

Title	Development of a GPU-based High Level Trigger for the J-PARC KOTO experiment
Author(s)	Gonzalez, Mario
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/101909
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Mario Gonzalez Carpintero)	
Title	Development of a GPU-based High Level Trigger for the J-PARC KOTO experiment (J-PARC KOTO実験におけるGPUを用いたハイレベルトリガーの開発)
<p>The main aim of the J-PARC KOTO experiment is to measure the branching ratio of the CP-violating $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay. To improve our understanding of its background contributions and to enhance the precision of this measurement, several categories of physics events need to be collected on top of the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ candidates. To cope with these demands, the KOTO data acquisition system has been upgraded before the beam-time in 2024. Particularly, a GPU-based High Level Trigger (HLT) has been developed.</p> <p>The new HLT could capture incoming data with a negligible packet loss. Event reconstruction, selection, and compression could be performed on GPUs to reduce the data size to 18% of itself. The event loss due to HLT inefficiencies was decreased from 3.5% at the beginning of the 2024 beam-time to 0.4% at the end.</p> <p>The new HLT in 2024 allowed for the collection of enough data to improve the precision of the $K_L \rightarrow 2\pi^0$ background estimation by an expected factor of 3. K^+ candidate decays were also collected to measure the K^+ flux into the KOTO detector. $K_L \rightarrow \pi^0 e^+ e^-$ candidates were continuously recorded too to study the feasibility of a future $K_L \rightarrow \pi^0 e^+ e^-$ search.</p> <p>The usage of GPUs in the HLT allowed it to cope in real-time with the high data rate and computing demands. The development of the KOTO GPU-based HLT, as well as its performance during the 2024 beam-time are presented in this thesis.</p>	

論文審査の結果の要旨及び担当者

氏名 (Mario Gonzalez)		
論文審査担当者	(職)	氏名
	主査 教授	南條 創
	副査 教授	青木 正治
	副査 教授	川畑 貴裕
	副査 准教授	大田 晋輔
	副査 准教授	増渕 達也

論文審査の結果の要旨

J-PARC 大強度陽子加速器の KOTO 実験の目的は、中性長寿命 K 中間子 K_L が π^0 中間子とニュートリノ対に壊れる崩壊を探ることによって、標準理論を越える新しい素粒子物理を探ることである。J-PARC の加速器のビーム強度の向上と、KOTO 実験で取得したいデータ量の増加に伴い、データ取集システムを増強した。

Mario Gonzalez 氏は、この KOTO 実験のデータ取集システム増強の中でも、最終段のハイレベルトリガーシステムを設計し、構築した。またこれを運用し、2024 年の KOTO 実験のデータを収集した。4 台のコンピュータそれぞれで 40 Gbps の速度でデータを受け取る。GPU を用いて高速なオンライン解析と事象選択、データ圧縮を実現した。このデータを一時保存用のコンピュータに送る。ここから、3.6 Gbps で遠隔地のデータセンターへデータを送る。この一連のシステムを完成させた。以前は 2 秒間のビーム取り出しについて 11,000 事象を取得できたが、同氏が開発したハイレベルトリガーでは 50,000 事象まで処理できるようになった。2024 年のデータ取得では、信号事象探索用と背景事象研究用のデータを合わせ、今回必要十分な 18,000 事象で運転した。また、ハイレベルトリガーでは、事象選択と圧縮によりデータ量を 18% に削減した。データ損失は 0.4% と要求の範囲であった。取得したデータの健全性も確認し、このデータが解析に使えることを担保した。また、背景事象研究用のデータでは、ある背景事象が実際に削減できていることを保証できた。また、別の背景事象については、データをこれまでより 9 倍多く取得し、統計誤差を 1/3 にできる見込みを得た。

同氏の貢献により KOTO 実験のデータ取集を増強し、より多くのデータを、高速に健全に取得できるシステムを構築できた。背景事象の評価精度を向上でき、今後の物理成果の基礎を与えた。GPU を用いたオンライン解析は広範な応用が可能であり、今後の KOTO 実験のデータ取集を担保し、将来の物理成果にもつながる重要な寄与である。

よって、本論文は博士（理学）の学位論文として十分価値あるものと認める。