weighted Riemannian mani-
fold. For ¢ € C>(M), we have

Vo|? -
Ay (' ;Dl ) — (VAsp, Vo) = RicP(V, Vi) + [[Hess ¢||*.

The Bochner inequality for the weighted case with N € (—o00,0) is as follows (see e.g.,
[93, Theorem 4.1]):

Proposition 2.1.7 ([93]). Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold. For o € C*(M) and N € (—00,0), we have

2 N
Wylie [135] introduced the following Bochner formula (see [135, Lemma 2|):

V 2 A 2
Ay (‘ d )—(Vﬁﬂp,vw zRic?(W,V@Jr( 19

Proposition 2.1.8 ([135]). Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold and p € C3(M). For K € R, k € N and p € M, we assume

Ric}™* > Ky,

and Hess |, has at most k non-zero eigenvalues. Then we have

\V4 2 oy 2f A 2
Af<| ;' )—e : <v(ez«Af¢),w>zK|w|2+( f;").

We note that £ = n — 1 in Proposition 2.1.8 if we substitute the distance function into ¢.
Wylie [135] applied this to the distance function and obtained the Riccati inequality under
Ric} > 0 as follows (see [135, Theorem 3.2] and also [134, Lemma 6.1]):

Theorem 2.1.9 ([135]). Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold. We assume

1
Rle > 0.
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For a fized point ¢ € M, let x be a point that the distance function d, is smooth at x. Also, let
v be the unique minimal geodesic from q to x parameterized by arclength. Then

—2f(z dq(JJ) —2f(~v(t -
(6) (Ayd,) (@) < (n—1)e s </ o dt) |
0

Remark 2.1.10. Actually, this was first obtained in a more general form by Wylie [134, Lemma
6.1], which is a paper before [135].

—2/(+(1))
Wylie-Yeroshkin [136] pointed out that the term fodqm e n1  df can be interpreted from

the viewpoint of an affine connection. For ¢ € C°°(M), they introduced an affine connection:
VLY :=VxY —de(X)Y —de(Y)X,

where V denotes the Levi-Civita connection. We called V¥ the Wylie- Yeroshkin type connection
in the previous chapter. In the same setting as in Theorem 2.1.9, we set ¢ := L and

n—1
G YISI0)
(7) o (1) = / o 2 gy
0
Let o := % and ¥ := g—z, where s = s.,(t). Since ¥ = enL—fl’y’, we see
VEY = en 1V, =0
,-y")/ =e ,y/”)/ = U.
Hence, we may regard that the reparametrization s, (t) gives a geodesic with respect to V¥. In
other words, we see that the images of a V¥-geodesic and a V-geodesic coincide. This property

actually holds for a wider class of affine connections, which are projectively equivalent to V,
and this is guaranteed by the Weyl theorem (see e.g., [136]).

Remark 2.1.11. We set the Riemannian curvature tensor and Ricci curvature with respect to
V¥ as follows:

RY(X,Y,Z) = ViVyZ — ViV Z = Vi 2,
RicV' (X,Y) :=tr (X - RV (X,Y)Z).
If we set ¢ = %, we have R,ic} = RicY” (see also subsection 1.2.2).

Wylie-Yeroshkin [136] obtained the Riccati inequality under the curvature bound:
Ric} > K ent g.
After a further generalization of Kuwae-Li [58] to the case N € (—o0, 1], Lu-Minguzzi-Ohta
[79] considered the curvature bound:
(e—1
(8) Ricﬁcv > Ke" n—lﬁg,

for K € R, where ¢ in the e-range:

N -1
e=0for N =1, |€|<”N for N #1,n, cé€Rfor N=n.
—_n

Later, Kuwae-Sakurai [59] investigated more general potentials V. We note that results in [59]
recover those in [79] when V = V[ and f is bounded.

Remark 2.1.12. As is mentioned in the introduction, the curvature bound (8) coincides with
Ricﬁpv > Kg if we take ¢ = 1 when N € [n,00). In addition, it coincides with the curvature
bound (2) introduced by Wylie-Yeroshkin in the case N = 1, and also coincides with the

curvature bound (3) introduced by Kuwae-Li if we take ¢ = ]]\\,[:711 in the case N € (—oo, 1].
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Before we give comparison theorems, we prepare some notations following the line in [59].
We set

1 N —n
,N,e) = 1—¢?
(9) e(n, N,e) n_l( e )

and the comparison function as

ﬁ sin(y/k t) for K > 0,
s.(t) =<t for k =0,
\/%7 sinh(v/—=kt) for k <O.
Also, we put
Z  if k>0, . if s <C.,, "
O = Ve HEZ0 g sl) e s S = [ s ds
oo otherwise, 0 otherwise , 0
Below, we fix a point ¢ € M. For x € M, we define
dy(z)
(10) 5pq(x) = inf / ST e,
7 Jo

where v runs all the unit speed minimal geodesics from ¢ to x. We denote the set of unit vectors
in T,M by U,M. For w € UM, we set

p(w) = sup {t >0 | dy(7u(t)) =t},

where 7, is the unit speed geodesic such that 7, (0) = ¢ and v,,(0) = w. In the process of
generalizations in [58,61,79], the reparametrization (7) was generalized as follows:

t - Yw
(1) spalt) = [T ag
0

and pp(w) := syu(p(w)) for w € U,M. We denote the inverse function of sy, by ts,. Then
we have the following Laplacian comparison property (see Kuwae-Sakurai [59, Theorem 2.3)):

Proposition 2.1.13 ([59]). Let (M, g, [) be an n-dimensional complete weighted Riemannian
manifold, N € (—o0,1] U [n,00] and € € R in the e-range. For ¢ € M, w € U,M and
t € (0, p(w)), we assume

4(1—€)f(ivw(t))

RicY (7, (1), 7, (1)) > Ke
Then for ¢ := c(n, N,€) as in (9), t € (0,7(w)) and s;,(t) € (0,min {pf(w), Cox}), we have
(12 (s (1) < L SRR,

We denote the volume element of the level surface of d, at v, (t) by 0(t,w). We set

-~

Os(t,w) := e_f(%“(‘t))@(t,w)7 Or(s,w) = 0s(trw(s), w),
and
B, (q) ={x e M | spqo(z) <r}.

The volume comparison theorem holds as follows (see [59, Proposition 6.2]):
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Proposition 2.1.14 ([59]). Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold, N € (—o0,1] U [n,00] and ¢ € R in the e-range. For K € R, we assume

4(c=1)f
RICf > Ke =1 g.

Then for ¢ :=c¢(n,N,e) as in (9) and R > r > 0, we have

ms20-0y Brel@) s,(R)
m{1+%}f(3fm(Q)) = Sex(r)

Below, we assume that f is bounded. In that case, the Laplacian comparison theorem is as
follows (see Lu-Minguzzi-Ohta [79, Theorem 3.9]):

Proposition 2.1.15 ([79]). Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold, N € (—o0,1] U [n,00] and € € R in the e-range. For K € R and by > b; > 0, we
assume

Rle > Ke = 1l)fg7 b < ezgzl—_lﬂf < bs.
We set p := by if sLg(dg(x)/ba) > 0, p := by if s (dy(x)/b2) < 0, where ¢ := ¢(n, N,e) as in
(9). Then for q € M, we have

on M\ (Cut(q) U {q}), where Cut(q) denotes the cut locus of q.

Remark 2.1.16. This corresponds to Wylie-Yeroshkin [136, Theorem 4.4] in the case N = 1,
and also to Kuwae-Li [58, Theorem 2.4] if we take ¢ = Y=L in the case N € (—o0, 1].

Remark 2.1.17. The boundedness of f implies the boundedness of other quantities as follows:

1 -y 1 dy(x) dy(x)
14 — < <= < < 7
( ) bZ € — bl b2 — Sf,q(m) — bl

Remark 2.1.18. Proposition 2.1.13 implies Proposition 2.1.15 as pointed out in [59]. For
example, in the case N € (—o0,1) and K < 0, the right-hand side of (12) is estimated as

Ustye(spl®) 2eyuer _ 1 [K th<ﬁdq($)>7

e
CSCK(Sﬁw(t)) o bl b2

where we used (14), and the right-hand side of this inequality coincides with that in (13).

We denote the ball with radius r centered at « € M by B,.(x). The volume comparison
theorem under an assumption that f is bounded is as follows (see [79, Theorem 3.11]):

Proposition 2.1.19 ([79]). We assume that (M, g, f) satisfies the same condition as in Propo-

sition 2.1.15. Then for ¢ € M and R > r > 0 with R < by /v cK, where w/v/cK := 0o when
K <0, we have

mlanlﬂ'F c
my(Bala)) _ by Jy™ T sac() e dt

my(Br(q)) ~ b [NGs SCK(t)l/C dt
Remark 2.1.20. This corresponds to Wylie-Yeroshkin [136, Theorem 4.5] in the case N =1,
and also to Kuwae-Li [58, Theorem 2.10] if we take ¢ = 4= in the case N € (—oo0, 1].
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Remark 2.1.21. Proposition 2.1.14 implies Proposition 2.1.19. For example, in the case
N € (—o00,1) and K < 0, for r > 0, it follows from (14) that

Byr(q) C Bror(a),  Bur(q) C Byr(q).
This leads us to
1 1
My 20may, (By,ry (0)) > b:mf(BR((J))’ LTIy (Bpps(q)) < b—lmf(Br(q)).
Combining these, we have

bm(Bn(a)) _ "y (Pram @) s (R/n)

n—1

ba my(B,(q)) ~ M 200 (Bfis(@)) — Sex (r/b2)’

and this recovers Proposition 2.1.19.

2.2. HARMONIC FUNCTIONS

In this section, we review Liouville type theorems and gradient estimates. These are ob-
tained as applications of functional inequalities such as Poincaré type inequalities and Sobolev
type inequalities. Some results in this section are generalized in the next chapter.

2.2.1. Functional inequalities. Some functional inequalities are useful in analyzing harmonic
functions. We review them in this subsection. For ¢ € M and r > 0, we denote the set of
compactly supported functions in C*°(B,(q)) by C5°(B,(q)). We have the following Li-Schoen
type local Poincaré inequality (see Li-Schoen [68, Corollary 1.1], also refer to Schoen-Yau
[117, Chapter II, Lemma 6.1]):

Theorem 2.2.1 ([68]). Let (M, g) be an n-dimensional complete Riemannian manifold. For
K >0, we assume

Ricy, > —Kyg.
Then, for p > 1, there exist positive constants C and D depending only on n and p such that

/ Il du, < C’rpeD\/?T/ |Vl? du,
By (q)

B (q)
forany g € M, r >0 and p € Co>(B,(q)).

Remark 2.2.2. This Li-Schoen type Poincaré inequality is an important ingredient in proving
the Neumann-Sobolev type inequality (Theorem 3.1.7).

In [68], as an application of this inequality, we arrive at the following mean value inequality
(see [68, Theorem 1.2], also refer to [117, Theorem 6.2]):

Theorem 2.2.3 ([68]). We assume that (M, g) satisfies the same condition as in Theorem
2.2.1. Let u be a non-negative subharmonic function, i.e., Au > 0. Then there exist positive
constants C' and D such that

1

sup u? < CQ‘D(H‘/E")/ u?® du,
Bao).(a) vg(Br(0)) /B, (0

for any 6 € (0,1/2), r >0, g€ M.

Remark 2.2.4. As is pointed out in [117, Chapter II, Section 6], it leads to the Yau type

Liouville theorem for bounded harmonic functions. This proof of the Yau type Liouville theorem

uses a gradient estimate of harmonic functions (see e.g., [68, Lemma 1)), giving an alternative
proof different from the original proof in Yau [137].
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The mean value of a function ¢ on B,(q) is denoted by

.
©B.(q) ‘= — = @ dmy.
DT i (Bo@) ST

The Neumann-Poincaré inequality holds as follows (see [116, Theorem 5.6.5]):

Theorem 2.2.5 ([12,116]). Let (M, g) be an n-dimensional complete Riemannian manifold.
For K > 0, we assume

Ric, > —Ky.

For p € [1,00), there exist a constant C' > 0 depending only on n,p and a constant D > 0
depending only on n such that

[ lomemalt am <o [ gt am
Br(q) Br(q)

forqe M, r >0 and p € C*(B,(q)).

Remark 2.2.6. This was obtained by Buser [12]. Furthermore, an alternative proof was
presented by Saloff-Coste [116, Theorem 5.6.5] (see also [115, (6)]).

In the case N € [n,00), we possess the following local Sobolev inequality (see Wang et al.
[129, Lemma 3.2]):

Theorem 2.2.7 ([129]). Let (M,g, f) be an n-dimensional weighted Riemannian manifold
withn > 2, and N € [n,00). For K >0, we assume

Ric} > —Ky.

Then there exists a constant C' > 0 depending only on n and N such that

N-—-2
r N —
(f 1ol ang) " < SOV )2 [ (Ve ) dmy,
(a r\q

forany g€ M, r >0 and ¢ € C3°(B,(q)).
Below, we call this type of Sobolev inequality as the Saloff-Coste type Sobolev inequality.

Remark 2.2.8. This is obtained by using the Neumann-Poincaré inequality as is shown in
Saloff-Coste [114, Theorem 2.1]. The proof is omitted in [129]. In the weighted case N = oo,
Wu [133, Lemma 2.4] obtained this under an additional assumption that f is bounded.

We turn to the weighted case with N = oco. Munteanu-Wang obtained the Neumann-
Poincaré inequality for the case N = oo as follows (see [87, Lemma 3.4]):

Theorem 2.2.9 ([87]). Let (M, g, f) be an n-dimensional complete weighted Riemannian man-
ifold. We assume

Ric?o > 0.
For R>0 and g € M, we set
b(R) := sup f.
B3r(q)

There ezist positive constants C' and D depending only on n such that we have

/ 0= ¢p.w| dmy < CeP® 7“2/ [Vel? dmy
By-(x) By(x)

for z € Br(q), 0 <7 < R and v € C*®(B,(z)).
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Remark 2.2.10. Munteanu-Wang [87] obtained this by applying Buser’s argument [12].

As an application, Munteanu-Wang [87] obtained the following Neumann-Sobolev inequality
(see [87, Lemma 3.5]):

Theorem 2.2.11 ([87]). We assume that (M, g, f) satisfies the same condition as in Theorem
2.2.9. There exist positive constants v > 2, C' and D depending only on n such that

v—2
20 \ v C eDPb(r) 2
Y —¥B, "_2> < V/ [Vip|* dmy
(/Brm) | @ m(Br(0)*" b,

for any g€ M, r >0 and p € C*(B,(q)).

Remark 2.2.12. Munteanu-Wang [87, Lemma 3.2] used the argument in Hajtasz-Koskela [47]
to prove this. Their proof does not use the Saloff-Coste type Sobolev inequality.

Under the more general condition of lower bounds of Ric}y , Munteanu-Wang [88] obtained
the Neumann-Poincaré inequality as follows (see [88, Lemma 3.2]):

Theorem 2.2.13 ([88]). Let (M,g, f) be an n-dimensional complete weighted Riemannian
manifold. For b > 0, we assume

Ricf® > —(n—1)g, sup [f(z)— f(y)| <b
yEBl(;r)

for any x € M. Then there exists a constant C' > 0 depending only on n and b such that

2
[ Je-enwl<c [ IVePam
B.(q) B (q)

for any g € M, r >0 and p € C*(B,(q)).

Remark 2.2.14. In the weighted case N = oo, Wu [133, Lemma 2.4] obtained this under an
additional assumption that f is bounded instead of the condition sup,cp, ) |f(z) — f(y)] < b.

The Neumann-Sobolev inequality was generalized as follows (see [88, Lemma 3.3]):

Theorem 2.2.15 ([88]). We assume that (M, g, f) satisfies the same condition as in Propo-
sition 2.2.13. Then there exist constants v > 2 and C' > 0 depending only on n and b such
that

v—2

20 v C
enl® ) [ ot
</Bl(q)| v d mf(Bl(q))z/V By (x) /

for any q € M and ¢ € C*°(B1(q)).

For p > 0, a function p on M, g € M and r > 0, we set

1

P
lelr = (/ \soV’dvg), 1lloor = sup [,
B (q) Br(q)

We denote the (1,2)-Sobolev space on B,(q) by H“?(B,(q)) and the set of compact support
elements of it by HY?(B,(q)). We list two mean value inequalities. The first one is as follows
(see e.g., Li [65, Lemma 11.1]):

Proposition 2.2.16 (cf. [65]). Let (M, g) be an n-dimensional complete Riemannian manifold,
q€ M and u € H"*(B,(q)) be non-negative and satisfy

Au > —ou,
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for some non-negative ¢ € C*(B,.(q)). We set p1 :=n/2 if n > 2, and we take py arbitrary in
(1,00) if n =2, and also py > 0 such that p% + piz = 1. We assume ||¢||, < oo for some p > py,
and that there exists a constant C5°° > 0 such that

e (2
ve(Br(9)) JB.(g) ) R? \vy(B.(q) /B, ‘

for any p € HY2(B,(q)). For fired 6 € (0,1), let C* > 0 be a constant such that

1

Ug(Br(q)) vol
v (Bana)) =<

Then for any o > 0, there exists a constant C"® > 0 depending only on o, p1,p, C°, CV such
that we have

[t so 0 < C° ((Arz)ﬁ +(1— 9)—2>T:’1 M’

UQ(BT(Q)) /e

where we set

dim ) (0B@) [ dvy)"ifp <00,
[0l i p = o0

For ¢ € M and r > 0, we denote the first Neumann eigenvalue of B,(q) by AY¥%(¢,r). The
variational characterization of A\Y¢%(gq,r) is as follows:
/ pdv,=0,.
Br(q)

fBT(q) [Ve|? du,
Proposition 2.2.17 (cf. [65]). Let (M, g) be an n-dimensional complete Riemannian manifold,

J Br(q) ©* dug
The second one is as follows (sec e.g., [65, Lemma 11.2]):

qeE M, r >0, and let u € HY*(B,(q)) be non-negative and satisfy
Au < \u

p€C*(Br(q))

Mg, r) = inf {

for a constant X\ > 0. As in Theorem 2.2.16, we take p1,p2, C5%, and we assume that there
exist the same positive constants C*° for 0 := 1/16. Furthermore, we assume that there exists
a constant ONY > 0 such that we have

2

r? N T r
: 7>\Neu ( 7) 7)\Neu ( 7) > CNP.
mln{16 1 Q74 74 1 q72 =
Then for sufficiently small o > 0, there exists a constant C5** > 0 depending only on o, p;, C5,
CNP Cvl and \r? + 1 such that

el /s .
—_ < OSUP 1nf u.
vy(Brys(q)Vo ~ B, 16()

These mean value inequalities imply the Harnack inequality (see e.g., [65, Theorem 11.1]):

Theorem 2.2.18 ([65]). Let (M, g) be an n-dimensional complete Riemannian manifold, q €
M, r >0, and let w € H**(B,(q)) be non-negative and satisfy

|[Au| < Au
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for some constant X > 0. As in Proposition 2.2.17, we take pi, and we assume that there exist
the same positive constants C5 C for § = 1/16 and CNT. Then there exists a constant
CHer > (0 depending only on n,p;, C°, C*" CNP and M\r? + 1 such that
sup u < O inf  w.
Br/16(q) B7'/16(q)

2.2.2. Liouville type theorems and gradient estimates for harmonic functions. We
call w € C®(M) an f-harmonic function if Apu = 0. Brighton [11] generalized the Yau type
Liouville theorem for bounded harmonic functions to the weighted case N = oo as follows (see
[11, Theorem 1]):

Theorem 2.2.19 ([11]). Let (M,g, f) be a complete weighted Riemannian manifold. We
assume

Ric‘}O > 0.
Then any bounded f-harmonic function must be a constant function.

Remark 2.2.20. This is obtained as an application of a new type of gradient estimate (see
[11, Theorem 2]). In obtaining this gradient estimate, Brighton [11] modified the Yau type
gradient estimate.

In [11], he also pointed out that we cannot obtain the Yau type Liouville theorem for
positive harmonic functions by showing a counterexample:

Example 2.2.21 ([11]). For x € R", let 21 denote the first coordinate. We set f(z) := z; and
u(z) := e*t. Then we have Ayu = 0 and (R",[ - |, f) satisfies Ric}® > 0.

Yau'’s Liouville theorem for positive harmonic functions was generalized by Wu [131] as
follows (see [131, Corollary 3.4]):

Theorem 2.2.22 ([131]). Let (M, g, f) be an n-dimensional complete non-compact weighted
Riemannian manifold and N € [n,00). We assume
. N
Ricy > 0.
Then any positive f-harmonic function must be a constant function.
Remark 2.2.23. Yau [137, Corollary 1] obtained the unweighted case f = 0 by a gradient

estimate for harmonic functions. Wu [131] used the gradient estimate for a more general
equation Ajsu + Au = 0, which is an adaptation of arguments in [67, Theorem 6.1].

A function ¢ on M is said to have linear growth rate of by if we have ¢(z) < bid, () + b for
some ¢ € M and positive constants by, by. Also, a function ¢ is said to be of sublinear growth
if we have

o)l _,
dy(x) o0 dy()

for some ¢ € M. The following gradient estimate was obtained by Munteanu-Wang [87] (see
[87, Theorem 3.1}):

Theorem 2.2.24 ([87]). Let (M, g, f) be an n-dimensional complete non-compact weighted
Riemannian manifold. For b > 0, we assume that f has linear growth late b and

Ric;O > 0.
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Let u be a positive f-harmonic function. Then there exists a constant C' > 0 depending only
on n such that

|Vlogu| < Cb.

Remark 2.2.25. Munteanu-Wang [87] modified the arguments of the Brighton type gradient
estimate to prove this theorem.

As a corollary, we possess the following Liouville property (see [87, Corollary 3.2]):

Corollary 2.2.26 ([87]). Let (M, g, f) be a complete non-compact weighted Riemannian man-
ifold. We assume that f is of sublinear growth and

Riccf>O > 0.
Then any positive f-harmonic function must be a constant function.
An example shows that this is sharp as follows (see [87, Example 1.2]):
Example 2.2.27 ([87]). Let g denote the Riemannian product metric of R x S"~1. For a > 0,

t € Rand w € S, we set f(t,w) := at and u(t,w) := e*. Then we have Ayu = 0 and
(R x 8", g, f) satisfies Ric7® > 0.

As for sublinear growth harmonic functions, Munteanu-Wang [87] showed the following
Cheng type Liouville property (see [87, Theorem 3.2]):

Theorem 2.2.28 ([87]). Let (M, g, f) be a complete non-compact weighted Riemannian man-
ifold. We assume that [ is bounded and

Ric;O > 0.
Then any sublinear growth f-harmonic function must be a constant function.
Remark 2.2.29. We refer to Theorem 1.3.2 for the unweighted case f = 0. Munteanu-Wang

[87] proved this by combining the De Giorgi-Nash-Moser theory and the Brighton type gradient
estimate. This was a new proof even for the unweighted case f = 0.

As a generalization of the gradient estimate in Theorem 2.2.24, Munteanu-Wang [87] ob-
tained the following gradient estimate (see [87, Theorem 3.1]):

Theorem 2.2.30 ([88]). Let (M,g, f) be an n-dimensional complete non-compact weighted
Riemannian manifold. For K > 0 and b > 0, we assume

RicP > —Kg,  sup |f(y) ~ f(a)| <

yEB| ()
for any x € M. Let u be a positive f-harmonic function. Then there exists a constant C' > 0
depending only on n,b, K such that
|Vlogul < C.
Remark 2.2.31. Munteanu-Wang [88] proved this by the De Giorgi-Nash-Moser theory.

We turn to the LP-Liouville theorem. Wu [133] obtained the weighted case N = oo as
follows (see [133, Theorem 6.1]):

Theorem 2.2.32. Let (M, g, f) be an n-dimensional complete non-compact weighted Riemann-
ian manifold. For b > 0, we assume |f| < b. Then there ezists a constant § > 0 depending only
on n and b such that the following assertion holds:
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We assume that there exists ¢ € M such that
Ricj"co > 5dq_2g
when d, is sufficiently large. Let uw be a non-negative LP(my)-function with p € (0,00) with
Asu > 0. Then u is identically zero.

Remark 2.2.33. For the unweighted case f = 0, we refer to Theorem 1.3.4.

2.3. EIGENFUNCTIONS

We review various Cheng type estimates of upper bounds of eigenvalue. Especially in the
weighted case N = oo, we note that Munteanu-Wang applied the Liouville theorem to obtain
the rigidity of Cheng type inequality.

On (M, g, f), we denote the first eigenvalue of the p-Laplacian by Af,. The variational
characterization of Ay, is as follows:

VolP dm
Arpi= inf M
PECE (M) fM @P dmy

This coincides with the first eigenvalue of the weighted Laplacian when p = 2. Wang [128]
obtained the following Cheng type theorem (see [128, Theorem 3.2]):

Theorem 2.3.1 ([128]). Let (M, g, f) be an n-dimensional complete non-compact weighted
Riemannian manifold and N € [n,00). For K > 0, we assume

Ric} > —Kg.

Ay < ((N—M) |
p

Remark 2.3.2. Wang [128] used the volume comparison theorem to show this inequality. For
the case p = 2, Wu [131, Theorem 1.1] and Wang [127, Theorem 1.1] obtained the Cheng type
inequality by the gradient estimate of solutions of Aju + Au = 0 for some constant A > 0.

Then we have

Remark 2.3.3. For the unweighted case f = 0 and p = 2, we refer to Theorem 1.3.5. Cheng
[25] obtained it by an explicit calculation of the eigenfunctions of the model spaces without
using the gradient estimates or the volume comparison theorems. Schoen-Yau [117, Chapter
IT1, Section 3| pointed out that the theory of heat kernel simplifies the proof. There is also a
different proof using a gradient estimate of solutions of Au + Au = 0 for some constant A > 0
(see Li [67, Corollary 6.4]).

We turn to the weighted case with N = co. Wang [128] obtained the following inequality
(see 128, Theorem 3.3]):

Theorem 2.3.4 ([128]). Let (M, g, f) be an n-dimensional complete non-compact weighted
Riemannian manifold. For K > 0 and b > 0, we assume

i of
Ric® > — K - > —
lcf — g? 07“ — b7

where r(z) := d,(z) for some fived ¢ € M. Then we have

\ («/(n—l)Ker)p'
p

fp S

30



For the case p = 2 and N = oo, we list two other types below. The first one is as follows
(sce Munteanu-Wang [87, Theorem 2.2]):

Theorem 2.3.5 ([87]). Let (M, g, f) be a complete non-compact weighted Riemannian mani-
fold. For b > 0, we assume that f has linear growth rate b and

Ric‘f>O > 0.

Then we have

The second one is as follows (see Munteanu-Wang [88, Theorem 2.2)):

Theorem 2.3.6 ([88]). Let (M, g, f) be a complete non-compact weighted Riemannian mani-
fold. For b > 0, we assume that f has a linear growth rate b and

Ric}” > —(n — 1)g.
Then we have
(n—1+b)?
—
Remark 2.3.7. Muntcanu-Wang [87, 88] used volume comparison theorems to prove these
Cheng type inequalities, and their rigidities were also obtained. In the weighted case N = oo,
under the assumption that |V f| is bounded, Su-Zhang [121, Proposition 2.1] also obtained this
together with its rigidity. Wu [132, Theorem A] also obtained a Cheng type inequality by the
gradient estimate of solutions of Aju + Au = 0.

Ao <

2.4. POROUS MEDIUM EQUATION

In this section, we give the Li-Yau gradient estimate and Aronson-Bénilan gradient estimate.
Li-Yau [72] obtained the gradient estimate as follows (see Li-Yau [72, Theorem 1.2]):

Theorem 2.4.1 ([72]). Let (M, g) be an n-dimensional complete Riemannian manifold. For
K>0,ge M andr >0, we assume

Ric, > —Kyg
on B.(q). Let u be a positive smooth solution of Oyu = Au on By(2r) x [0,T]. Then for any
a > 1, there exists a constant C' > 0 depending only on n such that

|Vu|? ou _Ca* [ o na’K  na
_ a2 < K
“ ()4—1+\Fr +2(()z—1)+ 2t

2

u? u r?
on B.(q) x (0,T7].
By letting r — oo, we have the following estimate (see [72, Theorem 1.3]):

Corollary 2.4.2 ([72]). Let (M, g) be an n-dimensional complete Riemannian manifold. For
K >0, we assume

Ric, > —Kyg.
Let u be a positive smooth solution to Oyu = Au on M x [0,T]. Then for any o > 1, we have
|Vu|? Oyu na’K na?
—a— < +
u? u 20a—1) 2t
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on M x (0,T). In particular, if K =0, we have
|Vul? O o n

15 —
(15) u? u T2t

on M x (0,T].

Aronson-Bénilan type gradient estimates for the porous medium equation can be regarded as
a counterpart of Li-Yau type gradient estimates for the heat equation. Huang-Li [50] obtained
the following Aronson-Bénilan type estimate (see [50, Theorem 1.6]):

Theorem 2.4.3 ([50]). Let (M, g, f) be an n-dimensional complete weighted Riemannian man-
ifold and N € [n,00). For K >0, ¢ € M and r > 0, we assume

Ricjcv > —Kg

on Boy.(q). Let u be a positive smooth solution to Oyu = Apu™ with m > 1 on Ba,(q) x [0,T].
We set

N(m—1
= u™t, L:=(m—-1) sup v, a:= (m—)
m—1 Ba,(p)x[0,T7] Nm—1)+2

) e—

Then for any a > 1, there exist positive constants C and D depending only on N such that
|Vol|? v < ac®mL'/? C
— ai J—
T [(a=DV2(m—-1)12r

1 KL DL K 2
1/2 - \/
+a a{t+2(u—1)+ 2 <1+ Krcoth( N_1r>>}
on B(q) x (0,77].

Remark 2.4.4. In the unweighted case f = 0, this was obtained by Huang-Huang-Li [49, The-
orem 1.1], which is an improvement of Aronson-Bénilan gradient estimate by Lu-Ni-Vazquez-
Villani [78, Theorem 3.3].

v v

By letting r — oo, we have the following estimate (see e.g., [50, Theorem 1.6]):

Corollary 2.4.5 ([50]). Let (M,g, f) be an n-dimensional complete non-compact weighted
Riemannian manifold and N € [n,00). For K > 0, we assume

Ric} > —Kg.
Let w be a positive smooth solution to Oyu = Apu™ with m >1 on M x [0,T]. We set
) N(m —1
vi= " u™t, L:=(m—1) sup v, a:= _Nm—1) ) .
m—1 Mx[0,T] N(m—1)+2

Then for any o > 1, we have

2
|Vl —aatvgaoﬂ(l KL )

v v ¥+2(a—1)

on M x (0, T]. In particular, if K =0, we have

(16)

Vo> O _a
LI B g
v v t
on M x (0,T].
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Remark 2.4.6. In the unweighted case f = 0, a gradient estimate as in (16) was obtained
by Vazquez [125, Proposition 11.12], and Li-Li [73, Theorem 7.6] generalized it on compact
weighted Riemannian manifolds in the case N € [n,00). Their proof on compact manifolds is
simpler than the case of non-compact manifolds.

Remark 2.4.7. Below, we observe that the Aronson-Bénilan type estimate (16) recovers the
Li-Yau type gradient estimate when m 1 in the unweighted case f = 0. We have

Vo =mu™*Vu, 9 =mu™*{m(m —1)|Vu*u" > + mu™ " Au} .

Combining these, the right-hand side of the Aronson-Bénilan estimate (16) is calculated as

Vo2 9

|:| — %U = (m—1) (mu™*|Vu> — mu"*Au) .
Then we see that (16) implies
(17) mu™ 3| Vul? — mu™ 2 Au < n

(n(m—1)+2)¢t
Letting m (1, we obtain
[Vul?  Au o

wr w2t
This coincides with the Li-Yau gradient estimate (15). We also remark that (17) coincides with
the classical Aronson-Bénilan estimate (5) on Euclidean space.
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CHAPTER 3

Analysis of harmonic functions

In this chapter, we show a Liouville theorem for harmonic functions of sublinear growth
(Theorem 3.3.4), an LP-Liouville theorem (Theorem 3.2.4) and a gradient estimate (Theorem
3.4.1). These are obtained using the mean value inequality (Theorem 3.1.8) under lower bounds
of Ric}v with e-range.

3.1. FUNCTIONAL INEQUALITIES

The purpose of this section is to obtain the mean value inequality. In order to obtain the
mean value inequality, we first present a Neumann-Sobolev type inequality (Theorem 3.1.7).
Although Munteanu-Wang obtained this by the argument in Hajlasz-Koskela [47], we take
a different approach. Ingredients of our approach are the Neumann-Poincaré type inequality
(Proposition 3.1.1), the Saloff-Coste type Sobolev inequality (Proposition 3.1.2) and the Li-
Schoen type Poincaré inequality (Proposition 3.1.6).

3.1.1. Sobolev inequality. Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold, N € (—o0,1] U [n, 0] and ¢ € R in the e-range. For x,y € M and r > 0, we set

10-af@) N
K. (z) :==max<0, sup (—e ~=1 Ricy (w7w)> . K.(y,r):= sup K.(z).

welz M 2€B,(y)

The Neumann-Poincaré¢ type inequality holds as follows (see [38, Theorem 3.1]):

Proposition 3.1.1 ([38]). Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold, N € (—o0,1] U [n,00] and ¢ € R in the e-range. For by > by > 0 we assume

Then for ¢ :=¢(n,N,e) as in (9), g € M, r >0 and ¢ € C>*(B,(q)), we have

2 n 2b K.(q,2r)2r
/ o= ¢B,| dmy <2 (b2> exp (5( )b> 7“2/ V| dmy.
Br(q) 1 c 1 Bar(q)
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Proor. For z,y € M, let v,, denote a minimal geodesic connecting from zx to y parame-
terized by arclength. For 7 € [0, 1], we set I, ,(7) := 7,4 (7d(x,y)). We have

(18)

/ o — ¢B,(g|* dmy = /
B (a) B(a)

dmy(x)

o) —oly) o
/BT@ my(Br(q)) dmy ()

<owmo b | ( dooles) ; >\ dT)2 dimy () dmy(y)
e / y / y / A2 les) )| ar amy(a) amyt)
- mf(Br(Q)) / r<q>/ (@) /1/2 SO;ZW 7 | r dmyte) dms o)

where we used I, ,(7) = 1,,.(1 — 7) in the last equality.
We set the unit vector w := 0yy,4(t)|=0 and J(x,t,w) be the Jacobian of the map exp, :
T,M — M at tw with respect to my, i.e., we have

dmy = J(z,t,w) dt dw.

For 7 € [0, 1], we denote the Jacobian of the map &, ; : y — v, ,(7d(x,y)) by J,,. First, we
estimate J, , from below. For ¢ := 7d(z,y), we obtain

t " J(z,tw)
Jm.‘r Yy)= ( ) — .
W= \aGw) T diw )0
We denote the reparametrization (11) by

b ey
(19) a0 = [ ag
0

where v := 7,,. It follows from the argument in [79, Theorem 3.6] that the quantity
is non-increasing. This yields

( t )" J(z,t,w) - < t )" s_cx(s,())V/°
d(a,y)) J(xdz,y),w) ~ \d(x,y)) s_cx(sy(d(z,y)))"/e
Below, we set K := K.(q,2r). For x,y € B.(¢q) and ¢ € (d(x,y)/2,d(x,y)), this leads us to

1 skl (D)
FrW) 2 e, Al )

. (W) exp (—\/fsm(:c,y)))
1 by K 2r
o (2@) P < cbl> |

o) ()
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we see
Jor(y) = F(r)™
for 7 € [1/2,1]. Then the last term of (18) is estimated as follows:

18 <F /T(Q)/T(Q) //2
o [ y / y / V(Lo (6) P, )2 dt iy () dimy (1)

< 47F(r) / / y / IVSley ) ary) dm(z) )

1
< 4r2F(r)/ / / |V(2)| dmy(z) dmy(z) dr
0 +(q) J Pa,r (Br(q))

< 4r2F(r)mf(Br(q))/ " |V<p|2 dmy,
B21‘ q

de(l my

0 Jm77(t) dr dmy(z) dmy(y)

where we used @, -(B,(¢q)) C Ba-(q) in the last inequality. We complete the proof. O
The Saloff-Coste type local Sobolev inequality is as follows (sec [38, Theorem 3.2]):

Proposition 3.1.2 ([38]). We assume that (M, g. f) satisfies the same condition as in Theorem
3.1.1. We set

(20) V= {3 ife=1,

1+% if c < 1.

There exist positive constants C' and D depending only on n,c,by, by such that

(Tn/f(;r((])) /BT(Q)

for anyqe M, r >0, and p € C5*(B,(q)).

Remark 3.1.3. We refer to [37, Theorem 7] and [38, Theorem 3.1]. The difference between
them is whether the term K.(q, ) appears or not.

v—2

) ’ < Cexp (D K.(q,10r) 7’) r?

1 / 2, -2 2
X ——— Vol +r=¢") dm
m(B:(q)) /b, (v ) dms

We prepare two lemmas to prove Proposition 3.1.2. The first lemma is as follows (see
[38, Lemma 3.1]):

Lemma 3.1.4 ([38]). We assume that (M, g, f) satisfies the same condition as in Proposition
3.1.1. Let qe M, r >0, p € C§°(B,(q)). For0<s<r, we set
1
Xs(2,2) = ———1B.0)(2), pslx ::/ Xs(x, 2)o(2) dmg(2).
)= g e e = [ e e dmg(o

Then we have
b 2 11y (s () K.(q.107) 6r
oo (1) i) (1) 000 g (Rl 10 60 el
! 5 ¢ a ) my(B(q))
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PrROOF. We have

(21) lellz < llsllF llosll%.
We first estimate ||@4||; from above. By Proposition 2.1.19, for ro > r; > 0 and x € M, we see
2+1 1+
(22) mf(BT2 (x)) S <b2) +C (TQ> +C eXp KE(£7 7’2) Q .
my (B, (x)) b1 T c b

For x € supp ¢ and z € suppxs(z, -), we have d(z,z) < s, and By(x) C Big(q). Then using
(22), we obtain

ms(B(2)) < my(Bas(e))
< (5.2 () "zHiexp( Kelz,25) i)

C

2+
¢ 1 I(f3 , 1 2
<mpo) ()2 e ( Kelg.10r) bf) |

C

This leads us to

oL+t by \2He K-(q,10r) 2s
o)< —— " (2 2 2 1 (2).
Xs(@,2) my(Bs(2)) (b1> xp c by 5@ ()

Hence, we find

I A K.(q,10r) 2s
ol < [ amy(o) A{W() exp< cb1> 1Bs<z><z>|<p<z>r} ()

1
b\t K.(q,10r) 2s

Next, we estimate ||@s||loo. From (22), for = € supp ¢,, we have

Since B,.(q) N Bs(x) # 0, we see K.(x,4r) < K.(g,10r). Combining these, we see

This leads us to
(4r>1+1 K. (q,10r) 4r 1 H/ ] d
— exp — () dm
s ¢ b ) my(Br(q) ||/ Bel) d

[}

by 2+1
< | 2=

<(b2)2+c<4,»>1+cexp Ko(¢,10r) 47\ Jlelh
—\h S c by mf(Br(Q))'

Finally combining these with (21), we deduce

J02)
||s05|!2§<b2> 24(1+1) (4) exp< Ks<q7107">47“+2s> el

[e¢]

by 5 c 2b, my(B,(q))"/?
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We complete the proof. O
The second lemma is as follows (sce [38, Lemma 3.2]):

Lemma 3.1.5 ([38]). We assume that (M, g, f) satisfies the same condition as in Proposition
3.1.1. Let g€ M, r >0 and ¢ € C§°(B,(q)). Then we have

3+2
son (b \ e K.(q,10r) 11r
o~ el <202 (%) exp( e o) vl

ProOOF. For the brevity of notations, we set C; and Cy as follows:

b\ K.(q,1
C, = <2> 161" < exp ( Re(g,10r) OT)ST> :

C bl

1
2by\ © K.(q,10r) 4r
= e
Cy ( b ) exp < p b

For fixed s € (0,7), we see that there exists a set X satisfying the following conditions:

o for T,y € Xa BS/Q(T) N Bs/?(y) = (Z);

o for any = € By, (q), there exists y € X such that By (z) N Byja(y) # 0.
We label X = {z; € X | i € I}, and we set B; := B,/s(z;) and kB; := Bs)/2(x;) for k > 0.
We have

icl,
Indeed, for x € By,(q), if ¢ X, there exists y € X such that B,s(x) N By/2(y) # 0. Then for
z € Byjo(x) N Byja(y), we obtain d(z,y) < d(x,2) + d(z,y) < s. This implies x € B,(y). The
other case x € X N By, (q) also follows immediately.
For z € By,(q), we set
I(z):={ieI(zx) |z €8B;}, N,(x):=H#I,(x),

and let B, be an element of {B; | i € I,(z)} such that € 2B,. First, we estimate N,(z). For
i € I,(r), we have B, C 16B; C Bg,(x;). Together with Proposition 2.1.19, we obtain

K (zi,8r) 8r

241
mg(B) <mys(16B;) < be 16'*< exp
b ¢ b1

) my(B;) < Crmy(By).
1
This implies

N(z)my(B.)
(23) > my(B) = #

i€l (x)
Let 2y € B, be the center of B,. We have

b\ K.
Z my(B;) < mg(16B,) < <b2> 16" "< exp ( (xg,8r)8r> < Cymy(By).

iely(@) 1 ¢ by
Together with (23), this leads us to
Ny(z) m(Be)
——> < C Bx )
c, < Cymy(By)
which implies N,(x) < C} =: N,.
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We have

(24) PEEDY / (Ip = pul? + lpus, — 9ul?) dmy.
i€lq(2)
It follows from Proposition 3.1.1 and By,(x;) C Bio.(q) that
(25) | o=l amp<cost | (9o amy.
4B; 8B;

For any y € 2B;, since Ba,.(z;) C Bior(q), we find

b K.(q,107) 25
ms(B()) < ms(Bas(y)) < my(By(x)) ( bj) P+ e ( @)b> |
Combining these, we have

(26) / oas, — pol? dm;
2B;

1
< /QBi dmy(y) /Bs(u)ﬂ”(Bs(y))(%Bi(y) — ) dmy

1 b 1 \/WQS / /
o 2 +C B 1
my(Bs (w)) <1)1> exp( dmy |0ap, tp| my

K.(q,10r) 2
<b2> 21+L exp Ke(q,10r) 2r ;52 / Vol dm.
by & by 8B; ‘

Here, also for the brevity of notations, we set C3 as follows:

CS =4 by 21+c exp MQT Cs.
bl C bl

2

IN

IN

It follows from (23), (24), (26) that

lo = gulls < Cy 2 S / [Vl dmy < CoNo 2]Vl

i€ly

ie.,

o — @sll2 < v/ NoCs 5| Veo|o.

We complete the proof. O

PROOF OF PROPOSITION 3.1.2. Below, for the brevity of notations, we set Cy, Cs, Cy as

follows:
2+% 1 1
Cy = <b2) gz(1+%) exp < Kc(q,10r) 6?”) ,
c

bl 2a
son (b *T0 K-(q,10r) 11
Cy = 28Fct+2 <b2> exp ( Ke(g, 10r) r) ,
1 c a
VC4
Cy = —.
0 8Cs
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For 0 < s < r, it follows from Lemma 3.1.4 and Lemma 3.1.5 that

(27) lellz < llgsllz + lle — @sll2
04 r %
<————5 () el +Cs sVl
my (B.(q))"” <3>
Cy T 2 ( ||90||2>
< (Z +4Cs s [ Vol + .
gy () el s (19el+ 55

Let sp minimize the right-hand side of (27). We have

G <_z
my (B.(q)"? \ 2

Substituting s = s¢ to (27), a straightforward calculation leads us to

r

)0 ¥ el + 4G 0 (19l + 122 o,

L Y v lelf \ 2
< v+2 v+2 v+2 _— .
ol < (C4O6 +4C5C > (rIVells + lloll2) (mf(Br(q))

Then there exist positive constants C; and Cy depending only on n, by, be, ¢ such that
C,CE*? +4C5C™ < Crexp (ng/KE(q, 10r) r) .
Then the desired assertion follows from [114, Theorem 2.2]. U

Before we give the Neumann-Sobolev type inequality in Theorem 3.1.7, we show the follow-
ing Li-Schoen type Poincaré inequality (see [38, Lemma 3.3]):

Proposition 3.1.6 ([38]). We assume that (M, g, f) satisfies the same condition as in Propo-
sition 3.1.1. We fix p > 1. Then there exist positive constants C' and D depending only on
P, b1, ba, ¢ such that

/ lo|P dmy < C'exp (D\/Ka(q75r) 1“)/ [VlP dmy
Br(q)

Br(q)
forany g€ M, r >0 and ¢ € C3°(B,(q)).

PROOF. We set K := K.(q,5r). We fix y € 0Bs,(q). It follows from Proposition 2.1.15
that

1 [K VeK 1 [K b
28 Apd, < ) Seoth | Y04, ) < —/5
(28) 1% =5 Ve @ <62 y)-zn ¢ " bed,

on Bs,(q). For x € B,.(q), we have 2r < d,(x) < 4r. Hence,
1 |K by
Ard, < —\/— =:
% = bl C * 26161“ o

2
(29) Ape 7% = e % (—gAyd, + 0?) > %e_”dy.

This implies

For ¢ € C§°(B,(q)) with ¢ >0, (29) and integration by parts yields

0.2

5 pe T < cr/ e " (Vip,Vd,) dm; < cr/ e | V| dmy.
Br(q) Br(q) Br(q)
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From 2r < d,(z) < 4r, we have

0.2

— pe 17 dmy < 0/ e 27" |V| dmy.
2 Jp@ B.(a)

This leads us to
(30) | pdmp<coen i [ vl am,,
Br(q) Br(q)

where Cy and Cyq are positive constants depending only on ¢, by, by. We replace ¢ with || in
(30), and using |V|p|| = |[Vy|, we see

/ lo| dmy < C’greC““/E”/ V| dmy.
By (q) Br(q)

For p > 1, we replace ¢ with ¢? in (30), and the Holder inequality imply

/ (P dmy < CyreCoVEr / Pl V| dm;
BT(q) Br(q)

P 1

p=1 1
< Cyre@0VEry (/ lsol” dmf) ' </ Vel dmf) '
Br(q) Br(q)

p—1

By dividing both sides by < J B.(a) lo|P dm f) " we see that the desired assertion follows. [

We are now in a position to show the Neumann-Sobolev inequality (see [38, Theorme 3.3]):

Theorem 3.1.7 ([38]). We assume that (M, g, f) satisfies the same condition as in Proposition
3.1.1. We set v > 2 as in (20). There exist positive constants C' and D depending only on
n, by, ba, ¢ such that

v=2
7“2

1 / 2v_ ) v 2
—_— p|7=2 dm < Cexp|DvK.(q,10r)r / V|* dm
(@ foy o 0 (DY) ) fy 177
foranyqe M, r >0 and p € C3°(B,(q)).

PRrOOF. By Proposition 3.1.2, there exist positive constants Cy and Cy¢ depending only on
n, ¢, by, by such that

v—2

1 v v
31 / v=2 dm ) < Cyexp (Cron/ K. (q,10r) 1) 72
0 (g o 7 do vexp (Cuoy/Kela, 10) )
1 / 2, -2 2
X ——————— Vol +r77p*) dmy.
ms(B,(q)) Br(q) (| | ) !

It follows from Proposition 3.1.6 that there exist positive constants C; and Cie depending only
on ¢, by, by such that

/ ©? dmy < Cyyexp (Clzx/KE(q, 10r) r) / |V<,0|2 dmy.
By (q)

Br(a)
Hence, the right-hand side of (31) is estimated as

2
C, Chov/ K-(q,10 / Vol> +r7%p?) d
QGXp< 10 (q T‘)T) mf(Br(Q)) B:(a) (| Qol r 90) mf
2
< Cyexp <ClO\/KE(q, 10r) 7“) (1 + C11exp (Cu\/KE(q,Sr) r)) r/ ( )]V<p|2 dmy.
Br(q

my(B,(q))
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This yields the desired assertion. 0

3.1.2. Mean value inequality. Functional inequalities in the previous subsection imply the
mean value inequality as follows (see [38, Theorem 3.4)):

Theorem 3.1.8 ([38]). We assume that (M, g, f) satisfies the same condition as in Proposition
3.1.1. For a constant X > 0, let u be a non-negative smooth function with Ayu > —Au. We set

v > 2 as in (20). Then there ezist positive constants C and D depending only on n,p,by, by, ¢
such that we have

16 2 1 v
< ¢ 1 2 R p
[|2]] 00,6 < C’{exp (D K.(q, 07’)7’) ()\7’ + i _9)2>} (mf(Bér(Q)) /Br(q)u dmf)
for anyqe M, r >0 and 6 € (0,1).

PRrOOF. We fix a constant a > 1, and let ¢ € C5°(B,(q)). By a straightforward calculation,
we see

/ IV (u) | diny

Br(q)

= [ (Ve 20 (0, V) 02 TP i
By (q)

S/ {IVe u* + a (o u® Ve, Vu) + (2a — 1)p*u* *|Vul*) } dmy
Br(q)

= / |V|?u dm; — a/ O* u** A pu dmy
Br(q)

Br(q)
< / IVo|* u®* dmy + a/ Ao® u*® dmy.
B:(q) By (q)

Together with the Neumann-Sobolev inequality in Theorem 3.1.7, this leads us to
(32)

CSOb(T) 1 2 2a\8 # 1 2 2 2.2
@ < @ «
" (mf(Br(q)) /BT@ (") dmf) ~ my(B:(q)) /qu) (aXemu™ +[Vela™) dmy.

where, using positive constants Ci3 and C14 depending on n, by, bo, ¢, we set

-1
B = ” i 5 C5b(r) = {013 exp (014\/K€(q, 10r) r)} .
For o,p > 0 with o + p < r, we take ¢ € C3°(Bg(q)) satistying the following conditions:
e 0<p=<1
e v =1on B,(q);
e v =0o0n B.(q)\Byyo(9);
o [Vy| <2/0 on Byis(q)\B,(q)-
Substituting this to (32), we have

(mfwlr(q)) /M - dmf) E (mf<Blr<q>> /BT@ ()" dmf> B

r? / ( 4
< au + — u2“> dmy.
CS(r)ms(B,(q)) /5,000 o’ !




This yields
(33)

( 1 / 208 4 )2&1ﬁ<{ r (/\-1—4)}210 ! / 2 dm "’
—— u am ~ — « — —— u am .
m(Br() 5, ! CSob(r) o? m(B.(9)) Js,, . /

First, we show the case of p > 2. For i > 0, we set

(1-0)r

pf > 1, 0i = o pi::r—20j>9r.
j=i

Q,; =

For i > 0, we iterate the process of substituting oo = «;, p = p; and o = o; to (33), and we have

1 o
my(Br(q)) Js, (g !

e o)) b o)

As for the left-hand side, we possess the following estimate:

1

I ! / 2058 g W>1' ( ! / 2048 g )ﬁ [
m | ——=—F— Ut am > lm | —————= umtt dmy = ||U]|co,0r
=00 \ ms(B.()) Ji,,(0 ! =00 \ms(B,(a)) Jp,.)

since lim;_, o 2;8 = 00. As for the right-hand side of (34), we find

= 4\ % PA 16 20 i
- —_ < - . 2(1‘7-
| I (a])\+ 0]2) < < 5 + (1—9)2r2> max {f,4}

§=0
s
p)\ 16 p(B—1) S1(8)
< (2+ (1—9)27“2) max{3,4} 7 ,

where we put S;(8) = Y0, 7877 < oo. Putting these estimates together, we see that (34) is
p §=0
estimated as

B 1

pAT? 16 )pwn ( 1 / >p

35 Ul|oo,or < Cp,r ( + _— u? dm ,
Bl = CE I 5 g g (B@) S

where we set

1 51(8)

C(p,r) = <CS,)(T)> o max{f3,4} » .

Hence, we arrive at the desired assertion for the case of p > 2.
Next, we show in the case of p < 2. For (35) with p = 2, we see

5 1
16 2(p-1) 1 2

Ul sor < C(2,7 </\7“2+> (/ u2dm> '

[ulloc0r < C(2,7) (1 0) mi(B(0) Jo.@)
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For any Or < p <r and 0 < n < 1, this leads us to

8
C(2,7) ( ) 16 >z<m>
36 Wloonp < —mte ( Ap + ulls
( ) || || np mf(Bp(q))l/Q (1_77)2 || ||2p
C2,r ( ) 16 ) -
< AT+ w |5 2,
m(Bar(q))'/? (1—n)? [[ull2p [|w]l.5

where we used

3
/ u? dms| < / u?P ||u||§;ﬁ dmy
By(q) By(q)

For i > 1, we set

-
=

MBS

’ 1-£
([ wramp)
Bp(q)

po:=0r, pi=0r+(1—10 ZZJ ;= Pizt

We substitute p = p; and n = n; to (36), and we deduce

B7)  Nulloosr = l[ullop
= ”uHao,mpl
B
2(B-1) P _p
< e e 2 [l 2
g mf Ba,,, q 1/2 2 D,p1 »PL
B
2(B-1) P _r
= N [ s
mf B9 q) 1/2 2 p,p 12p:
C(2,7) ) ey 2
< 7 (Bon(q)) 7 (Bon(q)) 2 AT + E [ullpon
T

SIS}

— HU/”OOP1

AN
[} -
—
3
~
502
ﬁl\D
Qﬁ

N~—
\/
=
~
)
N
>
<

(v}
+
—
—

] =

(@)
<
N—
[\
N————

%

|

]:

; B (1-2)y"
7 16 - 2% \ 28-1 »
< ||u||007' H { 1/2 (A 7"2 + (1 o 9)2) ”uHPJ'} )

Jj=1

where the last inequality used the following estimate:

1 p 0+(1-0) {:12—i< 27
L=mn;  pj—=pia 277(1-9) T 1-0
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Concerning the right-hand side of (37), we possess the following estimates:

A

7j=1
oo _B (1_2)j_1
16 IRV
2 JZ
SH{()\r +(1_9)2> 22}
7=1
16 \mD :
pF— v S p)\J—1
= [ A2 9% 3521 4(1-5)
( " 9>2> J /
where we put S(p) := § ZJ (1= )j_l < 00, and
. 1 Pi ]_ E
tim &P =1, i H [l =

Combining these estimates with (37), we obtain

g )M_”?S“’”Hunp,r
(=02)  mi(Borla))

Hence, we arrive at the desired assertion also for the case p < 2. We complete the proof. [

lullscsr < C(2,7)7 (W N

3.2. LP-LIOUVILLE THEOREM

In this section, we address an LP-Liouville property (Theorem 3.2.4), which is a generaliza-
tion of the Li-Schoen type LP-Liouville property (Theorem 1.3.4).
We possess the following LP-Liouville property for p > 1 (see [106, Theorem 1.1}):

Lemma 3.2.1 (cf.[106]). Let (M,g.f) be a complete weighted Riemannian manifold. For
p > 1, let u be a smooth non-negative LP(my)-function satisfying Ayu > 0. Then u is a
constant function.

Remark 3.2.2. Pigola-Rigoli-Setti [106, Theorem 1.1] obtained this for more general functions
(see also [106, Remark 15]). A simple proof for the unweighted case f = 0 can be found in
[117, Chapter II, Theorem 6.3] (see also [38, Theorem 4.1]).

The relative comparison theorem is as follows (see [38, Theorem 4.2]):

Proposition 3.2.3 ([38]). Let (M, g, f) be an n-dimensional complete weighted Riemannian
manifold, N € (—o0,1] U [n,o0] and € € R in the e-range. For K > 0 and by > by > 0, we
assume

Rlcf > —Ke4<i 1lwg, b < eﬂiﬁf < b,.
Then for ¢ :=c(n,N,e) asin (9), g€ M, R>r >0 and 0 < S <r, we have

i (Bs(g)) 2 D o 5ok <t>1/c at
S — b fR/bl oK 1/C dt
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PROOF. For a unit tangent vector w € T, M, let v : [0,d) — R be the unit speed geodesic
with ¥ = w, and {e;}; be an orthonormal basis with e, = w, also let {F;}?; denote the
parallel vector field along v with E;(0) = e;. We set a matrix A such that

Aij(t) = g(Ei(t), E5(t)),
and
Jo(t) = (det A(t))@ v, J(t) 1= e OO (det A(t))2, Ji(7) = J(s3 (7))
for t € [0,d) and 7 € [0, s,(d)), where

¢
(38) s, () = / o S FO®) g,
0
It follows from the argument in [79] that
e—f(v)Jn—l/S K(S'y)l/c

is non-increasing. The Gromov lemma (see e.g., [46, Lemma 3.2]) implies

sw(mm{R,p(w)}) $~(min{S,p(w)}
(30 / vear /[ R ar
s (min{ryp(w)})

s (min{ Rop(w)}) o (min{S,p(w)})
< / s_ex (T)V/° dT// s_ex (T)V¢ dr.
s 0

- (min{r,p(w)})

oy (min{R.p(w)}) o (min{S.p(w)})
C(w) :== / s_ex(T)° dT// s_x (7)Y dr.
S~ (min{r,p(w)}) 0

We note that s, is defined in (19). Also, we have
5o (min{ Ryp(w)}) min{R,p(w)} | min{Rp(w)
/ emﬁﬂw=/ J@Wﬂﬂﬁz/ J(6)Ve dt

~(min{r,p(w)}) min{r,p(w)} ! 2 Jmin{r,p(w)}

We set

and

85 (min{S,p(w)}) 1 min{S,p(w)}
/ J(HYedr < — J(t)Ye dt.
0

b]_ 0
Combining them with (39), we have

min{R,p(w)} min{S, p(w)} b
/ Jtl/cdt// 1/cdt<bC’( w).

min{r,p(w)}
Integrating with respect to w € U, M, we obtain

min{R, P(UJ)}
(40) my (Ba(@)\B,(q)) = / / H dt dZ(uw)
52

in{r.p(w)}

min{S,p(w)}
< C(w) / J(t)Ye dt d2(w).
bl Uy M 0

We estimate C'(w) from above. For w € U,M with p(w) > R. we have
foy(R) S_CK(T)l/C dr fR/bl S—cK(T)l/c dr
<

C’(w) _ sy(r) < r/ba '
fOS”(S) S_er(T) dT fos/b2 S_crc(T)Ve dr
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For w € U,M with r < p(w) < R, we find

sy (p(w ¢ R/b ¢
C’(w) _ fs’y((:;( ) S—CK(T)l/ dr < fr/lle S—CK(T)l/ dr

fos"/(s) s_ox(T)Vedr fos/b2 S_cr(T)Ve dr
For w € U,M with p(w) < r, we obtain C'(w) = 0. By using them, we estimate the right-hand

side of (40), and we see

R/by 1/c infS

by fr/bz S_ex (7)Y dr pmin{Sp(w)} )

my (Br(@)\B.(¢)) < 2 / J(0)Ve dt d=(w)
f bl 05/172 S_CK(T)l/C dar Jo

R/by .

b? fT/l{Q S—CK(T)l/ dr

T by (S e m¢(Bs(q))
0 S_CK(T) dr
We complete the proof. O

We are now in a position to prove the LP-Liouville theorem (see [38, Theorem 4.3)):

Theorem 3.2.4. Let (M, g, f) be an n-dimensional complete non-compact weighted Riemann-
ian manifold, N € (—oo, 1] U [n, 00| and € € R in the e-range. For ¢ := ¢(n, N, ¢) as in (9) and
by > by > 0, we assume

201—¢)f by by e 1
41 by <e n1 <) = —= -1 < )
(41) 1=° =7y {(bl) 201 +%

Then there exists a constant 6 > 0 depending only on by, b, ¢ such that the following assertion
holds:
We assume that there exists ¢ € M such that
(=),
(42) Ricjcv > _ge qu_Qg
when dy is sufficiently large. For p > 0, let u be a smooth non-negative LP(my)-function with
Agu > 0. Then u is identically zero.

PrOOF. The case p > 1 follows from Lemma 3.2.1. Below, we consider the case 0 <
p < 1. If u(x) = 0 as d(q,x) — oo for some fixed ¢ € M, we have u € L*(my). Since
LP(my)NL>(my) C L*(my), we see u € L*(my). Then Lemma 3.2.1 implies that u is constant.
In what follows, we show that u(z) — 0 as d(¢q,x) — o©.

Let v : [0,¢] — M be a minimal geodesic connecting ¢ to x with ¢ = d(g,z). For fixed
a > 1, we set

t=0. ti=1+a, t=2) o/—1-a"
=0

We take k € N such that ¢, <t and t,41 > t. For i <k, we set z; = y(t;), and find
d(zi,2i41) = ' + Y d(g,2) =ti,  d(wg,x) < oF + b
For ¢ < k, by Theorem 3.2.3, we have
My (Baij2o(wi)) > Dimng (Bustaai-1(2:)\Bai (w:)) = Dymy (Boi-1/20(wi-1)) ,

where we set K; := K.(z;,a’ + 2a'!) and

by a’/(20b2) (a*+2a'1) /by
D= — / s_oxc ()Y dt / / s_exc(t)Yedt | .
bg 0 o /b
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Integrating this yields

1=

k
my (Buk oo (k) (H Dz> my(B1/20(q))-

Next, we show my (Bak/go(ﬂfk)) — oo when d(q, ) — oo. For the brevity of notations, we
denote B; := Byija4i-1(x;). For y € Bj, it follows that

1—20"2 4«
1—a ’

d(q,y) > d(q,z;) — d(z;,y (2 E o —1-a ) — (o' +2a"7) =
Using this, we have
2
, , -1
Wi VE = o Vo < o?(a— V6

sup K.(y) < o' su ; ,
yElI?)i ( ) yElI?) d(q y) 2—at—a’

for sufficiently large 7. This implies that a’y/K; can be made arbitrarily small by taking ¢ small
enough. Then D; is approximated as follows:

h {a' VE/(200,)} 1 |
b {(0r + 20 )R b} T~ (aiVE ) P2 20T {1 2fa) by 0}

Since we have the assumption (41), by taking « sufficiently large, we can assume that D; is
larger than 1. Therefore, by taking suitable a, we see

(44) my (Bak/Qo(l'k)) — 00

when d(q, ) — .

We divide into two cases and estimate u(x) when z is far away from g.

Case 1: We first consider the case d(z,z;) < of/20. From Theorem 3.1.8, there exist
positive constants C5 and Cj¢ depending only on n, p, ¢, by, by such that

_1
(45) u(z) < s SUP( )U < Cisexp <CI6 K. (zy, o) Oék> mpy (Bak/2o(95k)) ? [l
ok 20\ Tk

Case 2: We consider the case d(x,xx) > o /20. Also, it follows from Theorem 3.1.8 that

49 )< s usCpew (Crov/Kalw, o) ) mys (Borpaoln) 7 1l
ok /20\%

We estimate the right-hand side of this inequality. We note that
Ba’“/QO(xk) - Bd(z,xk)+a’“/20(m)\Bd(x,xk)—ak/QO(w)'
Together with the argument in Theorem 3.2.3, we have

(47) mg (Bak/Qo(ffk)) < my (Bd(x,mk)-‘rak/ﬂ)(x)\Bd(z,xk)—ak/QO(I))
b min{ak/QO, p(w)}
< 2 C(w) /

~ b UsM 0
where we set K = K, (z,d(z,z),) + o¥/20) and
57(nlin{d(z,a:k)+ak/20,p(w)}) s,y(lnin{ak/QO,p(w)})
C(w) :=/ s_exc ()¢ dT// S_ei (T) dr.

»Y(min{d(z,xk)—akﬂ(],p(w)}) 0

J()Ye dt d=(w),
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If d(z,x1) — o* /20 < p(w) < ¥ /20, we have C(w) < 1. We consider the other cases below.
From the proof of Theorem 3.2.3, we obtain

(d(x,mk.)-'rak/QO)/bl ok /(2002)
Clw) < / S_CK(T)l/C dT// S_CK(T)l/C dr.
(d(z,zk)—ak/20) /ba 0

Denoting By := By u)+ak (T), We see

Vo (1—a)Vs

K. (z,d k) < < =
Ve, (5’7’“”&)—féléid(q,y)—1+2a+---+2ak—1 1—2aF+a

and then
(d(z, z) + ak/QO) VK. (z,d(z, ) + a*/20) < (d(z,zr) + ak) VE (&, d(z,z) + oF)
<) (L0

2+a)(a—1)V0b

—k

2—al~kF—q
If we take k sufficiently large, we have

(d(x,xk) + ;‘g) \/KE (:c d(z, ) + ;"g) < (24 a)(a—1V0.

Since the right-hand side of this inequality can be made sufficiently small by taking § small,
C(w) is estimated from above by

((d(, 1) + o*/20) /by) T = ((d(, 1) — o /20) /b,)"TV/°
(ak/(20D,)) 7" |

We note that this follows from the first order approximation. Furthermore, the quantity (48)
is estimated from above as follows:

((d, ) +a¥) b)Y (0" 420%) /o) <20b2(2 + oz)>1+i
(a /(20by)) /¢ (% /(20by)) ¢ b '

Combining these estimates of C'(w) with (47), we see that there exists a constant Cj; > 0
depending only on ¢, by, by, @ such that

(48)

(48) <

my (Bak/QO(xk)) < my (Bd(x,zk)+ak/20(x)\Bd(x,zk)—ak/zo(x)) < Cirmy (Bak/QO(‘T)) .

Together with (46), we see that there exist positive constants Cjg and C9 depending only on
n,p,c, by, by, a such that

U($) < Cigexp <C19\/W04k> my (Bak/m(xk))_; ||u||p

Combining this with (45) in Case 1, we see that there exist positive constants Cyy and Ch
depending only on n, p, ¢, by, ba, & such that

(49)  wu(x) < Cyexp (CQ] max{\/Kg(a:k, k), /K. (z, ozk)} ak) my (Bak/QO(xk))_% [lu|p-

As d(q,x) — oo, since k increases, we see m (B j90(21)) — 00. Also, it follows from (42) that

a*\/K.(x1,a*) and o* /K. (x, o) are bounded from above as d(q, ) — oo. This implies that,
when d(q,x) — oo, the right-hand side of (49) goes to 0. From the arguments at the beginning
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of this proof, we see that u is a constant function. It follows from (44) that m;(M) = oo.
Hence, w is identically zero.

Lastly, we remark about the dependence of §. We took « so that (43) is larger than 1, and
we took ¢ so that approximations in (43) and (48) hold. Hence, we see that § depends only on
C, bl, bg. ]

Remark 3.2.5. In the unweighted case f = 0, this recovers Theorem 1.3.4. Indeed, if we take
e =1 and by = by = 1, the assumption (41) is satisfied.

Remark 3.2.6. The latter assumption (41) is satisfied when b; and by are close. In that case,
the former assumption implies that the reparametrization s,(t) is close to ¢ (see also Remark
2.1.17).

Remark 3.2.7. An alternative proof is also presented in [38, Theorem 4.3].

Below, we consider the weighted case N = oo, and see that similar arguments recover
Theorem 2.2.32. We use the following relative volume comparison theorem (see e.g., [133], see
also [38, Theorem 4.1]):

Proposition 3.2.8 ([133]). Let (M, g, f) be an n-dimensional complete Riemannian manifold.
For K >0 and b > 0, we assume

Then forx € M, R>r>0 and 0 < S <r, we have
S n—1+4b
_K/(n—1) (T dt
mf(BS(l‘)) Z fO ; K/( 1)( ) -
S s—k /- ()"~

We give a proof of Theorem 2.2.32 below:

my(Br(x)\B,(x)).

PROOF OF THEOREM 2.2.32. We set
Koo(z) = maX{O, sup (— Ric]oco(w,w))}, Koo(y,r) :== sup K(z).

For x € M and o > 0, we take {x;} in the same way as in the proof of Theorem 3.2.4. Applying
Proposition 3.2.8 instead of Proposition 3.2.3, we have

my (Buijoo(x:)) = Dimy (Bpisoni=1 (€:)\Bai(2:)) = Dimy (Baim1jao(wi-1))

where we set

a? /20 al42at~1
D’i = / S—K/(n—l)(t)n_1+4b dt// S_K/(n_l)(t)n_1+4b dt
0 at

and K = K (75, o' + 2a'™1). For sufficiently small §, then D; is approximated as
(ol /20)"+4b o (1/20)mt

(0 + 20i-1)n b — (qi)n+dh — (14 2/q)nt4b — 1

We take o > 0 satisfying

(50)

2

(20—(n+4b) + 1)1/(n+4b) -1 > L.

a >

This implies that, if we take ¢ small enough, we see D; > 1 by (50). Hence, as in (44), we have
my (Bak/go(.’f}k)) — 00.
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The rest of the arguments follows by the same arguments as in the proof of Theorem 3.2.4.
2(e—=1)b 2(1—e)b
Indeed, we fix € € (—1,1), and set b; :=e =t and by ;= ¢ g . For small enough § > 0, we

. _ A . . 4e=Df
first assume Ricy® > —b;°d_ %, which implies RicF® > —de »—1 d_2. Hence, we may apply the
same arguments as in the proof of Theorem 3.2.4 after (44) in our setting. O

Remark 3.2.9. We note that this proof is slightly different from that in Wu [133]. Indeed,
the mean value inequality in [133] was obtained by using the elliptic Harnack inequality, while
our proof does not.

3.3. LIOUVILLE THEOREM FOR SUBLINEAR GROWTH FUNCTIONS

In this section, we give a Liouville type theorem for sublinear growth f-harmonic functions
under Ric}v > 0 (Theorem 3.3.4). We note that the variable curvature bound (4) degenerates
to constant curvature bound Ricjcv > 0 if K = 0. This enables us to obtain several functional
inequalities under RiCJfV > 0.

The Neumann-Poincaré inequality under Ric} > 0 is as follows (see [38, Lemma 5.1]):
Lemma 3.3.1 ([38]). Let (M, g, f) be an n-dimensional complete weighted Riemannian man-
ifold and N € (—o0, 1] U [n,00]. For b > 0, we assume

Ric} >0, [f| <b.

Then there exists a constant Cay > 0 depending only on n,b, N such that, for q € M, r > 0
and ¢ € C*(M), we have

2
/ ‘80 - SOBT(Q)| dmy < Coy 7”2/ IVe|? dmy.
Br(q) Bar(q)

ProoOF. We take € € R satisfying

N -1
le] <min{1, }
N—n

if N# 1and e =0if N =1. We note that this ¢ € R is contained in the e-range. We set
2(e—1)b 2(1—€)b
by :=e n T | by:=e n1 . For these ¢,by, by, we apply the arguments in Proposition 3.1.1.

We complete the proof. O

Remark 3.3.2. Actually, in the case N € [n,o0), we do not need the boundedness of the
weight function f since we may take ¢ =1 and by = by = 1.

The same argument yields the following inequality (see [38, Theorem 5.1]):

Lemma 3.3.3 ([38]). We assume that (M, g, [) satisfies the same condition as in Lemma 3.3.1.
Let u be a smooth non-negative function satisfying Ayu > 0. For g€ M, 6 € (0,1), » > 0 and
p > 0, there exists a constant Cy3 > 0 depending only on n, N,b,p,0 such that

1

1 P
[ullocor < Cas m¢(Bo(4)) /s, !

These imply the following Liouville property (see [38, Theorem 5.2]):

Theorem 3.3.4 ([38]). Let (M, g, f) be an n-dimensional complete non-compact weighted Rie-
mannian manifold and N € (—o00,0) U [n,00]. We assume that [ is bounded and

Ricéy > 0.
Then any sublinear growth f-harmonic function must be a constant function.
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PROOF. Let u be a sublinear growth f-harmonic function. Combining Aju = 0 and the
Bochner inequality in Proposition 2.1.7, we find

2
Ay <|V2“| ) > Ric) (Vu, Vu) > 0.

For ¢ € M and r > 0, it follows from Theorem 3.1.8 that there exists a constant Coy > 0
depending only on n, N, b such that

Ca 9
(51) sup |Vul? < / |Vul|® dmy.
B,2(a) ms(Br/2(a)) Ji. ) |

Let ¢ be the cut-off function with ¢ =1 on B,(¢) and ¢ = 0 on M\Bs,(¢) and |V¢| < 2. Using
the integration by parts and Aju = 0, we see

/ |Vul*¢? dm; = —2/ up(Vu, Vo) dmy
M M

<2 [ |ullpl{(Vu, Vo) dmy
M

1
< / |Vul?¢? dmf—I-Q/ u?|Vo|* dmy.
2 Jm M

Then we have

1 4 4 B,

— |Vul dm; < [ u?|Vo|? dm; < — u? dmy < 4m; (Bar(9)) sup u’.
4 f f 2 f 2
Br(a) M " J B2 (@)\Br(0) r Bar(q)

From Proposition 2.1.19, for a constant Cy; > 0 depending on n, N, b, we have ms(Ba,(q)) <
Cosmy(B,/2(q)). Hence, we see

1 4C
Iy / (Vul?> dmp < —2 | sup u? |,
ms(By2(q)) JB, () 7\ Ba(g)

where the right-hand side goes to 0 since u is of sublinear growth. Combining this with (51),
we obtain

lim sup |Vul? <0.

rreo Br/2(’1)
This implies |Vu| = 0. We obtain the desired assertion. O

Remark 3.3.5. In the weighted case with N = oo, this recovers Theorem 2.2.28. Actually,
we do not need the boundedness of f in the case N € [n,00) (see Remark 3.3.2), and recovers
Theorem 1.3.2 in the unweighted case f = 0.

3.4. GRADIENT ESTIMATES

In this section, we obtain a gradient estimate of harmonic functions under lower bounds
of Ricﬁcv with e-range (Theorem 3.4.1). This is obtained as an application of a Harnack type
inequality. The gradient estimate is as follows (see [38, Theorem 6.1]):

Theorem 3.4.1 ([38]). Let (M, g, f) be an n-dimensional complete weighted Riemannian man-
ifold, N € (—00,0) U [n,00] and € € R in the e-range. For K >0 and by > by > 0, we assume

. 4(e—1)Ff 2(1—e)f
Rlecv > —Ke 1 g, b <e¢ o1 <b,.
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Let u be a positive f-harmonic function. Then there exists a constant C' > 0 depending only
on n, K,by,by and c¢(n, N,e) in (9) such that

|[Viogu| < C.

PROOF. In this proof, for the brevity of notations, we refer to a constant that only depends
on n,c(n, N, &), K, by, by just as a constant, and do not mention about the dependence for the
seke of the brevity. From the Bochner inequality in Proposition 2.1.7, we have

2
K
Ay (|Vu| ) > Ric} (Vu, Vu) > —?|Vu|2.
1

2
By Theorem 3.1.8, there exists a constant Csg > 0 such that
C’26 2
(52) sup |Vul* < / |Vul® dmg
Bi16(q) mf(Bl/lfi(Q)) B(1/8)(q)

for any ¢ € M. Let ¢ be a cut-off function such that ¢ = 1 on Bys(q) and ¢ = 0 on M\ B 4(q)
with [V¢| < 16. The same argument as in Theorem 3.3.4 implies

2
(53) /B v dmf§16-82mf(Bl/4(q))(sup u) |
1/16(q

131/4(Q)

Combining (52) and (53) with Proposition 2.1.19, we see that there exists a constant Cy7 > 0
such that

(54) [Vul|(q) < Cyr sup wu.
131/4(0)

By the argument in Proposition 2.2.17, for sufficiently small ¢ > 0, there exists a constant
C > 0 such that

1 -
55 / u’ dm < Oy Inf .
( ) <mf(B1/2((I)) By /2(q) f) *® B1/4(q)

We note that the lower bounds of Neumann-Poincaré eigenvalue in Proposition 2.2.17 is guar-
anteed by Proposition 3.1.1. This enable us to conduct the argument in the proof of Proposition
2.2.17 even in our setting. Then Theorem 2.2.16 implies that there exists a constant Cyg > 0
such that

1
1 o
[[wlloo,1/4 < Cag / u’ dmy | .
/ my(Bi/4(q)) By 2(q) ’

Together with (55), we find that there exists a constant Csq > 0 such that

sup u < Cyg inf wu.
By /4(q) By 4(q)

Combining this with (54), we see
[Vul(q) < CorCsou(q).
This yields the desired assertion. O

As a corollary, we obtain the following assertion (see [38, Corollary 6.1]):
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Corollary 3.4.2 ([38]). Let (M, g, f) be an n-dimensional complete weighted Riemannian man-
ifold and N € (—00,0) U [n,00]. For b >0, we assume

Ric} >0, [f| <b.
Then there exists a constant C3; > 0 depending only on n, N,b such that
|Vilogu| < Cs.

3.5. RELATED TOPICS : ANALYSIS OF EIGENFUNCTION

In this section, we give a Cheng type inequality under lower bounds of Ricﬁcv with e-range.
In the classical case, Liouville type theorems and the Cheng inequality are closely related.
Especially, they are both obtained by gradient estimates of the solution of Au + Au = 0 (see
e.g., [131, Theorem 1.1] and [67, Corollary 6.4]). Moreover, in the weighted case N = oo
the Liouville type theorem was used to obtain the rigidity of the Cheng type inequality (see
[87]). Although we obtain a Cheng type inequality, the relation with the analysis of harmonic
functions is left for future work in our setting.

Under lower bounds of weighted Ricci curvature with e-range, the Cheng type estimate is
as follows (see [37, Theorem 6)):

Theorem 3.5.1 ([37]). Let (M, g, f) be an n-dimensional weighted complete non-compact Rie-
mannian manifold, N € (—oo, 1]U[n, 00| and & € R in the e-range. For K > 0 and by > by > 0,

we assume
. 4(e=1)f 2(1—e)f
Ric} > —Ke w1 g, by<e ni <by

Then for p > 1 and ¢ := ¢(n, N,e) as in (9), we have

p
K 1
< —_—— .
Af’p—< Cpbl>

Proo¥F. For an arbitrary a > 0, we set

1 K1
B=—- (x/ +a> ,
p ¢ by
and for ¢ € M, a constant C3y > 0 and r > 2, let ¢ be a cut-off function such that ¢ =1 on

B,_1(q) and ¢ =0 on M\ B,(q) with |V¢| < Cso. We set
p(x) = exp(Bdy(x))p(x).

For an arbitrary ¢ > 0, we obtain
IVolP = |Be’¢Vd, + eV e|"
<% (—fo + Vo)’

p—1
gw%{u+®%%ﬂww+(ﬁ?§ |vw}.

We find

(56) Mmsu+aw%—mﬂ+(

1+ U)p_l Je @\ (0 e |V g dm;
o

fM epﬁdq pr dmf

o p—1 ep[)’(T*l)m
= (1+o)P (=) +Ch, <1+> epﬁmf(gﬁg)(f))'

Q

ot
ot



From Proposition 2.1.19, we have
my (B, (4) |
mg(Bi(q)) = by [V s_ o (r)V/e dr

By direct calculations, we obtain

(57)

1

/b1 L . [T/t | exp (\/ cK 7') — exp (—\/ cK 7') ‘
/ S_ex(7)e dr = (CK)_%/ dr
0 0

2

Together with (57), we have

my(Bol@) _bo ([ B e =
G e R el VD)

Hence, there exists a constant C33 > 0 depending only on ¢, by, by, K,  such that

p B(r—1)
¢ my(B:(q)) < Cs3exp (pﬁr +4/ Kr) = Cyzexp (—ar) =0

-1

e?Imy(Bi(q)) c b
as r — oo. Combining this with (56), we see
Ay < (1+ ) (=B
Since o, v are arbitrary, we arrive at the desired assertion. O

Remark 3.5.2. In the case N € [n,00), we take ¢ = 1 and b; = by = 1, and this recovers
Theorem 2.3.1.

Actually, slightly different type estimate of Cheng type is available. This is obtained as an
application of the volume comparison property in Proposition 2.1.14. Indeed, we possess the
following Cheng type estimate (see [37, Theorem 10]):

Theorem 3.5.3 ([37]). Let (M, g, f) be an n-dimensional complete weighted Riemannian man-
ifold. For q € M, b >0 and K > 0, we assume Sg4, which is defined in (10), is smooth and
Ric} > —Ke“ij)fg, [Vsg| <D

For ¢:=c(n,N,¢e) as in (9) and p > 1, we have

\ (b /K !
{1+271;§},p— ;9 ? :

Remark 3.5.4. As mentioned in Remark 2.3.3, there are several proofs in the unweighted case
f = 0. Although the gradient estimate is shown also in the weighted case N € [n, 00), it seems
that there is a difficulty when we adapt the gradient estimate arguments straightforwardly in
the case N € (—o0, 1] U{oo}. The difficulty appears when we apply the Bochner formula.




CHAPTER 4

Analysis of porous medium equations

We give an Aronson-Bénilan type gradient estimate for porous medium equation dyu =
Ayu™ under lower bounds of RinN with e-range (Theorems 4.1.1 and 4.2.1). It turned out that

this type of estimate is available when (—oo, m‘—_zl) U [n, 0o].

4.1. NON-COMPACT CASE

In this section, we obtain a local Aronson-Bénilan type estimate. As an application, a
global estimate is obtained. The local Aronson-Bénilan estimate was obtained as follows (see
[36, Theorem 4]):

Theorem 4.1.1 ([36]). Let (M, g, f) be an n-dimensional complete weighted Riemannian man-
ifold, m > 1, ¢ € M, r > 0, and let u be a positive smooth solution of Oyu = Apu™ on
Bs.(q) x [0,T]. Also, let N € (—oco,—2%) U [n,00], ¢ € R in the e-range. For K > 0,
by > by > 0, we assume

RicjcV > —Ke4(i_—11)fg, b < o < by

on Ba.(q). We set

(58) a(m, N = {1N(m_1) when N = c>o,_2
Noneniz  when (=00, %) Un, 00),
and
vi= " u™ ', L:=(m-1) sup .
m—1 Bar(g)x[0,7]

Then for a :== a(m, N) and any « > 1, there exist positive constants C'" and D depending only
on N,e,by such that we have

|Vol? Oy aa’mL/? C
~ (a=1D)Y2(m—-1)V2r

%
al/Qa{l%—KL)%—g <1+\/Ercoth< bCKr>>}

v? v

t b%?(a—l 9

on B.(q) x (0,T7].
We first show the following inequality (see [36, Lemma 1]):

Lemma 4.1.2 ([38]). Let (M, g, f) be an n-dimensional complete weighted Riemannian mani-
fold. We use the same notation u,m,v, N,a := a(m, N) as in Theorem 4.1.1. For an arbitrary
a € R, we set

|Vol? O 0
= —a—

, L= i (m —1)vAy.

F, :
v v 0
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We have
1 2 8{[) 2 . N
L(F,) < - {m=1)Apw} + (1 —a) - )t 2m(Vv, VF,) — 2(m — 1) Ric} (Vv, Vo).
PROOF. It follows from the argument in [50, Lemma 2.1] that

L(F,) = —2(m — 1) (JHess v||* + Ric} (Vov, Vv)) + 2m(VF,, Vv) — (a — 1) (8,51}) — F2.

v

Together with Propositions 2.1.6 and 2.1.7, we see

L(F,) < -=2(m-—1) <(Ajf\7) + Rlcf (Vu, VU)) +2m(VF,,Vv) — (a— 1) <8;v>2 .
= {_2(77\[_1) —(m— 1)2} (Afv)2 —2(m —1) Ric]fV(VU,VU)

+9m(VF,, Vo) — (a— 1) (a“’>2 .

v

We are now in a position to give a proof of Theorem 4.1.1.

PROOF OF THEOREM 4.1.1. Let ¢; be a non-negative cut-off function on [0, co) such that

~J1 on|[0,1],
gbl_{o on [2, 00),

and 0 < ¢; < 1 on (1,2) with 034q§1/2 < ¢} <0 and ¢f > —C3y, where C34 > 0 is a constant.

For g € M, we set
d(x
d(x) == & (qf:L)> :

There exists a constant C'35 > 0 depending on C'34 such that

[VoP _ Css
o
We only consider the case K > 0. By Proposition 2.1.15, we have

VK VeKr
Afd <b\/0th< b2 )

Then we have

! 1" 9

(59) A = %] (dq/:)Aqu L (dq/:3|qu|
> —034(?}/2(%/” VE coth Mr _Ca
r bl\/E b2 /,‘2

| V

2

67:36 <1+\/7rcoth <\/67Kr>> ,
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where C3g > 0 is a constant depending on N, e,b;. For an arbitrarily fixed o > 1, we have

1 2K L |Vvl|?

(60) £(Fa)§—a {(m—l)Afv}2+2m<Vv,VFa>+ 72 | :l
1
1 Vo2 2K L |Vu|?
-——(F =) 42 F)+ 2~

w2 (Pt @ 0EL) v om(u vry + HE L

where we used
8751) . |VU|2

(m—1)Apv =

v v

We apply the maximum principle to G, := t¢F,. Let (z1,t1) € Ba.(q) x [0,T] be a point that
attains the maximum of G, with G,(x1,t;) > 0. Since G, (z,t) = 0 when t = 0, we see t; > 0.
We have

VGo(x1,t1) =0, AG(x1,t1) <0, 0,Ga(x1,11) > 0.
This implies
L(Gy)(x1,11) > 0.
At (x1,t1), using VG4 (z1,t1) = 0 and (60), we see

0 < £L(Ga)
=oF, +t100F, — (m — Vvt 1 FoApp — 2(m — 1)ty (Vo, VIE,)
2
= CZ +t10L(F,) — (m — 1)1)A£¢Ga +2(m—1)v | ;25' Ga
G 1 Vo2 ? 2K L Vo2
<2 -— -1 F,
<% +t1¢>{ - (Fa-l—(a ) . > +2m(Vu,VE,) + R
2
—(m — 1)1)Af¢Ga +2(m —1)v |V(§| Ga
¢ ¢
G, 1 |Vo|? 2mF, 2K L |Vu|?
= —i—tlgb{ ] <Fa—|—(a— 1) 5 ) 5 “(Vu, Vo) + R
Ayo Vol
—(m—1)v—"—G,+2(m—1)v——0GC,.
( ) 5 ( ) e
We set
\V4 2
[5 = |UFUl (l’l,t1> >0

Then we deduce

o2 G ms 2 (Lt (0 1)) — 2, (V0 VO 2K L00 [V
1 0] by v
\V4 2
_( ) £¢G +2( 1) | ¢?| G,
Gy G? (Vu, Vo) 2KLfS
= " attd {14 (a—1)8}° —2mG, 5 + 2 Ga
\V4 2
1) £¢G +o(m— 1) hﬁ'aw
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We estimate the third term. The Cauchy-Schwarz inequality implies
]mnaa“”“v@w vl 95

1/241/2
_ QmGaﬁ1/2Ei/2 |v¢|¢ / tl —
(m — 1)1/2q§3/2t1/

<2mG,

(m — 1)1/2?)1/2

1/2
S 2mGa61/2 |V¢|G 1/2
(1)} 252]

1/2

Hence,

G G2 ) . V|G 2KLJ
G | -1 2 1212 -
0= t aa2t1¢{ +la— DB+ 2mGaf (m — 1)1/2¢3/2t}/2 b?

Ga

A [Vg|?
- —— Gy +2 v1——-G,,.
(m—1)v 5 (m—1) pe
Multiplying both sides by G% and moving some terms in the other side, we obtain

{1+-Dsy, _, BPLV

1/2
ac’ty (m )1/2¢1/2t}/2
ZI(L Vol|?
<@ 2Ly 1yunge+20m - 10 L,
t ®
e (12
< = ql) QKLB % 1+ VK rcoth Kr +2L|V(p| .
tl b2 ¢
For Ay > 0, Ay, A3 > 0, if Aj2? — Az < Ag, we have
As Az
< =
=, + A1
We apply this for x := G&/? and obtain
Qe < 2a02m L2t} {(o — 1) g} ? Vol

" m =) )V (- 1BP O

1/2
V201 (¢ 2KLB Cssl VK Vo2
+m E‘F b% ¢+ 7_ 1+\/ K rcoth b r +2L

2
Below, we estimate terms in this inequality as follows:

{a=1)p}” 1 14(-1s _1
{1+ (@-1BY = 2{l+(a-1)p)" ~ 2’

and this implies

an*ty (1 N QKL,B) < ao? - 20ty KL (a—1)B
{I+(@-1py*\tr b0 /7 (@—1) B {1+ (a—1)8)°

KLt
< 21y ———" .
—“¥<+2m—n@>

60




For x € B,(q), this yields
Go* (2, 1)
<GP (w1, h)

aoﬂmLI/Qt}/2 VCss o2 (4 KLt
~ (a—=DY2m-1)Y2 r 2(a — 1)b2

1/2
+ (lOéQtl . Cg,@L 1+ \/ET’ coth \/C?T + 2035[/
{It@-nsP| b

aCM?le/Qti/Q v Css
~ (a—D)2(m-1)V2 r

1 KL Cus + 2C55) L N i
—|—(1,1/2T1/2()z{—|— +( 30 + 2C55) <1+\/?rcoth<bc 7"))} )

T 2(a-—1)b? r2 2
We divide the both sides by T%/2 and we arrive at the desired assertion. O
As a corollary, we have the following estimate (see [38, Corollary 3|):

Corollary 4.1.3 ([38]). Let (M, g, f) be an n-dimensional complete non-compact weighted
Riemannian manifold, and for m > 1, let u be a positive smooth solution to dyu = Agpu™ on
M x [0,T]. Also, let N € (—o00,—2%) U [n,oc] and ¢ € R in the e-range. For K > 0 and
by > by > 0, we assume

. 4(e=1)f 2(1-e)f
Ric} > —Ke w1 g, by<e ni <by

We set v and L in the same way as in Theorem 4.1.1. Then for any a > 1, we have
|Vol? O , (1 K L 2
—o <alt e 2
v “y = t+b%2(a—1)
on M x (0,T). In particular, if K =0, we have
Vo O _ “

v v
on M x (0,T].

Remark 4.1.4. In the case N € [n,0), we take ¢ = 1 and b; = by = 1. Then Theorem 4.1.1
recovers Theorem 2.4.3, and Corollary 4.1.3 recovers Corollary 2.4.5.

4.2. COMPACT CASE

In this section, we provide a global Aronson-Bénilan type estimate on compact manifolds
under Ric}v > 0. The proof is essentially different from the case of non-compact manifolds.

Theorem 4.2.1 ([36]). Let (M, g, f) be an n-dimensional compact weighted Riemannian man-
ifold, and for m > 1, let u be a positive smooth solution to Oyu = Apu™ on M x [0,T]. Let
N € (=00, =%) U [n,00]. We assume

Ric} > 0.
We set




Then we have
Vo' O _a
v v Tt
on M x (0,T], where we set a := a(m, N) as in (58).

PROOF. Lemma 4.1.2 for the case « = 1 and R,icjy > 0 yields
1
L(F)) < - {(m — 1)Ap} 4 2m(Vo, VF).

For F :=tF}, we see
1 F? F
L(F)=tL(F)+ F1 < e +2m(VF, Vo) + 7

Let (z1,t1) € M x[0,T] be a point that attains the maximum of F'. We may assume F'(z1,t;) >
0. As in the argument in Theorem 4.1.1, we have L(F')(z1,t;) > 0. Therefore, we have
1F($1,t1)2 F(l’l,tl)

0 S E(F)($1,t1) = a tl + tl .

For any (z,t) € M x [0,T], we have
F(z,t) < F(z1,t;) < a.
We arrive at the desired assertion. O

Remark 4.2.2. In the case N € [n,00), we take ¢ = 1 and b; = by = 1, and this recovers
[73, Theorem 7.6] (see also Remark 2.4.6).

Remark 4.2.3. As mentioned in section 1.4, while gradient estimates for the heat equation
under lower bounds of Ricjfv with N € (—o00,0) is listed as an open question in [93,95], the

range (—oo, m;—Ql) degenerates as m \, 1.

62



Bibliography

[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability
measures, Lectures in Mathematics ETH Ziirich, Birkhauser Verlag, Basel, 2005.
[2] L. Ambrosio, N. Gigli, and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded
from below, Duke Math. J. 163 (2014), no. 7, 1405-1490.
[3] D. G. Aronson and P. Bénilan, Régularité des solutions de I’équation des milieur poreux dans RN, C. R.
Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103-A105.
[4] D. Bakry and M. Emery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, 1985,
pp. 177-206.
[5] D. Bakry and M. Ledoux, Lévy-Gromou’s isoperimetric inequality for an infinite-dimensional diffusion
generator, Invent. Math. 123 (1996), no. 2, 259-281.
[6] D. Bakry, L’ hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory
(Saint-Flour, 1992), 1994, pp. 1-114.
[7] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, vol. Vol. XV,
Academic Press, New York-London, 1964.
[8] S. Bochner, Curvature and Betti numbers, Ann. of Math. (2) 49 (1948), 379-390.
[9] S. Borghini and M. Fogagnolo, Comparison geometry for substatic manifolds and a weighted Isoperimetric
Inequality, preprint arXiv:2307.14618 (2023).
[10] S. Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes
Etudes Sci. 117 (2013), 247-269.
[11] K. Brighton, A Liouville-type theorem for smooth metric measure spaces, J. Geom. Anal. 23 (2013), no. 2,
562-570.
[12] P. Buser, A note on the isoperimetric constant, Ann. Sci. Ecole Norm. Sup. (4) 15 (1982), no. 2, 213-230.
[13] X. Cabré, Nondivergent elliptic equations on manifolds with nonnegative curvature, Comm. Pure Appl.
Math. 50 (1997), no. 7, 623-665.
[14] F. Cavalletti, D. Manini, and A. Mondino, Optimal transport on null hypersurfaces and the null energy
condition, preprint arXiv:2408.08986 (2024).
[15] F. Cavalletti and A. Mondino, Sharp and rigid isoperimetric inequalities in metric-measure spaces with
lower Ricci curvature bounds, Invent. Math. 208 (2017), no. 3, 803-849.
[16] J. Cheeger, T. H. Colding, and W. P. Minicozzi 11, Linear growth harmonic functions on complete manifolds
with nonnegative Ricci curvature, Geom. Funct. Anal. 5 (1995), no. 6, 948-954.
[17] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products,
Ann. of Math. (2) 144 (1996), no. 1, 189-237.
, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997),
no. 3, 406-480.
[19] — . On the structure of spaces with Ricci curvature bounded below. IT, J. Differential Geom. 54 (2000),
no. 1, 13-35.
[200 . On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54
(2000), no. 1, 37-74.
[21] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differ-
ential Geometry 6 (1971/72), 119-128.
[22] X. Chen, S. Donaldson, and S. Sun, Kdhler-Einstein metrics on Fano manifolds. I: Approzimation of
metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183-197.
[23] | Kahler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2w, J. Amer.
Math. Soc. 28 (2015), no. 1, 199-234.
, Kdhler-FEinstein metrics on Fano manifolds. III: Limits as cone angle approaches 2w and com-
pletion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235-278.

[18]

[24]

63



[25] S.Y. Cheng, Figenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3,
289-297.

, Liouville theorem for harmonic maps, Geometry of the Laplace operator (Proc. Sympos. Pure
Math., Univ. Hawaii, Honolulu, Hawaii, 1979), 1980, pp. 147-151.

[27] X. Cheng and D. Zhou, Figenvalues of the drifted Laplacian on complete metric measure spaces, Commun.
Contemp. Math. 19 (2017), no. 1, 1650001, 17.

[28] T. H. Colding and W. P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997),
no. 3, 725-747.

[29] D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschlager, A Riemannian interpolation inequality
& la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), no. 2, 219-257.

, Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport,
Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 4, 613-635.

[31] C. B. Croke and B. Kleiner, A warped product splitting theorem, Duke Math. J. 67 (1992), no. 3, 571-574.

[32] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge
University Press, Cambridge, 1989.

[33] G. B. De Luca, N. De Ponti, A. Mondino, and A. Tomasiello, Gravity from thermodynamics: optimal
transport and negative effective dimensions, SciPost Physics 15 (2023), no. 2, 039.

[34] M. Erbar, K. Kuwada, and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition
and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015), no. 3, 993-1071.

[35] J. Eschenburg and E. Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global
Anal. Geom. 2 (1984), no. 2, 141-151.

[36] Y. Fujitani, Aronson-Bénilan gradient estimates for porous medium equations under lower bounds of N-
weighted Ricci curvature with N < 0, Kyushu J. Math. 78 (2024), no. 1, 209-223.

, Some functional inequalities under lower Bakry—E‘mery—Ricci curvature bounds with e-range,

Manuscripta Math. 175 (2024), no. 1-2, 75-95.

, Analysis of harmonic functions under lower bounds of N-weighted Ricci curvature with e-range,
J. Math. Anal. Appl. 542 (2025), no. 2, Paper No. 128848.

[39] K. Fukaya and T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann.
of Math. (2) 136 (1992), no. 2, 253-333.

[40] S. Gallot, Inégalités isopérimétriques, courbure de Ricci et invariants géométriques. I, C. R. Acad. Sci.
Paris Sér. I Math. 296 (1983), no. 7, 333-336.

[41] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Functional Analysis 51 (1983), no. 3,
285-311.

[42] N. Gigli, The splitting theorem in non-smooth context, preprint arXiv:1302.5555 (2013).

[43] N. Gigli, C. Ketterer, K. Kuwada, and S. Ohta, Rigidity for the spectral gap on Red(K, 00)-spaces, Amer.
J. Math. 142 (2020), no. 5, 1559-1594.

[44] M. Gromov, Synthetic geometry in Riemannian manifolds, Proceedings of the International Congress of
Mathematicians (Helsinki, 1978), 1980, pp. 415-419.

[45] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179-195.

[46] K. Grove and P. Petersen (eds.), Comparison geometry, Mathematical Sciences Research Institute Publi-
cations, vol. 30, Cambridge University Press, Cambridge, 1997.

[47] P. Hajlasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10,
1211-1215.

[48] R. S. Hamilton, A matriz Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1,
113-126.

[49] G. Huang, Z. Huang, and H. Li, Gradient estimates for the porous medium equations on Riemannian
manifolds, J. Geom. Anal. 23 (2013), no. 4, 1851-1875.

[50] G. Huang and H. Li, Gradient estimates and entropy formulae of porous medium and fast diffusion equa-
tions for the Witten Laplacian, Pacific J. Math. 268 (2014), no. 1, 47-78.

[51] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation,
SIAM J. Math. Anal. 29 (1998), no. 1, 1-17.

[52] A. Kasue, Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with bound-
ary, J. Math. Soc. Japan 35 (1983), no. 1, 117-131.

[53] C. Ketterer, Characterization of the null energy condition via displacement convezity of entropy, J. Lond.
Math. Soc. (2) 109 (2024), no. 1, Paper No. 12846, 24.

[26]

[30]

[37]

[38]

64



[54] S. Kim, Harnack inequality for nondivergent elliptic operators on Riemannian manifolds, Pacific J. Math.
213 (2004), no. 2, 281-293.

[55] A. V. Kolesnikov and E. Milman, Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with
boundary, J. Geom. Anal. 27 (2017), no. 2, 1680-1702.

[56] — ., Poincaré and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds,
Amer. J. Math. 140 (2018), no. 5, 1147-1185.

[57] K. Kuwae, S. Li, X.-D. Li, and Y. Sakurai, Liouville theorem for V-harmonic maps under non-negative
(m, V)-Ricci curvature for non-positive m, Stochastic Process. Appl. 168 (2024), Paper No. 104270, 25
pPp-

[58] K. Kuwae and X.-D. Li, New Laplacian comparison theorem and its applications to diffusion processes on
Riemannian manifolds, Bull. Lond. Math. Soc. 54 (2022), no. 2, 404-427.

[59] K. Kuwae and Y. Sakurai, Rigidity phenomena on lower N-weighted Ricci curvature bounds with e-range
for nonsymmetric Laplacian, lllinois J. Math. 65 (2021), no. 4, 847-868.

[60] —, Comparison geometry of manifolds with boundary under lower N-weighted Ricci curvature bounds
with e-range, J. Math. Soc. Japan 75 (2023), no. 1, 151-172.

, Lower N-weighted Ricci curvature bound with e-range and displacement convexity of entropies,
To appear in J. Topol. Anal. (2023), 1-26.

[62] J. Liand C. Xia, An integral formula for affine connections, J. Geom. Anal. 27 (2017), no. 3, 2539-2556.

[63] J. Li and X. Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heal equation, Adv.
Math. 226 (2011), no. 5, 4456—4491.

[64] P. Li, Uniqueness of L' solutions for the Laplace equation and the heat equation on Riemannian manifolds,
J. Differential Geom. 20 (1984), no. 2, 447-457.

, Lecture motes on geometric analysis, Lecture Notes Series, vol. 6, Seoul National University,

Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993.

, The theory of harmonic functions and its relation to geometry, Differential geometry: partial

differential equations on manifolds (Los Angeles, CA, 1990), 1993, pp. 307-315.

, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University
Press, Cambridge, 2012.

[68] P. Li and R. Schoen, LP and mean value properties of subharmonic functions on Riemannian manifolds,
Acta Math. 153 (1984), no. 3-4, 279-301.

[69] P. Li and L.-F. Tam, Linear growth harmonic functions on a complete manifold, J. Differential Geom. 29
(1989), no. 2, 421-425.

[70] P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3,
501-534.

[71] , Complete manifolds with positive spectrum. II, J. Differential Geom. 62 (2002), no. 1, 143-162.

[72] P. Liand S.-T. Yau, On the parabolic kernel of the Schrédinger operator, Acta Math. 156 (1986), no. 3-4,
153-201.

[73] S. Li and X.-D. Li, On the Renyi entropy power and the Gagliardo-Nirenberg-Sobolev inequality on Rie-
mannian manifolds, preprint arXiv:2001.11184 (2020).

[74] X.-D. Li, Liowville theorems for symmetric diffusion operators on complete Riemannian manifolds, J.
Math. Pures Appl. (9) 84 (2005), no. 10, 1295-1361.

[75] A. Lichnerowicz, Variétés riemanniennes d tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271
(1970), A650-A653.

[76] J. Lott, Some geometric properties of the Bakry-E‘mery-Riccz’ tensor, Comment. Math. Helv. 78 (2003),
no. 4, 865-883.

[77] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2)
169 (2009), no. 3, 903-991.

[78] P. Lu, L. Ni, J.-L. Vazquez, and C. Villani, Local Aronson-Bénilan estimates and entropy formulae for
porous medium and fast diffusion equations on manifolds, J. Math. Pures Appl. (9) 91 (2009), no. 1, 1-19.

[79] Y. Lu, E. Minguzzi, and S. Ohta, Comparison theorems on weighted Finsler manifolds and spacetimes
with e-range, Anal. Geom. Metr. Spaces 10 (2022), no. 1, 1-30.

[80] M. Magnabosco and C. Rigoni, Optimal maps and local-to-global property in negative dimensional spaces
with Ricci curvature bounded from below, Tohoku Math. J. (2) 75 (2023), no. 4, 483-507.

[81] M. Magnabosco, C. Rigoni, and G. Sosa, Convergence of metric measure spaces satisfying the CD condition
for negative values of the dimension parameter, Nonlinear Anal. 237 (2023), Paper No. 113366, 48 pp.

[61]

[65]

[66]

[67]




[82] C. H. Mai, On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimen-
sion, Kyushu J. Math. 73 (2019), no. 1, 205-218.

, Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian
manifolds, Geom. Dedicata 202 (2019), 213-232.

[84] R. J. McCann, A synthetic null energy condition, Comm. Math. Phys. 405 (2024), no. 2, Paper No. 38,
24.

[85] E. Milman, Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentra-
tion inequalities in negative dimension, Trans. Amer. Math. Soc. 369 (2017), no. 5, 3605-3637.

, Harmonic measures on the sphere via curvature-dimension, Ann. Fac. Sci. Toulouse Math. (6)
26 (2017), no. 2, 437-449.

[87] O. Munteanu and J. Wang, Smooth metric measure spaces with non-negative curvature, Comm. Anal.
Geom. 19 (2011), no. 3, 451-486.

. Analysis of weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012),
no. 1, 55-94.

[89] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404.

[90] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc.
Japan 14 (1962), 333-340.

[91] A. Ohara and T. Wada, Information geometry of ¢-Gaussian densities and behaviors of solutions to related
diffusion equations, J. Phys. A 43 (2010), no. 3, 035002, 18.

[92] S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), no. 2, 211—
249.

[83]

[93]

, (K, N)-convexity and the curvature-dimension condition for negative N, J. Geom. Anal. 26
(2016), no. 3, 2067-2096.

[94] , Needle decompositions and isoperimetric inequalities in Finsler geometry, J. Math. Soc. Japan
70 (2018), no. 2, 651-693.

[95] . Comparison Finsler geometry, Springer Monographs in Mathematics, Springer, Cham, 2021.

[96] S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), no. 10,
1386-1433.

[97] , Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal. 204 (2012), no. 3,

917-944.
[98] S. Ohta and A. Takatsu, Displacement convezity of generalized relative entropies, Adv. Math. 228 (2011),
no. 3, 1742-1787.
[99] S. Oshima, Stability of curvature-dimension condition for negative dimensions under concentration topol-
ogy, J. Geom. Anal. 33 (2023), no. 12, Paper No. 377, 37 pp.
[100] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev
inequality, J. Funct. Anal. 173 (2000), no. 2, 361-400.
[101] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial
Differential Equations 26 (2001), no. 1-2, 101-174.
[102] G. Perelman, The entropy formula for the ricci flow and its geometric applications, preprint arXiv math
0211159 (2002).

[103] , Finite extinction time for the solutions to the ricci flow on certain three-manifolds, preprint arXiv
math 0307245 (2003).
[104] , Ricci flow with surgery on three-manifolds, preprint arXiv math 0303109 (2003).

[105] P. Petersen, Riemannian geometry, Third, Graduate Texts in Mathematics, vol. 171, Springer, Cham,
2016.

[106] S. Pigola, M. Rigoli, and A. G. Setti, Vanishing theorems on Riemannian manifolds, and geometric ap-
plications, J. Funct. Anal. 229 (2005), no. 2, 424-461.

[107] S. Pigola, M. Rimoldi, and A. G. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 268
(2011), no. 3-4, 777 790.

[108] Z. Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997),
no. 190, 235-242.

[109] Y. Sakurai, Rigidity of manifolds with boundary under a lower Ricci curvature bound, Osaka J. Math. 54
(2017), no. 1, 85-119.

[110] | Rigidity of manifolds with boundary under a lower Bakry-émery Ricci curvature bound, Tohoku
Math. J. (2) 71 (2019), no. 1, 69-109.

66



[111] , Rigidity phenomena in manifolds with boundary under a lower weighted Ricci curvature bound,
J. Geom. Anal. 29 (2019), no. 1, 1-32.
[112] , Comparison geometry of manifolds with boundary under a lower weighted Ricci curvature bound,

Canad. J. Math. 72 (2020), no. 1, 243-280.

[113] ., One dimensional weighted Ricci curvature and displacement convezity of entropies, Math. Nachr.
294 (2021), no. 10, 1950-1967.

[114] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2
(1992), 27-38.

[115] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992),
no. 2, 417-450.

, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series, vol. 289,
Cambridge University Press, Cambridge, 2002.

[117] R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes
in Geometry and Topology, vol. I, International Press, Cambridge, MA, 1994.

[118] S. Stafford, A probabilistic proof of S.-Y. Cheng’s Liouville theorem, Ann. Probab. 18 (1990), no. 4, 1816—
1822.

[119] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65-131.

[120] , On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133-177.

[121] Y.-H. Su and H.-C. Zhang, Rigidity of manifolds with Bakry-émery Ricci curvature bounded below, Geom.
Dedicata 160 (2012), 321-331.

[122] A. Takatsu, Wasserstein geometry of porous medium equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire
29 (2012), no. 2, 217-232.

[123] G. Tian, Corrigendum: K-stability and Kdhler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015),
no. 11, 2082-2083.

[124] , K-stability and Kdhler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085-1156.

[125] J. L. Vazquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press,
Oxford University Press, Oxford, 2007. Mathematical theory.

[126] M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci cur-
vature, Comm. Pure Appl. Math. 58 (2005), no. 7, 923-940.

(127] L.-F. Wang, The upper bound of the Li spectrum, Ann. Global Anal. Geom. 37 (2010), no. 4, 393-402.

[128] L. F. Wang, On L?—spectrum and T-quasi-Finstein metric, J. Math. Anal. Appl. 389 (2012), no. 1, 195-
204.

[129] L. F. Wang, Z. Y. Zhang, L. Zhao, and Y. J. Zhou, A Liouwville theorem for weighted p-Laplace operator
on smooth metric measure spaces, Math. Methods Appl. Sci. 40 (2017), no. 4, 992-1002.

[130] M.-T. Wang, Y.-K. Wang, and X. Zhang, Minkowski formulae and Alexandrov theorems in spacetime, J.
Differential Geom. 105 (2017), no. 2, 249-290.

[131] J.-Y. Wu, Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Emery Ricci curvature,
J. Math. Anal. Appl. 361 (2010), no. 1, 10-18.

, Upper bounds on the first eigenvalue for a diffusion operator via Bakry—Emery Ricci curvature
II, Results Math. 63 (2013), no. 3-4, 1079-1094.

[133] —, LP-Liowville theorems on complete smooth metric measure spaces, Bull. Sci. Math. 138 (2014),
no. 4, 510-539.

[134] W. Wylie, Sectional curvature for Riemannian manifolds with density, Geom. Dedicata 178 (2015), 151—
169.

[116]

132)

[135] , A warped product version of the Cheeger-Gromoll splitting theorem, Trans. Amer. Math. Soc. 369
(2017), no. 9, 6661-6681.

[136] W. Wylie and D. Yeroshkin, On the geometry of Riemannian manifolds with density, preprint
arXiv:1602.08000 (2016).

[137] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975),
201-228.

, Some function-theoretic properties of complete Riemannian manifold and their applications to
geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670.

[139] S.-T. Yau, Open problems in geometry, Differential geometry: partial differential equations on manifolds
(Los Angeles, CA, 1990), 1993, pp. 1-28.

[138]

67



