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Abstract

Albert [Alb89] studied Hamiltonian actions on cosymplectic manifolds, which are the
odd-dimensional analogue of symplectic manifolds, and established a reduction theorem for
the actions. A cosymplectic manifold has a Poisson structure whose symplectic foliation has
codimension one. In this thesis, we extend Albert’s reduction theorem to cases involving
Riemannian metrics and Lie groupoid actions.

Hitchin et al. [HKLR87] proved reduction theorems for Kähler and hyperKähler mani-
folds, which are symplectic manifolds compatible with a Riemannian metric. In this thesis,
we establish analogous results for odd-dimensional counterparts, namely coKähler manifolds
and 3-cosymplectic manifolds. We further investigate the relationship between the reduction
processes for these manifolds and those for Kähler and hyperKähler manifolds.

A Lie groupoid is a groupoid suitable for smooth category. This notion is a generaliza-
tion of the concept of a Lie group. Mikami and Weinstein [MW88] studied actions of Lie
groupoids on symplectic manifolds and established a reduction theorem for such actions. In
this thesis, we introduce a new class of submanifolds, called Lagrangian-Legendrean subman-
ifolds, within cosymplectic manifolds. This allows the definition of appropriate Lie groupoid
actions on cosymplectic manifolds. We then prove an odd-dimensional analogue of Mikami
and Weinstein’s theorem, which is also a generalized version of Albert’s theorem. The proof
heavily utilized the symplectic foliation structure of cosymplectic manifolds.
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Chapter 1

Introduction

Since the pioneering work of Marsden-Weinstein and Meyer [MW74, Mey73], many types of
reduction theorems have been studied for various geometric structures on manifolds (see the
table below).

Geometric structures Structures with metric 3-structures with metric

Symplectic [MW74] Kähler [HKLR87] HyperKähler [HKLR87]
Contact [Alb89] Sasakian [GO01] 3-Sasakian [BGM94]

Cosymplectic [Alb89] CoKähler 3-cosymplectic

In [HKLR87], Hitchin et al. proved the reduction theorem of Kähler manifolds. They also
introduced a notion of a hyperKähler momentum map and proved the reduction theorem of
hyperKähler manifolds. Albert [Alb89] studied Hamiltonian actions on contact manifolds and
cosymplectic manifolds and proved the reduction theorems. Afterwards, several types of re-
duction theorems of contact manifolds have been studied [Gei97, Wil02, ZZ06]. In [BGM94],
Boyer et al. proved the reduction theorem of 3-Sasakian manifolds via the hyperKähler re-
duction theorem. Afterwards, Grantcharov and Ornea [GO01] proved the reduction theorem
of Sasakian manifolds.

On the other hand, Mikami-Weinstein [MW88] generalized the Marsden-Weinstein-Meyer
theorem to symplectic groupoid actions, which extends a notion of a Hamiltonian action on
symplectic manifolds (see the table below).

Phase space Symmetry
Marsden-Weinstein-Meyer Symplectic manifold Lie group

Mikami-Weinstein Symplectic manifold Symplectic groupoid
Albert Cosymplectic manifold Lie group

Our result Cosymplectic manifold Cosymplectic groupoid

In this thesis, we focus on the reduction theorem of cosymplectic manifolds proved by
Albert and extend it to cases involving Riemannian metrics and Lie groupoid actions.
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Firstly, we obtain reduction theorems of coKähler manifolds and 3-cosymplectic manifolds.
They are another odd-dimensional versions of Kähler and hyperKähler manifolds instead of
Sasakian and 3-Sasakian manifolds, respectively (see [CMDNY13a] for more details). We give
typical examples of coKähler/3-cosymplectic quotients by using “cylinder constructions” and
“mapping torus constructions”, respectively.

Secondly, we define a notion of an action of a cosymplectic groupoid on a cosymplectic
manifold by using a notion of a Lagrangian-Legendrean submanifold. Afterwards, we prove
a reduction theorem which is an analogue of the Mikami-Weinstein theorem. A notion of a
cosymplectic groupoid is introduced by [DW15] and recently studied in [FP23]. A cosym-
plectic groupoid is a Lie groupoid whose space of arrows is endowed with a multiplicative
cosymplectic structure.

This thesis is organized as follows.

In chapter 2, basic materials on Poisson geometry are presented. In section 2.1 through
section 2.4, we introduce some fundamental concepts of this thesis, such as Poisson mani-
folds, cosymplectic manifolds, Lie groupoids, and symplectic groupoids. We also give some
examples of these notions. In section 2.5, we recall a notion of Morita equivalence of sym-
plectic groupoids, and in section 2.6 we explain a proof of the Mikami-Weinstein theorem by
Xu [Xu91b] using Morita equivalence.

chapter 3 is devoted to our first two main theorems. In section 3.1, we recall cosymplectic
structures and cosymplectic momentum maps and the proof of the reduction theorem by
Albert. In we prove the following coKähler reduction theorem, which is a natural analogue
of the Kähler reduction theorem.

Theorem 1.0.1 ([Yon24b]). Let (M, g, φ, ξ, η) be a coKähler manifold with the underlying
cosymplectic structure (η, ω). Suppose that there is a free and proper Hamiltonian action of
a Lie group G on (M, η, ω) which preserves φ. Let µ : M → g∗ be a momentum map and
ζ ∈ g∗ a central and regular value of µ. Then M ζ := µ−1(ζ)/G admits a coKähler structure
(gζ , φζ , ξζ , ηζ). Moreover, the underlying cosymplectic manifold of (M ζ , gζ , φζ , ξζ , ηζ) is the
cosymplectic quotient (M ζ , ηζ , ωζ).

In section 3.2 we introduce a notion of a 3-cosymplectic momentum map and prove the
following 3-cosymplectic reduction theorem, which is a natural analogue of the hyperKähler
reduction theorem.

Theorem 1.0.2 ([Yon24b]). Let (M, g, (φi, ξi, ηi)i=1,2,3) be a 3-cosymplectic manifold with
underlying cosymplectic structures (ηi, ωi)i=1,2,3. Suppose that there is a free and proper action
of a Lie group G on M which is Hamiltonian with respect to all three cosymplectic structures
(ηi, ωi)i=1,2,3 and preserves (φi)i=1,2,3. Let µ : M → g∗⊗ ImH be a 3-cosymplectic momentum
map and ζ ∈ g∗ ⊗ ImH a central and regular value of µ. Then M ζ := µ−1(ζ)/G inherits the
3-cosymplectic structure of M .

In section 3.3, we study the reduction of geometric structures on cylinders. Let M be
a Kähler manifold. Then its cylinder C(M) := M × R admits a coKähler structure. Con-
versely, if M is a coKähler manifold, then C(M) admits a Kähler structure. We show that
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the Kähler (resp. coKähler) quotient of C(M) is the cylinder of the coKähler (resp. Kähler)
quotient of M . Similarly, hyperKähler structures and 3-cosymplectic structures are also re-
lated by cylinder constructions, and we also show that hyperKähler/3-cosymplectic reduction
procedures are compatible with these cylinder constructions. In section 3.4, we investigate
coKähler quotients of mapping tori of Kähler manifolds. For a Kähler manifold S and a
Hermitian isometry f of S, the mapping torus

Sf = (S × [0, 1])/{(p, 0) ∼ (f(p), 1) | p ∈ S}

admits a coKähler structure. Suppose that there is a free and proper Hamiltonian action of
a Lie group on S which preserves the Kähler structure and let µ : S → g∗ be a momentum
map. Let f be an equivariant Hermitian isometry of S. Then we show that the action on S is
naturally lifted to a Hamiltonian action on Sf if and only if µ(f(p)) = µ(p) holds for some p ∈
S. In this situation, we prove that the Kähler/coKähler reduction procedures are compatible
with the mapping torus procedure. In section 3.5, we interpret our coKähler reduction
theorem from the physical viewpoint. In short, our result suggests that we can reduce
time-dependent dynamical systems preserving the property that the flows of the system are
geodesics.

In chapter 4 we discuss our third main theorem. In section 4.1, we review the definition
and some properties of cosymplectic groupoids. In section 4.2, we introduce a notion of a
Lagrangian-Legendrean submanifold of cosymplectic manifolds, and define cosymplectic ac-
tions of cosymplectic groupoids on cosymplectic manifolds. We observe that if a cosymplectic
groupoid G = (G1 ⇒ G0) acts on a cosymplectic manifold M , then a symplectic groupoid
SG = (SG1 ⇒ G0), where SG1 is the symplectic leaf of G1 that contains unit arrows, acts on
each symplectic leaf of M . In section 4.3, we prove the following theorem:

Theorem 1.0.3 ([Yon24a]). Let G = (G1 ⇒ G0) be a cosymplectic groupoid and M a
cosymplectic, free and proper left G-module with respect to a momentum map ρ : M → G0.
Assume that ξ ∈ ρ(M) is a regular value of ρ. Then (SG)ξ\ρ−1(ξ) is a cosymplectic manifold,
where (SG)ξ is a Lie group consisting of arrows in SG1 whose source and target are both ξ.

In section 4.4, we give examples of Theorem 1.0.3. The main example reconstructs Al-
bert’s cosymplectic reduction theorem. In section 4.5, we mention Morita equivalence of
cosymplectic groupoids.

Lastly, in chapter 5 we show potential for future research.
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Chapter 2

Preliminaries from Poisson geometry

There are two purposes of this chapter. The first is to explain the fundamental concepts of
Poisson geometry that will be used in the subsequent chapters. The second is to outline the
proof of the reduction theorem by Mikami and Weinstein.

2.1 Poisson manifolds

Definition 2.1.1. A Poisson structure on a manifold M is an R-bilinear map {·, ·} :
C∞(M)× C∞(M)→ C∞(M) which satisfies the following conditions:

• {f, g} = −{g, f},

• {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 (Jacobi rule),

• {f, gh} = g{f, h}+ h{f, g} (Leibniz rule). ■

There is an alternative definition of a Poisson structure using a bivector. A bivector
π ∈ X2(M) = Γ(∧2TM) is locally expressed as

π =
∑
i<j

πij
∂

∂xi

∧ ∂

∂xj

by using local coordinates (x1, · · · , xdimM).

Definition 2.1.2. A Poisson structure on a manifold M is a bivector π ∈ X2(M) which satis-
fies [π, π]S = 0, where [π, π]S ∈ X3(M) is a 3-vector whose coefficients of local representation
are given by

([π, π]S)ijk =
∑
l

(
∂πij

∂xl

πlk +
∂πki

∂xl

πlj +
∂πjk

∂xl

πli

)
.

■
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Two definitions of Poisson manifolds are related by the formula {f, g} = π(df, dg).

Let (M,π) be a Poisson manifold. We have a map π♯ : T ∗M → TM by β(π♯α) = π(α, β)
for α, β ∈ T ∗M . Then Imπ♯ ⊂ TM defines a (possibly singular) foliation on M . Moreover,
each leaf of the foliation naturally admits a symplectic structure.

Example 2.1.3. Any manifold M admits the trivial Poisson structure defined by {f, g} = 0
for any f, g ∈ C∞(M). The symplectic leaves of this Poisson manifold are points of M . ■

Example 2.1.4. Let (M,ω) be a symplectic manifold. Then we have an isomorphism ω♯ :
TM → T ∗M defined by ω♯(X) = ω(X,−). Then we obtain a Poisson bivector π ∈ X2(M)
induced by the map π♯ := (ω♯)

−1 : T ∗M → TM . In this case, there is only one symplectic
leaf, that is, M itself. ■

Example 2.1.5. Let g be a Lie algebra. Then the dual vector space g∗ admits a Poisson
structure defined by

{f, g}(ξ) = −ξ([dfξ, dgξ])

for f, g ∈ C∞(g∗) and ξ ∈ g∗, where [·, ·] is the Lie bracket of g and we consider dfξ, dgξ :
g∗ → R identifying Tξg

∗ with g∗. Symplectic leaves of this Poisson manifold are orbits of the
coadjoint action Ad∗ : G→ GL(g∗).

This Poisson structure is called a linear Poisson structure since local coefficients of the
corresponding bivector are linear functions. In general, for a vector space V there is a corre-
spondence {

Lie algebra structure on V
}

1:1←→
{
Linear Poisson structure on V ∗

}
.

■

2.2 Cosymplectic manifolds

In this section, we discuss an important example of Poisson manifolds in this thesis, namely
cosymplectic manifolds, and describe Hamiltonian actions on them as well as Albert’s reduc-
tion theorem.

An almost cosymplectic structure on a (2n + 1)-dimensional manifold M is a pair of
η ∈ Ω1(M) and ω ∈ Ω2(M) such that η ∧ ωn ̸= 0. On an almost cosymplectic manifold
(M, η, ω) there is a unique vector field ξ which satisfies

ω(ξ,−) = 0, η(ξ) = 1.

ξ is called the Reeb vector field of (M, η, ω). We have an isomorphism of C∞(M)-modules
♭ : X(M) → Ω1(M) defined by ♭(X) = ω(X,−) + η(X)η. Conversely, a pair (η, ω) is an
almost cosymplectic structure if and only if the map ♭ : X(M)→ Ω1(M) defined as above is
an isomorphism and there is a vector field ξ which satisfies the above conditions.
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An almost cosymplectic structure (η, ω) is called a contact structure when ω = dη. On the
other hand, an almost cosymplectic structure (η, ω) is called a cosymplectic structure when
dη = 0, dω = 0. For a contact structure η ∈ Ω1(M), the distribution Kerη is completely
non-integrable. On the other hand, for a cosymplectic structure (η, ω), the distribution Kerη
is integrable since η is closed. Therefore, contact structures and cosymplectic structures are
two classes of almost cosymplectic structures which are polar opposites of each other.

Example 2.2.1. The simplest example of cosymplectic manifolds is the (2n+1)-dimensional
Euclidean space R2n+1 = {(x1, · · · , xn, y1, · · · , yn, t)}, equipped with a cosymplectic structure

ηstd = dt, ωstd =
n∑

i=1

dxi ∧ dyi.

In fact, any cosymplectic manifold of dimension 2n + 1 is locally equivalent to the standard
cosymplectic manifold (R2n+1, ηstd, ωstd) (Darboux type theorem). ■

Example 2.2.2. For a symplectic manifold S and a symplectomorphism f : S → S, the
mapping torus

Sf = (S × [0, 1])/{(p, 0) ∼ (f(p), 1) | p ∈ S}

naturally admits a cosymplectic structure (it will be discussed in detail in section 3.4). ■

A cosymplectic structure (η, ω) on M induces a Poisson structure π ∈ X2(M) on M by

π(α, β) = ω(♭−1α, ♭−1β),

where α, β ∈ T ∗M . This Poisson structure is regular and has corank 1. Its symplectic
leaves coincide with those of the integrable distribution Kerη and the symplectic form on a
symplectic leaf S is ω|S. In fact, it is known that a cosymplectic structure on M is equivalent
to a corank 1 regular Poisson structure on M with a Poisson vector field which is transverse
to the symplectic leaves [GMP11].

For every function f ∈ C∞(M) on a cosymplectic manifold M , we associate a vector field
Xf by

Xf = ♭−1(df − ξ(f)η).

Xf is called the Hamiltonian vector field of f . This condition is equivalent to

ω(Xf ,−) = df − ξ(f)η, η(Xf ) = 0.

Let (M, η, ω) be a cosymplectic manifold and G a Lie group acts on M from left. We
suppose that the action preserves η, ω, i.e., L∗

gη = η, L∗
gω = ω. Denote the Lie algebra of G

as g. Albert [Alb89] defined the notion of momentum maps on cosymplectic manifolds:

Definition 2.2.3. A smooth map µ : M → g∗ is called a momentum map when the following
conditions are satisfied:
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• µ is equivariant, i.e., µ(gp) = Ad∗gµ(p) holds for any p ∈M and g ∈ G.

• For any A ∈ g, the induced vector field A∗ ∈ X(M) is the Hamiltonian vector field of a
function µA : M → R defined by µA(p) = (µ(p))(A),

• For the Reeb vector field ξ and any A ∈ g, dµA(ξ) = 0 holds. ■

The action of G is said to be Hamiltonian if there is a momentum map. Now we assume
that there is a Hamiltonian action of G on (M, η, ω) which is free and proper. Let ζ ∈ g∗ be
a regular value of a momentum map µ : M → g∗. Since µ is equivariant, the isotropy group
Gζ acts on µ−1(ζ). Let M ζ := µ−1(ζ)/Gζ and π : µ−1(ζ)→M ζ be the natural projection.

Theorem 2.2.4 (Albert [Alb89]). There is a unique cosymplectic structure (ηζ , ωζ) on M ζ

which satisfies π∗ηζ = η|µ−1(ζ), π∗ωζ = ω|µ−1(ζ).

Proof. Since dµA(X) = ω(A∗, X), for any p ∈ µ−1(ζ) we have

Tpµ
−1(ζ) = {Xp ∈ TpM | ω(A∗

p, Xp) = 0, A ∈ g}. (2.2.1)

Let gζ be the Lie algebra of Gζ . For any p ∈ µ−1(ζ) and g ∈ Gζ we have µ(Lg(p)) = ζ, and
by differentiating this we obtain

gζ = {B ∈ g | dµ(B∗
p) = 0}

for any p ∈ µ−1(ζ). Hence, if we define gp := {A∗
p | A ∈ g} and gζ,p := {B∗

p | B ∈ gζ}, we
obtain

gζ,p = gp ∩ Tpµ
−1(ζ). (2.2.2)

We see that η|µ−1(ζ) and ω|µ−1(ζ) are basic with respect to the fibration π : µ−1(ζ)→M ζ .
For any B ∈ gζ , we have η|µ−1(ζ)(B

∗) = 0. In addition, since dη|µ−1(ζ) = 0,

LB∗η|µ−1(ζ) = dιB∗η|µ−1(ζ) + ιB∗dη|µ−1(ζ) = 0

holds, and thus η|µ−1(ζ) is basic. On the other hand, (2.2.1) implies that ω|µ−1(ζ)(B
∗
p , Xp) = 0

for any B ∈ gζ and Xp ∈ Tpµ
−1(ζ), so similarly ω|µ−1(ζ) is basic. Then we obtain ηζ and ωζ .

Moreover, they are closed since η, ω are closed and π∗ is injective.
All that remains is to prove that (ηζ , ωζ) is an almost cosymplectic structure. We have

ξp ∈ Tpµ
−1(ζ) for any p ∈ µ−1(ζ), and L∗

gη = η, L∗
gω = ω implies (Lg)∗ξp = ξLg(p). So we can

define a vector field ξζ = dπ(ξ|µ−1(ζ)) on M ζ , and we have ηζ(ξζ) = 1, ωζ(ξζ ,−) = 0.
Lastly, we prove that the map ♭ζ : TM ζ → T ∗M ζ ; Xζ 7→ ιXζωζ + ιXζηζηζ is an isomor-

phism. Suppose that Xζ ∈ TM ζ satisfies ♭ζ(Xζ) = 0. Take p ∈ µ−1(ζ) and let x = π(p). We
can take Xp ∈ Tpµ

−1(ζ) such that dπ(Xp) = Xζ
x. Then

ω(Xp, Yp) + η(Xp)η(Yp) = 0

holds for any Yp ∈ Tpµ
−1(ζ), and this implies

η(Xp) = 0, ω(Xp, Yp) = 0. (2.2.3)
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The almost cosymplectic structure (η, ω) on M gives a decomposition

TpM = R⟨ξp⟩ ⊕Kerηp

and ωp|Kerηp is non-degenerate. We define Ep = Kerηp∩Tpµ
−1(ζ). Then by (2.2.1) and (2.2.3)

we obtain
Xp ∈ (Ep)

ωp|Kerηp = ((gp)
ωp|Kerηp )ωp|Kerηp = gp,

where V ωp|Kerηp denotes the orthogonal complement of V ⊂ Kerηp with respect to ωp|Kerηp .
Now we can conclude that Xp ∈ gζ,p by (2.2.2) and thus Xζ

x = dπ(Xp) = 0.

2.3 Lie groupoids

A groupoid is a small category in which all arrows are invertible. This is summarized in the
following diagram:

G1 s×t G1 m
// G1

i
WW

s //
t

// G0 u
// G1

where G1 s×t G1 = {(g, h) ∈ G1 × G1 | s(g) = t(h)}∗. G1 is a set of arrows and G0 is a
set of objects, m, i, s, t, u (these maps are called structure maps of the groupoid) are maps
of multiplication, inverse, source, target, and unit, respectively. G1 and G0 are sometimes
called the total space and the base space, respectively. For any ξ ∈ G0, s

−1(ξ) ∩ t−1(ξ) is a
group. This group is called the isotropy group on ξ, and denoted by Gξ. A subset

{ζ ∈ G0 | there is an arrow g ∈ G1 such that s(g) = ξ, t(g) = ζ}

of G0 is called the groupoid orbit through ξ. We denote a groupoid G = (G1, G0,m, i, s, t, u)
simply by G = (G1 ⇒ G0), m(g, h) by gh, u(ξ) by 1ξ for ξ ∈ G0.

A groupoid is called a Lie groupoid if G1 and G0 are smooth manifolds, s, t are smooth
submersions, and m, i, u are smooth maps. A Lie groupoid H1 ⇒ H0 is called a Lie sub-
groupoid of another Lie groupoid G1 ⇒ G0 when H1 ⇒ H0 is a subcategory of G1 ⇒ G0

and H1 is an immersed submanifold of G1. A morphism between Lie groupoids is a smooth
functor.

Example 2.3.1. A Lie group G is regarded as a Lie groupoid G ⇒ {∗} which has only one
object. ■

Example 2.3.2. Let G0 be a manifold and G a Lie group acting on G0 from left. Then one
obtains a Lie groupoid G×G0 ⇒ G0 by defining the following structure maps:

s(g, ξ) = ξ, t(g, ξ) = gξ, u(ξ) = (e, ξ),

m((g, hξ), (h, ξ)) = (gh, ξ), i(g, ξ) = (g−1, gξ),

where g, h ∈ G, ξ ∈ G0 and e is the unit of G. The Lie groupoid G×G0 ⇒ G0 is called the
action groupoid associated to the Lie group action. ■

∗Throughout the thesis, we will use this “fibered product” notation without explanation.
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The notion of an action of a Lie groupoid on a manifold M is a generalization of the
situation where an action of Lie group G on M and an equivariant map ρ : M → G0, where
G0 is another manifold on which G acts, is given (see Example 2.4.6).

Definition 2.3.3. Let G = (G1 ⇒ G0) be a Lie groupoid and M be a manifold. A left action
of G on M is a pair (ρ,Φ) of smooth maps ρ : M → G0 and Φ : G1 s×ρM → M which
satisfies the following conditions:

1. ρ(Φ(g, x)) = t(g) when (g, x) ∈ G1 s×ρM ,

2. Φ(g,Φ(h, x)) = Φ(gh, x) when (g, h) ∈ G1 s×tG1, (h, x) ∈ G1 s×ρM ,

3. Φ(1ρ(x), x) = x for any x ∈M .

Hereinafter, we simply denote Φ(g, x) by gx and refer to M as left G-module. The map
ρ : M → G0 is called a momentum map. A right action of G on M is also defined similarly,
by swapping the role of the source map and the target map. ■

A left G-action on M (or a left G-module M) is said to be

• free if gx = x (for some x ∈M such that (g, x) ∈ G1 s×ρM) implies g = 1ρ(x),

• proper if a map G1 s×ρM →M ×M ; (g, x) 7→ (gx, x) is proper.

The orbit space G\M of a free and proper Lie groupoid action is a smooth manifold and the
quotient map M → G\M is a submersion. In particular, for any regular value ξ ∈ G0 of ρ,
the isotropy Lie group Gξ = s−1(ξ) ∩ t−1(ξ) smoothly acts on ρ−1(ξ), and the quotient map
ρ−1(ξ)→ Gξ\ρ−1(ξ) is a submersion to the smooth quotient space.

2.4 Symplectic groupoids

In Poisson geometry, there is an important class of Lie groupoids, that is, symplectic groupoids.
Roughly speaking, symplectic groupoids are “integration” of Poisson manifolds.

Definition 2.4.1. A symplectic groupoid is a pair (G1 ⇒ G0, ωG1) of a Lie groupoid and a
symplectic form on G1 which is multiplicative, i.e.,

m∗ωG1 = pr∗1ωG1 + pr∗2ωG1

holds, where pri : G1 s×t G1 → G1 denotes the natural projections. ■

The space of objects G0 of a symplectic groupoid (G1 ⇒ G0, ωG1) has a unique integrable†

Poisson structure such that the source map is a Poisson map. Conversely, Mackenzie and
Xu [MX00] proved that for any integrable Poisson manifold G0, there exists a unique (up to

†A Poisson manifold is said to be integrable when induced Lie algebroid (cotangent bundle) is integrable
by a Lie groupoid. For more details, see [CF11] for example.
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isomorphism) symplectic groupoid (G1 ⇒ G0, ωG1) whose s-fiber s−1(ξ) on each ξ ∈ G0 is
simply connected (such a Lie groupoid is said to be s-simply connected), and these operations
are inverses of each other. So there is a correspondence{

s-simply connected symplectic groupoid
}

1:1←→
{
integrable Poisson manifold

}
.

Under the correspondence, the connected components of the groupoid orbits of G1 ⇒ G0

coincide with the symplectic leaves of G0.

The following are examples of integrable Poisson manifolds and their corresponding sym-
plectic groupoids:

Example 2.4.2. For the trivial Poisson structure on a manifold M , the corresponding sym-
plectic groupoid is T ∗M ⇒ M , where both source and target maps are the projection of the
vector bundle T ∗M →M , groupoid multiplication is the fiberwise addition, and multiplicative
symplectic structure is the canonical one on T ∗M . ■

Example 2.4.3. For a symplectic manifold (S, ω), the corresponding symplectic groupoid is
the fundamental groupoid Π(S) ⇒ S of S. Here, Π(S) is the set of homotopy classes of
paths in S with endpoints fixed, and source map s and target map t send a homotopy class
to its endpoints. Π(S) admits a multiplicative symplectic structure (s × t)∗(ω ⊕ −ω), where
s× t : Π(S)→ S × S. ■

Example 2.4.4. Let g be the Lie algebra of a Lie group G. Consider the coadjoint action
Ad∗ : G→ GL(g∗) on g∗ and the action groupoid associated to this action. The space of
arrows G × g∗ ≃ T ∗G has the canonical symplectic form, and G × g∗ ⇒ g∗ is a symplectic
groupoid by this symplectic form. In this case, the corresponding Poisson structure on the
space of objects g∗ is the linear Poisson structure induced by the Lie algebra g. ■

Let (G, ωG1) be a symplectic groupoid and (M,ω) a symplectic manifold. A left G-action
on M (or a left G-module M) is said to be symplectic if the graph of the action, i.e.,

{(g, x, gx) ∈ G1 ×M ×M | (g, x) ∈ G1 s×ρM}

is a Lagrangian submanifold of (G1×M×M,ωG1 +ω1−ω2), where ωi denotes the symplectic
structure of i-th M .

Remark 2.4.5. The condition that the graph is a Lagrangian submanifold is grounded in
Weinstein’s “symplectic creed” [Wei81] philosophy. ■

Example 2.4.6. Let G0 be a manifold and G a Lie group acting on G0 from left. Consider
the action groupoid G = (G×G0 ⇒ G0). Then we obtain a correspondence

{
left G-action on M

}
1:1←→

{
left G-action on M with a equivariant map ρ : M → G0

}
17



by a formula gx = (g, ρ(x))x, where the left side means the action of g ∈ G on x ∈ M and
the right side means the action of (g, ρ(x)) ∈ G×G0 on x. Moreover, when G is G×g∗ ⇒ g∗

and M has a symplectic form ω, we have a correspondence

{
symplectic left G-action on (M,ω)

}
1:1←→

{
Hamiltonian left G-action on (M,ω)

}
(see [CFM21], for example). ■

2.5 Morita equivalence

Morita equivalence of Lie groupoids is an analogy to that in ring theory or C∗-algebra theory
and is defined using a concept analogous to bimodules. The concept of Morita equivalence
can be readily extended to symplectic groupoids (and in section 4.5, we further extend it to
cosymplectic groupoids).

Definition 2.5.1. A Lie groupoid G = (G1 ⇒ G0) is said to be Morita equivalent to another
Lie groupoid H = (H1 ⇒ H0) when there is a manifold M , a left G-action and a right
H-action on M which satisfies the following conditions:

1. Momentum maps ρ : M → G0 and σ : M → H0 are surjective submersions;

2. Actions of G and H on M are both free and proper;

3. The two actions commute with each other;

4. ρ is constant on each orbit of the action of H and an induced map M/H → G0 is a
diffeomorphism; Similarly, σ is constant on each orbit of the action of G and an induced
map G\M → H0 is a diffeomorphism.

In this situation, (M,ρ, σ) is called an equivalence bimodule from G to H. ■

G1

�� ��

M

ρ~~}}
}}
}}
}}

σ   B
BB

BB
BB

B H1

�� ��
G0 H0

A symplectic groupoid (G = (G1 ⇒ G0), ωG1) is said to be Morita equivalent to another
symplectic groupoid (H = (H1 ⇒ H0), ωH1) when there is an equivalence bimodule (M,ρ, σ)
from G to H in which M is a symplectic manifold and the actions of G,H on M are both
symplectic.

Proposition 2.5.2. Morita equivalence is an equivalence relation among Lie (symplectic)
groupoids.
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Proof. Reflexivity: Let G = (G1 ⇒ G0) be a Lie groupoid and s, t its source map and target
map. Then a triplet (G1, t, s) is an equivalence bimodule from G to itself. In fact, right and
left G-actions on G1 is given by composition of arrows of G.

Symmetry: If (M,ρ, σ) is an equivalence bimodule from a Lie groupoid G to another Lie
groupoid H, (M,σ, ρ) is an equivalence bimodule from H to G. In fact, for a left G-action
on M denoted by (g, x) 7→ gx, one can define a right G-action on M which has the same
momentum map by (x, g) 7→ g−1x.

Transitivity: Let Gi (i = 1, 2, 3) be Lie groupoids and (M1, ρ1, σ1), (M2, ρ2, σ2) equivalence
bimodules from G1 to G2, from G2 to G3, respectively. We denote as gi ∈ Gi (i = 1, 2, 3) and
xi ∈ Mi (i = 1, 2). Then we can define a left G2-action on M1 σ1×ρ2 M2 by (x1, x2) 7→
(x1g

−1
2 , g2x2) and obtain an equivalence bimodule (M3, ρ3, σ3) from G1 to G3 by

M3 := G2\(M1 σ1×ρ2 M2),

ρ3([x1, x2]) := ρ1(x1), σ3([x1, x2]) := σ2(x2),

g1 · [x1, x2] := [g1x1, x2], [x1, x2] · g3 := [x1, x2g3].

Example 2.5.3. Let S be a symplectic manifold and x ∈ S. Then a symplectic groupoid
Π(S) ⇒ S (see Example 2.4.3) is Morita equivalent to a symplectic groupoid π1(S, x) ⇒ {x},
where an equivalence bimodule is universal covering space ‹S of S. ■

Π(S)

�� ��
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~~||
||
||
||
||

""E
EE

EE
EE

EE
E π1(S, x)

�� ��
S {x}

Example 2.5.4. Let G1, G2 be Lie groups and g1, g2 their Lie algebras. Then symplectic
groupoids T ∗G1 ⇒ g∗1 and T ∗G2 ⇒ g∗2 (see Example 2.4.4) are Morita equivalent if and only
if G1 and G2 are isomorphic as Lie groups. ■
Remark 2.5.5. Morita equivalence classes of Lie groupoids are equivalent to the concept of
differentiable stacks [BX11]. In particular, Morita equivalence classes of proper and étale Lie
groupoids are equivalent to the concept of orbifolds [MP97]. ■

2.6 Mikami-Weinstein theorem

In this section, we review the proof of the Mikami-Weinstein theorem according to Xu
[Xu91b]. The following is the statement of the Mikami-Weinstein theorem.

Theorem 2.6.1 ([MW88]). Let G = (G1 ⇒ G0) be a symplectic groupoid and M a symplectic,
free and proper left G-module with respect to a momentum map ρ : M → G0. Assume that
ξ ∈ ρ(M) is a regular value of ρ. Then Gξ\ρ−1(ξ) is a symplectic manifold. Moreover, if ρ
is submertive, a family of symplectic manifolds {Gξ\ρ−1(ξ)}ξ∈ρ(M) is precisely the symplectic
foliation of the Poisson manifold G\M .
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Example 2.6.2. Consider the case of G = (G × g∗ ⇒ g∗). For any ξ ∈ g∗, Gξ ≃ {g ∈
G | Ad∗

gξ = ξ}. Thus by the correspondence in Example 2.4.6, we can see that the Marsden-
Weinstein-Meyer theorem is a special case of the Mikami-Weinstein theorem. ■

Let G = (G1 ⇒ G0) and H = (H1 ⇒ H0) be Morita equivalent Lie groupoids and
(M,ρ, σ) an equivalence bimodule. We say that ξ ∈ G0 and ζ ∈ H0 are related when
ρ−1(ξ) ∩ σ−1(ζ) ̸= ϕ holds. Then the definition of Morita equivalence implies the following.

Lemma 2.6.3. Let ξ0 ∈ G0 and ζ0 ∈ H0 be related. then the followings hold.

• ζ ∈ H0 is related to ξ0 if and only if ζ lies in the same groupoid orbit as ζ0.

• ξ ∈ H0 is related to ζ0 if and only if ξ lies in the same groupoid orbit as ξ0.

Let O,O′ be groupoid orbits of G,H, respectively. We say that O and O′ are related if
for some ξ ∈ O, ζ ∈ O′ (and therefore for any ξ ∈ O, ζ ∈ O′), ξ and ζ are related. Hence we
have a correspondence{

groupoid orbit of G
}

1:1←→
{
groupoid orbit of H

}
.

In particular, when G = (G1 ⇒ G0) and H = (H1 ⇒ H0) are symplectic groupoids, we
obtain a correspondence{

symplectic leaf of G0

}
1:1←→

{
symplectic leaf of H0

}
.

Symplectic leaves L ⊂ G0, L
′ ⊂ H0 are said to be related if they are related as groupoid

orbits.

Lemma 2.6.4. Let L ⊂ G0, L
′ ⊂ H0 be related leaves. Then ρ−1(L) = σ−1(L′) holds.

Proof. Take x ∈ ρ−1(L). Then since ρ(x) ∈ L and L is related to L′, there is y ∈M such that
ρ(x) = ρ(y) and ρ(y) ∈ L′. Because σ(x) and ρ(x), σ(y) and ρ(y) are related respectively,
we can see that σ(x) and σ(y) are related, and thus σ(x) ∈ L′ holds. Similarly, we can prove
σ−1(L′) ⊂ ρ−1(L).

Proposition 2.6.5. Let G = (G1 ⇒ G0) be a symplectic groupoid, M a free and proper
symplectic left G-module whose momentum map ρ is submertive. Then for any symplectic
left G-module X with momentum map σ, G\(M ρ×σ X) is a symplectic manifold, where G
acts on G\(M ρ×σ X) diagonally.

Proof. M ρ×σ X is a smooth manifold since ρ is submertive. Moreover, we can see that the
left G-action on M ρ×σ X is free and proper, and thus G\(M ρ×σ X) is a smooth manifold.

Let FG be a foliation on M ρ×σ X induced by the G-action and F⊥ another foliation on
M ρ×σ X defined by TF⊥ = T (M ρ×σ X)−ωM⊕ωX , where ωM and ωX are symplectic forms
on M and X, respectively. Then we can prove that FG = F⊥ (we omit the details).

Moreover, M ρ×σ X is a coisotropic submanifold of a symplectic manifold (M×X,−ωM⊕
ωX). Hence the quotient

T (M ρ×σ X)/TFG = T (M ρ×σ X)/T (M ρ×σ X)−ωM⊕ωX

naturally admits a (linear) symplectic structure.
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Now we outline the proof of the Mikami-Weinstein theorem.

Proof of Theorem 2.6.1. We may assume that ρ is surjective.
We obtain a Lie groupoid G\(M ρ×ρ M) ⇒ G\M whose structure maps are

s([x, y]) = [x], t([x, y]) = [y],

u([x]) = [x, x], i([x, y]) = [y, x], m([x, y], [y, z]) = [x, z].

By Proposition 2.6.5, we can see that G\(M ρ×ρM) admits a symplectic structure. More-
over the symplectic structure is multiplicative, thus G\(M ρ×ρM) ⇒ G\M is a symplectic
groupoid and G\M is a Poisson manifold.

We can also see that M is a symplectic right module on G\(M ρ×ρ M) ⇒ G\M , whose
momentum map is the natural projection σ : M → G\M and right action is given by
x · [x, y] = y. For simplicity, we assume that ρ is submertive. Then the symplectic groupoid
G\(M ρ×ρM) ⇒ G\M is Morita equivalent to G = (G1 ⇒ G0) (see the diagram below).
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�� ��

M

ρ
� �~~
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~~
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σ
&&LL

LLL
LLL

LLL
G\(M ρ×ρM)

�� ��
G0 G\M

Take ξ ∈ G0 and let Lξ ⊂ G0 be the symplectic leaf through ξ. Then by Lemma 2.6.4,
G\ρ−1(Lξ) is a symplectic leaf of G\M . In addition, we obtain a diffeomorphism

Gξ\ρ−1(ξ) ≃ G\ρ−1(Lξ),

and thus Gξ\ρ−1(ξ) naturally admits a symplectic structure and the family {Gξ\ρ−1(ξ)}ξ∈G0

is precisely the symplectic foliation of the Poisson manifold G\M .
In the case that ρ is not submertive, G\(M ρ×ρM) ⇒ G\M is no longer Morita equivalent

to G. However, we did not use submertiveness of momentum maps in the definition of related
symplectic leaves, and thus Gξ\ρ−1(ξ) admits a symplectic structure as long as ξ is a regular
value of ρ.
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Chapter 3

Reduction of coKähler and
3-cosymplectic manifolds

3.1 CoKähler case

Let g be a Riemannian metric and (φ, ξ, η) an almost contact structure on M , i.e., a triplet
of φ ∈ End(TM), a vector field ξ and a 1-form η, which satisfies φ2 = −id+ η⊗ ξ, η(ξ) = 1.
Then a quartets (g, φ, ξ, η) is called an almost contact metric structure if

g(φX,φY ) = g(X,Y )− η(X)η(Y )

holds. For almost contact structures and almost contact metric structures, refer to [YK85].

Lemma 3.1.1. Let (g, φ, ξ, η) be an almost contact metric structure on M .

(1) φξ = 0 holds.

(2) g(ξ,X) = η(X) holds for any X ∈ X(M).

Proof. (2) immediately follows from (1). We prove (1). Note that we have φ2ξ = −ξ+ξ = 0.
Hence

0 = φ2(φξ) = −φξ + η(φξ)ξ

holds, and thus we have φξ = η(φξ)ξ. Suppose that φξ ̸= 0. Then φξ = η(φξ)ξ implies
η(φξ) ̸= 0. However, φξ = η(φξ)ξ also implies

0 = φ2ξ = η(φξ)φξ,

which contradicts φξ ̸= 0 and η(φξ) ̸= 0. Therefore φξ = 0 holds.

Given an almost contact metric structure (g, φ, ξ, η), we obtain an almost cosymplectic
structure (η, ω), where ω(X,Y ) = g(X,φY ).
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Definition 3.1.2. An almost contact metric structure (g, φ, ξ, η) is said to be an almost
coKähler structure if the induced almost cosymplectic structure (η, ω) is a cosymplectic struc-
ture. An almost coKähler structure (g, φ, ξ, η) is said to be a coKähler structure if the
almost contact structure (φ, ξ, η) is normal, i.e., the Nijenhuis tensor Nφ of φ satisfies
Nφ = −2dη ⊗ ξ. ■

If we replace the cosymplectic condition dη = dω = 0 with ω = dη in the definition above,
then (g, φ, ξ, η) is called a Sasakian structure.

Let (M, g, φ, ξ, η) be a coKähler manifold and G a Lie group. Suppose that there is a
Hamiltonian action of G on a cosymplectic manifold (M, η, ω), and let ζ ∈ g∗ be a regular
value of a momentum map µ : M → g∗. Moreover, we assume that the action preserves φ
(and hence preserves the metric g) and ζ is central, i.e., Gζ = G holds.

Lemma 3.1.3. Let p ∈ µ−1(ζ). Then there is a subspace Hp ⊂ TpM and a decomposition

TpM = Hp ⊕ gp ⊕ φp(gp), (3.1.1)

which is orthogonal with respect to the metric g. Moreover, Hp is invariant under φp.

Proof. For any v ∈ Tpµ
−1(ζ) and A∗

p ∈ gp, we have

g(v, φpA
∗
p) = ω(v, A∗

p) = −(dµA)(v) = 0.

In addition, since φp is an isomorphism on Kerηp, we have dimφp(gp) = dimG and thus we
obtain a decomposition

TpM = Tpµ
−1(ζ)⊕ φp(gp).

We define Hp as the g-orthogonal complement of gp in Tpµ
−1(ζ). Then we obtain the de-

composition (3.1.1). Note that ξp ∈ Hp holds since g(ξp, A
∗
p) = η(A∗

p) = 0. Therefore the
decomposition (3.1.1) implies φp(Hp) = Hp since φ2

p(v) = −v holds for v ∈ Kerηp.

Lemma 3.1.4. Hp is invariant under the action of G, namely, (Lh)∗(Hp) = Hhp holds for
any h ∈ G and p ∈ µ−1(ζ).

Proof. For any A∗
p ∈ gp, we have

(Lh)∗(φpA
∗
p) = φhp(Lh)∗A

∗
p = φhp(AdhA)

∗
hp

and thus (Lh)∗(φh(gp)) = φhp(ghp). Hence the decomposition (3.1.1) implies (Lh)∗v ∈
Thpµ

−1(ζ) for v ∈ Hp. Moreover, (Lh)∗v is orthogonal to ghp since the action of G pre-
serves the metric g, therefore we obtain (Lh)∗(Hp) = Hhp.

Now we obtain the following reduction theorem.

Theorem 3.1.5. Let (M, g, φ, ξ, η) be a coKähler manifold with the underlying cosymplectic
structure (η, ω). Suppose that there is a free and proper Hamiltonian action of a Lie group G
on (M, η, ω) which preserves φ. Let µ : M → g∗ be a momentum map and ζ ∈ g∗ a central
and regular value of µ. Then M ζ := µ−1(ζ)/G admits a coKähler structure (gζ , φζ , ξζ , ηζ).
Moreover, the underlying cosymplectic manifold of (M ζ , gζ , φζ , ξζ , ηζ) is the cosymplectic quo-
tient (M ζ , ηζ , ωζ).
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Proof. For any p ∈ µ−1(ζ), the map (dπ)p|Hp : Hp → Tπ(p)M
ζ is an isomorphism. We define

a Riemannian metric gζ on M ζ and φζ ∈ End(TM ζ) as pushforwards by (dπ)p|Hp , i.e.,

gζπ(p)(Xπ(p), Yπ(p)) = gp(X̃p, ‹Yp),

φζ
π(p)(Xπ(p)) = (dπ)p(φp(X̃p)),

where X̃p, ‹Yp ∈ Hp are vectors which satisfies

(dπ)p(X̃p) = Xπ(p), (dπ)p(‹Yp) = Yπ(p).

We check that gζπ(p), φ
ζ
π(p) are independent of the choice of p. For h ∈ G, we have

(dπ)hp(Lh)∗X̃p = (dπ)pX̃p, and thus Lemma 3.1.4 implies X̃hp = (Lh)∗X̃p. Hence we ob-
tain

gp(X̃p, ‹Yp) = ghp((Lh)∗X̃p, (Lh)∗‹Yp) = ghp(X̃hp, ‹Yhp),

(dπ)p(φp(X̃p)) = (dπ)hp(Lh)∗(φp(X̃p))

= (dπ)hp(φhp((Lh)∗X̃p))

= (dπ)hp(φhp(X̃hp)),

therefore gζπ(p), φ
ζ
π(p) are well-defined (the metric gζ is called the quotient metric on M ζ).

Let (M ζ , ηζ , ωζ) be the cosymplectic quotient and ξζ the Reeb vector field. Then ηζ(ξζ) =

1 holds. Moreover, since φp preserves Hp, we have ·�φζ(X) = φ(X̃), and thus we obtain

φζ(φζ(X)) = dπ(φ·�φζ(X))

= dπ(φφ(X̃))

= dπ(−X̃ + η(X̃)ξ)

= −X + ηζ(X)ξζ ,

so (φζ , ξζ , ηζ) is an almost contact structure on M ζ .
We can easily check the compatibility of gζ , φζ with ηζ , ωζ , i.e.,

gζ(φζX,φζY ) = gζ(X,Y )− ηζ(X)ηζ(Y ),

ωζ(X,Y ) = gζ(X,φζY ).

Lastly, we prove that (gζ , φζ , ξζ , ηζ) is a coKähler structure. It was proved in [Bla67] that
an almost contact metric structure (g, φ, ξ, η) is coKähler if and only if ∇φ = 0, where ∇
is the Levi-Civita connection of the metric g. Let ∇ be the Levi-Civita connection of the
metric on M . Using a general property of quotient metrics, we can compute the Levi-Civita
connection ∇ζ of gζ by

∇ζ
XY = dπ(prH(∇X̃

‹Y )),
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where X̃, ‹Y are extended to a neighborhood of µ−1(ζ) and prH : TM → H denotes the
orthogonal projection. Then since ∇φ = 0 we have„�∇ζ

Xφ
ζY = prH(∇X̃

φ‹Y ) = prH(φ∇X̃
‹Y )

= φprH(∇X̃
‹Y ) = φ(

‡∇ζ
XY )

=
Â�
φζ(∇ζ

XY ).

Hence ∇ζ
Xφ

ζ(Y ) = φζ(∇ζ
XY ) and thus ∇ζφζ = 0.

3.2 3-cosymplectic case

In this section, we prove a reduction theorem for 3-cosymplectic manifolds. First we recall
the definition of 3-cosymplectic structures.

Definition 3.2.1. A 3-cosymplectic structure on a manifold M is a quartet (g, (φi, ξi, ηi)i=1,2,3)
of a Riemannian metric g and three almost contact structures (φi, ξi, ηi)i=1,2,3 on M such that
each (g, φi, ξi, ηi) is coKähler and

φγ = φαφβ − ηβ ⊗ ξα = −φβφα + ηα ⊗ ξβ,

ξγ = φαξβ = −φβξα,

ηγ = φ∗
βηα = −φ∗

αηβ

holds for any even permutation (α, β, γ) of {1, 2, 3}. ■

Remark 3.2.2. This notion should be called “3-coKähler structures”, but since the name
“3-cosymplectic” has become established, we will follow it here as well. If (g, (φi, ξi, ηi)i=1,2,3)
satisfies all conditions of Definition 3.2.1 except the normality of each (φi, ξi, ηi), the nor-
mality of them automatically follows (see [FIP04]). ■

Lemma 3.2.3. Let (M, g, (φi, ξi, ηi)i=1,2,3) be a 3-cosymplectic manifold and ω2 a 2-form
defined by ω2(X,Y ) = g(X,φ2Y ). Then ω2(X, ξ1) = −η3(X) holds.

Proof. Since ηα(ξγ) = ηα(φαξβ) = 0, we obtain

ω2(φ3X,Y ) = g(φ3X,φ2Y )

= g(φ3φ3X,φ3φ2Y ) + η3(φ3X)η3(φ2Y )

= g(−X + η3(X)ξ3,−φ2φ3Y + η3(Y )ξ2 + η2(Y )ξ3)

= g(X,φ2φ3Y )− η3(Y )η2(X)− η2(Y )η3(X)

− η3(X)η3(φ2φ3Y ) + η3(X)η3(Y )η3(ξ2) + η3(X)η2(Y )η3(ξ3)

= g(X,φ2φ3Y )− η2(X)η3(Y )− η3(X)η3(−φ3φ2Y + η3(Y )ξ2 + η2(Y )ξ3)

= g(X,φ2φ3Y )− η2(X)η3(Y )− η3(X)η2(Y )

= ω2(X,φ3Y )− η2(X)η3(Y )− η3(X)η2(Y ).
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Therefore we have

ω2(X, ξ1) = −ω2(X,φ3ξ2)

= −ω2(φ3X, ξ2)− η2(X)η3(ξ2)− η3(X)η2(ξ2)

= −η3(X).

Let G be a Lie group acting on a 3-cosymplectic manifold (M, g, (φi, ξi, ηi)i=1,2,3). Suppose
that the action is Hamiltonian with respect to all three cosymplectic structures (ηi, ωi)i=1,2,3,
and let µi : M → g∗ (i = 1, 2, 3) be momentum maps.

Lemma 3.2.4. Let ζ2, ζ3 ∈ g∗ be regular values of µ2, µ3, respectively. Suppose that subman-
ifolds µ−1

2 (ζ2) and µ−1
3 (ζ3) intersect transversally. Then N := µ−1

2 (ζ2)∩ µ−1
3 (ζ3) is an almost

contact submanifold of (M,φ1, ξ1, η1).

Proof. Using Lemma 3.2.3, we have

dµA
2 (ξ1) = ω2(A

∗, ξ1) = −η3(A∗) = 0,

and similarly dµA
3 (ξ1) = 0 holds, thus ξ1 ∈ TN . Next, we check that φ1(TN) ⊂ TN . Suppose

that dµ3(X) = 0. Then we obtain

0 = dµA
3 (X) = ω3(A

∗, X) = g(A∗, φ3X)

= g(A∗,−φ2φ1X + η1(X)ξ2)

= −g(A∗, φ2φ1X) + η1(X)η2(A
∗)

= −ω2(A
∗, φ1X) = −dµA

2 (φ1X).

Similarly, dµ2(X) = 0 implies dµA
3 (φ1X) = 0, hence φ1X ∈ TN holds for any X ∈ TN .

We define a 3-cosymplectic momentum map µ : M → g∗ ⊗ ImH by

µ = µ1i+ µ2j + µ3k,

where i, j, k are generators of ImH. Let G act on g∗⊗ImH by the tensor representation of the
coadjoint action and the trivial action on ImH. Then for any ζ = ζ1i+ ζ2j+ ζ3k ∈ g∗⊗ ImH,
the Gζ-action preserves µ−1(ζ) = µ−1

1 (ζ1) ∩ µ−1
2 (ζ2) ∩ µ−1

3 (ζ3).

Theorem 3.2.5. Let (M, g, (φi, ξi, ηi)i=1,2,3) be a 3-cosymplectic manifold with underlying
cosymplectic structures (ηi, ωi)i=1,2,3. Suppose that there is a free and proper action of a
Lie group G on M which is Hamiltonian with respect to all three cosymplectic structures
(ηi, ωi)i=1,2,3 and preserves (φi)i=1,2,3. Let µ : M → g∗⊗ ImH be a 3-cosymplectic momentum
map and ζ ∈ g∗ ⊗ ImH a central and regular value of µ. Then M ζ := µ−1(ζ)/G inherits the
3-cosymplectic structure of M .

27



Proof. Lemma 3.2.4 implies that (φ1|N , ξ1|N , η1|N) is an almost contact structure on N .
Therefore from a result in [Lud70], we can see that (N, g|N , φ1|N , ξ1|N , η1|N) is a coKähler
manifold.

The action of G on N preserves the coKähler structure, and µ1|N is a momentum map
for this action. So Theorem 3.1.5 implies that there is a coKähler structure (gζ1, φ

ζ
1, ξ

ζ
1 , η

ζ
1)

on M ζ = (N ∩µ−1
1 (ζ1))/G. Similarly, we obtain two more coKähler structures (gζ2, φ

ζ
2, ξ

ζ
2 , η

ζ
2)

and (gζ3, φ
ζ
3, ξ

ζ
3 , η

ζ
3) on M ζ .

Each Riemannian metric gζi (i = 1, 2, 3) coincides with the quotient metric of the principal
bundle µ−1(ζ)→M ζ , so three Riemannian metrics gζ1, g

ζ
2, g

ζ
3 are the same, and thus the three

coKähler structures constitutes a 3-cosymplectic structure on M ζ .

3.3 Cylinder constructions

When M is endowed with a geometric structure we are studying, it induces a geometric
structure on the cylinder C(M) := M × R as shown in the table below (in the case that M
is hyperKähler, we use C3(M) := M ×R3 instead of the cylinder). In this section, we prove
that reduction procedures are compatible with these constructions.

Structure on the base Induced structure on the cylinder

Kähler CoKähler
CoKähler Kähler

HyperKähler 3-cosymplectic
3-cosymplectic HyperKähler

Let (M,h, J) be a Kähler manifold (h denotes the Riemannian metric and J denotes the
complex structure). Then C(M) := M × R admits a natural coKähler structure (g, φ, ξ, η)
defined by

g = h+ dt2, φ
(
X, f

∂

∂t

)
= (JX, 0), ξ =

∂

∂t
, η = dt,

where t is the coordinate of R and f ∈ C∞(C(M)).

Example 3.3.1 ([FM74]). Let f be a Hermitian isometry on (M,h, J). Define an action
of Z on C(M) by k · (p, t) := (fk(p), t + k). This action is free and properly discontinuous,
so C(M)/Z is a smooth manifold. Then C(M)/Z inherits a coKähler structure. This is a
coKähler quotient for a trivial momentum map on C(M). C(M)/Z is diffeomorphic to the
mapping torus of M with respect to f , and we will discuss the coKähler structure on it in
detail later. ■

Assume that there is a Hamiltonian action of G on M preserving J , and let µ : M → g∗

be a momentum map. We define an action of G on C(M) by g · (p, t) := (gp, t). Then
this action preserves the coKähler structure on C(M), and is a Hamiltonian action whose
momentum map is µ̃ = µ ◦ prM .
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Proposition 3.3.2. When a Kähler quotient µ−1(ζ)/G is defined for ζ ∈ g∗, a coKähler
quotient µ̃−1(ζ)/G is also defined. Moreover, C(µ−1(ζ)/G) and µ̃−1(ζ)/G are equivalent as
coKähler manifolds.

Proof. Clearly C(µ−1(ζ)/G) and µ̃−1(ζ)/G are diffeomorphic, and the diagram

µ̃−1(ζ)

pr

��

π̃ // C(µ−1(ζ)/G)

pr

��
µ−1(ζ) π

// µ−1(ζ)/G

commutes, where pr denotes natural projections and π̃ is the projection of coKähler reduction.
We orthogonally decompose Tpµ

−1(ζ) and T(p,t)µ̃
−1(ζ) as

Tpµ
−1(ζ) = Hp ⊕ gp,

T(p,t)µ̃
−1(ζ) = H ′

(p,t) ⊕ g(p,t),

respectively. Then we can easily check that (pr)∗(g(p,t)) = gp and thus obtain the following
commutative diagram.

H ′
(p,t)

(pr)∗
��

dπ̃
≃

// Tπ̃(p,t)C(M)ζ

(pr)∗
��

Hp dπ

≃ // Tπ(p)M
ζ

We denote the lift of X ∈ Tπ(p)M
ζ and (X, f ∂

∂r
) ∈ Tπ̃(p,t)C(M)ζ as X̃, „�(X, f ∂

∂r
), respec-

tively. Let r be the coordinate of R in C(µ−1(ζ)/G). Since dπ(pr)∗
∂̃
∂r

= (pr)∗
∂
∂r

= 0, we get

(pr)∗
∂̃
∂r

= 0. Hence ∂̃
∂r

= aξ holds for some a ∈ R×. We normalize the coordinate r to satisfy
∂̃
∂r

= ξ. Then we obtain ξζ = ∂
∂r

and ηζ = dr.

Since ∂̃
∂r

= ξ,

φ
Â�(
X, f

∂

∂r

)
= φ

(
X̃,
fl
f
∂

∂r

)
= (JX̃, 0)

holds. Hence from the diagram above, we obtain

φζ
(
X, f

∂

∂r

)
= dπ̃φ

Â�(
X, f

∂

∂r

)
= (dπ(JX̃), 0) = (JζX, 0).

We can also see that gζ = hζ + dr2, therefore the coKähler structure (gζ , φζ , ξζ , ηζ)
coincides with one obtained by the cylinder construction C(µ−1(ζ)/G) = (µ−1(ζ)/G)×R.

Conversely, for a given coKähler manifold (M, g, φ, ξ, η), we can define a Kähler structure
(h, J) on the cylinder C(M) by

h = g + dt2, J
(
X, f

∂

∂t

)
=

(
φX − fξ, η(X)

∂

∂t

)
.
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Assume that there is a Hamiltonian action of G on M preserving the coKähler structure,
and let µ : M → g∗ be a momentum map. We define an action of G on C(M) in the same
way as in Proposition 3.3.2. Then the action preserves the Kähler structure on C(M) and
µ̃ = µ ◦ prM is a momentum map. We obtain the following.

Proposition 3.3.3. When a coKähler quotient µ−1(ζ)/G is defined for ζ ∈ g∗, a Kähler
quotient µ̃−1(ζ)/G is also defined. Moreover, C(µ−1(ζ)/G) and µ̃−1(ζ)/G are equivalent as
Kähler manifolds.

Proof. We define Hp ⊂ Tpµ
−1(ζ) and H ′

(p,t) ⊂ T(p,t)µ̃
−1(ζ) as in the proof of Proposition 3.3.2,

and obtain the same commutative diagrams. Then we obtain

Jζ
(
X, f

∂

∂r

)
= dπ̃J

Â�(
X, f

∂

∂r

)
= dπ̃J

(
X̃, f

∂

∂t

)
= dπ̃

(
φX̃ − fξ, η(X̃)

∂

∂t

)
=

(
dπ(φX̃ − fξ), η(X̃)

∂

∂r

)
=

(
φζX − fξζ , ηζ(X)

∂

∂r

)
.

We can also see that hζ = gζ + dr2, therefore the Kähler structure (hζ , Jζ) coincides with
one obtained by the cylinder construction C(µ−1(ζ)/G) = (µ−1(ζ)/G)× R.

Next we see the relationship between hyperKähler reduction and 3-cosymplectic reduc-
tion. Let (M,h, J1, J2, J3) be a hyperKähler manifold. Then C3(M) := M × R3 admits a
natural 3-cosymplectic structure (g, (φi, ξi, ηi)i=1,2,3) defined by

g = h+
3∑

i=1

dt2i , ξi =
∂

∂ti
, ηi = dti,

φ1

(
X, f1

∂

∂t1
, f2

∂

∂t2
, f3

∂

∂t3

)
=

(
J1X, 0,−f3

∂

∂t2
, f2

∂

∂t3

)
,

φ2

(
X, f1

∂

∂t1
, f2

∂

∂t2
, f3

∂

∂t3

)
=

(
J2X, f3

∂

∂t1
, 0,−f1

∂

∂t3

)
,

φ3

(
X, f1

∂

∂t1
, f2

∂

∂t2
, f3

∂

∂t3

)
=

(
J3X,−f2

∂

∂t1
, f1

∂

∂t2
, 0
)
,

where (t1, t2, t3) is the coordinate of R3 and fi ∈ C∞(C3(M)).

Example 3.3.4 ([CMDNY13b]). Let f be a hyperKähler isometry on (M,h, J1, J2, J3). De-
fine an action of Z3 on C3(M) by

(k1, k2, k3) · (p, t1, t2, t3) := (fk1+k2+k3(p), t1 + k1, t2 + k2, t3 + k3).

This action is free and properly discontinuous, so C3(M)/Z3 is a smooth manifold. Then
C3(M)/Z3 inherits a 3-cosymplectic structure. This is a 3-cosymplectic quotient for a trivial
momentum map on C3(M). ■
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Assume that there is an action of G on a hyperKähler manifold (M,h, J1, J2, J3) which
is Hamiltonian with respect to three symplectic structures and preserves h, J1, J2, J3. Let
µ : M → g∗ ⊗ ImH be a hyperKähler momentum map. We define an action of G on C3(M)
by g · (p, t1, t2, t3) := (gp, t1, t2, t3). Then this action preserves the 3-cosymplectic structure
on C3(M), and µ̃ = µ ◦ prM is a 3-cosymplectic momentum map.

Proposition 3.3.5. When a hyperKähler quotient µ−1(ζ)/G is defined for ζ = ζ1i + ζ2j +
ζ3k ∈ g∗⊗ImH, a 3-cosymplectic quotient µ̃−1(ζ)/G is also defined. Moreover, C3(µ−1(ζ)/G)
and µ̃−1(ζ)/G are equivalent as 3-cosymplectic manifolds.

Proof. We define N := µ−1
2 (ζ2) ∩ µ−1

3 (ζ3). Then clearly µ̃2
−1(ζ2) ∩ µ̃3

−1(ζ3) is diffeomor-
phic to C3(N). N is endowed with a Kähler structure (h|N , J1|N) (see [HKLR87]), and
the coKähler structure (g|C3(N), φ1|C3(N), ξ1|C3(N), η1|C3(N)) on C3(N) is obtained by apply-
ing cylinder constructions to (N, h|N , J1|N) three times. Moreover, by Proposition 3.3.2 and
Proposition 3.3.3,

C(C(C(N)))ζ1 ≃ C(C(C(N))ζ1) ≃ C(C(C(N)ζ1)) ≃ C(C(C(N ζ1)))

holds as coKähler manifolds. Therefore the coKähler structure (gζ , φζ
1, ξ

ζ
1 , η

ζ
1) on (C3(M))ζ

coincides with one of three coKähler structures on C3(M ζ) obtained by (hζ , Jζ
1 ).

Repeating the same argument, we can see that the reduced 3-cosymplectic structure
(gζ , (φζ

i , ξ
ζ
i , η

ζ
i )i=1,2,3) coincides with one obtained by the cylinder construction C3(µ−1(ζ)/G) =

(µ−1(ζ)/G)× R3.

Conversely, for a given 3-cosymplectic manifold (M, g, (φi, ξi, ηi)i=1,2,3), we can define a
hyperKähler structure (h, J1, J2, J3) on the cylinder C(M) by

h = g + dt2, Ji

(
X, f

∂

∂t

)
=

(
φiX − fξi, ηi(X)

∂

∂t

)
.

Assume that there is an action of G on a 3-cosymplectic manifold (M, g, (φi, ξi, ηi)i=1,2,3)
which is Hamiltonian with respect to three cosymplectic structures and preserves three
coKähler structures. Let µ : M → g∗ ⊗ ImH be a 3-cosymplectic momentum map. We
define an action of G on C(M) in the same way as in Proposition 3.3.2. Then the action
preserves the hyperKähler structure on C(M) and µ̃ = µ ◦ prM is a hyperKähler momentum
map. We obtain the following.

Proposition 3.3.6. When a 3-cosymplectic quotient µ−1(ζ)/G is defined for ζ = ζ1i+ ζ2j+
ζ3k ∈ g∗ ⊗ ImH, a hyperKähler quotient µ̃−1(ζ)/G is also defined. Moreover, C(µ−1(ζ)/G)
and µ̃−1(ζ)/G are equivalent as hyperKähler manifolds.

Proof. N := µ−1
2 (ζ2) ∩ µ−1

3 (ζ3) is endowed with a coKähler structure (g|N , φ1|N , ξ1|N , η1|N),
and by Proposition 3.3.3

(C(M)ζ , hζ , Jζ
1 ) ≃ C(N)ζ1 ≃ C(N ζ1) ≃

(
C(M ζ), gζ + dr2, φζ

1 + ηζ1 ⊗
∂

∂r
− dr ⊗ ξζ1

)
holds as Kähler manifolds.

Repeating the same argument, we can see that the hyperKähler structure (hζ , Jζ
1 , J

ζ
2 , J

ζ
3 )

coincides with one obtained by the cylinder construction C(µ−1(ζ)/G) = (µ−1(ζ)/G)×R.
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3.4 CoKähler reduction of mapping tori

In general, every coKähler manifold is locally the Riemannian product of a Kähler manifold
with the real line (see [CMDNY13a], for example). Therefore it is important to find coKähler
manifolds which are not the global product of a Kähler manifold with R or S1. Such coKähler
manifolds which are compact are obtained by the mapping torus procedure. For a manifold
S and a diffeomorphism f : S → S, we define the mapping torus Sf as follows:

Sf = (S × [0, 1])/{(p, 0) ∼ (f(p), 1) | p ∈ S}.

Note that there is a fibration S ↪→ Sf

pr
↠ S1. In the case that S is endowed with a Kähler

structure (G, J) and f : S → S is a Hermitian isometry, Sf admits a coKähler structure. In
fact, Sf is diffeomorphic to C(S)/Z in Example 3.3.1.

Let Ω be the symplectic form of the Kähler manifold (S, h, J). We extend J and pullback
h,Ω to S × [0, 1], and they descend to Sf since f ∗h = h and f∗J = Jf∗. We denote them

J̃ , h̃, ‹Ω. Then we can write the coKähler structure (g, φ, η, ξ) on Sf as follows:

φ = J̃ , η = pr∗dθ, ξ[(p,t)] =
d

ds

∣∣∣∣
s=0

[(p, t+ s)],

g(X,Y ) = h̃(X,Y ) + η(X)η(Y ),

where θ is the coordinate of S1 and [(p, t)] denotes the equivalence class of (p, t) with respect
to the quotient C(S)/Z. The corresponding 2-form is given by ω := ‹Ω.

It is known that any closed coKähler manifold is in fact a Kähler mapping torus:

Theorem 3.4.1 (Li [Li08]). A closed manifold M admits a coKähler structure if and only
if there exists a Kähler manifold (S, h, J) and a Hermitian isometry f of (S, h, J) such that
M is diffeomorphic to Sf .

Assume that there is a free and proper Hamiltonian action of a Lie group G on a Kähler
manifold (S, h, J) preserving the Kähler structure. Moreover, we suppose that a Hermitian
isometry f : S → S of (S, h, J) is equivariant with respect to the action of G. Then we can
define an action of G on the mapping torus Sf by g · [(p, t)] = [(gp, t)].

Proposition 3.4.2. Let µ : S → g∗ be a momentum map of the Hamiltonian action of G on
S. Then the action of G on Sf is Hamiltonian if and only if µ(f(p)) = µ(p) holds for some
p ∈ S.

Proof. Let µ̃ : Sf → g∗ be a cosymplectic momentum map. A vector field on Sf is locally
has the form X + a ∂

∂t
, where t is the coordinate of R and a ∈ C∞(Sf ). Then we have

dµ̃A
(
X + a

∂

∂t

)
= ω

(
A∗, X + a

∂

∂t

)
= Ω(A∗, X) = dµA(X)

for any A ∈ g. Hence the map µ̃ locally has the form

µ̃[(p, t)] = µ(p) + ζ
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for some ζ ∈ g∗ (since both µ and µ̃ are equivariant, ζ must be central). Since µ̃ is globally
defined, µ(f(p)) = µ(p) holds for any p ∈ S. Conversely, if µ(f(p)) = µ(p) holds for any
p ∈ S, we obtain a cosymplectic momentum map µ̃ by µ̃[(p, t)] = µ(p) + ζ for any central ζ.
However, we have

d(µA ◦ f)(X) = dµA(f∗X) = Ω(A∗, f∗X)

= Ω(f∗(f
−1
∗ A∗), f∗X)

= Ω(f−1
∗ A∗, X) = Ω(A∗, X)

= dµA(X)

for any A ∈ g and X ∈ X(S), hence it is sufficient that µ(f(p)) = µ(p) holds for some p ∈ S.
Two momentum maps on S differs only by a constant, thus the condition µ(f(p)) = µ(p) is
independent of the choice of a momentum map µ.

Remark 3.4.3. In [Ito77] it was proved that if a compact Kähler manifold (S, h, J) has
positive holomorphic sectional curvature, then any Hermitian isometry f of (S, h, J) has a
fixed point. In this case any Hamiltonian action on S such that f is equivariant induces a
Hamiltonian action on Sf . ■

Suppose that an equivariant Hermitian isometry f satisfies the condition in Proposi-
tion 3.4.2. We define a cosymplectic momentum map µ̃ : Sf → g∗ by µ̃[(p, t)] = µ(p). Note
that the action of G on Sf is free and proper, and preserves the coKähler structure.

Let ζ ∈ g∗ be a regular value of the momentum map µ̃ : Sf → g∗. Let (Sf )
ζ be the

coKähler quotient. In the case that S is compact, (Sf )
ζ is a closed coKähler manifold, and

thus it is a mapping torus of some Kähler manifold from Theorem 3.4.1. In the following
we observe that it can be obtained by the Kähler quotient Sζ = µ−1(ζ)/G for the same
value ζ. From the condition µ(f(p)) = µ(p), f preserves µ−1(ζ) and it descends to a map
f ζ : Sζ → Sζ since f is equivariant.

Lemma 3.4.4. f ζ is a Hermitian isometry of (Sζ , hζ , Jζ).

Proof. f ζ is a diffeomorphism since f−1 also descends to Sζ and is the inverse of f ζ . We
orthogonally decompose Tpµ

−1(ζ) as

Tpµ
−1(ζ) = Hp ⊕ gp.

Then for any v ∈ Hp, we have

dµAf∗(v) = d(µAf)(v) = dµA(v) = 0

from the proof of Proposition 3.4.2, and also obtain

h(f∗(v), A
∗) = h(v, (f−1)∗(A

∗)) = h(v, A∗) = 0,

and thus f∗(v) ∈ Hf(p).
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Let π : µ−1(ζ)→ Sζ be the projection of reduction. Since f ζπ = πf and f∗(Hp) = Hf(p),
we obtain

(f ζ)∗ = (dπ|Hf(p)
)f∗(dπ|Hp)

−1,

so (f ζ)∗hζ = hζ holds from f ∗h = h and the definition of hζ . Similarly we can check that
(f ζ)∗J

ζ = Jζ(f ζ)∗.

Theorem 3.4.5. (Sf )
ζ is equivariant to (Sζ)fζ as coKähler manifolds.

Proof. There is a diffeomorphism Φ : (Sf )
ζ → (Sζ)fζ defined by Φ(π̃[(p, t)]) = [(π(p), t)],

where π̃ : µ̃−1(ζ)→ (Sf )
ζ is the projection of reduction. Since π̃[(p, t)] = π̃[(q, s)] is equivalent

to [(π(p), t)] = [(π(q), s)], the map Φ is well-defined and one-to-one. Then the diagram

µ−1(ζ)

it
��

π // µ−1(ζ)/G

it
��

µ̃−1(ζ)
π̃

// (Sf )
ζ

commutes, where it denotes natural inclusions to mapping tori p 7→ [(p, t)]. We orthogonally
decompose Tpµ

−1(ζ) and T[(p,t)]µ̃
−1(ζ) as

Tpµ
−1(ζ) = Hp ⊕ gp,

T[(p,t)]µ̃
−1(ζ) = H ′

[(p,t)] ⊕ g[(p,t)],

respectively. Then we can easily check that (it)∗(gp) = g[(p,t)] and thus obtain the following
commutative diagram.

Hp

(it)∗
��

dπ
≃

// Tπ(p)S
ζ

(it)∗
��

H ′
[(p,t)] dπ̃

≃ // Tπ̃[(p,t)](Sf )
ζ

From φ = J̃ and the diagram above, for X ∈ Tπ(p)S
ζ

φζ((it)∗X) = dπ̃(φ„�((it)∗X))

= dπ̃(φ((it)∗X̃))

= dπ̃((it)∗J(X̃))

= (it)∗dπ(J(X̃)) = (it)∗J
ζ(X)

holds, and thus φζ = ›Jζ . Similarly we have h̃(X̃, ‹Y ) = h̃ζ(X,Y ) for X,Y ∈ Tπ̃[(p,t)](Sf )
ζ ,

hence we obtain

gζ(X,Y ) = g(X̃, ‹Y ) = h̃(X̃, ‹Y ) + η(X̃)η(‹Y )

= h̃ζ(X,Y ) + ηζ(X)ηζ(Y ).
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Let pr1 : Sf → S1 and pr2 : (S
ζ)fζ → S1 be natural projections. Then the diagram

µ̃−1(ζ)

pr1 ##F
FF

FF
FF

FF
π̃ // (Sf )

ζ

pr2||zz
zz
zz
zz

S1

commutes, and thus we have π̃∗pr∗2dθ = pr∗1dθ = η|µ̃−1(ζ). Hence pr∗2dθ = ηζ holds.

From the above, the induced 2-form ωζ and the Reeb vector field ξζ on (Sf )
ζ are the same

as those on (Sζ)fζ , and thus the cokähler structure on (Sf )
ζ coincides with that of (Sζ)fζ .

3.5 A perspective from dynamical systems

In this section, we interpret our coKähler reduction theorem from the viewpoint of dynamical
systems. First, we explain why cosymplectic manifolds describe time-dependent Hamiltonian
systems.

Let (M,ω) be a 2n-dimensional symplectic manifold and H ∈ C∞(M × R). Then we
consider a cosymplectic manifold (M × R, η := dt, ωH := ω + dH ∧ dt), where t is the
coordinate of R. Using Darboux coordinates (pi, qi) of (M,ω), the Reeb vector field ξH of
(M × R, η, ωH) is written as

ξH =
n∑

i=1

(∂H
∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
+

∂

∂t

and its integral curves are controlled by an ODE system

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, ṫ = 1. (3.5.1)

Therefore we can consider t as a time-parameter which parameterize ordinary Hamiltonian
systems. Any cosymplectic manifold is locally the product of a symplectic manifold with the
real line, so cosymplectic manifolds provide a good framework for time-dependent Hamilto-
nian systems.

Remark 3.5.1. The Reeb vector field ξH of (M × R, η, ωH) coincides with the vector field
∂
∂t
+XH , where XH is the Hamiltonian vector field with respect to the cosymplectic structure

(η, ω). The vector field ∂
∂t

+ XH is called the evolution vector field of the time-dependent
system. ■

For any almost coKähler manifold (M, g, φ, ξ, η), the following is known.

Lemma 3.5.2. Integral curves of ξ are geodesics with respect to g.
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Proof. Let ∇ be the Levi-Civita connection with respect to g. Then for any X ∈ X(M),
g(∇Xξ, ξ) = 0 holds since X(g(ξ, ξ)) = g(∇Xξ, ξ) + g(ξ,∇Xξ). Hence

0 = 2dη(ξ,X) = ξ(η(X))− η([ξ,X])

= ξ(g(X, ξ))− g(∇ξX −∇Xξ, ξ)

= ξ(g(X, ξ))− g(∇ξX, ξ) + g(∇Xξ, ξ)

= ξ(g(X, ξ))− g(∇ξX, ξ)

= g(X,∇ξξ)

holds, and thus we obtain ∇ξξ = 0.

From Lemma 3.5.2 and Theorem 3.1.5, we immediately obtain the following.

Proposition 3.5.3. Suppose that the cosymplectic manifold (M×R, η, ωH) admits a coKähler
structure and a Hamiltonian action of a Lie group which preserves the coKähler structure.
Then the image of a solution of (3.5.1) by the projection of reduction is a geodesic with respect
to the reduced metric on M ζ.

Example 3.5.4 (cf.[Alb89]). The motion of a solid in R3 with a fixed point (its center of
inertia) is described by a manifold T ∗SO(3) equipped with the canonical symplectic form on
T ∗SO(3) and a Hamiltonian H : T ∗SO(3) ≃ SO(3)× so(3)∗ → R defined by

H(A,α) =
∑
1≤i≤3

α2
i

Mi

,

where α1, α2, α3 are coefficients with respect to a suitable basis of so(3)∗ and M1,M2,M3 are
coefficients of the ellipsoid of inertia of the solid.

Then the associated time-dependent Hamiltonian system is given by a cosymplectic man-
ifold (T ∗SO(3)× R, η := dt, ωH := ωT ∗SO(3) + dH ∧ dt). We define an action of SO(3) on
T ∗SO(3)× R by

B · (A,α, t) = (BA,α, t)

where A,B ∈ SO(3), α ∈ so(3)∗, t ∈ R. This action is a Hamiltonian action whose
momentum map is given by µ(A,α, t) = Ad∗Aα. Then the reduced cosymplectic manifold at
any non-zero vector ζ ∈ so(3)∗ is (S2 × R, dt, ωS2 + dH ∧ dt), where ωS2 is the standard
symplectic form on S2 (note that the Hamiltonian H is invariant by the action of SO(3) and
thus descend to the quotient).

Since SO(3) is compact, we can naturally construct a Kähler structure (h, I) on T ∗SO(3)
which is compatible with the canonical symplectic form ωT ∗SO(3). Then T ∗SO(3) × R is
endowed with a SO(3)-invariant almost coKähler structure (g, φ, ξH , dt) defined by

g(X,Y ) = h(X,Y ), g(X, ξH) = 0, g(ξH , ξH) = 1

φ(X) = I(X), φ(ξH) = 0

for any X,Y ∈ ker dt = TM . Since the Levi-Civita connection ∇ of g satisfies ∇φ = 0,
(g, φ, ξ, η) is a coKähler structure, and the projection of time-dependent flows onto S2 × R
are geodesics with respect to the reduced coKähler metric. ■
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Chapter 4

Reduction theorem for cosymplectic
groupoid actions

4.1 Cosymplectic groupoids

The notion of a cosymplectic groupoid is defined in exactly the same way as that of a
symplectic groupoid:

Definition 4.1.1. A cosymplectic groupoid is a triplet (G1 ⇒ G0, ηG1 , ωG1) of a Lie groupoid
and a cosymplectic structure on G1 such that

m∗ηG1 = pr∗1ηG1 + pr∗2ηG1 m∗ωG1 = pr∗1ωG1 + pr∗2ωG1

holds. ■

Example 4.1.2. Let G1 ⇒ G0 be a Lie groupoid and G an abelian Lie group. Then a pair
(P ⇒ G0, (π, idG0)) of a Lie groupoid P ⇒ G0 and a morphism (π, idG0) : (P ⇒ G0) →
(G1 ⇒ G0) is called a central extension of G1 ⇒ G0 by G when G acts on P and the map
π : P → G1 is a principal G-bundle.

For any symplectic groupoid (G1 ⇒ G0, ωG1), let us consider a central extension (P ⇒
G0, (π, idG0)) by G = R or G = S1. Let ηP be a multiplicative, flat connection form of the
principal bundle π : P → G1. Then (P ⇒ G0, ηP , ωP ) is a cosymplectic groupoid, where
ωP = π∗ωG1. In particular, the trivial R-central extension (G1 × R ⇒ G0, pr

∗
Rdt, pr

∗
G1
ωG1),

where pr denotes the projections, is a cosymplectic groupoid. ■

The space of arrows of a cosymplectic groupoid has a symplectic foliation defined by the
distribution Kerη and there is a distinguished symplectic leaf:

Theorem 4.1.3 ([FP23]). Let G = (G1 ⇒ G0) be a cosymplectic groupoid. Then any unit
arrow in G1 belongs to the same symplectic leaf SG1. Moreover, SG := (SG1 ⇒ G0) is a Lie
subgroupoid of G and it is a symplectic groupoid.
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4.2 Actions of cosymplectic groupoids

In order to define the notion of a cosymplectic groupoid action, we need to consider an
analogue of Lagrangian submanifolds.

Let (M, η, ω) be a cosymplectic manifold and N ⊂ M a submanifold. Then we call N a
Lagrangian-Legendrean submanifold or in short, LL submanifold if

TpN ⊂ Kerηp (Legendrean property),

(TpN)ωp|Kerηp = TpN (Lagrangian property)

holds for any p ∈ N , where (TpN)ωp|Kerηp denotes the orthogonal complement of TpN with
respect to ωp|Kerηp .

In fact, the notion of a LL submanifold is defined for almost cosymplectic manifolds. In
the case of contact manifolds, the definition of a LL submanifold coincides with that of a
Legendrean submanifold.

We can rephrase the definition of a cosymplectic groupoid by using the notion of a LL
submanifold:

Proposition 4.2.1. Let G = (G1 ⇒ G0) be a Lie groupoid and (η, ω) a cosymplectic structure
on G1. Then a triplet (G, η, ω) is a cosymplectic groupoid if and only if The graph of the
multiplication, i.e.,

Γ := {(g, h, 1, gh, 1) ∈ G1 ×G1 × R×G1 × R | (g, h) ∈ G1 s×tG1}

is a LL submanifold of a cosymplectic manifold (G1 ×G1 × R×G1 × R, η̃, ω̃), where

η̃ := η1 + η2 − η3,

ω̃ := (ω1 + ω2 + η1 ∧ dt1)− ω3 − (η1 + η2) ∧ dt2

(ti denotes the coordinate of i-th R and (ηi, ωi) denotes the cosymplectic structure of i-th G1).

Proof. Note that for two cosymplectic manifolds (M1, η1, ω1) and (M2, η2, ω2), a pair (η1 +
η2, ω1 + ω2 + η1 ∧ dt) is a cosymplectic structure on M1 ×M2 × R.

Γ is the image of an embedding ι : G1 s×t G1 → G1 × G1 × R × G1 × R given by
ι(g, h) = (g, h, 1, gh, 1). Then we obtain

ι∗η̃ = ι∗(p∗1η + p∗2η − p∗3η) = π∗
1η + π∗

2η −m∗η,

ι∗ω̃ = ι∗(p∗1ω + p∗2ω − p∗3ω + (p∗1η) ∧ dq1 − (p∗2η) ∧ dq2)

= π∗
1ω + π∗

2ω −m∗ω,

where pi and qi denotes projections to i-th G1 and i-th R, respectively, and πi : G1 s×t G1 →
G1 also denotes projections. Hence the multiplicativity of η and ω is equivalent to ι∗η̃ = 0
and ι∗ω̃ = 0, respectively. In addition, we have

dimΓ = dim(G1 s×tG1) = 2 dimG1 − dimG0,
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and since dimG1 = 2dimG0 + 1 (see [FP23]), we obtain

2 dimΓ + 1 = 4dimG1 − 2 dimG0 + 1 = 3dimG1 + 2

= dim(G1 ×G1 × R×G1 × R).

Therefore the multiplicativity condition is equivalent to Γ being a LL submanifold.

Now we can define a notion of a cosymplectic groupoid action:

Definition 4.2.2. Let (G = (G1 ⇒ G0), ηG1 , ωG1) be a cosymplectic groupoid and (M, η, ω) a
cosymplectic manifold. A left G-action on M (or a left G-module M) is said to be cosymplectic
if the following conditions are satisfied:

1. The momentum map ρ : M → G0 of the action satisfies dρ(R) = 0, where R is the
Reeb vector field of (M, η, ω),

2. The graph of the action, i.e.,

Γ := {(g, x, 1, gx, 1) ∈ G1 ×M × R×M × R | (g, x) ∈ G1 s×ρM}

is a LL submanifold of a cosymplectic manifold (G1 ×M × R×M × R, η̃, ω̃), where

η̃ := ηG1 + η1 − η2,

ω̃ := (ωG1 + ω1 + ηG1 ∧ dt1)− ω2 − (ηG1 + η1) ∧ dt2

(ti denotes the coordinate of i-th R and (ηi, ωi) denotes the cosymplectic structure of
i-th M).

■

The following proposition is essentially used in section 4.3 for the proof of our main
theorem:

Proposition 4.2.3. Let (G = (G1 ⇒ G0), ηG1 , ωG1) be a cosymplectic groupoid, (M, η, ω)
a cosymplectic left G-module and (ρ,Φ) its action maps. Let SG = (SG1 ⇒ G0) be the
symplectic subgroupoid obtained by Theorem 4.1.3. Then any symplectic leaf S of (M, η, ω)
is a symplectic left SG-module by action maps

ρ|S : S → G0,

Φ|SG1 s×ρ S : SG1 s×ρ S → S.

Proof. Firstly, we see that the Legendrean property of the graph Γ of the action (ρ,Φ) implies
Φ(SG1 s×ρ S) ⊂ S. Let (g, x) ∈ SG1 s×ρ S and (g(t), x(t)) be a smooth path in SG1 s×ρ S
whose starting point is (1ρ(x), x) and ending point is (g, x). Then we obtain a smooth path
(g(t), x(t), 1, (gx)(t), 1) in Γ and

0 = η̃(ġ(t), ẋ(t), 0, ˙(gx)(t), 0) = ηG1(ġ(t)) + η(ẋ(t))− η( ˙(gx)(t)) = −η( ˙(gx)(t))
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holds. Therefore two points x = 1ρ(x)x and gx are in the same symplectic leaf S.

Secondly, we see that the Lagrangian property of Γ implies that the restricted action
(ρ|S,Φ|SG1 s×ρ S) is symplectic. Let (g(t), x(t)) be a smooth path in SG1 s×ρ S. Then we have

0 = ω̃(ġ(t), ẋ(t), 0, ˙(gx)(t), 0) = ωG1(ġ(t)) + ω(ẋ(t))− ω( ˙(gx)(t)).

In addition to this, taking the dimension count into consideration, we can see that the graph
of the SG-action on S is a Lagrangian submanifold.

4.3 Mikami-Weinstein type theorem

The following is our main theorem in this chapter:

Theorem 4.3.1. Let G = (G1 ⇒ G0) be a cosymplectic groupoid and M a cosymplectic,
free and proper left G-module with respect to a momentum map ρ : M → G0. Assume that
ξ ∈ ρ(M) is a regular value of ρ. Then (SG)ξ\ρ−1(ξ) is a cosymplectic manifold.

Proof. We denote (SG)ξ\ρ−1(ξ) as M ξ and the quotient map as π : ρ−1(ξ)→M ξ. Let {Si}i∈I
be the symplectic foliation of M . Since the Reeb vector field R of M satisfies dρ(R) = 0,
each Si intersects transversely with ρ−1(ξ), and thus (ρ|Si

)−1(ξ) is a smooth manifold.

By Proposition 4.2.3, the symplectic groupoid SG acts on each leaf Si symplectically.
Hence {Sξ

i := (SG)ξ\(ρ|Si
)−1(ξ)}i∈I forms a foliation on M ξ of codimension 1 (see section

1.3 of [MM03]). In addition, we can apply Theorem 2.6.1 on each leaf and thus {Sξ
i }i∈I is a

symplectic foliation on M ξ.

Let Lg : ρ
−1(ξ)→ ρ−1(ξ) be the left action map by g ∈ (SG)ξ and x(t) a integral curve of

R in ρ−1(ξ). Then by the Legendrean property of the graph,

η((Lg)∗R) = η( ˙(gx)(t)) = ηG1(0) + η(ẋ(t)) = η(R) = 1

holds. Similarly, by the Lagrangian property of the graph, we have ω((Lg)∗R,−) = 0 and
thus R is left invariant. Hence R descends to a vector field Rξ := dπ(R) on the quotient M ξ.
Rξ is transverse to the symplectic foliation on M ξ.

The reduced foliation {Sξ
i }i∈I is coorientable since {Si}i∈I is. We choose a defining 1-form

ηξ of the foliation {Sξ
i }i∈I such that ηξ(Rξ) = 1 holds. Then we have π∗ηξ = η. Let ωi be

the symplectic form on Sξ
i . Then we define a 2-form ωξ on M ξ by

ωξ(Rξ,−) = 0, ωξ|Sξ
i
= ωi.

Then we have π∗ωξ = ω. ηξ, ωξ are closed since η, ω are closed and π is a submersion. We
can easily see that ηξ ∧ (ωξ)n is a volume form, and thus a pair (ηξ, ωξ) is a cosymplectic
structure on M ξ.
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4.4 Examples

In this section, we give two examples of Theorem 4.3.1.

Example 4.4.1. Let G = (G1 ⇒ G0) be a cosymplectic groupoid. Then G acts on G1 by
the multiplication of groupoid with t : G1 → G0 as the momentum map. This action is free,
proper and cosymplectic. In fact, the graph of the action is a LL submanifold because of
Proposition 4.2.1, and the Reeb vector field R of G1 satisfies R ∈ Kerdt (see [FP23]).

For any ξ ∈ G0, the reduced cosymplectic manifold (SG)ξ\t−1(ξ) is obtained by The-
orem 4.3.1. Here the symplectic leaf (SG)ξ\(t|SG1

)−1(ξ) coincides with the SG-orbit in G0

through ξ. We can see that it is also a leaf of the symplectic foliation of a Poisson manifold
G0 by Theorem 2.6.1, and thus we have two foliated manifolds each having the orbit as a
leaf. ■

Example 4.4.2. Let G be a Lie group acts on a cosymplectic manifold (M, η, ω) freely and
properly. We assume that there is a momentum map µ : M → g∗ with respect to the action.
Then let us consider a cosymplectic groupoid

T ∗G× R ≃ G× g∗ × R ⇒ g∗

(the trivial R-central extension of a symplectic groupoid T ∗G ⇒ g∗).
For any ε > 0, we define

Mε = { x ∈M | Reeb flow φt(x) is defined in t ∈ [−ε, ε] },

Gε = T ∗G× (−ε, ε) ⊂ T ∗G× R.

In fact, although Gε is not a Lie groupoid, it is a local Lie groupoid (where the composition
of arrows is defined only in a neighborhood of the unit arrows), and the previously discussed
concepts related to actions can also be applied to local Lie groupoids. We can define a cosym-
plectic Gε-action on Mε by

(g, ξ, t) · x := φt(gx)

for (g, ξ, t) ∈ G× g∗× (−ε, ε), x ∈Mε, with µ|Mε : Mε → g∗ as the momentum map. In this
case, Theorem 4.3.1 coincides with Theorem 2.2.4 for the G-action on (Mε, η|Mε , ω|Mε). ■

4.5 Morita equivalence of cosymplectic groupoids

We defined the notion of a cosymplectic groupoid action, thus we can also define the notion
of Morita equivalence between cosymplectic groupoids as in the case of symplectic groupoids:

Definition 4.5.1. A cosymplectic groupoid G = (G1 ⇒ G0) is said to be Morita equivalent
to another cosymplectic groupoid H = (H1 ⇒ H0) when there is a cosymplectic manifold
M , a left cosymplectic G-action and a right cosymplectic H-action on M which satisfies the
following conditions:
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1. Momentum maps ρ : M → G0 and σ : M → H0 are surjective submersions;

2. Actions of G and H on M are both free and proper;

3. The two actions commute with each other;

4. ρ is constant on each orbit of the action of H and an induced map M/H → G0 is a
diffeomorphism; Similarly, σ is constant on each orbit of the action of G and an induced
map G\M → H0 is a diffeomorphism.

(M,ρ, σ) is called an equivalence bimodule from G to H. ■

Regarding the relationship between Morita equivalence of two cosymplectic groupoids
G,H and that of their symplectic subgroupoids SG, SH, we obtain the following.

Proposition 4.5.2. Let G = (G1 ⇒ G0) and H = (H1 ⇒ H0) be Morita equivalent cosym-
plectic groupoids and SG = (SG1 ⇒ G0), SH = (SH1 ⇒ H0) their symplectic subgroupoids.
Let (M,ρ, σ) be an equivalence bimodule from G to H and assume that there is a symplectic
leaf S of M which satisfies the following conditions:

• ρ|S : S → G0, σ|S : S → H0 are surjective.

• For any x ∈ S and g ∈ G1 such that gx is defined, gx ∈ S implies g ∈ SG1.

• For any x ∈ S and h ∈ H1 such that xh is defined, xh ∈ S implies h ∈ SH1.

Then the triplet (S, ρ|S, σ|S) is an equivalence bimodule from SG to SH, and thus these sym-
plectic groupoids are Morita equivalent.

SG1

�� ��

S

ρ|S~~}}
}}
}}
}}

σ|S   A
AA

AA
AA

A SH1

�� ��
G0 H0

Proof. First, Proposition 4.2.3 implies that actions of SG and SH preserves the leaf S, and
these actions are both symplectic.

Since actions of G,H are both cosymplectic, dρ(R) = 0, dσ(R) = 0 holds for the Reeb
vector field R of M . Hence ρ|S, σ|S are submersions.

Then ρ|S is constant along each orbit of the SH-action, and it induces a diffeomorphism
S/SH → G0 since for x ∈ S, gx ∈ S implies g ∈ SG1 and ρ induces a diffeomorphism
M/H → G0. Similarly, we can see that σ|S induces a diffeomorphism SG\S → H0. The
other conditions can be easily verified.
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Chapter 5

Conclusion and further study

In this thesis, we proved reduction theorems for Hamiltonian actions on coKähler manifolds
and 3-cosymplectic manifolds, which are the polar opposites of Sasakian manifolds and 3-
Sasakian manifolds, respectively. A notion of momentum maps can also be defined for Lie
group actions on contact manifolds [Alb89, Gei97, Wil02]. However, the situation is quite
different from that on symplectic manifolds, such as the momentum map being uniquely
determined by the action. On the other hand, Hamiltonian actions on cosymplectic manifolds
have properties that are very similar to those on symplectic manifolds, and therefore, the
results in chapter 3 are natural odd-dimensional analogues of the reduction theorems by
Hitchin et al [HKLR87].

Xu [Xu91b] studied the notion of Morita equivalence of symplectic groupoids and applied
it to investigate Morita equivalence of Poisson manifold [Xu91a]. In this thesis, we defined the
notion of a cosymplectic groupoid action and that of Morita equivalence between cosymplectic
groupoids. Regarding these, future work includes demonstrating that results parallel to
those in the case of symplectic groupoids hold (e.g., whether Morita equivalence between two
cosymplectic groupoids implies an equivalence of categories between their module categories).

Another possible direction of research is to define symplectic groupoid actions on differ-
entiable stacks or orbifolds (see Remark 2.5.5) endowed with symplectic structures and to
extend the Mikami-Weinstein theorem to these settings.
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