
Title Geometric analysis on weighted Riemannian
manifolds of Ricci curvature bounded from below

Author(s) 藤谷, 恭明

Citation 大阪大学, 2025, 博士論文

Version Type VoR

URL https://doi.org/10.18910/101902

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



G eom etr ic analysis on weighted R iem ann ian

m an ifolds of R icci cu rvatu re b ounded from

b elow

Yasuaki Fujitani





Contents

Abstract 5

Acknowledgements 7

Chapter 1. Introduction 9
1.1. Lower bounds of weighted Ricci curvature 9
1.1.1. R iemannian geometry and its synthetic notion 9
1.1.2. Optimal transport and weighted Ricci curvature 9
1.2. The case e ectivff e dimension N ∈(−∞, 1] 11
1.2.1. Constant curvature bounds 11
1.2.2. Variable curvature bounds 11
1.3. Harmonic functions 12
1.3.1. On Riemannian manifolds 12
1.3.2. On weighted Riemannian manifolds 14
1.3.3. Related topics: Cheng type upper bound of the first eigenvalue 14
1.4. Porous medium equation 15
1.4.1. Heat flow as a gradient flow 15
1.4.2. Porous medium equation as a gradient flow 16
1.4.3. Aronson-Bénilan estimate 16
1.5. Organization 16

Chapter 2. Preliminaries 19
2.1. W eighted Ricci curvature 19
2.2. Harmonic functions 24
2.2.1. Functional inequalities 24
2.2.2. Liouville type theorems and gradient estimates for harmonic functions 28
2.3. E igenfunctions 30
2.4. Porous medium equation 31

Chapter 3. Analysis of harmonic functions 35
3.1. Functional inequalities 35
3.1.1. Sobolev inequality 35
3.1.2. M ean value inequality 43
3.2. L p-Liouville theorem 46
3.3. Liouville theorem for sublinear growth functions 52
3.4. Gradient estimates 53
3.5. Related topics : analysis of eigenfunction 55

Chapter 4. Analysis of porous medium equations 57
4.1. Non-compact case 57
4.2. Compact case 61

3



Bibliography 63

4



A bstract

Geometric analysis on Riemannian manifolds under lower bounds of Ricci curvature has
been generalized to weighted Riemannian manifolds. In this thesis, we review some recent
developments on weighted Riemannian manifolds under lower bounds of N -weighted Ricci
curvature with ε-range. Especially, we present analyses of harmonic functions, eigenfunctions,
and porous medium equations. In particular, for harmonic functions, we address an L p-Liouville
type theorem (Theorem 3.2.4), a Cheng type Liouville theorem (Theorem 3.3.4), and a gradient
estimate (Theorem 3.4.1). As for eigenfunctions, we give a Cheng type upper bound of the
bottom spectrum (Theorem 3.5.1). Regarding the porous medium equations, we provide an
Aronson-Bénilan type gradient estimate (Theorem 4.1.1). This thesis is based on [36–38] by
the author.
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CHAPTER 1

I ntroduction

1.1. L ow er bounds o f w eig ht ed R icci cur vat u r e

1.1.1. R iem ann ian geom etry and i ts synthetic notion . In this thesis, we focus on the
lower bounds of Ricci curvature. Under lower bounds of Ricci curvature, there are numerous
researches in view of geometry and analysis. W e first review some classical results (see also
Peterson [105]). Before the 1970’s, M yers [89] gave an upper bound of the diameter and
Bochner [8] estimated the first Betti number. In 1971, Cheeger-Gromoll [21] obtained a splitting
theorem. Their proof used an upper bound of Laplacian of the distance function, which is now
referred to as the Laplacian comparison theorem. In the 1980’s, Gromov [45] (see also Gallot
[40]) obtained a Betti number estimate using a volume comparison property, which is now called
the Bishop-Gromov volume comparison (see also Bishop-Crittenden [7]). In the beginning of
2000’s, Perelman solved the Poincaré conjecture by using the Ricci flow and metric geometry
(see e.g., [102–104]).

Synthetic notions of sectional curvature bounded from above and below on non-smooth
spaces appeared in the theory of metric geometry, and had been deeply studied. As for the
synthetic notion of Ricci curvature, one of the pioneering works was done by Cheeger-Colding
(see e.g., [17–20]). They studied limit spaces of Riemannian manifolds with Ricci curvature
bounded from below. Especially, Cheeger-Colding [17] obtained the Cheeger-Gromoll splitting
theorem for this limit space. As applications, they showed the Gromov conjecture [44] for the
limit spaces (see also Fukaya-Yamaguchi [39]) . Recently, the Cheeger-Colding theory was es-
sentially used to show the existence of K ähler-E instein metrics on compact complex manifolds
(see e.g., Cheng-Donaldson-Sun [22–24] and T ian [123, 124]). A lthough Cheeger-Colding con-
sidered the limit spaces of convergent sequences of Riemannian manifolds with Ricci curvature
bounded from below, we can now directly analyze such limit spaces, which are metric spaces
equipped with measures, under some synthetic notion of Ricci curvature bounded from below.
The optimal transport theory took an important role in formulating this synthetic notion of
lower bounds of Ricci curvature on metric measure spaces.

1.1.2. Optim al transp or t and weighted R icci cu rvatu re. To explain the synthetic notion
of lower bounds of Ricci curvature on metric measure spaces, we introduce a generalization of
Ricci curvature to a weighted Riemannian manifold, which is a Riemannian manifold (M , g)
equipped with a weighted measure e− f dvg . Here, vg is the Riemannian volume measure and
f ∈ C∞(M ). For an n-dimensional weighted Riemannian manifold and a parameter N ∈
(−∞, 1] ∪[n, ∞], the N-weighted Ricci curvature is defined as follows:

RicN
f := Ricg + Hessf −

df ⊗ df

N − n
.

In the unweighted case f ≡0, RicN
f coincides with the Ricci curvature Ricg for (M , g). As a

pioneering work, Lichnerowicz [75] generalized the Cheeger-Gromoll splitting theorem in the
weighted case with N = ∞. After that, the case N = ∞ appeared in the analysis of linear
di usionff operators by Bakry-́Emery [4]. Hence, the weighted Ricci curvature is also called the
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Bakry-Émery-Ricci curvature. The case N = ∞ is also meaningful in several other fields, such
as Ricci flow and convex geometry. In the context of Ricci flow, if there is a potential f such
that Ric∞

f = K g, the Riemannian manifold is called a gradient Ricci soliton, which is related
to self-similar solutions of the Ricci flow. In addition, if we consider Euclidean space equipped
with a measure (Rn , | · |, e−f vg ), the condition Ric∞

f ≥ 0 implies that the weighted measure

e− f vg is a log-concave measure. This class of measures appears in the field of convex geometry.
Especially, the characteristic function of a convex set is log-concave. The case N ∈[n, ∞)
was introduced by Bakry [6] and Qian [108]. In particular, a Bishop-Gromov type volume
comparison theorem under RicN

f ≥ K g was obtained in [108]. On a weighted Riemannian
manifold, if we assume

RicN
f ≥ K g,(1)

comparison geometric results similar to those of Riemannian manifolds with Ricg ≥ K g and
dim(M ) ≤ N hold true. The parameter N is called the e eff ctive dimension.

I t turned out that lower bounds of the weighted Ricci curvature have characterizations
in view of the optimal transport theory. In the 18th century, optimal transport theory was
first introduced by M onge. This theory defines a distance on the set of probability measures,
which is called the W asserstein distance. I t has many applications in various fields not only
mathematics. The relation between Ricci curvature and the W asserstein space, which is a
space of probability measures equipped with the W asserstein distance, was investigated by Otto
[101]. Later, Otto-Villani [100] showed some functional inequalities, and pointed out that lower
bounds of Ric∞

f imply the convexity of the relative entropy with respect to the measure e−f vg

by a heuristic argument. Cordero-Erausquin-M cCann-Schmuckenschläger [29, 30] rigorously
investigated this connection and proved that lower bounds of Ric∞

f imply the convexity of
entropy along W asserstein geodesics. This convexity is called the displacement convexity. In the
weighted case N = ∞, the inverse implication was proved by von Renesse-Sturm [126]. Since
the convexity of entropies can be formulated without the di erenff tiable structure of spaces, this
convexity was employed to formulate a synthetic notion of lower bounds of Ricci curvature on
metric measure spaces. Indeed, Lott-Villani [77] and Sturm [119, 120] formulated the synthetic
notion of Ric∞

f ≥ K g by the convexity of the relative entropy along W asserstein geodesics, and

RicN
f ≥ K g with N ∈ [n, ∞) by the convexity of the Rényi entropies. These conditions

are called the curvature dimension condition CD (K , N ). W e emphasize that this CD (K , N )
condition is defined even on non-smooth spaces. In particular, the stability of CD (K , N ) under
some notions of convergences, such as the measured Gromov-Hausdorff convergence and the
D-convergence, were investigated in [77, 119, 120].

Another important application of CD (K , N ) is geometric analysis on Finsler manifolds (see
e.g., Ohta [92] and Ohta-Sturm [96, 97]). Later, the Riemannian curvature dimension condition
RCD (K , N ) was formulated by adding some assumptions to the CD (K , N ) condition (see e.g.,
Ambrosio-Gigli-Savaré [2]). In general, a Finsler manifold satisfying the CD (K , N ) condition
does not satisfy the RCD (K , N ) condition. W hile the Cheeger-Gromoll type isometric splitting
theorem is not obtained for Finsler manifolds under CD (K , N ), it was generalized to RCD
spaces by Gigli [42]. Subsequently, generalizations of the Cheeger-Colding theory on RCD
spaces have been intensively developed. Actually, Cheeger-Colding [18] suggested studying
metric spaces possibly with measures under some synthetic notion of Ricci curvature bounded
from below, and RCD space gave an answer to this research direction. Nowadays, the theory
of RCD space is regarded as a generalization of the Cheeger-Colding theory.

Developments of geometric analysis under lower bounds of RicN
f , including those mentioned

above, are also inspired by the theory of convex geometry. Especially, the curvature dimension
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condition implies a Brunn-M inkowski type inequality. In convex geometry, it was known that
the classical Brunn-M inkowski inequality implies the isoperimetric inequality on the Euclidean
space. Since the isoperimetric inequality is an important inequality, which originates from
ancient Greece, researches on the isoperimetric inequality is also very active in the weighted
case. Bakry-Ledoux [5] showed a Lévy-Gromov type isoperimetric inequality in the case N =
∞. W e review some rigidity results of the isoperimetric inequality. In the case N = ∞ on
smooth spaces, M organ [85] showed that the rigidity case is when the space isometrically
splits to a product R ×Σ, and R is equipped with the Gaussian measure. In a non-smooth
framework, Cavalletti-M ondino [15] obtained the rigidity under RCD (K , N ) with N ∈[2, ∞).
An important step to obtain the Bakry-Ledoux type isoperimetric inequality [5] was to obtain
a Poincaré-Lichnerowicz type inequality, which is an inequality for lower bounds of the first
eigenvalue of the Laplacian. W e briefly review researches on the rigidity of the Poincaré-
Lichnerowicz type inequality. In the unweighted case f ≡ 0, Obata [90] showed that only
the sphere attains the equality. K etterer [53] investigated the weighted case N ∈[n, ∞) in a
non-smooth framework, and showed that the equality is attained by the spherical suspensions.
In the weighted case N = ∞, Cheng-Zhou [27] showed that the equality is also attained by a
product R ×Σ, and R is equipped with the Gaussian measure, which is the same phenomenon
as the case of the isoperimetric inequality. A lthough Cheng-Zhou [27] considered only smooth
manifolds, Gigli-K etterer-K uwada-Ohta [43] generalized their result to the RCD (K , ∞) spaces.

1.2. T he case ef f ect iv e d imension N ∈(−∞, 1]

1.2.1. Constant cu rvatu re b ounds. For the case N ∈(−∞, 0), Ohta [93] showed the equiv-
alence between CD (K , N ) and RicN

f ≥ K g. Also for the case N = 0, Ohta [94] introduced

CD (K , 0), and showed its equivalence with Ric0
f ≥ K g. At the same time, K olesnikov-M ilman

[56] also considered the case N ∈(−∞, 0].
W e note that the case N ∈ (−∞, 1] is weaker than the case N ∈ [n, ∞]. Indeed, for

N ∈(−∞, 1) and N 0 ∈(n, ∞), we have

RicN 0

f ≤ Ric∞
f ≤ RicN

f ≤ Ric1
f .

Hence, we see that RicN 0

f ≥ K g implies RicN
f ≥ K g. Very recently, De Luca-De Ponti-M ondino-

Tomasiello [33] revealed a new relation between N ∈(−∞, 0) and physics. Non-smooth frame-
work for the case N ∈(−∞, 0) has been also investigated. Especially, M agnabosco-Rigoni-
Sosa [81] and Oshima [99] studied the stability under some notions of convergences. Later,
M agnabosco-Rigoni [80] studied the local-to-global property.

Furthermore, when we consider some inequalities such as the Poincaré-Lichnerowicz in-
equality and the isoperimetric inequality in the case N ∈ (−∞, 0), some particular spaces
appear in the rigidity situation. As for the Poincaré-Lichnerowicz type inequality, Ohta [93]
and K olesnikov-M ilman [55] independently obtained the weighted case with N ∈(−∞, 0), and
its rigidity case was obtained by M ai [82]. For the isoperimetric inequality in the weighted case
N ∈(−∞, 0), M ilman [85] showed the inequality and M ai [83] obtained the rigidity.

1.2.2. Var iab le curvatu re b ounds. W ylie [135] obtained a splitting theorem under Ric1
f ≥ 0,

which asserts that a manifold splits to a warped product, unlike a Riemannian product in the
case N ∈(−∞, 1)∪[n, ∞]. After that, W ylie-Yeroshkin [136] further pushed forward researches
of the case N = 1, and introduced the following variable curvature bound:

Ric1
f ≥ K e

− 4f
n − 1 g.(2)
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Under this curvature bound, they obtained the Laplacian comparison theorem, the Bishop-
Gromov type volume comparison theorem, and several applications such as a M yers type di-
ameter estimate. In addition, they introduced an a neffi connection, which we call the W ylie-
Yeroshkin type connection. I t turned out that the Ricci curvature for the W ylie-Yeroshkin type
connection coincides with Ric1

f . The relation between the displacement convexity of entropies
and the curvature bounds (2) was obtained by Sakurai [113] in the smooth setting.

For the case N ∈(−∞, 1], K uwae-Li [58] introduced the curvature bound:

RicN
f ≥ K e

− 4f
n − N g.(3)

This coincides with (2) when N = 1. Further generalization of them to the case N ∈(−∞, 1]∪
[n, ∞] was given by Lu-M inguzzi-Ohta [79], where they introduced the curvature bound:

RicN
f ≥ K e

4( ε− 1) f
n − 1 g.(4)

Here, ε∈R is a parameter in some interval, which is called the ε-range. This curvature bound
with ε-range is a generalization of the curvature bound (3) in the case N ∈(−∞, 1). M oreover,
it is also a generalization of the constant curvature bound (1) in the case N ∈[n, ∞). Under (4),
K uwae-Sakurai [59] studied the rigidity cases of several comparison geometric results such as
the Laplacian comparison property and the Bishop-Gromov type volume comparison property.
Displacement convexity of entropies under (4) was investigated by K uwae-Sakurai [61].

W e note that researches of the Cheeger-Gromoll type isometric splitting theorem for mani-
folds with boundary also evolved. In particular, unlike the case without boundary, in the case
with boundaries, we have a splitting to a warped product with a warping function depending on
the parameter ε∈R in the ε-range under (4). W e briefly review related researches on manifolds
with boundary. First, in the unweighted case f ≡0 with boundary, K asue [52] obtained the
splitting theorem by generalizing the proof of Cheeger-Gromoll [21], and also Croke-K leiner
[31] showed it by following the line of a simpler proof of the Cheeger-Gromoll splitting theorem
by Eschenburg-Heintze [35]. After that, Sakurai [109–112] gave a further generalization of
them including the weighted case with N ∈(−∞, 1]. Finally, K uwae-Sakurai [60] obtained the
case with ε-range.

Recently, another motivation for the case N = 1 arose from general relativity theory. W ang-
W ang-Zhang [130] showed, if a Lorentz manifold (R×M , −V 2dt2+ g) with V ∈C∞(M ) satisfies
the null energy condition, (M , g) satisfies the substatic condition V Ricg + HessV + (∆ V )g ≥
0. In particular, the deSitter-Schwarzschild manifolds and the Reissner-Nordström manifolds
satisfy the substatic condition. Regarding the relation between the subtstatic condition and
the case N = 1, Li-X ia [62] introduced a family of a neffi connections that interpolate the
W ylie-Yeroshkin type connection and the a neffi connection whose Ricci curvature is the static
Ricci tensor. Notably, the non-negativity of the static Ricci tensor coincides with the substatic
condition. Furthermore, Borghini-Fogagnolo [9] pointed out that the relation between Ric1

f and
the substatic condition, and also showed a volume comparison theorem and a splitting theorem
on manifolds under the substatic condition. W e note that their Riccati inequality also appeared
in a prior work by Brendle [10]. Recently, K etterer [53], M cCann [84] and Cavalletti-M anini-
M ondino [14] conducted researches on the characterization of the null energy condition in view
of the optimal transport theory.

1.3. H a r mon ic f unct ions

1.3.1. On R iem ann ian m an ifold s. A classical Liouville theorem asserts that bounded har-
monic functions on R n must be constant. On Riemannian manifolds, a breakthrough under
lower bounds of Ricci curvature was given by Yau [137] as follows:
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T heorem 1.3.1 ([137]). Let (M , g) be a complete Riemannian manifold. W e assume

Ricg ≥ 0.

Then any positive harmonic function must be a constant function.

There are several ways to obtain this Liouville property. W e review some of them. One
may take an approach of gradient estimates (see e.g., [67]) . Salo -Costeff [114] obtained the
Liouville property under a volume doubling property and a local Poincaré inequality. Note that
lower bounds of Ricci curvature imply those conditions. A lso, the Alexandrov-Backlmann-Pucci
type estimate (ABP estimate, for short) gives an alternative proof of the Liouville theorem.
In particular, Cabré [13] conducted an ABP estimate on Riemannian manifolds under lower
bounds of sectional curvature, and showed a K rylov-Safonov type Harnack inequality, which
yields the Liouville property. This was generalized by K im [54] to more general manifolds
including Riemannian manifolds under lower bounds of Ricci curvature.

Cheng [26] replaced the boundedness condition with the sublinear growth condition of
harmonic functions, and obtained the following Liouville property:

T heorem 1.3.2 ([26]). Let (M , g) be a complete Riemannian manifold. W e assume

Ricg ≥ 0.

Then any sublinear growth harmonic function must be a constant function.

W e can prove this by the method of gradient estimate (see [67]). A probabilistic proof of
Cheng’s result was given by Sta ordff [118]. I f we denote the space of harmonic functions with
polynomial growth at most d by H d(M ), we see that Theorem 1.3.2 implies

dim H d(M ) = 1

for any d < 1. According to Li [66], this leads to Yau’s conjecture (see e.g., [139, Problem 48]):

Con j ectu re 1.3.3 (Yau). Let (M , g) be a Riemannian manfiold. W e assume

Ricg ≥ 0.

Then H d(M ) is finite dimensional for any d ≥ 1.

This conjecture motivated the analysis of harmonic functions with polynomial growth.
Among them, Li-Tam [69] gave a sharp estimate for the case d = 1, and its rigidity was proved
by Cheeger-Colding-M inicozzi [16]. Finally, this Yau’s conjecture was proved by Colding-
M inicozzi [28].

W hile the Yau type Liouville property implies the L∞-Liouville property, researches on the
L p-Liouville property are also active. Actually, Yau [138] showed the L p-Liouville theorem for
the case p ∈(1, ∞). For the case p = 1, Garnett [41] showed it if manifolds have bounded
geometry. Later, Li-Schoen [68] obtained the L 1-Liouville theorem under lower bounds of Ricci
curvature, and Li [64] improved them using the theory of heat equation. The case p ∈(0, 1)
was also given by Li-Schoen [68] under lower bounds of Ricci curvature as follows:

T heorem 1.3.4 ([68]). Let (M , g) be an n-dimensional complete non-compact weighted Rie-
mannian manifold. Then there exists a constant δ> 0 depending only on n such that the
fol lowing assertion holds:

W e assume that there exists q ∈M such that

Ricg ≥ δd−2
q g

when dq := d(q, ·) is su cientlyffi large. Let u be a non-negative L p-function with p ∈(0, ∞) with
∆u ≥ 0. Then u is identical ly zero.
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1.3.2. On weighted R iem ann ian m an i folds. Li [74] studied the Liouville theorem for sym-
metric di usionff operator ∆ f := ∆ − h∇f , ∇·i , which is also called the weighted Laplacian.
His motivation came from the relation between the symmetric di usionff operator and the
Schrödinger operator, and its relation with probability theory and potential theory. He con-
sidered an f -harmonic function, i.e., a function u such that ∆ f u = 0. W e remark that an
f -harmonic function is also called weighted harmonic function. In particular, Li [74] obtained
the Yau type Liouville theorem and the L 1-Liouville theorem for the case N ∈[n, ∞). The
L p-Liouville theorem for the case p ∈(1, ∞) was proved by Pigola-Rigoli-Setti [106] (see also
[107]) . For the case N = ∞, W u [132] showed the Yau type Liouville theorem under an ad-
ditional assumption that |∇f | is bounded, and also W u [133] generalized L p-Liouville theorem
with p ∈(0, 1] under an additional assumption that f is bounded. Although there are several
ways to prove the Yau type Liouville theorem, Li [74] and W u [132] employed the method of
gradient estimate.

Later, Brighton [11] gave further progress in this context for the case N = ∞. He ap-
plied the method of Yau’s gradient estimate to a specific function and showed that bounded
f -harmonic functions must be constant under Ric∞

f ≥ 0 without any assumptions on f . After
that, M unteanu-W ang [87] employed an argument similar to [11], and obtained a gradient
estimate of f -harmonic functions under Ric∞

f ≥ 0 and an additional assumption concerning
the linear growth rate of f . I t should be noted that, not only using a Brighton type gradient
estimate, M unteanu-W ang [87] combined them with the De Giorgi-Nash-M oser theory to ob-
tain the gradient estimate. This gradient estimate implies the Yau type Liouville theorem for
positive f -harmonic functions under Ric∞

f ≥ 0 if f is of sublinear growth. In addition, they
combined the De Giorgi-Nash-M oser theory with the weighted Bochner formula, and showed a
Cheng type Liouville theorem for f -harmonic functions with sublinear growth under an addi-
tional assumption that f is bounded. W e note that, in the proof of this Cheng type Liouville
theorem, they did not use the Brighton type gradient estimate. A lso, for the space of f -
harmonic functions, they gave an estimate of its dimension and proved especially its finiteness.
After [87], M unteanu-W ang [88] further pursued the study on gradient estimates, where they
replaced the assumption Ric∞

f ≥ 0 with Ric∞
f ≥ K g.

For the case N ∈ (−∞, 1], much less is known. I t seems that the method of gradient
estimates does not work straightforwardly in the case N ∈(−∞, 1]. To overcome this di cultffi y,
the author [38] took an approach to utilize the arguments in M unteanu-W ang [87], and showed
a Cheng type Liouville theorem for sublinear growth f -harmonic functions for the case N ∈
(−∞, 0) under an additional assumption that f is bounded. The case N ∈[0, 1] was excluded
in [38] since the author did not know a suitable Bochner formula in this case. As for the
L p-Liouville theorem, the author [38] also showed them in the case p ∈(0, 1) and N ∈(−∞, 1]
under a strong assumption on f . There is another progress on harmonic maps in the case
N ∈(−∞, 0]. Actually, Cheng [26] also showed a Liouville type theorem for harmonic maps,
and an alternative proof using the probabilistic theory was given also by Sta ordff [118], and
this was generalized to the case N ∈(−∞, 0] by K uwae-Li-Li-Sakurai [57].

1.3.3. R elated top ics: C heng typ e upp er b ound of the fi rst eigenvalue. I t is worth
mentioning that M unteanu-W ang [87] used the Brighton type Liouville theorem to show the
rigidity of the Cheng type inequality, which estimates the upper bound of the bottom spectrum.
W e briefly review the history of this Cheng type inequality. Cheng [25] first obtained an upper
bound of the first eigenvalue of the Laplacian as follows:
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T heorem 1.3.5 ([25]). Let (M , g) be an n-dimensional complete non-compact Riemannian
manifold. For K ≥ 0, we assume

Ricg ≥ −K g.

Then we have

λ1(M ) ≤
(n − 1)K

4
.

Cheng [25] obtained this by calculating the upper bounds of space forms. I ts rigidity was
obtained by Li-W ang [70, 71]. A lthough the calculation on space forms is necessary, a part of
Cheng’s proof can also be simplified using the heat kernel comparison (see e.g., [117]). W e also
note that this Cheng’s inequality is also obtained as an application of a gradient estimate (see
e.g.,[67]). This method of gradient estimate was generalized by W ang [127] and W u [131] to
the case N ∈[n, ∞]. W e remind that W u [132] assumed the boundedness of |∇f | in the case
N = ∞. On the other hand, by using the Bishop-Gromov type volume comparison theorem,
M unteanu-W ang [87, 88] and Su-Zhang [121] obtained Cheng type inequalities for the case
N = ∞ with some additional assumption on f , and they also obtained the rigidity. Especially,
in M unteanu-W ang [87], the rigidity of Cheng’s inequality was applied to study the topology of
steady gradient Ricci solitons. As for the L p-spectrum, W ang [128] obtained an upper bound
by using the volume comparison theorem. In the weighted case N ∈(−∞, 1] ∪[n, ∞] with
ε-range, the author [37] obtained an upper bound, while its sharpness and rigidity are left for
future work. Recently, Cheng type inequalities for the case N = 1 gained some attention in
view of the substatic condition (see also [9]) .

1.4. Po r ous med ium equat ion

1.4.1. H eat fl ow as a grad ient fl ow . The solution of the heat equation ∂tu = ∆u can be
regarded as a gradient flow of the relative entropy with respect to the W asserstein distance,
which we call the W asserstein gradient flow. On Euclidean space, this was shown by Jordan-
K inderlehrer-Otto [51]. Later, so called the Otto calculus proposed by Otto [101] enabled us
to see those relations more intuitively. Actually, it turned out that the W asserstein gradient
flow of the relative entropy for the weighted measure e−f vg is the solution of the weighted
heat equation ∂tu = ∆ f u, which is also known as the Fokker-Planck equation. Although the
W asserstein space does not have any di erenff tial structure, the Otto calculus introduced a
di erenff tial structure heuristically. W e note that the rigorous treatment is very active, and the
general theory of gradient flow on metric spaces took an important role (see e.g., [1]) .

On Riemannian manifolds, lower bounds of Ricci curvature and the behavior of heat flows
are closely related. Indeed, von Renesse-Sturm [126] showed that the lower bound of Ricci
curvature and the contraction of the heat flow are equivalent. This contraction is measured in
view of the W asserstein distance, and also referred to as the W assrstein expansion bound. Erber-
K uwada-Sturm [34] further pursued this study. In particular, they formulated the (K , N )-
convexity of the relative entropy as the entropic curvature dimension condition CD e(K , N ). In
a non-smooth framework, they showed CD e(K , N ) implies the W asserstein expansion bound. In
addition, they also showed that CD e(K , N ) yields the Bakry-Ledoux gradient estimate. Later,
Ohta [93] investigated the (K , N )-convexity for N ∈(−∞, 0). I t turned out that the argument
in [34] showing that CD e(K , N ) implies the Bakry-Ledoux type gradient estimate does not
hold in the case N ∈(−∞, 0), and the technical di cultffi y comes from the lack of expansion
bounds of the gradient flows of general (K , N )-convex functions. Not only the Bakry-Ledoux
type gradient estimate, the Li-Yau type gradient estimate is not yet obtained for the case
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N ∈(−∞, 0). Gradient estimates for the case N ∈(−∞, 0) are listed as one of the open
questions in [93] (see also [95]) .

1.4.2. Porous m ed ium equation as a grad ient fl ow . Porous medium equation ∂tu = ∆ um

with m > 1, which is a generalization of the heat equation, appears in many fields, not only
mathematics. Especially, the porous medium equation on Euclidean space is well investigated
(see e.g., [125]) . Recently, there is a growing interest in view of the W asserstein distance.
I t is pointed out by Otto [101] that the porous medium equation can be interpreted as the
W asserstein gradient flow of the Rényi entropy.

One of the particular features of the heat flow is the stability of the Gaussian measures
along the heat flow. As a generalization of this property, Ohara-W ada [91] showed the stabil-
ity of the q-Gaussian measures along the porous medium equation. After that, Takatsu [122]
obtained some functional inequalities as a generalization of inequalities by Otto-Villani [100],
and showed that the equality is attained by the q-Gaussian measures. In Ohta-Takatsu [98],
they investigated the relation between the displacement convexity for a more general class of
entropies and lower bounds of RicN

f . I n particular, RicN
f with N ∈(−∞, 0) was used to charac-

terize this convexity. They also applied the general theory to this displacement convexity, and
obtained a contraction property of porous medium equation on compact Riemannian manifolds.

1.4.3. A ronson-B én i lan estim ate. In Aronson-Bénilan [3], they obtained a gradient esti-
mate for the porous medium equation ∂tu = ∆ um on Euclidean space Rn as follows:

∇· mum − 2∇u ≥ −
1

2

n

n(m − 1) + 2
.(5)

Later, Li-Yau [72] obtained a gradient estimate for the heat equation. I f we let m & 1 in
the Aronson-Bénilan type estimate, it coincides with the Li-Yau type estimate. On compact
Riemannian manifolds, the Aronson-Bénilan type estimate was obtained in Vázquez [125].
After that, Lu-Ni-Vázquez-Villani [78] generalized the Aronson-Bénilan type gradient estimate
to non-compact Riemannian manifolds. W e note that, similarly to the Li-Yau gradient estimate,
they obtained a local gradient estimate. W e may consider their Aronson-Bénilan type local
gradient estimate as a counterpart of the Li-Yau gradient estimate for the heat equation. The
results in [78] were improved by Huang-Huang-Li [49]. Their improvements of the Aronson-
Bénilan gradient estimate are compatible with the recent progress of gradient estimates for
the heat equation obtained by Davies [32], Hamilton [48] and Li-Xu [63]. The weighted case
with N ∈[n, ∞) was obtained by Huang-Li [50]. Furthermore, the author [36] obtained the
case N ∈ −∞, − 2

m − 1
∪[n, ∞] with ε-range. This can be regarded as a gradient estimate for

the case N ∈(−∞, 0). As the porous medium equation becomes the heat equation by letting
m & 1, we see − 2

m − 1
→ −∞, and the range (−∞, − 2

m − 1
) degenerates. An approach different from

the Li-Yau gradient estimate is needed to obtain a gradient estimate for the heat equation in
the case N ∈(−∞, 0), which is left for future work.

1.5. O r g an izat ion

The aim of this thesis is a comprehensive understanding of the following assertions:

(i) L p-Liouville theorem (Theorem 3.2.4);
(ii) Liouville theorem for sublinear growth f -harmonic functions (Theorem 3.3.4);
(iii) Gradient estimate for f -harmonic functions (Theorem 3.4.1);
(iv) Cheng type eigenvalue estimate (Theorem 3.5.1);
(v) Aronson-Bénilan gradient estimate (Theorem 4.1.1) ;
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under lower bounds of N -weighted Ricci curvature with ε-range. In the unweighted case f ≡0,
they are all obtained via the method of gradient estimate. A lthough some of the classical
properties written in this thesis are not generalized to our settings, we consider that they also
help us to grasp the current situation on this topic.

Section 2.1 is devoted to introducing the weighted Ricci curvature with ε-range, and the
rest of Chapter 2 is devoted to listing some results related to harmonic functions, eigenvalue
estimates, and the porous medium equation in the case N ∈[n, ∞]. In section 2.1, we in-
troduce weighted Ricci curvature and list several examples, and basic theorems such as the
Laplacian comparison property (Proposition 2.1.15) and the Bishop-Gromov type volume com-
parison property (Proposition 2.1.19). W e also address the Bochner inequality for the case
N ∈(−∞, 0) ∪{ ∞} (Propositions 2.1.6 and 2.1.7). Section 2.2 is divided into several subsec-
tions. In subsection 2.2.1, we study functional inequalities which are useful in the analysis of
harmonic functions. W e provide the Li-Schoen type Poincaré inequaliy (Theorem 2.2.1), the
Neumann-Sobolev inequality (Theorems 2.2.11 and 2.2.15), and the Salo -Costeff type Sobolev
inequality (Theorem 2.2.7). W e note that, in the case N = ∞, some di erenff t assumptions on
the weight functions are employed. After that, we address the consequences of the De Giorgi-
Nash-M oser theory. In particular, the mean value inequality (Propositions 2.2.16 and 2.2.17)
and the Harnack inequality (Theorem 2.2.18) are spelled out. In subsection 2.2.2, we present
several Liouville type theorems and gradient estimates, especially the various types in the case
N = ∞. In the next section 2.3, we list Cheng type eigenvalue estimates. Several types are
presented in the case N = ∞ (Theorems 2.3.1 to 2.3.6) . In section 2.4, we study gradient
estimates of Li-Yau type (Theorem 2.4.1) and Aronson-Bénilan type (Theorem 2.4.3).

Chapter 3 is devoted to the analysis of harmonic functions and related topics under lower
bounds of RicN

f with ε-range for N ∈(−∞, 1] ∪[n, ∞]. In subsection 3.1.1, to obtain the
Neumann-Sobolev type inequality (Theorem 3.1.7), we provide a Neumann-Poincaré type in-
equality (Proposition 3.1.1), a Salo -Costeff type Sobolev inequality (Proposition 3.1.2), and a
Li-Schoen type Poincaré inequality (Proposition 3.1.6). In subsection 3.1.2, using Neumann-
Poincaré inequality and Neumann-Sobolev inequality, we address the mean value inequality
(Theorem 3.1.8). This is obtained by the De Giorgi-Nash-M oser theory. As applications of
the mean value inequality, we provide an L p-Liouville type theorem (Theorem 3.2.4) in section
3.2, and a Cheng type Liouville theorem (Theorem 3.3.4) in section 3.3. In section 3.4, we
use a Harnack type inequality, which is obtained from the mean value inequality, and obtain a
gradient estimate (Theorem 3.4.1). In section 3.5, we give a Cheng type inequality (Theorem
3.5.1) as related topics. W e consider it natural to be interested in the analysis of eigenfunction
since M unteanu-W ang [87] applied the Brighton type Liouville theorem to obtain the rigidity
property of the Cheng type inequality. In our case, as far as we know, unlike the case in [87],
the analysis of harmonic functions and eigenfunctions of the weighted Laplacian do not interact
with each other.

Chapter 4 is devoted to the analysis of porous medium equation under lower bounds of
RicN

f with ε-range for N ∈(−∞, 1]∪[n, ∞]. In section 4.1, we obtain a local Aronson-Bénilan
type gradient estimate (Theorem 4.1.1), and this allows us to obtain a global estimate on non-
compact spaces. In section 4.2, we give an alternative proof of the global estimate (Theorem
4.2.1) on compact manifolds.
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CHAPTER 2

P rel im inar ies

In this chapter, we review basic comparison geometric results under lower bounds of weighted
Ricci curvature. Some of them are generalized in the subsequent chapters. Those which are not
generalized are also useful to understand the backgrounds of geometric analysis on harmonic
functions, eigenfunctions and porous medium equations.

2.1. W eig h t ed R icci cu r vat ur e

In this section, we introduce the lower bounds of weighted Ricci curvature with ε-range,
and provide some comparison geometric results related to the weighted Ricci curvature. These
are useful throughout the rest of this thesis.

Let (M , g, f ) be an n-dimensional weighted Riemannian manifold. W e denote the weighted
measure and the weighted Laplacian as follows:

m f := e− f vg , ∆ f := ∆ − h∇f , ∇·i ,

where vg is the Riemannian volume measure. For N ∈(−∞, 1]∪[n, + ∞], the N -weighted Ricci
curvature is defined by

RicN
f := Ricg + Hessf −

df ⊗ df

N − n
,

where the last term is considered to be 0 when N = ∞, and when N = n, we only consider
constant functions for f .

R em ark 2.1.1. In the case N ∈(n, ∞) ∩N, Lott [76] pointed out that RicN
f on (M , g, f )

coincides with the Ricci curvature on a specific warped product. W e consider a sphere SN −n

equipped with the canonical metric gSN − n . On the product M ×SN −n , we set a warped product
metric

G := g + e
2f

N − n gSN − n .

Let RicG denote the Ricci curvature on (M ×SN − n , G), and X denote the horizontal lift to
M ×SN −n of a vector field X on M . Then we have

RicG (X , X ) = RicN
f (X , X ).

W e present several known examples below for the case N ∈(−∞, 0) ∪{ ∞} .

E xam p le 2.1.2. The Euclidean space equipped with a Gaussian measure:
 

Rn , | · |,
1

(2π)n/2
e− | x | 2

2 dx

!

satisfies Ric∞
f ≥ g.

E x am p le 2.1.3 ([86]). For α> 0, the Cauchy distribution m n ,α on Rn is defined as follows:

m n ,α := (1 + |x |2)− n + α
2 dx.
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Then we see that (Rn , | · |, m n ,α) satisfies Ric− α
f ≥ 0 (see M ilman [86]) .

E x am p le 2.1.4 ([82]). A one-dimensional space
 

 R, | · |, cosh

 r
K

1 − N
x

! N − 1

dx

 

 

for K > 0 and N < 0 satisfies RicN
f ≡K g (see M ai [82, Example 3.1]).

E x am p le 2.1.5 ([86]). For n ≥ 2, let Hn denote the Haar measure on Rn+ 1 . For α> −n and
x ∈Rn+ 1 with |x | < 1, the harmonic measure m n ,α

x on Sn is defined as follows:

m n ,α
x (y) :=

1

|y − x|n+ α
dHn (y).

W e denote the canonical metric on Sn by gSn . Then the space (Sn , gSn , m n ,α
x ) satisfies Ric− α

f ≥

n − 1 − n+ α
4

g (see M ilman [86, Theorem 1.1]).

W e turn to the Bochner formulas and their applications. W e have the following Bochner
identity for the weighted case with N = ∞:

P rop osit ion 2.1.6. Let (M , g, f ) be an n-dimensional complete weighted Riemannian mani-
fold. For ϕ ∈C∞(M ), we have

∆ f
|∇ϕ |2

2
− h∇∆ f ,ϕ ∇ϕ i = Ric∞

f (∇ ,ϕ ∇ϕ ) + kHessϕ k2.

The Bochner inequality for the weighted case with N ∈(−∞, 0) is as follows (see e.g.,
[93, Theorem 4.1]):

P rop osit ion 2.1.7 ([93]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold. For ϕ ∈C∞(M ) and N ∈(−∞, 0), we have

∆ f
|∇ϕ |2

2
− h∇∆ f ,ϕ ∇ϕ i ≥ RicN

f (∇ ,ϕ ∇ϕ ) +
(∆ f ϕ )2

N
.

W ylie [135] introduced the following Bochner formula (see [135, Lemma 2]):

P rop osit ion 2.1.8 ([135]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold and ϕ ∈C 3(M ). For K ∈R, k ∈N and p ∈M , we assume

Ricn−k
f ≥ K g,

and Hessϕ |p has at most k non-zero eigenvalues. Then we have

∆ f
|∇ϕ |2

2
− e

− 2f
k

D
∇ e

2 f
k ∆ f ϕ , ∇ϕ

E
≥ K |∇ϕ |2 +

(∆ f ϕ )2

k
.

W e note that k = n − 1 in Proposition 2.1.8 if we substitute the distance function into ϕ .
W ylie [135] applied this to the distance function and obtained the Riccati inequality under
Ric1

f ≥ 0 as follows (see [135, Theorem 3.2] and also [134, Lemma 6.1]) :

T heorem 2.1.9 ([135]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold. W e assume

Ric1
f ≥ 0.

20



For a fixed point q ∈M , let x be a point that the distance function dq is smooth at x . Also, let
γbe the unique minimal geodesic from q to x parameterized by arclength. Then

(∆ f dq)(x) ≤ (n − 1) e
− 2f ( x )

n − 1

 Z dq (x )

0

e
− 2f ( γ( t ) )

n − 1 dt

! − 1

.(6)

R em ark 2.1.10. Actually, thiswas first obtained in a more general form by W ylie [134, Lemma
6.1], which is a paper before [135].

W ylie-Yeroshkin [136] pointed out that the term
Rdq (x )

0
e

− 2f ( γ( t ) )
n − 1 dt can be interpreted from

the viewpoint of an a neffi connection. For ϕ ∈C∞(M ), they introduced an a neffi connection:

∇ϕ
X Y := ∇X Y − dϕ (X )Y − dϕ (Y )X ,

where ∇denotes the Levi-Civita connection. W e called ∇ϕ the W ylie-Yeroshkin type connection
in the previous chapter. In the same setting as in Theorem 2.1.9, we set ϕ := f

n−1
and

sγ(t) :=

Z t

0

e
− 2f ( γ( t ) )

n − 1 dt.(7)

Let γ0 := dγ
dt and γ̇:= dγ

ds , where s = sγ(t). Since γ̇= e
2f

n − 1 γ0, we see

∇ϕ
γ̇γ̇= e

2f
n − 1 ∇γ0γ0 = 0.

Hence, we may regard that the reparametrization sγ(t) gives a geodesic with respect to ∇ϕ . In
other words, we see that the images of a ∇ϕ -geodesic and a ∇-geodesic coincide. This property
actually holds for a wider class of a neffi connections, which are projectively equivalent to ∇,
and this is guaranteed by the W eyl theorem (see e.g., [136]).

R em ark 2.1.11. W e set the Riemannian curvature tensor and Ricci curvature with respect to
∇ϕ as follows:

R ∇ϕ
(X , Y, Z ) := ∇ϕ

X ∇ϕ
Y Z − ∇ϕ

Y ∇ϕ
X Z − ∇ϕ

[X ,Y ]Z ,

Ric∇ϕ
(X , Y ) := tr X → R ∇ϕ

(X , Y )Z .

I f we set ϕ = f
n−1

, we have Ric1
f = Ric∇ϕ

(see also subsection 1.2.2) .

W ylie-Yeroshkin [136] obtained the Riccati inequality under the curvature bound:

Ric1
f ≥ K e

− 4f
n − 1 g.

After a further generalization of K uwae-Li [58] to the case N ∈(−∞, 1], Lu-M inguzzi-Ohta
[79] considered the curvature bound:

RicN
f ≥ K e

4( ε− 1) f
n − 1 g,(8)

for K ∈R, where εin the ε-range:

ε= 0 for N = 1, |ε| <

r
N − 1

N − n
for N 6= 1, n, ε∈R for N = n.

Later, K uwae-Sakurai [59] investigated more general potentials V . W e note that results in [59]
recover those in [79] when V = ∇f and f is bounded.

R em ark 2.1.12. As is mentioned in the introduction, the curvature bound (8) coincides with
RicN

f ≥ K g if we take ε= 1 when N ∈[n, ∞). In addition, it coincides with the curvature
bound (2) introduced by W ylie-Yeroshkin in the case N = 1, and also coincides with the
curvature bound (3) introduced by K uwae-Li if we take ε= N − 1

N − n in the case N ∈(−∞, 1].
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Before we give comparison theorems, we prepare some notations following the line in [59].
W e set

c(n, N , ε) :=
1

n − 1
1 − ε2 N − n

N − 1
,(9)

and the comparison function as

sκ(t) =

 
  

  

1√
κ

sin(
√

κt) for κ> 0,

t for κ= 0,
1√
−κ

sinh(
√

−κt) for κ< 0.

Also, we put

Cκ:=

(
π√
κ if κ> 0,

∞ otherwise,
sκ(s) :=

(
sκ(s) if s ≤ Cκ,

0 otherwise ,
Sκ(r ) :=

Z r

0

s1/c
κ (s) ds.

Below, we fix a point q ∈M . For x ∈M , we define

sf ,q(x) := inf
γ

Z dq ( x )

0

e
2( ε− 1) f ( γ( ξ) )

n − 1 dξ,(10)

where γruns all the unit speed minimal geodesics from q to x. W e denote the set of unit vectors
in TqM by UqM . For w ∈UqM , we set

ρ(w) := sup { t > 0 | dq(γw (t)) = t} ,

where γw is the unit speed geodesic such that γw (0) = q and γ0
w (0) = w. In the process of

generalizations in [58, 61, 79], the reparametrization (7) was generalized as follows:

sf ,w (t) :=

Z t

0

e
2( ε− 1) f ( γw ( ξ) )

n − 1 dξ(11)

and ρf (w) := sf ,w (ρ(w)) for w ∈UqM . W e denote the inverse function of sf ,w by tf ,w . Then
we have the following Laplacian comparison property (see K uwae-Sakurai [59, Theorem 2.3]) :

P rop osit ion 2.1.13 ([59]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold, N ∈ (−∞, 1] ∪[n, ∞] and ε∈ R in the ε-range. For q ∈ M , w ∈ UqM and
t ∈(0, ρ(w)), we assume

RicN
f (γ0

w (t), γ0
w (t)) ≥ K e

4( 1− ε) f ( γw ( t ) )
n − 1 .

Then for c := c(n, N , ε) as in (9), t ∈(0, τ(w)) and sf ,w (t) ∈(0, min { ρf (w), CcK } ) , we have

(∆ f dq)(γw (t)) ≤
1

c

s0
cK (sf ,w (t))

scK (sf ,w (t))
e

2( ε− 1) f ( γw ( t ) )
n − 1 .(12)

W e denote the volume element of the level surface of dq at γw (t) by θ(t, w). W e set

θf (t, w) := e−f (γw ( t) )θ(t, w), bθf (s, w) := θf (tf ,w (s), w),

and

B f , r (q) := { x ∈M | sf ,q(x) < r } .

The volume comparison theorem holds as follows (see [59, Proposition 6.2]):
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P rop osit ion 2.1.14 ([59]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold, N ∈(−∞, 1] ∪[n, ∞] and ε∈R in the ε-range. For K ∈R, we assume

RicN
f ≥ K e

4( ε− 1) f
n − 1 g.

Then for c := c(n, N , ε) as in (9) and R ≥ r > 0, we have

m { 1+
2( 1− ε)

n − 1 } f
(B f ,R (q))

m { 1+
2( 1− ε)

n − 1 } f
(B f , r (q))

≤
ScK (R )

ScK (r )
.

Below, we assume that f is bounded. In that case, the Laplacian comparison theorem is as
follows (see Lu-M inguzzi-Ohta [79, Theorem 3.9]) :

P rop osit ion 2.1.15 ([79]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold, N ∈(−∞, 1] ∪[n, ∞] and ε∈R in the ε-range. For K ∈R and b2 ≥ b1 > 0, we
assume

RicN
f ≥ K e

4( ε− 1) f
n − 1 g, b1 ≤ e

2( 1− ε)
n − 1

f ≤ b2.

W e set ρ:= b1 i f s0
cK (dq(x)/b2) ≥ 0, ρ:= b2 i f s0

cK (dq(x)/b2) < 0, where c := c(n, N , ε) as in
(9). Then for q ∈M , we have

∆ f dq(x) ≤
1

cρ

s0
cK (dq(x)/b2)

scK (dq(x)/b2)
,(13)

on M \(Cut(q) ∪{ q} ), where Cut(q) denotes the cut locus of q.

R em ark 2.1.16. This corresponds to W ylie-Yeroshkin [136, Theorem 4.4] in the case N = 1,
and also to K uwae-Li [58, Theorem 2.4] if we take ε= N −1

N − n in the case N ∈(−∞, 1].

R em ark 2.1.17. The boundedness of f implies the boundedness of other quantities as follows:

1

b2
≤ e

2( ε− 1)
n − 1 ≤

1

b1
,

dq(x)

b2
≤ sf ,q(x) ≤

dq(x)

b1
.(14)

R em ark 2.1.18. Proposition 2.1.13 implies Proposition 2.1.15 as pointed out in [59]. For
example, in the case N ∈(−∞, 1) and K < 0, the right-hand side of (12) is estimated as

1

c

s0
cK (sf ,w (t))

scK (sf ,w (t))
e

2( ε− 1) f ( γw ( t ) )
n − 1 ≤

1

b1

r
K

c
coth

 √
cK

b2

dq(x)

!

,

where we used (14), and the right-hand side of this inequality coincides with that in (13).

W e denote the ball with radius r centered at x ∈M by B r (x). The volume comparison
theorem under an assumption that f is bounded is as follows (see [79, Theorem 3.11]):

P rop osit ion 2.1.19 ([79]). W e assume that (M , g, f ) satisfies the same condition as in Propo-
sition 2.1.15. Then for q ∈M and R ≥ r > 0 with R ≤ b2π/

√
cK , where π/

√
cK := ∞ when

K ≤ 0, we have

m f (BR (q))

m f (B r (q))
≤

b2

b1

Rmin{ R /b1 ,π/
√

cK }

0
scK (t)1/c dt

Rr /b2

0
scK (t)1/c dt

.

R em ark 2.1.20. This corresponds to W ylie-Yeroshkin [136, Theorem 4.5] in the case N = 1,
and also to K uwae-Li [58, Theorem 2.10] if we take ε= N − 1

N −n in the case N ∈(−∞, 1].
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R em ark 2.1.21. Proposition 2.1.14 implies Proposition 2.1.19. For example, in the case
N ∈(−∞, 1) and K < 0, for r > 0, it follows from (14) that

B f , r (q) ⊂B b2 r (q), B b1 r (q) ⊂B f , r (q).

This leads us to

m{ 1+
2( 1− ε)

n − 1 } f
B f ,R /b1

(q) ≥
1

b2

m f (BR (q)), m { 1+
2( 1− ε)

n − 1 } f
B f , r /b2

(q) ≤
1

b1

m f (B r (q)).

Combining these, we have

b1

b2

m f (BR (q))

m f (B r (q))
≤

m { 1+
2( 1− ε)

n − 1 } f
B f ,R /b1

(q)

m { 1+
2( 1− ε)

n − 1 } f
B f , r /b2

(q)
≤

ScK (R/b1)

ScK (r /b2)
,

and this recovers Proposition 2.1.19.

2.2. H a r mon ic f unct ions

In this section, we review Liouville type theorems and gradient estimates. These are ob-
tained as applications of functional inequalities such as Poincaré type inequalities and Sobolev
type inequalities. Some results in this section are generalized in the next chapter.

2.2.1. Functional inequal i t ies. Some functional inequalities are useful in analyzing harmonic
functions. W e review them in this subsection. For q ∈M and r > 0, we denote the set of
compactly supported functions in C∞(B r (q)) by C∞

0 (B r (q)) . W e have the following Li-Schoen
type local Poincaré inequality (see Li-Schoen [68, Corollary 1.1], also refer to Schoen-Yau
[117, Chapter I I , Lemma 6.1]):

T heorem 2.2.1 ([68]). Let (M , g) be an n-dimensional complete Riemannian manifold. For
K ≥ 0, we assume

Ricg ≥ −K g.

Then, for p > 1, there exist positive constants C and D depending only on n and p such that
Z

B r (q)

|ϕ |p dvg ≤ Cr peD
√

K r

Z

B r (q)

|∇ϕ |p dvg

for any q ∈M , r > 0 and ϕ ∈C0
∞(B r (q)).

R em ark 2.2.2. This Li-Schoen type Poincaré inequality is an important ingredient in proving
the Neumann-Sobolev type inequality (Theorem 3.1.7).

In [68], as an application of this inequality, we arrive at the following mean value inequality
(see [68, Theorem 1.2], also refer to [117, Theorem 6.2]) :

T heorem 2.2.3 ([68]). W e assume that (M , g) satisfies the same condition as in Theorem
2.2.1. Let u be a non-negative subharmonic function, i .e. , ∆ u ≥ 0. Then there exist positive
constants C and D such that

sup
B ( 1− θ) r (q)

u2 ≤ Cθ−D (1+
√

K r ) 1

vg(B r (q))

Z

B r (q)

u2 dvg

for any θ∈(0, 1/2), r > 0, q ∈M .

R em ark 2.2.4. As is pointed out in [117, Chapter I I , Section 6], it leads to the Yau type
Liouville theorem for bounded harmonic functions. This proof of the Yau type Liouville theorem
uses a gradient estimate of harmonic functions (see e.g., [68, Lemma 1]), giving an alternative
proof di erenff t from the original proof in Yau [137].
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The mean value of a function ϕ on B r (q) is denoted by

ϕ B r (q) :=
1

m f (B r (q))

Z

B r (q)

ϕ dm f .

The Neumann-Poincaré inequality holds as follows (see [116, Theorem 5.6.5]) :

T heorem 2.2.5 ([12, 116]). Let (M , g) be an n-dimensional complete Riemannian manifold.
For K ≥ 0, we assume

Ricg ≥ −K g.

For p ∈[1, ∞), there exist a constant C > 0 depending only on n, p and a constant D > 0
depending only on n such that

Z

B r (q)

ϕ − ϕ B r (q)
p

dm f ≤ C r peD
√

K r

Z

B r (q)

|∇ϕ |p dm f

for q ∈M , r > 0 and ϕ ∈C∞(B r (q)).

R em ark 2.2.6. This was obtained by Buser [12]. Furthermore, an alternative proof was
presented by Salo -Costeff [116, Theorem 5.6.5] (see also [115, (6)]).

In the case N ∈[n, ∞), we possess the following local Sobolev inequality (see W ang et al.
[129, Lemma 3.2]) :

T heorem 2.2.7 ([129]) . Let (M , g, f ) be an n-dimensional weighted Riemannian manifold
with n ≥ 2, and N ∈[n, ∞). For K ≥ 0, we assume

RicN
f ≥ −K g.

Then there exists a constant C > 0 depending only on n and N such that
Z

B r (q)

|ϕ |
2N

N − 2 dm f

N − 2
N

≤ e
C 1+

√
(N −1)− 1 K r

m f (B r (q)) r 2

Z

B r (q)

|∇ϕ |2 + r−2ϕ 2 dm f ,

for any q ∈M , r > 0 and ϕ ∈C∞
0 (B r (q)).

Below, we call this type of Sobolev inequality as the Salo -Costeff type Sobolev inequality.

R em ark 2.2.8. This is obtained by using the Neumann-Poincaré inequality as is shown in
Salo -Costeff [114, Theorem 2.1]. The proof is omitted in [129]. In the weighted case N = ∞,
W u [133, Lemma 2.4] obtained this under an additional assumption that f is bounded.

W e turn to the weighted case with N = ∞. M unteanu-W ang obtained the Neumann-
Poincaré inequality for the case N = ∞ as follows (see [87, Lemma 3.4]) :

T heorem 2.2.9 ([87]) . Let (M , g, f ) be an n-dimensional complete weighted Riemannian man-
ifold. W e assume

Ric∞
f ≥ 0.

For R > 0 and q ∈M , we set

b(R ) := sup
B 3R (q)

f .

There exist positive constants C and D depending only on n such that we have
Z

B r (x )

ϕ − ϕ B r (x )
2

dm f ≤ CeD b(R ) r 2

Z

B r (x )

|∇ϕ |2 dm f

for x ∈BR (q), 0 < r < R and ϕ ∈C∞(B r (x)).
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R em ark 2.2.10. M unteanu-W ang [87] obtained this by applying Buser’s argument [12].

As an application, M unteanu-W ang [87] obtained the following Neumann-Sobolev inequality
(see [87, Lemma 3.5]):

T heorem 2.2.11 ([87]). W e assume that (M , g, f ) satisfies the same condition as in Theorem
2.2.9. There exist positive constants ν> 2, C and D depending only on n such that

Z

B r (q)

ϕ − ϕ B r (q)

2ν
ν− 2

ν− 2
ν

≤
C eD b(r ) r 2

m f (B r (q))2/ν

Z

B r (q)

|∇ϕ |2 dm f

for any q ∈M , r > 0 and ϕ ∈C∞(B r (q)).

R em ark 2.2.12. M unteanu-W ang [87, Lemma 3.2] used the argument in Haj lasz-K oskela [47]
to prove this. Their proof does not use the Salo -Cff oste type Sobolev inequality.

Under the more general condition of lower bounds of RicN
f , M unteanu-W ang [88] obtained

the Neumann-Poincaré inequality as follows (see [88, Lemma 3.2]) :

T heorem 2.2.13 ([88]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold. For b > 0, we assume

Ric∞
f ≥ −(n − 1)g, sup

y∈B 1 ( x )

|f (x) − f (y)| ≤ b

for any x ∈M . Then there exists a constant C > 0 depending only on n and b such that
Z

B r (q)

ϕ − ϕ B r (q)
2

≤ C

Z

B r (q)

|∇ϕ |2 dm f

for any q ∈M , r > 0 and ϕ ∈C∞(B r (q)).

R em ark 2.2.14. In the weighted case N = ∞, W u [133, Lemma 2.4] obtained this under an
additional assumption that f is bounded instead of the condition supy∈B 1 ( x ) |f (x) − f (y)| ≤ b.

The Neumann-Sobolev inequality was generalized as follows (see [88, Lemma 3.3]) :

T heorem 2.2.15 ([88]). W e assume that (M , g, f ) satisfies the same condition as in Propo-
sition 2.2.13. Then there exist constants ν> 2 and C > 0 depending only on n and b such
that

Z

B 1 (q)

ϕ − ϕ B 1 (q)

2ν
ν− 2 dm f

ν− 2
ν

≤
C

m f (B 1(q))2/ν

Z

B 1 ( x )

|∇ϕ |2 dm f

for any q ∈M and ϕ ∈C∞(B 1(q)).

For p > 0, a function ϕ on M , q ∈M and r > 0, we set

kϕ kp,r :=

Z

B r (q)

|ϕ |p dvg

1
p

, kϕ k∞,r := sup
B r (q)

|ϕ |.

W e denote the (1, 2)-Sobolev space on B r (q) by H 1,2(B r (q)) and the set of compact support
elements of it by H 1,2

c (B r (q)). W e list two mean value inequalities. The first one is as follows
(see e.g., Li [65, Lemma 11.1]):

P rop osit ion 2.2.16 (cf. [65]). Let (M , g) be an n-dimensional complete Riemannian manifold,
q ∈M and u ∈H 1,2(B r (q)) be non-negative and satisfy

∆ u ≥ −φu,
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for some non-negative φ∈C∞(B r (q)) . W e set p1 := n/2 if n > 2, and we take p1 arbitrary in
(1, ∞) if n = 2, and also p2 > 0 such that 1

p1
+ 1

p2
= 1. W e assume kφkp < ∞ for some p > p1 ,

and that there exists a constant CSob > 0 such that

1

vg(B r (q))

Z

B r (q)

|∇ϕ |2 dvg ≥
CSob

R 2

1

vg (B r (q))

Z

B r (q)

ϕ 2p2 dvg

1
p2

for any ϕ ∈H 1,2
c (B r (q)) . For fixed θ∈(0, 1), let C vol > 0 be a constant such that

vg(B r (q))

vg (Bθr (q))
≤ C vol .

Then for any σ> 0, there exists a constant C sub > 0 depending only on σ, p1, p, CSob, C vol such
that we have

kuk∞,θr ≤ C sub (Ar 2)
p

p − p 1 + (1 − θ)−2
p 1
σ kukσ,r

vg(B r (q))1/σ
,

where we set

A :=

 
 

 
vg(B r (q))− 1

R
B r (q)

φp dvg

1
p

i f p < ∞,

kφk∞,r i f p = ∞.

For q ∈M and r > 0, we denote the first Neumann eigenvalue of B r (q) by λN eu
1 (q, r ). The

variational characterization of λNeu
1 (q, r ) is as follows:

λN eu
1 (q, r ) = inf

ϕ ∈C ∞ (B r (q) )

( R
B r (q)

|∇ϕ |2 dvg
R

B r (q)
ϕ 2 dvg

Z

B r (q)

ϕ dvg = 0

)

.

The second one is as follows (see e.g., [65, Lemma 11.2]):

P rop osit ion 2.2.17 (cf. [65]). Let (M , g) be an n-dimensional complete Riemannian manifold,
q ∈M , r > 0, and let u ∈H 1,2(B r (q)) be non-negative and satisfy

∆ u ≤ λu

for a constant λ≥ 0. As in Theorem 2.2.16, we take p1, p2 , CSob, and we assume that there
exist the same positive constants C vol for θ:= 1/16. Furthermore, we assume that there exists
a constant CNP > 0 such that we have

min
r 2

16
λNeu

1 q,
r

4
,
r 2

4
λNeu

1 q,
r

2
≥ CNP .

Then for su cientlyffi small σ> 0, there exists a constant C sup > 0 depending only on σ, p1, CSob,
CN P , C vol and λr 2 + 1 such that

kukσ,r /8

vg (B r /8(q))1/σ
≤ C sup inf

B r /16 (q)
u.

These mean value inequalities imply the Harnack inequality (see e.g., [65, Theorem 11.1]):

T heorem 2.2.18 ([65]). Let (M , g) be an n-dimensional complete Riemannian manifold, q ∈
M , r > 0, and let u ∈H 1,2(B r (q)) be non-negative and satisfy

|∆ u| ≤ λu
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for some constant λ≥ 0. As in Proposition 2.2.17, we take p1 , and we assume that there exist
the same positive constants CSob, C vol for θ= 1/16 and CN P . Then there exists a constant
CH ar > 0 depending only on n, p1, CSob, C vol , CN P and λr 2 + 1 such that

sup
B r /16 (q)

u ≤ CHar inf
B r / 16 (q)

u.

2.2.2. L iouv i l le typ e theorem s and grad ient estim ates for harm on ic functions. W e
call u ∈C∞(M ) an f -harmonic function if ∆ f u = 0. Brighton [11] generalized the Yau type
Liouville theorem for bounded harmonic functions to the weighted case N = ∞ as follows (see
[11, Theorem 1]):

T heorem 2.2.19 ([11]) . Let (M , g, f ) be a complete weighted Riemannian manifold. W e
assume

Ric∞
f ≥ 0.

Then any bounded f -harmonic function must be a constant function.

R em ark 2.2.20. This is obtained as an application of a new type of gradient estimate (see
[11, Theorem 2]). In obtaining this gradient estimate, Brighton [11] modified the Yau type
gradient estimate.

In [11], he also pointed out that we cannot obtain the Yau type Liouville theorem for
positive harmonic functions by showing a counterexample:

E x am p le 2.2.21 ([11]) . For x ∈R n , let x1 denote the first coordinate. W e set f (x) := x1 and
u(x) := ex 1 . Then we have ∆ f u = 0 and (Rn , | · |, f ) satisfies Ric∞

f ≥ 0.

Yau’s Liouville theorem for positive harmonic functions was generalized by W u [131] as
follows (see [131, Corollary 3.4]):

T heorem 2.2.22 ([131]). Let (M , g, f ) be an n-dimensional complete non-compact weighted
Riemannian manifold and N ∈[n, ∞). W e assume

RicN
f ≥ 0.

Then any positive f -harmonic function must be a constant function.

R em ark 2.2.23. Yau [137, Corollary 1] obtained the unweighted case f ≡ 0 by a gradient
estimate for harmonic functions. W u [131] used the gradient estimate for a more general
equation ∆ f u + λu = 0, which is an adaptation of arguments in [67, Theorem 6.1].

A function ϕ on M is said to have linear growth rate of b1 if we have ϕ (x) ≤ b1dq(x) + b2 for
some q ∈M and positive constants b1 , b2 . A lso, a function ϕ is said to be of sublinear growth
if we have

lim
dq ( x )→∞

|ϕ (x)|

dq(x)
= 0

for some q ∈M . The following gradient estimate was obtained by M unteanu-W ang [87] (see
[87, Theorem 3.1]):

T heorem 2.2.24 ([87]). Let (M , g, f ) be an n-dimensional complete non-compact weighted
Riemannian manifold. For b > 0, we assume that f has linear growth late b and

Ric∞
f ≥ 0.
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Let u be a positive f -harmonic function. Then there exists a constant C > 0 depending only
on n such that

|∇log u| ≤ C b.

R em ark 2.2.25. M unteanu-W ang [87] modified the arguments of the Brighton type gradient
estimate to prove this theorem.

As a corollary, we possess the following Liouville property (see [87, Corollary 3.2]):

C orol lary 2.2.26 ([87]). Let (M , g, f ) be a complete non-compact weighted Riemannian man-
ifold. W e assume that f is of sublinear growth and

Ric∞
f ≥ 0.

Then any positive f -harmonic function must be a constant function.

An example shows that this is sharp as follows (see [87, Example 1.2]):

E x am p le 2.2.27 ([87]). Let g denote the Riemannian product metric of R ×Sn−1 . For α> 0,
t ∈R and w ∈Sn−1 , we set f (t, w) := αt and u(t, w) := eαt. Then we have ∆ f u = 0 and
(R ×Sn− 1, g, f ) satisfies Ric∞

f ≥ 0.

As for sublinear growth harmonic functions, M unteanu-W ang [87] showed the following
Cheng type Liouville property (see [87, Theorem 3.2]):

T heorem 2.2.28 ([87]). Let (M , g, f ) be a complete non-compact weighted Riemannian man-
ifold. W e assume that f is bounded and

Ric∞
f ≥ 0.

Then any sublinear growth f -harmonic function must be a constant function.

R em ark 2.2.29. W e refer to Theorem 1.3.2 for the unweighted case f ≡0. M unteanu-W ang
[87] proved this by combining the De Giorgi-Nash-M oser theory and the Brighton type gradient
estimate. This was a new proof even for the unweighted case f ≡0.

As a generalization of the gradient estimate in Theorem 2.2.24, M unteanu-W ang [87] ob-
tained the following gradient estimate (see [87, Theorem 3.1]):

T heorem 2.2.30 ([88]). Let (M , g, f ) be an n-dimensional complete non-compact weighted
Riemannian manifold. For K ≥ 0 and b > 0, we assume

Ric∞
f ≥ −K g, sup

y∈B 1 (x )

|f (y) − f (x)| ≤ b

for any x ∈M . Let u be a positive f -harmonic function. Then there exists a constant C > 0
depending only on n, b, K such that

|∇log u| ≤ C.

R em ark 2.2.31. M unteanu-W ang [88] proved this by the De Giorgi-Nash-M oser theory.

W e turn to the L p-Liouville theorem. W u [133] obtained the weighted case N = ∞ as
follows (see [133, Theorem 6.1]):

T heorem 2.2.32. Let (M , g, f ) be an n-dimensional complete non-compact weighted Riemann-
ian manifold. For b > 0, we assume |f | ≤ b. Then there exists a constant δ> 0 depending only
on n and b such that the fol lowing assertion holds:
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W e assume that there exists q ∈M such that

Ric∞
f ≥ δd− 2

q g

when dq is su cientlyffi large. Let u be a non-negative L p(m f )-function with p ∈(0, ∞) with
∆ f u ≥ 0. Then u is identical ly zero.

R em ark 2.2.33. For the unweighted case f ≡0, we refer to Theorem 1.3.4.

2.3. E ig enf unct ions

W e review various Cheng type estimates of upper bounds of eigenvalue. Especially in the
weighted case N = ∞, we note that M unteanu-W ang applied the Liouville theorem to obtain
the rigidity of Cheng type inequality.

On (M , g, f ), we denote the first eigenvalue of the p-Laplacian by λf ,p . The variational
characterization of λf ,p is as follows:

λf ,p := inf
ϕ ∈C ∞

0 (M )

R
M |∇ϕ |p dm fR

M ϕ p dm f
.

This coincides with the first eigenvalue of the weighted Laplacian when p = 2. W ang [128]
obtained the following Cheng type theorem (see [128, Theorem 3.2]):

T heorem 2.3.1 ([128]). Let (M , g, f ) be an n-dimensional complete non-compact weighted
Riemannian manifold and N ∈[n, ∞). For K ≥ 0, we assume

RicN
f ≥ −K g.

Then we have

λf ,p ≤

 p
(N − 1)K

p

! p

.

R em ark 2.3.2. W ang [128] used the volume comparison theorem to show this inequality. For
the case p = 2, W u [131, Theorem 1.1] and W ang [127, Theorem 1.1] obtained the Cheng type
inequality by the gradient estimate of solutions of ∆ f u + λu = 0 for some constant λ≥ 0.

R em ark 2.3.3. For the unweighted case f ≡0 and p = 2, we refer to Theorem 1.3.5. Cheng
[25] obtained it by an explicit calculation of the eigenfunctions of the model spaces without
using the gradient estimates or the volume comparison theorems. Schoen-Yau [117, Chapter
I I I , Section 3] pointed out that the theory of heat kernel simplifies the proof. There is also a
di erenff t proof using a gradient estimate of solutions of ∆ u + λu = 0 for some constant λ≥ 0
(see Li [67, Corollary 6.4]).

W e turn to the weighted case with N = ∞. W ang [128] obtained the following inequality
(see [128, Theorem 3.3]) :

T heorem 2.3.4 ([128]). Let (M , g, f ) be an n-dimensional complete non-compact weighted
Riemannian manifold. For K ≥ 0 and b ≥ 0, we assume

Ric∞
f ≥ −K g,

∂f

∂r
≥ −b,

where r (x) := dq(x) for some fixed q ∈M . Then we have

λf ,p ≤

 p
(n − 1)K + b

p

! p

.
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For the case p = 2 and N = ∞, we list two other types below. The first one is as follows
(see M unteanu-W ang [87, Theorem 2.2]):

T heorem 2.3.5 ([87]). Let (M , g, f ) be a complete non-compact weighted Riemannian mani-
fold. For b ≥ 0, we assume that f has linear growth rate b and

Ric∞
f ≥ 0.

Then we have

λf ,2 ≤
b2

4
.

The second one is as follows (see M unteanu-W ang [88, Theorem 2.2]):

T heorem 2.3.6 ([88]). Let (M , g, f ) be a complete non-compact weighted Riemannian mani-
fold. For b ≥ 0, we assume that f has a linear growth rate b and

Ric∞
f ≥ −(n − 1)g.

Then we have

λf ,2 ≤
(n − 1 + b)2

4
.

R em ark 2.3.7. M unteanu-W ang [87, 88] used volume comparison theorems to prove these
Cheng type inequalities, and their rigidities were also obtained. In the weighted case N = ∞,
under the assumption that |∇f | is bounded, Su-Zhang [121, Proposition 2.1] also obtained this
together with its rigidity. W u [132, Theorem A] also obtained a Cheng type inequality by the
gradient estimate of solutions of ∆ f u + λu = 0.

2.4. Po r ous med ium equat ion

In this section, we give the Li-Yau gradient estimate and Aronson-Bénilan gradient estimate.
Li-Yau [72] obtained the gradient estimate as follows (see Li-Yau [72, Theorem 1.2]):

T heorem 2.4.1 ([72]). Let (M , g) be an n-dimensional complete Riemannian manifold. For
K ≥ 0, q ∈M and r > 0, we assume

Ricg ≥ −K g

on B r (q) . Let u be a positive smooth solution of ∂tu = ∆ u on B q(2r ) ×[0, T]. Then for any
α> 1, there exists a constant C > 0 depending only on n such that

|∇u|2

u2
− α

∂tu

u
≤

C α2

r 2

α2

α− 1
+

√
K r +

nα2K

2(α− 1)
+

nα2

2t

on B r (q) ×(0, T].

By letting r → ∞, we have the following estimate (see [72, Theorem 1.3]):

C orol lary 2.4.2 ([72]). Let (M , g) be an n-dimensional complete Riemannian manifold. For
K ≥ 0, we assume

Ricg ≥ −K g.

Let u be a positive smooth solution to ∂tu = ∆ u on M ×[0, T]. Then for any α> 1, we have

|∇u|2

u2
− α

∂tu

u
≤

nα2K

2(α− 1)
+

nα2

2t
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on M ×(0, T ]. I n particular, i f K = 0, we have

|∇u|2

u2
−

∂tu

u
≤

n

2t
(15)

on M ×(0, T ].

Aronson-Bénilan type gradient estimates for the porous medium equation can be regarded as
a counterpart of Li-Yau type gradient estimates for the heat equation. Huang-Li [50] obtained
the following Aronson-Bénilan type estimate (see [50, Theorem 1.6]) :

T heorem 2.4.3 ([50]) . Let (M , g, f ) be an n-dimensional complete weighted Riemannian man-
ifold and N ∈[n, ∞). For K ≥ 0, q ∈M and r > 0, we assume

RicN
f ≥ −K g

on B 2r (q) . Let u be a positive smooth solution to ∂tu = ∆ f um with m > 1 on B 2r (q) ×[0, T ].
W e set

v :=
m

m − 1
um −1 , L := (m − 1) sup

B 2r (p)×[0,T ]

v, a :=
N (m − 1)

N (m − 1) + 2
.

Then for any α> 1, there exist positive constants C and D depending only on N such that

|∇v|2

v
− α

∂tv

v
≤

aα2mL 1/2

(α− 1)1/2(m − 1)1/2

C

r

+ a1/2α

(
1

t
+

K L

2(α− 1)
+

D L

r 2

 

1 +
√

K r coth

 r
K

N − 1
r

! ! ) 1
2

 

 

2

on B r (q) ×(0, T].

R em ark 2.4.4. In the unweighted case f ≡0, this was obtained by Huang-Huang-Li [49, The-
orem 1.1], which is an improvement of Aronson-Bénilan gradient estimate by Lu-Ni-Vázquez-
Villani [78, Theorem 3.3].

By letting r → ∞, we have the following estimate (see e.g., [50, Theorem 1.6]):

C orol lary 2.4.5 ([50]). Let (M , g, f ) be an n-dimensional complete non-compact weighted
Riemannian manifold and N ∈[n, ∞). For K ≥ 0, we assume

RicN
f ≥ −K g.

Let u be a positive smooth solution to ∂tu = ∆ f um with m > 1 on M ×[0, T ]. W e set

v :=
m

m − 1
um −1 , L := (m − 1) sup

M ×[0,T ]

v, a :=
N (m − 1)

N (m − 1) + 2
.

Then for any α> 1, we have

|∇v|2

v
− α

∂tv

v
≤ aα2 1

t
+

K L

2(α− 1)

on M ×(0, T ]. I n particular, i f K = 0, we have

|∇v|2

v
−

∂tv

v
≤

a

t
(16)

on M ×(0, T ].
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R em ark 2.4.6. In the unweighted case f ≡ 0, a gradient estimate as in (16) was obtained
by Vázquez [125, Proposition 11.12], and Li-Li [73, Theorem 7.6] generalized it on compact
weighted Riemannian manifolds in the case N ∈[n, ∞). Their proof on compact manifolds is
simpler than the case of non-compact manifolds.

R em ark 2.4.7. Below, we observe that the Aronson-Bénilan type estimate (16) recovers the
Li-Yau type gradient estimate when m & 1 in the unweighted case f ≡0. W e have

∇v = mum −2∇u, ∂tv = mum − 2 m(m − 1)|∇u|2um − 2 + mum −1∆ u .

Combining these, the right-hand side of the Aronson-Bénilan estimate (16) is calculated as

|∇v|2

v
−

∂tv

v
= (m − 1) mum − 3|∇u|2 − mum − 2∆ u .

Then we see that (16) implies

mum −3|∇u|2 − mum −2∆ u ≤
n

(n(m − 1) + 2) t
.(17)

Letting m & 1, we obtain

|∇u|2

u2
−

∆ u

u
≤

n

2t
.

This coincides with the Li-Yau gradient estimate (15). W e also remark that (17) coincides with
the classical Aronson-Bénilan estimate (5) on Euclidean space.
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CHAPTER 3

A nalysis of harm on ic functions

In this chapter, we show a Liouville theorem for harmonic functions of sublinear growth
(Theorem 3.3.4) , an L p-Liouville theorem (Theorem 3.2.4) and a gradient estimate (Theorem
3.4.1) . These are obtained using the mean value inequality (Theorem 3.1.8) under lower bounds
of RicN

f with ε-range.

3.1. F unct iona l ineq ua l it ies

The purpose of this section is to obtain the mean value inequality. In order to obtain the
mean value inequality, we first present a Neumann-Sobolev type inequality (Theorem 3.1.7).
A lthough M unteanu-W ang obtained this by the argument in Haj lasz-K oskela [47], we take
a di erenff t approach. Ingredients of our approach are the Neumann-Poincaré type inequality
(Proposition 3.1.1), the Salo -Costeff type Sobolev inequality (Proposition 3.1.2) and the Li-
Schoen type Poincaré inequality (Proposition 3.1.6).

3.1.1. Sob olev inequal i ty . Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold, N ∈(−∞, 1] ∪[n, ∞] and ε∈R in the ε-range. For x , y ∈M and r > 0, we set

K ε(x) := max 0, sup
w∈Ux M

−e
4( 1− ε) f ( x )

n − 1 RicN
f (w, w) , K ε(y, r ) := sup

x∈B r (y)

K ε(x).

The Neumann-Poincaré type inequality holds as follows (see [38, Theorem 3.1]):

P rop osit ion 3.1.1 ([38]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold, N ∈(−∞, 1] ∪[n, ∞] and ε∈R in the ε-range. For b2 ≥ b1 > 0 we assume

b1 ≤ e
2( 1− ε) f

n − 1 ≤ b2 .

Then for c := c(n, N , ε) as in (9), q ∈M , r > 0 and ϕ ∈C∞(B r (q)), we have

Z

B r (q)

ϕ − ϕ B r (q)
2

dm f ≤ 2n+ 3 2b2

b1
exp

K ε(q, 2r )

c

2r

b1
r 2

Z

B 2r (q)

|∇ϕ |2 dm f .
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Pr oo f . For x , y ∈M , let γx ,y denote a minimal geodesic connecting from x to y parame-
terized by arclength. For τ∈[0, 1], we set lx ,y(τ) := γx ,y (τd(x , y)). W e have

Z

B r (q)

|ϕ − ϕ B r (q) |
2 dm f =

Z

B r (q)

Z

B r (q)

ϕ (x) − ϕ (y)

m f (B r (q))
dm f (y)

2

dm f (x)

(18)

≤
1

m f (B r (q))

Z

B r (q)

Z

B r (q)

Z 1

0

d(ϕ ◦ lx ,y )

dτ
(τ) dτ

2

dm f (x) dm f (y)

≤
1

m f (B r (q))

Z

B r (q)

Z

B r (q)

Z 1

0

d(ϕ ◦ lx ,y )

dτ
(τ)

2

dτdm f (x) dm f (y)

=
2

m f (B r (q))

Z

B r (q)

Z

B r (q)

Z 1

1/2

d(ϕ ◦ lx ,y)

dτ
(τ)

2

dτdm f (x) dm f (y),

where we used lx ,y (τ) = ly,x (1 − τ) in the last equality.
W e set the unit vector w := ∂tγx ,y (t)|t= 0 and J(x , t, w) be the Jacobian of the map expx :

Tx M → M at tw with respect to m f , i.e., we have

dm f = J(x , t, w) dt dw.

For τ∈[0, 1], we denote the Jacobian of the map Φx ,τ : y 7→ γx ,y (τd(x , y)) by Jx ,τ. F irst, we
estimate Jx ,τfrom below. For t := τd(x, y) , we obtain

Jx ,τ(y) =
t

d(x , y)

n J(x , t, w)

J(x , d(x , y) , w)
.

W e denote the reparametrization (11) by

sγ(t) :=

Z t

0

e
2( ε− 1) f ( γ( ξ) )

n − 1 dξ,(19)

where γ:= γx ,y . I t follows from the argument in [79, Theorem 3.6] that the quantity J (x ,t,w )
s− cK (sγ( t) )

is non-increasing. This yields

t

d(x , y)

n J(x , t, w)

J(x , d(x , y), w)
≥

t

d(x , y)

n
s−cK (sγ(t))1/c

s− cK (sγ(d(x , y)))1/c
.

Below, we set K := K ε(q, 2r ). For x , y ∈B r (q) and t ∈(d(x , y)/2, d(x , y)), this leads us to

Jx ,τ(y) ≥
1

2n

s− cK (sγ(t))1/c

s−cK (sγ(d(x , y)))1/c

≥
1

2n

sγ(d(x , y)/2)

sγ(d(x , y))
exp

 

−

r
K

c
sγ(d(x , y))

!

≥
1

2n

b1

2b2

exp

 

−

r
K

c

2r

b1

!

.

Setting

F (r ) :=

(
1

2n

b1

2b2

exp

 

−

r
K

c

2r

b1

! ) − 1

,
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we see

Jx ,τ(y) ≥ F (r )−1

for τ∈[1/2, 1]. Then the last term of (18) is estimated as follows:

(18) ≤ F (r )

Z

B r (q)

Z

B r (q)

Z 1

1/2

dϕ (lx ,y(τ))

dτ
Jx ,τ(t) dτdm f (x) dm f (y)

≤ F (r )

Z

B r (q)

Z

B r (q)

Z 1

0

|∇ϕ (lx ,y (t))|
2d(x , y)2Jx ,τdt dm f (x) dm f (y)

≤ 4r 2F (r )

Z 1

0

Z

B r (q)

Z

B r (q)

|∇ϕ (lx ,y (t))|
2Jx ,τ(y) dm f (x) dm f (y) dτ

≤ 4r 2F (r )

Z 1

0

Z

B r (q)

Z

Φx , τ(B r (q) )

|∇ϕ (z)| dm f (z) dm f (x) dτ

≤ 4r 2F (r )m f (B r (q))

Z

B 2r (q)

|∇ϕ |2 dm f ,

where we used Φx ,τ(B r (q)) ⊂B 2r (q) in the last inequality. W e complete the proof.

The Salo -Costeff type local Sobolev inequality is as follows (see [38, Theorem 3.2]):

P rop osit ion 3.1.2 ([38]). W e assume that (M , g, f ) satisfies the same condition as in Theorem
3.1.1. W e set

ν:=

(
3 i f c = 1,

1 + 1
c i f c < 1.

(20)

There exist positive constants C and D depending only on n, c, b1 , b2 such that

1

m f (B r (q))

Z

B r (q)

|ϕ |
2ν

ν− 2 dm f

ν− 2
ν

≤ C exp D
p

K ε(q, 10r ) r r 2

×
1

m f (B r (q))

Z

B r (q)

|∇ϕ |2 + r−2ϕ 2 dm f

for any q ∈M , r > 0, and ϕ ∈C∞
0 (B r (q)) .

R em ark 3.1.3. W e refer to [37, Theorem 7] and [38, Theorem 3.1]. The di erenceff between
them is whether the term K ε(q, ·) appears or not.

W e prepare two lemmas to prove Proposition 3.1.2. The first lemma is as follows (see
[38, Lemma 3.1]):

Lem m a 3.1.4 ([38]) . W e assume that (M , g, f ) satisfies the same condition as in Proposition
3.1.1. Let q ∈M , r > 0, ϕ ∈C∞

0 (B r (q)). For 0 < s < r , we set

χs(x , z) :=
1

m f (B s(x))
1B s (x ) (z), ϕ s(x) :=

Z

M

χs(x , z)ϕ (z) dm f (z).

Then we have

kϕ sk2 ≤
b2

b1

2+ 1
c

8
1
2 (1+ 1

c )
r

s

1
2 (1+ 1

c )
exp

 r
K ε(q, 10r )

c

6r

2a

!
kϕ k1

m f (B r (q))1/2
.
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Pr oo f . W e have

kϕ k2 ≤ kϕ sk
1
2
1 kϕ sk

1
2
∞ .(21)

W e first estimate kϕ sk1 from above. By Proposition 2.1.19, for r2 > r1 > 0 and x ∈M , we see

m f (B r 2 (x))

m f (B r 1 (x))
≤

b2

b1

2+ 1
c r2

r1

1+ 1
c

exp

 r
K ε(x , r2)

c

r2

b1

!

.(22)

For x ∈supp ϕ s and z ∈suppχs(x , ·) , we have d(x , z) < s, and B s(x) ⊂B 10r (q). Then using
(22), we obtain

m f (B s(z)) ≤ m f (B2s(x))

≤ m f (B s(x))
b2

b1

2+ 1
c

21+ 1
c exp

 r
K ε(x , 2s)

c

2s

b1

!

≤ m f (B s(x))
b2

b1

2+ 1
c

21+ 1
c exp

 r
K ε(q, 10r )

c

2s

b1

!

.

This leads us to

χs(x , z) ≤
21+ 1

c

m f (B s(z))

b2

b1

2+ 1
c

exp

 r
K ε(q, 10r )

c

2s

b1

!

1B s (x ) (z).

Hence, we find

kϕ sk1 ≤

Z

M

dm f (x)

Z

M

(
21+ 1

c

m f (B s(z))

b2

b1

2+ 1
c

exp

 r
K ε(q, 10r )

c

2s

b1

!

1B s (x ) (z)|ϕ (z)|

)

dm f (z)

=
b2

b1

2+ 1
c

21+ 1
c exp

 r
K ε(q, 10r )

c

2s

b1

!

kϕ k1 .

Next, we estimate kϕ sk∞ . From (22), for x ∈supp ϕ s, we have

m f (B 4r (x))

m f (B s(x))
≤

b2

b1

2+ 1
c 4r

s

1+ 1
c

exp

 r
K ε(x , 4r )

c

4r

b1

!

.

Since B r (q) ∩B s(x) 6= ∅, we see K ε(x , 4r ) ≤ K ε(q, 10r ). Combining these, we see

1

m f (B s(x))
≤

b2

b1

2+ 1
c 4r

s

1+ 1
c

exp

 r
K ε(q, 10r )

c

4r

b1

!
1

m f (B r (q))
.

This leads us to

kϕ sk∞ ≤
b2

b1

2+ 1
c 4r

s

1+ 1
c

exp

 r
K ε(q, 10r )

c

4r

b1

!
1

m f (B r (q))

Z

M

1B s (x )ϕ dm f
∞

≤
b2

b1

2+ 1
c 4r

s

1+ 1
c

exp

 r
K ε(q, 10r )

c

4r

b1

!
kϕ k1

m f (B r (q))
.

Finally combining these with (21), we deduce

kϕ sk2 ≤
b2

b1

2+ 1
c

2
1
2 (1+ 1

c )
4r

s

1
2 (1+ 1

c )
exp

 r
K ε(q, 10r )

c

4r + 2s

2b1

!
kϕ k1

m f (B r (q))1/2
.
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W e complete the proof.

The second lemma is as follows (see [38, Lemma 3.2]):

Lem m a 3.1.5 ([38]) . W e assume that (M , g, f ) satisfies the same condition as in Proposition
3.1.1. Let q ∈M , r > 0 and ϕ ∈C∞

0 (B r (q)) . Then we have

kϕ − ϕ sk2 ≤ 28+ 5
c + n

2
b2

b1

3+ 2
c

exp

 r
K ε(q, 10r )

c

11r

a

!

sk|∇ϕ |k2.

P r oo f . For the brevity of notations, we set C1 and C2 as follows:

C1 :=
b2

b1

2+ 1
c

161+ 1
c exp

 r
K ε(q, 10r )

c

8r

b1

!

,

C2 := 2n+ 5 2b2

b1

1
c

exp

 r
K ε(q, 10r )

c

4r

b1

!

.

For fixed s ∈(0, r ), we see that there exists a set X satisfying the following conditions:

• for x , y ∈X , B s/2(x) ∩B s/2(y) = ∅;
• for any x ∈B 2r (q), there exists y ∈X such that B s/2(x) ∩B s/2(y) 6= ∅.

W e label X = { x i ∈X | i ∈I q} , and we set B i := B s/2(x i ) and kB i := B ( ks)/2(x i ) for k > 0.
W e have

B 2r (q) ⊂
[

i∈I q

2B i .

Indeed, for x ∈B 2r (q), if x /∈X , there exists y ∈X such that B s/2(x) ∩B s/2(y) 6= ∅. Then for
z ∈B s/2(x) ∩B s/2(y), we obtain d(x , y) ≤ d(x , z) + d(z, y) < s. This implies x ∈B s(y) . The
other case x ∈X ∩B 2r (q) also follows immediately.

For x ∈B 2r (q), we set

I q(x) := { i ∈I q(x) | x ∈8B i } , N q(x) := # I q(x),

and let B x be an element of { B i | i ∈I q(x)} such that x ∈2B x . F irst, we estimate N q(x). For
i ∈I q(x), we have B x ⊂16B i ⊂B 8r (x i ) . Together with Proposition 2.1.19, we obtain

m f (B x ) ≤ m f (16B i ) ≤
b2

b1

2+ 1
c

161+ 1
c exp

 r
K ε(x i , 8r )

c

8r

b1

!

m f (B i ) ≤ C1 m f (B i ).

This implies
X

i∈I q (x )

m f (B i ) ≥
N (x) m f (B x )

C1

.(23)

Let x0 ∈B x be the center of B x . W e have

X

i∈I q (x )

m f (B i ) ≤ m f (16B x ) ≤
b2

b1

2+ 1
c

161+ 1
c exp

 r
K ε(x0, 8r )

c

8r

b1

!

≤ C1 m f (B x ) .

Together with (23), this leads us to

N q(x) m f (B x )

C1

≤ C1 m f (B x ),

which implies N q(x) ≤ C 2
1 = : N 0 .
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W e have

kϕ − ϕ sk
2
2 ≤

X

i∈I q (z)

2

Z

2B i

|ϕ − ϕ 4B i |
2

+ |ϕ 4B i − ϕ s|
2

dm f .(24)

I t follows from Proposition 3.1.1 and B 4s(x i ) ⊂B 10r (q) that
Z

4B i

|ϕ − ϕ 4B i |
2 dm f ≤ C2 s2

Z

8B i

|∇ϕ |2 dm f .(25)

For any y ∈2B i , since B 2r (x i ) ⊂B 10r (q) , we find

m f (B s(x i )) ≤ m f (B 2s(y)) ≤ m f (B s(x))
b2

b1

2+ 1
c

21+ 1
c exp

 r
K ε(q, 10r )

c

2s

b1

!

.

Combining these, we have
Z

2B i

|ϕ 4B i − ϕ s|
2

dm f(26)

≤

Z

2B i

dm f (y)

Z

B s (y)

1

m f (B s(y))
(ϕ 4B i (y) − ϕ ) dm f

2

≤
1

m f (B s(x i ))

b2

b1

2+ 1
c

21+ 1
c exp

 r
K ε(q, 10r )

c

2s

b1

! Z

2B i

dm f

Z

4B i

|ϕ 4B i − ϕ |2 dm f

≤
b2

b1

2+ 1
c

21+ 1
c exp

 r
K ε(q, 10r )

c

2r

b1

!

C1 s2

Z

8B i

|∇ϕ |2 dm f .

Here, also for the brevity of notations, we set C3 as follows:

C3 := 4
b2

b1

2+ 1
c

21+ 1
c exp

 r
K ε(q, 10r )

c

2r

b1

!

C2.

I t follows from (23), (24), (26) that

kϕ − ϕ sk2 ≤ C3 s2
X

i∈I q

Z

8B i

|∇ϕ |2 dm f ≤ C3N 0 s2k∇ϕ k2
2;

i .e.,

kϕ − ϕ sk2 ≤
p

N 0C3 s k∇ϕ k2 .

W e complete the proof.

Pr oo f o f P r oposit ion 3.1. 2. Below, for the brevity of notations, we set C4 , C5 , C6 as
follows:

C4 :=
b2

b1

2+ 1
c

8
1
2 (1+ 1

c ) exp

 r
K ε(q, 10r )

c

6r

2a

!

,

C5 := 28+ 5
c + n

2
b2

b1

3+ 2
c

exp

 r
K ε(q, 10r )

c

11r

a

!

,

C6 :=
νC4

8C5
.
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For 0 < s ≤ r , it follows from Lemma 3.1.4 and Lemma 3.1.5 that

kϕ k2 ≤ kϕ sk2 + kϕ − ϕ sk2(27)

≤
C4

m f (B r (q))
1/2

r

s

ν
2

kϕ k1 + C5 sk∇ϕ k2

≤
C4

m f (B r (q))
1/2

r

s

ν
2

kϕ k1 + 4C5 s k∇ϕ k2 +
kϕ k2

r
.

Let s0 minimize the right-hand side of (27). W e have

C4 rν/2

m f (B r (q))
1/2

−
ν

2
s

− ν
2

− 1

0 kϕ k1 + 4C5 s0 k∇ϕ k2 +
kϕ k2

r
= 0.

Substituting s = s0 to (27), a straightforward calculation leads us to

kϕ k2 ≤ C4C
− ν
ν+ 2

6 + 4C5C
ν

ν+ 2

6 (r k∇ϕ k2 + kϕ k2)
ν

ν+ 2
kϕ k2

1

m f (B r (q))

1
ν+ 2

.

Then there exist positive constants C7 and C8 depending only on n, b1 , b2, c such that

C4C
− ν
ν+ 2

6 + 4C5C
ν

ν+ 2

6 ≤ C7 exp C8

p
K ε(q, 10r ) r .

Then the desired assertion follows from [114, Theorem 2.2].

Before we give the Neumann-Sobolev type inequality in Theorem 3.1.7, we show the follow-
ing Li-Schoen type Poincaré inequality (see [38, Lemma 3.3]) :

P rop osit ion 3.1.6 ([38]) . W e assume that (M , g, f ) satisfies the same condition as in Propo-
sition 3.1.1. W e fix p ≥ 1. Then there exist positive constants C and D depending only on
p, b1 , b2 , c such that

Z

B r (q)

|ϕ |p dm f ≤ C exp D
p

K ε(q, 5r ) r

Z

B r (q)

|∇ϕ |p dm f

for any q ∈M , r > 0 and ϕ ∈C∞
0 (B r (q)).

P r oo f . W e set K := K ε(q, 5r ). W e fix y ∈∂B 3r (q). I t follows from Proposition 2.1.15
that

∆ f dy ≤
1

b1

r
K

c
coth

 √
cK

b2

dy

!

≤
1

b1

r
K

c
+

b2

b1cdy
(28)

on B 5r (q). For x ∈B r (q), we have 2r ≤ dy (x) ≤ 4r . Hence,

∆ f dy ≤
1

b1

r
K

c
+

b2

2b1cr
= : σ.

This implies

∆ f e−σdy = e−σdy −σ∆ f dy + σ2 ≥
σ2

2
e−σdy .(29)

For ϕ ∈C∞
0 (B r (q)) with ϕ ≥ 0, (29) and integration by parts yields

σ2

2

Z

B r (q)

ϕ e− σdy ≤ σ

Z

B r (q)

e−σdy h∇ ,ϕ ∇dy i dm f ≤ σ

Z

B r (q)

e−σdy |∇ϕ | dm f .
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From 2r ≤ dy (x) ≤ 4r , we have

σ2

2

Z

B r (q)

ϕ e− 4σr dm f ≤ σ

Z

B r (q)

e−2σr |∇ϕ | dm f .

This leads us to
Z

B r (q)

ϕ dm f ≤ C9r eC10

√
K r

Z

B r (q)

|∇ϕ | dm f ,(30)

where C9 and C10 are positive constants depending only on c, b1 , b2 . W e replace ϕ with |ϕ | in
(30), and using |∇|ϕ || = |∇ϕ |, we see

Z

B r (q)

|ϕ | dm f ≤ C9r eC10

√
K r

Z

B r (q)

|∇ϕ | dm f .

For p > 1, we replace ϕ with ϕ p in (30), and the Hölder inequality imply
Z

B r (q)

|ϕ |p dm f ≤ C9r eC10

√
K r

Z

B r (q)

p|ϕ |p− 1|∇ϕ | dm f

≤ C9r eC10

√
K r p

Z

B r (q)

|ϕ |p dm f

p − 1
p

Z

B r (q)

|∇ϕ |p dm f

1
p

.

By dividing both sides by
R

B r (q)
|ϕ |p dm f

p− 1
p

, we see that the desired assertion follows.

W e are now in a position to show the Neumann-Sobolev inequality (see [38, Theorme 3.3]):

T heorem 3.1.7 ([38]). W e assume that (M , g, f ) satisfies the same condition as in Proposition
3.1.1. W e set ν> 2 as in (20). There exist positive constants C and D depending only on
n, b1 , b2 , c such that

1

m f (B r (q))

Z

B r (q)

|ϕ |
2ν

ν− 2 dm f

ν− 2
ν

≤ C exp D
p

K ε(q, 10r ) r
r 2

m f (B r (q))

Z

B r (q)

|∇ϕ |2 dm f

for any q ∈M , r > 0 and ϕ ∈C∞
0 (B r (q)).

P r oo f . By Proposition 3.1.2, there exist positive constants C9 and C10 depending only on
n, c, b1, b2 such that

1

m f (B r (q))

Z

B r (q)

|ϕ |
ν

ν− 2 dm f

ν− 2
ν

≤ C9 exp C10

p
K ε(q, 10r ) r r 2(31)

×
1

m f (B r (q))

Z

B r (q)

|∇ϕ |2 + r−2ϕ 2 dm f .

I t follows from Proposition 3.1.6 that there exist positive constants C11 and C12 depending only
on c, b1 , b2 such that

Z

B r (q)

ϕ 2 dm f ≤ C11 exp C12

p
K ε(q, 10r ) r

Z

B r (q)

|∇ϕ |2 dm f .

Hence, the right-hand side of (31) is estimated as

C9 exp C10

p
K ε(q, 10r ) r

r 2

m f (B r (q))

Z

B r (q)

|∇ϕ |2 + r−2ϕ 2 dm f

≤ C9 exp C10

p
K ε(q, 10r ) r 1 + C11 exp C12

p
K ε(q, 5r ) r

r 2

m f (B r (q))

Z

B r (q)

|∇ϕ |2 dm f .
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This yields the desired assertion.

3.1.2. M ean value inequal i ty . Functional inequalities in the previous subsection imply the
mean value inequality as follows (see [38, Theorem 3.4]):

T heorem 3.1.8 ([38]). W e assume that (M , g, f ) satisfies the same condition as in Proposition
3.1.1. For a constant λ> 0, let u be a non-negative smooth function with ∆ f u ≥ −λu. W e set
ν> 2 as in (20). Then there exist positive constants C and D depending only on n, p, b1, b2, c
such that we have

kuk∞,θr ≤ C exp D
p

K ε(q, 10r ) r λr 2 +
16

(1 − θ)2

ν
2p 1

m f (Bθr (q))

Z

B r (q)

up dm f

1
p

for any q ∈M , r > 0 and θ∈(0, 1).

P r oo f . W e fix a constant α≥ 1, and let ϕ ∈C∞
0 (B r (q)) . By a straightforward calculation,

we see
Z

B r (q)

|∇(ϕ uα) |2 dm f

=

Z

B r (q)

|∇ϕ |2 u2α+ 2αϕ u2γ− 1h∇ ,ϕ ∇ui + α2 ϕ 2 u2α− 2|∇u|2 dm f

≤

Z

B r (q)

|∇ϕ |2 u2α+ α ϕ u2α− 1h∇ ,ϕ ∇ui + (2α− 1)ϕ 2 u2α− 2|∇u|2 dm f

=

Z

B r (q)

|∇ϕ |2u2α dm f − α

Z

B r (q)

ϕ 2 u2α−1∆ f u dm f

≤

Z

B r (q)

|∇ϕ |2 u2α dm f + α

Z

B r (q)

λϕ 2 u2α dm f .

Together with the Neumann-Sobolev inequality in Theorem 3.1.7, this leads us to

CSob(r )

r 2

1

m f (B r (q))

Z

B r (q)

ϕ 2 u2α β
dm f

1
β

≤
1

m f (B r (q))

Z

B r (q)

αλϕ 2 u2α+ |∇ϕ |2 u2α dm f ,

(32)

where, using positive constants C13 and C14 depending on n, b1 , b2 , c, we set

β:=
ν

ν− 2
, CSob(r ) :=

n
C13 exp C14

p
K ε(q, 10r ) r

o − 1

.

For σ, ρ> 0 with σ+ ρ< r , we take ϕ ∈C∞
0 (BR (q)) satisfying the following conditions:

• 0 ≤ ϕ ≤ 1;
• ϕ ≡1 on Bρ(q);
• ϕ ≡0 on B r (q)\Bρ+ σ(q) ;
• |∇ϕ | ≤ 2/σon Bρ+ σ(q)\Bρ(q).

Substituting this to (32), we have
 

1

m f (B r (q))

Z

B ρ(q)

u2αβdm f

! 1
β

≤
1

m f (B r (q))

Z

B r (q)

ϕ 2u2α β
dm f

1
β

≤
r 2

CSob(r )m f (B r (q))

Z

B ρ+ σ(q)

αλu2α+
4

σ2
u2α dm f .
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This yields

1

m f (B r (q))

Z

B r (q)

u2αβdm f

1
2αβ

≤
r 2

CSob(r )
αλ+

4

σ2

1
2α

 
1

m f (B r (q))

Z

B ρ+ σ(q)

u2α dm f

! 1
2α

.

(33)

First, we show the case of p ≥ 2. For i ≥ 0, we set

αi :=
p βi

2
> 1, σi :=

(1 − θ) r

21+ i
, ρi := r −

iX

j = i

σj > θr.

For i ≥ 0, we iterate the process of substituting α= αi , ρ= ρi and σ= σi to (33), and we have

 
1

m f (B r (q))

Z

B ρi (q)

u2αi βdm f

! 1
2αi β

(34)

≤

"
iY

j = 0

r 2

CSob(r )
αj λ+

4

σ2
j

1
2αj

#
1

m f (B r (q))

Z

B r (q)

up dm f

1
p

.

As for the left-hand side, we possess the following estimate:

lim
i→∞

 
1

m f (B r (q))

Z

B ρi (q)

u2αi βdm f

! 1
2αi β

≥ lim
i→∞

1

m f (B r (q))

Z

B θr (q)

u2αi β dm f

1
2αi β

= kuk∞,θr

since lim i→∞ 2αi β= ∞. As for the right-hand side of (34), we find

∞Y

j = 0

αj λ+
4

σ2
j

1
2αj

≤
pλ

2
+

16

(1 − θ)2r 2

1
2αj

max { β, 4}
j

2αj

≤
pλ

2
+

16

(1 − θ)2r 2

β
p ( β− 1)

max{ β, 4}
S 1 ( β)

p ,

where we put S1(β) =
P ∞

j = 0 j β− j < ∞. Putting these estimates together, we see that (34) is
estimated as

kuk∞,θr ≤ C(p, r )
pλr 2

2
+

16

(1 − θ2)

β
p( β− 1) 1

m f (B r (q))

Z

B r (q)

up dm f

1
p

,(35)

where we set

C(p, r ) :=
1

CSob(r )

β
p ( β− 1)

max{ β, 4}
S 1 ( β)

p .

Hence, we arrive at the desired assertion for the case of p ≥ 2.
Next, we show in the case of p < 2. For (35) with p = 2, we see

kuk∞,θr ≤ C(2, r ) λr 2 +
16

(1 − θ)2

β
2( β− 1) 1

m f (B r (q))

Z

B r (q)

u2 dm f

1
2

.
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For any θr ≤ ρ≤ r and 0 < η< 1, this leads us to

kuk∞,ηρ≤
C(2, r )

m f (Bρ(q))1/2
λρ2 +

16

(1 − η)2

β
2( β− 1)

kuk2,ρ(36)

≤
C(2, r )

m f (Bθr (q))1/2
λr 2 +

16

(1 − η)2

β
2( β− 1)

kuk
p
2
p,ρkuk

1− p
2

∞,ρ,

where we used

 Z

B ρ(q)

u2 dm f

! 1
2

≤

 Z

B ρ(q)

up kuk2−p
∞,ρdm f

! 1
2

=

 Z

B ρ(q)

up dm f

! 1
2

kuk
1− p

2
∞,ρ.

For i ≥ 1, we set

ρ0 := θr, ρi := θr + (1 − θ) r
iX

j = 1

2− j , ηi =
ρi − 1

ρi
.

W e substitute ρ= ρi and η= ηi to (36), and we deduce

kuk∞,θr = kuk∞,ρ0(37)

= kuk∞,η1 ρ1

≤
C(2, r )

m f (Bθr (q))1/2
λr 2 +

16

(1 − η1)2

β
2( β− 1)

kuk
p
2
p,ρ1 kuk

1− p
2

∞,ρ1

=
C(2, r )

m f (Bθr (q))1/2
λr 2 +

16

(1 − η1)2

β
2( β− 1)

kuk
p
2
p,ρ1 kuk

1− p
2

∞,η2 ρ2

≤
C(2, r )

m f (Bθr (q))1/2
λr 2 +

16

(1 − η1)2

β
2( β− 1)

kuk
p
2
p,ρ1

×

(
C(2, r )

m f (Bθr (q))1/2
λr 2 +

16

(1 − η2)2

β
2( β− 1)

kuk
p
2
p,ρ2 kuk

1− p
2

∞,ρ2

) 1− p
2

≤ kuk
(1− p

2 )
i

∞,ρi

iY

j = 1

(
C(2, r )

m f (Bθr (q))1/2
λr 2 +

16

(1 − ηj )2

β
2( β− 1)

kuk
p
2
p,ρj

) (1− p
2 )

j − 1

≤ kuk
(1− p

2 )
i

∞,r

iY

j = 1

(
C(2, r )

m f (Bθr (q))1/2
λr 2 +

16 · 22j

(1 − θ)2

β
2( β− 1)

kuk
p
2
p,r

) (1− p
2 )

j − 1

,

where the last inequality used the following estimate:

1

1 − ηj
=

ρj

ρj − ρj − 1

=
θ+ (1 − θ)

P j
i = 1 2− i

2− j (1 − θ)
≤

2j

1 − θ
.
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Concerning the right-hand side of (37), we possess the following estimates:

∞Y

j = 1

(

λr 2 +
16 · 22j

(1 − θ)2

β
2( β− 1)

) (1− p
2 )

j − 1

=

∞Y

j = 1

"

22j λr 2

22j
+

16

(1 − θ)2

β
2( β− 1)

#(1− p
2 )

j − 1

≤
∞Y

j = 1

(

λr 2 +
16

(1 − θ)2

β
2( β− 1)

2
j ν
2

) (1− p
2 )

j − 1

= λr 2 +
16

(1 − θ)2

β
p( β− 1)

2
ν
2

P ∞
j = 1 j (1− p

2 )
j − 1

,

where we put S2(p) := ν
2

P ∞
j = 1 j 1 − p

2

j − 1
< ∞, and

lim
i→∞

kuk
(1− p

2 )
i

∞,r = 1, lim
i→∞

iY

j = 1

kuk
p
2 (1− p

2 )
j − 1

p,r = kukp,r .

Combining these estimates with (37), we obtain

kuk∞,θr ≤ C(2, r )
2
p λr 2 +

16

(1 − θ)2

β
p ( β− 1) 2S2 (p)kukp,r

m f (Bθr (q))
.

Hence, we arrive at the desired assertion also for the case p < 2. W e complete the proof.

3.2. L p-L iouv i l l e t heo r em

In this section, we address an L p-Liouville property (Theorem 3.2.4), which is a generaliza-
tion of the Li-Schoen type L p-Liouville property (Theorem 1.3.4).

W e possess the following L p-Liouville property for p > 1 (see [106, Theorem 1.1]):

Lem m a 3.2.1 (cf.[106]). Let (M , g, f ) be a complete weighted Riemannian manifold. For
p > 1, let u be a smooth non-negative L p(m f )-function satisfying ∆ f u ≥ 0. Then u is a
constant function.

R em ark 3.2.2. Pigola-Rigoli-Setti [106, Theorem 1.1] obtained this for more general functions
(see also [106, Remark 15]). A simple proof for the unweighted case f ≡ 0 can be found in
[117, Chapter I I , Theorem 6.3] (see also [38, Theorem 4.1]).

The relative comparison theorem is as follows (see [38, Theorem 4.2]):

P rop osit ion 3.2.3 ([38]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian
manifold, N ∈(−∞, 1] ∪[n, ∞] and ε∈R in the ε-range. For K ≥ 0 and b2 ≥ b1 > 0, we
assume

RicN
f ≥ −K e

4( ε− 1) f
n − 1 g, b1 ≤ e

2( 1− ε) f
n − 1 ≤ b2 .

Then for c := c(n, N , ε) as in (9), q ∈M , R ≥ r > 0 and 0 < S ≤ r , we have

m f (BS (q)) ≥
b1

b2

RS/b2

0
s−cK (t)1/c dt

RR /b1

r /b2
s− cK (t)1/c dt

m f (BR (q)\B r (q)).
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Pr oo f . For a unit tangent vector w ∈TqM , let γ: [0, d) → R be the unit speed geodesic
with γ̇= w, and { ei } n

i = 1 be an orthonormal basis with en = w, also let { E i } n
i = 1 denote the

parallel vector field along γwith E i (0) = ei . W e set a matrix A such that

A i j (t) := g(E i (t), E j (t)) ,

and

J0(t) := (det A(t))
1

2( n − 1) , J(t) := e− cf (γ(t) ) (det A(t))
c
2 , J1(τ) := J(s−1

γ (τ))

for t ∈[0, d) and τ∈[0, sγ(d)), where

sγ(t) :=

Z t

0

e
2( ε− 1)

n − 1
f (γ(t) ) dt.(38)

I t follows from the argument in [79] that

e−f (γ)Jn−1
0 /scK (sγ)1/c

is non-increasing. The Gromov lemma (see e.g., [46, Lemma 3.2]) implies
Z sγ(m in{ R ,ρ(w ) } )

sγ(m in{ r ,ρ(w ) } )

J1(τ)1/c dτ

Z sγ(m in{ S,ρ(w ) } )

0

J1(τ)1/c dτ(39)

≤

Z sγ(m in{ R ,ρ(w ) } )

sγ(m in{ r ,ρ(w ) } )

s− cK (τ)1/c dτ

Z sγ(m in{ S,ρ(w ) } )

0

s−cK (τ)1/c dτ.

W e set

C(w) :=

Z sγ(m in{ R ,ρ(w ) } )

sγ(m in{ r ,ρ(w ) } )

s−cK (τ)1/c dτ

Z sγ(m in{ S,ρ(w ) } )

0

s− cK (τ)1/c dτ.

W e note that sγ is defined in (19). A lso, we have
Z sγ(m in{ R ,ρ(w ) } )

sγ(m in{ r ,ρ(w ) } )

J1(τ)1/c dτ=

Z m in{ R ,ρ(w ) }

m in{ r ,ρ(w ) }

J(t)1/cs0
γ(t) dt ≥

1

b2

Z m in{ R ,ρ(w ) }

m in{ r ,ρ(w ) }

J(t)1/c dt,

and
Z sγ(m in{ S,ρ(w ) } )

0

J1(τ)1/c dτ≤
1

b1

Z m in{ S,ρ(w ) }

0

J(t)1/c dt.

Combining them with (39), we have
Z min{ R ,ρ(w ) }

m in{ r ,ρ(w ) }

J(t)1/c dt

Z m in{ S,ρ(w ) }

0

J(t)1/c dt ≤
b2

b1

C(w).

Integrating with respect to w ∈UqM , we obtain

m f (BR (q)\B r (q)) =

Z

Ux M

Z min{ R ,ρ(w ) }

m in{ r ,ρ(w ) }

J(t)1/c dt dΞ(w)(40)

≤
b2

b1

Z

Ux M

C(w)

Z min{ S,ρ(w ) }

0

J(t)1/c dt dΞ(w).

W e estimate C(w) from above. For w ∈UqM with ρ(w) > R , we have

C(w) =

Rsγ(R )

sγ(r )
s−cK (τ)1/c dτ

Rsγ(S)

0
s−cK (τ) dτ

≤

RR /b1

r /b2
s−cK (τ)1/c dτ

RS/b2

0
s− cK (τ)1/c dτ

.
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For w ∈UqM with r ≤ ρ(w) ≤ R , we find

C(w) =

Rsγ(ρ(w ))

sγ(r )
s−cK (τ)1/c dτ

Rsγ(S)

0
s− cK (τ)1/c dτ

≤

RR /b1

r /b2
s−cK (τ)1/c dτ

RS/b2

0
s− cK (τ)1/c dτ

.

For w ∈UqM with ρ(w) < r , we obtain C(w) = 0. By using them, we estimate the right-hand
side of (40), and we see

m f (BR (q)\B r (q)) ≤
b2

b1

RR /b1

r /b2
s−cK (τ)1/c dτ

RS/b2

0
s−cK (τ)1/c dτ

Z min{ S,ρ(w ) }

0

J(t)1/c dt dΞ(w)

=
b2

b1

RR /b1

r /b2
s− cK (τ)1/c dτ

RS/b2

0
s− cK (τ)1/c dτ

m f (BS (q)) .

W e complete the proof.

W e are now in a position to prove the L p-Liouville theorem (see [38, Theorem 4.3]):

T heorem 3.2.4. Let (M , g, f ) be an n-dimensional complete non-compact weighted Riemann-
ian manifold, N ∈(−∞, 1]∪[n, ∞] and ε∈R in the ε-range. For c := c(n, N , ε) as in (9) and
b2 ≥ b1 > 0, we assume

b1 ≤ e
2( 1− ε) f

n − 1 ≤ b2 ,
b2

b1

(
b2

b1

1+ 1
c

− 1

)

<
1

201+ 1
c

.(41)

Then there exists a constant δ> 0 depending only on b1 , b2 , c such that the fol lowing assertion
holds:

W e assume that there exists q ∈M such that

RicN
f ≥ −δe

4( ε− 1) f
n − 1 d−2

q g(42)

when dq is su cientlyffi large. For p > 0, let u be a smooth non-negative L p(m f )-function with
∆ f u ≥ 0. Then u is identical ly zero.

Pr oo f . The case p > 1 follows from Lemma 3.2.1. Below, we consider the case 0 <
p ≤ 1. I f u(x) → 0 as d(q, x) → ∞ for some fixed q ∈M , we have u ∈L ∞(m f ). Since
L p(m f ) ∩L ∞(m f ) ⊂L 2(m f ), we see u ∈L 2(m f ) . Then Lemma 3.2.1 implies that u is constant.
In what follows, we show that u(x) → 0 as d(q, x) → ∞.

Let γ: [0, t] → M be a minimal geodesic connecting q to x with t = d(q, x). For fixed
α> 1, we set

t0 = 0, t1 = 1 + α, ti = 2

iX

j = 0

αj − 1 − αi .

W e take k ∈N such that tk ≤ t and tk+ 1 ≥ t. For i ≤ k, we set x i = γ(ti ), and find

d(x i , x i + 1) = αi + αi + 1 , d(q, x i ) = ti , d(x k , x ) < αk + αk+ 1 .

For i ≤ k, by Theorem 3.2.3, we have

m f Bαi /20(x i ) ≥ D i m f (Bαi + 2αi − 1 (x i )\Bαi (x i )) ≥ D i m f Bαi − 1 /20(x i − 1) ,

where we set K i := K ε(x i , αi + 2αi − 1) and

D i :=
b1

b2

 Z αi /(20b2 )

0

s−cK (t)1/c dt

!  Z (αi + 2αi − 1 )/b1

αi /b2

s− cK (t)1/c dt

!

.
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Integrating this yields

m f Bαk /20(x k ) ≥

 
kY

i = 1

D i

!

m f (B1/20(q)).

Next, we show m f Bαk /20(x k ) → ∞ when d(q, x) → ∞. For the brevity of notations, we
denote B i := Bαi + 2αi − 1 (x i ). For y ∈B j , it follows that

d(q, y) ≥ d(q, x i ) − d(x i , y) ≥

 

2

iX

j = 0

αj − 1 − αi

!

− αi + 2αi − 1 =
1 − 2αi − 2 + α

1 − α
.

Using this, we have

αi
p

K i = αi
r

sup
y∈B i

K ε(y) ≤ αi sup
y∈B i

√
δ

d(q, y)
≤

α2(α− 1)
√

δ

2 − α2− i − α3− i

for su cienffi tly large i . This implies that αi
√

K i can be made arbitrarily small by taking δsmall
enough. Then D i is approximated as follows:

b1

b2

αi
√

K i /(20b2)
1+ 1/c

(αi + 2αi − 1)
√

K i /b1
1+ 1/c

− αi
√

K i /b2

=
b1

b2

1

201+ 1/c

1

{ (1 + 2/α) b2/b1}
1+ 1/c − 1

.(43)

Since we have the assumption (41), by taking αsu cienffi tly large, we can assume that D i is
larger than 1. Therefore, by taking suitable α, we see

m f Bαk /20(x k ) → ∞(44)

when d(q, x) → ∞.
W e divide into two cases and estimate u(x) when x is far away from q.
Case 1: W e first consider the case d(x , x k ) < αk/20. From Theorem 3.1.8, there exist

positive constants C15 and C16 depending only on n, p, c, b1, b2 such that

u(x) ≤ sup
B αk / 20

(x k )

u ≤ C15 exp C16

p
K ε(x k , αk ) αk m f Bαk /20(x k )

− 1
p kukp .(45)

Case 2: W e consider the case d(x , x k ) ≥ αk/20. Also, it follows from Theorem 3.1.8 that

u(x) ≤ sup
B αk / 20

(x )

u ≤ C15 exp C16

p
K ε(x , αk ) αk m f Bαk /20(x k )

− 1
p kukp .(46)

W e estimate the right-hand side of this inequality. W e note that

Bαk /20(x k ) ⊂B d(x ,x k )+ αk /20(x)\B d(x ,x k )− αk /20(x).

Together with the argument in Theorem 3.2.3, we have

m f Bαk /20(x k ) ≤ m f B d(x ,x k )+ αk /20(x)\B d(x ,x k )−αk /20(x)(47)

≤
b2

b1

Z

Ux M

C(w)

Z min{ αk /20, ρ(w )}

0

J(t)1/c dt dΞ(w),

where we set K = K ε x, d(x , x k ) + αk/20 and

C(w) :=

Z sγ(min{ d(x ,x k )+ αk /20,ρ(w )} )

sγ(min{ d(x ,x k )− αk /20,ρ(w ) } )
s−cK (τ)1/c dτ

Z sγ(min{ αk /20,ρ(w )} )

0

s− cK (τ) dτ.
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I f d(x , x k ) − αk/20 < ρ(w) < αk/20, we have C(w) ≤ 1. W e consider the other cases below.
From the proof of Theorem 3.2.3, we obtain

C(w) ≤

Z (d(x ,x k )+ αk /20)/b1

(d(x ,x k )− αk /20)/b2

s−cK (τ)1/c dτ

Z αk /(20b2 )

0

s−cK (τ)1/c dτ.

Denoting B k := B d(x ,x k )+ αk (x) , we see

p
K ε(x , d(x , x k ) + αk ) ≤ sup

y∈B k

√
δ

d(q, y)
≤

√
δ

1 + 2α+ · · · + 2αk−1
=

(1 − α)
√

δ

1 − 2αk + α

and then

d(x , x k ) + αk/20
p

K ε(x , d(x , x k ) + αk/20) ≤ d(x , x k ) + αk
p

K ε(x , d(x , x k ) + αk )

≤ αk+ 1 + 2αk (1 − α)
√

δ

1 − 2αk + α

=
(2 + α)(α− 1)

√
δ

2 − α1−k − α− k
.

I f we take k su cienffi tly large, we have

d(x , x k ) +
αk

20

s

K ε x, d(x , x k ) +
αk

20
≤ (2 + α)(α− 1)

√
δ.

Since the right-hand side of this inequality can be made su cienffi tly small by taking δsmall,
C(w) is estimated from above by

d(x , x k ) + αk/20 /b1
1+ 1/c

− d(x, x k ) − αk/20 /b2
1+ 1/c

(αk/(20b2))
1+ 1/c

.(48)

W e note that this follows from the first order approximation. Furthermore, the quantity (48)
is estimated from above as follows:

(48) ≤
d(x , x k ) + αk /b1

1+ 1/c

(αk/(20b2))
1+ 1/c

≤
αk+ 1 + 2αk /b1

1+ 1/c

(αk/(20b2))
1+ 1/c

=
20b2(2 + α)

b1

1+ 1
c

.

Combining these estimates of C(w) with (47), we see that there exists a constant C17 > 0
depending only on c, b1, b2 , αsuch that

m f Bαk /20(x k ) ≤ m f B d(x ,x k )+ αk /20(x)\B d(x ,x k )− αk /20(x) ≤ C17m f Bαk /20(x) .

Together with (46), we see that there exist positive constants C18 and C19 depending only on
n, p, c, b1 , b2, αsuch that

u(x) ≤ C18 exp C19

p
K ε(x , αk ) αk m f Bαk /20(x k )

− 1
p kukp .

Combining this with (45) in Case 1, we see that there exist positive constants C20 and C21

depending only on n, p, c, b1 , b2 , αsuch that

u(x) ≤ C20 exp C21 max
n p

K ε(x k , αk ),
p

K ε(x , αk )
o

αk m f Bαk /20(x k )
− 1

p kukp .(49)

As d(q, x) → ∞, since k increases, we see m f (Bαk /20(x k )) → ∞. Also, it follows from (42) that

αk
p

K ε(x k , αk ) and αk
p

K ε(x , αk ) are bounded from above as d(q, x) → ∞. This implies that,
when d(q, x) → ∞, the right-hand side of (49) goes to 0. From the arguments at the beginning
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of this proof, we see that u is a constant function. I t follows from (44) that m f (M ) = ∞.
Hence, u is identically zero.

Lastly, we remark about the dependence of δ. W e took αso that (43) is larger than 1, and
we took δso that approximations in (43) and (48) hold. Hence, we see that δdepends only on
c, b1 , b2 .

R em ark 3.2.5. In the unweighted case f ≡0, this recovers Theorem 1.3.4. Indeed, if we take
ε= 1 and b1 = b2 = 1, the assumption (41) is satisfied.

R em ark 3.2.6. The latter assumption (41) is satisfied when b1 and b2 are close. In that case,
the former assumption implies that the reparametrization sγ(t) is close to t (see also Remark
2.1.17).

R em ark 3.2.7. An alternative proof is also presented in [38, Theorem 4.3].

Below, we consider the weighted case N = ∞, and see that similar arguments recover
Theorem 2.2.32. W e use the following relative volume comparison theorem (see e.g., [133], see
also [38, Theorem 4.1]):

P rop osit ion 3.2.8 ([133]). Let (M , g, f ) be an n-dimensional complete Riemannian manifold.
For K ≥ 0 and b > 0, we assume

Ric∞
f ≥ −K g, |f | ≤ b.

Then for x ∈M , R ≥ r > 0 and 0 < S ≤ r , we have

m f (BS (x)) ≥

RS

0
s−K /(n−1) (t)n− 1+ 4b dt

RR

r s− K /(n− 1) (t)n−1+ 4b
m f (BR (x)\B r (x)).

W e give a proof of Theorem 2.2.32 below:

Pr oo f o f T heor em 2.2.32. W e set

K ∞(x) := max 0, sup
w∈Ux M

(− Ric∞
f (w, w)) , K ∞(y, r ) := sup

x∈B r (y)

K ∞(x).

For x ∈M and α> 0, we take { x i } in the same way as in the proof of Theorem 3.2.4. Applying
Proposition 3.2.8 instead of Proposition 3.2.3, we have

m f Bαi /20(x i ) ≥ D i m f (Bαi + 2αi − 1 (x i )\Bαi (x i )) ≥ D i m f Bαi − 1 /20(x i − 1) ,

where we set

D i :=

Z αi /20

0

s−K /(n− 1) (t)
n−1+ 4b dt

Z αi + 2αi − 1

αi

s− K /(n− 1) (t)
n− 1+ 4b dt

and K = K ∞(x i , αi + 2αi − 1). For su cienffi tly small δ, then D i is approximated as

(αi /20)n+ 4b

(αi + 2αi − 1)n+ 4b − (αi )n+ 4b
=

(1/20)n+ 4b

(1 + 2/α)n+ 4b − 1
.(50)

W e take α> 0 satisfying

α>
2

(20− (n+ 4b) + 1)1/(n+ 4b) − 1
> 1.

This implies that, if we take δsmall enough, we see D i > 1 by (50). Hence, as in (44), we have

m f Bαk /20(x k ) → ∞.
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The rest of the arguments follows by the same arguments as in the proof of Theorem 3.2.4.

Indeed, we fix ε∈(−1, 1), and set b1 := e
2( ε− 1) b

n − 1 and b2 := e
2 ( 1− ε) b

n − 1 . For small enough δ> 0, we

first assume Ric∞
f ≥ −b−2

2 d− 2
q , which implies Ric∞

f ≥ −δe
4( ε− 1) f

n − 1 d− 2
q . Hence, we may apply the

same arguments as in the proof of Theorem 3.2.4 after (44) in our setting.

R em ark 3.2.9. W e note that this proof is slightly di erenff t from that in W u [133]. Indeed,
the mean value inequality in [133] was obtained by using the elliptic Harnack inequality, while
our proof does not.

3.3. L iouv i l l e t heor em f o r subl inea r g r ow t h f unct ions

In this section, we give a Liouville type theorem for sublinear growth f -harmonic functions
under RicN

f ≥ 0 (Theorem 3.3.4). W e note that the variable curvature bound (4) degenerates

to constant curvature bound RicN
f ≥ 0 if K = 0. This enables us to obtain several functional

inequalities under RicN
f ≥ 0.

The Neumann-Poincaré inequality under RicN
f ≥ 0 is as follows (see [38, Lemma 5.1]) :

Lem m a 3.3.1 ([38]) . Let (M , g, f ) be an n-dimensional complete weighted Riemannian man-
ifold and N ∈(−∞, 1] ∪[n, ∞]. For b > 0, we assume

RicN
f ≥ 0, |f | ≤ b.

Then there exists a constant C22 > 0 depending only on n, b, N such that, for q ∈M , r > 0
and ϕ ∈C∞(M ), we have

Z

B r (q)

ϕ − ϕ B r (q)
2

dm f ≤ C22 r 2

Z

B 2r (q)

|∇ϕ |2 dm f .

P r oo f . W e take ε∈R satisfying

|ε| < min

(

1,

r
N − 1

N − n

)

if N 6= 1 and ε= 0 if N = 1. W e note that this ε∈R is contained in the ε-range. W e set

b1 := e
2( ε− 1) b

n − 1 , b2 := e
2( 1− ε) b

n − 1 . For these ε, b1, b2, we apply the arguments in Proposition 3.1.1.
W e complete the proof.

R em ark 3.3.2. Actually, in the case N ∈[n, ∞), we do not need the boundedness of the
weight function f since we may take ε= 1 and b1 = b2 = 1.

The same argument yields the following inequality (see [38, Theorem 5.1]) :

Lem m a 3.3.3 ([38]) . W e assume that (M , g, f ) satisfies the same condition as in Lemma 3.3.1.
Let u be a smooth non-negative function satisfying ∆ f u ≥ 0. For q ∈M , θ∈(0, 1), r > 0 and
p > 0, there exists a constant C23 > 0 depending only on n, N , b, p, θsuch that

kuk∞,θr ≤ C23
1

m f (Bθr (q))

Z

B r (q)

up dm f

1
p

.

These imply the following Liouville property (see [38, Theorem 5.2]):

T heorem 3.3.4 ([38]). Let (M , g, f ) be an n-dimensional complete non-compact weighted Rie-
mannian manifold and N ∈(−∞, 0) ∪[n, ∞]. W e assume that f is bounded and

RicN
f ≥ 0.

Then any sublinear growth f -harmonic function must be a constant function.
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Pr oo f . Let u be a sublinear growth f -harmonic function. Combining ∆ f u = 0 and the
Bochner inequality in Proposition 2.1.7, we find

∆ f
|∇u|2

2
≥ RicN

f (∇u, ∇u) ≥ 0.

For q ∈M and r > 0, it follows from Theorem 3.1.8 that there exists a constant C24 > 0
depending only on n, N , b such that

sup
B r /2 (q)

|∇u|2 ≤
C24

m f (B r /2(q))

Z

B r (q)

|∇u|2 dm f .(51)

Let φbe the cut-off function with φ≡1 on B r (q) and φ≡0 on M \B 2r (q) and |∇φ| ≤ 2
r . Using

the integration by parts and ∆ f u = 0, we see
Z

M

|∇u|2φ2 dm f = −2

Z

M

uφh∇u, ∇φi dm f

≤ 2

Z

M

|u||φ|h∇u, ∇φi dm f

≤
1

2

Z

M

|∇u|2φ2 dm f + 2

Z

M

u2|∇φ|2 dm f .

Then we have

1

4

Z

B r (q)

|∇u|2 dm f ≤

Z

M

u2|∇φ|2 dm f ≤
4

r 2

Z

B 2r (q)\B r (q)

u2 dm f ≤
4m f (B 2r (q))

r 2
sup

B 2r (q)

u2 .

From Proposition 2.1.19, for a constant C25 > 0 depending on n, N , b, we have m f (B 2r (q)) ≤
C25m f (B r /2(q)). Hence, we see

1

m f (B r /2(q))

Z

B r (q)

|∇u|2 dm f ≤
4C25

r 2

 

sup
B 2r (q)

u2

!

,

where the right-hand side goes to 0 since u is of sublinear growth. Combining this with (51),
we obtain

lim
r →∞

sup
B r /2 (q)

|∇u|2 ≤ 0.

This implies |∇u| ≡0. W e obtain the desired assertion.

R em ark 3.3.5. In the weighted case with N = ∞, this recovers Theorem 2.2.28. Actually,
we do not need the boundedness of f in the case N ∈[n, ∞) (see Remark 3.3.2), and recovers
Theorem 1.3.2 in the unweighted case f ≡0.

3.4. G r a d ient est imat es

In this section, we obtain a gradient estimate of harmonic functions under lower bounds
of RicN

f with ε-range (Theorem 3.4.1) . This is obtained as an application of a Harnack type
inequality. The gradient estimate is as follows (see [38, Theorem 6.1]):

T heorem 3.4.1 ([38]) . Let (M , g, f ) be an n-dimensional complete weighted Riemannian man-
ifold, N ∈(−∞, 0) ∪[n, ∞] and ε∈R in the ε-range. For K ≥ 0 and b2 ≥ b1 > 0, we assume

RicN
f ≥ −K e

4( ε− 1) f
n − 1 g, b1 ≤ e

2( 1− ε) f
n − 1 ≤ b2 .
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Let u be a positive f -harmonic function. Then there exists a constant C > 0 depending only
on n, K , b1 , b2 and c(n, N , ε) in (9) such that

|∇log u| ≤ C.

Pr oo f . In this proof, for the brevity of notations, we refer to a constant that only depends
on n, c(n, N , ε), K , b1 , b2 just as a constant, and do not mention about the dependence for the
seke of the brevity. From the Bochner inequality in Proposition 2.1.7, we have

∆ f
|∇u|2

2
≥ RicN

f (∇u, ∇u) ≥ −
K

b2
1

|∇u|2 .

By Theorem 3.1.8, there exists a constant C26 > 0 such that

sup
B 1/ 16 (q)

|∇u|2 ≤
C26

m f (B 1/16(q))

Z

B ( 1/8)(q)

|∇u|2 dm f(52)

for any q ∈M . Let φbe a cut-off function such that φ≡1 on B 1/8(q) and φ≡0 on M \B 1/4(q)
with |∇φ| ≤ 16. The same argument as in Theorem 3.3.4 implies

Z

B 1/16 (q)

|∇u|2 dm f ≤ 16 · 82m f (B 1/4(q))

 

sup
B 1/4 (q)

u

! 2

.(53)

Combining (52) and (53) with Proposition 2.1.19, we see that there exists a constant C27 > 0
such that

|∇u|(q) ≤ C27 sup
B 1/4 (q)

u.(54)

By the argument in Proposition 2.2.17, for su cienffi tly small σ> 0, there exists a constant
C28 > 0 such that

 
1

m f (B 1/2(q))

Z

B 1/ 2 (q)

uσdm f

! 1
σ

≤ C28 inf
B 1/4 (q)

u.(55)

W e note that the lower bounds of Neumann-Poincaré eigenvalue in Proposition 2.2.17 is guar-
anteed by Proposition 3.1.1. This enable us to conduct the argument in the proof of Proposition
2.2.17 even in our setting. Then Theorem 2.2.16 implies that there exists a constant C29 > 0
such that

kuk∞,1/4 ≤ C29

 
1

m f (B 1/4(q))

Z

B 1/2 (q)

uσdm f

! 1
σ

.

Together with (55), we find that there exists a constant C30 > 0 such that

sup
B 1/4 (q)

u ≤ C30 inf
B 1/ 4 (q)

u.

Combining this with (54), we see

|∇u|(q) ≤ C27C30u(q).

This yields the desired assertion.

As a corollary, we obtain the following assertion (see [38, Corollary 6.1]):
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Corol lary 3.4.2 ([38]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian man-
ifold and N ∈(−∞, 0) ∪[n, ∞]. For b > 0, we assume

RicN
f ≥ 0, |f | ≤ b.

Then there exists a constant C31 > 0 depending only on n, N , b such that

|∇log u| ≤ C31 .

3.5. R el at ed t opics : ana l y sis o f eig enf unct ion

In this section, we give a Cheng type inequality under lower bounds of RicN
f with ε-range.

In the classical case, Liouville type theorems and the Cheng inequality are closely related.
Especially, they are both obtained by gradient estimates of the solution of ∆u + λu = 0 (see
e.g., [131, Theorem 1.1] and [67, Corollary 6.4]). M oreover, in the weighted case N = ∞
the Liouville type theorem was used to obtain the rigidity of the Cheng type inequality (see
[87]). A lthough we obtain a Cheng type inequality, the relation with the analysis of harmonic
functions is left for future work in our setting.

Under lower bounds of weighted Ricci curvature with ε-range, the Cheng type estimate is
as follows (see [37, Theorem 6]):

T heorem 3.5.1 ([37]). Let (M , g, f ) be an n-dimensional weighted complete non-compact Rie-
mannian manifold, N ∈(−∞, 1]∪[n, ∞] and ε∈R in the ε-range. For K > 0 and b2 ≥ b1 > 0,
we assume

RicN
f ≥ −K e

4( ε− 1) f
n − 1 g, b1 ≤ e

2( 1− ε) f
n − 1 ≤ b2 .

Then for p > 1 and c := c(n, N , ε) as in (9), we have

λf ,p ≤

 r
K

c

1

p b1

! p

.

P r oo f . For an arbitrary α> 0, we set

β:= −
1

p

 r
K

c

1

b1
+ α

!

,

and for q ∈M , a constant C32 > 0 and r ≥ 2, let φbe a cut-off function such that φ≡1 on
B r−1(q) and φ≡0 on M \B r (q) with |∇φ| ≤ C32 . W e set

ϕ (x) := exp(βdq(x))φ(x).

For an arbitrary σ> 0, we obtain

|∇ϕ |p = βeβdq φ∇dq + eβdq ∇φ
p

≤ ep βdq (−βφ+ |∇φ|)p

≤ ep βdq

(

(1 + σ)p−1(−βφ)p +
1 + σ

σ

p−1

|∇φ|p
)

.

W e find

λf ,p ≤ (1 + σ)p−1(−β)p +
1 + σ

σ

p− 1
R

B r (q)\B r − 1 (q)
ep βdq |∇φ|p dm f

R
M ep βdq φp dm f

(56)

= (1 + σ)p− 1(−β)p + C p
32

1 + σ

σ

p−1
ep β(r−1)m f (BR (q))

ep βm f (B 1(q))
.
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From Proposition 2.1.19, we have

m f (B r (q))

m f (B1(q))
≤

b2

b1

Rr /b1

0
s−cK (τ)1/c dτ

R1/b2

0
s− cK (τ)1/c dτ

.(57)

By direct calculations, we obtain

Z r /b1

0

s− cK (τ)
1
c dτ= (cK )− 1

2c

Z r /b1

0

 
 

 

exp
√

cK τ − exp −
√

cK τ

2

 
 

 

1
c

dτ

≤ (cK )− 1
2c

Z r /b1

0

exp

 r
K

c
τ

!

dτ

= (cK )− 1
2c

r
c

K

 

exp

 r
K

c

r

b1

!

− 1

!

.

Together with (57), we have

m f (B r (q))

m f (B 1(q))
≤

b2

b1

 Z 1/b2

0

s−cK (τ)1/c dτ

! −1

(cK )− 1
2c

r
c

K
exp

 r
K

c

r

b1

!

.

Hence, there exists a constant C33 > 0 depending only on c, b1 , b2 , K , αsuch that

ep β(r−1)m f (B r (q))

ep βm f (B 1(q))
≤ C33 exp

 

p βr +

r
K

c

r

b1

!

= C33 exp (−αr) → 0

as r → ∞. Combining this with (56), we see

λf ,p ≤ (1 + σ)p− 1(−β)p .

Since σ, αare arbitrary, we arrive at the desired assertion.

R em ark 3.5.2. In the case N ∈[n, ∞), we take ε= 1 and b1 = b2 = 1, and this recovers
Theorem 2.3.1.

Actually, slightly di erenff t type estimate of Cheng type is available. This is obtained as an
application of the volume comparison property in Proposition 2.1.14. Indeed, we possess the
following Cheng type estimate (see [37, Theorem 10]):

T heorem 3.5.3 ([37]) . Let (M , g, f ) be an n-dimensional complete weighted Riemannian man-
ifold. For q ∈M , b > 0 and K ≥ 0, we assume sf ,q, which is defined in (10), is smooth and

RicN
f ≥ −K e

4( ε− 1) f
n − 1 g, |∇sq| ≤ b.

For c := c(n, N , ε) as in (9) and p > 1, we have

λ{ 1+ 2 1− ε
n − 1 } , p ≤

 
b

p

r
K

c

! p

.

R em ark 3.5.4. As mentioned in Remark 2.3.3, there are several proofs in the unweighted case
f ≡0. Although the gradient estimate is shown also in the weighted case N ∈[n, ∞), it seems
that there is a di cultffi y when we adapt the gradient estimate arguments straightforwardly in
the case N ∈(−∞, 1] ∪{ ∞} . The di cultffi y appears when we apply the Bochner formula.
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CHAPTER 4

A nalysis of p orous m ed ium equations

W e give an Aronson-Bénilan type gradient estimate for porous medium equation ∂tu =
∆ f um under lower bounds of RicN

f with ε-range (Theorems 4.1.1 and 4.2.1). I t turned out that

this type of estimate is available when −∞, − 2
m − 1

∪[n, ∞].

4.1. N on-compact case

In this section, we obtain a local Aronson-Bénilan type estimate. As an application, a
global estimate is obtained. The local Aronson-Bénilan estimate was obtained as follows (see
[36, Theorem 4]):

T heorem 4.1.1 ([36]) . Let (M , g, f ) be an n-dimensional complete weighted Riemannian man-
ifold, m > 1, q ∈ M , r > 0, and let u be a positive smooth solution of ∂tu = ∆ f um on
B 2r (q) ×[0, T ]. Also, let N ∈ −∞, −2

m −1
∪[n, ∞], ε∈ R in the ε-range. For K ≥ 0,

b2 ≥ b1 > 0, we assume

RicN
f ≥ −K e

4( ε− 1) f
n − 1 g, b1 ≤ e

2( 1− ε) f
n − 1 ≤ b2

on B 2r (q). W e set

a(m , N ) :=

(
1 when N = ∞,

N (m − 1)
N (m − 1)+ 2

when −∞, −2
m −1

∪[n, ∞),
(58)

and

v :=
m

m − 1
um − 1 , L := (m − 1) sup

B 2 r (q)×[0,T ]

v.

Then for a := a(m , N ) and any α> 1, there exist positive constants C and D depending only
on N , ε, b1 such that we have

|∇v|2

v2
− α

∂tv

v
≤

aα2mL 1/2

(α− 1)1/2(m − 1)1/2

C

r

a1/2α

(
1

t
+

K

b2
1

L

2(α− 1)
+

D

r 2

 

1 +
√

K r coth

 √
cK

b2

r

! ! ) 1
2

 

 

2

on B r (q) ×(0, T].

W e first show the following inequality (see [36, Lemma 1]):

Lem m a 4.1.2 ([38]). Let (M , g, f ) be an n-dimensional complete weighted Riemannian mani-
fold. W e use the same notation u, m , v, N , a := a(m , N ) as in Theorem 4.1.1. For an arbitrary
α∈R, we set

Fα :=
|∇v|2

v
− α

∂tv

v
, L :=

∂

∂t
− (m − 1)v∆ f .
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W e have

L (Fα) ≤ −
1

a
{ (m − 1)∆ f v} 2

+ (1 − α)
∂tv

v

2

+ 2mh∇v, ∇Fαi − 2(m − 1) RicN
f (∇v, ∇v).

Pr oo f . I t follows from the argument in [50, Lemma 2.1] that

L (Fα) = −2(m − 1) kHessvk2 + Ric∞
f (∇v, ∇v) + 2mh∇Fα, ∇vi − (α− 1)

∂tv

v

2

− F 2
1 .

Together with Propositions 2.1.6 and 2.1.7, we see

L (Fα) ≤ −2(m − 1)
(∆ f v)2

N
+ RicN

f (∇v, ∇v) + 2mh∇Fα, ∇vi − (α− 1)
∂tv

v

2

− F 2
1

=
−2(m − 1)

N
− (m − 1)2 (∆ f v)

2 − 2(m − 1) RicN
f (∇v, ∇v)

+ 2mh∇Fα, ∇vi − (α− 1)
∂tv

v

2

.

W e are now in a position to give a proof of Theorem 4.1.1.

Pr oo f o f T heor em 4.1.1. Let φ1 be a non-negative cut-off function on [0, ∞) such that

φ1 =

(
1 on [0, 1],

0 on [2, ∞),

and 0 ≤ φ1 ≤ 1 on (1, 2) with −C34φ
1/2
1 ≤ φ0

1 ≤ 0 and φ00
1 ≥ −C34 , where C34 > 0 is a constant.

For q ∈M , we set

φ(x) := φ1
dq(x)

r
.

There exists a constant C35 > 0 depending on C34 such that

|∇φ|2

φ
≤

C35

r 2
.

W e only consider the case K > 0. By Proposition 2.1.15, we have

∆ f dq ≤

√
K

b1

√
c

coth

 √
cK r

b2

!

.

Then we have

∆ f φ=
φ0

1(dq/r )∆ f dq

r
+

φ00
1(dq/r )|∇dq|2

r 2
(59)

≥ −
C34φ

1/2
1 (dq/r )

r

√
K

b1

√
c

coth

 √
cK

b2
r

!

−
C34

r 2

≥ −
C36

r 2

 

1 +
√

K r coth

 √
cK

b2

r

! !

,

58



where C36 > 0 is a constant depending on N , ε, b1 . For an arbitrarily fixed α≥ 1, we have

L (Fα) ≤ −
1

a
{ (m − 1)∆ f v} 2

+ 2mh∇v, ∇Fαi +
2K L

b2
1

|∇v|2

v
(60)

= −
1

aα2
Fα+ (α− 1)

|∇v|2

v

2

+ 2mh∇v, ∇Fαi +
2K L

b2
1

|∇v|2

v
,

where we used

(m − 1)∆ f v =
∂tv

v
−

|∇v|2

v
.

W e apply the maximum principle to Gα := tφFα. Let (x1 , t1) ∈B 2r (q) ×[0, T ] be a point that
attains the maximum of Gα with Gα(x1 , t1) > 0. Since Gα(x , t) = 0 when t = 0, we see t1 > 0.
W e have

∇Gα(x1 , t1) = 0, ∆ Gα(x1 , t1) ≤ 0, ∂tGα(x1 , t1) ≥ 0.

This implies

L (Gα)(x1 , t1) ≥ 0.

At (x1, t1), using ∇Gα(x1 , t1) = 0 and (60), we see

0 ≤ L (Gα)

= φFα+ t1φ∂tFα− (m − 1)vt1Fα∆ f φ− 2(m − 1)vt1h∇φ, ∇Fαi

=
Gα

t1

+ t1φL (Fα) − (m − 1)v
∆ f φ

φ
Gα+ 2(m − 1)v

|∇φ|2

φ2
Gα

≤
Gα

t1

+ t1φ

(

−
1

aα2
Fα+ (α− 1)

|∇v|2

v

2

+ 2mh∇v, ∇Fαi +
2K L

b2
1

|∇v|2

v

)

− (m − 1)v
∆ f φ

φ
Gα+ 2(m − 1)v

|∇φ|2

φ2
Gα

=
Gα

t1

+ t1φ

(

−
1

aα2
Fα+ (α− 1)

|∇v|2

v

2

−
2mFα

φ
h∇v, ∇φi +

2K L

b2
1

|∇v|2

v

)

− (m − 1)v
∆ f φ

φ
Gα+ 2(m − 1)v

|∇φ|2

φ2
Gα.

W e set

β:=
|∇v|2

vFα
(x1 , t1) ≥ 0.

Then we deduce

0 ≥
Gα

t1

−
t1φF 2

α

α2
{ 1 + (α− 1)β} 2 − 2mt1φFα

h∇v, ∇φi

φ
+

2K Lt1φ

b2
1

|∇v|2

v

− (m − 1)v
∆ f φ

φ
Gα+ 2(m − 1)v

|∇φ|2

φ2
Gα

=
Gα

t1

−
G2

α

aα2t1φ
{ 1 + (α− 1)β} 2 − 2mGα

h∇v, ∇φi

φ
+

2K Lβ

b2
1

Gα

− (m − 1)v
∆ f φ

φ
Gα+ 2(m − 1)v

|∇φ|2

φ2
Gα.
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W e estimate the third term. The Cauchy-Schwarz inequality implies

2mGα
h∇v, ∇φi

φ
≤ 2mGα

|∇v| |∇φ|

φ

= 2mGαβ1/2F 1/2
α

|∇φ|φ1/2t1/2
1

(m − 1)1/2φ3/2t1/2
1

(m − 1)1/2v1/2

≤ 2mGαβ1/2 |∇φ|G1/2
α

(m − 1)1/2φ3/2t1/2
1

L 1/2 .

Hence,

0 ≤
Gα

t1

−
G2

α

aα2t1φ
{ 1 + (α− 1)β} 2 + 2mGαβ1/2L 1/2 |∇φ|G1/2

α

(m − 1)1/2φ3/2t1/2
1

+
2K Lβ

b2
1

Gα

− (m − 1)v
∆ f φ

φ
Gα+ 2(m − 1)v

|∇φ|2

φ2
Gα.

M ultiplying both sides by φ
Gα

and moving some terms in the other side, we obtain

{ 1 + (α− 1)β} 2

aα2t1

Gα− 2m
β1/2L 1/2|∇φ|

(m − 1)1/2φ1/2t1/2
1

G1/2
α

≤
φ

t1

+
2K Lβ

b2
1

φ− (m − 1)v∆ f φ+ 2(m − 1)v
|∇φ|2

φ
Gα

≤
φ

t1

+
2K Lβ

b2
1

φ+ L
C36

r 2

 

1 +
√

K r coth

 √
cK

b2

r

! !

+ 2L
|∇φ|2

φ
.

For A 1 > 0, A 2 , A 3 ≥ 0, if A1x2 − A 2x ≤ A 3 , we have

x ≤
A 2

A 1
+

r
A 3

A 1
.

W e apply this for x := G1/2
α and obtain

G1/2
α ≤

2aα2mL 1/2t1/2
1 { (α− 1)β} 1/2

(m − 1)1/2(α− 1)1/2 { 1 + (α− 1)β} 2

|∇φ|

φ1/2

+
a1/2αt1/2

1

1 + (α− 1)β

(
φ

t1
+

2K Lβ

b2
1

φ+
C36L

r 2

 

1 +
√

K r coth

 √
cK

b2
r

! !

+ 2L
|∇φ|2

φ

) 1/2

.

Below, we estimate terms in this inequality as follows:

{ (α− 1)β} 1/2

{ 1 + (α− 1)β} 2 ≤
1

2

1 + (α− 1)β

{ 1 + (α− 1)β} 2 ≤
1

2
,

and this implies

aα2t1

{ 1 + (α− 1)β} 2

1

t1
+

2K Lβ

b2
1

≤ aα2 +
2aα2t1

(α− 1)

K L

b2
1

(α− 1)β

{ 1 + (α− 1)β} 2

≤ aα2 1 +
K L t1

2(α− 1)b2
1

.
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For x ∈B r (q) , this yields

G1/2
α (x , T )

≤ G1/2
α (x1 , t1)

≤
aα2mL 1/2t1/2

1

(α− 1)1/2(m − 1)1/2

√
C35

r
+ aα2 1 +

K Lt1

2(α− 1)b2
1

+
aα2t1

{ 1 + (α− 1)β} 2

(
C36L

r 2

 

1 +
√

K r coth

 √
cK

b2

r

! ! )

+
2C35L

r 2

#1/2

≤
aα2mL 1/2t1/2

1

(α− 1)1/2(m − 1)1/2

√
C35

r

+ a1/2T 1/2α

(
1

T
+

K L

2(α− 1)b2
1

+
(C36 + 2C35)L

r 2

 

1 +
√

K r coth

 √
cK

b2

r

! ! ) 1/2

.

W e divide the both sides by T 1/2 and we arrive at the desired assertion.

As a corollary, we have the following estimate (see [38, Corollary 3]) :

Corol lary 4.1.3 ([38]). Let (M , g, f ) be an n-dimensional complete non-compact weighted
Riemannian manifold, and for m > 1, let u be a positive smooth solution to ∂tu = ∆ f um on
M ×[0, T ]. Also, let N ∈ −∞, − 2

m −1
∪[n, ∞] and ε∈R in the ε-range. For K ≥ 0 and

b2 ≥ b1 > 0, we assume

RicN
f ≥ −K e

4( ε− 1) f
n − 1 g, b1 ≤ e

2( 1− ε) f
n − 1 ≤ b2 .

W e set v and L in the same way as in Theorem 4.1.1. Then for any α> 1, we have

|∇v|2

v
− α

∂tv

v
≤ aα2 1

t
+

K

b2
1

L

2(α− 1)

2

on M ×(0, T ]. I n particular, i f K = 0, we have

|∇v|2

v
−

∂tv

v
≤

a

t
on M ×(0, T ].

R em ark 4.1.4. In the case N ∈[n, ∞), we take ε= 1 and b1 = b2 = 1. Then Theorem 4.1.1
recovers Theorem 2.4.3, and Corollary 4.1.3 recovers Corollary 2.4.5.

4.2. Compact ca se

In this section, we provide a global Aronson-Bénilan type estimate on compact manifolds
under RicN

f ≥ 0. The proof is essentially di erenff t from the case of non-compact manifolds.

T heorem 4.2.1 ([36]). Let (M , g, f ) be an n-dimensional compact weighted Riemannian man-
ifold, and for m > 1, let u be a positive smooth solution to ∂tu = ∆ f um on M ×[0, T]. Let
N ∈ −∞, −2

m −1
∪[n, ∞]. W e assume

RicN
f ≥ 0.

W e set

v :=
m

m − 1
um −1 .
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Then we have
|∇v|2

v
−

∂tv

v
≤

a

t
on M ×(0, T ], where we set a := a(m , N ) as in (58).

Pr oo f . Lemma 4.1.2 for the case α= 1 and RicN
f ≥ 0 yields

L (F1) ≤ −
1

a
{ (m − 1)∆ f v} 2

+ 2mh∇v, ∇F1i .

For F := tF1, we see

L (F ) = tL (F1) + F1 ≤ −
1

a

F 2

t
+ 2mh∇F, ∇vi +

F

t
.

Let (x1, t1) ∈M ×[0, T ] be a point that attains the maximum of F . W e may assume F (x1 , t1) >
0. As in the argument in Theorem 4.1.1, we have L (F )(x1, t1) ≥ 0. Therefore, we have

0 ≤ L (F )(x1 , t1) = −
1

a

F (x1 , t1)
2

t1

+
F (x1, t1)

t1

.

For any (x , t) ∈M ×[0, T ], we have

F (x , t) ≤ F (x1 , t1) ≤ a.

W e arrive at the desired assertion.

R em ark 4.2.2. In the case N ∈[n, ∞), we take ε= 1 and b1 = b2 = 1, and this recovers
[73, Theorem 7.6] (see also Remark 2.4.6).

R em ark 4.2.3. As mentioned in section 1.4, while gradient estimates for the heat equation
under lower bounds of RicN

f with N ∈(−∞, 0) is listed as an open question in [93, 95], the

range −∞, −2
m −1

degenerates as m & 1.
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[22] X . Chen, S. Donaldson, and S. Sun, K ähler-E instein metrics on Fano manifolds. I : Approximation of

metrics wi th cone singulari ties, J. Amer. M ath. Soc. 28 (2015) , no. 1, 183–197.
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[36] Y . Fuj itani, Aronson-Béni lan gradient estimates for porous medium equations under lower bounds of N -

weighted R icci curvature with N < 0, K yushu J. M ath. 78 (2024) , no. 1, 209–223.

[37] , Some functional inequali ties under lower Bakry-Émery-R icci curvature bounds with ε-range,
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