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Abstract

Albert [Alb89] studied Hamiltonian actions on cosymplectic manifolds, which are the
odd-dimensional analogue of symplectic manifolds, and established a reduction theorem for
the actions. A cosymplectic manifold has a Poisson structure whose symplectic foliation has
codimension one. In this thesis, we extend Albert’s reduction theorem to cases involving
Riemannian metrics and Lie groupoid actions.

Hitchin et al. [HKLR87] proved reduction theorems for Kéhler and hyperKéhler mani-
folds, which are symplectic manifolds compatible with a Riemannian metric. In this thesis,
we establish analogous results for odd-dimensional counterparts, namely coKéahler manifolds
and 3-cosymplectic manifolds. We further investigate the relationship between the reduction
processes for these manifolds and those for Kahler and hyperKéahler manifolds.

A Lie groupoid is a groupoid suitable for smooth category. This notion is a generaliza-
tion of the concept of a Lie group. Mikami and Weinstein [MW88] studied actions of Lie
groupoids on symplectic manifolds and established a reduction theorem for such actions. In
this thesis, we introduce a new class of submanifolds, called Lagrangian-Legendrean subman-
ifolds, within cosymplectic manifolds. This allows the definition of appropriate Lie groupoid
actions on cosymplectic manifolds. We then prove an odd-dimensional analogue of Mikami
and Weinstein’s theorem, which is also a generalized version of Albert’s theorem. The proof
heavily utilized the symplectic foliation structure of cosymplectic manifolds.
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Chapter 1

Introduction

Since the pioneering work of Marsden-Weinstein and Meyer [MW74, Mey73], many types of
reduction theorems have been studied for various geometric structures on manifolds (see the
table below).

’ Geometric structures H Structures with metric ‘ 3-structures with metric ‘

Symplectic [MW74] Kéhler [HKLR87] HyperKahler [HKLR&7]
Contact [AIb89] Sasakian [GOO01] 3-Sasakian [BGM94]
Cosymplectic [Alb89] CoKahler 3-cosymplectic

In [HKLR&7], Hitchin et al. proved the reduction theorem of Kéhler manifolds. They also
introduced a notion of a hyperKahler momentum map and proved the reduction theorem of
hyperKéahler manifolds. Albert [Alb89] studied Hamiltonian actions on contact manifolds and
cosymplectic manifolds and proved the reduction theorems. Afterwards, several types of re-
duction theorems of contact manifolds have been studied [Gei97, Wil02, ZZ06]. In [BGM94],
Boyer et al. proved the reduction theorem of 3-Sasakian manifolds via the hyperKahler re-
duction theorem. Afterwards, Grantcharov and Ornea [GOO01] proved the reduction theorem
of Sasakian manifolds.

On the other hand, Mikami-Weinstein [MW88] generalized the Marsden-Weinstein-Meyer
theorem to symplectic groupoid actions, which extends a notion of a Hamiltonian action on
symplectic manifolds (see the table below).

Phase space Symmetry
Marsden-Weinstein-Meyer || Symplectic manifold Lie group
Mikami-Weinstein Symplectic manifold Symplectic groupoid
Albert Cosymplectic manifold Lie group
Our result Cosymplectic manifold | Cosymplectic groupoid

In this thesis, we focus on the reduction theorem of cosymplectic manifolds proved by
Albert and extend it to cases involving Riemannian metrics and Lie groupoid actions.
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Firstly, we obtain reduction theorems of coKdhler manifolds and 3-cosymplectic manifolds.
They are another odd-dimensional versions of Kahler and hyperKahler manifolds instead of
Sasakian and 3-Sasakian manifolds, respectively (see [CMDNY13a] for more details). We give
typical examples of coKahler /3-cosymplectic quotients by using “cylinder constructions” and
“mapping torus constructions”, respectively.

Secondly, we define a notion of an action of a cosymplectic groupoid on a cosymplectic
manifold by using a notion of a Lagrangian-Legendrean submanifold. Afterwards, we prove
a reduction theorem which is an analogue of the Mikami-Weinstein theorem. A notion of a
cosymplectic groupoid is introduced by [DW15] and recently studied in [FP23]. A cosym-
plectic groupoid is a Lie groupoid whose space of arrows is endowed with a multiplicative
cosymplectic structure.

This thesis is organized as follows.

In chapter 2, basic materials on Poisson geometry are presented. In section 2.1 through
section 2.4, we introduce some fundamental concepts of this thesis, such as Poisson mani-
folds, cosymplectic manifolds, Lie groupoids, and symplectic groupoids. We also give some
examples of these notions. In section 2.5, we recall a notion of Morita equivalence of sym-
plectic groupoids, and in section 2.6 we explain a proof of the Mikami-Weinstein theorem by
Xu [Xu91b] using Morita equivalence.

chapter 3 is devoted to our first two main theorems. In section 3.1, we recall cosymplectic
structures and cosymplectic momentum maps and the proof of the reduction theorem by
Albert. In we prove the following coKéhler reduction theorem, which is a natural analogue
of the Kahler reduction theorem.

Theorem 1.0.1 ([Yon24b]). Let (M, g,¢,&,n) be a coKdahler manifold with the underlying
cosymplectic structure (n,w). Suppose that there is a free and proper Hamiltonian action of
a Lie group G on (M,n,w) which preserves ¢. Let p : M — g* be a momentum map and
¢ € g* a central and regular value of . Then M := p=*(¢)/G admits a coKdhler structure
(g%, ¢%,£5,1%). Moreover, the underlying cosymplectic manifold of (M¢, g°, %, £, n%) is the
cosymplectic quotient (M, 0%, w°). ]

In section 3.2 we introduce a notion of a 3-cosymplectic momentum map and prove the
following 3-cosymplectic reduction theorem, which is a natural analogue of the hyperKahler
reduction theorem.

Theorem 1.0.2 ([Yon24b]). Let (M, g, (i, &, ni)iz1,2,3) be a 3-cosymplectic manifold with
underlying cosymplectic structures (n;,w;)i=1.23. Suppose that there is a free and proper action
of a Lie group G on M which is Hamiltonian with respect to all three cosymplectic structures
(Mi, wi)iz1.23 and preserves (¢;)i=123. Let pu: M — g* @ ImH be a 3-cosymplectic momentum
map and ¢ € g* ® ImH a central and regular value of p. Then M¢ := u=(¢)/G inherits the
3-cosymplectic structure of M. Il

In section 3.3, we study the reduction of geometric structures on cylinders. Let M be
a Kéhler manifold. Then its cylinder C(M) := M x R admits a coKahler structure. Con-
versely, if M is a coKé&hler manifold, then C'(M) admits a Kéhler structure. We show that
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the Kéhler (resp. coKahler) quotient of C'(M) is the cylinder of the coKahler (resp. Kéhler)
quotient of M. Similarly, hyperKéhler structures and 3-cosymplectic structures are also re-
lated by cylinder constructions, and we also show that hyperKéhler/3-cosymplectic reduction
procedures are compatible with these cylinder constructions. In section 3.4, we investigate
coKahler quotients of mapping tori of Kahler manifolds. For a Kahler manifold S and a
Hermitian isometry f of S, the mapping torus

Sy = (5x[0,1)/{(p,0) ~ (f(p), 1) [ p € S}

admits a coKahler structure. Suppose that there is a free and proper Hamiltonian action of
a Lie group on S which preserves the Kahler structure and let o : S — g* be a momentum
map. Let f be an equivariant Hermitian isometry of S. Then we show that the action on S is
naturally lifted to a Hamiltonian action on Sy if and only if p(f(p)) = p(p) holds for some p €
S. In this situation, we prove that the Kéahler/coKéhler reduction procedures are compatible
with the mapping torus procedure. In section 3.5, we interpret our coKéhler reduction
theorem from the physical viewpoint. In short, our result suggests that we can reduce
time-dependent dynamical systems preserving the property that the flows of the system are
geodesics.

In chapter 4 we discuss our third main theorem. In section 4.1, we review the definition
and some properties of cosymplectic groupoids. In section 4.2, we introduce a notion of a
Lagrangian-Legendrean submanifold of cosymplectic manifolds, and define cosymplectic ac-
tions of cosymplectic groupoids on cosymplectic manifolds. We observe that if a cosymplectic
groupoid G = (G7 = Gy) acts on a cosymplectic manifold M, then a symplectic groupoid
Sg = (Sa, = Gy), where Sg, is the symplectic leaf of G that contains unit arrows, acts on
each symplectic leaf of M. In section 4.3, we prove the following theorem:

Theorem 1.0.3 ([Yon24al). Let G = (G; = Gy) be a cosymplectic groupoid and M a
cosymplectic, free and proper left G-module with respect to a momentum map p : M — Gy.
Assume that & € p(M) is a regular value of p. Then (Sg)e\p~1(€) is a cosymplectic manifold,
where (Sg)¢ is a Lie group consisting of arrows in S, whose source and target are both §. [

In section 4.4, we give examples of Theorem 1.0.3. The main example reconstructs Al-
bert’s cosymplectic reduction theorem. In section 4.5, we mention Morita equivalence of
cosymplectic groupoids.

Lastly, in chapter 5 we show potential for future research.






Chapter 2

Preliminaries from Poisson geometry

There are two purposes of this chapter. The first is to explain the fundamental concepts of
Poisson geometry that will be used in the subsequent chapters. The second is to outline the
proof of the reduction theorem by Mikami and Weinstein.

2.1 Poisson manifolds

Definition 2.1.1. A Poisson structure on a manifold M is an R-bilinear map {-,-} :
C®(M) x C®(M) — C*(M) which satisfies the following conditions:

b {fag} = _{gaf}>
o {{figt.h}+{{h, f}. gt +{{9.h},f} =0 (Jacobi rule),
e {f,gh} =g{f,h}+R{f, g} (Leibniz rule). m

There is an alternative definition of a Poisson structure using a bivector. A bivector
7€ X*(M) =T (A*TM) is locally expressed as

0 0
= i N
Z ]al'i 8x]~
1<)
by using local coordinates (1, , Zgim pmr)-

Definition 2.1.2. A Poisson structure on a manifold M is a bivector 1 € X*(M) which satis-
fies [m,7]s = 0, where |7, 7]s € X3(M) is a 3-vector whose coefficients of local representation

are given by
677'1‘]‘ 87%- aﬂ'jk
, ik = + i+ il
([, 7]s)ijk % (c%l Tk o oy o, m
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Two definitions of Poisson manifolds are related by the formula {f, g} = = (df, dg).

Let (M, 7) be a Poisson manifold. We have a map 7 : T*M — TM by B(r*a) = m(a, B)
for a, 3 € T*M. Then Im7n* C TM defines a (possibly singular) foliation on M. Moreover,
each leaf of the foliation naturally admits a symplectic structure.

Example 2.1.3. Any manifold M admits the trivial Poisson structure defined by {f,g} =0
for any f,g € C®°(M). The symplectic leaves of this Poisson manifold are points of M. N

Example 2.1.4. Let (M,w) be a symplectic manifold. Then we have an isomorphism wy :

TM — T*M defined by wy(X) = w(X,—). Then we obtain a Poisson bivector = € ¥*(M)
induced by the map ©* = (wy)~' : T*M — TM. In this case, there is only one symplectic
leaf, that is, M itself. ]

Example 2.1.5. Let g be a Lie algebra. Then the dual vector space g* admits a Poisson
structure defined by

{f,93(&) = —€((dfe, dge))

for f,g € C®(g*) and £ € g*, where [-,-] is the Lie bracket of g and we consider dfe, dge
g° — R identifying Teg* with g*. Symplectic leaves of this Poisson manifold are orbits of the
coadjoint action Ad*: G — GL(g*).

This Poisson structure is called a linear Poisson structure since local coefficients of the
corresponding bivector are linear functions. In general, for a vector space V' there is a corre-
spondence

{Lze algebra structure on V} JELUN {Lmear Poisson structure on V*}

2.2 Cosymplectic manifolds

In this section, we discuss an important example of Poisson manifolds in this thesis, namely
cosymplectic manifolds, and describe Hamiltonian actions on them as well as Albert’s reduc-
tion theorem.

An almost cosymplectic structure on a (2n + 1)-dimensional manifold M is a pair of
n € QM) and w € Q*(M) such that n A w™ # 0. On an almost cosymplectic manifold
(M,n,w) there is a unique vector field £ which satisfies

¢ is called the Reeb vector field of (M, n,w). We have an isomorphism of C°°(M)-modules
b : X(M) — QM) defined by b(X) = w(X,—) + n(X)n. Conversely, a pair (n,w) is an
almost cosymplectic structure if and only if the map b : X(M) — Q'(M) defined as above is
an isomorphism and there is a vector field & which satisfies the above conditions.
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An almost cosymplectic structure (n,w) is called a contact structure when w = dn. On the
other hand, an almost cosymplectic structure (n,w) is called a cosymplectic structure when
dn = 0, dw = 0. For a contact structure n € Q'(M), the distribution Kern is completely
non-integrable. On the other hand, for a cosymplectic structure (n,w), the distribution Kern
is integrable since 7 is closed. Therefore, contact structures and cosymplectic structures are
two classes of almost cosymplectic structures which are polar opposites of each other.

Example 2.2.1. The simplest example of cosymplectic manifolds is the (2n+1)-dimensional
Euclidean space R = {(xy, -+ T, Y1, ,Yn, 1)}, equipped with a cosymplectic structure

Nsta = dt, Wstd = Z dx; N\ dy;.

=1

In fact, any cosymplectic manifold of dimension 2n + 1 is locally equivalent to the standard
cosymplectic manifold (R* 1 1,4, wea) (Darbouz type theorem). [ |

Example 2.2.2. For a symplectic manifold S and a symplectomorphism f : S — S, the
mapping torus

Sy = (5 x0,1)/{(p,0) ~ (f(p), 1) [ p € S}

naturally admits a cosymplectic structure (it will be discussed in detail in section 3.4). |

A cosymplectic structure (n,w) on M induces a Poisson structure 7 € X?(M) on M by

(v, ) =w(b a,bB),

where o, 3 € T*M. This Poisson structure is regular and has corank 1. Its symplectic
leaves coincide with those of the integrable distribution Kern and the symplectic form on a
symplectic leaf S is w|g. In fact, it is known that a cosymplectic structure on M is equivalent
to a corank 1 regular Poisson structure on M with a Poisson vector field which is transverse
to the symplectic leaves [GMP11].

For every function f € C°°(M) on a cosymplectic manifold M, we associate a vector field
Xf by
Xy =b7"df —&(f)n).

X is called the Hamiltonian vector field of f. This condition is equivalent to
w(Xy, =) =df —=&(f)m,  n(Xy) =0.

Let (M,n,w) be a cosymplectic manifold and G a Lie group acts on M from left. We
suppose that the action preserves n,w, i.e., Lyn =17, Ljw = w. Denote the Lie algebra of G
as g. Albert [Alb89] defined the notion of momentum maps on cosymplectic manifolds:

Definition 2.2.3. A smooth map u: M — g* is called a momentum map when the following
conditions are satisfied:

13



e 1 is equivariant, i.e., p(gp) = Ad,p(p) holds for any p € M and g € G.

e For any A € g, the induced vector field A* € X(M) is the Hamiltonian vector field of a
function p? : M — R defined by u(p) = (u(p))(A),

e For the Reeb vector field & and any A € g, du”(€) = 0 holds. ]

The action of G is said to be Hamiltonian if there is a momentum map. Now we assume
that there is a Hamiltonian action of G on (M, n,w) which is free and proper. Let ( € g* be
a regular value of a momentum map p : M — g*. Since p is equivariant, the isotropy group
G acts on p=1(¢). Let M := p1(¢)/G¢ and 7 : p=*(¢) — M be the natural projection.

Theorem 2.2.4 (Albert [AIb89]). There is a unique cosymplectic structure (n°,w®) on M¢
which satisfies T™n° = n|,~10), TWS = wW],-1(0).

Proof. Since du?(X) = w(A*, X), for any p € u~*(¢) we have
T (¢) ={X, € T,M | w(A;, X,) =0, A€ g} (2.2.1)

Let g¢ be the Lie algebra of G¢. For any p € u~(¢) and g € G¢ we have u(L,(p)) = ¢, and
by differentiating this we obtain

gc={B €g|du(B;) =0}

for any p € p'(¢). Hence, if we define g, := {A5 | A € g} and g¢, == {B; | B € g}, we
obtain

9cp = 0 N T (C)- (2.2.2)

We see that 7],-1() and wl,-1() are basic with respect to the fibration 7 : p=1(¢) — M¢.
For any B € g¢, we have 1|,-1)(B*) = 0. In addition, since dn|,-1) = 0,

Lpn|u-1¢) = depn|u—1¢) + tp=dnlu-1¢) = 0

holds, and thus 7|,-1(¢) is basic. On the other hand, (2.2.1) implies that w|,-1(¢)(B;, X,) =0
for any B € g¢ and X, € T,p~*(¢), so similarly wl,-1(¢) is basic. Then we obtain 7 and w®.
Moreover, they are closed since n,w are closed and 7* is injective.

All that remains is to prove that (¢, w®) is an almost cosymplectic structure. We have
& € Top ' (C) for any p € p(¢), and Lin =1, Liw = w implies (Lg).&p = Ep,(p)- S0 we can
define a vector field £¢ = dm(£|,~1()) on M¢, and we have 7°(&%) =1, w*(£¢,—) = 0.

Lastly, we prove that the map b¢ : TM¢ — T*M¢; X = txcw® + txennS is an isomor-
phism. Suppose that X¢ € TM¢ satisfies b¢(X¢) = 0. Take p € u~1(¢) and let x = 7(p). We
can take X, € T,u~*(¢) such that dr(X,) = X§. Then

w(Xp, Yp) +1n(Xp)n(Yy) =0
holds for any Y, € T,u~*(¢), and this implies

n(X,) =0, w(X,,Y,) =0. (2.2.3)

14



The almost cosymplectic structure (n,w) on M gives a decomposition
T,M =R(&,) & Kern,

and Wpiery, is non-degenerate. We define &, = KernyN\Tpu™ (). Then by (2.2.1) and (2.2.3)
we obtain
Xp c (Ep)wp'Kernp — ((gp)Wp|Kernp)wP|Kernp — gpa

where V@#lkerms denotes the orthogonal complement of V' C Kern, with respect to wp|ker, -
Now we can conclude that X, € g¢, by (2.2.2) and thus X$ = dr(X,) = 0. O

2.3 Lie groupoids

A groupoid is a small category in which all arrows are invertible. This is summarized in the
following diagram:
GlsxtGlTGléGOT‘Gl
)

where Gy sx;: Gy = {(9,h) € G1 x Gy | s(g) = t(h)}*. Gj is a set of arrows and Gy is a
set of objects, m, i, s,t,u (these maps are called structure maps of the groupoid) are maps
of multiplication, inverse, source, target, and unit, respectively. G; and G are sometimes
called the total space and the base space, respectively. For any £ € G, s7H(&) Nt71(§) is a
group. This group is called the isotropy group on &, and denoted by Ge. A subset

{C € Gy | there is an arrow g € Gy such that s(g) =&, t(g) = (}

of Gy is called the groupoid orbit through £. We denote a groupoid G = (G1, Go, m, i, s, t,u)
simply by G = (G1 = Gy), m(g, h) by gh, u(§) by 1¢ for £ € Gy.

A groupoid is called a Lie groupoid if G; and G are smooth manifolds, s,t are smooth
submersions, and m, i, u are smooth maps. A Lie groupoid H; == H, is called a Lie sub-
groupoid of another Lie groupoid G; = Gg when H; == Hj is a subcategory of G; = G
and Hi is an immersed submanifold of G;. A morphism between Lie groupoids is a smooth
functor.

Example 2.3.1. A Lie group G is regarded as a Lie groupoid G = {*} which has only one
object. ]

Example 2.3.2. Let Gy be a manifold and G a Lie group acting on Go from left. Then one
obtains a Lie groupoid G x Gy = Gy by defining the following structure maps:

s(9,6) =¢&,  tg,§) =98  ul§) =(e9),

m((g, h), (h,€)) = (gh,&),  i(9.€) = (97", 9¢),

where g, h € G, £ € Gg and e is the unit of G. The Lie groupoid G x Gy = Gq s called the
action groupoid associated to the Lie group action. |

*Throughout the thesis, we will use this “fibered product” notation without explanation.
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The notion of an action of a Lie groupoid on a manifold M is a generalization of the
situation where an action of Lie group G on M and an equivariant map p : M — Gy, where
G is another manifold on which G acts, is given (see Example 2.4.6).

Definition 2.3.3. Let G = (G = Gy) be a Lie groupoid and M be a manifold. A left action
of G on M is a pair (p,®) of smooth maps p : M — Gy and ® : Gy 4%, M — M which
satisfies the following conditions:

1. p(®(g,2)) = t(g) when (g,2) € G1sx, M,
2. ®(g, P(h,x)) = (gh,x) when (g,h) € G1 5%, Gy, (h,x) € G1sx, M,
8. ®(1ym),x) = for any x € M.

Hereinafter, we simply denote ®(g,z) by gr and refer to M as left G-module. The map
p: M — Gy is called a momentum map. A right action of G on M s also defined similarly,
by swapping the role of the source map and the target map. [ ]

A left G-action on M (or a left G-module M) is said to be
o free if gr = x (for some x € M such that (g,z) € Gy sx, M) implies g = 1),
e proper if a map Gy 4x, M — M x M; (g,z) — (gx,x) is proper.

The orbit space G\ M of a free and proper Lie groupoid action is a smooth manifold and the
quotient map M — G\ M is a submersion. In particular, for any regular value £ € Gy of p,
the isotropy Lie group G = s71(£) N¢t71(€) smoothly acts on p~1(£), and the quotient map
p~HE) = Ge\p~t(€) is a submersion to the smooth quotient space.

2.4 Symplectic groupoids

In Poisson geometry, there is an important class of Lie groupoids, that is, symplectic groupoids.
Roughly speaking, symplectic groupoids are “integration” of Poisson manifolds.

Definition 2.4.1. A symplectic groupoid is a pair (G = Go,wq,) of a Lie groupoid and a
symplectic form on G which s multiplicative, i.e.,

mwe, = priwg, + priwa,
holds, where pr; : Gy sx; G1 — G denotes the natural projections. [ |

The space of objects G of a symplectic groupoid (G; = G, wg, ) has a unique integrable’
Poisson structure such that the source map is a Poisson map. Conversely, Mackenzie and
Xu [MX00] proved that for any integrable Poisson manifold Gy, there exists a unique (up to

tA Poisson manifold is said to be integrable when induced Lie algebroid (cotangent bundle) is integrable
by a Lie groupoid. For more details, see [CF11] for example.
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isomorphism) symplectic groupoid (G; = Gg,wg,) whose s-fiber s71(£) on each £ € Gy is
simply connected (such a Lie groupoid is said to be s-simply connected), and these operations
are inverses of each other. So there is a correspondence

{S—Simply connected symplectic groupoid} & {integrable Poisson manifold}.

Under the correspondence, the connected components of the groupoid orbits of Gy = G
coincide with the symplectic leaves of Gy.

The following are examples of integrable Poisson manifolds and their corresponding sym-
plectic groupoids:

Example 2.4.2. For the trivial Poisson structure on a manifold M, the corresponding sym-
plectic groupoid s T*M = M, where both source and target maps are the projection of the
vector bundle T*M — M, groupoid multiplication is the fiberwise addition, and multiplicative
symplectic structure is the canonical one on T*M. [

Example 2.4.3. For a symplectic manifold (S,w), the corresponding symplectic groupoid is
the fundamental groupoid II(S) = S of S. Here, 11(S) is the set of homotopy classes of
paths in S with endpoints fized, and source map s and target map t send a homotopy class
to its endpoints. 11(S) admits a multiplicative symplectic structure (s X t)*(w & —w), where

sxt:II(S) — S xS. |

Example 2.4.4. Let g be the Lie algebra of a Lie group G. Consider the coadjoint action
Ad*: G — GL(g*) on g* and the action groupoid associated to this action. The space of
arrows G X g* ~ T*G has the canonical symplectic form, and G x g* = g* is a symplectic
groupoid by this symplectic form. In this case, the corresponding Poisson structure on the
space of objects g* is the linear Poisson structure induced by the Lie algebra g. [ ]

Let (G,wg,) be a symplectic groupoid and (M, w) a symplectic manifold. A left G-action
on M (or a left G-module M) is said to be symplectic if the graph of the action, i.e.,

{(g,x,gx) EGI x M x M | (g,:(:) GGlsxpM}

is a Lagrangian submanifold of (G1 x M x M, wg, +w; —ws), where w; denotes the symplectic
structure of i-th M.

Remark 2.4.5. The condition that the graph is a Lagrangian submanifold is grounded in
Weinstein’s “symplectic creed” [Wei81] philosophy. [ |

Example 2.4.6. Let Gy be a manifold and G a Lie group acting on Gy from left. Consider
the action groupoid G = (G x Gy = Gg). Then we obtain a correspondence

{leﬂ G-action on M} JEEN {leﬂ G-action on M with a equivariant map p - M — Go}
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by a formula gx = (g, p(x))x, where the left side means the action of g € G on v € M and
the right side means the action of (g, p(x)) € G X Gy on x. Moreover, when G is G X g* = g*
and M has a symplectic form w, we have a correspondence

{symplectic left G-action on (M,w)} ELEN {Hamiltom'an left G-action on (M, w)}

(see [CFM21], for example). |

2.5 DMorita equivalence

Morita equivalence of Lie groupoids is an analogy to that in ring theory or C*-algebra theory
and is defined using a concept analogous to bimodules. The concept of Morita equivalence
can be readily extended to symplectic groupoids (and in section 4.5, we further extend it to
cosymplectic groupoids).

Definition 2.5.1. A Lie groupoid G = (G1 = Gy) is said to be Morita equivalent to another
Lie groupoid H = (Hy = Hy) when there is a manifold M, a left G-action and a right
H-action on M which satisfies the following conditions:

1. Momentum maps p: M — Go and o : M — Hq are surjective submersions;
2. Actions of G and H on M are both free and proper;
3. The two actions commute with each other;

4. p is constant on each orbit of the action of H and an induced map M/H — Gy is a
diffeomorphism; Similarly, o is constant on each orbit of the action of G and an induced
map G\M — Hy is a diffeomorphism.

In this situation, (M, p,o) is called an equivalence bimodule from G to H. [ |

A symplectic groupoid (G = (G1 == Gy),we, ) is said to be Morita equivalent to another
symplectic groupoid (H = (Hy = Hp),wpq,) when there is an equivalence bimodule (M, p, o)
from G to H in which M is a symplectic manifold and the actions of G,H on M are both
symplectic.

Proposition 2.5.2. Morita equivalence is an equivalence relation among Lie (symplectic)
groupoids.
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Proof. Reflexivity: Let G = (G1 = Gy) be a Lie groupoid and s, t its source map and target
map. Then a triplet (Gy,t, s) is an equivalence bimodule from G to itself. In fact, right and
left G-actions on (G is given by composition of arrows of G.

Symmetry: If (M, p, o) is an equivalence bimodule from a Lie groupoid G to another Lie
groupoid H, (M, o, p) is an equivalence bimodule from H to G. In fact, for a left G-action
on M denoted by (g,z) — gz, one can define a right G-action on M which has the same
momentum map by (z,g) — g 'z.

Transitivity: Let G; (i = 1,2, 3) be Lie groupoids and (M, p1, 01), (Ma, pa, 02) equivalence
bimodules from G to Gy, from Gy to Gs, respectively. We denote as ¢g; € G; (i = 1,2,3) and
xz; € M; (i = 1,2). Then we can define a left Gy-action on M o, X, My by (z1,22) —
(195", ga2) and obtain an equivalence bimodule (Ms, p3, 03) from G; to Gs by

My = gz\(M1 o1 X pa Mz),

p3([r1, 22]) = p1(w1), o3([71,22]) 1= 02(72),
g1 - [71, 2] i= (G121, ma, [71,22] - g3 1= [71, Tag3).

]

Example 2.5.3. Let S be a symplectic manifold and x € S. Then a symplectic groupoid
I(S) = S (see Example 2.4.3) is Morita equivalent to a symplectic groupoid m (S, z) = {z},
where an equivalence bimodule is universal covering space S of S. |

I1(S) S (S, x)

[N

S {z}

Example 2.5.4. Let G1,G5 be Lie groups and g1, g2 their Lie algebras. Then symplectic
groupoids T*G1 = g7 and T*Gy = g5 (see Example 2.4./) are Morita equivalent if and only
if G1 and Gy are isomorphic as Lie groups. [

Remark 2.5.5. Morita equivalence classes of Lie groupoids are equivalent to the concept of
differentiable stacks [BX11]. In particular, Morita equivalence classes of proper and étale Lie
groupoids are equivalent to the concept of orbifolds [MP97]. |

2.6 Mikami-Weinstein theorem

In this section, we review the proof of the Mikami-Weinstein theorem according to Xu
[Xu91b]. The following is the statement of the Mikami-Weinstein theorem.

Theorem 2.6.1 ([MW88]). Let G = (G = Gy) be a symplectic groupoid and M a symplectic,
free and proper left G-module with respect to a momentum map p : M — Go. Assume that
€ € p(M) is a regular value of p. Then Ge\p~*(§) is a symplectic manifold. Moreover, if p
is submertive, a family of symplectic manifolds {Ge\p~ (&) }eepar) is precisely the symplectic
foliation of the Poisson manifold G\ M. [
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Example 2.6.2. Consider the case of G = (G x g* == g*). For any & € g*, Ge ~ {g €
G | Ady§ = &}. Thus by the correspondence in Example 2.4.06, we can see that the Marsden-
Weinstein-Meyer theorem is a special case of the Mikami- Weinstein theorem. |

Let G = (G1 = Gy) and H = (H; =% Hp) be Morita equivalent Lie groupoids and
(M, p,0) an equivalence bimodule. We say that £ € Gy and ( € H, are related when
p (&) No71(¢) # ¢ holds. Then the definition of Morita equivalence implies the following.

Lemma 2.6.3. Let & € Gy and (y € Hy be related. then the followings hold.
e ( € Hy is related to & if and only if ¢ lies in the same groupoid orbit as (.

e £ € Hy is related to (y if and only if & lies in the same groupoid orbit as &. [

Let O, O’ be groupoid orbits of G, H, respectively. We say that O and O’ are related if
for some £ € O, € O (and therefore for any £ € O, € '), £ and ( are related. Hence we
have a correspondence

{ groupoid orbit of Q} N { groupoid orbit of 7—[}

In particular, when G = (G7 = Gy) and H = (H; = Hy) are symplectic groupoids, we
obtain a correspondence

{symplectic leaf of GO} LN {symplectic leaf of HO}.

Symplectic leaves L C Gy, L' C Hj are said to be related if they are related as groupoid
orbits.

Lemma 2.6.4. Let L C Gy, L' C Hy be related leaves. Then p~'(L) = o~ (L') holds.

Proof. Take x € p~!(L). Then since p(z) € L and L is related to L', there is y € M such that
p(x) = p(y) and p(y) € L'. Because o(x) and p(x), o(y) and p(y) are related respectively,

we can see that o(z) and o(y) are related, and thus o(z) € L' holds. Similarly, we can prove
o Y (L) C p~Y(L). O

Proposition 2.6.5. Let G = (G; = Gy) be a symplectic groupoid, M a free and proper
symplectic left G-module whose momentum map p is submertive. Then for any symplectic
left G-module X with momentum map o, G\(M ,x, X) is a symplectic manifold, where G
acts on G\(M ,x, X) diagonally.

Proof. M ,x, X is a smooth manifold since p is submertive. Moreover, we can see that the
left G-action on M ,x, X is free and proper, and thus G\(M ,x, X) is a smooth manifold.
Let Fg be a foliation on M ,x, X induced by the G-action and F; another foliation on
M ,x, X defined by TF, = T(M ,x, X) “M%x where wy, and wx are symplectic forms
on M and X, respectively. Then we can prove that Fg = F, (we omit the details).
Moreover, M ,x, X is a coisotropic submanifold of a symplectic manifold (M x X, —wy @
wx ). Hence the quotient

T(M ,xo X)/TFg =T(M yx5 X)[/T(M x5 X)H&ex

naturally admits a (linear) symplectic structure. O
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Now we outline the proof of the Mikami-Weinstein theorem.

Proof of Theorem 2.6.1. We may assume that p is surjective.
We obtain a Lie groupoid G\(M ,x, M) = G\M whose structure maps are

s(fz,y]) = [z],  t([z,y]) = [y],

u([x]) = [:E,I], Z([:L“,y]) = [y>$]7 m([x,y],[y,z]) = [I,Z]
By Proposition 2.6.5, we can see that G\(M ,x, M) admits a symplectic structure. More-
over the symplectic structure is multiplicative, thus G\(M ,x, M) = G\M is a symplectic
groupoid and G\ M is a Poisson manifold.
We can also see that M is a symplectic right module on G\(M ,x, M) = G\M, whose
momentum map is the natural projection o : M — G\M and right action is given by

x - [x,y] = y. For simplicity, we assume that p is submertive. Then the symplectic groupoid
G\(M ,x, M) =2 G\M is Morita equivalent to G = (G; =% Gy) (see the diagram below).

Gl M g\(MpoM)

LA~ >l

Go G\M

Take £ € G and let L C Gy be the symplectic leaf through . Then by Lemma 2.6.4,
G\p~*(L¢) is a symplectic leaf of G\ M. In addition, we obtain a diffeomorphism

Ge\p (&) = G\p~(Le),

and thus G¢\p~'(€) naturally admits a symplectic structure and the family {G¢\p™ (&) }eeq,
is precisely the symplectic foliation of the Poisson manifold G\ M.

In the case that p is not submertive, G\(M ,x, M) = G\ M is no longer Morita equivalent
to G. However, we did not use submertiveness of momentum maps in the definition of related
symplectic leaves, and thus G¢\p~'(£) admits a symplectic structure as long as £ is a regular
value of p. O]
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Chapter 3

Reduction of coKahler and
3-cosymplectic manifolds

3.1 CoKahler case

Let g be a Riemannian metric and (p, &, n) an almost contact structure on M, i.e., a triplet
of ¢ € End(T M), a vector field ¢ and a 1-form 7, which satisfies p? = —id+n®¢&, n(&) = 1.
Then a quartets (g, ¢, &, n) is called an almost contact metric structure if

9(pX,9Y) = g(X,Y) = n(X)n(Y)
holds. For almost contact structures and almost contact metric structures, refer to [YK85].
Lemma 3.1.1. Let (g,p,&,m) be an almost contact metric structure on M.
(1) p& =0 holds.
(2) g(&, X) =n(X) holds for any X € X(M).

Proof. (2) immediately follows from (1). We prove (1). Note that we have ©*¢ = —¢+¢& = 0.
Hence

0 = ?(p€) = —p€ + n(€)E

holds, and thus we have & = n(p£)E. Suppose that & # 0. Then & = n(pf)¢ implies
n(p€) # 0. However, o€ = n(p€)E also implies

0 = € = n(p€)t,
which contradicts p€ # 0 and n(¢€) # 0. Therefore ¢ = 0 holds. O

Given an almost contact metric structure (g, ¢,&,n), we obtain an almost cosymplectic
structure (n,w), where w(X,Y) = g(X, Y.
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Definition 3.1.2. An almost contact metric structure (g,¢,&,n) is said to be an almost
coKéhler structure if the induced almost cosymplectic structure (n,w) is a cosymplectic struc-
ture. An almost coKdhler structure (g,¢,&,n) is said to be a coKahler structure if the
almost contact structure (p,&,n) is normal, i.e., the Nijenhuis tensor N, of ¢ satisfies
N, = -2dn®¢. |

If we replace the cosymplectic condition dn = dw = 0 with w = dn in the definition above,
then (g, ¢,&,n) is called a Sasakian structure.

Let (M, g,p,&,m) be a coKahler manifold and G a Lie group. Suppose that there is a
Hamiltonian action of G on a cosymplectic manifold (M, n,w), and let ¢ € g* be a regular
value of a momentum map p : M — g*. Moreover, we assume that the action preserves ¢
(and hence preserves the metric g) and ( is central, i.e., G, = G holds.

Lemma 3.1.3. Let p € u~ (). Then there is a subspace H, C T,M and a decomposition
T,M =H,® g, ¢p(9p), (3.1.1)
which is orthogonal with respect to the metric g. Moreover, H, is invariant under ¢,.

Proof. For any v € T, *(¢) and A} € g,, we have

9(v, 0, A7) = w(v, A}) = —(dp™)(v) = 0.

In addition, since ¢, is an isomorphism on Kern,, we have dim ¢,(g,) = dim G and thus we
obtain a decomposition

T,M = Tpﬂ_l(o S5 @p(gp)'
We define H,, as the g-orthogonal complement of g, in T, '(¢). Then we obtain the de-

composition (3.1.1). Note that §, € H, holds since g({,, A;) = n(A;) = 0. Therefore the
decomposition (3.1.1) implies ¢,(H,) = H, since p2(v) = —v holds for v € Kern,. O

Lemma 3.1.4. H, is invariant under the action of G, namely, (Ly).(H,) = Hp, holds for
any h € G and p € u=1(¢).

Proof. For any A7 € g,, we have
(Ln)«(pA7) = Onp(Ln)s Ay, = prp(Adn Ay,

and thus (Lp)«(pn(8p)) = ©np(gnp). Hence the decomposition (3.1.1) implies (Lp).v €
Thpit 1 (C) for v € H,. Moreover, (Lj).v is orthogonal to gp, since the action of G pre-
serves the metric g, therefore we obtain (Ly).(H,) = Hpy. O

Now we obtain the following reduction theorem.

Theorem 3.1.5. Let (M, g,¢,&,n) be a coKdhler manifold with the underlying cosymplectic
structure (n,w). Suppose that there is a free and proper Hamiltonian action of a Lie group G
on (M,n,w) which preserves ¢. Let p: M — g* be a momentum map and ( € g* a central
and reqular value of p. Then M¢ := u=1(¢)/G admits a coKdhler structure (g, %, £%,1°).
Moreover, the underlying cosymplectic manifold of (M¢, g%, 0%, £5,1°) is the cosymplectic quo-
tient (MS,n%, w°).
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Proof. For any p € p~*(¢), the map (dm),|m, : Hy — Tr(yM© is an isomorphism. We define
a Riemannian metric ¢ on M¢ and ¢¢ € End(T'M*) as pushforwards by (dn),|p,, i.e.,

Sofr(p) (X)) = (dm)p(ep (yp)) 5

where yp, }N/p € H, are vectors which satisfies
(dm)p(Xp) = Xr(p), (dﬂ') (Y) = Y-

We check that gfr( X @W(p) are independent of the choice of p. For h € G, we have
(dm)pp(Lp) Xp = (dw)po, and thus Lemma 3.1.4 implies th = (Lp)«X,. Hence we ob-
tain -

(Xp> Yp) = ghp((Lh) (Lh)*Yp) = Ghp(Xnp, Ynp),
(dm)p(2p(Xp)) = (dm)np(Ln)(0p(X, 5))
= (dm)np(np((Ln)o X))
(

= (dm)np(onp(Xnp)),
therefore gfr(p), gpc

~(p) are well-defined (the metric ¢ is called the quotient metric on M¢).
Let (M¢, 1%, w®) be the cosymplectic quotient and £¢ the Reeb vector field. Then n(£%) =
1 holds. Moreover, since ¢, preserves H,, we have ¢¢(X) = ¢(X), and thus we obtain

o (¢¢,£%,1%) is an almost contact structure on M¢.
We can easily check the compatibility of ¢¢, ¢¢ with n¢,wS, i.e.,

9 X, ) = g*(X,Y) — (X )n(Y),

WHX,Y) = go(X, ).

Lastly, we prove that (g¢, ¢¢, £, n°) is a coKéhler structure. It was proved in [Bla67] that
an almost contact metric structure (g, ¢, &, n) is coKéhler if and only if Vo = 0, where V
is the Levi-Civita connection of the metric g. Let V be the Levi-Civita connection of the
metric on M. Using a general property of quotient metrics, we can compute the Levi-Civita
connection V¢ of ¢¢ by

Vs Y = dn(pry(VgY)),
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where X,Y are extended to a neighborhood of p1(¢) and pry : TM — H denotes the
orthogonal projection. Then since Vi = 0 we have

ViesY = pry(VpY) = pry(pVzY)
= opry (VYY) = p(V4Y)
= (VY.

Hence V¢ (V) = ¢¢(V5Y) and thus Vée¢ = 0. O

3.2 3-cosymplectic case

In this section, we prove a reduction theorem for 3-cosymplectic manifolds. First we recall
the definition of 3-cosymplectic structures.

Definition 3.2.1. A 3-cosymplectic structure on a manifold M is a quartet (g, (pi, &, 7i)i=12,3)
of a Riemannian metric g and three almost contact structures (@;, &, 1;)i=1,2,3 on M such that
each (g, @i, &,m:) is coKdhler and

Oy = Papp — Mg B Ea = —PpPa + Na @ &p,

g'y = 90045,8 = _90,8604’
Ty = Pplla = —Palls
holds for any even permutation (c, B,7) of {1,2,3}. |

Remark 3.2.2. This notion should be called “3-coKdahler structures”, but since the name
“3-cosymplectic” has become established, we will follow it here as well. If (g, (i, &, Ni)i=1.23)
satisfies all conditions of Definition 3.2.1 except the normality of each (p;, &, n;), the nor-
mality of them automatically follows (see [FIP0]]). |

Lemma 3.2.3. Let (M, g, (¢i, &, ni)i=123) be a 3-cosymplectic manifold and wy a 2-form
defined by wo(X,Y) = g(X, p2Y). Then wo(X, &) = —n3(X) holds.

Proof. Since 1,(&y) = na(pas) = 0, we obtain

w2 (03X, Y) = g(w3 X, p2Y)
= g(3p3X, p3p2Y") + M3(p3X)m3(p2Y)
= g(=X +n3(X)&3, —023Y + n3(Y )& + m2(Y)E3)
= 9(X, 293Y) = n3(Y)n2(X) — m2(Y)ms(X)
— n3(X)m3(p2paY) + ma(X)n3(Y)n3(§2) + ma(X)n2(Y)ns(Es)
= 9(X, p293Y) — m(X)n3(Y) — n3(X)ms(—psp2Y + n3(Y )& + n2(Y)&s)
= 9(X, p2ip3Y) = ma(X)m3(Y) — m3(X)m2(Y')
= w2 (X, p3Y) — m2(X)m3(Y) — n3(X)ma(Y).

A~ /N /N A/
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Therefore we have

wo( X, &1) = —wa(X, 382)
= —wa(p3X, &) — ma(X)n3(&2) — m3(X)m2(&2)
= —n3(X).

]

Let G be a Lie group acting on a 3-cosymplectic manifold (M, g, (i, &, 1i)i=1,2,3). Suppose
that the action is Hamiltonian with respect to all three cosymplectic structures (7, w;)i=1,2.3,
and let pu; : M — g* (i = 1,2,3) be momentum maps.

Lemma 3.2.4. Let (5, (3 € g* be reqular values of ps, ps, respectively. Suppose that subman-
ifolds piy* (o) and pz*((3) intersect transversally. Then N := uy*(C) Nps ' (G) ds an almost
contact submanifold of (M, v1,&1,m).

Proof. Using Lemma 3.2.3, we have

dpiy (&) = wa(A*, &) = —m3(A*) = 0,

and similarly du4 (1) = 0 holds, thus &, € TN. Next, we check that (T N) C TN. Suppose
that dus(X) = 0. Then we obtain

0= duz (X) = ws(A*, X) = g(A*, 3 X)
= g(A", =201 X + m(X)&2)
= —g(A", 201X + m (X)m2(A4")
= —wy(A*, 1 X) = —dpg (91 X).

Similarly, dus(X) = 0 implies djf (01 X) = 0, hence ¢, X € T'N holds for any X € TN. [

We define a 3-cosymplectic momentum map p: M — g* ® ImH by

po= pat + p2j + psk,

where i, j, k are generators of ImH. Let G act on g*® ImH by the tensor representation of the
coadjoint action and the trivial action on ImH. Then for any ¢ = (172 + (oj + (3k € g* ® ImH,

the Ge-action preserves p=1(¢) = pi (&) Npy ' (C2) Mz ' (G)-

Theorem 3.2.5. Let (M, g, (i, &, mi)i=123) be a 3-cosymplectic manifold with underlying
cosymplectic structures (n;,w;)i=123. Suppose that there is a free and proper action of a
Lie group G on M which is Hamiltonian with respect to all three cosymplectic structures
(Mi, wi)iz1,2,3 and preserves (¢;)i=123. Let p: M — g* @ ImH be a 3-cosymplectic momentum
map and ¢ € g* ® ImH a central and regular value of u. Then M¢ := u=*(¢)/G inherits the
3-cosymplectic structure of M.
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Proof. Lemma 3.2.4 implies that (¢1|n,&1|n,m|n) is an almost contact structure on N.
Therefore from a result in [Lud70], we can see that (N, g|n, ¢1|n,&1|n, m|n) is a coKéhler
manifold.

The action of G on N preserves the coKéhler structure, and p|x is @ momentum map
for this action. So Theorem 3.1.5 implies that there is a coKahler structure (gf, g0§7 f ,nf)
on M¢ = (NNpuyl(¢))/G. Similarly, we obtain two more coKéhler structures (g5, ¢35, £5,15)
and (g5, 5, &5, 775) on M°.

Each Riemannian metric gf (1 = 1,2, 3) coincides with the quotient metric of the principal
bundle z~1(¢) — M°¢, so three Riemannian metrics gf, gg, g§ are the same, and thus the three
coKéahler structures constitutes a 3-cosymplectic structure on M¢. O]

3.3 Cylinder constructions

When M is endowed with a geometric structure we are studying, it induces a geometric
structure on the cylinder C(M) := M x R as shown in the table below (in the case that M
is hyperKahler, we use C3(M) := M x R? instead of the cylinder). In this section, we prove
that reduction procedures are compatible with these constructions.

’ Structure on the base \ Induced structure on the cylinder ‘

Kahler CoKahler
CoKahler Kahler
HyperKahler 3-cosymplectic
3-cosymplectic HyperKéhler

Let (M, h, J) be a Kéhler manifold (h denotes the Riemannian metric and J denotes the
complex structure). Then C'(M) := M x R admits a natural coK&hler structure (g, p, &, n)
defined by

g=h+d go(X fﬁ) _Ux0), =2
Y Y 6t Y ? at Y 7
where ¢ is the coordinate of R and f € C*(C(M)).

Example 3.3.1 ([FM74]). Let f be a Hermitian isometry on (M, h,J). Define an action
of Z on C(M) by k- (p,t) :== (f*(p),t + k). This action is free and properly discontinuous,
so C(M)/Z is a smooth manifold. Then C(M)/Z inherits a coKdhler structure. This is a
coKdhler quotient for a trivial momentum map on C(M). C(M)/Z is diffeomorphic to the
mapping torus of M with respect to f, and we will discuss the coKdhler structure on it in
detail later. |

Assume that there is a Hamiltonian action of G on M preserving J, and let p: M — g*
be a momentum map. We define an action of G on C(M) by ¢ - (p,t) := (gp,t). Then
this action preserves the coKahler structure on C(M), and is a Hamiltonian action whose
momentum map is fi = j4 o pry,.
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Proposition 3.3.2. When a Kdhler quotient p='(¢)/G is defined for ¢ € g*, a coKdihler
quotient 171 (¢)/G is also defined. Moreover, C(u=1(¢)/G) and p=*(¢)/G are equivalent as
coKahler manifolds.

Proof. Clearly C(1~1(¢)/G) and i=1(¢)/G are diffeomorphic, and the diagram

Q) ——=C( ' (Q)/G)

prl ipr

pHO) —=—=n"(Q)/C

commutes, where pr denotes natural projections and 7 is the projection of coKahler reduction.
We orthogonally decompose 1,1 (¢) and T, ' (C) as

Tpﬂil(o = H, ® gp,

T(p,t)ﬁil(o = Hép,t) D Fp,1);

respectively. Then we can easily check that (pr).(gp+) = g, and thus obtain the following
commutative diagram.

dr
H . — T;(pﬂt)C(]\/[)C

(pt) =~
(pr)*l l(pr)*
H, ;T TrmyM ¢
We denote the lift of X € T, M and (X, f2) € T;;(p,t)C’(M)CNaS X, (X, f&), respec-
tively. Let r be the coordinate of R in C(u~'(¢)/G). Since dr(pr).& = (pr).L& = 0, we get
(pr)*% = 0. Hence % = a§ holds for some a € R*. We normalize the coordinate r to satisfy

% =¢. Tﬂhven we obtain ¢ = % and n¢ = dr.
Since & = ¢,

—

holds. Hence from the diagram above, we obtain
ng(X f2> - d%(p(/X\f_ﬁ/) = (dr(JX),0) = (J°X,0).
L or or ’ ’

We can also see that ¢¢ = h¢ + dr?, therefore the coKihler structure (g¢,¢¢,£¢,n°)
coincides with one obtained by the cylinder construction C'(p~(¢)/G) = (1 *(¢)/G)xR. O

Conversely, for a given coKéhler manifold (M, g, ¢, &, 1), we can define a Kéhler structure
(h,J) on the cylinder C(M) by

h=g+df J(X, f%) - <<pX _ fg,n(X)%).
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Assume that there is a Hamiltonian action of G on M preserving the coKahler structure,
and let p : M — g* be a momentum map. We define an action of G on C(M) in the same
way as in Proposition 3.3.2. Then the action preserves the Kéhler structure on C'(M) and
[ = popr,, is a momentum map. We obtain the following.

Proposition 3.3.3. When a coKdhler quotient u=1(¢)/G is defined for ¢ € g*, a Kdahler

quotient i1 (¢)/G is also defined. Moreover, C(u=(¢)/G) and i=*(¢)/G are equivalent as
Kahler manifolds.

Proof. We define H, C T,u~*(¢) and H{,,) C T(pnfi~"(¢) as in the proof of Proposition 3.3.2,
and obtain the same commutative diagrams. Then we obtain

J <X, f%) - dﬁjm - d%J(Y, f%)
= dr (sOX fEn(X )gt)

= (4r(eX — 1) 0(X) )

= (@CX — ffc,nC(X)%)

We can also see that h¢ = ¢¢ + dr?, therefore the Kihler structure (h¢, J¢) coincides with
one obtained by the cylinder construction C'(u(¢)/G) = (17'(¢)/G) x R. O

Next we see the relationship between hyperKahler reduction and 3-cosymplectic reduc-
tion. Let (M, h,Jy, J3, J3) be a hyperKahler manifold. Then C3(M) := M x R? admits a
natural 3-cosymplectic structure (g, (i, &, 7i)i=1,2,3) defined by

g—h+Zdt = ,m—dt@-,

901<X fl@tl f28t2 f36t3> (JIX 0, f3 f28t3>

o (X g fog ,fgatg)z(JQX,fg flatg)

( f18t17f28t27f3at3> ( f2 7f18t2 )7
where (1, ty,t3) is the coordinate of R and f; € C>(C*(M ))

Example 3.3.4 ([CMDNY13b]). Let f be a hyperKdhler isometry on (M, h, Jy, Jo, J3). De-
fine an action of Z3 on C3(M) by

(k1, ko, k3) - (p,t1,ta, t3) := (fkl+k2+k3 (p),t1 + k1, to + ko, t3 + k3).

This action is free and properly discontinuous, so C3(M)/Z3 is a smooth manifold. Then
C3(M)/Z3 inherits a 3-cosymplectic structure. This is a 3-cosymplectic quotient for a trivial
momentum map on C3(M). [
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Assume that there is an action of G on a hyperKéahler manifold (M, h, J;, Jo, J3) which
is Hamiltonian with respect to three symplectic structures and preserves h, Jy, Jo, J3. Let
p: M — g* @ ImH be a hyperKihler momentum map. We define an action of G on C?(M)
by g - (p,t1,t2,t3) := (gp, t1,t2,t3). Then this action preserves the 3-cosymplectic structure
on C3(M), and i = p o pry, is a 3-cosymplectic momentum map.

Proposition 3.3.5. When a hyperKdihler quotient u='(¢)/G is defined for ¢ = (i + (oj +
Gk € g*@ImH, a 3-cosymplectic quotient i~ *(¢)/G is also defined. Moreover, C3(u=1(¢)/G)
and i 1(¢)/G are equivalent as 3-cosymplectic manifolds.

Proof. We define N := py*((2) N pz(G). Then clearly iz~ (¢) N iz~ (¢s) is diffeomor-
phic to C*(N). N is endowed with a Kahler structure (h|y,Ji|n) (see [HKLR&T7]), and
the coKéahler structure (g|cs(wy, ©1]cs(vys &lesvy, mlesvy) on C*(N) is obtained by apply-
ing cylinder constructions to (N, h|y, Ji|n) three times. Moreover, by Proposition 3.3.2 and
Proposition 3.3.3,

C(C(C(N))) = C(C(C(N))*) = C(C(C(N))) = C(C(C(N)))

holds as coKahler manifolds. Therefore the coKihler structure (g¢, 5, €5, %) on (C3(M))¢
coincides with one of three coKéhler structures on C3(M¢) obtained by (hS, JlC ).

Repeating the same argument, we can see that the reduced 3-cosymplectic structure
(9%, (¢S, €5, % )iz1,2.3) coincides with one obtained by the cylinder construction C?(u~1(¢)/G) =

(2

(L1()/G) x R®. 0

Conversely, for a given 3-cosymplectic manifold (M, g, (¢i, &, 1i)i=123), we can define a
hyperKahler structure (h, Ji, J2, J3) on the cylinder C(M) by
0

h=g+dt’, Ji<X>f%> = (%X—f&,m(X)§>-

Assume that there is an action of G on a 3-cosymplectic manifold (M, g, (¢:, &, 7i)i=123)
which is Hamiltonian with respect to three cosymplectic structures and preserves three
coKahler structures. Let p : M — g ® ImH be a 3-cosymplectic momentum map. We
define an action of G on C(M) in the same way as in Proposition 3.3.2. Then the action
preserves the hyperKéhler structure on C'(M) and i = popr,, is a hyperKahler momentum
map. We obtain the following.

Proposition 3.3.6. When a 3-cosymplectic quotient = *(C)/G 1is defined for ( = (1i+ (of +
Gk € g* @ ImH, a hyperKdhler quotient i=*(¢)/G is also defined. Moreover, C(u=(¢)/G)
and i1 (¢)/G are equivalent as hyperKdhler manifolds.

Proof. N = u5"((2) N pzt(G) is endowed with a coKéhler structure (g|n, ©1|n, &1ln, m1|n),
and by Proposition 3.3.3
0
(OO, Tf) = CN)® = C(NS) = (OO, g + dr? o + 1 @ - — dr 0 &)
r
holds as Kéahler manifolds.

Repeating the same argument, we can see that the hyperKihler structure (hS, Jf, JQC, J§ )
coincides with one obtained by the cylinder construction C(u~1(¢)/G) = (1 *(¢)/G)xR. O
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3.4 CoKahler reduction of mapping tori

In general, every coKahler manifold is locally the Riemannian product of a Kahler manifold
with the real line (see [CMDNY13a], for example). Therefore it is important to find coKahler
manifolds which are not the global product of a Kihler manifold with R or S'. Such coKihler
manifolds which are compact are obtained by the mapping torus procedure. For a manifold
S and a diffeomorphism f : .S — 5, we define the mapping torus Sy as follows:

Sy = (5 x[0,1)/{(p,0) ~ (f(p),1) [ p € S}

Note that there is a fibration S — Sy T, S'. In the case that S is endowed with a Kéhler
structure (G, J) and f: S — S is a Hermitian isometry, Sy admits a coKéhler structure. In
fact, Sy is diffeomorphic to C'(S)/Z in Example 3.3.1.

Let € be the symplectic form of the Ké&hler manifold (S, h, J). We extend J and pullback
h, to S x [0,1], and they descend to S since f*h = h and f.J = Jf.. We denote them

J, 71, Q). Then we can write the coKéhler structure (g9,9,1,&) on Sy as follows:

- . d
o=J, n=prdd, {py = T [(p,t +s)],
s=0

g(X,Y) = h(X,Y) + n(X)n(Y),

where 6 is the coordinate of S* and [(p,t)] denotes the equivalence class of (p,t) with respect
to the quotient C(S)/Z. The corresponding 2-form is given by w := .
It is known that any closed coKahler manifold is in fact a Kahler mapping torus:

Theorem 3.4.1 (Li [Li08]). A closed manifold M admits a coKdhler structure if and only
if there exists a Kdahler manifold (S, h,J) and a Hermitian isometry f of (S, h,J) such that
M is diffeomorphic to Sy. 0

Assume that there is a free and proper Hamiltonian action of a Lie group G on a Kahler
manifold (S, h, J) preserving the Kéhler structure. Moreover, we suppose that a Hermitian
isometry f: S — S of (S,h,J) is equivariant with respect to the action of G. Then we can
define an action of G on the mapping torus Sy by ¢ - [(p,t)] = [(gp, t)].

Proposition 3.4.2. Let p: S — g* be a momentum map of the Hamiltonian action of G on
S. Then the action of G on Sy is Hamiltonian if and only if p(f(p)) = p(p) holds for some
peSs.

Proof. Let i : Sy — g* be a cosymplectic momentum map. A vector field on Sy is locally

has the form X + a%, where ¢ is the coordinate of R and a € C*°(Sy). Then we have

0 0
~A )\ = * ) = * — A
dji <X+“at> w(A ,X+aat> QA" X) = dp(X)
for any A € g. Hence the map ji locally has the form

fllp,t)] = n(p) +¢
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for some ¢ € g* (since both p and ji are equivariant, ¢ must be central). Since ji is globally
defined, u(f(p)) = p(p) holds for any p € S. Conversely, if u(f(p)) = wu(p) holds for any
p € S, we obtain a cosymplectic momentum map g by fi[(p,t)] = u(p) + ¢ for any central (.
However, we have

d(p’ o f)(X) = dp(f.X) = Q(A*, f.X)
= Q(f(fTTAY), £.X)
=Q(f7TA*, X) = Q(A*, X)

= dpt(X)

for any A € g and X € X(.9), hence it is sufficient that u(f(p)) = p(p) holds for some p € S.
Two momentum maps on S differs only by a constant, thus the condition u(f(p)) = u(p) is
independent of the choice of a momentum map . Il

Remark 3.4.3. In [[to77] it was proved that if a compact Kdhler manifold (S, h,J) has
positive holomorphic sectional curvature, then any Hermitian isometry f of (S,h,J) has a
fized point. In this case any Hamiltonian action on S such that f is equivariant induces a
Hamiltonian action on Sy. [

Suppose that an equivariant Hermitian isometry f satisfies the condition in Proposi-
tion 3.4.2. We define a cosymplectic momentum map fi : Sy — g* by fi[(p,t)] = p(p). Note
that the action of G on Sy is free and proper, and preserves the coKahler structure.

Let ¢ € g* be a regular value of the momentum map g : S; — g*. Let (S)¢ be the
coKéhler quotient. In the case that S is compact, (Sf)¢ is a closed coKahler manifold, and
thus it is a mapping torus of some Kahler manifold from Theorem 3.4.1. In the following
we observe that it can be obtained by the Kéhler quotient S¢ = p~1(¢)/G for the same
value ¢. From the condition u(f(p)) = u(p), f preserves u~1(¢) and it descends to a map
f¢:S¢ — S¢ since f is equivariant.

Lemma 3.4.4. f¢ is a Hermitian isometry of (S¢, h¢, J¢).

Proof. f¢ is a diffeomorphism since f~! also descends to S¢ and is the inverse of f¢. We
orthogonally decompose Tpu*(¢) as

TpM_I(O = H, ® g,.

Then for any v € H,, we have

dp’ fu(v) = d(u” f)(v) = dp(v) = 0

from the proof of Proposition 3.4.2, and also obtain
h(fu(v), A7) = h(v, (f7)(A")) = h(v, A7) = 0,

and thus f.(v) € Hyp).
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Let 7 : p7*(¢) — S¢ be the projection of reduction. Since f¢m =7 f and f.(H,) = Hy (),
we obtain

(f)e = (dnlmy,) fuldmlm,)

so (f¢)*hS = hS holds from f*h = h and the definition of hS. Similarly we can check that
(f9)ed® = T () O

Theorem 3.4.5. (S})¢ is equivariant to (S¢)c as coKdhler manifolds.

Proof. There is a diffeomorphism @ : (Sy)¢ — (S¢) s defined by ®(7[(p,t)]) = [(7(p),1)],
where 7 : i71(¢) — (S})¢ is the projection of reduction. Since 7[(p,t)] = 7[(g, s)] is equivalent
to [(w(p),t)] = [(w(q), s)], the map ® is well-defined and one-to-one. Then the diagram

Q) —=p()/G

Q) — (Sp)¢

commutes, where i, denotes natural inclusions to mapping tori p — [(p,t)]. We orthogonally
decompose T,u(¢) and Typma ' (€) as

Tpﬂ_1<<) = H, ® gy,

~ 1
Tipai(C) = Hig, 1) ® 8((p1))5

respectively. Then we can easily check that (i¢).(gp) = gjps) and thus obtain the following
commutative diagram.

H, Tr(p)S*

l l(it)*
(p

01— Tripay (Sr)°

From ¢ = J and the diagram above, for X € Tr(p)S®

i

P* (i) X) =

—~
.
~+

holds, and thus ¢¢ = J¢. Similarly we have 2(X,Y) = h{(X,Y) for X,Y € Tx, (S5,
hence we obtain

(X, Y) = g(X,Y) = h(X,Y) + n(X)n(Y)
= hS(X,Y) + ¢ (X)né(Y).
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Let pry : Sy — St and pr, : (Sc)fg — S be natural projections. Then the diagram

i (¢) . (Sp)°
S~

commutes, and thus we have 7*prydf = pridf = n|;-1 ). Hence prjdf = n° holds.

From the above, the induced 2-form w® and the Reeb vector field ¢ on (S})¢ are the same
as those on (5¢) ¢, and thus the cokahler structure on (Sy)¢ coincides with that of (S¢) . O

3.5 A perspective from dynamical systems

In this section, we interpret our coKahler reduction theorem from the viewpoint of dynamical
systems. First, we explain why cosymplectic manifolds describe time-dependent Hamiltonian
systems.

Let (M,w) be a 2n-dimensional symplectic manifold and H € C*(M x R). Then we
consider a cosymplectic manifold (M x R, n := dt, wy := w + dH A dt), where t is the
coordinate of R. Using Darboux coordinates (p;, q;) of (M,w), the Reeb vector field £y of
(M x R,n,wy) is written as

€H=§:<8Ha 8H8)+2

“— \0p; 9q; ~ Jg; Op; ot
and its integral curves are controlled by an ODE system
oH 0OH .
ji = ; ) = ———, t=1. 3.5.1
6=z p 90 (3.5.1)

Therefore we can consider ¢ as a time-parameter which parameterize ordinary Hamiltonian
systems. Any cosymplectic manifold is locally the product of a symplectic manifold with the
real line, so cosymplectic manifolds provide a good framework for time-dependent Hamilto-
nian systems.

Remark 3.5.1. The Reeb vector field Eg of (M x R n,wy) coincides with the vector field

% + Xy, where Xy is the Hamiltonian vector field with respect to the cosymplectic structure

(n,w). The vector field % + Xy 15 called the evolution vector field of the time-dependent

system. |
For any almost coKéhler manifold (M, g, ¢, &, 7n), the following is known.

Lemma 3.5.2. Integral curves of & are geodesics with respect to g.

35



Proof. Let V be the Levi-Civita connection with respect to g. Then for any X € X(M),
9(Vx€, &) = 0 holds since X(g(£,¢)) = 9(Vx¢,€) + 9(§, Vx§). Hence

0=2dn(§ X) = &(X)) —n(l, XT)
=£(9(X,8)) —9(VeX = Vx&,€)

) —g(
=€( (X,€)) —9(VeX, &) + 9(Vx&.€)
= £(9(X, ) —9(VeX,€)
= 9(X, Vel)
holds, and thus we obtain V¢ = 0. [

From Lemma 3.5.2 and Theorem 3.1.5, we immediately obtain the following.

Proposition 3.5.3. Suppose that the cosymplectic manifold (M xR, n,wy) admits a coKdhler
structure and a Hamiltonian action of a Lie group which preserves the coKahler structure.
Then the image of a solution of (3.5.1) by the projection of reduction is a geodesic with respect
to the reduced metric on MS. [

Example 3.5.4 (cf.[AIb89]). The motion of a solid in R® with a fized point (its center of
inertia) is described by a manifold T*SO(3) equipped with the canonical symplectic form on
T*SO(3) and a Hamiltonian H : T*SO(3) ~ SO(3) x s0(3)* — R defined by

H(A o) = -

where oy, s, ag are coefficients with respect to a suitable basis of s0(3)* and My, My, M3 are
coefficients of the ellipsoid of inertia of the solid.

Then the associated time-dependent Hamiltonian system is given by a cosymplectic man-
ifold (T*SO(3) x R, n:=dt, wy = wp-go@) + dH Ndt). We define an action of SO(3) on
TSO(3) x R by

B- (A a,t) = (BA,a,t)
where A,B € SO(3), a € s0(3)*, t € R. This action is a Hamiltonian action whose
momentum map is given by p(A, o, t) = Adya. Then the reduced cosymplectic manifold at
any non-zero vector ¢ € s0(3)* is (S x R, dt, ws: + dH A dt), where ws2 is the standard
symplectic form on S? (note that the Hamiltonian H is invariant by the action of SO(3) and
thus descend to the quotient).

Since SO(3) is compact, we can naturally construct a Kdhler structure (h,I) on T*SO(3)
which is compatible with the canonical symplectic form wr-so). Then T*SO(3) x R is
endowed with a SO(3)-invariant almost coKdhler structure (g, ¢, &p, dt) defined by

g(X7Y):h(X7Y)= g(XagH):Oa g(gHagH)zl

e(X)=I1(X),  ¢En)=0
for any XY € kerdt = TM. Since the Levi-Ciwita connection V of g satisfies Vo = 0,
(g,0,&,m) is a coKdhler structure, and the projection of time-dependent flows onto S* x R
are geodesics with respect to the reduced coKdhler metric. ]
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Chapter 4

Reduction theorem for cosymplectic
groupoid actions

4.1 Cosymplectic groupoids

The notion of a cosymplectic groupoid is defined in exactly the same way as that of a
symplectic groupoid:

Definition 4.1.1. A cosymplectic groupoid is a triplet (G1 = Go, ng,,wa, ) of a Lie groupoid
and a cosymplectic structure on Gy such that

m NG, = prine, + prane, m we, = priweg, + priwa,
holds. [ ]

Example 4.1.2. Let G; = Gq be a Lie groupoid and G an abelian Lie group. Then a pair
(P = G, (m,idg,)) of a Lie groupoid P = Gy and a morphism (7,idg,) : (P = Go) —
(G1 = Gy) is called a central extension of G; = Gy by G when G acts on P and the map
m: P — Gy is a principal G-bundle.

For any symplectic groupoid (G1 = Go,wg,), let us consider a central extension (P =
G, (7, 1dg,)) by G = R or G = S'. Let np be a multiplicative, flat connection form of the
principal bundle m : P — G1. Then (P = Gy, np,wp) s a cosymplectic groupoid, where
wp = T*'wg,. In particular, the trivial R-central extension (G x R = Gy, pridt, prg; wa, ),
where pr denotes the projections, 1s a cosymplectic groupoid. |

The space of arrows of a cosymplectic groupoid has a symplectic foliation defined by the
distribution Kern and there is a distinguished symplectic leaf:

Theorem 4.1.3 ([FP23]). Let G = (G1 = Gy) be a cosymplectic groupoid. Then any unit
arrow in Gy belongs to the same symplectic leaf Sg,. Moreover, Sg := (S¢, = Go) is a Lie
subgroupoid of G and it is a symplectic groupoid. [
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4.2 Actions of cosymplectic groupoids

In order to define the notion of a cosymplectic groupoid action, we need to consider an
analogue of Lagrangian submanifolds.

Let (M,n,w) be a cosymplectic manifold and N C M a submanifold. Then we call N a
Lagrangian-Legendrean submanifold or in short, LL submanifold if

T,N C Kern, (Legendrean property),

(T, N)“rlkernr = T, N (Lagrangian property)

holds for any p € N, where (T,N )“’P‘Ke”’p denotes the orthogonal complement of 7, N with
respect to wp|kern, -

In fact, the notion of a LL submanifold is defined for almost cosymplectic manifolds. In
the case of contact manifolds, the definition of a LL submanifold coincides with that of a
Legendrean submanifold.

We can rephrase the definition of a cosymplectic groupoid by using the notion of a LL
submanifold:

Proposition 4.2.1. Let G = (G = Gy) be a Lie groupoid and (n,w) a cosymplectic structure
on Gy. Then a triplet (G,n,w) is a cosymplectic groupoid if and only if The graph of the
multiplication, i.e.,

I':= {(g7h’17gh7 ]-) S Gl X Gl X R x G1 x R | (g,h) - GlthGl}
is a LL submanifold of a cosymplectic manifold (G1 x G1 x R x G1 x R, 7, @), where

1=+ 2 = 13,
W= (w1 +WQ+771 /\dtl) — W3 — (7]1+772)Adt2
(t; denotes the coordinate of i-th R and (n;,w;) denotes the cosymplectic structure of i-th Gy ).

Proof. Note that for two cosymplectic manifolds (M, n;,w;) and (M, 1, ws), a pair (n; +
M2, w1 + wy + M A dt) is a cosymplectic structure on M; x My x R.

I' is the image of an embedding ¢ : G ,x;G; — G; X G7 X R x G; x R given by
t(g,h) = (g,h,1,gh,1). Then we obtain

U = M (pin + pyn — pan) = N + mHn — m'n,

V@ = (Plw + piw — phw + (pin) A dgy — (pin) A dg)
= WTW + W;w - m*wa

where p; and ¢; denotes projections to i-th G; and i-th R, respectively, and m; : Gy s x; G; —
(G; also denotes projections. Hence the multiplicativity of 7 and w is equivalent to t*7 = 0
and (*w = 0, respectively. In addition, we have

dimI' = d1m(G1 s X¢ G1> = 2dim Gl — dim Go,
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and since dim Gy = 2dim Gy + 1 (see [FP23]), we obtain

2dimI' +1 =4dimG; — 2dim Gy + 1 = 3dim Gy + 2
= lel(Gl X G1 x R x G1 X R)

Therefore the multiplicativity condition is equivalent to I' being a LL submanifold. O]
Now we can define a notion of a cosymplectic groupoid action:

Definition 4.2.2. Let (G = (G1 = Go),ng,, wa, ) be a cosymplectic groupoid and (M, n,w) a
cosymplectic manifold. A left G-action on M (or a left G-module M ) is said to be cosymplectic
if the following conditions are satisfied:

1. The momentum map p : M — Gy of the action satisfies dp(R) = 0, where R is the
Reeb vector field of (M,n,w),

2. The graph of the action, i.e.,
I''={(g,2,1,92,1) e GGy x M xRx M xR | (9,x) € Gy sx, M}
is a LL submanifold of a cosymplectic manifold (G1 x M x R x M x R,7,w), where

N =g, + M — N2,

5 = (e w1+ 1 A dt) — 2 — (1, + ) A i

(t; denotes the coordinate of i-th R and (n;,w;) denotes the cosymplectic structure of
i-th M ).

The following proposition is essentially used in section 4.3 for the proof of our main
theorem:

Proposition 4.2.3. Let (G = (G1 = Go), N6, wa,) be a cosymplectic groupoid, (M,n,w)
a cosymplectic left G-module and (p, ®) its action maps. Let Sg = (Sg, = Gy) be the
symplectic subgroupoid obtained by Theorem J.1.5. Then any symplectic leaf S of (M,n,w)
15 a symplectic left Sg-module by action maps

IO‘S S — Go,
®|SG18XpS . SGlsXpS_> S

Proof. Firstly, we see that the Legendrean property of the graph I' of the action (p, ®) implies
D(Sq, s%,5) C S. Let (g,2) € Sg, sx,5 and (g(t),z(t)) be a smooth path in Sg, 5%, S
whose starting point is (1,(), ) and ending point is (g,x). Then we obtain a smooth path
(g(t),z(t), 1, (gz)(t),1) in I" and

0 = (§(t), (1), 0, (92)(2), 0) = e, (§(1)) +n(&(t)) = n((g2)() = —n((g2) (1))
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holds. Therefore two points x = 1,,)x and gz are in the same symplectic leaf S.
Secondly, we see that the Lagrangian property of I' implies that the restricted action
(pls; Plse, sXpS) is symplectic. Let (g(t), z(t)) be a smooth path in S, 5%, S. Then we have

0 =a(g(1), #(t), 0, (92)(1), 0) = wa, (9(1)) + w(@(t)) — w((gz)(?)).

In addition to this, taking the dimension count into consideration, we can see that the graph
of the Sg-action on S is a Lagrangian submanifold. O

4.3 Mikami-Weinstein type theorem
The following is our main theorem in this chapter:

Theorem 4.3.1. Let G = (G; = Gg) be a cosymplectic groupoid and M a cosymplectic,
free and proper left G-module with respect to a momentum map p : M — Go. Assume that
€ € p(M) is a regular value of p. Then (Sg)e\p~*(§) is a cosymplectic manifold.

Proof. We denote (Sg)¢\p~(£) as M* and the quotient map as 7 : p~1 (&) — M*¢. Let {S;}ies
be the symplectic foliation of M. Since the Reeb vector field R of M satisfies dp(R) = 0,
each S; intersects transversely with p~1(£), and thus (p|s,) "' (£) is a smooth manifold.

By Proposition 4.2.3, the symplectic groupoid Sg acts on each leaf S; symplectically.
Hence {S5 := (Sg)e\(pls,) " (&) Yies forms a foliation on M¢ of codimension 1 (see section
1.3 of [MMO03]). In addition, we can apply Theorem 2.6.1 on each leaf and thus {S¢}c; is a
symplectic foliation on M¢.

Let L, : p71(§) = p1(€) be the left action map by g € (Sg)¢ and z(¢) a integral curve of
R in p~1(€). Then by the Legendrean property of the graph,

1((Lg)R) = n((g)(t)) = 16, (0) + (i) = n(R) = 1

holds. Similarly, by the Lagrangian property of the graph, we have w((Ly).R,—) = 0 and
thus R is left invariant. Hence R descends to a vector field R® := dn(R) on the quotient M?¢.
RS is transverse to the symplectic foliation on M¢.

The reduced foliation {Sf }ier is coorientable since {S; }ier is. We choose a defining 1-form
1€ of the foliation {S%}ic; such that n(R¢) = 1 holds. Then we have 7*n¢ = 7. Let w; be
the symplectic form on S5. Then we define a 2-form w¢ on M¢ by

W (R¢,—) =0, w§|5g = w;.
Then we have m*w¢ = w. 1%, w® are closed since n,w are closed and 7 is a submersion. We
can easily see that n® A (w®)" is a volume form, and thus a pair (7%, w®) is a cosymplectic

structure on M¢. ]
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4.4 Examples

In this section, we give two examples of Theorem 4.3.1.

Example 4.4.1. Let G = (G1 = Gg) be a cosymplectic groupoid. Then G acts on Gi by
the multiplication of groupoid with t : Gy — Gqo as the momentum map. This action is free,
proper and cosymplectic. In fact, the graph of the action is a LL submanifold because of
Proposition 4.2.1, and the Reeb vector field R of Gy satisfies R € Kerdt (see [['P23]).

For any & € Gy, the reduced cosymplectic manifold (Sg)e\t™*(§) is obtained by The-
orem 4.9.1. Here the symplectic leaf (Sg)e\(tlss, )~ (§) coincides with the Sg-orbit in Go
through &. We can see that it is also a leaf of the symplectic foliation of a Poisson manifold
Go by Theorem 2.6.1, and thus we have two foliated manifolds each having the orbit as a
leaf. |

Example 4.4.2. Let G be a Lie group acts on a cosymplectic manifold (M, n,w) freely and
properly. We assume that there is a momentum map p : M — g* with respect to the action.
Then let us consider a cosymplectic groupoid

T"GxR>GExg"xR=g"

(the trivial R-central extension of a symplectic groupoid T*G = g*).
For any € > 0, we define

M. ={ x € M | Reeb flow p(x) is defined in t € [—¢,¢] },

G.=T1"G x (—,e) CT*G x R.

In fact, although G. is not a Lie groupoid, it is a local Lie groupoid (where the composition
of arrows is defined only in a neighborhood of the unit arrows), and the previously discussed
concepts related to actions can also be applied to local Lie groupoids. We can define a cosym-
plectic G.-action on M. by

(9,€,t) - @ := pu(ga)

for (g.€,t) € G x g* x (—e,¢), v € M, with p|a. : M. — g* as the momentum map. In this
case, Theorem 4.3.1 coincides with Theorem 2.2.) for the G-action on (Mg, n|y., w|n.). B

4.5 Morita equivalence of cosymplectic groupoids

We defined the notion of a cosymplectic groupoid action, thus we can also define the notion
of Morita equivalence between cosymplectic groupoids as in the case of symplectic groupoids:

Definition 4.5.1. A cosymplectic groupoid G = (G1 = Gy) is said to be Morita equivalent
to another cosymplectic groupoid H = (Hy = Hy) when there is a cosymplectic manifold
M, a left cosymplectic G-action and a right cosymplectic H-action on M which satisfies the
following conditions:

41



1. Momentum maps p: M — Go and o : M — Hy are surjective submersions;
2. Actions of G and H on M are both free and proper;
3. The two actions commute with each other;

4. p is constant on each orbit of the action of H and an induced map M/H — Gy is a
diffeomorphism; Similarly, o is constant on each orbit of the action of G and an induced
map G\M — Hy is a diffeomorphism.

(M, p,0) is called an equivalence bimodule from G to H. [ |

Regarding the relationship between Morita equivalence of two cosymplectic groupoids
G,H and that of their symplectic subgroupoids Sg, S%, we obtain the following.

Proposition 4.5.2. Let G = (G, = Gy) and H = (Hy = Hy) be Morita equivalent cosym-
plectic groupoids and Sg = (S¢, = Go), Su = (Su, = Hy) their symplectic subgroupoids.
Let (M, p,0) be an equivalence bimodule from G to H and assume that there is a symplectic
leaf S of M which satisfies the following conditions:

e pls: S — Gy, ols: S — Hy are surjective.
e For any x € S and g € G such that gx is defined, gxr € S implies g € Sg, .
o For any x € S and h € Hy such that xh is defined, xh € S implies h € Sy, .

Then the triplet (S, pls,ols) is an equivalence bimodule from Sg to Sy, and thus these sym-
plectic groupoids are Morita equivalent.

Sa, S,

RN

Proof. First, Proposition 4.2.3 implies that actions of Sg and Sy preserves the leaf S, and
these actions are both symplectic.

Since actions of G,H are both cosymplectic, dp(R) = 0, do(R) = 0 holds for the Reeb
vector field R of M. Hence p|g, 0|s are submersions.

Then pl|g is constant along each orbit of the Sy-action, and it induces a diffeomorphism
S/Su — Gy since for x € S, gr € S implies g € Si, and p induces a diffeomorphism
M/H — Gy. Similarly, we can see that o|g induces a diffeomorphism Sg\S — Hy. The
other conditions can be easily verified. O]
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Chapter 5

Conclusion and further study

In this thesis, we proved reduction theorems for Hamiltonian actions on coKéahler manifolds
and 3-cosymplectic manifolds, which are the polar opposites of Sasakian manifolds and 3-
Sasakian manifolds, respectively. A notion of momentum maps can also be defined for Lie
group actions on contact manifolds [AIb89, Gei97, Wil02]. However, the situation is quite
different from that on symplectic manifolds, such as the momentum map being uniquely
determined by the action. On the other hand, Hamiltonian actions on cosymplectic manifolds
have properties that are very similar to those on symplectic manifolds, and therefore, the
results in chapter 3 are natural odd-dimensional analogues of the reduction theorems by
Hitchin et al [HKLR87].

Xu [Xu91b] studied the notion of Morita equivalence of symplectic groupoids and applied
it to investigate Morita equivalence of Poisson manifold [Xu91a]. In this thesis, we defined the
notion of a cosymplectic groupoid action and that of Morita equivalence between cosymplectic
groupoids. Regarding these, future work includes demonstrating that results parallel to
those in the case of symplectic groupoids hold (e.g., whether Morita equivalence between two
cosymplectic groupoids implies an equivalence of categories between their module categories).

Another possible direction of research is to define symplectic groupoid actions on differ-
entiable stacks or orbifolds (see Remark 2.5.5) endowed with symplectic structures and to
extend the Mikami-Weinstein theorem to these settings.
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