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Abstract

In this Ph.D thesis, we discuss electroweak baryogenesis in extended Higgs models. Despite
the standard model has been established by the discovery of the Higgs boson, there are still
some problems, which cannot be solved by the standard model. The baryon asymmetry of
the Universe is one of them, and the particle and anti-particle asymmetry should be generated
after the inflation: baryogenesis. Electroweak baryogenesis is one of the baryogenesis scenarios,
the scale of which is the electroweak scale. Unfortunately, electroweak baryogenesis cannot be
realized in the standard model, however, it becomes possible by considering the extended Higgs
sector. Models for electroweak baryogenesis can be tested in future experiments, so that they
can be well motivated to explore beyond the standard model. In the scenario of electroweak
baryogenesis, electroweak first order phase transition and new sources of CP violation are
needed, and new physics effects causing them appear in many physical observables. In this Ph.D
thesis, we propose viable models and scenarios for electroweak baryogenesis under the current
experimental data, and study phenomenology of the model. We discuss the phenomenological
consequences of the first order electroweak phase transition and the CP violation in the extended
Higgs models, and discuss how to test the model in future experiments. Especially, we focus
on the H±W∓Z vertices, and we point out that it can be a probe of the CP violation in the
model. We also discuss the Landau pole problem, which is known as a theoretical problem
of electroweak baryogenesis. We find that this problem can be remedied by giving a new way
to treat it. We also discuss an extended Higgs model with the U(1)B−L gauge symmetry, in
which the problems of not only the baryon asymmetry of the Universe but also the tiny mass
of the neutrino and the relic abundance of the dark matter might be solved. We show that the
problems of the neutrino mass and the dark matter can be solved under current experimental
data.
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Chapter 1

Introduction and summary of thesis

1.1 Introduction

For almost a century, the theory of elementary particle physics has been developed. The Stan-
dard Model (SM) [1–8] is a model for the electroweak and strong interactions of the elementary
particles. Various phenomena of the particles are explained by the SM, and so far, almost all
results in high energy collider experiments, flavor experiments, cosmological observations, and
so on, are consistent with the prediction in the SM. By the discovery of the Higgs boson [9]
at Large Hadron Collider (LHC) [10, 11], the existence of all the particles in the SM has been
confirmed, so that the SM has been established as the most successful theory in particle physics.

However, the SM is not the perfect theory, because there are some unsolved problems Be-
yond the SM (BSM). The SM includes the electroweak and strong forces, but the gravity is
not. There are large hierarchy between the Planck scale for the gravity (O(1019) GeV) and
the electroweak scale (O(102) GeV), which inspires extension of the SM with the supersymme-
try [12], technicolor theory [13,14], extra dimension [15], and so on. We do not know the origin
of these forces. It is still a mystery whether the electroweak and strong forces are unified or
not (Grand Unified Theory: GUT [16]). In the SM, there are three generations for the quarks
and the leptons. All the fermions in the SM get their masses from the Higgs boson, but the
strengths of the Yukawa couplings are greatly different among the flavors. This flavor structure
is also one of the problems in the SM.

In addition to the theoretical side of the problems beyond the SM, we have already known
some phenomena in the experiments, which cannot be explained in the SM. For example, there
are three big phenomenological problems, the mass origin of the neutrino mass, the problem
of the dark sector, and the origin of the baryon asymmetry of the Universe. In the SM,
the neutrinos are massless. However, by the observation of the oscillation of the atmospheric
neutrino, the existence of the mass of the neutrino has been verified [17]. By the cosmological
observations, it has been confirmed that the dark matter occupies almost 25% of the total
energy of our Universe, and almost 70% is the dark energy, which accelerates the Universe
expanding [18]. No candidates of them are contained in the SM. As visible contents of the
energy density of the Universe, the baryons occupy the remaining almost 5%, while the anti-
baryons have not been observed in the Universe [18]. This means that our Universe is baryon
asymmetric, and the origin of the Baryon Asymmetry of the Universe (BAU) cannot be solved
in the SM.

Due to the remaining problems, it has been believed that our nature is described by a more
fundamental theory beyond the SM. Some of those problems are related to the Higgs sector,
which is not completely understood by the experiments, even after the discovery of the Higgs
boson. Although we know the mass of the Higgs boson as 125 GeV, and some of the Higgs-
gauge couplings and the Higgs-fermion couplings have been measured at LHC [19, 20], we do
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1 Introduction and summary of thesis

not know the global structure of the Higgs sector. In this sense, whether the discovered Higgs
at LHC is really the SM Higgs or not is still unknown.

Once we extend the Higgs sector, some of the problems can be solved, so that a lot of
extended Higgs models have been proposed in many literature. Such extended Higgs models are
motivated by testability in future experiments. Currently, the precision of the Higgs couplings
is at most O(10)% level (e.g. the couplings between the Higgs and the W, Z bosons). In High-
Luminosity LHC (HL-LHC), these couplings will be measured with about one order higher
precision [21]. In International Linear Collider (ILC), which is one of the future linear e+e−

colliders, various Higgs couplings will be measured very precisely. For example, the Higgs and
the Z bosons coupling will be measured with about 0.5% precision at ILC with the center-
energy-mass

√
s = 250 GeV [22]. The triple Higgs coupling is important to know the feature of

the Electroweak Phase Transition (EWPT) in the early Universe [23], and it is expected to be
measured at the 50% and 27% (10%) accuracy, in the HL-LHC and the ILC with

√
s = 500 GeV

(
√
s = 1 TeV), respectively [21, 24, 25]. Through those experiments, a breakdown of the Higgs

sector of the SM might be seen in the future. Therefore, studying non-minimal Higgs sectors
is important to approach more fundamental theory.

In those extended Higgs sectors, the BSM problems can be solved by effects of new particles.
In this Ph.D thesis, we focus on the problems of the neutrino mass, the DM, and the BAU.
Especially, most parts of the Ph.D thesis are spent by discussing a scenario solving the BAU at
the electroweak scale in the extended Higgs models. We also discuss the DM problem and the
origin of the neutrino mass with the extended Higgs sector. In the following, brief introductions
of the problem for the BAU in extended Higgs models are given.

To explain the BAU, we usually consider a mechanism generating the baryon asymmetry
after the inflation of the Universe, because even if our Universe initially has an asymmetry, it
will be smeared by the exponential inflation. This is ”baryo”genesis. For baryogenesis, it has
been known that the theory needs to have (1) baryon number violating process, (2) C and CP
violation, (3) a mechanism for decoupling from the thermal equilibrium. These conditions are
known as the Sakharov three conditions [26].

Electroweak Baryogenesis (EWBG) is one of the baryogenesis scenarios, in which the baryon
asymmetry is generated with physics at the electroweak scale [27]. In the SM, the baryon
number violating process exists at the loop level, and it is enhanced by the thermal effects
(sphaleron process) [28]. The C and CP symmetry are violated by the chiral electroweak
interaction and the Cabbibo–Kobayashi–Masukawa (CKM) phase [29, 30] in the quark sector,
respectively. If the EWPT in the early Universe is the Strongly First Order Phase Transition
(SFOPT), where the sphaleron process is in non-thermal equilibrium, the third condition is
satisfied. However, in the SM, not only the CKM is insufficient to generate the observed
BAU [31], but also the discovered Higgs boson with 125 GeV does not cause the SFOPT [32,33].
Therefore, we need to consider extending the Higgs sector to satisfy the conditions for the CP
violation and the non-thermal equilibrium situation.

The scenario of EWBG in the extended Higgs sector has been studied for a long time.
Especially, EWBG in the two Higgs Doublet Model (2HDM), in which a new SU(2)L scalar
doublet is added to the SM Lagrangian, has been studied in many literature [34–50]. New CP
violation can easily be introduced in a relative phase of the two doublets or in new interaction
between the SM fermion and the additional doublet [30]. The status of the EWPT in the model
is also drastically changed from the SM, and the SFOPT is realized by quantum effects of the
additional scalar bosons [51–53]. The EWBG in models with SU(2)L singlet scalar is also well
studied [54–57].

EWBG is physics at the electroweak scale, so that new physics effects appear in many
observables for various experiments. Therefore, EWBG is the testable baryogenesis scenario
in future many experiments. The SFOPT in the 2HDM can be tested by the measurement
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for the deviation of the triple Higgs coupling from the SM value [23]. In addition, it has been
known that the SFOPT causes stochastic gravitational waves which are generated by the bubble
collision [58–62]. Therefore, the SFOPT can also be tested by the observations at future space-
based interferometers, such as LISA [63], DECIGO [64] and BBO [65]. The effects of new
CP violation can be measured by the Electric Dipole Moment (EDM) experiments, collider
experiments, and flavor experiments.

On the contrary to the testability of EWBG, constraints of EWBG in extended Higgs models
are also severe. Therefore, it is not trivial that models for EWBG satisfy current experimental
data. One of the most stringent constraints is from the EDM experiments, and they give upper
bounds on the CP phases in the models. In addition, the electroweak precision results in LEPII
and LHC show the ρ parameter [66–70] is very close to unity [71–73]. This implies that a global
symmetry in the Higgs sector, the custodial symmetry [74], is respected in the model. Current
Higgs boson measurement in LHC [19,20] also supports the SM-like Higgs boson. The absence
of the Flavor Changing Neutral Current (FCNC) in collider and flavor experiments is also an
important fact that the Yukawa structure is similar to the SM. From these constraints, e.g.,
the usual EWBG scenario in the 2HDM with the softly broken Z2 symmetry [36,44,46,50], in
which the FCNC current is forbidden, is difficult to satisfy current experimental data. Even so,
there is still viable model such as the model with singlet scalar bosons [54–57], and the general
2HDM [37, 41–43, 45, 47–49], and so on. It is important to study what observables can be a
probe of EWBG and how to test those models in the future.

In addition to the phenomenological difficulty, in some classes of the models such as the
2HDM, a theoretical problem has also been known. To realize the SFOPT in the 2HDM, rela-
tively large scalar self couplings are needed. Due to the positiveness of the leading contribution
of the scalar beta function, the Landau pole, where the coupling constants diverge, appears in
a relatively low scale. If this scale is much lower scale than the scale of the high energy collider
experiments, we already should see new physics effects. This problem is sometimes seriously
taken [37,44,75].

As we have mentioned, in this Ph.D thesis, the mass origin of the neutrino, the DM problem,
and the scenario of EWBG in the extended Higgs models are discussed. In the following
paragraphs and the next section, an introduction of the author’s works and the corresponding
chapters are given.

After reviewing the SM and the extended Higgs models, we first present a successful model
for explaining the neutrino mass and the DM under the current experiments. This model has
originally been proposed by Ref. [76], however, we revisit this model with the currently available
experimental data. As a result, we find still viable benchmark points in the model, which have
not been recognized in the previous works [76–78]. We do not discuss baryogenesis in this
model, however, as a first step to propose the viable model explaining those three problems,
we show the results for the neutrino and the DM.

Second, We discuss EWBG in the 2HDM, and the viable scenarios for EWBG under experi-
mental data are shown. We focus on the general 2HDM, which contains multiple CP phases, and
show that the observed BAU can be explained with the top transport scenario [37, 47, 48, 79].
In this scenario, the severe constraints from the electron EDM can be avoided by using de-
structive interference of those multiple phases [80–83]. The phenomenological consequences of
this scenario are also given. We also discuss another scenario of EWBG in this model for the
Yukawa interaction having the FCNC couplings in the top-charm sector. We point out that the
effects of the CP phase of the FCNC coupling to the BAU are much smaller compared to what
was estimated in the previous studies [41, 43]. We also discuss the characteristic consequences
of this top-charm transport scenario in the context of flavor physics.

Third, as an observable in the general 2HDM, we discuss loop induced H±W∓Z vertices [84,
85]. We find the relation among the custodial symmetry, the CP symmetry, and these vertices
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1 Introduction and summary of thesis

in the general 2HDM, and give complete calculations of these vertices at the one-loop level. As
an important consequence of the CP violation in the model, we point out that the difference
between the decays H+ → W+Z and H− → W−Z arises, so that they are sensitive to the CP
phases in the model.

Finally, we discuss the Landau pole problem for the SFOPT. We analyze the renormalization
group equation with a physical renormalization scheme, where the threshold effects of heavy
particles are naturally included. As a result of taking into account these effects, we find the
Landau pole problem can be weaker than previously considered.
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1.2 Summary of author’s works

The chapters which comprise this Ph.D thesis are based on the following author’s works.

• Chapter 5

[86] S. Kanemura, Y. Mura, and G. Ying.“Revisiting the model for radiative neu-
trino masses with dark matter in the U(1)B−L gauge theory”, arXiv:2410.22835 [hep-
ph]

• Chapter 7

[47] K. Enomoto, S. Kanemura and Y. Mura, ”Electroweak baryogenesis in
aligned two Higgs doublet models”, JHEP 01 (2022), p. 104.

[48] K. Enomoto, S. Kanemura and Y. Mura, ”New benchmark scenarios of
electroweak baryogenesis in aligned two Higgs double models”, JHEP 09 (2022), p.
121.

[49] S. Kanemura and Y. Mura, ”Electroweak baryogenesis via top-charm mix-
ing”, JHEP 09 (2023), p. 153.

• Chapter 8

[87] S. Kanemura and Y. Mura, ”Loop induced H±W∓Z vertices in the general
two Higgs doublet model with CP violation”, JHEP 10 (2024), p. 41.

• Chapter 9

[88] S. Kanemura and Y. Mura, ”Criterion of perturbativity with the mass-
dependent beta function in extended Higgs models”, Phys.Rev.D 110 (2024) 7,
075016.

1.3 Organization

This Ph.D thesis is organized as follows. In chapter 2, we review the SM, which is a theory of
the electroweak and strong forces. In chapter 3, the remaining problems of the SM, especially
the problems of the origin of the neutrino mass, the DM, and the BAU are introduced. In
chapter 4, we introduce the 2HDM and the model for the neutrino mass and the DM with the
U(1)B−L gauge, and some features of the models are explained. In chapter 5, based on the
author’s work [86], we discuss the neutrino mass and the DM problem in the extended Higgs
model with U(1)B−L symmetry, and show the viable benchmark points for these problems
under current experiments. In chapter 6, we review EWBG as a solution for the BAU. We give
explanations of the mechanism of EWBG, the CP violation and the EDM, and methods to
calculate the BAU in the scenario of EWBG. In chapter 7, based on the author’s works [47–49],
EWBG in the 2HDM is discussed. We explain the two scenarios, top-transport and top-charm
transport scenarios, for the different structures of the Yukawa interaction in the model. In
chapter 8, based on the author’s work [87], the H±W∓Z vertices as a probe of the CP violation
in the 2HDM are introduced, and the results of the decays H± → W±Z through these vertices
are shown. We show that these vertices are sensitive to the CP violation in the model. In
chapter 9, based on the author’s work [88] the Landau pole problem in EWBG is introduced.
We revisit this problem in some models for SFOPT, and propose an appropriate way to include
threshold effects of heavy particles. In chapter 10, the summary of this Ph.D thesis is given.
In appendixes A-F, some formulae and discussions, which are omitted in the main text, are
shown.
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Chapter 2

Standard Model

In this chapter, we review the SM (Glashow–Weinberg–Salam model [1–3] and quantum chromo
dynamics [4–8]), in which phenomena of elementary particles with the strong and electroweak
forces are explained.

2.1 Particle contents

The SM gauge group is composed of SU(3)C × SU(2)L × U(1)Y . The particle contents and
charges under this gauge group are given by table. 2.1. We define the Nishijima–Gelmann
relation as

Qem = T 3 + Y, (2.1)

where Qem, T
3 and Y are the electromagnetic charge, the SU(2)L isospin charge, and the

hypercharge.
We introduce the gauge bosons for SU(2)L and U(1)Y symmetries as W a

µ (a = 1, 2, 3) and
Bµ, respectively. The gauge interaction for the leptons is written by

Llepton =
3∑
i=1

L′
iLiγ

µ

(
∂µ − ig

τa

2
W a
µ − i

−1

2
g′Bµ

)
L′
iL

+
3∑
i=1

e′iRiγ
µ (∂µ − (−1)ig′Bµ) e

′
iR, (2.2)

where τa is the Pauli matrix, i = 1, 2, 3 is the flavor (generation) index, and g and g′ are the
gauge couplings for SU(2)L and U(1)Y symmetries, respectively. The left-handed SU(2)L lepton
doublets L′

iL and the right-handed SU(2)L lepton singlets e′iR are defined by

L′
1L ≡

(
ν ′eL
e′L

)
, L′

2L ≡
(
ν ′µL
µ′
L

)
, L′

3L ≡
(
ν ′τL
τ ′L

)
,

e′1R ≡ e′R, e′2R ≡ µ′
R, e′3R ≡ τ ′R, (2.3)

where the subscripts L and R express the chiral projection by the operator PL = (1 − γ5)/2
and PR = (1 + γ5)/2, respectively. We here have used the primed fields to explicitly show that
the fermions are defined in the gauge eigenstate. We later define the mass eigenstate for the
SM fermions.

As similar to the lepton sector, the gauge interaction for the quarks is written by

Lquark =
3∑
i=1

Q′
iLiγ

µ

(
∂µ − ig

τa

2
W a
µ − i

1

6
g′Bµ − igS

λb

2
Gb
µ

)
Q′
iL

11



2 Standard Model

Particle QL uR dR LL eR Φ
SU(3)c 3 3 3 1 1 1
SU(2)L 2 1 1 2 1 2
U(1)Y 1/6 2/3 −1/3 −1/2 −1 1/2

Table 2.1: Particle contents in the SM and their representations for the SU(3)C×SU(2)L×U(1)Y
symmetry.

+
3∑
i=1

u′iRiγ
µ

(
∂µ − i

2

3
g′Bµ − igS

λb

2
Gb
µ

)
u′iR

+
3∑
i=1

d′iRiγ
µ

(
∂µ − i

−1

3
g′Bµ − igS

λb

2
Gb
µ

)
d′iR, (2.4)

where

Q′
1L ≡

(
u′L
d′L

)
, Q′

2L ≡
(
c′L
s′L

)
, Q′

3L ≡
(
t′L
b′L

)
,

u′1R ≡ u′R, u′2R ≡ c′R, u′3R ≡ t′R,

d′1R ≡ d′R, d′2R ≡ s′R, d′3R ≡ b′R. (2.5)

In addition to the electroweak interaction, the quarks have the color charge, which is carried
by the gluon Gb

µ (b = 1, ..., 8) with the Gelmann matrix λb.

2.2 Higgs mechanism

The spontaneous symmetry breaking of SU(2)L×U(1)Y is described by the Higgs mechanism [9].
In the SM, a scalar doublet Φ with the hypercharge Y = 1/2 is introduced, and the relevant
Lagrangian is given by

Lhiggs = (DµΦ)
†DµΦ− V

V = µ2Φ†Φ +
λ

2
(Φ†Φ)2, (2.6)

where the covariant derivative is

DµΦ =

(
∂µ − ig

τa

2
W a
µ − ig′

1

2
Bµ

)
Φ. (2.7)

When we suppose µ2 < 0, the stationary point of V , where the vacuum energy density is
minimized, is not ⟨Φ⟩ = 0. We parametrize the scalar doublet as

Φ =

(
G+

1√
2
(v + h+ iG0)

)
, (2.8)

where G+ and G0 are the charged and neutral Nambu–Goldstone (NG) bosons, respectively,
and v ∈ R and h are the Vacuum Expectation Value (VEV) and the neutral Higgs boson. From
the stationary condition for V , we get the relation µ2 = λv2/2, and the mass of the Higgs boson
is m2

h = λv2 on this vacuum. By the doublet field getting the VEV, SU(2)L×U(1)Y symmetry
is spontaneously broken to U(1)em symmetry.
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The SU(2)L × U(1)Y symmetry is gauged, so that the corresponding gauge bosons become
massive by the longitudinal mode of them absorbing the NG bosons [9]. From Eq. (2.6), we
obtain quadratic terms of the gauge bosons, which imply

m2
W =

g2

4
v2, m2

Z =
g2Z
4
v2, m2

A = 0, (2.9)

where gZ ≡
√
g2 + g2′. We have defined W and Z bosons, and the photon as

Wµ ≡ 1√
2
(W 1

µ − iW 2
µ),

(
Zµ
Aµ

)
≡
(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
. (2.10)

The Weinberg angle satisfies the relations sin θW = g′/gZ and cos θW = g/gZ . The photon
remains massless because the U(1)em symmetry is preserved. The coupling constant for the
electromagnetic interaction is given by e = gg′/gZ .

2.3 Flavor structure of the standard model

The Yukawa interaction for the SM fermions are given by

Ly = −
3∑

i,j=1

(
Y u†
ij Q

′
iLΦ̃u

′
jR + Y d

ijQ
′
iLΦd

′
jR + Y e

ijL
′
iLΦe

′
jR + h.c.

)
, (2.11)

where Φ̃ = iτ 2Φ∗, and the matrices Y f (f = u, d, e) are generally complex matrix. After
the electroweak symmetry breaking, these fermions acquire their masses. We define the mass
eigenstate where each Y u†, Y d,e is diagonalized,

fiL = (V f
L )ijf

′
jL, fiR = (V f

R )ijf
′
jR, (2.12)

where V f
L and V f

R are unitary matrices, and they satisfy

V u
L Y

u†V u†
R =

√
2

v
× diag(mu,mc,mt),

V d
LY

dV d†
R =

√
2

v
× diag(md,ms,mb),

V e
LY

eV e†
R =

√
2

v
× diag(me,mµ,mτ ). (2.13)

In this mass eigenstate, the charged and neutral current for the leptons and quarks are given
by

Lcint =
∑
i=l,q

g√
2
(W †

µJ
µ
i +WµJ

µ†
i )

Lnint =
∑
i=l,q

(
eAµJ

µ
em,i + gZZµJ

µ
Z,i

)
, (2.14)

where

Jµl = eγµPLνe + µγµPLνµ + τγµPLντ ,

Jµq =
3∑

i,j=1

uiγµPL (VCKM)ij dj,
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Jµem,l = −eγµe− µγµµ− τγµτ,

Jµem,q =
3∑
i=1

(
2

3
uiγµui −

1

3
diγµdi

)
,

JµZ,l =
3∑
i=1

Liγ
µPL(τ

3/2)Li − sin2 θWJ
µ
em,l,

JµZ,q =
3∑
i=1

Qiγ
µPL(τ

3/2)Qi − sin2 θWJ
µ
em,q. (2.15)

In the mass eigenstate, VCKM = V u
L V

d†
L , which is Cabibbo–Kobayashi–Masukawa (CKM) ma-

trix [29,30], appears in the current with the W boson. Through the CKM matrix in the charged
current, a flavor can change into other flavors. On the other hand, in the neutral current, there
are no flavor changing interactions. The existence of the Flavor Changing Neutral Current
(FCNC) is strongly constrained by many experiments (e.g. the upper bound on Br(K → µµ)).
The SM explains this natural suppression of the FCNC processes, and this mechanism was first
been proposed by Glashow, Maiani, and Iliopoulos [89].

The CKM matrix is 3× 3 unitary matrix, and it can be written as

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.16)

The degree of freedom of 3 × 3 unitary matrix is 32, and we have 2 × 3 rephasing degree of
freedom for the up- and down-type quarks. Therefore, 2× 3− 1 phases can be eliminated from
the CKM matrix. As a result, independent physical degree of freedom in the CKM matrix is
five, and they can be parametrized by three orthogonal matrices and one complex phase (CKM
phase). A parametrization of the CKM matrix written by

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 , (2.17)

is often used [90], where sij ≡ sin θij, cij ≡ cos θij, (0 ≤ θij ≤ π/2). The phase δ is the CKM
phase, and many CP violating processes have been explained by this.

The property of the CP violating quantities is characterized by the Jarlskog invariant [91,92]

JCP ≡ Im(VudV
∗
usVcsV

∗
cd) = c12c

2
13c23s12s13s23 sin δ. (2.18)

If a pair of the up- or down-type quarks is degenerated, the mixing angle is zero, and it causes
JCP = 0. This is because, if the mass and the charges are the same, the number of the flavor
decreases due to the flavor symmetry. Therefore, to get non-zero CP violation, we need at least
three generations of the quark. The experimental value is [93]

Jexp
CP = 3.12× 10−5. (2.19)

2.4 Baryon and lepton number violation

The baryon and lepton numbers for the quarks and leptons are 1/3 and 1, respectively. The SM
Lagrangian is invariant under the global transformations, U(1)B for the baryon and U(1)L for
the lepton. However, due to the chiral anomaly for axial U(1) transformation, the baryon and
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lepton numbers are not conserved in the SM. Conservation law for the corresponding currents
for left-handed quarks and leptons are given by [94,95]

∂µj
µ
B = ∂µj

µ
L =

Nfg
2

32π2
Tr(WµνW̃

µν), (2.20)

where Nf = 3 is the number of generation, Wµν is the field stress tensor for Wµ, and W̃µν =
1
2
ϵµνρσW

ρσ (ϵ0123 ≡ 1). For the baryon and lepton number violation, the non-abelian gauge
field Wµ is important, so that we have omitted the U(1)Y contributions. Therefore, the B + L
charge is violated at the quantum level, while B − L charge is not.

The B + L violating process is caused by a transition of the vacuum for the gauge config-
uration. The degenerated vacua are labeled by integers, which is called by the Chern–Simons
numbers NCS, and a ∆NCS transition gives ∆(B + L) = 2Nf∆NCS. Therefore, a ∆NCS = 1
process produces nine quarks (generation × color) and three leptons.

The transition rate for ∆NCS = 1 is Γ ∼ exp(−8π2/g2) ∼ 10−82, by using the instanton
solution for the Wµ field. Due to the weakness of the SU(2)L gauge theory, this effect is
greatly suppressed, and the baryon number violation can be neglected in the zero temperature.
However, the barrier of the potential energy between the two vacua is finite, and the B + L
changing process frequently occurs in the finite temperature, e.g. in the early Universe. This
B+L violating process in the finite temperature is called by sphaleron process [28]. The energy
barrier is roughly estimated by Esph ∼ mW/αem ∼ O(10) TeV in SU(2) gauge–Higgs model [96].
Therefore, when the temperature is much higher than the scale of the electroweak symmetry
breaking, the sphaleron process is active, while it begins to decouple around the electroweak
scale. Actually, the sphaleron rate is suppressed by the Bolzmann factor e−Esph/T , and the
sphaleron process decouples after the Higgs boson getting the VEV.

2.5 Custodial symmetry

In the SM, a hidden symmetry exists in the Higgs sector. The Higgs potential can be rewritten
as

V =
µ2

2
Tr
(
Φ†Φ

)
+
λ

2

(
1

2
Tr
(
Φ†Φ

))2

, (2.21)

where we have defined

Φ ≡ (Φ̃,Φ) =

(
ϕ0∗ ϕ+

−ϕ− ϕ0

)
. (2.22)

The kinetic term of the Higgs doublet is

Lhiggskin =
1

2
Tr
(
(DµΦ)†(DµΦ)

)
, (2.23)

where

DµΦ ≡ ∂µΦ− ig
τa

2
W a
µΦ+ ig′BµΦ

τ 3

2
, (2.24)

When we neglect the U(1)Y interaction, these terms are invariant under the transformation

Φ → Φ′ = LΦR†, L ∈ SU(2)L, R ∈ SU(2)R. (2.25)
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2 Standard Model

After the electroweak symmetry breaking, the matrix gets the VEV as

⟨Φ⟩ = 1√
2

(
v 0
0 v

)
. (2.26)

Even after the electroweak symmetry breaking, the Lagrangian is invariant under SU(2)V
transformation, where L = R is taken. Therefore, the spontaneously symmetry breaking is
SU(2)L × SU(2)R → SU(2)V . This remaining global symmetry is called the custodial symme-
try [74]. By the gauged SU(2)L symmetry,W a

µ bosons get their masses, but due to the custodial
symmetry, their masses are degenerated.

The ρ parameter, which is defined by

ρ ≡ m2
W

m2
Z cos

2 θW
, (2.27)

is one of the important observables to know the symmetry structure of the Higgs potential. If
the Higgs scalar which gives the mass of the gauge bosons is different from the SM one, the ρ
parameter will change. The general formula for the ρ parameter is given by

ρ =

∑
i
v2i
2
{Ii(Ii + 1)− Y 2

i }

2
∑

i
v2i
2
Y 2
i

. (2.28)

where vi, Ii, and Yi are the VEV, the isospin, and the hypercharge of the scalar i, respectively.
When the Higgs scalar is the SM one, namely (Ii, Yi) = (1/2, 1/2), ρ = 1 is shown. This is
the tree level relation, so that it suffers from the quantum corrections [66–70,97,98]. Actually,
the Yukawa sector of the SM violates the custodial symmetry, and the corrections relate to the
mass difference between the up and the down-type quarks.

By the dedicated experimental efforts for the ρ parameter, ρ ≃ 1 has been observed [71–73],
so that any models for new physics have to respect this fact. Later we will discuss the custodial
symmetry in the extended Higgs models.

2.6 Phenomenological status of the Higgs sector

In the left panel of figure 2.1, the production cross section for the single Higgs boson with
mh = 125 GeV at the hadron collider are summarized [93, 99, 100]. The main production
processes are pp → h (gluon-gluon Fusion: ggF), pp → qqh (Vector Boson Fusion: VBF),
pp → Wh,Zh (Higgs-strahlung: VH), and pp → tth, bbh (top- and bottom-associated). The
decay branching ratios for the Higgs bosons are summarized in the right panel of figure 2.1.
The total decay width for the Higgs boson predicted by the SM is ΓSM

h = 4.07 MeV with a
relative uncertainty of +4%

−3.9% [93].
The Higgs boson has first been discovered by ATLAS and CMS measuring the h → γγ

channel [10,11]. The ATLAS group currently gives [101]

mh = 125.11± 0.09(stat.)± 0.06(syst.) GeV (ATLAS), (2.29)

by using the Run-1 and full Run-2 combined results of the di-photon channel, and the CMS
group reports [102]

mh = 125.08± 0.10(stat.)± 0.05(syst.) GeV (CMS), (2.30)

by using the Run-1 and Run-2 combined results of the four-lepton final state.
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Figure 2.1: The production of the Higgs boson (left) and the decay branching ratios (right).
This figure is taken by Refs. [93, 99,100].

ATLAS Run2 CMS Run2 HL-LHC (expected)

κγ 1.01± 0.06 1.10± 0.08 1.8%
κW 1.05± 0.06 1.02± 0.08 1.7%
κZ 0.99± 0.06 1.04± 0.07 1.5%
κZγ 1.38+0.31

−0.36 1.65± 0.34 9.8%
κg 0.95± 0.07 0.92± 0.08 2.5%
κt 0.94± 0.11 1.01± 0.11 3.4%
κb 0.89± 0.11 0.99± 0.16 3.7%
κτ 0.93± 0.07 0.92± 0.08 1.9%

Table 2.2: Current status for the κ parameters [93].

To discuss the experimental results for the SM Higgs boson couplings, we define κ parame-
ters [99]

(σ · Br)(i→ h→ f) =
σSM
i κ2iΓ

SM
f κ2f

ΓSM
h κ2h

, (2.31)

where σSM
i and ΓSM

f are the production cross section and the decay width of the final state f ,
respectively. The κ parameters express deviations from the SM, and κ = 1 is the SM prediction.
The signal strength is defined by

µfi ≡
(σ · Br)

(σ · Br)SM
=
κ2iκ

2
f

κ2h
. (2.32)

The experimental results for the Higgs boson couplings are summarized in figure 2.2 and ta-
ble 2.2.

To measure the triple Higgs self coupling, the pair production process of the Higgs bosons,
pp → h∗ → hh is important. The corresponding parameter κλ has been measured by AT-
LAS [105] and CMS [20],

(ATLAS)− 0.6 < κλ < 6.6,
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Figure 2.2: Results of the Higgs signal strengths. These figures are taken by Refs. [103,104]

(CMS) − 1.2 < κλ < 6.5, (2.33)

with the 95% C.L.
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Chapter 3

Phenomenological problems beyond
the standard model

As we have discussed in chapter 2, the SM has been founded, and it explains various particle
phenomena. However, some beyond the SM phenomena have been known. In this chapter, we
introduce three problems in the fields of particle physics and cosmology, the mass origin of the
neutrino, the dark matter problem and the baryon asymmetry of the Universe.

3.1 The origin of the neutrino mass

By the observation of the oscillation of the atmospheric neutrino, the mass of the neutrino has
been confirmed [17]. In the SM, due to the absence of the right-handed neutrino, the three
neutrinos νe, νµ, ντ are massless. If these are massive, in general, the gauge eigenstate (νe, νµ, ντ )
and the mass eigenstate (ν1, ν2, ν3) are different. As a result, a Unitary matrix

UPMNS =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13

 , (3.1)

appears in the charged current, as similar to the CKMmatrix. This matrix is called Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix [106, 107]. When we assume mass spectrum with
normal ordering m1 < m2 < m3, current experimental data gives [73]

∆m2
21 = (7.53± 0.18)× 10−5 eV2,

∆m2
23 = (2.455± 0.028)× 10−3 eV2,

sin2 θ12 = 0.307± 0.013,

sin2 θ13 = 0.0219± 0.0007,

sin2 θ23 = 0.558± 0.015,

δCP = (1.19± 0.22)π, (3.2)

where ∆m2
ij = m2

i −m2
j . The δCP is the CP violation in the lepton sector.

The mass origin of the neutrino and these mixing angles cannot be explained in the SM. One
easiest way to explain this is just introducing right-handed neutrinos to make Dirac mass term.
However, it needs quite smaller Yukawa couplings than the one of the electron to explain the
tiny mass of the neutrinos. There are many new physics models to explain the small neutrino
masses, e.g., models with the seesaw mechanism [108–118] or models for radiative generation
of the neutrino mass [119–125].
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3.2 Dark matter problem

By the latest observation data provided by the Plank satellites supports that about one quarter
of the energy density in our Universe is composed of the electrically neutral, massive, and stable
matter. This matter is called Dark Matter (DM), and the observed energy density of the DM
is [18]

ΩDMh
2 = 0.120± 0.001. (3.3)

There are no candidates to be the DM in the SM. Models with Weakly Interacting Massive
Particle (WIMP) [126] have been studied in many literature (for reviews, see Ref. [127]). In the
WIMP scenario, the relic density of the DM is explained by the freeze out mechanism. The time
evolution of the number density n for the WIMP is described by the Bolzmann equation [128]:

dn

dt
+ 3Hn = −⟨σv⟩(n2 − n2

eq), (3.4)

where neq is the equilibrium solution, H is the Hubble parameter, and ⟨σv⟩ is thermal average
of the annihilation cross section for the WIMP. Whether the number density n follows the
equilibrium solution or not is determined by the balance between the annihilation cross section
and the expansion rate of the Universe. When neq⟨σv⟩/H ≳ 1, the annihilation processes
make n into neq. On the other hand, when neq⟨σv⟩/H ≲ 1, such effect becomes weak, and the
annihilation processes decouple as decreasing temperature. The freeze out temperature Tf is
determined by neq⟨σv⟩(Tf ) ≃ H(Tf ), and the energy density of the WIMP can be estimated as

ΩDMh
2 ≃ 2.75× 10−8mDMY (Tf )GeV−1, (3.5)

where mDM is the mass of the DM, and Y is the comoving density of the DM which is obtained
by n divided by the entropy density s. From the observed relic density, we obtain ⟨σv⟩ ∼
10−26 cm3s−1 and mDM = O(100) GeV. This mass range and the interaction can be proved by
the DM-nucleon scattering process. Until now, the extensive parameter region for the WIMP
has been searched by many direct detection experiments (XENONnT [129], PandaX-4T [130],
LZ [131,132] and so on).

In chapter 5, we discuss a model for the tiny neutrino mass and the WIMP DM with the
U(1)B−L gauge symmetry.

3.3 Baryon asymmetry of the Universe

By the cosmological observation and the theory of the Big-Bang nucleosynthesis (BBN), it has
been confirmed that our Universe has baryon–anti-baryon asymmetry. The problem of the
Baryon Asymmetry of the Universe (BAU) is one of the beyond SM problems.

As we have defined in section 2.1, the quark has the baryon number 1/3 while the anti-quark
has −1/3. Observed baryon asymmetry is [18]

ηB ≡ nB − nB
s

= 8.57× 10−11. (3.6)

Even if we consider the origin of the asymmetry as just the initial condition, after the inflation
of the Universe, such asymmetry is smeared. Therefore, the asymmetry should be generated
after the inflation but before the BBN.

In order to generate the BAU, (1) baryon number violating process, (2) C and CP violation
and (3) out of thermal equilibrium, need to be satisfied [26]. These conditions are known as
the Sakharov conditions. We consider a 2 body decay or particle production, X ↔ Y Z, as
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an example. Let we define the baryon number B = 0 to X, and B = 1/2 to Y and Z. The
anti particles Y and Z defined by C or CP conjugation have B = −1/2. The first condition
is needed for the baryon number exchanging processes X ↔ Y Z. When we denote the decay
branching ratio of X → Y Z (X → Y Z) as r (r) and other non-baryonic branching ratio as
1− r (1− r). The expectation value of the baryon number is +r− r. If this decay is in thermal
equilibrium, the inverse process is also active, and due to the CPT theorem, the number density
is proportional to +r − r − (r − r) = 0. Therefore, we need C and CP violation (r ̸= r) and
the out of thermal equilibrium situation.

The scenario for producing the BAU is called baryogenesis, and many baryogenesis scenar-
ios have been proposed until now. Representative scenarios are GUT baryogenesis [133, 134],
Affleck-Dine baryogenesis [135], leptogenesis [136], electroweak baryogenesis [27] and so on.

In Electroweak Baryogenesis (EWBG), the baryon asymmetry is produced within the elec-
troweak theory as well as the SM. As we have explained, the SM has (1) baryon number violating
process (sphaleron process) and (2) C and CP violation (electroweak chiral interaction and the
CKM phase). As we will explain later, non-equilibrium situation in EWBG is realized by the
Strongly First Order Phase Transition (SFOPT). Therefore, if SFOPT occurs in the SM, the
BAU could be explained by EWBG in the SM. However, finite size scaling law in the lattice
calculation is not seen with the 125 GeV Higgs boson, meaning that the electroweak phase
transition is cross over phase transition [32,33]. In addition, the CKM phases cannot generate
enough baryon asymmetry to explain the observed BAU [31]. Therefore, the BAU is beyond
the SM problem, so that a model of new physics is necessary to solve it.

Once the scalar sector of the SM, the Higgs sector, is extended, the problems of the SFOPT
and the CP violation can be solved. In section 4.1, we introduce the two Higgs doublet model,
which is one of minimal extension of the SM. In this model, as it will be shown in section 7.1,
the SFOPT can be realized, and the observed BAU can be explained by the new source of the
CP violation with the mechanism of EWBG.
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Chapter 4

Review of extended Higgs models

4.1 Two Higgs doublet model

4.1.1 General two Higgs doublet model

We here define the most general two Higgs doublet model (2HDM). In the model, two SU(2)L
doublets Φk = (ϕ+

k , ϕ
0
k)
T (k = 1, 2) with the hypercharge Y = 1/2 are introduced. After the

spontaneous electroweak symmetry breaking, without loss of generality, we can take the Higgs
basis [137] as

Φ1 =

(
G+

1√
2
(v + h1 + iG0)

)
, Φ2 =

(
H+

1√
2
(h2 + ih3)

)
, (4.1)

where v ≃ 246 GeV is the VEV, G+, G0 are the NG bosons, H± are the charged scalar bosons,
and hi (i = 1, 2, 3) are the electric neutral scalar bosons. In the Higgs basis, the most general
Higgs potential is given by

V =− Y 2
1 (Φ

†
1Φ1)− Y 2

2 (Φ
†
2Φ2)−

(
Y 2
3 (Φ

†
1Φ2) + h.c.

)
+

1

2
Z1(Φ

†
1Φ1)

2 +
1

2
Z2(Φ

†
2Φ2)

2 + Z3(Φ
†
1Φ1)(Φ

†
2Φ2) + Z4(Φ

†
2Φ1)(Φ

†
1Φ2)

+

{(1
2
Z5Φ

†
1Φ2 + Z6Φ

†
1Φ1 + Z7Φ

†
2Φ2

)
Φ†

1Φ2 + h.c.

}
, (4.2)

where Y 2
1 (> 0), Y 2

2 , Z1, Z2, Z3 and Z4 are real parameters, and Y 2
3 , Z5, Z6 and Z7 are complex

parameters. By using a rotation of the phase for Φ2, we can make Z5 real. In the following, we
call this basis of Φ2 as the real Z5 basis. From the stationary condition, we obtain

Y 2
1 =

1

2
Z1v

2, Y 2
3 =

1

2
Z6v

2. (4.3)

The squared mass of H± is given by

m2
H± = −Y 2

2 +
1

2
Z3v

2, (4.4)

and the squared mass matrix for hi in the real Z5 basis is given by

M2
ij ≡

∂2V

∂hi∂hj
=

 Z1v
2 ZR

6 v
2 −ZI

6v
2

ZR
6 v

2 m2
H± + 1

2
(Z4 + Z5)v

2 0
−ZI

6v
2 0 m2

H± + 1
2
(Z4 − Z5)v

2

 , (4.5)
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where the subscripts R (I) mean the real (imaginary) part of the coupling constants. By using
an orthogonal matrix R which represents SO(3) transformation, the mass eigenstates for the
neutral scalar bosons Hi are defined as

Hi = Rijhj. (4.6)

The matrix R can be parametrized by

R = R1R2R3

≡

cosα1 − sinα1 0
sinα1 cosα1 0
0 0 1

cosα2 0 − sinα2

0 1 0
sinα2 0 cosα2

1 0 0
0 cosα3 − sinα3

0 sinα3 cosα3


=

cosα2 cosα1 − cosα3 sinα1 − cosα1 sinα2 sinα3 − cosα1 cosα3 sinα2 + sinα1 sinα3

cosα2 sinα1 cosα1 cosα3 − sinα1 sinα2 sinα3 − cosα3 sinα1 sinα2 − cosα1 sinα3

sinα2 cosα2 sinα3 cosα2 cosα3

 ,

(4.7)

where −π ≤ α1, α3 < π, −π/2 ≤ α2 < π/2 [138], and it satisfies

RM2RT = diag(m2
H1
,m2

H2
,m2

H3
). (4.8)

We can identify H1 with the discovered Higgs boson at the LHC [10, 11], so that we set
mH1 = 125 GeV. We denote this SM-like Higgs boson as H1, which is defined in the 2HDM, to
distinguish it from the SM Higgs boson h.

In the Higgs basis, the most general Yukawa interaction is given by

−LY =
2∑

k=1

(
Q′
LY

u†
k Φ̃ku

′
R +Q′

LY
d
k Φkd

′
R + L′

LY
e
k Φke

′
R + h.c.

)
. (4.9)

We here have omitted the fermion-flavor indices. The matrices Y f
1 and Y f

2 (f = u, d, e) are the
3× 3 Yukawa matrices. In the mass eigenstate of the fermions, in which Y f

1 are diagonalized,
the Yukawa interaction is written by

−LY = Qu
LY

u
d Φ̃1uR +Qd

LY
d
d Φ1dR + LLY

e
dΦ1eR + h.c.

+Qu
Lρ

uΦ̃2uR +Qd
Lρ

dΦ2dR + LLρ
eΦ2eR + h.c., (4.10)

where the SU(2)L doublets are defined by Qu
L = (uL, VCKMdL)

T , Qd
L = (V †

CKMuL, dL)
T and

LL = (νL, eL)
T . The diagonalized matrices Y f

d is written by Y f
d =

√
2
v
diag(mf1 ,mf2 ,mf3). On

the other hand, ρf are not diagonalized in this mass eigenstate. We parametrize the ρf matrices
as

ρu =

ρuu ρuc ρut
ρcu ρcc ρct
ρtu ρtc ρtt

 , ρd =

ρdd ρds ρdb
ρsd ρss ρsb
ρbd ρbs ρbb

 , ρe =

ρee ρeµ ρeτ
ρµe ρµµ ρµτ
ρτe ρτµ ρττ

 , (4.11)

and the components of each matrix are generally complex.
The kinetic term of Φ1 and Φ2 is given by

Lk = |DµΦ1|2 + |DµΦ2|2. (4.12)

The definition of the covariant derivative is given in Eq. (2.7).
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(
ρu
)
ll

(
ρd
)
ll

(
ρe
)
ll

(
ρf
)
lm
(l ̸= m)

Type-I
(
Y u
d

)
ll
cot β

(
Y d
d

)
ll
cot β

(
Y e
d

)
ll
cot β 0

Type-II
(
Y u
d

)
ll
cot β −

(
Y d
d

)
ll
tan β −

(
Y e
d

)
ll
tan β 0

Type-X
(
Y u
d

)
ll
cot β

(
Y d
d

)
ll
cot β −

(
Y e
d

)
ll
tan β 0

Type-Y
(
Y u
d

)
ll
cot β −

(
Y d
d

)
ll
tan β

(
Y e
d

)
ll
cot β 0

Table 4.1: The correspondence of
(
ρf
)
lm

(f = u, d, e) in our model to the ones in the softly-
broken Z2 symmetric 2HDM (Type-I, II, X, and Y).

4.1.2 Softly broken Z2 symmetry

The off-diagonal elements of ρf cause the flavor changing neutral current, and it is severely
constrained by the flavor experiments [139]. As one of the way to avoid this difficulty, the
softly-broken Z2 symmetry in the 2HDM is often considered [140–149]. There are four types
(Type-I, II, X, and Y [148]) of the assignment of the Z2 parity,

Φ′
1 : + Φ′

2 : − uR : − dR : − eR : − (Type I),

Φ′
1 : + Φ′

2 : − uR : − dR : + eR : − (Type II),

Φ′
1 : + Φ′

2 : − uR : − dR : − eR : + (Type X),

Φ′
1 : + Φ′

2 : − uR : − dR : + eR : − (Type Y). (4.13)

To distinguish the double fields with the ones in the Higgs basis, we have defined the primed
fields. We call this basis Φ′

1 and Φ′
2 as the Z2 basis.

The scalar potential is written by

V =− µ2
11(Φ

†′
1Φ

′
1)− µ2

22(Φ
†′
2Φ

′
2)−

(
µ2
12(Φ

†′
1Φ

′
2) + h.c.

)
+

1

2
λ1(Φ

†′
1Φ

′
1)

2 +
1

2
λ2(Φ

†′
2Φ

′
2)

2 + λ3(Φ
†′
1Φ

′
1)(Φ

†′
2Φ

′
2) + λ4(Φ

†′
2Φ

′
1)(Φ

†′
1Φ

′
2)

+
(1
2
λ5(Φ

†′
1Φ

′
2)

2 + h.c.
)
, (4.14)

where µ2
11, µ

2
22, λ1,...,4 are real parameters, and µ2

12 and λ5 are complex parameters. In order to
distinguish the Higgs basis and the Z2 basis, we use Y -Z for the Higgs basis and µ-λ for the Z2

basis. As same as in the general 2HDM, we can take the real λ5 basis. Therefore, in the softly
broken Z2 symmetric 2HDM, there are one additional CP phase.

The basis for Φ1 and Φ2 is not the Higgs basis, so that, in general, both doublets have
the real VEVs, ⟨Φ′

i⟩ = (0, vi/
√
2)T (i = 1, 2). Here we have assumed CP conserving potential,

where all of the coupling constants are real. By using an orthogonal matrix, we can move to
the Higgs basis as (

Φ1

Φ2

)
=

(
cos β sin β
− sin β cos β

)(
Φ′

1

Φ′
2

)
, (4.15)

where the mixing angle satisfies tan β = v2/v1 (0 ≤ β ≤ π/2). In the Higgs basis, only Φ1 has
the VEV

√
v21 + v22 ≡ v. The form of the potential in the Higgs basis is same as Eq. (4.2), and

the coupling constants in the Higgs basis, Y 2
1,2,3, Z1,2,3,4,5,6,7 are functions of µ2

11,22,12, λ1,2,3,4,5,
which are defined in the Z2 basis [137]. The stationary conditions and the mass spectrum are
same as the general 2HDM, if we use the coupling constants of the Higgs basis.

Due to the softly broken Z2 symmetry, the SM fermions interact to only one SU(2)L scalar
doublet. In the Higgs basis, we obtain the Yukawa interaction, which is same form as Eq. (4.10).
The additional Yukawa matrices ρf couplings are functions of the Y f

d and the mixing angle β,
as summarized in table 4.1. In the softly broken Z2 2HDM, the off-diagonal elements in ρf are
zero, however, the CP violating phases cannot be introduced in the Yukawa sector.
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4.1.3 Inert doublet model

The 2HDM with unbroken Z2 symmetry is called Inert doublet model [150]. We define unbroken
Z2 parity as

Φ : + η : − uR : + dR : + eR : + (Inert), (4.16)

where we denote additional SU(2)L doublet as η. The potential is given by

V =µ2
1(Φ

†
1Φ1) + µ2

2(η
†η) +

1

2
λ1(Φ

†Φ)2 +
1

2
λ2(η

†η)2

+ λ3(Φ
†Φ)(η†η) + λ4(η

†Φ)(Φ†η) +
1

2
λ5

(
(Φ†η)2 + h.c.

)
, (4.17)

where we take the real λ5 basis. Therefore, no CP phase exists in the inert doublet model. We
assume µ2

1 < 0 for electroweak symmetry breaking, while µ2
2 > 0 for unbroken Z2 symmetry.

Due to the unbroken Z2 symmetry, η cannot have the VEV. The components of those
doublet fields can be written as

Φ =

(
G+

1√
2
(v + h+ iG0)

)
, η =

(
H+

1√
2
(H + iA)

)
. (4.18)

The mass spectrum are

m2
h = λ1v

2, m2
H± = µ2

2 +
1

2
λ3v

2,

m2
H = m2

H± +
1

2
(λ4 + λ5)v

2, m2
A = m2

H± +
1

2
(λ4 − λ5)v

2. (4.19)

The SM fermions have Yukawa interaction only with Φ, so that it is completely same as the
SM one.

This kind of unbroken Z2 symmetry is often used to explain the stability of the DM. The
lightest Z2 odd particle with Q = 0 in the inert doublet model, namely H or A, can be the
DM candidate. In addition, if we add Z2 odd right handed neutrinos to this model [123, 124],
the masses of the light neutrinos are generated at the loop level. This model, so-called the
scotogenic model, has been proposed by Tao and Ma [123, 124]. We will introduce U(1)B−L
extension of the scotogenic model in section 4.2, and discuss a scenario to explain the DM
abundance and the tiny mass of the neutrino in chapter 5.

4.1.4 The conditions for the custodial and CP symmetry

In this subsection, we discuss custodial symmetry, which is a global symmetry in the 2HDM.
We also discuss the CP violation in the 2HDM, and the relation with the condition for the
custodial symmetry. In the following discussions in this subsection, we focus on the potential
of the general 2HDM which is written in the Higgs basis, but it can also be applied to the one
of the softly broken Z2 2HDM or the inert doublet model.

According to Ref. [151], we derive the conditions for the custodial symmetry of the potential.
We introduce bilinear forms as

M1 ≡
(
Φ̃1,Φ1

)
, M2 ≡

(
Φ̃2,Φ2

)(e−iχ 0
0 eiχ

)
, (4.20)

where the scalar doublets Φ1 and Φ2 are defined in the Higgs basis. The phase χ (0 ≤ χ < 2π)
represents the degree of freedom of the phase rotation for Φ2. The transformation law of global
SU(2)L×SU(2)R for M1 and M2 is M1,2 → LM1,2R

†, where L ∈ SU(2)L and R ∈ SU(2)R. After
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the spontaneous electroweak symmetry breaking, these matrices acquire the VEV as ⟨M1⟩ =
(v/

√
2) × I2 and ⟨M2⟩ = 0, where I2 is the 2 × 2 identical matrix. As a result, these matrices

are invariant under the L = R transformation, i.e. the custodial SU(2)V transformation, even
after the electroweak symmetry breaking. We can construct SU(2)L × U(1)Y gauge invariants
as

Tr[M†
1M1] = 2|Φ1|2, Tr[M†

2M2] = 2|Φ2|2, Tr[M†
1M2] = eiχΦ†

1Φ2 + e−iχΦ†
2Φ1,

Tr[M†
1M2σ3] = eiχΦ†

1Φ2 − e−iχΦ†
2Φ1. (4.21)

The invariants in the first line of Eq. (4.21) are custodial SU(2)V invariants, but in the second
line are not. By using them, the potential which is given in Eq. (4.2) can be rewritten as

V =− 1

2
Y 2
1 Tr[M

†
1M1]−

1

2
Y 2
2 Tr[M

†
2M2]− Re[Y 2

3 e
−iχ]Tr[M†

1M2]

+
1

8
Z1Tr[M†

1M1]
2 +

1

8
Z2Tr[M†

2M2]
2 +

1

4
Z3Tr[M†

1M1]Tr[M†
2M2]

+
1

4
(Z4 +Re[Z5e

−2iχ])Tr[M†
1M2]

2

+
1

2

(
Re[Z6e

−iχ]Tr[M†
1M1] + Re[Z7e

−iχ]Tr[M†
2M2]

)
Tr[M†

1M2]

+ iIm[Y 2
3 e

−iχ]Tr[M†
1M2σ3]−

1

4
(Z4 − Re[Z5e

−2iχ])Tr[M†
1M2σ3]

2

+
i

2
Im[Z5e

−2iχ]Tr[M†
1M2]Tr[M†

1M2σ3]

+
i

2

(
Im[Z6e

−iχ]Tr[M†
1M1] + Im[Z7e

−iχ]Tr[M†
2M2]

)
Tr[M†

1M2σ3]. (4.22)

Obviously, the last three lines in Eq. (4.22) are not custodial SU(2)V invariant, so that we
obtain the conditions for the custodial symmetric potential:

Im[Y 2
3 e

−iχ] = Im[Z5e
−2iχ] = Im[Z6e

−iχ] = Im[Z7e
−iχ] = 0,

Z4 = Re[Z5e
−2iχ]. (4.23)

In the real Z5 basis, the conditions are

Custodial symmetry : Z4 = Z5, ZI
6 = ZI

7 = 0 (χ = 0, π), (4.24)

Twisted custodial symmetry : Z4 = −Z5, ZR
6 = ZR

7 = 0 (χ = π/2, 3π/2). (4.25)

The conditions in the Eq. (4.24) (Eq. (4.25)) for χ = 0 and π (χ = π/2 and 3π/2) have been
known as the conditions for the (twisted) custodial symmetry in the potential [151–153]. We
note, even if the potential satisfies Eq. (4.24) or Eq. (4.25), the U(1)Y gauge interaction and
the Yukawa interaction violate the custodial symmetry.

Next, we discuss the conditions for the CP symmetry in the potential. In order to preserve
the CP symmetry in the potential, so-called the real basis, in which all parameters in the
potential are real, must exist [151, 154]. The scalar doublet Φ2 has the degree of the freedom
for rephasing, so that there are three rephasing invariants in the potential, Z∗

5Z
2
6 , Z

∗
5Z

2
7 and

Z∗
6Z7. As a result, we obtain the conditions for the CP conserving potential in the real Z5

basis [137,151,154,155]:

Z5Im[Z2
6 ] = Z5Im[Z2

7 ] = Im[Z∗
6Z7] = 0. (4.26)

In the general 2HDM, we also have the complex parameters in the Yukawa sector, and the
additional Yukawa matrices ρf (f = u, d, e) are able to violate the CP symmetry. For example,
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in the case of ρd = ρe = 0, the additional rephasing invariants in the model are Z5(ρ
u)2, Z6ρ

u

and Z7ρ
u, so that all of them have to be real matrices for the CP symmetry [151].

From Eqs. (4.24) and (4.26), we obtain important relation for the custodial symmetry
violation and the CP violation in the potential: If the CP symmetry is violated in the potential,
the custodial symmetry is also violated. In chapter 8, we will discuss H±W∓Z vertices as a
consequence of the custodial symmetry violation and the CP violation.

4.1.5 Oblique parameters

The finite corrections to the self energy of the electroweak gauge bosons are parametrized by the
oblique parameters, S, T , and U , which was first introduced by Peskin and Takeuchi [97, 98].
New particles interacting to electroweak bosons could affect the self energies of them, so that
some models can be tested by the precision measurement of these parameters. Especially, the
T parameter represents the difference between the mass corrections of the W and Z bosons,
and it is related to the ρ parameter [66–70] as αemT = ρ− 1 (= ∆ρ). The T parameter can be
expressed by [73]

αemT =
Πnew
WW (0)

m2
W

− Πnew
ZZ (0)

m2
Z

, (4.27)

where αem is the fine-structure constant, and Πnew
V V (0) (V = W,Z) are the corrections from new

physics to the two-point self energies of the gauge bosons at the zero momentum. The observed
value of the ρ parameter is very close to unity [71–73].

In the 2HDM, the additional scalar bosons radiatively contribute to the self energy of the
gauge bosons, and those parameters are modified from the value in the SM. Especially, the T
parameter is an important parameter to know the structure of the Higgs potential because it
is sensitive to the violation of the custodial symmetry in the 2HDM [67, 69, 151, 152]. When
the potential has the custodial symmetry, the corrections to the T parameter from the 2HDM
are zero, and there are only corrections from the U(1)Y and the Yukawa interactions. However,
within the one-loop level analysis, the inverse is not true, i.e. the small T parameter does not
mean that the potential has the custodial symmetry.

For example, when we take a limit Z6 = 0, as one can see from Eqs. (4.5) and (4.8), the
squared mass matrix for the neutral scalar bosons is diagonalized with Rij = δij, and the
relations m2

H± −m2
H2

= (Z4 +Z5)v
2/2 and m2

H± −m2
H3

= (Z4 −Z5)v
2/2 are shown. Therefore,

in the real Z5 basis, the conditions for the custodial symmetric potential are given by

Custodial symmetry : mH± = mH3 , ZI
7 = 0 (χ = 0, π), (4.28)

Twisted custodial symmetry : mH± = mH2 , ZR
7 = 0 (χ = π/2, 3π/2). (4.29)

When we denote the new contribution of the T parameter in the 2HDM as ∆T , at the one-loop
level, it is given by [151,152]

∆T =
1

16πm2
W sin2 θW

(
F (m2

H± ,m2
H2
) + F (m2

H± ,m2
H3
)− F (m2

H2
,m2

H3
)
)
, (4.30)

where the function F is defined by

F (a, b) =
1

2
(a+ b)− ab

a− b
ln
a

b
, (4.31)

and θW is the Weinberg angle. Even if Z7 ̸= 0, by taking mH2 = mH± or mH3 = mH± , ∆T can
vanish at the one-loop level. This is because, at this order, the T parameter does not depend
on Z7, which is not related to the mass formulae of the scalar bosons at the tree level.
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As we discussed in the former subsection, the custodial symmetry is violated by the CP
violating potential. Since the T parameter does not depend on Z7 at the one-loop level, the
proposition that the potential violates the CP symmetry ⇒ ∆T ̸= 0, and its inverse are not
true. The CP violating effects to ∆T from the non-zero Z6 has been discussed in Refs. [151,152].

4.1.6 Theoretical constraints

In this subsection, we discuss the vacuum stability, the perturbative unitarity, and the triviality
bound as theoretical constraints on the extended Higgs models.

First, for the stable vacuum, the potential must be Bounded From the Below (BFB). When
we set the potential value at the vacuum to be zero, the potential should be positive with an
infinite value of any direction of the scalar fields. These conditions are expressed by the quartic
coupling constants in the tree level potential, and for the 2HDM with the softly broken Z2

symmetry, the necessary conditions for the BFB is known as [150,156–161]

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ −
√
λ1λ2, λ3 + λ4 ± λ5 ≥ −

√
λ1λ2. (4.32)

The conditions for the general 2HDM have been discussed in Ref. [162].
Second, when we do perturbative calculation, we need to take into account the perturba-

tive unitarity constraint. By the partial wave expansion, amplitude of a scattering process is
decomposed by

M = 16π
∞∑
l

(2l + 1)alPl(cos θ), (4.33)

where Pl is Legendre polynomials and al is complex functions of the center-of-mass energy
√
s.

If we discuss the process at the tree level, s wave amplitude, i.e. a0, is real. The size of a0 is
bounded by a finite constant ξ, and usually it is taken to be ξ = 0.5 [146] or ξ = 1 [163]. The
tree level unitarity bound in the 2HDM has been studied in Refs. [164–167].

Finally, by the Renormalization Group Equation (RGE) analysis, the Landau pole, where
the coupling constants diverge, can appear in the extended Higgs models. In the SM, the self-
coupling constant of the Higgs boson becomes negative between 109 GeV and the Plank scale,
so that the electroweak vacuum is metastable [168–172]. On the other hand, due to multiple
coupling constants of scalar bosons, beta functions for them tend to be positive, resulting
the Landau pole at the scale much below the Planck scale. Above or near the Landau pole,
the theory should be replaced by a more fundamental theory. However, if the scale of the
Landau pole is very small, e.g. the scale which we have already reached in high energy collider
experiment, signatures should already been measured. Once we impose the condition that the
Landau pole does not appear below a scale, the parameters in the model are constrained. We
call this bound the triviality bound, and it will be discussed in chapter 9.

4.1.7 Experimental constraints

In this subsection, we discuss the experimental constraints for the 2HDM. We first focus on the
2HDM with the flavor aligned Yukawa matrix, (ρf )lm = 0 (l ̸= m). We then explain the effect
of the off-diagonal coupling constants, which cause tree level FCNC processes.

Higgs boson measurement

First, the coupling constants for H1 have been measured at LHC. In the 2HDM, the coupling
constants for H1V V are modified by the factor R11 from the SM predictions, as indicated in

28



4 Review of extended Higgs models

Eqs. (4.6) and (4.7). The H1ff coupling constants are also modified from the SM. Therefore,
we have κW = κZ = R11 and

κfl = R11

(
Y f
d

)
ll
+ (R12 ∓ iR13)

(
ρf
)
ll
, (4.34)

and those are constrained by ATLAS [19] and CMS [20] results, as discussed in section 2.6. In
table III of Ref. [173], available data for the Higgs signal strengths is summarized. When we
take αi = 0 (alignment limit), R11 = 1 and R12 = R13 = 0 are shown, and all of the κW,Z,f
parameters coincide to the SM ones at the tree level.

Direct searches for the charged scalar bosons

Second, we discuss the direct search experiments for charged Higgs bosons at LEP and LHC.
From the result at the LEP experiment [174], a lower bound of the mass is given by mH± ≳

80 GeV almost independent of ρf .
When the mass region is 80 GeV ≲ mH± ≲ 170 GeV, the charged Higgs bosons are produced

in the top quark decay process t → H±b. The upper bound of B(t → H±b) × B(H± → τ±ν)
in this mass region is severely constrained from ATLAS [175] and CMS data [176], and the
branching ratio needs to satisfy B(t→ H±b) ≲ O(10−3) when B(H± → τ±ν) = 1 [83].

At LHC, H± is produced via the top-associated production gb → H±t [100]. The coupling
constants ρf are constrained by the following decay modes H± → tb [177] or H± → τ±ν [176].
If it is kinematically allowed, H± also decay into an off-shell W boson and a neutral Higgs
boson [83,178].

The decays H± → W±Z via pp(WZ) → H±X have been searched by ATLAS [179] and
CMS [180]. These production and decay processes are the loop-induced processes via the
H±W∓Z vertices in the 2HDM, and it will be discussed in chapter 8.

Direct searches for the additional neutral scalar bosons

Third, we discuss the direct searches for additional neutral Higgs bosons, H2 and H3, at LHC.
There are three important single production processes of the neutral Higgs bosons, such as

gg → H2,3 (gluon fusion), gg → H2,3bb (bottom associated) and gg → H2,3tt (top associated).
When mH2,3 < 2mt, ρ

f are constrained from the results of H2,3 → ττ searches by ATLAS [181].
When mH2,3 > 2mt, the decay into a top quark pair is kinematically allowed, and ρf are also
constrained by the data of H2,3 → tt searches by ATLAS [182, 183] and CMS [184]. When the
mixing angles αi are non-zero, H2,3 can decay into W+W−, ZZ, H1H1 or ZH1, if they are
kinematically allowed [185].

The additional scalar bosons can be produced by the pair production processes [186–188].
The following multi charged lepton decays can be constrained [178] from the result by AT-
LAS [189].

Constraints from flavor experiments

Fourth, we discuss constraints from flavor experiments. In addition to the SM contributions,
diagrams involving the additional Higgs boson exchanges contribute to many flavor observables.

When we consider ρf to be diagonal, such new effects in the flavor changing observables
appear at the loop level. The important flavor observables which relates to diagonal elements
in ρf are B → Xsγ, Bd,s → µ+µ−, Bd,s-Bd,s and K0-K0 mixing [139, 173, 190–194]. The
experimental value of the branching ratio for B → Xsγ with the photon energy cut Eγ > 1.6
GeV is given by [195,196]

B(B → Xsγ)exp = (3.32± 0.15)× 10−4. (4.35)
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Figure 4.1: Several constraints on the additional Yukawa couplings from direct searches and
flavor experiments.

Observed values of the branching ratios of Bd → µµ and Bs → µµ can be referred in Refs. [195,
197–199]:

B(Bd → µµ) < 2.1× 10−10 (95% C.L.),

B(Bs → µµ) = (3.1± 0.6)× 10−9. (4.36)

The UTfit results [200, 201] give constraints on Bd-Bd and Bs-Bs mixing amplitudes as CBd
=

[0.83, 1.29], ϕBd
= [−6.0◦, 1.5◦] and CBs = [0.942, 1.288] at 95% C.L., where CBqe

2iϕBq =〈
B0
q

∣∣H full
eff

∣∣∣B0
q

〉
/
〈
B0
q

∣∣HSM
eff

∣∣∣B0
q

〉
(q = d, s). The upper limit of the 2HDM contribution to

the indirect CP violation in K0-K0 mixing is |ϵ2HDM
K | < 4.0× 10−4 [202].

As a representative parameter space of the 2HDM, constraints from the direct searches and
the flavor experiments on the additional Yukawa couplings are shown in figure 4.1. We here
have assumed Pich–Tuzon parametrization [203], where all of ρf are diagonalized as

ρu = ζ∗uY
u
d , ρd = ζdY

d
d , ρe = ζeY

e
d . (4.37)

We also have taken conditions of alignment limit αi = 0, degeneration of the additional scalar
bosonsmH± = mH2 = mH3 ≡ mΦ, and ζe = ζd. We neglect phases of ζf , and takemΦ = 300, 350
and 400 GeV in the left, middle and right panels, respectively. The black dotted lines satisfy
|ζd| = (mt/mb)|ζu| which are the reliable bounds about the calculation of σ(gb→ tH±), where
we have referred the value from Ref. [185]. The gray (cyan) regions below the black dashdot
lines are excluded from H± → tb, (H± → τν). The green solid (dashed) lines and the magenta
solid (dashed) lines are the upper bounds from H2 → ττ , (H3 → ττ) and H2(bb) → ττ ,
(H3(bb) → ττ), respectively. In the right panel of figure 4.1, which is the case of mΦ = 400
GeV, the constraint from H3 → tt can be seen as the black dashed line. The regions above the
red (orange) and blue dashdot lines are excluded from Bs(Bd) → µµ and B → Xsγ, respectively.
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Constraints on ρtc coupling from direct searches

Finally, we discuss constraints on the FCNC couplings from direct searches.
The off-diagonal elements of ρf cause the FCNC processes at the tree level, which are

severely constrained by flavor experiments. For example, according to Ref. [139], ρds,sd (ρuc,cu)
are strongly constrained by K0-K0 mixing and KL → µ+µ− (D0-D0 mixing and D0 → µ+µ−).
The FCNC couplings for the leptons are constrained by Lepton Flavor Violating (LFV) pro-
cesses, such as µ→ eγ [204], µ→ 3e [205], τ → eγ [206], and so on. As a result, we only have
sizable FCNC coupling in the top-charm sector. Due to the absence of the CKM suppression,
ρct receives stronger constraints, while ρtc can be O(1). As it will be discussed in section 7.3,
ρtc can be additional sources of the BAU in the scenario of EWBG.

The off-diagonal element ρtc contributes to the top quark decay process t → cH1 in αi ̸= 0
case. When the mixing angle α1 satisfies cos

(
α1 − π

2

)
≃ 0.3, ρtc ≳ 0.3 is excluded [207,208] by

ATLAS [209] and CMS [210] data.
The additional Yukawa couplings ρtc and ρtt affect production processes of the heavy neutral

scalar bosons via gg → H2,3 and gc→ H2,3t and their decay processes into tc or tt. Especially
ρtc produces same sign top quarks via gc→ H2,3t→ ttc process, and this is constrained by the
control region for ttW background (CRW) in the SM four top production searches [208,211–215].
When mH3 = 350 GeV and H2 decouples, Ref. [208] gives an upper bound ρtc ∼ 0.5 by
using the CMS data [216, 217]. If the mass and decay width of them are degenerated, this
constraint is weakened due to the interference between cg → tH2 → ttc and cg → tH3 → ttc
processes [211, 214]. On the other hand, gc → H2,3t → ttt process induced by ρtc and ρtt
was discussed in Ref. [213], and some parameter regions are excluded by the CMS four top
searches [216,217].

About the charged scalar bosons, the process of pp → H± → bc has a sensitivity for the
large ρtc coupling [218]. For example, ρtc ≳ 0.5 with mH± = 350 GeV are constrained by the
mistag rate �c→ b analysis with the bottom flavored dijet search at LHC with

√
s = 8 TeV [219].

4.1.8 Triple Higgs boson coupling

In the some of extended Higgs models, such as the 2HDM, it is known that the triple Higgs
boson coupling λhhh is enhanced by the quantum non-decoupling effect of the additional scalar
bosons [23, 220–223]. By using the one loop effective potential in the 2HDM, as it will also be
discussed in chapter 7, we obtain the deviation from the SM prediction

∆R ≡ λhhh
λSMhhh

− 1 =
1

12π2v2m2
H1

{
2
(m2

H± + Y 2
2 )

3

m2
H±

+
(m2

H2
+ Y 2

2 )
3

m2
H2

+
(m2

H3
+ Y 2

2 )
3

m2
H3

}
. (4.38)

This deviation corresponds to κλ, and it would be measured by the process of di-Higgs pro-
duction at future colliders [24, 224–233]. At the HL-LHC and the ILC with

√
s = 500 GeV

(1 TeV), this coupling is expected to be measured at the 50% [21] and 27% (10 %) [24, 25]
accuracy, respectively.

The triple Higgs coupling can be a probe of the SFOPT [23], and it will be discussed in
chapter 7.

31



4 Review of extended Higgs models

Particle QL uR dR LL eR Φ Nα η S
SU(3)C 3 3 3 1 1 1 1 1 1
SU(2)L 2 1 1 2 1 2 1 2 1
U(1)Y 1/6 2/3 −1/3 −1/2 −1 1/2 0 1/2 0

U(1)B−L 1/3 1/3 1/3 −1 −1 0 −1 0 +2
Z2 + + + + + + − − +

Table 4.2: Particle content and their quantum numbers.

4.2 U(1)B−L gauge extension of Inert doublet model with

the right-handed neutrino

4.2.1 Particle contents and Lagrangian

In this section, we introduce a model to explain the tiny neutrino mass and the relic abundance
of the DM. We consider gauged U(1)B−L extension of the Inert doublet model with the right
handed neutrino [76]. In this model, three Z2 odd Right-Handed (RH) neutrinos Nα (α =
1, 2, 3), a Z2 odd scalar SU(2)L doublet η, a scalar singlet S and an electrically neutral U(1)B−L
gauge boson Z ′ are introduced. The Lagrangian is invariant under the gauge group SU(3)C ×
SU(2)L × U(1)Y × U(1)B−L with an unbroken Z2 discrete symmetry. The particle content is
shown in Table 4.2.

The relevant interaction Lint for our discussion is given by

Lint = LSM
Yukawa + LN − V (Φ, η, S), (4.39)

where LSM
Yukawa is the SM Yukawa interaction, and

LN =
3∑

α=1

(
−

3∑
i=1

giαLiη̃Nα −
yRα
2
N c
αSNα + h.c.

)
(4.40)

with η̃ = iτ 2η∗, where i, α = 1, 2, 3 are flavors of leptons. Without loss of generality, the Yukawa
coupling yR of RH neutrinos can be flavor diagonal. The Yukawa coupling among LiΦNα is
prohibited due to the unbroken Z2 symmetry. The active neutrinos remain massless at the tree
level, and obtain tiny masses at the one-loop level.

The scalar potential V (Φ, η, S) in this model is given by

V (Φ, η, S) = µ2
1|Φ|

2 + µ2
2|η|

2 + µ2
S|S|

2 +
λ1
2
|Φ|4 + λ2

2
|η|4 + λ3|Φ|2|η|2

+ λ4
∣∣Φ†η

∣∣2 + λ5
2

[
(Φ†η)2 + h.c.

]
+ λ̃|Φ|2|S|2 + λ|η|2|S|2 + λS|S|4,

(4.41)

where λ5 can be taken as real by rephasing of η. We assume µ2
1 < 0, µ2

S < 0, µ2
2 > 0, so that Φ

and S receive non-zero VEVs by spontaneously symmetry breaking of the SU(2)L×U(1)Y and
U(1)B−L gauge symmetries, respectively. This potential is an extension of the Inert doublet
model given in Eq. (4.17), so that the VEV of η remains zero.

The U(1)B−L gauge symmetry is assumed to be spontaneously broken above the electroweak
scale. The scalar singlet S is parameterized as

S =
1√
2
(vS + ϕS + izS), (4.42)

where vS is the VEV of the U(1)B−L symmetry breaking, ϕS is a neutral scalar boson, and
zS is the NG boson. The Z ′ boson obtains its mass as mZ′ = 2gB−LvS by its longitudinal
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mode absorbing zS, where gB−L is the gauge coupling for the U(1)B−L symmetry. In the
SU(2)L × U(1)Y × U(1)B−L gauge sector, we suppose that the kinetic mixing between Z and
Z ′ is negligible. RH neutrinos Nα also receive their masses as

mNα =
yRα vS√

2
. (4.43)

After the electroweak symmetry breaking, the SU(2)L scalar doublet Φ is parameterized as

Φ =

 G+

1√
2
(v + ϕ+ iG0)

 , (4.44)

where v is the VEV of the electroweak symmetry breaking, G+ and G0 are NG bosons absorbed
by longitudinal modes of the electroweak gauge bosons, i.e., W and Z bosons, respectively. The
stationary conditions give the following relations

µ2
1 +

λ1
2
v2 +

λ̃v2S
2

= 0, µ2
S + λSv

2
S +

λ̃v2

2
= 0. (4.45)

The mixing between ϕ and ϕS leads to the following mass terms

1

2

(
ϕ ϕS

)
M2

(
ϕ
ϕS

)
=

1

2

(
ϕ ϕS

)(λ1v2 λ̃vvS
λ̃vvS 2λSv

2
S

)(
ϕ
ϕS

)
. (4.46)

The squared mass matrix M2 can be diagonalized by an orthogonal matrix with the mixing
angle α (

h1
h2

)
=

(
cosα − sinα
sinα cosα

)(
ϕ
ϕS

)
, (4.47)

where h1 and h2 are mass eigenstate of neutral scalar bosons

m2
h1

= λ1v
2 cos2 α + 2λSv

2
S sin

2 α− λ̃vvS sin 2α, (4.48)

m2
h2

= λ1v
2 sin2 α + 2λSv

2
S cos

2 α + λ̃vvS sin 2α, (4.49)

with the constraint

λ̃vvS cos 2α +

(
λ1
2
v2 − λSv

2
S

)
sin 2α = 0. (4.50)

In this model, we fix the mass eigenstate h1 to be the SM-like Higgs boson with mh1 = 125
GeV, and h2 is the additional scalar boson.

The Z2-odd scalar SU(2)L doublet field η can be parameterized as

η =

 H+

1√
2
(H + iA)

 . (4.51)

The mass spectrum of Z2-odd scalar particles is

m2
H± = µ2

2 +
λ

2
v2S +

λ3
2
v2, (4.52)

m2
H = µ2

2 +
λ

2
v2S +

λ3 + λ4 + λ5
2

v2, (4.53)

m2
A = µ2

2 +
λ

2
v2S +

λ3 + λ4 − λ5
2

v2. (4.54)

There are 11 parameters µ2
1,2, µ

2
S, λ1,2,3,4,5, λ, λS, λ̃ in the scalar potential in Eq.(4.41). They

can be replaced by 9 new physics parameters µ2
2,mh2 ,mH ,mA,mH± , α, vS, λ2 and λ, in addition

to the two SM parameters v and mh1 .
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Figure 4.2: The one-loop diagram which generates small neutrino masses.

4.2.2 Radiative generation of the neutrino mass

In this model, tiny neutrino masses are generated via the one-loop induced dimension-six op-
erator S(LΦ)cLΦ/Λ2, where Λ is an energy scale parameter, as shown in FIG. 4.2.

Following the framework of Ref. [123, 124], after the electroweak symmetry breaking, the
mass matrix of light neutrinos at one-loop level is

mij
ν =

∑
α

giαgjαΛα ≡ (gΛgT )ij, (4.55)

where the diagonal matrix Λ is defined by

Λα =
mNα

32π2

[
m2
H

m2
Nα

−m2
H

ln

(
m2
Nα

m2
H

)
− m2

A

m2
Nα

−m2
A

ln

(
m2
Nα

m2
A

)]
. (4.56)

In order to evaluate the Yukawa coupling of neutrinos, we adopt the Casas-Ibarra (CI)
parametrization [234]. The matrix of the Yukawa coupling can be parameterized as

giα =
(
UPMNS

√
MνR

√
Λ−1

)
iα
, (4.57)

where UPMNS is the PMNS matrix [106,107], and the diagonalized mass matrix of active neutri-
nos is defined as Mν ≡ diag(mν1 ,mν2 ,mν3). The matrix R is an arbitrary complex orthogonal
matrix. In the benchmark analysis which is given in chapter 5, where the problems of the
neutrino mass and the DM are solved, we will take R = I.

4.2.3 Constraints on the model

In this subsection, we discuss several constraints on the U(1)B−L extension of the Inert doublet
model with the RH neutrino.

First, BFB conditions for this model is given by [150,156–161,235–237]

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ −
√
λ1λ2, λ3 + λ4 ± λ5 ≥ −

√
λ1λ2,

λS ≥ 0, λ ≥ −
√
2
√
λ2λS, λ̃ ≥ −

√
2
√
λ1λS. (4.58)

Second, as a perturbative criterion, we require that all the quartic vertices of scalar fields
should satisfy λ1,2,3,4,5, λS, λ̃, λ < 4π, and for Yukawa couplings, it is (yR1 )

2, (yR2 )
2, (yR3 )

2 < 4π.
Third, in the following analysis, we consider normal mass ordering of the light neutrinos,

and adopt the latest data from the PDG [73], which is given in Eq. (3.2).
Fourth, we consider constraints from charged LFV. In this model, charged LFV decay

processes are generated by one-loop diagrams mediated by H± and Nα. We consider constraints
from li → ljγ and li → ljlk l̄k, as shown in Table 4.3.
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LFV processes Current bounds on branching ratios
µ+ → e+γ 3.1× 10−13 [204]

µ+ → e−e+e− 1.0× 10−12 [205]
τ+ → e+γ 3.3× 10−8 [206]
τ+ → µ+γ 4.2× 10−8 [238]

τ− → e−e+e− 2.7× 10−8 [239]
τ− → e+µ−µ− 1.7× 10−8 [239]
τ− → e−µ+µ− 2.7× 10−8 [239]
τ− → µ+e−e− 1.5× 10−8 [239]
τ− → µ−e+e− 1.8× 10−8 [239]
τ− → µ−µ+µ− 2.1× 10−8 [239]
µ−Ti → e−Ti 4.3× 10−12 [240]
µ−Au → e−Au 7.0× 10−13 [241]

Table 4.3: Current experimental bounds for LFV processes.

Fifth, this model basically provides two candidates of the DM, which are the lightest RH
neutrino or the lightest neutral Z2 odd scalar particle, H or A. The relic density of the DM
candidates should satisfy observation results from the Planck satellite Ωh2 = 0.120±0.001 [18].
Direct detection experiments can also give constraints to this model. We apply limits from
the LZ experiment [131, 132] on the WIMP-nucleon spin independent elastic scattering cross
section. Detailed analysis is given in chapter 5.

Sixth, collider experiments give rich constraints on this model. This model includes the
Inert doublet model, so that some constraints are same as the 2HDM.

By the chargino searches at the LEPII experiment [174], the region of mH± > 80 GeV are
constrained. The LEPII experiment also excludes the intersection of the following mass region
for inert scalar particles [242]:

mH < 80 GeV, mA < 100 GeV, mA −mH > 8 GeV. (4.59)

With precise measurements of decay widths of W and Z bosons [73], kinematically allowed
regions for decay processes W/Z → ηη are excluded.

For the constraints of the Z ′ gauge boson, the LEP II experiment gives the lower limit
of the ratio, as given by mZ′/gB−L > 7 TeV [243–245]. The null result in searching for the
Z ′ boson at ATLAS [246, 247] and CMS [248, 249] gives strong constraints on the Z ′ boson,
mZ′ > 5.15 TeV.

In addition, the mixing angle α predicts the deviation of the Higgs couplings from the SM.
For example, κ parameter for the h1ZZ coupling in this model is obtained by

κZ = cosα, (4.60)

and current experimental results for the Higgs boson coupling [19, 20] constrain the mixing
angle α. From the CMS constraints for κZ which have been already shown in table. 2.2, we
have

0.90 < cosα ≤ 1.0, (4.61)

as a criterion of 95% CL. As similar to h1, the additional neutral scalar boson h2 can also
be constrained by the Higgs signal strength at LHC [250, 251]. For mh2 ≳ 125 GeV (mh2 ≲
125 GeV), sinα ≃ 0.3 (sinα ≃ 0.1) can be a conservative upper bound.

Finally, we consider constraints from the electroweak precision test. Especially, the oblique
parameter T gives the strongest constraint on this model among S, T, U parameters. In this
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model, inert doublet fields H±, H,A and scalar singlet h2 contribute to deviations of T [67,252,
253]:

∆T =
3 sin2 α

16πs2W

[
fT

(
m2
h2

m2
W

)
− fT

(
m2
h1

m2
W

)
− 1

c2W

(
fT

(
m2
h2

m2
Z

)
− fT

(
m2
h1

m2
Z

))]
+

1

16πm2
W s

2
W

[
F (m2

H± ,m2
H) + F (m2

H± ,m2
A)− F (m2

H ,m
2
A)
]
, (4.62)

where F (a, b) is defined in Eq. (4.31), and

fT (x) =
x log x

x− 1
. (4.63)
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Chapter 5

Radiative neutrino mass and dark
matter in U(1)B−L gauge theory

In this chapter, we discuss a concrete scenario where the tiny mass of the neutrinos and the
relic abundance of the DM are solved. We do not discuss baryogenesis in this chapter, however,
this model has a possibility to explain the BAU, as we will mention in section 5.3.

The seesaw mechanism [108–118] is a famous explanation of the tiny neutrino mass, and
it has been studied for a long time. There are three types of the seesaw mechanism, in which
different types of particles generate the neutrino mass. For example, in the type-I seesaw
mechanism [108–111], the left-handed neutrino mass is suppressed by the inverse of the heavy
mass of RH neutrinos. On the other hand, models for generating neutrino mass at the loop
level (radiative seesaw model) have been considered [119–125]. In some of these models, DM
candidates run in loop diagrams of the light neutrinos, and the DM problem can be solved
simultaneously [122–125]. A representative example is the model proposed by Tao and Ma [123,
124], which can explain observed neutrino masses with TeV scale dark matter. In the Tao-Ma
model, the Z2 odd RH neutrinos and the Z2 scalar doublet η radiatively generate the neutrino
mass. Due to the unbroken Z2 symmetry, the stability of the DM candidates is guaranteed. In
Ref. [254], a model of type-I seesaw mechanism has been proposed, where the RH neutrinos
get their Majorana masses from the spontaneous breaking of the U(1)B−L gauge symmetry.
This idea is extended in the radiative seesaw model, and U(1)B−L gauge extension of the Inert
doublet model with the Z2 odd RH neutrino has been proposed [76]. In Ref. [76], the observed
DM relic abundance can be realized through the pair annihilation via the s-channel scalar
exchange by the mixing between the SM-like Higgs boson and the extra U(1)B−L scalar singlet.
Some phenomenology of this model have been studied by Ref. [77, 78].

In section 4.2, we have explained this model, U(1)B−L gauge extension of the Inert doublet
model with the RH neutrino. In the original work [76], it has been shown that the mass
generation of the light neutrino and the DM relic abundance can be explained. However, after
the Higgs boson discovery, there are many available experimental results, such as the Higgs
boson measurement, Z ′ search at LHC, Direct Detection of the DM, and so on. Therefore, we
revisit this model to make new benchmark scenarios for solving the problems of the neutrino
mass and the DM.

In the following sections, we first discuss the LFV processes in the model. As discussed in
section 4.2, the neutrino mass can be generated by the RH neutrino at the loop level. The
neutrino mass is generated by lepton flavor violating couplings among the SM leptons, the Z2

odd RH neutrinos and the Z2 odd scalar doublet η. As a consequence of this LFV couplings,
LFV processes, e.g., µ→ eγ, occur. We then discuss two scenarios for the DM candidates, the
Z2 odd RH neutrinos and η. The first scenario is a fermionic DM scenario where N1 is the
lightest particle in the Z2 odd sector, and shows allowed parameter spaces which can explain the
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relic abundance of the DM and the neutrino mass under the experimental data. The second
one is a scalar DM scenario in the model, whose discussions are similar to several previous
studies [242, 255–258]. In the end of this chapter, we give discussions and comments on the
results.

5.1 Lepton flavor violation

ei ej
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ei ej
Nα

ej

H±

ei ej
Nα

ei

H±

Figure 5.1: ei → ejγ decay
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Figure 5.2: ei → ejekek decay

In this section, we consider current constraints and future prospects of the LFV processes.
As shown in figures 5.1-5.2, LFV processes ei → ejγ and ei → 3ej can be enhanced through
Nα–H

± loop diagrams in this model.

5.1.1 ei → ejγ decay

The branching ratio for ei → ejγ is calculated as [259]

Br(ei → ejγ) =
48π3αem|AD|2

G2
F

Br(ei → ejνjνi), (5.1)

with the amplitude from dipole operator

AD =
∑
α

ig∗iαgjα
32π2m2

H±
F (ξα), (5.2)

where ξα is defined as ξα ≡ m2
Nα
/m2

H± , αem is the fine structure constant, GF is the Fermi
constant, and the function F (x) is defined as

F (x) =
1− 6x+ 3x2 + 2x3 − 6x2 ln x

6(x− 1)4
. (5.3)
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5.1.2 ei → 3ej decay

The ei → 3ej processes include photon penguin diagrams and box diagrams. The branching
ratio of ei → 3ej processes is given by [259]

Br(ei → ejej ēj) =
3(4π)2αem

8G2
f

{
|AND|2 + |AD|2

(16
3

log
mei

mej

− 22

3

)
+

1

6
|B|2 + 1

3
(2|FRR|2 + |FRL|2)

}
+
(
− 2ANDA

∗
D +

1

3
ANDB

∗ − 2

3
ADB

∗ + h.c.
)
× Br(ei → ejνjνj). (5.4)

The amplitudes AND, B, FRR and FRL are the photonic non-dipole contribution, the box
contribution and the contributions from the Z penguin diagrams, respectively. These amplitudes
are given by [259]

AND =
3∑

α=1

g∗iαgjα
6(4π)2m2

H±
G2(ξα),

B =
1

(4π)2m2
H±e2

3∑
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D1(ξα, ξβ)gjβg

∗
jβgjαg

∗
iα +

√
ξαξβD2(ξα, ξβ)gjβgjβg

∗
jαg

∗
iα

}
,

FRR =
glR

g2s2Wm
2
Z

3∑
α=1

g∗iαgjαmeimej

2(4π)2m2
H±

g

cW
F2(ξα),

FRL =
glL

g2s2Wm
2
Z

3∑
α=1

g∗iαgjαmeimej

2(4π)2m2
H±

g

cW
F2(ξα), (5.5)

where glL = g(1/2− s2W )/cW and glR = −gs2W/cW , and the loop functions are given by

G2(x) =
2− 9x+ 18x2 − 11x3 + 6x3 log x

6(1− x)4
,

D1(x, y) = − 1

(1− x)(1− y)
− x2 log x

(1− x)2(x− y)
− y2 log y

(1− y)2(y − x)
,

D2(x, y) = − 1

(1− x)(1− y)
− x log x

(1− x)2(x− y)
− y log y

(1− y)2(y − x)
. (5.6)

When the processes are dominated by the photon penguin diagrams, the branching ratio has a
simple relation [259–261]:

Br(ei → ejej ēj) ≃
αem

3π

[
2 log

(
mei

mej

)
− 11

4

]
Br(ei → ejγ), (5.7)

Br(ei → ejekēk) ≃
αem

3π

[
2 log

(
mei

mej

)
− 3

]
Br(ei → ejγ) (j ̸= k). (5.8)

The box diagrams can be dominant when ξ ≫ 1 or ξ ≪ 1 if masses of RH neutrinos are
degenerate.

The µ → e conversion in muonic atoms is also a signature of LFV. However, µ → eγ is
more stringent than this process [259]. Detailed analysis of LFV can be seen in Ref. [259–262].

Considering the constraints from neutrino oscillations and LFV measurements, we choose
the following parameters for later use:

mN2 = mN1 + 2500 GeV, mN3 = mN1 + 3000 GeV, mH = 1000 GeV,

mH± = mA, δ ≡ mH± −mH = 10−5 GeV. (5.9)
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Figure 5.3: Br(µ → eγ) (blue) and Br(µ → 3e) (red) as a function of ξ = m2
N1
/m2

H± . Hori-
zontal dashed lines show the current upper bounds from MEGII experiment (blue) [204] and
SINDRUM experiment (red) [205]. The dot-dashed lines show the future bounds from MEG
upgrade (blue) [263] and Mu3e (red) [264].

LFV constraints on the mass of N1 are shown in figure 5.3. The blue (red) solid line
shows Br(µ → eγ) (Br(µ → 3e)). The horizontal dashed blue and red lines are current upper
bounds from MEGII [263] and SINDRUM [264], respectively. Future expected bounds from
MEG upgrade [263] and Mu3e [264] are shown as dot-dashed lines. As mN1 is increasing,
branching ratios of LFV processes are decreasing, which provides the lower bound of mN1

around mN1 ≃ 5.1 GeV.

5.2 Dark matter

In this section, we consider the freeze-out mechanism for DM candidates. The relic abundance
of the DM particle can be calculated by solving the Boltzmann equation [265]:

dY

dx
= −

√
g∗π

45

mDMmPl

x2
⟨σv⟩ (Y 2 − Y 2

EQ), (5.10)

where x ≡ mDM/T is an independent variable, Y ≡ nDM/s is the comoving density of the DM.
The thermal averaged cross section ⟨σv⟩ contains cross sections of all annihilation processes
before the DM freezes out. Integrating the Boltzmann equation from x = 0 to xF = mDM/TF ,
the relic abundance is given by

ΩDMh
2 ≃ 2.75× 10−8mDMY (TF )GeV−1, (5.11)

where TF is the freeze-out temperature of the DM. In the following analysis, we use micrOMEGAs6.0 [266]
to calculate the relic abundance of the DM.
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Figure 5.4: Annihilation processes N1N1 → h1(h2) → ff̄ , ZZ,W+W−, h1(h2)h1(h2) through
the mixing between ϕ and ϕS.
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Figure 5.5: Relic abundance of N1 as a function of mN1 . The red dashed line is the current
bound of the DM relic abundance from the Planck experiment [18].

5.2.1 N1 dark matter

In this scenario, we consider N1 as the lightest Z2 odd particle.
First, we consider the relic abundance of the N1 DM. In the Tao-Ma model [123, 124],

there are no sufficient annihilation rates for the N1 DM due to strong constraints from LFV
experiments [267]. However, it is possible for N1 to satisfy the DM abundance with the mixing
between the Higgs field Φ and the extra scalar singlet S, because N1 can annihilate via N1N1 →
h1(h2) → ff̄ , ZZ,W+W−, h1(h2)h1(h2) processes [254], as shown in figure 5.4.

In figure 5.5, the relic abundance of N1 is shown as a function of mN1 . We use the following
parameters to calculate the relic abundance:

cosα = 0.97, vS = 30 TeV, mh2 = 200 GeV, mZ′ = 5.2 TeV,

mN2 = mN1 + 2500 GeV, mN3 = mN1 + 3000 GeV, λ = 10−6, λ3 = 0.1,

mH = mN1 + 103 GeV, mH± = mA = mH + 10−5 GeV. (5.12)

The relic abundance of N1 is reduced significantly around mN1 ≃ mh1/2 and mN1 ≃ mh2/2,
respectively. Annihilation of the RH neutrinos to the SM particles is enhanced resonantly via
s-channel exchange of h1 and h2. We also notice that it is possible for the RH neutrinos to
annihilate via Z ′ boson exchange. However, this process is not dominant since the cross section
of Z ′ boson exchange ⟨σv⟩ is proportional to 1/v4S, which is much smaller than Higgs boson
exchange processes in the low mass region mN1 ≪ mZ′/2. In the mass region near the Z ′ pole
mN1 ≃ mZ′/2, even if annihilation can be enhanced due to Z ′ resonance, it cannot realize the
required relic abundance.
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Figure 5.6: Parameter space of mN1 = 100+ 10−4 GeV with constraints from LEPII [243,244],
ATLAS [19], CMS [20] and LZ 2024 [132] experiments. The red line is the bound from the
Planck experiment [18].

Second, we consider the direct detection of the N1 dark matter. The lightest RH neutrino N1

can have elastic scattering with nucleons by Higgs exchange processes. The Spin Independent
(SI) cross section for the proton target is

σpSI =
4µ2

π
f 2
p , (5.13)

where µ ≡ mN1mp

mN1 +mp

is the DM-nucleus reduced mass in the center of mass frame. The

hadronic matrix element fp [268] is given by

fp =
∑

q=u,d,s

cq
mp

mq

f pTq +
2

27
f pTG

∑
q=c,b,t

cq
mp

mq

, (5.14)

where f pTq and f
p
TG express mass contributions to the nucleon from quarks and gluons, and mq

is the mass of a quark. The effective vertex cq is defined as

cq = yαR

√
2mq

v

[(
sinα√

2

)
1

m2
h1

(
cosα√

2

)
−
(
sinα√

2

)
1

m2
h2

(
cosα√

2

)]
. (5.15)

The SI cross section σpSI has a simple relation with the BSM parameters in this model:

σpSI ∝
(
mN1 sin(2α)

vS

)2

×
(

1

m2
h1

− 1

m2
h2

)2

. (5.16)

In figure 5.6, the relic abundance of N1 DM is shown as colored contour in the vS-α plane.
We choose the following parameter set:

mh2 = 200 GeV, mN1 =
mh2

2
+ 10−4 GeV, mN2 = 2500 GeV, mN3 = 3000 GeV,
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Figure 5.7: The possible SI cross section of N1 as a function of mN1 in our parameter space.
The red points are excluded by theoretical constraints. The orange line is the upper bound
from the LZ 2022 results [131]. The dashed orange line is the upper bound from the LZ 2024
results [132].

λ = 10−6, λ3 = 0.1, mH = 1000 GeV, mH± = mA, δ ≡ mH± −mH = 10−5 GeV. (5.17)

The allowed parameter space is the region encircled by the LZ 2024 [132] (magenta dot-dashed),
LHC [19,20] (orange dashed) and Planck experiment [18] (red solid), which is on the right side
of the LEPII constraint [243, 244] (cyan dotted). The contour lines of the relic abundance are
not symmetric with respect to α because the cross sections of s-channels for the annihilation
processes N1N1 → h1(h2)h1(h2) are not symmetric with respect to α. As we can see from this
figure, the relic abundance decreases with large mixing angle α and small vS. This is because
the dominant annihilation cross sections are approximately proportional to a factor which also
appears in Eq. (5.16), and we have

⟨σv⟩dom ∝
(
mN1 sin(2α)

vS

)2

. (5.18)

Therefore, the benchmark point given in Ref. [76], where the large mixing angle α = π/4 and
the small U(1)B−L VEV, vS = 3.7 TeV were taken, has already been excluded by the Higgs
boson measurement and the LZ 2024. Nevertheless, we still have room in the small mixing angle
α and the large vS. We also investigate the parameter space of the SM-like Higgs resonance
near the region mN1 ≃ mh1/2. We find that there are still parameter spaces for the N1 DM
with the SM-like Higgs resonance if mh2 is near mh1 .

Third, we explore the allowed mass region of N1 with h2 resonance scenario. We choose the
following parameter space

cosα ∈ [0.9, 1], vS ∈ [3.5, 80] TeV, mh2 ∈ [10, 104] GeV (5.19)

with

mN2 = mN1 + 2500 GeV, mN3 = mN1 + 3000 GeV, mh2 = 2mN1 + 0.2 GeV,

λ = 10−6, λ3 = 0.1, mH = mN1 + 103 GeV, mH± = mA = mH + 10−5 GeV. (5.20)

We scan cosα, vS and mh2 with 20 × 20 × 100 points, respectively. The allowed parameter
space of N1 is shown in figure 5.7, in which all points satisfy the constraint ΩDMh

2 < 0.12.
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The blue points satisfy all the theoretical and experimental constraints, while the red points
are excluded by the theoretical constraints. In the mass region near mN1 ≃ mh1/2, the SI
cross section greatly reduces due to the destructive interference of the two Higgs states. In the
mass region mN1 ≳ 80 GeV, the SI cross section increases as mN1 is increasing. In the mass
region mN1 > 500 GeV, the SI cross section exceeds the LZ bound, therefore the current direct
detection experiments give the upper bound on the mass of N1.

5.2.2 Scalar dark matter

In this scenario, we consider H to be the lightest Z2 odd particle. The H DM scenario has been
studied extensively in the Inert doublet model [242,255,256,269,270], and discussions here are
similar to the Inert doublet model with an additional scalar singlet [257,258].

In the Inert doublet model, when the mass of H is below the W boson mass, a pair of H
mainly annihilates into the SM fermions. The relic abundance greatly decreases at mH ≃ mh/2
and mH ≃ mZ/2, because HH → bb and HH → qq mediated by the SM Higgs and Z boson,
respectively, are enhanced. In mH ≳ mW , the annihilation channels HH → W+W− and
HH → ZZ start to be opened, and predicted relic abundance is not sufficient to explain the
observed value. In the high mass region, mH ≳ 500 GeV, the (co)annihilation channels into
the SM gauge bosons, which are controlled by λL = λ3+λ4+λ5, can be dominant. As a result,
depending on the combination of λ3, λ4 and λ5, preferred relic density can be obtained again.

In our model, there are two differences with the inert doublet model. First, the relic density
can be satisfied by the additional Higgs resonance near the mass region mH ≃ mh2/2. H can
annihilate via HH → h1(h2) → ff̄ ,W+W−, ZZ, h1(h2)h1(h2) processes. Second, the SI cross
section in direct detections can be changed due to the h2 exchange processes. The SI cross
section of H is given by

σHSI =
µ2
H

4πm2
H

f 2
p , µH ≡ mHmp

mH +mp

, (5.21)

where fp has the same definition as Eq. (5.14), and cq is defined as 1

cq =
mq

2v

[
λvS sinα cosα− λLv cos

2 α

m2
h1

− λLv sin
2 α + λvS sinα cosα

m2
h2

]
. (5.22)

We here choose the following parameter space

mH ∈ [50, 90] GeV, cosα ∈ [0.9, 1], µ2
2 ∈ [2000, 4000] GeV2, mH± = mA = mH + 50 GeV,

(5.23)
and fix the following parameters for the H DM scenario:

vS = 5000 GeV, mh2 = 120 GeV, λ = 10−4,

mN1 = 3000 GeV, mN2 = 3500 GeV, mN3 = 4000 GeV. (5.24)

The allowed parameter space of H is shown in figure 5.8. The red and blue points satisfy
ΩDMh

2 = 0.12 and ΩDMh
2 < 0.12, respectively. The allowed parameter space is near 60 GeV

due to the destructive interference of the two Higgs states, indicating that there is still allowed
parameter space for the H DM scenario in this model.

5.3 Discussions

In this section, we give some comments on the results shown in section 5.1 and 5.2. In sec-
tion 5.1, we have shown that experiment results give the lower bound of mN1 . At present, the

1The SI cross section can be modified depending on the size of λ2 via loop corrections [271].
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Figure 5.8: The possible SI cross section of H as a function of mH in our parameter space.
The red points satisfy ΩDMh

2 ≃ 0.12, and the blue points satisfy ΩDMh
2 < 0.12. The solid and

dashed orange line is the upper bound from the LZ 2022 results [131] and LZ 2024 results [132],
respectively.

most stringent constraint comes from the µ → eγ process, which gives the lower bound on
mN1 > 5.2 GeV in our N1 DM scenario. In the future, the MEG experiment [263] may improve
its sensitivity down to Br(µ → eγ) ≃ 6 × 10−14, and the Mu3e experiment [264] may upgrade
the sensitivity to Br(µ→ 3e) ≃ 1×10−16. Future LFV experiments would give the lower bound
mN1 > 21 GeV in our N1 DM scenario, which is 4 times better than the current bound.

In section 5.2, we have shown benchmark points and parameter space of the DM candidates
in this model. We here very briefly mention the prospect for collider searches in each scenario.
In the N1 DM scenario, N1 could be tested through H± → l±N1 signals at LHC and HL-LHC
if it is kinematically allowed, mainly via pp → H+H− → N1N1l

+l− [178, 255, 269, 272–274]. In
the H DM scenario, inert scalar particles can be produced through monojet processes (e.g.,
qq̄ → Zg → HAj and qq̄ → h1g → HHg) in hadron colliders. Detailed analysis of the inert
scalars in LHC can be found in Ref. [178,255,273]. Inert scalars can also be produced in lepton
colliders through e+e− → Z → AH(H+H−) processes [269,274].

The existence of the Z ′ boson is another difference from the Tao-Ma model. Though
searches in LHC give strong constraints on the mass of Z ′ boson, it can be lighter with
smaller gauge couplings. Since hadron colliders (e.g., LHC and HL-LHC) have large back-
grounds, it can only reach the gauge coupling gB−L of O(10−2) [275]. However, lepton colliders
(e.g., ILC) can reach smaller gauge coupling of O(10−3) [275]. Decays of the Z ′ boson into
SM particles are proportional to (B − L)2. Due to its large mass, the branching ratios of
Z ′ → qq̄, l+l−, νLν̄L, N1N1, h1h1, h1h2 and h2h2 for the parameter set Eq. (5.12) are given ap-
proximately by 0.20, 0.29, 0.15, 0.15, 6.9× 10−4, 4.4× 10−2, 0.17, respectively [76,244].

Direct detection experiments become more and more stringent for DM candidates. The
LZ 2024 results give the upper bound of N1 DM around 500 GeV. The inert scalar DM is still
viable due to the destructive interference of the two Higgs states in the low mass region. Future
DM detection experiments may give stronger bounds on the DM mass in this model.

In this model, there are CP phases in R matrix for the RH neutrinos. Therefore, a baryo-
genesis scenario in this model, e.g. leptogenesis [136] or electroweak baryogenesis [27], could be
considered [276].
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5.4 Short summary of chapter 5

The radiative seesaw model with gauged U(1)B−L × Z2 extension is a well-motivated scenario
which gives consistent predictions of active neutrino masses and the abundance of the DM.
Majorana masses of the RH neutrinos, the lightest of which can be identified as the DM,
are given by the spontaneous breaking of the U(1)B−L gauge symmetry. We have revisited this
model with the latest constraints from the DM searches, neutrino oscillations, flavor experiments
and collider experiments. We have explored the feasible parameter space of this model, and have
found that there is still allowed region for this model under the latest experimental constraints.
We have presented new viable benchmark scenarios for this model, i.e., the RH neutrino DM
scenario and the scalar DM scenario. We also have mentioned the testability of these benchmark
scenarios in future experiments.
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Chapter 6

Review of electroweak baryogenesis

6.1 Mechanism of electroweak baryogenesis

6.1.1 Wash out of B + L

As we have mentioned in section 2.4, by the sphaleron process, the sum of baryon and lepton
numbers B+L is not conserved in the early Universe. After the EWPT, the sphaleron process
is exponentially suppressed, while it is in thermal equilibrium before the symmetry breaking.
Therefore, created B + L much before the electroweak era is washed out.

If the sphaleron
(
|0⟩ ↔

∏
i uLdLdLνiL

)
is in thermal equilibrium before the electroweak

symmetry breaking, the baryon and lepton number can be written as

B =
8Nf + 4m

22Nf + 13m
(B − L), L = − 14Nf + 9m

22Nf + 13m
(B − L), (6.1)

where Nf and m are the generation of quarks and the number of the Higgs doublet (Nf = 3
and m = 1 in the SM), respectively. Therefore, in order to get non-zero baryon asymmetry,
non-zero B − L must be created before freezing out of the sphaleron process, i.e. electroweak
symmetry breaking. Alternatively, we can consider non-equilibrium situation of the sphaleron
process, which can be satisfied during first order EWPT. The former scenario corresponds to
the cases of the GUT baryogenesis [133, 134], leptogenesis [136] and so on, while EWBG uses
the latter mechanism.

6.1.2 First order phase transition

In thermal situations, such as in the early Universe, the effective potential which describes
properties of the vacuum is corrected by finite temperature effects [277]. As a simple example,
we consider λϕ4 theory with a negative mass term µ2 < 0

L =
1

2
∂µϕ∂

µϕ− 1

2
µ2ϕ2 − 1

4!
λϕ4. (6.2)

With the high temperature expansion and the resummation of the leading diagrams [277], we
obtain

V (φ;T ) =
1

2

(
µ2 +

1

24
λT 2

)
φ2 − 1

12π

(
µ2 +

1

24
λT 2 +

1

2
λφ2

) 3
2

T +
1

4!
λφ4 +O(m̃4), (6.3)

where φ = ⟨ϕ⟩ and m̃2 = µ2 + λT 2/24. In the high temperature, the quadratic term can be
positive, and the symmetry of the vacuum recovers. When we define T = T1 satisfying

µ2 +
1

24
λT 2 = 0, (6.4)
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Figure 6.1: Shape of the effective potential in finite temperature.
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Figure 6.2: Baryon number density in front of the bubble wall.

the effective potential at this temperature is V ∼ −λ3/2φ3 + λφ4, which has the vacuum at
φ ̸= 0 (blue line in the left of figure 6.1). At the temperature little higher than T1, depending
on λ, two local vacua can exist simultaneously (red line). In this case, the phase transition
is caused by the quantum tunneling effect, and expanding bubble walls are created [278–280].
The temperature, where the two vacua are degenerated, is defined by the critical temperature
Tc. The temperature, where the nucleation probability is large enough to decay (the decay rate
is comparable to the Hubble rate), is called the nucleation temperature Tn. The VEVs at these
temperature are denoted as

φ(T = Tc) = vc,

φ(T = Tn) = vn, (6.5)

respectively. For EWBG, EWPT must be first order to realize non-equilibrium situation for
the sphaleron process.

6.1.3 Non-equilibrium situation around expanding bubble

In the mechanism of EWBG, the baryon asymmetry is created around the expanding bubble
walls during the SFOPT. We here assume the scattering processes of the SM fermions are much
faster than the sphaleron process in the symmetric phase, i.e. the mean paths of them satisfy
lscat ≪ lsymsph .

Due to the CP violating interactions between the bubble and the SM fermions, the asym-
metry between left-handed (right-handed) quarks and anti-quarks nBL

= nqL − nqL (nBR
=

nqR − nqR) can be non-zero, but from the baryon number conservation in this process, they
satisfy nB = nBL

+ nBR
= 0 (figure 6.2). The number density of the left-handed baryon is

changed by the sphaleron process nBL
→ nBL

+∆nBL
, and just in front of the bubble wall, we

get the non-zero baryon asymmetry nR + nL +∆nL = ∆nL.
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EDM Current limit (90% C.L.)

de (ACME-II) 1.1× 10−29 e cm [282]
de (JILA) 4.1× 10−30 e cm [283]
dn (nEDM) 1.8× 10−26 e cm [284]
dp (UWash) 2.1× 10−25 e cm [285,286]

EDM Future prospect

de (ACME-III) 3× 10−31 e cm [287]
de (EDM

3) O(10−33) e cm [288,289]
dn (nEDM) 2× 10−28 e cm [290]
dp (srEDM) O(10−29) e cm [291]

Table 6.1: Current status of the EDMs.

If the velocity of the expansion vw is comparable to the sphaleron rate, i.e. vw∆t ∼ lsymsph ,
the sphaleron process might be no longer in thermal equilibrium. This is because, inside the
bubble wall, the sphaleron rate is exponentially suppressed by the VEV of the Higgs doublet, as
we have mentioned in section 2.4. In order to decouple the sphaleron process from the thermal
equilibrium,

Γbrk
sph(T ) < H(T ), (6.6)

should be satisfied, where Γbrk
sph and H are the sphaleron rate in the broken phase and the Hubble

rate, respectively. The sphaleron rate inside the bubble is expressed by the sphaleron energy
as Γbrk

sph ∝ e−Esph/T , which is a function of the VEV and the temperature, and we obtain the
sphaleron decoupling condition [281]

vc
Tc

≃ vn
Tn

≳ 1. (6.7)

The phase transition which satisfies this condition is called Strongly First Order electroweak
Phase Transition (SFOPT). If the above processes are all successful, the created baryon asym-
metry is frozen out until now.

6.2 CP violation and electric dipole moment

The EDM is one of the powerful tools to test the CP violation in the model. With the non-
relativistic limit, the interaction Hamiltonian of the spin of a fermion ψ and the electric field
is given by

HEDM = −dEDM
S

|S|
·E, (6.8)

where S and E are the spin and the electric field vectors, respectively. The time reversal
transformations are T (E) = E and T (S) = −S, so that this interaction Hamiltonian violates
time reversal symmetry.

The relativistic interaction is given by the dimension five effective operator

LEDM = −dψ
2
ψσµνiγ5ψFµν , (6.9)

where σµν = i
2
[γµ, γν ]. This operator is also T odd, so that, from the CPT theorem, this is the

CP odd operator.
The effects of CP violation in the model can appear in the EDM operator, so that by

the measurement of the EDM in the experiments, we can test the CP violation. Until now,
there are null results of the finite value of the EDM, and we only have upper limits on the
EDM. There are various systems for measuring the EDM, e.g., neutron [284], atoms [285]
and molecules [282, 283]. From those EDM bounds, we can obtain upper bounds for more
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11

Figure 6.3: The Barr–Zee type diagrams including the fermion loop (left) and the scalar loop
(right).

fundamental particles, such as the electron, proton, and so on. In the table 6.1, several upper
bounds on the EDMs and the future prospects are summarized.

In the SM, we have one CP violating phase, i.e. CKM phase 1. However, the predicted
EDM in the SM is much smaller than the current bound: e.g. the electron EDM predicted by
the SM is O(10−38)e cm [294]. Due to the smallness of the SM prediction, the EDM can be a
good probe of the CP violation from new physics.

6.2.1 Electric dipole moments in the two Higgs doublet model

In the extended Higgs models for the EWBG, the EDM is induced by the new source of the CP
violation. In this subsection, we discuss the EDMs in the general 2HDM, which is introduced
in section 4.1.

We here take the Pich–Tuzon parametrization, which is shown in Eq. (4.37), for the Yukawa
interactions between the SM fermions and the additional scalar bosons. When we consider the
alignment limit αi = 0 for the neutral scalar bosons, there are three CP phases in the Yukawa
sector, θu = arg[ζu], θd = arg[ζd] and θe = arg[ζe] and one CP phase arg[Z7] in the potential.

In this setup, two loop Barr–Zee type diagrams [295] in figure 6.3 are leading contributions to
the eEDM in the model. The left diagram in figure 6.3 has a fermion loop, and the right one has a
scalar loop. Since there are multiple CP-violating phases in the model, each diagram depends on
different CP-violating phases. We can further categorize the Barr–Zee type diagrams depending
on the scalar boson which couples to the external fermion line being either neutral or charged.

In the fermion loop contributions, we only consider the top quark loop diagrams because of
the hierarchy in the Yukawa coupling constants. Therefore, when |ζu|, |ζd| and |ζe| are in the
same order, the contributions from the fermion loop diagrams are approximately proportional to
|ζu||ζe| sin(θu − θe). On the other hand, the contributions from the heavy scalar loop diagrams
are approximately proportional to |λ7||ζe| sin(θ7 − θe).

We next discuss the neutron EDM. By using the QCD sum rule, dn is given by [296–300]

dn = 0.73dd − 0.18du + e(0.20d̃d + 0.10d̃u)± 23× 10−3 GeV ew, (6.11)

where d̃u,d are the chromo EDMs, and w is the Weinberg operator [301,302]. The sign of w has
not been determined yet, because of the theoretical uncertainties [303, 304]. In the parameter

1In the strong sector, we have CP odd term

LCPV = θ
g2S
32π2

G̃a
µνG

aµν , (6.10)

which is known as the theta term. This operator induces the neutron EDM, and from the current bound [284],
|θ| must be smaller than O(10−10). The problem of the smallness of θ is known as the strong CP problem. In
this Ph.D thesis, we do not further enter this problem and assume some mechanisms working to suppress this
term, e.g. the Peccei-Quinn mechanism [292,293].
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regions which we discuss later, the contributions from the four fermi interaction [305] are
negligibly small [304]. According to the formulae shown in Refs. [83, 299, 303, 304, 306, 307],
when mH2 = mH3 , the nEDM is approximately proportional to |ζu||ζd| sin(θu − θd).

6.3 Transport equations for electroweak baryogenesis

In this section, according to Refs. [79, 308, 309], we derive transport equations around the
bubble wall. We discuss so-called semi-classical force method [79,308–312], based on the WKB
approximation. Although the wall velocity vw is an important parameter for the calculation
of the baryon density, we treat it as a free parameter, following to the former discussions
[36,37,79,308,309] 2.

We start from the relativistic Boltzmann equation for a particle i

(∂t + vg · ∂x + F · ∂p)fi = C[fi, fj, . . . ], (6.12)

where f is the distribution function, vg and F are the group velocity and the force acting on
the particle i. The left-hand side of the equation is called Liouvill term L[fi], which denotes
the time evolution of f . On the other hand, the right-hand side is called the collision term,
which expresses particle number changing via scattering or decay processes.

In order to derive vg and F , we see the dispersion relation of the particle in the background
bubble wall. One-dimensional Dirac equation for z axis is given by

(i��∂ −MPR −M∗PL)ψ = 0, M(z) = m(z)eiθ(z), (6.13)

where ψ is the wave function of the particle, PR,L are the chiral projection operator, and m(z)
and θ(z) are the space dependent mass and phase, respectively. Here we consider a single-flavor
case, but we will discuss a multi-flavor case in section 7.3. In this Dirac equation, only the
effects of the bubble wall appearing in the mass term as a background are taken into account,
and all other interactions are neglected. We can boost to the wall frame with (px, py) = (0, 0).
In this frame, the wave function for the particle with the positive energy ω can be written by

Ψs ≡ e−iωt
(
Rs

Ls

)
⊗ χs, (τ3χs ≡ sχs), (6.14)

where Rs, Ls are two component spinors, and χs is the eigenstate of the spin in z axis. By
substituting this into the Dirac equation, we have

(ω − is∂z)Ls = MRs, (ω + is∂z)Rs = M∗Ls. (6.15)

For Ls
3, we obtain (

M(ω + is∂z)
1

M
(ω − is∂z)− |M|2

)
Ls = 0. (6.16)

To solve this equation perturbatively, we use the WKB ansatz [308]

Ls = wei
∫ z pcz(z′)dz′ , (6.17)

2In order to calculate the wall velocity vw, one has to solve equations of motion of the bubble in the
fluid [313,314]. The wall velocity vw has been calculated in several models [44,56,315–317]. In the THDMs like
our model, the order of magnitude of vw agrees with the SM one, and it is evaluated as O(10−1) [44,316].

3Discussions for Rs are completely same as for Ls.
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where pc is the canonical momentum. In this ansatz, the derivative expansion corresponds to
the ℏ expansion. Up to O(ℏ), we obtain

pcz = p0 ±
sω + p0
2p0

θ′ + α′ +O(ℏ2), (6.18)

where p0 ≡
√
ω2 −m2, and α is came from the redundancy of the phase in Eq. (6.17). The

upper sign is the result for particle, and the lower one is for anti-particle. By replacing ω2 →
ω2 + p2x + p2y, we again move back to the non-zero (px, py) frame. We obtain the dispersion
relation

ω2 = (pcz − αCP)
2 + p2x + p2y +m2 ∓ sθ′

√
(pcz − αCP)2 +m2, (6.19)

where we have defined αCP ≡ α′ ± θ′/2. Equivalently, we obtain the energy formula

ω = ω0 ∓ s
θ′

2

ω0z

ω0

, (6.20)

where

ω0 ≡
√

(pcz − αCP)2 + p2x + p2y +m2, ω0z ≡
√
(pcz − αCP)2 +m2, (6.21)

The WKB wave packet follows the equation of motion

vg = ż =

(
∂ω

∂pcz

)
z

, ṗcz = −
(
∂ω

∂z

)
pcz

. (6.22)

The group velocity is the physical quantity, while the canonical momentum itself is not, because
it depends on the arbitrary phase αCP. Therefore, we define physical momentum as

pz ≡ ωvg = (pcz − αCP)

(
1∓ s

θ′

2ω0z

)
. (6.23)

By using this momentum, the energy and group velocity can be rewritten as

ω = E ∓ s
m2θ′

2EEz
= E ± s∆E,

vg =
pz
E

(
1± s

m2θ′

2E2Ez

)
=
pz
E

(
1∓ s

∆E

E

)
, (6.24)

where

E ≡
√
p2x + p2y + p2z +m2, Ez ≡

√
p2z +m2, ∆E ≡ − m2θ′

2EEz
. (6.25)

Finally, the physical force acting on the WKB packet is obtained by F = ṗz, resulting

F = −(m2)′

2E
± s

(m2θ′)′

2EEz
∓ s

m2θ′(m2)′

4E3Ez
= −(m2)′

2E
± s

(
(m2θ′)′

2EEz
+

∆E(m2)′

2E2

)
. (6.26)

Here we have used the energy conservation law dω/dt = 0.
From the above discussion, we get the group velocity and the semi-classical force, vg =

(0, 0, vg), F = (0, 0, F ). The Liouvill term is

L[f ] = (vg∂z + F∂pz)f, (6.27)
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where we have omitted the subscript i. The distribution function of the particle in the equilib-
rium with the energy ω in the wall frame is given by

feq =
1

eβ[γ(E±s∆E+vwpz)] ± 1
, (6.28)

where γ ≡
√

1− v2w. We assume solutions of the Boltzmann equation are expressed by the
deviation from feq, and the ansatz is given by

f =
1

eβ[γ(E±s∆E+vwpz)−µ(z)] ± 1
+ δf(z, p), (6.29)

where µ(z) is the space-dependent chemical potential, and δf(z, pz) denotes deviation from the
kinetic equilibrium, which satisfies ∫

d3p δf = 0, (6.30)

from the conservation law of the particle number. Up to the second derivative order, the
distribution function can be expanded as

f = f0w ± γsf ′
0w∆E − f ′

0wµ∓ γsf ′′
0w∆Eµ+

1

2
f ′′
0w(γ∆E)

2 + δf, (6.31)

where f0w = 1/(eβγ(E+vwpz)± 1) and f ′
0w = df0w/d(γE). The chemical potential and the kinetic

perturbation δf are decomposed by the CP-even and CP-odd parts,

µ = µe ± µo,

δf = δfe ± δfo, (6.32)

where the upper (lower) sign is for (anti-) particles. We note that the CP-even part is caused
by contributions at the first order derivative expansion, while the CP-odd part is the second
order. In the calculation of the baryon asymmetry, we need the CP-odd solutions, so that we
will evaluate CP violating sources at the second order derivative expansion as the leading order
contributions.

By substituting Eqs. (6.31)-(6.32) into the Liouvill term, we get

L[f − f ]

2
=− pz

E
f ′
0wµ

′
o + γvw

(m2)′

2E
f ′′
0wµo +

pz
E
∂zδfo −

(m2)′

2E
∂pzδfo

+ sγvw
(m2θ′)′

2EEz
f ′
0w + sγvw

m2θ′(m2)′

4E2Ez

(
γf ′′

0w − f ′
0w

E

)
. (6.33)

We have neglected higher order contributions which came from the CP-even part. The terms
in the second line are leading order sources for asymmetry. When the particles are relativistic,
the spin can be decomposed by the helicity as s = h sign(pz). In the following discussions, only
the CP-odd part of µ and δf appear, so that we will omit the subscript o.

To solve this equation with respect to µ and δf , we take momentum average. The lth
moment of the kinetic perturbation respect to pz/E is defined by

ul ≡
〈(pz

E

)l
δf

〉
=

1

N1

∫
d3p

(pz
E

)l
δf, (6.34)

where N1 is expressed by massless Fermi–Dirac distribution, N1 =
∫
d3p f ′

FD,m=0. The 0th and
1st order moment equations for the particle i are given by{

−D1µ
′
i + u′1,i + γvw(m

2
i )

′Q1iµi −K0iΓi = hS1i.

−D2iµ
′
i − vwu

′
1,i + γvw(m

2
i )

′Q2iµi + (m2
i )

′Riu1,i + Γi,totu1,i + vwK0iΓi = hS2i.
(6.35)
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The source term Sli is defined as

Sli = −γvw(m2
i θ

′
i)
′Q8

li + γvwm
2
i θ

′
i(m

2
i )

′Q9
li, (l = 1, 2). (6.36)

The symbol Γi,tot denotes the total reaction rate of the particle i, and Γi is the sum of the
reaction rate for inelastic scattering processes including i. The definitions of the functions D,
Q, R are given in appendix B. In the derivation of Eq. (6.35), we have assumed a factorization
assumption, such that

⟨Xδf⟩ =
∫
d3p Xδf

N1

→
∫
d3p Xf0w

E
pz

N0

×
∫
d3p pz

E
δf

N1

≡
[
X
E

pz

]
u1, (6.37)

where N0 =
∫
d3pf0w. From this factorization rule, we get truncation relation as

u2 =

〈
p2z
E2

δf

〉
=
[pz
E

]
u1 = −vwu1. (6.38)

For the CP-odd part of the collision terms, we also have used the relation [308]

⟨Co⟩ = K0Γi,
〈pz
E
Co

〉
= −Γi,totu1,i − vw ⟨Co⟩ , (6.39)

where K0 = −N0/(N1T ).
By solving the above transport equations for active particles, the distributions of the chem-

ical potentials are obtained. By using these distributions, the produced baryon number density
normalized by the entropy density can be evaluated as [37,308]

ηB =
405Γsph

4π2vwg∗Tn

∫ ∞

0

dz µBL
fsph(z) exp

(
−45Γsphz

4vw

)
, (6.40)

where µBL
is defined as

µBL
≡ 1

2
(µuL + µdL + µcL + µsL + µbL + µtL), (6.41)

The symbol g∗ is the effective degree of freedom for the entropy. The weak sphaleron rate
in the symmetric phase is denoted by Γsph. By the lattice calculations, Γsph is evaluated as
Γsph = 1.0× 10−6T [318]. The function fsph(z) describes the suppression of the weak sphaleron
rate outside the bubble caused by the nonzero VEV. According to Ref. [37], we evaluate fsph
as

fsph(z) = min
{
1,

2.4T

Γsph

e−40vn(z)/T
}
. (6.42)

54



Chapter 7

Electroweak baryogenesis in the two
Higgs doublet model

7.1 Electroweak phase transition in the two Higgs dou-

blet model

In this section, we discuss the EWPT in the 2HDM, which is defined in section 4.1. In this
section, just for simplicity of analyses, we consider the alignment limit αi = 0 to avoid mixing
among the neutral scalar bosons.

7.1.1 Effective potential

In this subsection, we derive the effective potential of the 2HDM. We start discussions from
the Higgs basis and consider only the electrically neutral VEVs. The VEVs of the two doublet
fields can be written as

⟨Φ1⟩ =
1√
2

(
0
φ1

)
, ⟨Φ2⟩ =

1√
2

(
0

φ2 + iφ3

)
, (7.1)

where φi ∈ R. We here have eliminated the imaginary part of the neutral component of ⟨Φ1⟩
by rephasing Φ2. The space dependence of this rephasing angle appears in the CP violating
source term, as we will discuss later.

At the one-loop level, the effective potential at zero temperature is given by

V eff
T=0(φ1, φ2, φ3) = V0 + V1 + VCT, (7.2)

where V0, V1 and VCT are tree-level potential, the Coleman–Weinberg (CW) potential [319] and
the counter term, respectively.

The tree level potential is

V0(φ1, φ2, φ3) =− 1

2
Y 2
1 φ

2
1 −

1

2
Y 2
2 (φ

2
2 + φ2

3)− (Y 2
3,Rφ2 − Y 2

3,Iφ3)φ1

+
1

8
Z1φ

4
1 +

1

8
Z2(φ

2
2 + φ2

3)
2 +

1

4
(Z3 + Z4)(φ

2
2 + φ2

3)φ
2
1

+
1

4
ZR

5 (φ
2
2 − φ2

3)φ
2
1 −

1

2
ZI

5φ
2
1φ2φ3 +

1

2
ZR

6 φ
3
1φ2 −

1

2
ZI

6φ
3
1φ3

+
1

2
ZR

7 φ1φ2(φ
2
2 + φ2

3)−
1

2
ZI

7φ1φ3(φ
2
2 + φ2

3). (7.3)

If we take the real Z5 basis, ZI
5 = 0.

55



7 Electroweak baryogenesis in the two Higgs doublet model

We calculate the CW potential, in which the top quarks (t), the gauge bosons (W ,Z, γ),
the scalar bosons (H±, H1,2,3) and the NG bosons (G±, G0) give contributions, and obtain

V1 =− 4× 3

64π2
m̃4
t

(
ln
m̃2
t

Q2
− 3

2

)
+

3

64π2
Tr

[
m̃4

gauge

(
ln
m̃2

gauge

Q2
− 3

2

)]
+

2

64π2
Tr

[
m̃4

±

(
ln
m̃2

±

Q2
− 3

2

)]
+

1

64π2
Tr

[
m̃4

neu

(
ln
m̃2

neu

Q2
− 3

2

)]
, (7.4)

where m̃ is the field dependent mass, which is given in appendix A. We here adopt the Landau
gauge to calculate the CW potential, and set renormalization scale as Q = mZ .

The counter term VCT is written by

VCT =− 1

2
δY 2

1 φ
2
1 − (δY 2

3,Rφ2 − δY 2
3,Iφ3)φ1

+
1

8
δZ1φ

4
1 +

1

4
δZ3(φ

2
2 + φ2

3)φ
2
1

+
1

4
δZR

5 (φ
2
2 − φ2

3)φ
2
1 −

1

2
δZI

5φ
2
1φ2φ3 +

1

2
δZR

6 φ
3
1φ2 −

1

2
δZI

6φ
3
1φ3. (7.5)

We determine these counter terms not to change the vacuum and the curvatures at the vac-
uum from the tree-level potential. At the tree level, due to the stationary condition, φ =
(φ1, φ2, φ3) = (v, 0, 0) ≡ φvac gives the minimized value of the potential. We impose nine
renormalization conditions,

∂V eff
T=0

∂φi

∣∣∣∣
φ=φvac

= 0, (i = 1, 2, 3),

∂2V eff
T=0

∂φi∂φj

∣∣∣∣
φ=φvac

= M2
ij, (i, j = 1, 2, 3), (7.6)

and remaining parameters are renormalized by MS scheme. In the second condition, the mass-
less NG bosons cause IR divergence, so that we take a cutoff mNG = 1 GeV [320] in numerical
calculation. This problem is sometimes called Goldstone catastrophe [321]. We have checked
the final results are hardly dependent on this cutoff scale. The explicit renormalization condi-
tions are given in appendix A.

We next consider thermal corrections to the effective potential. The effective potential at
finite temperature is given by

V eff(φ1, φ2, φ3;T ) = V eff
T=0 + VT . (7.7)

The thermal correction VT is given by [277]

VT =
∑
sk

(−1)sk
nk

2π2β4

∫ ∞

0

dx x2 log

(
1 + (−1)sk+1 exp

(
−
√
x2 + β2m̃2

k

))
, (7.8)

where β = 1/T , sk = 0 for bosons and sk = 1 for fermions. We employ Parwani resummation
scheme [322] to include leading order corrections from thermal mass.

7.1.2 Electroweak phase transition

By using the effective potential at finite temperature, we can calculate EWPT. The nucleation
temperature of the bubble Tn satisfies Γ/H4 = 1, where H is the Hubble parameter, and Γ is
the probability of tunneling at the temperature T per unit time and volume, given by [278–280]

Γ = A(T ) exp

(
−S3

T

)
. (7.9)
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Figure 7.1

The pre-factor A(T ) is roughly evaluated as A(T ) ∼ T 4 by the dimensional analysis, and S3 is
the three-dimensional Euclidian action. With the assumption of spherical symmetry with the
spatial radius r, we have

S3 = 4π

∫ ∞

0

dr r2
[ 3∑
i=1

1

2

(
dφ̂i
dr

)2

+ V eff(φ̂1, φ̂2, φ̂3;T )

]
. (7.10)

The quantities φ̂i are the solution of the equation of motions

d2φi
dr2

+
2

r

dφi
dr

=
∂V eff

∂φi
, (i = 1, 2, 3), (7.11)

with the boundary conditions

φi(r = ∞) = 0,
dφi
dr

∣∣∣
r=0

= 0. (7.12)

The typical shape of the solution is drawn in figure 7.1. In r → ∞, the VEVs are zero
(symmetric phase), while the fields get the VEV in r → 0 (broken phase). The actual bubble is
the spherical, however, the typical scale of particle reactions around the bubble wall for EWBG
is much smaller compared to the radius of the bubble. Therefore, in the following discussions,
we neglect the curvature of the walls and take one-dimensional coordinate along to the radius
of the bubble. We define z = 0 as the center of the bubble, and z = ∞ (z = −∞) is the infinite
point outside (inside) the bubble.

We here show numerical evaluations of the electroweak phase transition in the 2HDM. For
simplicity, we consider only the single-step phase transition. For numerical evaluation, we use
CosmoTransitions [323], which is a set of Python modules for calculating the effective potential
and the Euclidean action.

In figure 7.2, we show the behavior of the EWPT for various masses of the additional Higgs
bosons and the decoupling parameter M ≡

√
−Y 2

2 . Here, we take the additional Higgs bosons
have the same mass mH± = mH2 = mH3 ≡ mΦ. We show the figures for Z2 = 0.1 (left) and
Z2 = 2.0 (right). Other parameters of the effective potential are set to be |ζu| = 0.15, θu =
−2.7, |Z7| = 0.8, arg[Z7] = −0.9.

In the lower gray region, the EWPT is two step or second-order. In the upper gray region,
the nucleation rate per Hubble volume Γn/H

4 is less than 1. In such a region, the EWPT is
not completed until the present.

In the white regions, the EWPT is first-order, and occurs in a single step. For successful
electroweak baryogenesis, the EWPT has to be strongly first-order, where the sphaleron tran-
sition decouples inside the bubble quickly enough. In figure 7.2, contours for vn/Tn are shown
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Figure 7.2: The behavior of the EWPT for various masses of the additional Higgs bosons and
the decoupling parameter M . The masses of the additional Higgs bosons are assumed to be
degenerated and given by mΦ. The red dotted lines are contours for vn/Tn, and the black
dashed lines are 10 × ∂zθ|max. Other colored lines are contours for LwTn. In the left (right)
figure, Z2 is set to be 0.1 (2.0).

by the red lines. For a fixed value of M , the heavier mΦ gives the larger vn/Tn because of
the non-decoupling effect of the additional Higgs bosons [23,47]. The minimum value of vn/Tn
in the white regions is approximately 1.2, so that we can see that the sphaleron decoupling
condition is satisfied in all the white regions.

Another important parameter for the strength of the EWPT is the wall width of the bubble
Lw. For the stronger phase transition, Lw is smaller. We evaluate Lw by fitting the profile of
the VEV v(z) =

√
φ̂2
1 + φ̂2

2 + φ̂2
3 with the function

v(z) =
vn
2

(
1− tanh

z

Lw

)
. (7.13)

In figure 7.2, contours for LwTn = 2.0, 3.0, 5.0, and 8.0 are shown in purple, dark blue, dark
green, and yellow lines, respectively. For a fixed value of M , LwTn is smaller for the heavier
additional Higgs bosons.

For producing baryon asymmetry, the phase of the local mass of the top quark is important,
as we will discuss later [308]. It is defined as

Lmass = −mt(z)e
iθ(z)tLtR + h.c., (7.14)

where mt(z) and θ(z) are the absolute value and the phase of the local mass of the top quark,
respectively. The explicit forms of them will be given in section 7.2, but the spatial variation
of θ(z) provides the source of CP violation. In figure 7.2, contours for the maximal value of
∂zθ are shown: 10 × ∂zθ|max = 0.3, 0.8, 2.0, and 5.0 in GeV−1. We can see that the maximum
value ∂zθ|max decreases as the decoupling parameter M increases. In addition, it is smaller for
the larger Z2. This behavior can be understood as follows. The parameter M2 and Z2 is the
coefficient of |Φ2|2 and |Φ2|4 in the scalar potential. The potential is thus higher along to the
directions of φ2 and φ3 with larger M2 and Z2. As a result, φ̂2 and φ̂3 as the solutions of
Eq. (7.11) cannot be large enough with large M2 and Z2, causing smaller ∂zθ|max.
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7.2 Top transport scenario

In this section, we discuss the top transport EWBG scenario [36], where the leading CP violating
source is caused by the top quarks, and show the numerical results which are obtained by solving
the transport equations in the 2HDM. As we have discussed in section 6.3, the CP violating
source terms are proportional to the mass of the particle. The top quarks have the largest
coupling to the bubble wall, so that the CP violations of them are typically most important for
the BAU.

In general, what particles become the most important for the EWBG depends on the model,
and its parameters. In the 2HDM, it is determined by the additional Yukawa matrices ρf . In
the following, we discuss the scenario in which the top quarks generate the CP asymmetry, so
that we take the Pich–Tuzon parametrization given in Eq. (4.37), and neglect the effects from
ζd,e in the CP violating source terms.

7.2.1 Transport equation network

In this top transport scenario, we neglect the masses except for the top quarks. The relevant
particles in the transport equations are the (right-) left-handed top quarks denoted by t (tc), the
right-handed top quarks denoted by t the left-handed bottom quarks b and the scalar doublets
h. For inelastic scattering processes, we take into account the strong sphaleron process, the
W boson scattering, the top Yukawa interaction, the top helicity flips in the broken phase
and the Higgs number violation. The reaction rates for each inelastic process are denoted by
Γss,ΓW ,Γy,Γm and Γh, respectively. We refer to their values in Ref. [309].

For the light quarks, uL,R, dL,R, cL,R, sL,R and bR, only relevant scattering process is the
strong sphaleron, so that we obtain

µuL,dL,cL,sL = −µuR,dR,cR,sR = −µbR . (7.15)

By using the fact that the baryon number is conserved in this process, we obtain

µBL
=

1

2
(1 + 4D0t)µt +

1

2
(1 + 4D0b)µb − 2D0tµtc . (7.16)

The transport equations for top quarks, the left-handed bottom quarks and the scalar
doublets are given as follows [309];

• Left-handed top quarks (t){
−D1tµ

′
t + u′t + γvw(m

2
t )

′Q2tµt −K0tΓt = −S1t,
−D2tµ

′
t − vwu

′
t + γvw(m

2
t )

′Qt2µt + (m2
t )

′Rtut + Γt,totut + vwK0tΓt = −S2t.
(7.17)

• Left-handed bottom quarks (b){
−D1bµ

′
b + u′b −K0bΓb = 0,

−D2bµ
′
b − vwu

′
b + Γb,totub + vwK0bΓb = 0.

(7.18)

• Charge conjugation of right-handed singlet top quarks (tc){
−D1tµ

′
tc + u′tc + γvw(m

2
t )

′Q2tµtc −K0tΓtc = −S1t,
−D2tµ

′
tc − vwu

′
tc + γvw(m

2
t )

′Qt2µtc + (m2
t )

′Rtutc + Γt,totutc + vwK0tΓtc = −S2t.

(7.19)
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• The scalar doublets (h){
−D1hµ

′
h + u′h −K0hΓh = 0,

−D2hµ
′
h − vwu

′
h + Γh,totuh + vwK0hΓh = 0.

(7.20)

The inelastic reaction rates for each particle is written by [309]

Γt = Γss

(
(1 + 9D0t)µt + 10µb + (1− 9D0t)µtc

)
+ ΓW (µt − µb) + Γy(µt + µtc + µh) + 2Γm(µt + µtc), (7.21)

Γb = Γss

(
(1 + 9D0t)µt + 10µb + (1 + 9D0t)µtc

)
+ ΓW (µb − µt) + Γy(µb + µtc + µh), (7.22)

Γtc = Γss

(
(1 + 9D0t)µt + 10µb + (1− 9D0t)µtc

)
+ 2Γm(µtc + µt) + Γy(2µtc + µt + µb + 2µh), (7.23)

Γh =
3

4
Γy(2µh + µt + µb + 2µtc) + Γhµh. (7.24)

From the Yukawa interaction in the 2HDM, mt and θ
′
t are derived as

m2
t =

y2t
2

(
φ2
1 + |ζu|2(φ2

2 + φ2
3) + 2|ζu|φ1

(
φ2 cos θu − φ3 sin θu

))
,

θ′t =
y2t |ζu|
2m2

t

{
(φ3φ

′
1 − φ1φ

′
3) cos θu − (φ1φ

′
2 − φ2φ

′
1) sin θu + |ζu|(φ3φ

′
2 − φ2φ

′
3)

}
+

1

φ2
1 + φ2

2 + φ2
3

(φ3φ
′
2 − φ2φ

′
3). (7.25)

As we have mentioned in section 7.1, we have taken the local z dependent basis of ⟨Φ2⟩ to
absorb the imaginary part of the neutral component of ⟨Φ1⟩. In this basis, classical Z boson
current appears around the bubble wall, which is caused by the varying phase of the neutral
part of ⟨Φ2⟩, i.e. φ2 and φ3 [37]. This current makes the mass term of the top quarks around
the bubble via the axial vector interaction, resulting in the finial term in the equation of θ′t.

7.2.2 Numerical analysis

In this subsection, we show the numerical evaluations for the BAU in the 2HDM.
In figure 7.3, the correlation between |de|/|dexpe |, which is the eEDM normalized by |dexpe | =

1.0 × 10−29 e cm, and the absolute value of the normalized baryon density |ηB| × 1011 is
shown. Input parameters are Z2 = 0.1, M = 30 GeV, mΦ = 350 GeV, vw = 0.1, and
we scan the other parameters for the regions of θu = θd = [0, 2π), |ζu| = [0, 0.6], |ζd| =
|ζe| = [0, 10], |Z7| = [0.5, 1.0] and arg[Z7] = [0, 2π). Black, magenta, and green points are
the cases of 0.1 ≤ |δe| ≤ 0.5, 0.01 ≤ |δe| ≤ 0.1, 0 ≤ |δe| ≤ 0.01, respectively. Here, we have
defined δe ≡ θu − θe. The black dashed line is the ACMEII bound [282], and above this line
is excluded by this bound. Currently, JILA group has been provided approximately one-half
smaller bound [283], as mentioned in section 6.2.1. The vertically parallel pink region explains
the observed BAU from the BBN with 95% C.L. Each point is allowed by the theoretical
and current experimental constraints except for the eEDM data. As we have mentioned in
section 6.2.1, the Barr–Zee type fermion and scalar loop diagrams which contribute to the
eEDM are approximately proportional to |ζu||ζe| sin δe and |ζe||λ7| sin(θ7 − θe), respectively.
Due to the interference of the diagrams contributing to the eEDM, predicted eEDM value
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Figure 7.3: The correlation between |de|/|dexpe | and |ηB| × 1011. Input parameters are given
by λ2 = 0.1, mΦ = 350 GeV, M = 30 GeV and vw = 0.1. We scan the other parameters
for the regions of θu = θd = [0, 2π), |ζu| = [0, 0.6], |ζd| = |ζe| = [0, 10], |λ7| = [0.5, 1.0] and
θ7 = [0, 2π). Black, magenta and green points are the cases of 0.1 ≤ |δe| ≤ 0.5, 0.01 ≤ |δe| ≤ 0.1
and 0 ≤ |δe| ≤ 0.01, respectively. Here, we have defined δe ≡ θu − θe. The vertically parallel
pink region explains the observed BAU from the BBN within 95% C.L.

takes a broad range from |de| = O(10−31)e cm to O(10−27)e cm. The eEDM decreases in the
order of black, magenta and green, because of the size of fermion contribution decreasing in
this order, and a lot of magenta and green points can generate sufficient BAU under the eEDM
constraints.

Top (bottom) panel of figure 7.4 shows generated BAU in the case of vw = 0.1 (0.45) in
the following benchmark point, M = 30 GeV, Z2 = 0.1, |Z7| = 0.8, arg[Z7] = −0.9, |ζu| = |ζd| =
|ζe| = 0.18, θu = θd = −2.7, δe = −0.04. At the point in the gray region in figure 7.4, the EWPT
is two step or second order. The black dashed lines in figure 7.4 are the contour of vn/Tn = 1.7
and 2.3. Therefore, the SFOPT for the sphaleron decoupling condition occurs above the gray
region. The black solid line is the contour of LwTn = 4.0. The white region satisfies LwTn < 2,
where the WKB approximation becomes invalid [36]. As shown in figure 7.2, since the invariant
mass parameter M is fixed, increasing the mass of heavy scalars makes the electroweak phase
transition stronger, and makes LwTn smaller. In the case of vw = 0.1, the generated BAU
increases as the masses of the additional Higgs bosons increase up to LwTn = 4.0, and then
turns to decrease. On the other hand, in the case of vw = 0.45, the BAU gets larger as the
phase transition is stronger. In both panels of figure 7.4, the pink regions which are sandwiched
by green and orange regions can explain the observed BAU.

In the blue lines in figure 7.4, various values of the eEDM de/|dexpe | are shown. The line
of de/|dexpe | = 0.0 in figure 7.4 is due to the destructive interference between the fermion and
boson type diagram, which is shown in figure 6.3.
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Figure 7.4: Contour of the BAU on the plane of mH2 and mH3 = mH± in the case of vw =
0.1 (top) and vw = 0.45 (bottom). Input parameters are M = 30 GeV, Z2 = 0.1, |Z7| =
0.8, arg[Z7] = −0.9, |ζu| = |ζd| = |ζe| = 0.18, θu = θd = −2.7, δe = −0.04. The pink regions
correspond to the observed BAU.

7.2.3 Phenomenological discussions

In this subsection, we discuss phenomenological predictions for future experiments. We here
set benchmark points which are colored with yellow and magenta in each panel of figure 7.4.
We define the upward triangle (downward triangle) point with yellow as BP1a (BP1b), and the
square (diamond) point with magenta as BP2a (BP2b). Magnitudes of the electroweak phase
transitions vn/Tn in the BP1a and the BP1b are relatively stronger than the ones in the BP2a
and the BP2b. Table 7.1 shows the input parameters of the four benchmark points vw, mH2 ,
mH3(= mH±) and M , as well as vn/Tn, LwTn and ηB in these points are also shown. BP1b and
BP2b, which are the cases of vw = 0.45, explain the observed BAU.

First, we discuss some testability for the SFOPT. It is known that the loop effects of heavy
Higgs bosons for the SFOPT increase ∆R which is the deviation of triple Higgs boson coupling
from the SM value [23]. We already have shown the formula of ∆R at the one-loop level in
Eq. (4.38). In Table 7.1, the values of ∆R are shown. In the BP1 and BP2, the deviations
of the triple Higgs boson coupling ∆R become 61% and 44%, respectively. Therefore, these
points would be tested at the HL-LHC or the future updated ILC.
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vw mH2 mH3,H± M vn/Tn LwTn ηB ∆R σBr(H1 → γγ)
BP1a 0.1

267 GeV 381 GeV 30 GeV 2.4 2.6
7.8× 10−11

0.61
104 ± 5 fb

BP1b 0.45 9.1× 10−11

BP2a 0.1
397 GeV 302 GeV 30 GeV 2.0 4.1

10.8× 10−11

0.44
BP2b 0.45 9.0× 10−11

Table 7.1: The input parameters of the four benchmark points vw, mH2 , mH3(= mH±) and
M are shown. In addition, vn/Tn, LwTn and ηB in each benchmark point are shown. As
phenomenological predictions, we show the values of ∆R and σBr(H1 → γγ) in these benchmark
points. ∆R is the deviation in the triple Higgs boson coupling. σ is the production cross section
of the SM Higgs boson, and Br(H1 → γγ) is the branching ratio of the decay into a photon
pair.

In addition to the triple Higgs boson coupling, the decay of the Higgs boson into a photon
pair is affected by the non-decoupling effect of the charged Higgs boson [324–331]. From the
latest data at ATLAS Collaboration [332], the observed value of σBr(H1 → γγ) is given by

σBr(H1 → γγ)obs = 127± 10 fb, (7.26)

where σ is the production cross section of the SM Higgs boson and Br(H1 → γγ) is the branching
ratio of the decay into di-photon. The theoretical value of σBr(H1 → γγ) in BP1 and BP2 is
shown in the last column of Table 7.1. In BP1 and BP2, we obtain σBr(H1 → γγ) = 104±5 fb,
and the uncertainty stems from theoretical errors of the production cross section of the SM
Higgs boson. Unlike the behavior of the non-decoupling effect in ∆R in Eq. (4.38), the Higgs
di-photon decay depends on a coupling proportional to (m2

H± −M2)/m2
H± . This effect does

not decouple and becomes a constant for mH± → ∞. Therefore, the values of σBr(H1 → γγ)
in the BP1 and BP2 are the same within the range of significant figures. The predictions on
σBr(H1 → γγ) in BP1 and BP2 overlap with the observed value within 2σ significance. These
benchmark points would be tested by the precision measurement of the Higgs di-photon search
at the future colliders such as the HL-LHC.

Furthermore, the GWs can also be produced from the collision of the bubbles which are
created at the first order phase transition [58–62]. The sources of the GWs are composed
of the contributions from the scalar field Ωϕ(f), the sound waves of the plasma Ωsw(f), and
the magnetohydrodynamics turbulence Ωturb(f), where f is the frequency of the GWs. Each
contribution is decided by the wall velocity vw, the latent heats α, and the time duration β̃ at
the phase transition. These can be defined by

α =
ρvac(Tn)

ρrad(Tn)
, β̃ = Tn

(
dS3

dT

)
T=Tn

, (7.27)

where,

ρvac(Tn) =

(
−∆V + T

∂∆V

∂T

)
T=Tn

, ρrad(Tn) =
g∗T

4
n

30
π2, (7.28)

where ∆V is the difference between the values of the effective potential of the true vacuum and
the false vacuum. The total energy density of the GWs is given by

h2ΩGW(f) = h2Ωϕ + h2Ωsw + h2Ωturb. (7.29)

In THDMs, the terminal wall velocity does not reach the speed of light [59]. For simplicity, we
assume that the velocity for the numerical analysis of the GWs matches the one used in the
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Figure 7.5: The GW spectra calculated at the benchmark points in Table 7.1. The purple,
orange and red lines are the sensitivity curves of LISA, DECIGO, and BBO. The black solid
and dashed lines are the GW spectra which are produced by the first order phase transition in
these points.

calculations of the BAU. In this scenario, the leading contribution is the sound waves [60], and
the contribution from the scalar field is negligible.1

The GW spectra calculated at the benchmark points in Table 7.1 are shown in figure 7.5.
The purple, orange and red dashed curves are the sensitivity curves of LISA [63], DECIGO [64],
and BBO [65], while the solid curves in each color are the peak-integrated sensitivity curves.
We have taken these curves from Ref. [56]. The solid and dashed black lines in the left panel
of figure 7.5 are the GW spectra at the BP1a and BP2a, respectively, while the ones at the
BP1b and BP2b are shown in the right panel. At BP1, where the EWPT is relatively strong,
both of the peaks reach the peak integrated sensitivity curves of DECIGO and BBO. On the
other hand, at BP2, where the EWPT is relatively weak, only the one in the BP2b, in which
vw = 0.45 is assumed, reaches DECIGO and BBO.

The parameter in our model ζd, which controls the strength of down-type quark couplings
to the additional Higgs bosons, can be constrained by future measurements of B → Xsγ and
∆ACP [45]. The observable ∆ACP is related to CP violation in the process of B → Xsγ. It is
defined by [333]

∆ACP = ACP (B
+ → X+

s γ)− ACP (B
0 → X0

sγ), (7.30)

where,

ACP (B
+ → X+

s γ) =
Γ(B− → X−

s γ)− Γ(B+ → X+
s γ)

Γ(B− → X−
s γ) + Γ(B+ → X+

s γ)
,

ACP (B
0 → X0

sγ) =
Γ(B

0 → X
0

sγ)− Γ(B0 → X0
sγ)

Γ(B
0 → X

0

sγ) + Γ(B0 → X0
sγ)

. (7.31)

By using the Wilson coefficients C7 and C8, ∆ACP is given by [333]

∆ACP ≃ 0.12

(
Λ̃78

100 MeV

)
Im

(
C8

C7

)
, (7.32)

1The contribution from the turbulence is decided by a part of the latent heats ϵκvα, where κv is defined by
how the latent heats are transformed into the bulk motion of the plasma fluid. In the following analysis, we set
ϵ = 0.05 [59,61].
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Figure 7.6: The constraints on |ζd|-θd plane at the BP1 from the flavor (left) and nEDM (right)
experiments. The blue (black) shaded regions in the left panel are the excluded regions from
B → Xsγ (∆ACP ). The red (gray) regions in the right panel are excluded by the current
nEDM experimental data when the Weinberg operator positively (negatively) contributes to
the nEDM. The dashed lines in each panel are future expected bounds.

where Λ̃78 implies uncertainties from the hadronic scale, and it is estimated as 17 MeV < Λ̃78 <
190 MeV [333]. In the following analysis, we set Λ̃78 = 89 MeV as the average value [45].
In the SM, ∆ACP = 0, because both the Wilson coefficients C7 and C8 are real, so that it
has a sensitivity to CP violation from new physics. From the current experimental data at
Belle [334], we obtain ∆ACP = (+3.69 ± 2.65 ± 0.76)%, where the first uncertainty is the
statistical error and the second is the systematical one. At Belle-II [335] with 50 ab−1 as the
future flavor experiment, it is expected that the absolute uncertainty is reduced to be 0.3 %.
It is also expected at Belle-II with 50 ab−1 that the relative uncertainty in the measurement of
B → Xsγ can be reduced to be 3.2 % [335].

As implied in section 6.2.1, the nEDM can be used to constrain ζd. The upper bound of the
nEDM is expected to be about one order higher accuracy in future nEDM experiments [336].
However, there are still some uncertainties, especially including the sign of the contribution
from the Weinberg operator.

Figure 7.6 shows that the current and future expected bounds for ζd. The input parameters
are the same as the BP1. First, we explain the left panel of figure 7.6. Blue (black) regions are
the excluded regions at 2σ level from the current measurement of B → Xsγ (∆ACP ), and the
dashed lines are the future excluded bounds at Belle-II. In the left figure, B → Xsγ and ∆ACP

cover the different regions of θd, and we find |ζd| ≳ 3 can be excluded at Belle-II.
The nEDM constraints on ζd are shown in the right panel of figure 7.6. Red (gray) regions

are excluded by the current experimental data [284] when the contribution from the Weinberg
operator dn(CW ) positively (negatively) contributes. The dashed lines are the one order higher
accurate bound expected in future nEDM experiments [336]. In the constructive case, where the
total value of the nEDM is given by the sum of the two loop contribution dBZ

n and the Weinberg
operator contribution dn(CW ), the vast region of ζd has been already excluded except for θd ≃ θu
or θu + π. In such a case, almost all regions would be excluded by future nEDM experiments.
On the other hand, in the destructive case, where the Weinberg operator negatively contributes
to the nEDM, |ζd| ≳ 3 has already been excluded at θd = θu ± π/2, and |ζd| ≳ 0.3 is expected
to be excluded in the future. As a result, ζd is constrained by the combination of B → Xsγ
and ∆ACP at the Belle-II and the current nEDM constraint. By future nEDM experiments,
even in the destructive case, the large region of ζd can be constrained.
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7.3 Top-charm transport scenario

In this section, we discuss the top-charm transport scenario, where the FCNC coupling between
the top and charm quarks is switched on. In the previous top-transport scenario, we have
adopted the Pich–Tuzon for the additional Yukawa matrices ρf . On the contrary, in this
scenario, we only consider the top-charm sector and parametrize them as

ρu =

0 0 0
0 ρcc ρct
0 ρtc ρtt

 , ρd = ρe = 0. (7.33)

As we have already mentioned in section 4.1, the ρtc coupling can be sizable about O(1) under
the constraints from the flavor experiments.

In the following discussions, we first derive the CP violating source term for the top-charm
transport scenario. We then show the impacts on the BAU of those coupling constants. We
also give phenomenological discussions for flavor physics.

7.3.1 CP violating source with flavor mixing

We consider two flavor (top and charm) system q = (c, t)T , where the field dependent mass
matrix is given by

Lmass = −qLMqR + h.c., (7.34)

M(z) =
1√
2

(
ycφ1 + ρcc(φ2 − iφ3) ρct(φ2 − iφ3)

ρtc(φ2 − iφ3) ytφ1 + ρtt(φ2 − iφ3)

)
. (7.35)

The off-diagonal elements of the matrix arise due to the non-zero VEVs φ2,3 along to the wall.
By the same discussions as the section 6.3, we have{

ω2 + ∂2z −MM † + is(M∂zM
−1)(ω − is∂z)

}
Ls = 0. (7.36)

In general, M †M is not diagonalized, so that by using a Unitary matrix U , we take a local
basis M †M to be diagonalized and obtain2{

ω2 + ∂2z −m2
D + 2U1∂z + U2 + isA1(ω − is∂z) + A2

}
LDs = 0, (7.37)

where

U1 ≡ U∂zU
†, A1 ≡ U(M∂zM

−1)U †,

U2 ≡ U∂2zU
†, A2 ≡ A1U1,

LDs ≡ ULs, m2
D ≡ UMM †U † ≡ diag(m2

+,m
2
−). (7.38)

If we define 2× 2 operator as{
ω2 + ∂2z −m2

D + 2U1∂z + U2 + isA1(ω − is∂z) + A2

}
ij
≡
(
D++ −D+−
−D−+ D−−

)
, (7.39)

the equations can be expressed by

D−−L
D
− −D−+L

D
+ = 0,

2We here have defined m2
+ ≥ m2

−.
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D++L
D
+ −D+−L

D
− = 0, (7.40)

or

(D−−D++ −D+−D−+)L
D
+ + [D+−, D−−]L

D
− = 0,

(D++D−− −D−+D+−)L
D
− + [D−+, D++]L

D
+ = 0. (7.41)

We here have omitted the spin index s. The operators D+− and D−+ at least include O(∂z)
parts, so that up to O(∂z), we have

D±±L
D
± = 0. (7.42)

Therefore, up to this order, we just need to solve the Dirac equation for each flavor (±) in
locally diagonalized basis.

By using the WKB ansatz in the wall frame with (px, py) = (0, 0),

LD± = w±e
i
∫
p±dz, (7.43)

we obtain(
ω2 −m2

± − p2± + ip′± + 2ip±∂z + 2ip±(U1)±± + is(ω + sp±)(A1)±±

)
w± = 0, (7.44)

We obtain the dispersion relation,

ω2 −m2
± − p2± = Im

(
2p±(U1)±± + s(ω + sp±)(A1)±±

)
, (7.45)

and find the correspondence θ′± = −Im[(A1)±±] to the single flavor case. The (U1)±± contribu-
tions can be absorbed into the definition of αCP.

If we assume a hierarchy of the mass matrix in Eq. (7.35) as |M11|/|M22| ≃ |M12|/|M22| ≡ δ,
we obtain (A1)++ = (M∗

22M
′
22+M

∗
21M

′
21)
(
1+O(δ2)

)
/m2

+, where the prime denotes a derivative

of z. When
√
φ2
2 + φ2

3 ≪ φ1, |ρcc| ≪ yt and |ρct| ≪ yt, this O(δ
2) correction is negligibly

small: δmax ≃ 0.06 with the bubble profile in the left panel of figure 7.7 and |ρcc|, |ρct| < 0.1.
Neglecting this correction of at most 0.4%, we obtain the source term of the heavy component
as

Im[(A1)++] =− 1

2m2
+

{
(|ρtc|2 + |ρtt|2)(φ3φ

′
2 − φ2φ

′
3)

+ yt|ρtt|
(
(φ3φ

′
1 − φ1φ

′
3) cos θtt + (φ1φ

′
2 − φ2φ

′
1) sin θtt

)}
− 1

φ2
1 + φ2

2 + φ2
3

(φ3φ
′
2 − φ2φ

′
3), (7.46)

where,

m2
+ =

1

2

(
y2tφ

2
1 + (|ρtc|2 + |ρtt|2)(φ2

2 + φ2
3) + 2yt|ρtt|φ1

(
φ2 cos θtt + φ3 sin θtt

))
. (7.47)

The second term of Eq. (7.46), which has no dependence of ρtc and ρtt, is stemmed from the
axial vector interaction of charm and top quarks with Z boson [37]. For the transport equations,
we just replace the source terms of the top quarks given in Eqs. (7.17)-(7.19) as

Slt → −γvwx′Q8
lt + γvwx(m

2
+)

′Q9
lt, (l = 1, 2) (7.48)
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where x ≡ −m2
+Im(A1)++. The source terms of the light fermion in the local flavor basis are

proportional to m− ≃ 0, so that we neglect it.
We give a comment on the CP violating source terms shown in Eqs. (7.46)-(7.48). In the

limit of vanishing the top-charm mixing coupling ρtc → 0, Eq. (7.48) coincides with the source
terms in the top transport scenario [37, 47, 48]. The source term with top-charm mixing only
depends on the absolute value of ρtc through the CP violating VEV φ3. Therefore, the phase
of ρtc does not affect the BAU up to O(δ2), and the |ρtc| dependence of the BAU vanishes with
the CP conserving VEV limit φ3 → 0. These results have been obtained by using the WKB
method in the calculation of the source term of the Boltzmann equation.

Although our analysis of evaluating the BAU is now based on the WKB method, to see
the consistency we also have examined the source terms in the VEV insertion approxima-
tion (VIA) [337], which are based on the closed time path formalism. 3 As shown in appendix C,
the CP violating source terms do not have any ρtc dependence for φ3 → 0 at the leading order
in the VIA. Even if we consider the case of φ3 ̸= 0, |ρtc| contributes to the CP violating source
terms while the phase does not.

However, these results for the source terms are different from the previous works in Refs. [41,
43], where the source terms are calculated at leading order in the VIA. For example in Ref. [43],
they have assumed that VEVs induced by the CP conserving Higgs potential are real, and the
phase of ρtc generates the BAU. However, we have found that if one focuses on only one flavor
in the weak basis as considered in Refs. [41, 43], the VIA source terms depend on the rotation
matrices VL or VR in the flavor space which can be taken to be arbitrary. Namely, the phase
effect of ρtc on the CP violating source terms used in those literature is unphysical.

In other words, if we consider contributions from the other flavor in the weak basis in a
consistent way, we could easily see that the effect of the phase of ρtc is unphysical. For example,
in Ref. [43], it seems that the authors have not included the source terms of left-handed charm
quarks (second generation) defined in the weak basis.4 If one sum up the source terms of both
the top and charm quarks in the weak basis, the source terms have to coincide with the ones
calculated in the mass basis in which independence of the phase of ρtc is manifest, as we discuss
in appendix C. In the appendix, we have also explicitly confirmed that the source terms
calculated by the WKB methods are basis independent in the leading order approximation.

7.3.2 Numerical analyses

First, we discuss SFOPT for EWBG. We assume that the bubble wall velocity is constant and
set vw = 0.1 in the following discussions. We neglect the curvature of the wall and define
radius coordinate as z. We take input parameters which are relevant to the phase transition
as mΦ ≡ mH2 = mH3 = mH± = 350 GeV,M = 20 GeV, Z2 = 0.01, |Z7| = 1.0, arg(Z7) =
−2.4, |ρtt| = 0.1 and θtt = −0.2, and we numerically obtain the bounce solutions at this
benchmark point. The left panel of figure 7.7 shows the solutions. The center of the bubble
z = 0 is defined by the spatial point maximizing dv(z)/dz, where v(z) ≡

√∑
i φ

2
i (z). The

black solid and blue dashed lines are CP conserving VEV φ1 and φ2, respectively, and the red
dotted line is CP violating VEV φ3. At this benchmark point, the ratio of the VEV inside the
wall vn ≡ v(−∞) and the nucleation temperature Tn is vn/Tn = 2.4 with Tn = 84.6 GeV, so
that the sphaleron process inside the wall sufficiently decouples. The wall width Lw, which can
be obtained by fitting v(z) with the function vn

2

(
1− tanh z

Lw

)
, satisfies LwTn = 3.3, so that the

3It has been pointed out that the VIA source terms within leading order in derivative expansion exactly
vanish by performing correct resummation of 1PI self energy [338,339].

4In Ref. [41], only left-handed τ leptons are considered for evaluating the source terms for the lepton flavor
mixing scenario of EWBG. Therefore, the similar problem as the top-charm mixing is seen. If µL in the weak
basis is included in the transport equations, the effect of CP violating phases in the τ -µ element of Yukawa
matrix should disappear.
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Figure 7.7: Left: Black solid and blue dashed lines are CP conserving VEVs φ1 and φ2 respec-
tively, and red dotted line is CP violating VEV φ3, as bounce solutions. Right: black solid line
shows derivative of the phase θ′ in the benchmark point with |ρtc| = 1.0 and |ρtt| = 0.1. Blue
dashed (red dotted) and green dashdot lines are the top (top-charm) transport source and the
source from chiral interaction with Z boson and top and charm quarks, respectively.
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Figure 7.8: |ρtc| and |ρtt| dependence of baryon number density ηB with θtt = −0.2. Colored
points represent magnitude of ηB, and magenta points satisfy ηB = (8.65−8.74)× 10−11.

derivative expansion in the WKB approximation is still valid [36]. In the following analyses, we
use these bubble profiles for the calculations of BAU related to the top-charm mixing couplings.

In the right panel of figure 7.7, θ′ is shown as a function of z by the black solid line, when
we take |ρtc| = 1.0, |ρtt| = 0.1 and use the bubble profiles shown in the left panel of figure 7.7.
The blue dashed (red dotted) line is a contribution from top (top-charm) transport scenario
which can be obtained by taking ρtc (ρtt) → 0 in the first term in Eq. (7.46). The green dashdot
line is a contribution from the second term in Eq. (7.46), which is CP violating source caused
by the interaction with Z boson current and top and charm quarks [37].

Finally, we discuss baryogenesis in this scenario. The BAU parameter ηB = (nB − nB)/s,
where nB (nB) and s are the (anti-) baryon density and the entropy density, respectively, is
invariant in the adiabatic expanding Universe. By using the source terms in Eq. (7.48) based
on the relativistic semi-classical force mechanism [309], we have calculated the BAU. We have
fixed the phase as θtt = −0.2, and calculated ηB at many points in the |ρtc|-|ρtt| plane. The
result is shown in figure 7.8. The color in the figure corresponds to the magnitude of the BAU,
and the magenta points satisfy the observed value ηB = (8.65−8.74)× 10−11. In figure 7.8, the
impact of |ρtc| to the BAU is shown. It is seen that regions of large |ρtt| and |ρtc| generate large
BAU. Even in a small |ρtt|, the non-zero effect of the top-charm mixing coupling |ρtc| gives a
sufficient BAU by picking up the contributions from the CP violating VEV φ′

2φ3 − φ2φ
′
3.
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7.3.3 Phenomenological discussions

In this subsection, we discuss specific phenomenological predictions in our scenario of EWBG
with the top-charm mixing.

In general, the top-charm mixing couplings give significant contributions of K meson pro-
cesses via the loop induced penguin or box diagrams. In our model, we consider rare decay
processes KL → π0νν and K+ → π+νν which are sensitive to additional Yukawa couplings.
These processes are produced by four fermi operators which are induced by penguin diagrams
involving the charged scalar bosons [340,341].

The observed branching fraction of K+ → π+νν is given from the data collected from 2016
to 2019 in NA62 experiment at the CERN SPS as [342]

B(K+ → π+νν)EXP = (10.6+4.0
−3.4 ± 0.9)× 10−11, (7.49)

where the first and second uncertainties are statistical and systematical errors, respectively.
O(10)% accuracy is expected by the end of NA62 experiments with the data collected from
2021 [343].

For the process KL → π0νν, KOTO experiment at J-PARK gives an upper bound on this
branching fraction as [344]

B(KL → π0νν)EXP < 3.0× 10−9, (7.50)

at 90% C.L. This upper limit is greater than the Grossman–Nir bound [345]. It is expected
that KOTO step-2, which is an extended version of KOTO expected to be launched from 2029
in the earliest scenario, achieves the accuracy predicted by SM and observes the events with
4.2σ significance [346].

We define quantities relevant to these processes [341].

∆R+
ν ≡ R+

ν − 1, ∆R0
ν ≡ R0

ν − 1, (7.51)

where,

R+
ν =

B(K+ → π+νν)

B(K+ → π+νν)SM
, R0

ν =
B(KL → π0νν)

B(KL → π0νν)SM
. (7.52)

SM predictions of these processes in our input parameters are B(K+ → π+νν)SM = 9.3× 10−11

and B(KL → π0νν)SM = 3.1×10−11, and these are consistent with the ones shown in Ref. [347]
within 1σ.

The additional Yukawa couplings in our model also affect the direct CP violation ϵ′/ϵ in
KL → 2π process [340]. The observed value is given by (ϵ′/ϵ)EXP = (16.6±2.3)×10−4 [348–350].
Lattice results give the SM prediction as (ϵ′/ϵ)SM = (21.7± 8.4)× 10−4 [341, 351,352], while a
result of chiral perturbation gives (ϵ′/ϵ)SM = (14± 5)× 10−4 [353].

Relevant parameters about the BAU are |ρtt|, |ρtc|, and θtt. In addition to the input param-
eters of figure 7.8, we take a benchmark point about the other Yukawa parameters for the K
meson observables as|ρcc| = 0.09, |ρct| = 0.05, θcc = 0, θct = −2.8, θtc = −0.2, |ρbb| = 1.0 × 10−3

and θbb = 1.5.
In figure 7.9, the green and gray regions are excluded by the data of Bs → µµ and |ϵK |,

respectively. The other flavor constraints are out of this figure, and we have confirmed |ρtc| ≳ 1.5
is excluded by the data of B0-B0 mixing. As shown in figure 7.9, Bs → µµ constrains ρtt ≳ 0.16.
Since Bs → µµ process mainly depends on ρctρtt in our setup, this process only sets the upper
bound on |ρtt|. On the other hand, |ϵK | constrains the lower region of |ρtc| in this benchmark
point, and |ρtc| ≲ 0.25 is excluded with |ρtt| ≃ 0.1. This behavior of |ϵK | constraint in |ρtc|-|ρtt|
plane changes with other values of ρcc and ρct. In figure 7.9, predictions of ∆R+

ν × 102 (blue
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Figure 7.9: Constraints from flavor experiments and predictions on K meson rare decays. Green
and gray regions are excluded regions by the data of Bs → µµ and ϵK , respectively. Blue dotted
dash and orange dashed lines correspond to ∆R+

ν × 102 and ∆R0
ν× 102, respectively, which are

defined in the text. Black solid lines are the contour of (ϵ′/ϵ)2HDM × 104. Magenta points are
the same as shown in figure 7.8 and satisfy ηB = (8.65−8.74)× 10−11.

dotted dash) and ∆R0
ν×102 (orange dash) at the benchmark point are shown. The new physics

contribution of the direct CP violation (ϵ′/ϵ)2HDM×104 (black solid) is also shown in figure 7.9.
We have used formulae shown in Ref. [340] to calculate these processes. The magenta points
are the same as shown in figure 7.8, corresponding to the observed baryon asymmetry. The
processes KL → π0νν and K+ → π+νν mainly depend on ρctρtt [340], so that only |ρtt| changes
the values in figure 7.9. At the point |ρtt| ≃ 0.15, predicted deviations from SM branching
fractions of KL → π0νν and K+ → π+νν are ∆R0

ν ≃ 2.2% and ∆R+
ν ≃ 14%, respectively.

Therefore, the branching fractions are greater than the SM predictions at this point. On the
other hand, for |ρtt| ≃ 0.05, they are about 0.8% and 12%, respectively. The direct CP violation
(ϵ′/ϵ)2HDM depends not only on ρctρtt but also on ρtcρcc, so that it changes along |ρtc| axis. In the
region where the observed BAU can be explained under the experimental constraints, allowed
maximal value of |ρtt| predicts (ϵ′/ϵ)2HDM ≃ 1× 10−4, while it is about 4× 10−4 for |ρtt| ≃ 0.05.
We note that if we set ρct and ρcc to be 0 in figure 7.9, only |ρtc| ≳ 0.8 is excluded by B → Xsγ
constraint, almost without depending on |ρtt|. In this case, ∆R0

ν and ∆R+
ν are small and less

than 1%.

7.4 Discussions and summary

In this section, we give some discussions about the results shown in the previous sections.

7.4.1 Discussions for top transport scenario

As shown in figure 7.4, successful EWBG can be realized by the masses of the heavy Higgs
bosons becoming around 300-400 GeV. In this mass region, |ζu| is constrained from above by
H2,3 → ττ and H± → tb searches as shown in figure 4.1. Thus our model can be tested by
the direct search of the heavy Higgs bosons at the HL-LHC. If the additional scalar masses are
smaller than about 300 GeV, the multi lepton search at the HL-LHC might be used to test our
model [178]. In the analyses, we have assumed the alignment condition αi = 0 to avoid the
mixing among the neutral scalar states. If this alignment condition is slightly broken, decay
branching ratios of the additional Higgs bosons, the vacuum stability, and the perturbative
unitarity condition are changed. As a result, the testability of the model at the HL-LHC and
the future upgraded ILC can be much enhanced [185,354,355].
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The effect of the heavy Higgs bosons appears in the flavor physics, so that the future flavor
experiments such as Belle-II [335] or LHCb [356] can be used to test the model. As shown in
figure 4.1 and figure 7.6, observables of B → Xsγ, Bs → µµ and ∆ACP have some sensitivities
about the quantum loop effect of the heavy Higgs bosons or the CP violation in the model.

CP violation in the Higgs potential can be detected by the ILC and the measurements of
the EDM. As we have mentioned in section 7.2, both the upper bounds of the nEDM and the
ACMEII bound for the eEDM in future experiments have about an order higher accuracy than
the current bounds [282, 336]. Therefore, for example, by the future ACME experiment [282],
we can exclude many points in figure 7.3. In the case of |ζe| ≫ |ζu| and θe = O(1), the CP-
violating phase of ζe in the model would be decided at the ILC by the measurement of the
azimuthal angular distribution where a tau pair from decay of the additional neutral bosons
decays into hadrons [357,358].

In section 7.2, we have discussed the triple Higgs coupling, the GWs, and H1 → γγ as
a probe of SFOPTs. The triple Higgs coupling in our model is measured by the process
of di-Higgs production at future colliders [24, 224–233]. At the HL- LHC and the ILC with√
s = 500 GeV (1 TeV), this coupling is expected to be measured at the 50% [21] and 27% (10

%) [24, 25] accuracy, respectively. BP1 and BP2 in figure 7.4 and Table 7.1, ∆R = 41% and
66%, respectively, so that the SFOPT in these benchmark points can be tested at these future
colliders.

In Table 7.1, we have shown the branching ratio of H1 → γγ in the benchmark points.
In future collider experiments, the measurement of the Higgs di-photon decay would become
more precise. For example in the HL-LHC, the relative uncertainty of the branching ratio of
H1 → γγ is expected to be 2.6% [21]. Therefore, our model can also be tested via the precise
measurement of the Higgs di-photon decay.

We have shown the GW spectra at some benchmark points in figure 7.5, while these do
not reach the sensitivity curve of LISA. Nevertheless, we expect that these GW spectra can be
detected at LISA by using the Fisher matrix analysis discussed in Ref. [359]. The possibilities
of detection of the GWs at DECIGO and BBO are also expected to be enhanced by using this
analysis. We can obtain a GW spectrum which has a larger height of the peak by making the
phase transition stronger, however in such a case, the WKB approximation for the BAU is no
longer valid because of decreasing LwTn.

7.4.2 Discussions for top-charm transport scenario

In section 7.3, we have calculated the source term in the WKB approximation for the top-charm
mixing EWBG. From Eq. (7.46) it has been shown that phases of off-diagonal elements of ad-
ditional Yukawa matrices do not contribute to the source terms up to O(δ2). The contributions
to the source terms from the top-charm Yukawa couplings are proportional to the square of the
absolute values of ρtc through the CP violating VEV φ3. On the other hand, in the previous
work for flavor mixing EWBG studied in Refs. [41, 43], the phases of the off-diagonal complex
couplings, e.g. ρτµ or ρtc, play an important role in the source terms evaluated in the VIA
method even considering real VEVs. However, we note that this discrepancy does not come
from the difference between WKB and VIA methods [309, 360]. As we show in appendix C,
the CP violating source terms calculated at leading order in the VIA in the mass basis do not
depend on ρtc in the CP conserving limit (φ3 → 0). Furthermore, in appendix C, we also
show that the VIA source terms are basis independent. Namely, the source terms calculated
in the weak basis coincide with those in the mass basis. From these considerations, we would
conclude that in Refs. [41,43] the transport equations defined in the mass basis are considered,
but in which the source terms evaluated in the weak basis are used. Therefore, there would
be a mismatch in the transport equations, and the phase effects of the off-diagonal Yukawa
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couplings discussed in Refs. [41, 43] may be unphysical.
In figure 7.8, at the points (|ρtt|, |ρtc|) = (0, 0) and (0.2, 1.5), we have obtained ηB ≃

1.8× 10−11 and 1.5× 10−10, respectively. At the former point, only the CP violating VEV φ3

which is induced by a complex coupling λ7 in the general 2HDMwith the Higgs alignment [47,48]
produces the BAU. On the other hand, at the latter one, ρtc and ρtt also contribute to the BAU.
The magnitude depends on θtt, and the maximal BAU ηB ≃ 2.8×10−10 at the point is given by
θtt ≃ 1.0 with the other fixed input parameters. In this case, magenta points will be shifted to
left from figure 7.8, and for example, (|ρtt|, |ρtc|) ≃ (0.06, 0) and (0.025, 1.5) satisfy the observed
BAU. We note that some θtt at the point give negative ηB.

The rare decay processes of K meson, K+ → π+νν and KL → π0νν, are sensitive to ρttρct,
and we have considered a non-zero ρct coupling in figure 7.9. In this benchmark point, the
branching fraction of K+ → π+νν is up to about 14% larger than the SM value. This is
consistent with the current experimental value in Eq. (7.49) within 1σ level. At the future
NA62 experiment, about 10% precision is expected [343], so that this benchmark point would
be tested. In our benchmark points, KL → π0νν process, which KOTO step-2 [346] experiment
aims to measure, is about up to 2.2% larger than the SM value. If these excesses in the K+

and KL rare decays are detected in the future experiments, we can confirm non-zero ρttρct, and
then it is expected that the scenario of top transport EWBG with ρtt is realized in our model.
In addition, if we observe these observables with about 1% experimental uncertainties, we can
know from the magenta points in figure 7.9 how |ρtc| coupling affects the BAU. However, we
note that these branching fractions vary in ρct. In order to know the effect of |ρtc| to the BAU
with arbitrary ρct, ϵK and ϵ′/ϵ which contain ρtc dependence become important observables.
These results motivate us to improve the accuracies of theoretical predictions and experimental
observations about K meson physics.

The upper bound on |ρtt| is given by the data of Bs → µµ in figure 7.9. The expected
total uncertainty of this process at the LHCb [356] is 4.4% with the integrated luminosity
of 300 fb−1 [361]. Also, from our benchmark point if we take ρct = 0 without changing other
parameters, the upper bound on |ρtc| is given by the data of B → Xsγ. The relative uncertainty
of this measurement is expected to be reduced about 3.2% at the Belle-II [335] with 50 ab−1.
Therefore, B meson physics is equivalently important as K meson physics for testing our
scenario.

The off-diagonal ρtc coupling predicts some interesting signals at future high energy collider
experiments. In our benchmark point where the heavy neutral scalar bosons are degenerated,
even at the HL-LHC it is difficult to measure the processes of gc → tH2,3 → ttc due to the
interference effect. It is known that if the neutral scalar bosons have a mass difference as
mH2 −mH3 = 30 GeV, the interference effect enhances such processes [208, 211]. In the case
that only H3 has the mass of 350 GeV while H2 is much heavier, ρtc ≳ 0.2 will be excluded
at 2σ level by the same-sign top search at the HL-LHC [208, 362]. On the other hand, triple
top production processes gc → tH2,3 → ttt are not disturbed by that interference, so that we
may be able to detect the signals even in the case of mH2 = mH3 [213]. About the charged
scalar production induced by ρtc, the process of pp → H± → bc has a sensitivity for the large
ρtc coupling [218]. In addition, signatures of cg → H+b → btb may also be tested at the
HL-LHC [208,363,364].

In the top-charm transport scenario, we have assumed vw = 0.1. It is known that large wall
velocity enhances possibilities to observe GWs produced by first order phase transition [58,
60, 61, 359, 365] at LISA, DECIGO and BBO. On the other side, the BAU decreases as the
velocity approaches the speed of light [309]. For example, if we set the velocity to 0.45, the
BAU decreases, and all the magenta points shown in figs. 7.8 and 7.9 move to the right. In
this case, some points constrained by the data of Bs → µµ and |ϵK |, but the other points, e.g.
(|ρtt|, |ρtc|) = (0.15, 0.8), satisfy ηB = 8.65−8.74 × 10−11 under the experimental constraints.
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The shape of GW spectra predicted at these points is similar to the ones in the top transport
scenario, and we have obtained the energy density of GW at the peak point as h2ΩGW(fpeak) =
6 × 10−14 with fpeak = 0.14 Hz. This point is above the peak integrated sensitivity curves
of DECIGO and BBO shown in Ref. [56], so that the points are testable by the future GWs
observations.

In this scenario, we have neglected (1, 1) components of the 3 × 3 matrices ρu and ρd,
which are relevant parameters to the nEDM. The CP violating phases of the top-charm mixing
couplings can contribute to the nEDM through the Weinberg operator induced by the charm
chromo EDM [366]. Although these phases are not directly connected with the BAU, some
parameter regions may be constrained by the current nEDM bound [284]. In this analysis, we
have set ρe = 0. If we consider ρe to be a non-zero 3× 3 matrix, especially its (1, 1) component
of ρee, the eEDM becomes sensitive to the CP violation in our model. Clearly, if accuracies are
substantially improved at future EDM experiments [282, 367], wider parameter regions can be
explored.

7.4.3 Short summary of chapter 7

In this chapter, we have discussed EWBG in the 2HDM. We have first reviewed the mechanism
of EWBG and derived the transport equations based on the semi-classical force mechanism.
We also have explained the EDMs as a consequence of the CP violation in the model. We
have discussed the two transport scenarios depending on the additional Yukawa matrices in
the 2HDM. We first have discussed the top-transport scenario, and shown the viable parameter
spaces under the current experimental data. We have discussed how we can test these bench-
mark scenarios at future collider experiments, various flavor experiments and gravitational wave
observations. In particular, the model can be tested by the di-photon decay of the Higgs boson
and the triple Higgs boson coupling due to the non-decoupling effect which causes SFOPT. We
then have investigated the top-charm transport scenario with the quark flavor mixing. We have
derived the CP violating source term for this scenario, and found that CP violating phases of
the off-diagonal element in the source term in the Boltzmann equation are eliminated by the
rephasing. This result is somewhat different from previous works on electroweak baryogenesis
by flavor off-diagonal Yukawa couplings. Instead, we have found that the absolute value of the
top-charm off-diagonal element enhances CP violating phases in the Higgs potential, by which
a sufficient amount of the baryon number can be generated to explain the observed baryon
asymmetry of the Universe. Finally we have discussed characteristic predictions in Kaon rare
decays for this scenario, K+ → π+νν and KL → π0νν.
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Chapter 8

Loop induced H±W∓Z vertices as a
probe of CP violation

In this chapter, we discuss loop induced H±W∓Z vertices in the general 2HDM with the CP
violation. As we have discussed in chapter 7, the 2HDM is motivated by EWBG, and new
sources of the CP violation can generate the observed BAU. As a consequence of the CP
violation, there are some observables which would be measured by future experiments, such as
the EDMs. We introduce the H±W∓Z vertices for measuring the CP violation at high energy
experiments.

The custodial symmetry is important to classify extended Higgs models, because violation
of it affects the mass relation between the W and Z boson, i.e. the ρ parameter. In the 2HDM,
loop corrections from custodial symmetry violation shift the ρ parameter from unity. This
deviation is parametrized by the T parameter, defined by αemT = ρ− 1. If the scalar potential
respects the custodial symmetry, the correction from the 2HDM is zero.

In addition to this ρ parameter, theH±W∓Z vertices have also been known as a consequence
of the violation of the custodial symmetry. These vertices are absent at the tree level [84].
However, it can be induced by loop effects [85]. These H±W∓Z vertices have been analyzed
in the context of the CP conserving 2HDM [85, 354, 368–372], the Minimal Supersymmetric
Standard Model (MSSM) [368, 373, 374], and the CP violating MSSM [371, 375]. In general,
such a one loop induced vertex is suppressed by the factor 1/16π2, so that one might expect
that effects from these vertices are small. In the 2HDM, however, it has been pointed out that
these vertices can be enhanced by non-decoupling quantum effects of particles in the loop [369].
Besides the 2HDM, the feature of the H±W∓Z vertices have been studied in the models with
SU(2)L triplets [84,115,116,376,377], the three Higgs doublet model [378], and the model with
one colored scalar boson [379]. Through these vertices, at high energy colliders, the charged
scalar bosons can be produced, and they can decay into the W and Z bosons. Phenomenological
impacts of these vertices at the collider experiments have been discussed in Refs. [380–393].
From the current ATLAS [179] and CMS [180] data related to the H±W∓Z vertices, some of
the models, e.g., the Georgi–Machacek model [376,377], have been already constrained.

As we have already discussed in section 4.1, the CP violating scalar potential also violates the
custodial symmetry. Therefore, we expect the H±W∓Z vertices from the CP violating effects
in the model. In the following sections, we first give a tree-level discussion for the H±W∓Z
vertices. We also mention the relation to the ρ parameter. We then discuss the loop induced
H±W∓Z vertices in the 2HDM. We calculate the H±W∓Z vertices at the one-loop level, and
we confirm that there are two contributions from the CP conserving and CP violating coupling
constants. We show the relation between these vertices and the violation of the custodial and
CP symmetry. We discuss the decays H± → W±Z via these vertices. We find that these decays
are significantly enhanced by the loop effects of the additional scalar bosons. Finally, we find
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8 Loop induced H±W∓Z vertices as a probe of CP violation

that an asymmetry between the decay rates of H+ → W+Z and H− → W−Z can be a useful
observable to see the CP violating phases in the model. We also give a short discussion on the
testability of these vertices at current and future high energy collider experiments.

8.1 The tree level H±W∓Z vertices and the ρ parameter

According to Refs. [84, 146], we explain the tree-level H±W∓Z vertex and the ρ parameter in
a scalar gauge theory.

We consider models of multi scalars with arbitrary representations of SU(2)L×U(1)Y , which
is given by

L =
∑
k

(Dµϕk)
†Dµϕk +

1

2

∑
i

(Dµηi)
TDµηi, (8.1)

where ϕk are SU(2)L complex representation with the hypercharge Y , and ηi are SU(2)L real
representation with Y = 0. The covariant derivative is given by

Dµ = ∂µ − igW a
µT

a − ig′Y Bµ. (8.2)

First, as we have discussed in section 2.5, the ρ parameter is given by

ρ ≡ m2
W

m2
Z cos

2 θW
=

∑
k

(
Tk(Tk + 1)− Y 2

k

)
|vk|2 + 1

2

∑
i Ti(Ti + 1)|ui|2∑

k 2Y
2
k |vk|2

, (8.3)

where T is given by the eigenvalue of T 2 = T aT a and vk and ui are the VEV of the neutral
component of ϕk and ηi, respectively. From this equation, when ηi has a VEV, ρ must be
deviated from 1. The condition for ρ = 1 with the arbitrary VEV is∑

k

(
Tk(Tk + 1)− 3Y 2

k

)
|vk|2 +

1

2

∑
i

Ti(Ti + 1)|ui|2 = 0. (8.4)

Suppose a model with multi doublet fields with Y = 1/2 (N Higgs doublet model), and we
get ρ = 1. A model with one Y = 1 triplet and one Y = 0 triplet (the Georgi–Machacek
model [376,377]), up to vk = ui, results ρ = 1.

Second, the vertex among a negatively charged scalar, the W boson and the Z boson is
obtained by the kinetic term shown above, and we have

Lϕ−W+Z =
g2√
2cW

W+
µ Z

µ

{
c2W

(∑
k

(
ϕ†
kT

+
k vk − (T−

k vk)
†ϕk
)
+
∑
i

ηTi T
+
i ui

)
−
∑
k

2Yk

(
ϕ†
kT

+
k vk + (T−

k vk)
†ϕk

)}
, (8.5)

where T± = T 1± iT 2, which are raising and lowering operators for su(2) algebra. Here we have
treated the VEVs as the vector which satisfies Qvk = Qui = 0. We note that QT+

k vk = +T+
k vk

andQT−
k vk = −T−

k vk are shown, so that non-zero terms of ϕk and ηi contain electromagnetically
negative singly charged scalars. Without loss of generality, we can choose Yk ≥ 0, so that
T+
k vk ̸= 0. In this formula, the charged NG boson is included.
The NG boson can be identified by seeing the W∂G mixing term, which will be absorbed

into the gauge fixing term. The charged NG boson is given by the combination of those fields
as

G− =
g√
2mW

{∑
k

(
ϕ†
kT

+
k vk − (T−

k vk)
†ϕk

)
+
∑
i

ηTi T
+
i ui

}
. (8.6)
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We here have explicitly shown the real representations, but we can extend the definition of ϕk
in the way of ϕk̃ for {k̃} = {k} ⊕ {i}. Concretely, we can write

ηTT+u =
1

2

(
ηTT+u+ uT (T+)Tη

)
=

1

2

(
ηTT+u− uTT+η

)
, (8.7)

because of (T a)∗ = −T a for the real representation. The G− state is normalized to be unit, so
that we can show G± ·G± = 1.

We can rewrite the above formula for the vertex as

Lϕ−W+Z =
g2√
2cW

W+
µ Z

µ

{
c2W

√
2mW

g
G− −

∑
k

2Yk

(
ϕ†
kT

+
k vk + (T−

k vk)
†ϕk

)}
. (8.8)

We may derive the conditions for the non-zero tree level H±W∓Z vertex. There are two possible
conditions for vanishing this vertex: Models contain

• no Y ̸= 0 representations ϕk getting non-zero VEVs.

• only Y ̸= 0 representations ϕk getting non-zero VEVs, such that Yk are all same and they
satisfy T−

k vk = 0.

When we prepare representations with different hypercharge, the vertex exists even if T−
k vk = 0.

For example, in model with ϕ1 ∼ (T 3, Y ) = (1/2, 1/2) and ϕ2 ∼ (1, 1) representations, we can
check T−v1 = T−v2 = 0, but we have the H±W∓Z vertex.

By defining the physical charged scalar bosons which are orthogonal to the NG boson, we
obtain

LH−W+Z = −gmZξH
−W+

µ Z
µ, (8.9)

where

|ξ|2 = g2

m2
W

{∑
k

4Y 2
k

(
Tk(Tk + 1)− Y 2

k

)
|vk|2

}
− 1

ρ2
. (8.10)

We note the W boson mass is given by

m2
W = g2

(∑
k

(
Tk(Tk + 1)− Y 2

k

)
|vk|2 +

1

2

∑
i

Ti(Ti + 1)|ui|2
)
, (8.11)

Up to now, the discussion is general for any number of representations, and we can find the
relation between the ρ parameter and the H±W∓Z vertex by seeing these equations.

Third, we see several examples. In models with the SM Higgs (1/2, 1/2) plus

ϕ1 ∼ (1/2, 1/2) → ρ = 1, ξ = 0,

η1 ∼ (1, 0) → ρ ̸= 1, ξ = 0,

ϕ1 satisfying T (T + 1)− 3Y 2 = 0 → ρ = 1, ξ ̸= 0,

ϕ1 ∼ (1, Y ) → ρ ̸= 1, ξ ̸= 0. (8.12)

These examples are the two scalar models. When we consider a three or more scalars model,
e.g. the GM model, ρ = 1 can be satisfied, and ξ ̸= 0.

Finally, in the 2HDM which we are now focusing on, ξ = 0 and ρ = 1 are clearly shown.
This feature will be changed by quantum corrections [85]. As we have introduced in sections 2.5
and 4.1, the custodial symmetry for the two scalar doublets can be defined. When the custodial
symmetry (see Eq. (4.29)) is preserved in the potential, the leading loop correction to the ρ
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8 Loop induced H±W∓Z vertices as a probe of CP violation

parameter from the 2HDM vanishes: ∆T = 0 is explicitly shown by Eq. (4.29) at the one-loop
level. As we see in the following sections, when the potential respects the custodial symmetry,
the H±W∓Z vertices induced by the potential terms are also zero 1. When the custodial
symmetry is violated by the potential, ∆T could be non-zero, and the H±W∓Z vertices could
be induced. From the relation between the CP violation and the custodial symmetry violation,
we can expect that the H±W∓Z vertices are induced by the CP violating effects. Actually, it
has been known that the CP violating effects in the potential induce non-zero ∆T , e.g. with
R11 ≃ R12 ≃ R13 ≃ 3/

√
3, which corresponds to Im[Z2

6 ] ̸= 0 [152]. In the following discussions,
we will see there are CP violating contributions to the H±W∓Z vertices.

8.2 Loop induced H±W∓Z vertices

We define the H±W∓Z vertices as

mWgV
±
µν = H±

Zν

W±
µ

k1

k3

k2

, (8.13)

where k1 (k2 and k3) is the incoming (outgoing) momentum. Subsequently, V ±
µν can be decom-

posed by

V ±
µν = F±gµν +

G±

m2
W

k3µk
2
ν +

H±

m2
W

ϵµνρσk
ρ
3k

σ
2 , (8.14)

where ϵµνρσ (ϵ0123 = 1) is the completely antisymmetric tensor and the external W and Z bosons
satisfy the on-shell conditions for ∂µW

µ = 0 and ∂µZ
µ = 0, respectively. We distinguish V +

µν

and V −
µν for the discussion of the CP violation. These vertices come from the following effective

operators,

Tr[σ3(DµM1)
†(DµM2)], Tr[σ3M†

1M2F
µν
Z FW

µν ], iϵµνρσTr[σ3M†
1M2F

µν
Z FW

ρσ ], (8.15)

and the hermitian conjugate of them, where F µν
W and F µν

Z are the field tensors of the W and
Z bosons, respectively. All of these operators violate the custodial SU(2)V symmetry. In the
2HDM, these effective operators do not exist at the tree level, however, when the Lagrangian vio-
lates the custodial symmetry, these are induced by the loop effects. Especially, the first operator
in Eq. (8.15), which corresponds to the F± term in Eq. (8.14), is the dimension-four operator,
so that non-decoupling quantum effects of the additional scalar bosons are enhanced [369]. On
the other hand, the second and third operators, which are dimension-six, are suppressed by
the quadratic scale of the heavy particles. Therefore, the F± term contribution is important
to discuss the quantum effects of the additional heavy scalar bosons. We note that the third
operator also breaks the parity symmetry which is conserved in the bosonic sector, so that only
the fermion-loop contributions cause non-zero H±.

Although it has also been known that the H±W∓γ vertices are generated at the loop level
in the 2HDM [368, 370, 394–398], due to the Ward–Takahashi identity pµγVµν = 0, the F± term
must vanish. In this sense, a large enhancement by the heavy scalar bosons cannot be expected,

1We note, the Yukawa and U(1)Y interactions violate the custodial symmetry, so that corresponding correc-
tions appear in both of them.
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Figure 8.1: The scalar contributions of the decay H+ → G+G0 under the condition Z6 = 0.
The white (black) dots express the interaction which violates the (twisted) custodial symmetry.

compared with the H±W∓Z vertices. In this chapter, we focus on the H±W∓Z vertices to see
the quantum effects of the additional scalar bosons.

When mH± > mW +mZ , the decays H± → W±Z through these vertices are kinematically
allowed. The decay rates of H± → W±Z are given by

Γ(H± → W±Z) =
mH±λ

1
2 (1, w, z)

16π

(
|MLL|2 + |MTT |2

)
, (8.16)

where w = m2
W/m

2
H± , z = m2

Z/m
2
H± and λ(a, b, c) = (a− b− c)2 − 4bc. The amplitudes MLL

and MTT are the contributions from the longitudinal and transverse modes of the external
gauge bosons, respectively. These amplitudes are given by

|MLL|2 =
g2

4z

∣∣∣∣(1− w − z)F± +
λ(1, w, z)

2w
G±

∣∣∣∣2,
|MTT |2 = g2

(
2w|F±|2 +

λ(1, w, z)

2w
|H±|2

)
. (8.17)

8.3 Understanding aspects of the H±W∓Z vertices with

the equivalence theorem

In this section, we discuss the relation among the decays H± → W±Z, the custodial symmetry,
and the CP symmetry in our model. In section 8.4 and appendix E, we will give all diagrams
and the full formulae for F±, G± and H± in the general 2HDM. However, in order to see
the essence, we here take the heavy mass limit, where mW,Z/mH± → 0. In this limit, the
longitudinal contribution MLL is dominant in the decays H± → W±Z. In addition, thanks
to the equivalence theorem [163, 399], the calculation of MLL can be much simpler than the
original calculation by replacing the external gauge bosons to the corresponding NG bosons.

To see the features of these vertices, we here take the Z6 = 0 condition just for simplicity.
The diagrams which contribute to Γ(H+ → G+G0) from the scalar potential are shown in
figure 8.1. Here we have employed the Landau gauge and calculated in the real Z5 basis. The
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white (black) dots in the figure 8.1 are proportional to ZI
7 (ZR

7 ) or m
2
H± −m2

H3
(m2

H± −m2
H2
),

so that they break the (twisted) custodial symmetry, as it can be understood from Eq. (4.29).
At the one-loop level, the amplitudes are given by

M(H± → G±G0) =
±iZR

7

16π2v
(m2

H± −m2
H3
)
{
(m2

H2
−m2

H3
)C0[−k2,−k3;m2

H± ,m2
H3
,m2

H2
]

+B0[−k2;m2
H± ,m2

H3
]− B0[−k1;m2

H± ,m2
H2
]
}

+
ZI

7

16π2v
(m2

H± −m2
H2
)
{
(m2

H2
−m2

H3
)C0[−k2,−k3;m2

H± ,m2
H2
,m2

H3
]

− B0[−k2;m2
H± ,m2

H2
] + B0[−k1;m2

H± ,m2
H3
]
}
, (8.18)

where the B0 and C0 functions are the scalar Passarino–Veltmann functions [400, 401], whose
definitions are summarized in appendix D. We can see the equivalence of the custodial and the
twisted custodial symmetry from Eq. (8.18). When the conditions for the (twisted) custodial
symmetry, ZI

7 = 0 and m2
H± = m2

H3
(ZR

7 = 0 and m2
H± = m2

H2
), are satisfied, the amplitude

is M(H± → G±G0) = 0. Due to the CP violating potential, there are two terms which are
proportional to the real or imaginary part of Z7. In the CP conserving 2HDM, there are
no corresponding coupling constants to ZI

7 in the Higgs basis. Therefore, the second term in
Eq. (8.18) is the new part from the CP violating potential. We note that, however, the existence
of only the second term does not mean the CP violation in the potential. This is because,
under the Z6 = 0 condition, the remaining rephasing invariant is Z∗

5Z
2
7 (see section 4.1), so

that Im[Z2
7 ] ∝ ZR

7 Z
I
7 dependence in the real Z5 basis is needed for the CP violation. Actually,

the loop functions in Eq. (8.18) are always real, so that both squared amplitudes for H+ and
H− take forms as (ZR

7 )
2c + (ZI

7 )
2c′, where c and c′ are real constants. As a result, the decays

H± → W±Z cannot be observable to measure Im[Z2
7 ].

Even in the general formulae which are shown in appendix E, this feature is not changed.
However, under the existence of the fermion-loop contributions with the additional Yukawa
matrices ρf , an asymmetry between the decay rates of H+ → W+Z and H− → W−Z can
appear. This is because the loop functions in those contributions can have imaginary parts,
and Im[Z7ρ

f ] related differences appear in these decay rates. In the following sections, we also
give discussions and results for the CP asymmetry in these decays.

We note, unlike ∆T , the H±W∓Z vertices are sensitive to the custodial symmetry violation
by non-zero Z7 at the one-loop level. This is because, the one-loop formula for ∆T does not
have any dependence of Z7, so that even if the custodial symmetry is violated by Z7 ̸= 0, ∆T
can be zero by taking mH2 = mH± or mH3 = mH± .

8.4 The analyses for the decays H± → W±Z in the gen-

eral two Higgs doublet model

In this section, we discuss the decays H± → W±Z in the general 2HDM. We calculate the
decay in the t’Hooft–Feynman gauge at the one-loop level. The full analytic expressions for
the H±W∓Z vertices are given in appendix E. All numerical results which are shown in the
following subsections are given by using these formulae.

In figures 8.2-8.5, all contributions to the decay H+ → W+Z are shown. The diagrams
of the decay H− → W−Z can be obtained by changing the directions of the arrows for the
charged particles. The boson contributions are shown in figure 8.2 and figure 8.3, where i, j
(= 1, 2, 3) are the indices of the neutral scalar bosons in the mass eigenstate. The diagrams
given in figure 8.2 and figure 8.3 can be expressed by the C and B type Passarino–Veltmann
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Figure 8.2: The C type contributions. The indices i and j run 1, 2, 3, which denote the mass
eigenstates of the neutral scalar bosons.

functions, respectively. The fermion contributions are shown in figure 8.4, where l,m (= 1, 2, 3)
are the fermion-flavor indices. Only the fermion contributions give the H± term in Eq. (8.14)
because the SM fermions have the chiral interaction. There are other contributions from the
diagrams of the tadpole and the H+G− mixing, which are shown in figure 8.5. These diagrams
are expressed by the A0 scalar one-point function. Analytic expressions for all diagrams are
given in appendix E.

Here we give a comment on a method for renormalization. In our model, the effective
operators which cause the H±W∓Z vertices are absent at the tree level, so that such a one-
loop-induced vertex must be finite in the renormalizable theory. By summing all of those
contributions, the divergences in each diagram, which are also shown in appendix E, cancel
out. Therefore, a renormalization method to absorb these divergences in these vertices is not
needed. However, once a renormalization scheme is adopted and the counter terms in this
scheme are fixed, they might give finite corrections to these vertices at the one-loop level. We
expect that those corrections are small, and we do not specify the renormalization scheme in
this thesis.

8.4.1 Setup of model parameters

First, in this subsection, we explain a method to determine the input parameters for numerical
analysis. The free independent parameters in our model are Y 2

2 , Z1,2,3,4,5, Z
R
6 , Z

I
6 , Z

R
7 , Z

I
7 , and

ρf (f = u, d, e). We take the mixing angles αi and the mass mHi
(i = 1, 2, 3) as the input

parameters. Therefore, the related coupling constants Z1, Z4, Z5, Z
R
6 and ZI

6 are determined by

M2 = RTdiag(m2
H1
,m2

H2
,m2

H3
)R. (8.19)

where M2 is given in Eq. (4.5). In order to take the real Z5 basis, a set of input pa-
rameters (α1, α2, α3,mH1 ,mH2 ,mH3) must satisfy (M2)23 = (M2)32 = 0. First we deter-
mine (α1, α2,mH1 ,mH2 ,mH3) and then numerically get α3 = α∗

3, which satisfies (M2)23 =
(M2)32 = 0. In the following numerical studies, we choose α∗

3 such that the coupling Z6
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Figure 8.3: The B type contributions.
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Figure 8.4: The fermion contributions. The indices l,m denote the fermion flavors.

satisfies 0 ≤ arg[Z6] < π/2. We also treat mH± and Y 2
2 as the input parameters and fix

−Y 2
2 = (20 GeV)2. The coupling constant Z2, which is irrelevant to the decays H± → W±Z

at the one-loop level, is set by Z2 = 2.
Second, we have the general complex Yukawa matrices ρf in our model. Although the

formulae of the H±W∓Z vertices with general ρf are shown in appendix E, the contributions
from each flavor give similar results. Under the data from the flavor experiments, ρtt and ρtc,
which are (3, 3) and (3, 2) elements in ρu, respectively, are normally allowed to be larger than
the other additional Yukawa coupling constants [139]. In addition, effects from ρtc are small
because the contributions to the H±W∓Z vertices from ρu are approximately proportional to∑

l,m=2,3(V
†)lm(ρ

u†V )mlf(mum) = ρ∗ccf(mc) + ρ∗ttf(mt), where the function f is expressed by
the loop functions. Therefore, in the following analyses, we only focus on the ρtt dependence
as the fermion contributions.

Finally, we consider the experimental and theoretical constraints on the 2HDM, which has
already been discussed in section 4.1. As a conservative bound on the mixing angles αi and the
coupling constant ρtt, we set |αi| ≤ 0.01 and |ρtt| ≤ 0.2 in the following analyses.

8.4.2 Numerical analyses for the decay H+ → W+Z

In this subsection, we give numerical results for the decay H+ → W+Z in our model. As other
decay modes for H±, we consider H± → ff ′ and H± → W±Hi, if it is kinematically allowed.
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Figure 8.5: The A type contributions.
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Figure 8.6: The decay rate Γ(H+ → W+Z) as a function of mH± . In the left (right) panel, the
mass difference mH2 −mH± (mH3 −mH±) and the coupling constant ZI

7 (ZR
7 ) are switched on.

The solid lines show the results for ρtt = 0, and both dashed and dotted lines show the impacts
from non-zero ρtt.

Each decay rates are given by
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(m2
H± −m2

ei
)2,

Γ(H± → W±Hi) =
λ3/2(m2

H± ,m2
W± ,m2

Hi
)

16πv2m3
H±

(R2
i2 +R2

i3), (8.20)

where Γuij = ρu†VCKM, Γ
d
ij = −VCKMρ

d and Γeij = −ρe.
In figure 8.6, Γ(H+ → W+Z) is shown as a function of mH± . In the left panel, we take

mH2 −mH± = 200 GeV, mH3 = mH± and α1 = α2 = 0. The results of ZI
7 = 0.1, 1, and 5 are

shown as the blue, orange, and green solid lines, respectively. We note that taking ZI
7 = 5 is

dangerous due to the perturbative unitarity or the BFB conditions, however, it is shown just
for illustration. These solid lines are purely caused by the scalar and gauge contributions, and
the decay rate increases as taking large ZI

7 . This is because, in the left panel, the custodial
symmetry violation in the potential is realized by non-zero ZI

7 . When the fermion contribution
from ρtt is switched on, as shown by the dashed (ρtt = 0.1) and the dotted (ρtt = 0.1i) lines,
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Figure 8.7: Left: mH2 dependence of the total decay rate of H+. The blue, orange, and green
lines show the results of ZI

7 = 0.1, 1, and 5, respectively. The result with non-zero ρtt is shown
as the dashed line. Right: mH2 dependence of the branching ratio of H+. The decay modes
are H+ → W+Z (blue), tb (orange), W+H1 (green), W+H2 (red), and W+H3 (purple). In
this parameter set, only the decay modes H+ → W+Z, tb and W+H2 can be significant. The
black dashed line shows the criterion where the maximal s-wave scattering amplitude among
the scalar and the gauge bosons is 0.5.

the decay width is changed. In the right panel of figure 8.6, mH3 − mH± = 200 GeV and
mH2 = mH± are taken. Namely, the masses of H2 and H3 are exchanged from the left panel.
The cyan, red, and purple lines are the results of ZR

7 = 0.1, 1, and 5, respectively, and the
impacts of setting ρtt = −0.1 and 0.1i are shown by the dashed and dotted lines, respectively.
In this right panel, the violation of the twisted custodial symmetry in the potential is realized
by ZR

7 ̸= 0. We can see the equivalent results in the left and right panels, which are related to
the violation of the custodial or the twisted custodial symmetry.

In the left panel of figure 8.7, mH2 dependence of the total decay width of H+ is shown. We
have takenmH± = 300 GeV,mH3−mH± = 10 GeV and α1 = α2 = 0. In the left panel, the blue,
orange, and green solid lines show the total decay width Γtotal with Z

I
7 = 0.1, 1, and 5. Again,

taking ZI
7 = 5 is dangerous due to the perturbative unitarity or the BFB conditions, however,

the result is shown just for illustration. When mH2 < mH± −mW , the H+ → W+H2 decay is
kinematically allowed. On the other hand, in the region mH2 > mH± − mW , only the decay
mode H+ → W+Z is possible if ρtt = 0, and it almost disappears at the point mH± = mH2 ,
where the potential recovers the twisted custodial symmetry. As shown in the green dashed
line, when ρtt is switched on, H+ → tb decay is allowed. In the right panel of figure 8.7, the
branching ratio of H+ is shown. In this panel, ZI

7 = 1 and ρtt = 0.1 are taken. The decay
modes are H+ → W+Z (blue), tb (orange), W+H1 (green), W+H2 (red), and W+H3 (purple).
In this parameter set, only H+ → W+Z, tb and W+H2 can be significant. The black dashed
line shows the perturbative unitarity bound, ξMax ≡ Max{a0} = 0.5, where {a0} is a set of the
eigenvalues of s-wave amplitude matrix for the elastic scatterings among the longitudinal modes
of the gauge bosons and the neutral and charged scalar bosons in the high energy limit [167].
The line for ξMax = 1 is out of this figure. In the region mH2 > mH± −mW , the dominant decay
modes are H+ → tb and H+ → W+Z. As the mass difference mH2 −mH± becomes large, the
branching ratio Br(H+ → W+Z) increases.
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Figure 8.8: mH2 dependence of the branching ratio of H+ with the non-zero mixing angle α1

(left: mH± = 300 GeV, right: mH± = 200 GeV).

In figure 8.8, analyses for the branching ratio with a non-alignment case are shown. In
the left (right) panel, mH± = 300 GeV (mH± = 200 GeV), mH3 = mH± + 10 GeV, ZI

7 = 1,
ρtt = 0.1, α1 = 0.01, and α2 = 0 are taken. As shown in the left panel, when mH± > mW+mH1 ,
Br(H+ → W+Z) is suppressed by the H+ → W+H1 decay, which is caused by non-zero R12.
On the other hand, when mH± < mW +mH1 , as shown in the right panel, H+ decays into tb
or W+Z, so that Br(H+ → W+Z) ≳ O(10−3) is realized for ξMax ≤ 0.5.

In figure 8.9, the results for ρtt dependence of the branching ratio are shown. As shown
in the left panel, where mH± = 300 GeV, the dominant decay mode is H+ → W+H1 in the
region of ρtt ≲ 0.006, and H+ → tb becomes dominant as ρtt increases. In the right panel,
where mH± = 200 GeV, H+ → W+H1 is kinematically forbidden. As a result, in the region of
ρtt ≲ 0.003, H+ → tb is suppressed, and Br(H+ → W+Z) can be large.

8.4.3 Asymmetry in the decays of H+ → W+Z and H− → W−Z

In the previous subsection, the numerical results for H+ decays are shown. The decay H− →
W−Z also behaves in a similar way to the decay H+ → W+Z. However, an asymmetry between
them is caused by the interference of the scalar and fermion contributions. In this subsection,
we give numerical results for the CP asymmetry in these decays.

For the discussions of the CP violation, we define

∆(H± → W±Z) ≡ Γ(H+ → W+Z)− Γ(H− → W−Z), (8.21)

and the CP violating quantity [375]

δCP ≡ Γ(H+ → W+Z)− Γ(H− → W−Z)

Γ(H+ → W+Z) + Γ(H− → W−Z)
. (8.22)

By definition, the decay rate for H− is given by

Γ(H− → W−Z) =
1− δCP

1 + δCP

Γ(H+ → W+Z). (8.23)

The behavior of these quantities are shown in figure 8.10, where mH± = 200 GeV, mH2 =
500 GeV, mH3 = mH± + 10 GeV, ρtt = 0.1, and α1 = α2 = 0 are taken. In the left and
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Figure 8.9: ρtt dependence of the branching ratio of H+ (left: mH± = 300 GeV, right: mH± =
200 GeV). In this parameter set, the decay modes H+ → W+Z, tb and W+H1 are relevant.

right panel, the contour figures of ∆(H± → W±Z)× 105 and δCP in the |Z7|-arg[Z7] plane are
shown, respectively. The red shaded regions do not satisfy the BFB conditions. At arg[Z7] =
π/2, ∆(H± → W±Z) and δCP take the maximal value, while at arg[Z7] = −π/2, they take
the minimal value. This feature can be understood as follows: each decay amplitude can be
approximately written as

M(H+ → W+Z) ≃ i
(
ρRttf1 + ZR

7 (m
2
H± −m2

H3
)f2
)
+
(
ρIttf1 + ZI

7 (m
2
H± −m2

H2
)f3
)
,

M(H− → W−Z) ≃ −i
(
ρRttf1 + ZR

7 (m
2
H± −m2

H3
)f2
)
+
(
ρIttf1 + ZI

7 (m
2
H± −m2

H2
)f3
)
, (8.24)

where f1,2,3 are mass dependent functions. When mH± > mt + mb, the loop functions in f1
have the imaginary parts, so that δCP can be expressed as2

δCP ∝ ∆(H± → W±Z) ∝ |M(H+ → W+Z)|2 − |M(H− → W−Z)|2

∝ ρRttZ
I
7 (m

2
H± −m2

H2
)f3Im[f ∗

1 ] + ρIttZ
R
7 (m

2
H± −m2

H3
)f2Im[f1]. (8.25)

As a result, the dependence of ZI
7 ∝ sin(arg[Z7]) appears in figure 8.10, where non-zero mH± −

mH2 and ρRtt are taken. Due to the denominator in Eq. (8.22), as |Z7| increases, δCP gets large
at first, but it turns to decrease.

In figure 8.11, the ρtt dependence of δCP is shown. We have set the phase of Z7 as arg[Z7] =
π/2. The blue, orange, and green lines show the results of |Z7| = 0.1, 0.5 and 1, respectively.
The point of ρtt, where δCP takes a maximal value, depends on the size of Z7. The maximal value
of δCP in this figure is around 0.7, so that Γ(H− → W−Z) is about 17 % of Γ(H+ → W+Z).

At the pp collider like LHC, production cross sections of H+ and H− via the vector boson
fusion mechanism and the associated production mechanism with neutral scalar bosons are
in general different [186, 187, 388]. In addition, as we find, the decays of H+ → W+Z and
H− → W−Z can be different by the CP violating phase effect.

2This kind of CP violation is so-called direct CP violation [402].
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Figure 8.10: The contour plots of ∆(H± → W±Z) × 105 (left) and δCP (right) in |Z7|-arg[Z7]
plane. The red shaded regions do not satisfy the BFB conditions.
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Figure 8.11: The ρtt dependence of δCP with several |Z7| values. |Z7| = 0.1 (blue), |Z7| = 0.5
(orange), and |Z7| = 1 (green).

8.5 Discussions

First, we discuss the signature for the H±W∓Z vertices at the hadron colliders. Based on
the analyses in the former sections, we set two benchmark points which are given in table 8.1.
The difference in BP1 and BP2 is the size of ρtt, and the other parameters are the same.
As discussed in section 8.4, for the production of H+, the WZ fusion process (pp(W+Z) →
H+X) and the top-associated process (gb → H+t) are important in the hadron collider. (At
a pp collider, the production cross section for pp(W−Z) → H−X is smaller than that for
pp(W+Z) → H+X [388].) The former production process is loop-induced, and it has been
evaluated in Refs. [372,388,389]. From figure 13 in Ref. [372], the WZ fusion cross section can
be obtained as σWZ ≃ 2|F |2 × 103 fb for mH± = 200 GeV at the LHC with

√
s = 13 TeV.

The latter process depends on ρtt, and its cross section has been evaluated by σgb ≃ 102 fb
for |ρtt| ≃ 1/8 and mH± = 200 GeV at the LHC with

√
s = 13 TeV [100]. Therefore, ρtt

dependence of this cross section can be estimated as σgb ≃ 64|ρtt|2 × 102 fb for mH± = 200
GeV. In figure 8.12, ρtt dependence of σWZ ×Br(H+ → W+Z) and σgb ×Br(H+ → W+Z) are
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(in GeV) mH± mH2 mH3 Z7 ρtt α1 = −α2

BP1 200 500 210 1.3e2.0i 0.1 0.01
BP2 200 500 210 1.3e2.0i 0.001 0.01

Table 8.1: Benchmark points for the discussions of collider phenomenology. In BP1 and BP2,
the same parameters are taken except for ρtt.

σ(WZ)×Br(H+->WZ)
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10-4 0.001 0.010 0.100

10-4

0.001

0.010

0.100

1

ρtt

σ
B
r
[fb

]

Figure 8.12: ρtt dependence of the cross section σ(pp → H+X → W+ZX) in fb. The charged
scalar boson is produced via the WZ fusion process (blue) or the top-associated process (orange).

shown. The point ρtt = 0.1 (0.001) in figure 8.12 corresponds to BP1 (BP2). The numerical
values of |F |2, Br(H+ → W+Z), and the cross sections at these points are summarized in
table 8.2. For relatively large ρtt, e.g. in BP1, in spite of the suppression of Br(H+ → W+Z),
σgb × Br has advantage because the top-associated production process is enhanced by ρtt. On
the other hand, in the case of relatively small ρtt, e.g. in BP2, the top-associated production
process and the H+ → tb decay are suppressed. As a result, the WZ fusion production process
is important in this case.

From the data collected at the 13 TeV LHC with 139 fb−1 [179], an upper bound σWZ×Br ≲
O(102) fb for mH± = 200 GeV has been obtained, which is much larger than the estimated
value in BP2. However, at the HL-LHC with 3000 fb−1, we can expect O(102) number of this
events in BP2. This signal is also important in the high energy upgrade of the LHC [393].
Even in BP1, in which ρtt is relatively large, the process σgb × Br might be important in the
future hadron colliders because σgb×Br in BP1 is about 5 times larger than σWZ ×Br in BP2.
Consequently, the H±W∓Z vertices in our model are expected to be tested at the HL-LHC.

Second, we give discussions for the testability in the lepton collider. For example, in the high
energy e+e− collider such as the ILC with

√
s = 500 GeV and 1 TeV [24,25], the pair production

process e+e− → H+H− is important, and its cross section only depends on mH± [403]. In
addition, single H± production has been discussed in Refs. [384, 390, 404]. When we consider
mH± = 200 GeV, the production cross section of a pair of the charged scalar bosons is given
by σ(H+H−) ≃ 3.0 × 10 fb (2.0 × 10 fb) at the ILC 500 GeV (1 TeV) [384]. Therefore, in
BP1 (BP2), σ(H+H−)×Br(H+ → W+Z) is estimated as σ×Br ≃ 7.8× 10−2 fb (2.8× 10 fb)
at the ILC 500 GeV and σ × Br ≃ 5.2 × 10−2 fb (1.9 × 10 fb) at the ILC 1 TeV. This pair
production process is independent of ρtt, so that numerous events can be expected in BP2, in
which almost all H+ decays to the W and Z bosons. More detailed analysis in these hadron
and lepton colliders will be given in the following study [405].
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BP1 BP2

|F |2 2.8× 10−5 1.7× 10−5

Br(H+ → W+Z) 2.6× 10−3 9.4× 10−1

σWZ [fb] 5.6× 10−2 3.4× 10−2

σWZ × Br [fb] 1.5× 10−4 3.2× 10−2

σgb [fb] 6.4× 10 6.4× 10−3

σgb × Br [fb] 1.7× 10−1 6.0× 10−3

Table 8.2: Summary of several values for |F |2, Br(H+ → W+Z) and the cross sections in BP1
and BP2.

Third, our calculation has been done in the Higgs basis, and it can be applied to the
softly-broken Z2 symmetric 2HDM by using the basis rotation from the Z2 basis to the Higgs
basis [137]. As shown in table 4.1, the CP violating phases do not exist in the Yukawa sector in
the softly-broken Z2 symmetric 2HDM, and the ρf coupling constants are not independent of
the parameters in the potential. On the other hand, in the general 2HDM, ρf are the arbitrary
complex matrices, and they can have the CP violating phases, some of which are important
sources to produce the BAU via the mechanism of the electroweak baryogenesis [37–43,45,47–
49]. Due to the independence between ρf and the coupling constants in the potential, it is
possible to consider parameter points, such as BP2, in which Br(H+ → W+Z) is close to unity.

Finally, in this chapter, we have discussed the relation between the H±W∓Z vertices and
the CP violation. As we have mentioned in section 8.3, the decays H± → W±Z cannot be
the observable for Im[Z∗

5Z
2
7 ], which is the CP violating invariant in the potential. However,

the difference in the decays H+ → W+Z and H− → W−Z is sensitive to Im[Z7ρ
f ], as we

have discussed in section 8.4. Therefore, as shown in figure 8.10, if we know the phase of ρf ,
the phase of Z7 can be determined by measuring the difference between Γ(H+ → W+Z) and
Γ(H− → W−Z). For example, in our model, it has been known that the rephasing invariant
Z5ρ

2
ττ can be measured by using azimuthal angle dependence of the hadronic decay of the tau

leptons, which are decay products of the pair of H2 and H3 [83, 358]. More realistic analyses
for measuring the CP phase via the H±W∓Z vertices will be discussed somewhere [405].

8.6 Short summary of chapter 8

In this chapter, we have discussed the H±W∓Z vertices in the most general 2HDM with the
CP violation. It has been known that the CP violating potential in the 2HDM violates the
custodial symmetry. The H±W∓Z vertices are one of the phenomenological consequences of
the custodial symmetry violation. We have calculated the H±W∓Z vertices at the one-loop
level with the most general setup, and we have found that there are both contributions from the
CP conserving and CP violating coupling constants. The scalar loop contributions disappear
at the one-loop level when the custodial symmetry is respected in the Higgs potential. We have
discussed the decays H± → W±Z in several parameter sets. We have found that the decay
rates can be significantly enhanced by the loop effects of the additional scalar bosons in the
most general 2HDM with the CP violation. We have also found that the asymmetry between
the decay rates of H+ → W+Z and H− → W−Z can be an important observable to see the
CP violating phases in the model. Finally, we have given discussions for the testability of these
vertices at current and future high energy collider experiments.
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Chapter 9

Landau pole problem and electroweak
baryogenesis

In this chapter, we discuss ultraviolet (UV) behavior of models for EWBG. In the SM, the
effective Higgs self coupling constant becomes negative at a scale between 109 GeV and the
Planck scale [170,172]. It has been found that the electroweak vacuum is metastable [168–172].
On the other hand, new physics models with multi scalar bosons tend to induce the Landau
pole, in which coupling constants in the model blow up at a scale [158, 159, 406–414]. If this
scale is much smaller than the Planck scale, perturbative calculation in the model is no longer
valid around the Landau pole, and we should consider a more fundamental theory beyond the
Landau pole.

The reason why the Landau pole easily appears in the multi scalar models is that the beta
function for the scalar boson is positive at the leading order. Furthermore, in some classes of
models for EWBG, e.g. in the 2HDM, the SFOPT for providing out-of-equilibrium situation
around bubble walls is caused by large corrections to the effective potential from relatively large
scalar couplings. If these masses of additional scalar bosons are strongly coupled to the SM
Higgs boson, the vacuum structure is changed by non-decoupling quantum effects. For these
reasons, the typical scale of the Landau pole in the model for EWBG with the non-decoupling
effects has been estimated at much lower than the Plank scale, i.e. TeV scale [37,44,415,416].
In the 2HDM, according to Ref. [37], almost all of the successful parameter regions predict the
Landau pole below 3 TeV, and it might be a reason to consider other mechanisms to cause
SFOPT [75].

The ultraviolet (UV) behavior of those models can be explored based on the analysis using
Renormalization Group Equations (RGEs). The energy dependence of effective coupling con-
stants is determined by the beta function. The modified Minimal Subtraction (MS) scheme [417]
is one of the most famous treatments for renormalization. The beta function obtained by this
scheme is a function of only the coupling constants, and masses and the renormalization scale
do not explicitly appear in the beta function. This Mass-Independent (MI) beta function has
been widely used to study various high energy phenomena.

However, in the analysis with the RGE in the context of EWBG, less care about threshold
correction has been taken. As it will be discussed, the coupling constants defined in MS
scheme are not physical directly, so that we need to match them to the physical observable
with a condition. This condition is so-called matching condition, and some corrections at the
threshold enter into the running of the couplings.

In the following sections, we first revisit to consider the matching condition and the threshold
correction, and we then introduce momentum subtraction scheme to include finite corrections
in counter terms to beta functions. We explain the mass dependence beta function in λϕ4

theory, which is obtained by the application of the momentum subtraction scheme. We apply
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this scheme to a pure scalar toy model, in which we can consider the non-decoupling situation,
deriving the mass dependent beta function. We also apply to more the realistic extended Higgs
model, the Inert doublet model, to estimate the scale of the Landau pole. In the end of this
chapter, discussions and a short summary are given.

9.1 Matching condition and threshold correction

The effective coupling constants in the MI scheme are not directly connected to physical observ-
ables. In addition, in the method using the MI beta function, there is no mechanism to treat the
effect of the appearance of a heavy particle around the scale of that particle’s mass. Therefore,
to calculate running coupling constants from a low energy effective theory to a theory where
heavy particles become active, matching conditions for the coupling constants have to be taken
into account. This is so-called Threshold Correction (TC) [418,419], where the effects of heavy
particles are switched on through the use of a step function in the beta function.

We briefly explain the TC and the beta function in the MS scheme. A bare parameter θ0

is expressed by scale dependent θ(µ) and scale independent θOS, which are defined in the MS
scheme and the On-Shell (OS) scheme, respectively. We have a relation

θ0 = θOS − δθOS = θ(µ)− δθMS, (9.1)

where the counter term δθMS (δθOS) contains only a divergence (a divergence and finite parts).
At a scale µ = Qm, the MS parameter is matched to the observable by using the matching
condition

θ(µ = Qm) = θOS + δθMS − δθOS ≡ θOS +∆θ, (9.2)

where ∆θ is a finite correction beyond the one-loop level.
We suppose a U(1) gauge theory where a heavy fermion ψ with the mass M couple to the

gauge field. We also suppose massless particles also couple to the gauge field. We denote the
contribution to the beta function for the gauge coupling g from the light particles as g2b0, and
from ψ as g2b1. The MS beta function is given by βg = dg/d lnµ = g2(b0 + b1). On the other
hand, if we consider the effective field theory [418, 419] by integrating out ψ, we get βIR

g = b0.
By using the matching condition, the gauge coupling is connected to the observable, and we
use g(Qm ≃ M) = gobs as the tree level condition. Based on this boundary condition, we can
solve the beta function as

1

gobs
=

1

g(Q0)
− b0 log

Qm

Q0

, (9.3)

for Q0 < µ < Qm, and

1

g(Λ)
=

1

gobs
−
(
b0 + b1

)
log

Λ

Qm

, (9.4)

for Qm < µ < Λ. As a result, we have

1

g(Q0)
=

1

g(Λ)
−
(
b0 + b1

)
log

Qm

Λ
− b0 log

Q0

Qm

. (9.5)

This result is same as the one using

βg = b0 + b1θ(µ/M), (9.6)
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where θ(µ/M) is the Heaviside step function. If we use the matching condition at the one-loop
level, higher order corrections enter in the discussion.

In discussions of grand unified theories [420–424], it has been shown that the TC of the
heavy particles plays an important role. For example, when we discuss the renormalization
group analysis at the one-loop level, the tree level TC is often used [418], as we have shown.
However, the non-zero probability to find the particle in loop diagrams below that mass scale
is not taken into account. If we choose a different matching scale, a logarithmic difference
arises [425]. Furthermore, additional errors from higher-order loop corrections ∆θ can enter
into the matching conditions when the MI coupling constants are expressed in terms of the
physical observables, as indicated in Refs. [419] and [170, 425, 426]. Therefore, many efforts
have been made to reduce these uncertainties by taking into account the higher order TCs.

On the contrary, in the momentum subtraction (MOM) renormalization scheme, the cou-
pling constants are directly connected to the physical observables, and the threshold effects are
included in the counter term in a natural way. As a result, in the method using the Mass-
Dependent (MD) beta function, which is obtained by the MOM scheme, the quantum effects
of heavy particles are automatically included. Therefore, the MD beta functions do not suffer
from the uncertainty of the TC. Actually, an analysis in the MOM scheme is more complicated
than one in the MI scheme because finite parts are included in the counter terms. For instance,
in the massless QCD theory, the MS beta function is available at the five-loop level [427–430],
in contrast, the MOM beta function at the four-loop level from the three-loop vertex functions
has been calculated [431]. Nevertheless, the MOM scheme is useful in some cases. As we will
discuss in this chapter, the MOM scheme is advantageous when new particles with multiple
scales appear in a theory, or when coupling constants in the MI scheme may blow up at rela-
tively low energies. This method has been used in early studies [432,433] to discuss the energy
dependence of the effective QCD coupling constant for different numbers of quarks in the theory.
In addition, the electroweak running coupling constants [434] and the vacuum stability [426]
in the SM, the proton decay [435] and unification of the coupling constants [434, 436–439] in
grand unified theories, etc., have also been studied using this method. However, it has not yet
been applied to the physics of extended Higgs sectors.

9.2 Mass-dependent beta function

In order to introduce the MD beta function, we first consider the λϕ4 scalar theory with mass
m. The Lagrangian is given by

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − 1

4!
λϕ4, (9.7)

The renormalization conditions for the n-point vertex function Γ
(n)
ϕ···ϕ(ka,m

2, λ) are given by

Γ
(2)
ϕϕ

∣∣∣
k2=m2

= 0,
∂

∂k2
Γ
(2)
ϕϕ

∣∣∣
k2=−Q2

= 1, Γ
(4)
ϕϕϕϕ

∣∣∣
ka·kb=−Q2δab+

1
3
Q2(1−δab)

= −λ, (9.8)

where ka (a = 1, · · · , n) are the external momenta. The equations in the first line are the
conditions for the mass parameter m to be the pole mass and for the wave function to be unity
at k2 = −Q2. The equation in the second line is the condition that the four-point function
coincides with the tree level value at the symmetric point, where ka ·kb = −Q2δab+

1
3
Q2(1−δab)

are satisfied. The UV divergence in the four-point function is renormalized in the MOM scheme.
From these renormalization conditions, at the one-loop level, we obtain the MD beta function
as

β
(
λ,
Q

m

)
=

3λ2

16π2

[
− 1

2
DQB0

(
− 4

3
Q2,m2,m2

)]
, (9.9)
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Figure 9.1: Derivatives with DQ ≡ Q(∂/∂Q)0 of −B0/2 (black solid), m2DB0(DB0 ≡ ∂B0/∂k
2)

(blue dashed), m2C0 (orange dotted) and m
4D0 (green dot-dashed). For Q/m→ 0, correspond-

ing to the particle decoupling from diagrams, these functions become 0. For Q/m → ∞, only
−DQB0/2 becomes 1 and the other functions become 0.

where B0 is the Passarino–Veltman two-point scalar function [400,401], which contains an UV
logarithmic divergence. We define DQ ≡ Q(∂/∂Q)0, where the subscript zero means derivative
for the fixed bare parameters. As a function of Q/m, the quantity −DQB0/2 in Eq. (9.9) is
shown in figure 9.1 as the black solid line. This quantity takes a value between 0 and 1 for
0 < Q/m < ∞, and represents how the particle with mass m contributes to the beta function
at the scale Q. If we take the limit Q/m → ∞, Eq. (9.9) coincides with the well-known form
given in the MI scheme (e.g., the MS scheme). In the MS scheme, only the coefficients of
1/ϵ = 2/(4 − D) (D is the space-time dimension), in the vertex functions are relevant to the
beta function. In the limit Q/m → ∞, B0 = 2(1/ϵ − logQ) + c is shown with a constant
c. Therefore, the quantity −DQB0/2 becomes unity in this limit, and the MD beta function
coincides with the MS beta function obtained by the coefficients of 1/ϵ. On the other hand, in
the λϕ4 theory, the beta function is 0 for Q/m→ 0 because the quantum effect of the particle
to the beta function decouples. In figure 9.1, we also show the lines corresponding to derivatives
with DQ of m2DB0(DB0 ≡ ∂B0/∂k

2) (blue dashed), m2C0 (orange dotted) and m4D0 (green
dot-dashed), where C0 and D0 are the Passarino–Veltman three and four point scalar functions,
respectively.

In the following, we apply the MD beta function to extended Higgs models. We are interested
in the case where additional scalar bosons obtain masses mainly from the electroweak symmetry
breaking. Such a case is relevant for the realization of the SFOPT [51–53]. We then show the
importance of the method using the MD beta function, in which the decoupling mechanism of
heavy particles is naturally equipped.

We here give a comment on the dependence of the renormalization scheme. Although
the explicit form of the vertex functions is different among different renormalization schemes,
physical observables are scheme-independent. However, due to the truncation at a finite order
of perturbative calculation, different results can appear depending on the scheme. For example,
it has been known that the scale dependence of the QCD coupling constant is different between
the MS scheme and the MOM scheme at the two-loop level [440]. By taking into account higher
order corrections from higher loop diagrams, the scheme difference becomes milder [441,442].
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9 Landau pole problem and electroweak baryogenesis

9.3 A toy model: Simplest example of the non-decoupling

case

In this section, we discuss a scalar toy model to explain our method, in which only two com-
plex scalar fields, ϕ1 and ϕ2, are introduced. We impose two global symmetries, U(1)1 and
U(1)2, with the transformations ϕ1 → ϕ1e

iθ1 and ϕ2 → ϕ2e
iθ2 (θ1,2 ∈ R), respectively. The

renormalizable Lagrangian is given by

L = ∂µϕ
†
1,b∂

µϕ1,b + ∂µϕ
†
2,b∂

µϕ2,b − µ2
1,bϕ

†
1,bϕ1,b − µ2

2,bϕ
†
2,bϕ2,b

− 1

2
λ1,b|ϕ1,b|4 −

1

2
λ2,b|ϕ2,b|4 − λ3,b|ϕ1,b|2|ϕ2,b|2, (9.10)

where µ2
i (i = 1, 2) and λj (j = 1, 2, 3) are real parameters, and the subscript b represents the

bare parameter. We assume that U(1)1 is spontaneously broken while U(1)2 is not: i.e., µ
2
1 < 0

and µ2
2 > 0.

At the tree level, the subscript b can be dropped. We parametrize the field ϕ1 as

ϕ1 =
1√
2
(v + ρ+ iη), (9.11)

where v is the Vacuum Expectation Value (VEV). The stationary condition gives a relation
among the parameters:

∂V

∂ρ

∣∣∣∣
{ρ,η,ϕ2}=0

= 0 ⇔ v2 =
−2µ2

1

λ1
. (9.12)

By using this tree-level relation, we can change the set of free parameters from (µ1, µ2, λ1, λ2, λ3)
to (v, µ2, λ1, λ2, λ3). Masses of the physical states ρ, η and ϕ2 are given by

m2
ρ = λ1v

2, m2
η = 0,

m2
ϕ2

= µ2
2 +

1

2
λ3v

2. (9.13)

The field η is the NG boson related to the spontaneous breaking of U(1)1.
In the case of µ2

2 ≫ λ3v
2 ≃ λ1v

2, we have m2
ϕ2

≃ µ2
2 (≫ m2

ρ). The coupling constants λj
are independent of |µ2| ≃ mϕ2 , and in the low energy region Q≪ mϕ2 ≃ |µ2|, the effect of mϕ2

only appears in the internal propagators of the vertex functions for ρ and η [443]. The finite
correction from ϕ2 takes a form of some powers of 1/µ2

2 because the internal propagator is given
by 1/(m2

ϕ2
− k2) ≃ 1/m2

ϕ2
, where k is the relevant momentum. As a result, the effective theory

is described by the renormalized Lagrangian in which ρ and η fields participate while ϕ2 does
not.

On the contrary, if m2
ϕ2

is mainly given by λ3v
2(≳ µ2

2), quantum corrections to the low
energy observables do not decouple in the large mass limit. This is what we call the non-
decoupling effect. Non-decoupling quantum effects of ϕ2 can appear as powerlike or logarithmic
mass contributions [221]. In such a case, λ3 is relatively large at low energy scales, so that it
can quickly blow up at high energies. In other words, if we impose the requirement that the
coupling constants do not exceed a critical value (such as 4π) below a cutoff scale Λ, the
coupling constants are constrained from above as a function of Λ. Such a theoretical bound is
called the triviality bound [444].
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9.3.1 Renormalization conditions

In the following, we perform a renormalization group analysis with the MD beta function and
give a constraint from the triviality bound at the one-loop level. We define seven renormaliza-
tion constants as

ϕ1 = Z
− 1

2
ϕ1
ϕ1,b, ϕ2 = Z

− 1
2

ϕ2
ϕ2,b,

µ2
1 = Z−1

µ1
Zϕ1µ

2
1,b, µ2

2 = Z−1
µ2
Zϕ2µ

2
2,b,

λ1 = Z−1
λ1
Z2
ϕ1
λ1,b, λ2 = Z−1

λ2
Z2
ϕ2
λ2,b, λ3 = Z−1

λ3
Zϕ1Zϕ2λ3,b. (9.14)

They are determined by seven renormalization conditions.
First, the renormalized VEV is defined as the right-hand side of Eq. (9.12) with the renor-

malized coupling constants, and we define the renormalized shifted fields as ϕ1 = (v+ρ+iη)/
√
2.

The tadpole term for the field ρ, which is proportional to Zµ1 −Zλ1 , appears in the Lagrangian.
We impose a renormalization condition that the left-hand side of Eq. (9.12) is satisfied at the
one-loop level. The tadpole term is eliminated by this condition, and then mη is kept to be
zero at the one-loop level.

Second, we set the renormalization conditions as

Γ(2)
ρρ

∣∣∣
k2=m2

ρ

= Γ
(2)

ϕ2ϕ
†
2

∣∣∣
k2=m2

ϕ2

= 0,

∂

∂k2
Γ(2)
ρρ

∣∣∣
k2=−Q2

=
∂

∂k2
Γ
(2)

ϕ2ϕ
†
2

∣∣∣
k2=−Q2

= 1, (9.15)

where the first and second lines are the pole mass conditions and the wave function renormaliza-
tion conditions, respectively. From the pole mass conditions, we obtain DQm

2
ρ = DQm

2
ϕ2

= 0.
Finally, we impose two conditions for Zλ3 and Zλ2 as

Γ
(4)

ρρϕ2ϕ
†
2

∣∣∣
k=sym.

= −λ3, Γ
(4)

ϕ2ϕ
†
2ϕ2ϕ

†
2

∣∣∣
k=sym.

= −2λ2, (9.16)

where the renormalization point is the symmetric point. At this point, the four-point functions
coincide with the tree-level values. In appendix F, explicit formulae for these vertex functions
are shown at the one-loop level.

9.3.2 Renormalization group equation analysis

With the renormalization conditions imposed above, we derive the RGE for the renormalized
effective action Γ. The relation between the renormalized action depending Q and the bare
action regularized by dimensional regularization scheme is

Γ
(
ϕ1, ϕ2;µ

2
1, µ

2
2, λ1, λ2, λ3;Q

)
= Γ0

(
ϕ1,b, ϕ2,b;µ

2
1,b, µ

2
2,b, λ1,b, λ2,b, λ3,b; ϵ

)
, (9.17)

By acting DQ on this equation, we have

DQΓ = 0

⇔
(
∂

∂Q
−
∑
i=1,2

γϕiϕi
δ

δϕi
− γmρm

2
ρ

∂

∂m2
ρ

− γmϕ2
m2
ϕ2

∂

∂m2
ϕ2

+
∑
j=1,2,3

βj
∂

∂λj

)
Γ = 0, (9.18)

where

γϕi = −DQ lnϕi, γmρ = −DQ lnm2
ρ, γmϕ2

= −DQ lnm2
ϕ2
, βλj = DQλj. (9.19)
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Here we have changed independent parameters from (µ2
1, µ

2
2) to (m2

ρ,m
2
ϕ2
). We can show γmρ =

γmϕ2
= 0 by using the renormalization conditions for the tadpole and the mass term. Therefore,

we obtain (
Q
∂

∂Q
−
∑
i=1,2

γϕiϕi
δ

δϕi
+
∑
j=1,2,3

βλj
∂

∂λj

)
Γ = 0. (9.20)

At the one-loop level, βλj (j = 1, 2, 3) are given by

βλ1 =
1

16π2
DQ(DB0, C0, D0 terms),

βλ2 =
1

16π2

{
λ23 + λ23f

Q
mρ,mρ

+ 10λ22f
Q
mϕ2

,mϕ2
+DQ(DB0, C0, D0 terms)

}
,

βλ3 =
1

16π2

{
λ1λ3 + 3λ1λ3f

Q
mρ,mρ

+ 4λ23f
Q
mϕ2

,mρ
+ 4λ2λ3f

Q
mϕ2

,mϕ2
+DQ(DB0, C0, D0 terms)

}
.

(9.21)

We have defined mass dependent functions

fQm,m ≡ −1

2
DQB0

(
− 4

3
Q2,m2,m2

)
. (9.22)

Each DQDB0, DQC0, DQD0 terms in each βλj is different, and the full expressions can be
obtained by using the formulae shown in appendix F. As shown in figure 9.1, only the derivative
of B0, namely fQm,m, is relevant to the beta functions in the limit Q/m → ∞, while the other
functions DQDB0,DQC0 and DQD0 are not. This is because, in this limit, DB0, C0 and D0 are
constants. Although the beta functions βλ2 and βλ3 depend on Q/m, they coincide with the MI
beta functions in the high energy limit because fQm,m → 1 as Q/m→ ∞. In the limit Q/m→ 0,
the effect from the massive particles decouples, and only the UV divergent diagrams, in which
the NG bosons are involved, contribute to βλ2 and βλ3 . In the numerical analysis below, we
include the contributions from DQ(DB0, C0, D0 terms) in the MD beta functions.

Since we have imposed the tadpole condition in Eq. (9.12) and the on-shell condition for mρ

in Eq. (9.15), βλ1 is asymptotically zero for Q/m→ ∞ in this model. On the other hand, Γ
(4)
ρρρρ

depends on the external momenta, and corrections of O( λ
16π2 log s/m

2
ρ) arise at the one-loop

level, where
√
s is the center-of-mass energy of the scattering ρρ → ρρ. In the following, we

do not consider this four point vertex function, and only focus on the energy dependence of
λj(j = 1, 2, 3).

In order to obtain analytic formulae for the vertex functions, we use FeynCalc [445–447],
FeynArts [448, 449] and FeynRules [450, 451]. For the numerical value of the Passarino–
Veltmann functions, we use the LoopTools [452] and FeynHelpers packages [453].

In figure 9.2, the scale dependence of λ3 and λ2 with the MD beta functions are shown as
the blue and orange solid lines, respectively. We take the input parameters as (v,mρ,mϕ2) =
(246, 125, 400) GeV. We consider the non-decoupling case with large λ3, and we set λ3(Q0) = 5.3
and λ2(Q0) = 0.01 as input values at Q = Q0 ≡ 90 GeV. The dashed lines are the solutions of
the MI beta functions obtained by the MS scheme.

We define the scale Λ4π at which the largest coupling constant in the model becomes 4π.
As we can see from figure 9.2, the MI beta functions imply that Λ4π is around 3 TeV. With the
MD beta functions, however, we obtain Λ4π ≃ 60 TeV. This is because the MD beta functions
include the reduction factor fQm,m for the heavy particles. Consequently, the running of the
coupling constants is delayed. Even if λ2 is taken to be large at Q = Q0, this behavior of
the delayed running is unchanged. As we see in the next section, the scheme difference of the
running coupling constants is prominent for the non-decoupling case.
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Figure 9.2: Energy dependence of λ3 (blue) and λ2 (orange) with the MD (solid), MI (dashed)
and TC (dot-dashed) beta functions in the U(1)1×U(1)2 model. With the MD beta functions,
which include a decoupling mechanism of the heavy particles by the factor fQm,m, the scale Λ4π

shifts to the high energy region, as compared to that found with the MI beta functions.

In figure 9.2, we also show the case with the improved MI beta functions, in which the
TC is added by hand, as dot-dashed lines. As the tree-level TC, the Heaviside step function
θ(Q/m) is often used in the beta function to include a contribution from particles with the mass
m [454]. Generalizing this, we define the function θn(Q/mϕ2) which takes 1 (0) for Q ≥ nmϕ2

(Q < nmϕ2). The improved MI beta functions of λj are given by

βTC
λ1

=
1

16π2

(
10λ21 + 2λ23θ

n
)
,

βTC
λ2

=
1

16π2

(
10λ22θ

n + 2λ23
)
,

βTC
λ3

=
1

16π2

(
4λ1λ3 + 4(λ2λ3 + λ23)θ

n
)
. (9.23)

In figure 9.2, the solutions of the MI beta functions with the TC are shown for n = 10 as
the dot-dashed lines. The value of Λ4π obtained by the TC beta function with n = 10 is the
closest to the value found from the MD beta function among n ∈ Z. From figure 9.2, it can be
seen that the delay of the running couplings in Q ≲ m is realized by using this step function
approximation.

We note that the treatment of the TC with one matching scale contains uncertainty where
we insert the threshold step function [425]. The delayed running in the scheme with the MD
beta function is a model independent result. On the contrary, in the analysis with the TC beta
functions, the optimized value of n chosen to provide same Λ4π as in the MD beta function
depends on the input parameters or the models. Therefore, for more realistic models in which
multiple heavy particles with different masses are introduced, using the TC beta function
becomes rather complicated. On the other hand, by using our scheme with the MD beta
function, the treatment for such a case becomes much simpler.
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Figure 9.3: Left: Triviality bound for the degenerated masses of the additional scalar bosons mΦ

in the IDM as a function of Λ4π. The blue solid and orange dashed lines show the results with
the MD beta function and the MI beta function without the TC, respectively. Right: The
energy dependence of λ3 for each fixed value of Λ4π, i.e., 10

4 (blue), 107 (orange), 1011 (green)
and 1018 GeV (magenta). The solid and dashed lines are obtained by using the MD beta
function and the MI beta function without the TC, respectively. Due to the delayed running
with the reduction factor fQm,m in the MD beta function, the scheme difference stands out for
the small cutoff scale, namely, Λ4π = 104 GeV.

9.4 Application to extended Higgs models

In this section, we apply our method to the extended Higgs model. We consider the IDM [150],
in which an additional SU(2)L scalar doublet η is added to the SM, which is odd under the
unbroken Z2 symmetry. The potential is given by

V = µ2
1|Φ|2 + µ2

2|η|2 +
1

2
λ1|Φ|4 +

1

2
λ2|η|4

+ λ3|Φ|2|η|2 + λ4|Φ†η|2 + λ5
2

(
(Φ†η)2 + h.c.

)
, (9.24)

where Φ corresponds to the SM Higgs doublet. The coupling constants λ1,2,3,4,5 are real. Taking
µ2
1 < 0 and µ2

2 > 0, the electroweak symmetry is spontaneously broken.
We parametrize the fields as

Φ =

(
G+

1√
2
(v + h+ iG0)

)
, η =

(
H+

1√
2
(H + iA)

)
, (9.25)

where v (=
√

−2µ2
1/λ1) is the VEV, h is the SM Higgs boson, H and A are Z2-odd neutral

scalar bosons, and H± are the Z2-odd charged scalar bosons. G± and G0 are the NG bosons
absorbed as the longitudinal modes of the weak gauge bosons. Squared masses are given by
m2
h = λ1v

2, m2
H± = µ2

2 +
1
2
λ3v

2 and m2
H,A = m2

H± + 1
2
(λ4 ± λ5)v

2 with the sign +(−) for H(A).
The discussion for the MD beta function is the same as the case of the toy model except for

the following points: (i) λ4 and λ5 cause a mass difference among the additional neutral scalar
bosons. By performing the renormalization of mH and mA as the pole masses, DQ(λ4v

2) =
DQ(λ5v

2) = 0 are shown. As a result, βλ4/λ4 and βλ5/λ5 are equal to βλ1/λ1. (ii) Masses
of the W and Z bosons and the top quark t are renormalized on mass-shell, so that the beta
functions of the gauge coupling constants (g1 and g2) and the top-Yukawa coupling constant
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(yt) are related to that of λ1; i.e., 2βg1/g1 = 2βg2/g2 = 2βyt/yt = βλ1/λ1. (iii) The Slavnov–
Taylor identity [455, 456] among the renormalization constants does not hold in the MOM
scheme. This difficulty can be avoided [457] by using the background field method [458–461].
We here choose the Feynman gauge for the internal propagators in the vertex functions. We
construct the model files for FeynRules for the IDM with the background field method based
on Ref. [462].

In the IDM, one-loop effects of additional scalar bosons give positive contributions to the
beta functions of the scalar coupling constants. If they are relatively large at the electroweak
scale, the Landau pole can appear below the Planck scale. Then, mH , mA and mH± are
constrained by the triviality bound [158,159,406–414].

In the left panel of figure 9.3, the triviality bound is shown as a function of Λ4π for the
degenerated masses (mΦ ≡ mH = mA = mH±). The solid and dashed lines are obtained
by the MD beta function and the MI beta function without the TC, respectively. We take
λ2(Q0) = 0.01 and µ2(Q0) = 30 GeV as the input, so that the non-decoupling situation is
realized by a large mΦ. As shown in figure 9.3, for both the MI and MD beta functions, a
larger mΦ predicts a lower Λ4π. Remarkably, the scheme difference of the upper bound for fixed
Λ4π is significant, especially in such a non-decoupling case.

In the right panel of figure 9.3, the energy dependence of λ3 is shown for each fixed cutoff
scale Λ4π = 104 (blue), 107 (orange), 1011 (green) and 1018 GeV (magenta). As we can see from
the blue lines in this figure, when λ3(Q0) is large with the fixed relatively small value of µ2(Q0)
(= 30 GeV), the scalar coupling constants quickly blow up for the MI beta function without
the TC. However, because the MD beta functions are relatively small in low energy regions due
to the reduction factor fQm,m, a weaker triviality bound is predicted for lower Λ4π. As a result,
we can see the conspicuous difference in the lower Λ4π region.

We note that in the IDM a similar non-decoupling effect can also be realized when a large
mass difference appears among the additional scalar bosons. Such a large mass difference
affects βλ3 and βλ2 , causing these coupling constants to rapidly blow up. Even in this case, Λ4π

calculated by the MD beta functions is higher than that calculated by the MI beta functions.
If a mass difference among the additional scalar bosons is large enough that λ4 or λ5 is nearly
4π at the renormalized point Q0, quantum corrections to the related vertex functions become
large. Consequently, perturbative calculation breaks down as external momenta grow.

9.5 Discussions and conclusions

We here give comments on the results.
First, as shown in figs. 9.2 and 9.3, the difference in the triviality bounds found from the

MI and MD beta functions becomes large in the non-decoupling case. This is because the
threshold effects are automatically included in the MD beta function. The importance of the
delayed running of the coupling constants can be understood as follows. The MI beta function
of the scalar field with the coupling λ can be written as βλ ≃ cλ2 with a positive constant c. On
the other hand, for the analysis using the MD beta function with the automatically included
delayed running, the initial value of the MD coupling that results in the same Λ4π as the MI
scheme satisfies the relation,

λ(Q0)
MD − λ(Q0) =

cλ(Q0)
2 log Q1

Q0

1− cλ(Q0) log
Q1

Q0

, (9.26)

where Q0 is the renormalization scale, and Q1(> Q0) is the scale where the running begins in
the analysis based on the MD beta function. The left-hand side describes the difference in the
triviality bound between the renormalization schemes. The right-hand side is the monotonic
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9 Landau pole problem and electroweak baryogenesis

increasing function for the initial value λ(Q0) within the perturbative region. Therefore, for the
case of the non-decoupling situation where λ(Q0) is relatively large, the difference in the trivi-
ality bound becomes large due to the delayed running in the MD scheme. In this scheme, such
delayed running is automatically included, because the threshold effect appears in the counter
term. We emphasize that both methods are, in principle, equivalent in the end. However, in
the case with multiple new particles, an analysis using the MD beta functions is useful because
complicated treatment of the TCs can be avoided.

In this section, the MD beta functions are evaluated at the one-loop level, but our method
can also be applied to higher loop corrections. From an analysis using the MI beta functions at
the two-loop level, it has been known that Λ4π can be higher than that of the one-loop level in
the two Higgs doublet model [411]. Traditionally, for the two-loop MI beta function, the one-
loop level TC is used [419]. Recently, however, it has been indicated by J. Braathen et al. [425]
that in the non-decoupling case, an n-loop level TC should be used for an n-loop level beta
function. It is known that Λ4π is larger when taking into account a higher order TC, because a
higher order TC tends to make the MI parameters corresponding to physics quantities smaller.
Therefore, it is expected that predictions from the one-loop MI scheme (using one-loop beta
functions with one-loop TCs) will approach the results found from the one-loop MD scheme.
We also expect that these scheme differences can be reduced by taking into account higher
order corrections, as in the case of the QCD coupling constant [441,442].

For the phenomenological aim of evaluating the energy upper bound in models for non-
decoupling physics, e.g., that for EWBG, our one-loop analysis gives a very important insight.
In this chapter, the difference between the MOM scheme and the MI scheme without the TC
is shown to be large at the one-loop level. As a result, the previous argument based on the MI
beta function at the one-loop level [37, 44], as we have mentioned before, would be modified.
This modification is the result of our physical MD beta function, in which the threshold effects
are naturally included.

9.6 Short summary of chapter 9

In this chapter, the UV behavior of the effective coupling constants in the extended Higgs models
has been discussed by using RGEs with the MD beta functions. We first have demonstrated
how to evaluate the effective coupling constants in the U(1)1 × U(1)2 model, in which non-
decoupling situation can be considered. We then have applied our method to the IDM. We
have found that Λ4π evaluated with the MD beta functions is higher than that obtained with
the MI beta functions without the TC, in cases where the non-decoupling effect is important.
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Chapter 10

Grand summary

In this chapter, we summarize this Ph.D thesis.
In chapter 2, we have reviewed the Glashow–Weinberg–Salam theory and the quantum-

chromo-dynamics, which describe the theory of the electroweak and strong interactions. We
also have reviewed experimental results for the Higgs boson, and currently those results are
consistent with the SM. In chapter 3, we have introduced the problems beyond the SM, the
origin of tiny neutrino mass, the relic abundance of the DM, and the baryon asymmetry of the
Universe. These problems cannot be solved in the SM, so that we need new physics beyond
the SM. Once the Higgs sector is extended, those problems can be solved.

In chapter 4, we have defined the extended Higgs models including the 2HDM, which are
motivated to solve those problems. We have started the discussions from the most general
2HDM. We then have explained the softly broken Z2 symmetric 2HDM and the Inert doublet
model. We also have discussed the U(1)B−L gauge extended Inert doublet model with the
right-handed neutrinos.

In chapter 5, we have shown the problems of the neutrino mass and the DM can be solved
in the extended Higgs model with the U(1)B−L gauge symmetry. We have not discussed baryo-
genesis in this model, however, as a first step, we have found the available benchmark points
for the neutrino and the DM problems under the current experiments are shown.

In chapter 6, the mechanism of EWBG has been explained and the method to calculate the
BAU have been given. The necessary CP violation for EWBG can be tested by the EDM ex-
periments, and some EWBG models are constrained by the current EDM bounds. In chapter 7,
EWBG in the 2HDM has been discussed. In our model, the severe constraints from the EDM
can be avoided by using destructive interference between the independent CP phases. There are
two scenarios for what particles have the important role of the CP violation around the bubble
wall. We have focused on the top-transport and the top-charm transport scenario in the 2HDM,
and the viable scenarios have been shown. We also have discussed other phenomenology for
future collider and flavor experiments and future space-based gravitational waves observables.

In chapter 8, the H±W∓Z vertices as a probe of the CP violation in the general 2HDM have
been introduced. We have given the complete formulae of these vertices in the general 2HDM
at the one-loop level, and have found that the asymmetry in the decays H+ → W+Z and
H− → W−Z is sensitive to the CP phases in the model. This observable would be important
to test the scenario of EWBG in the 2HDM in future collider experiments.

In chapter 9, we have discussed the theoretical problem of EWBG, the Landau pole problem.
We have proposed the appropriate treatment of the renormalization to include the threshold
corrections for analyzing the renormalization group running in the non-decoupling situation.
By taking into account these threshold effects, we have found that these problems can be weaker
than what was considered.

At the end of this Ph.D thesis, we clarify where each chapter stands in the research. In this
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10 Grand summary

Ph.D thesis, EWBG in the extended Higgs models has mainly been discussed. EWBG is the
testable scenario, so that from now on, it will be more important to study what models are
viable, which parameter space of the model is survived, and how to test such regions. As we have
demonstrated in chapter 7, in spite of the strong constraints from the current experiments, we
still have the possibility to realize EWBG in the extended Higgs models. The EDM observables,
the K and B meson physics, the GW signals, and several collider signatures, such as the triple
Higgs coupling can be a key for testing EWBG. In addition, as one of the nice probes for
the CP violation, we have proposed the H±W∓Z vertices in chapter 8. We expect that this
observable reveal the symmetry structure of the Higgs sector in future collider experiments. We
also note that the Landau pole discussed in chapter 9 can be the probe of the SFOPT needed
by EWBG, as well as the triple Higgs coupling, the Higgs di-photon decay, and the GW signals.
The existence of the Landau pole implying a more fundamental theory would also be tested
by the future high energy experiments. In chapter 5, by the extension of the gauge group, we
have shown the DM and neutrino mass problems can be solved at the TeV scale physics, which
can be reached in the future collider experiments. This implies that the extended Higgs models
have the possibility to solve the problems beyond the SM simultaneously. The extended Higgs
models solving those problems can be a strong candidate for new physics, and such models can
be settled in the future.
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Appendix A

Effective potential in the two Higgs
doublet model

The renormalization conditions for the effective potential are given by

δZ1v
2 =

1

v
V1,φ1 − V1,φ1φ1 , δY 2

1 =
1

2

(
3

v
V1,φ1 − V1,φ1φ1

)
,

δZ6Rv
2 =

1

v
V1,φ2 − V1,φ1φ2 , δY 2

3R =
1

2

(
3

v
V1,φ2 − V1,φ1φ2

)
,

δZ6Iv
2 = −1

v
V1,φ3 + V1,φ1φ3 , δY 2

3I =
1

2

(
−3

v
V1,φ3 + V1,φ1φ3

)
,

δZ3v
2 = − (V1,φ2φ2 + V1,φ3φ3) , δZ5Rv

2 = −(V1,φ2φ2 − V1,φ3φ3),

δZ5Iv
2 = 2V1,φ2φ3 , (A.1)

where we have denoted the derivative with respect to the VEVs as ∂V1/∂φ = V1,φ.
The field dependent mass for the top quark is given by

m̃2
t =

1

2

{
(ytφ1 + |ρtt|(cos θttφ2 + sin θttφ3))

2 + |ρtt|2(sin θttφ2 + cos θttφ3)
2
}
. (A.2)

For the gauge bosons (W a
µ , Bµ), the field dependent mass and the thermal corrections are

m̃gauge =


1
4
g2ϕ2 0 0 0
0 1

4
g2ϕ2 0 0

0 0 1
4
g2ϕ2 −1

4
gg′ϕ2

0 0 −1
4
gg′ϕ2 1

4
g′2ϕ2

+


2g2T 2 0 0 0

0 2g2T 2 0 0
0 0 2g2T 2 0
0 0 0 2g′2T 2

 δµ||,

(A.3)

where ϕ2 ≡ φ2
1 + φ2

2 + φ2
3 and || means the longitudinal mode. For the charged and the neutral

scalar bosons, we have

m̃G+G− = −Y 2
1 +

1

2
Z1φ

2
1 +

1

2
Z3(φ

2
2 + φ2

3) + (Z6Rφ2 − Z6Iφ3)φ1

+
T 2

24

(
3Z1 + 4Z3 + 2Z4 + 6y2t +

9

2
g2 +

3

2
g′2
)
,

m̃G+H− = −(Y 2
3 )

∗ +
1

2
Z4φ1(φ2 + iφ3) +

1

2
Z∗

5φ1(φ2 − iφ3) +
1

2
Z∗

6φ
2
1 +

1

2
Z∗

7(φ
2
2 + φ2

3)

+
T 2

24
(6Z∗

6 + 6Z∗
7 + 6ytρtt),

m̃H+G− = (m̃G+H−)∗,
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m̃H+H− = −Y 2
2 +

1

2
Z2(φ

2
2 + φ2

3) +
1

2
Z3φ

2
1 + (Z7Rφ2 − Z7Iφ3)φ1
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T 2
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2
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3
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, (A.4)
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Appendix B

Thermal integral of the transport
equations

The coefficients in the transport equations are given by

Dl ≡
〈(pz

E

)l
f ′
0w

〉
, Ql ≡

〈(
pl−1
z

2El

)
f ′′
0w

〉
,

Q8
l ≡

〈
sign(pz)p

l−1
z

2ElEz
f ′
0w

〉
, Q9

l ≡
〈
sign(pz)p

l−1
z

4El+1Ez

(
1

E
f ′
0w − γf ′′

0w

)〉
,

Qe
l ≡

〈
pl−1
z

2El
f ′
0w,

〉
, (B.1)

where

⟨X⟩ = 1

N1

∫
d3p X. (B.2)

From the factorization assumption, we have〈
1

2E2
δfe

〉
=

[
1

2pzE

]
u1 ≡ Ru1. (B.3)

The explicit formulae of the coefficients for each particle are

• Normalization

N1 = −γ 2π
3

3
T 2,

N0t = 4πγT 3

∫ ∞

0

dp
p2

e
√
p2+x2 + 1

, N0b = 6πγT 3ζ(3), N0h = 8πγT 3ζ(3),

K0i = − N0i

N1T
. (B.4)

• Top

Rt =
πT

γN0t

∫ ∞

x

dE ln
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√
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|
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B Thermal integral of the transport equations

D2t =
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π2γ

∫ ∞
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Ẽ
√
p̃2z + x2

ew

(ew + 1)2
,

Q9
2t =

3

4π2γT 4

∫ ∞

x

dw

∫ 1

−1

dy
p̃w|p̃z|

Ẽ2
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• Bottom and Higgs
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Appendix C

Basis independency of source terms

In order to reinforce the discussion in section 7.3, we here show the basis independency of the
source terms in the Boltzmann equation.

First, we show that the VIA source term is same in the weak and mass basis. The kinetic
equation of fermion ψ is given by [337]

∂Xµ j
µ
ψ = −

∫
d3w

∫ T

−∞
dw0 Tr

[
Σ>
ψ (X,w)G

<
ψ (w,X)− Σ<

ψ (X,w)G
>
ψ (w,X)

−G>
ψ (X,w)Σ

<
ψ (w,X) +G<

ψ (X,w)Σ
>
ψ (w,X)

]
, (C.1)

whereG<,>
ψ and Σ<,>

ψ are Wightman functions and self energies, respectively, following notations
in Ref. [463]. The trace is taken in the spinor space. By definition, the sum of the divergence
of currents of left-handed top and charm quarks is basis independent as

∂µj
µ
t′L
+ ∂µj

µ
c′L

= ∂µj
µ
tL
+ ∂µj

µ
cL
. (C.2)

As shown in the following, the right hand side of Eq. (C.1) is also basis independent at the
leading order in VIA.

The relevant lagrangian of the top and charm quarks is given by

Ly = −u′i,L
(
Y u
1,ijϕ

0∗
1 + Y u

2,ijϕ
0∗
2

)
u′j,R + h.c.. (C.3)

The relations between Yukawa matrices in the weak basis Y u
1 , Y

u
2 and the mass basis Y u

d , ρ
u are

given by Eq. (2.12). Here we define matrices as

A(u) ≡ Y u
1 v

∗
1(u) + Y u

2 v
∗
2(u)

= V u†
L

(
Y u
d v

∗
1(u) + ρuv∗2(u)

)
V u
R

≡ V u†
L B(u)V u

R , (C.4)

where the space-time dependent VEVs vk(u) =
√
2⟨ϕ0

k⟩ (k = 1, 2) are defined in the Higgs
basis.

We calculate the first term in right hand side of Eq. (C.1). At the 2nd order in VIA as
shown in the left panel of figure C.1, the self energy of the left-handed top quarks in the weak
basis is written by

Σ>
t′L
(u, v) = −1

2

(
Att(u)G

>
t′Rt

′
R
(u, v)A∗

tt(v) + Atc(u)G
>
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′
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(u, v)A∗

tc(v)
)

= −1

2

∑
q=c,t

(
Atq(u)G

>
q′Rq

′
R
(u, v)A∗

tq(v)
)
. (C.5)
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t′L

va(v) vb(u)

t′L

t′R,c
′
R

c′L

va(v) vb(u)

c′L

t′R,c
′
R

Figure C.1: Self energy of left-handed top and charm quarks in the weak basis (a, b = 1, 2).

We define a 2× 2 matrix which has flavor indices as

G>
R(u, v) = G>

qiRqjR
(u, v) = −i⟨qiR(u)qjR(v)⟩, (C.6)

and the basis transformation is given by

G>
R′(u, v) = G>

q′iRq
′
jR
(u, v) = V ∗

R,ikG
>
qkRqmR

(u, v)VR,mj = V †
RG

>
R(u, v)VR. (C.7)

Here we have omitted the up-type subscript in the rotation matrix VR. By using Eqs. (C.4)
and (C.7), the self energy can be written by
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2
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†(v)VL

)
tt
, (C.8)

at the level at which we are considering in VIA. We have used the fact that G>
qiRqjR

(i ̸= j) first
appear at 2nd order in VIA. Therefore, we find that
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tt
, (C.9)

where we have also defined the matrix G<
L for the left-handed fields, and we have used the

transformation low G<
L′(u, v) = V †

LG
<
L(u, v)VL.

In the same way, we obtain the contribution from the self energy of the left-handed charm
quarks in the weak basis shown in the right panel of figure C.1 as

Σ>
c′L
(X,w)G<

c′Lc
′
L
(w,X) = −1

2

(
V †
LB(X)G>

R(X,w)B
†(w)G<

L(w,X)VL
)
cc
, (C.10)

so that the sum of the contributions of the top and charm quarks is given by

Σ>
t′L
G<
t′Lt

′
L
+ Σ>

c′L
G<
c′Lc

′
L
= −1

2
Tr
[
V †
LBG

>
RB

†G<
LVL

]
= −1

2
Tr
[
BG>

RB
†G<

L

]
. (C.11)

The trace is taken in the flavor space. Similarly, we can show that VL and VR dependencies in
the other terms in Eq. (C.1) disappear. As a result, the right hand side of Eq. (C.1) calculated
in the weak basis coincides with the one in the mass basis. This result is a consequence of
summing up the contribution of the charm quark defined in the weak basis.

When we consider CP conserving Higgs potential and v1, v2 ∈ R, the source term relevant
to ρtc is given by

SVIA
tL

⊃ 1

2
|ρtc|2v22(X)

∫
d3w

∫ T

−∞
dw0Re

[
Tr
[
G>
cR
G<
tR

−G<
cR
G>
tR

]]
, (C.12)
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so that CP violating source term does not appear at the leading order in VIA,1 and only CP
conserving source term arises from the kinetic equation. This source just generates scattering
terms for a process tL ↔ cR induced by the collision with the bubble wall. However, these
effects are much smaller than the other chirality flip processes due to the smallness of v2(≪ v1).
If we assume CP violating VEV v2 ∈ C, arg(v2) causes CP violating source terms, which are
proportional to the absolute value of ρtc.

Second, we show the basis independency of the source term derived by the semi-classical
force mechanism in the WKB approximation. We denote mass matrices which can be obtained
in the weak and mass basis as M ′ and M , respectively. From Eq. (2.12), the relation of these
matrices can be written by

VLM
′V †
R =M. (C.13)

Dirac equations of these bases are given by

(i��∂ −M ′†PL −M ′PR)ψ
′ = 0, (weak basis)

(i��∂ −M †PL −MPR)ψ = 0, (mass basis) (C.14)

where

ψ′
i = (u′iL, u

′
iR)

T =
(
(V †

LuL)i, (V
†
RuR)i

)T
,

ψi = (uiL, uiR)
T . (C.15)

With the same discussion in Ref. [308], we obtain the equation in the weak basis as{
ω2 + ∂2z −M ′M ′† + is(M ′∂zM

′−1)(ω − is∂z)
}
L′
s = 0, (C.16)

where L′
s = (c′L, t

′
L). The only difference between the two bases is primed or not, so that the

equation in the mass basis can be obtained by omitting the primes. From the weak and mass
basis to the locally diagonalized basis by a unitary matrix U , the respective equations are{

ω2 + ∂2z −m′2
D + 2U ′

1∂z + U2 + isA′
1(ω − is∂z) + A′

2

}
LD′
s = 0, (weak basis){

ω2 + ∂2z −m2
D + 2U1∂z + U2 + isA1(ω − is∂z) + A2

}
LDs = 0, (mass basis) (C.17)

where

U
(′)
1 ≡ U (′)∂zU

(′)† , A
(′)
1 ≡ U (′)(M (′)∂zM

(′)−1)U (′)†,

U
(′)
2 ≡ U (′)∂2zU

(′)†, A
(′)
2 ≡ A

(′)
1 U

(′)
1 ,

L(′)D
s ≡ U (′)L(′)

s , m
(′)2
D ≡ U (′)M (′)M (′)†U (′)† = diag(m

(′)2
+ ,m

(′)2
− ). (C.18)

The diagonalized mass matrix from the weak basis is written by

m′2
D = U ′M ′M ′†U ′† = U ′V †

LMM †VLU
′†, (C.19)

so that m′2
D = m2

D is concluded by uniqueness of eigenvalue, but U ′V †
L = U is not. The relation

between LDs and LD′
s is given by

LDs = ULs = UVLL
′
s = UVLU

′†LD′
s ≡ QLD′

s . (C.20)

1If we consider 4th order in VIA, the phases of the off-diagonal couplings may appear in the self energy.
However, such contributions are suppressed about O(δ2).
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By using LD′
s , the equation of the mass basis in Eq. (C.17) can be written by

Q
{
ω2 + ∂2z −m2

D +Q†∂2zQ+ 2Q†(∂zQ)∂z + 2Q†U1Q∂z + 2Q†U1(∂zQ)

+Q†U2Q+ isQ†A1Q(ω − is∂z) + sQ†A1(∂zQ) +Q†A2Q
}
LD′
s = 0. (C.21)

At the leading order in derivative expansion, CP violating source terms arise from the second
term in the second line, so that from Eqs. (C.13), (C.18) and (C.20), we obtain

Q†A1Q = A′
1. (C.22)
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Appendix D

Definition of the loop functions

We here show the definitions of the Passarino–Veltmann loop functions.

1

16π2
A0[m

2] = µ2ϵ

∫
dDl

i(2π)D
1

l2 −m2 + iε
,

1

16π2
B{0,µ,µν}[k;m

2
a,m

2
b ] = µ2ϵ

∫
dDl

i(2π)D
{1, lµ, lµlν}
l2 −m2

a + iε

1

(l + k)2 −m2
b + iε

,

1

16π2
C{0,µ,µν}[k1, k2;m

2
a,m

2
b ,m

2
c ] =

µ2ϵ

∫
dDl

i(2π)D
{1, lµ, lµlν}
l2 −m2

a + iε

1

(l + k1)2 −m2
b + iε

1

(l + k1 + k2)2 −m2
c + iε

, (D.1)

where D = 4− 2ϵ. The tensor decompositions are performed as

Bµ[k;m
2
a,m

2
b ] = B1kµ,

Bµν [k;m
2
a,m

2
b ] = B21kµkν +B22gµν ,

Cµ[k1, k2;m
2
a,m

2
b ,m

2
c ] = C11k1µ + C12k2µ,

Cµν [k1, k2;m
2
a,m

2
b ,m

2
c ] = C21k1µk1ν + C22k2µk2ν + C23(k1µk2ν + k2µk1ν) + C24gµν . (D.2)

We sometimes use momentum squared notation,

B[k;m2
a,m

2
b ] = B[k2;m2

a,m
2
b ]

C[k1, k2;m
2
a,m

2
b ,m

2
c ] = C[k21, k

2
2, (k1 + k2)

2;m2
a,m

2
b ,m

2
c ]. (D.3)
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Appendix E

Analytic formulae for the H±W∓Z
vertices in the general two Higgs
doublet model

In this appendix, we give analytic formulae for the diagrams which are shown in figures 8.2-8.5.
First, the C type contributions are given by

F
(C1)
+ =

−2i

16π2cW
(Ri2 − iRi3)(Ri3Rj2 −Ri2Rj3)(Z3Rj1 + ZR

7 Rj2 − ZI
7Rj3)C24[m

2
H± ,m2

Hi
,m2

Hj
],

G
(C1)
+ =

−2im2
W

16π2cW
(Ri2 − iRi3)(Ri3Rj2 −Ri2Rj3)(Z3Rj1 + ZR

7 Rj2 − ZI
7Rj3)

× (C23 + C12)[m
2
H± ,m2

Hi
,m2

Hj
],

F
(C2)
+ =

2c2W
16π2cW

(Ri2 − iRi3)(Z3Ri1 + ZR
7 Ri2 − ZI

7Ri3)C24[m
2
Hi
,m2

H± ,m2
H± ],

G
(C2)
+ =

2m2
W c2W

16π2cW
(Ri2 − iRi3)(Z3Ri1 + ZR

7 Ri2 − ZI
7Ri3)(C23 + C12)[m

2
Hi
,m2

H± ,m2
H± ],

F
(C3)
+ =

−2i

16π2cW
Ri1(Ri3Rj2 −Ri2Rj3)

(1
2
(Z4 + Z5)Rj2 −

i

2
(Z4 − Z5)Rj3 + Z6Rj1

)
× C24[m

2
G± ,m2

Hi
,m2

Hj
],

G
(C3)
+ =

−2im2
W

16π2cW
Ri1(Ri3Rj2 −Ri2Rj3)

×
(1
2
(Z4 + Z5)Rj2 −

i

2
(Z4 − Z5)Rj3 + Z6Rj1

)
(C23 + C12)[m

2
G± ,m2

Hi
,m2

Hj
],

F
(C4)
+ =

−2

16π2cW
Ri1

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
C24[m

2
G± ,m2

G0 ,m2
Hi
],

G
(C4)
+ =

−2m2
W

16π2cW
Ri1

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
(C23 + C12)[m

2
G± ,m2

G0 ,m2
Hi
],

F
(C5)
+ =

2c2W
16π2cW

Ri1

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
C24[m

2
Hi
,m2

G± ,m2
G± ],

G
(C5)
+ =

2m2
W c2W

16π2cW
Ri1

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
(C23 + C12)[m

2
Hi
,m2

G± ,m2
G± ],

F
(C6)
+ =

2i

16π2cW

m2
W

v2
Ri1(Ri3Rj2 −Ri2Rj3)(Rj2 − iRj3)C24[m

2
W ,m

2
Hi
,m2

Hj
],

G
(C6)
+ =

2im2
W

16π2cW

m2
W

v2
Ri1(Ri3Rj2 −Ri2Rj3)(Rj2 − iRj3)(C23 + C12 + 2C11 + 2C0)[m

2
W ,m

2
Hi
,m2

Hj
],
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F
(C7)
+ =

2c2W
16π2cW

m2
Z

v2
Ri1(Ri2 − iRi3)C24[m

2
H± ,m2

Hi
,m2

Z ],

G
(C7)
+ =

2m2
W c2W

16π2cW

m2
Z

v2
Ri1(Ri2 − iRi3)(C23 − C12)[m

2
H± ,m2

Hi
,m2

Z ],

F
(C8)
+ =

2s2Wm
2
Z

16π2cW
Ri1

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
C0[m

2
G± ,m2

Z ,m
2
Hi
],

G
(C8)
+ = 0,

F
(C9)
+ =

2s2Wm
2
W

16π2cW
Ri1

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
C0[m

2
Hi
,m2

W ,m
2
G± ],

G
(C9)
+ = 0,

F
(C10)
+ =

2

16π2cW

s2Wm
2
W

v2
Ri1(Ri2 − iRi3)C24[m

2
Hi
,m2

G± ,m2
W ],

G
(C10)
+ =

2m2
W

16π2cW

s2Wm
2
W

v2
Ri1(Ri2 − iRi3)(C23 − C12)[m

2
Hi
,m2

G± ,m2
W ],

F
(C11)
+ =

2

16π2cW

c2Wm
2
W

v2
Ri1(Ri2 − iRi3)

(
(D − 1)C24 + (m2

Z −m2
W )C0

− 2k3 · (k2C11 + k3C12) +m2
WC21 +m2

ZC22 + 2k2 · k3C23

)
[m2

Hi
,m2

W ,m
2
W ],

G
(C11)
+ =

2m2
W

16π2cW

c2Wm
2
W

v2
Ri1(Ri2 − iRi3)(4C11 − 3C12 − C23)[m

2
Hi
,m2

W ,m
2
W ],

F
(C12)
+ =

−2

16π2cW

m2
W

v2
Ri1(Ri2 − iRi3)

(
(D − 1)C24 + 4(k2 + k3) · k2C0

+ 2(2k2 + k3) · (k2C11 + k3C12) +m2
WC21 +m2

ZC22 + 2k2 · k3C23

)
[m2

W ,m
2
Z ,m

2
Hi
],

G
(C12)
+ =

−2m2
W

16π2cW

m2
W

v2
Ri1(Ri2 − iRi3)

(
− 2C0 + 2C11 − 5C12 − C23

)
[m2

W ,m
2
Z ,m

2
Hi
],

H
(C type)
+ = 0. (E.1)

where cW ≡ cos θW , sW ≡ sin θW , c2W ≡ cos 2θW and D is the space-time dimension. In these
formulae, we have omitted the summation of the indices for the neutral scalar bosons, and we
have used a shorthand notation for the Cij functions as

Cij[m
2
a,m

2
b ,m

2
c ] ≡ Cij[−k2,−k3;m2

a,m
2
b ,m

2
c ]. (E.2)

The divergent parts of the C type contributions are

F
(C1+C2)
+ |div = −s

2
W

2
Z7∆,

F
(C4+C5)
+ |div = −s

2
W

2
Z6∆,

F
(others Cs)
+ |div = 0, (E.3)

where we define the divergent quantity ∆ as

∆ ≡ 2

16π2cW
B0|div. (E.4)

Second, the B type contributions are

F
(B1)
+ =

2

16π2cW

s2W
2
(Ri2 − iRi3)(Z3Ri1 + ZR

7 Ri2 − ZI
7Ri3)B0[−k1;m2

H± ,m2
Hi
],
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F
(B2)
+ =

2

16π2cW

s2W
2
Ri1

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
B0[−k1;m2

G± ,m2
Hi
],

F
(B3)
+ =

2

16π2cW

s2Wm
2
W

v2
Ri1(Ri2 − iRi3)B0[−k2;m2

W ,m
2
Hi
],

F
(B4)
+ =

2

16π2cW

s2Wm
2
Z

v2
Ri1(Ri2 − iRi3)B0[−k3;m2

Z ,m
2
Hi
],

F
(B5)
+ =

2

16π2cW

m4
W s

2
W

v2
1

m2
H± −m2

W

Ri1(Ri2 − iRi3)(B0 − B1)[−k1;m2
H± ,m2

W ],

F
(B6)
+ =

2

16π2cW

m2
W s

2
W

2

1

m2
H± −m2

W

(Ri2 − iRi3)(Z3Ri1 + ZR
7 Ri2 − ZI

7Ri3)

× (B0 + 2B1)[−k1;m2
Hi
,m2

H± ],

F
(B7)
+ =

2

16π2cW

m2
W s

2
W

2

1

m2
H± −m2

W

Ri1

×
(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
(B0 + 2B1)[−k1;m2

Hi
,m2

G± ],

F
(B8)
+ =

2

16π2cW

m2
W

v2
s2W
2

−1

m2
H± −m2

G±
Ri1(Ri2 − iRi3)

(
m2
H±(B0 − 2B1) + B̃0

)
[−k1;m2

Hi
,m2

W ],

F
(B9)
+ =

2

16π2cW

s2W
2

1

m2
H± −m2

G±

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
× (Z3Ri1 + ZR

7 Ri2 − ZI
7Ri3)v

2B0[−k1;m2
Hi
,m2

H± ],

F
(B10)
+ =

2

16π2cW

s2W
2

1

m2
H± −m2

G±

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
× (Z1Ri1 + ZR

6 Ri2 − ZI
6Ri3)v

2B0[−k1;m2
Hi
,m2

G± ],

G
(B type)
+ = H

(B type)
+ = 0, (E.5)

where B̃0 is defined by [372]

B̃0[k;m
2
a,m

2
b ] ≡ (k2B21 +DB22)[k;m

2
a,m

2
b ] = A0[m

2
b ] +m2

aB0[k;m
2
a,m

2
b ]. (E.6)

The divergent parts of the B type contributions are given by

F
(B1)
+ |div =

s2W
2
Z7∆,

F
(B2)
+ |div =

s2W
2
Z6∆,

F
(B8)
+ |div =

s2W
2

m2
W

v2
−1

m2
H± −m2

G±
Ri1(Ri2 − iRi3)m

2
Hi
∆,

F
(B9)
+ |div =

s2W
2

1

m2
H± −m2

G±

(1
2
(Z4 + Z5)Z

R
7 +

i

2
(Z4 − Z5)Z

I
7 + Z3Z6

)
v2∆,

F
(B10)
+ |div =

s2W
2

1

m2
H± −m2

G±

(1
2
(Z4 + Z5)Z

R
6 +

i

2
(Z4 − Z5)Z

I
6 + Z1Z6

)
v2∆,

F
(other Bs)
+ |div = 0. (E.7)

Third, the fermion contributions are given by

F
(F1)
+ =

2
√
2Nc

16π2cWv
(V †

CKM)lm

[
Γumlmum

{
m2
dl
(gdV − gdA)C0 − (gdV + gdA)

(
gαβC

αβ − 2C24 + (2k2 + k3)·
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(k2C11 + k3C12) + k2 · (k2 + k3)C0

)}
+ Γdmlmdl

{
− (gdV + gdA)

(
gαβC

αβ − 2C24 + k2·

(k2C11 + k3C12)
)
+ (gdV − gdA)

(
gαβC

αβ + (k2 + k3) · (k2C11 + k3C12)
)}]

[m2
um ,m

2
dl
,m2

dl
],

+
2
√
2

16π2cWv
Γellmel

{
− (geV + geA)

(
gαβC

αβ − 2C24 + k2 · (k2C11 + k3C12)
)

+ (geV − geA)
(
gαβC

αβ + (k2 + k3) · (k2C11 + k3C12)
)}

[0,m2
el
,m2

el
],

G
(F1)
+ =

2
√
2m2

WNc

16π2cWv
(V †

CKM)lm

[
Γumlmum(g

d
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+ Γdmlmdl

{
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}]
[m2

um ,m
2
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]

+
2
√
2m2

W

16π2cWv
Γellmel

{
(geV + geA)(C12 + 2C23) + (geV − geA)(C12 − C11)
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el
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2
√
2m2

WNc

16π2cWv
(V †
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d
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+ Γdmlmdl
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2
√
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Γellmel
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+ =
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Γdmlmdl

{
m2
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gαβC
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+
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√
2

16π2cWv
Γellmel
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+ k2 · (k2 + k3)C0
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(V †
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Γdmlmdl(g
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+ Γumlmum
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2
um ],

+
2
√
2m2

W

16π2cWv
Γellmel(g

ν
V + gνA)(2C12 + 2C23 + C11 + C0)[m

2
el
, 0, 0],

H
(F2)
+ = i

2
√
2m2

WNc

16π2cWv
(V †

CKM)lm

[
− Γdmlmdl(g

u
V + guA)(C11 + C0)

− Γumlmum

{
(guV + guA)C12 − (guV − guA)(C12 − C11)

}]
[m2

dl
,m2

um ,m
2
um ]

− i
2
√
2m2

W

16π2cWv
Γellmel(g

ν
V + gνA)(C11 + C0)[m

2
el
, 0, 0],
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F
(F3)
+ =

2
√
2cWNc

16π2v

m2
W −m2

Z

m2
W −m2

H±
(V †

CKM)lm

(
ΓumlmumB1 + Γdmlmdl(B0 +B1)

)
[−k1;m2

dl
,m2

um ]

+
2
√
2cW

16π2v

m2
W −m2

Z

m2
W −m2

H±
Γellmel(B0 +B1)[−k1;m2

el
, 0],

F
(F4)
+ =

2
√
2s2WNc

16π2cWv

1

m2
W −m2

H±
(V †

CKM)lm

{
(−Γumlmumm

2
dl
+ Γdmlm

2
ummdl)B0

+ (−Γdmlmdl + Γumlmum)(B̃0 + k21B1)
}
[−k1;m2

dl
,m2

um ]

− 2
√
2s2W

16π2cWv

1

m2
W −m2

H±
Γellmel(B̃0 + k21B1)[−k1;m2

el
, 0],

G
(F3,F4)
+ = H

(F3,F4)
+ = 0, (E.8)

where the summation for the flavor indices l,m is implicit, and Cαβ is the C type tensor function
which satisfies the relation [464]

gαβC
αβ[k1, k2;m

2
a,m

2
b ,m

2
c ] = k21C21 + k22C22 + 2k1 · k2C23 +DC24

= B0[k2;m
2
b ,m

2
c ] +m2

aC0[k1, k2;m
2
a,m

2
b ,m

2
c ]. (E.9)

The definition of the coupling constants are given by

Γulm = (ρu†VCKM)lm, Γdlm = −(VCKMρ
d)lm, Γelm = −(ρe)lm

gfV =
1

2
T f3 −Qfs

2
W , gfA =

1

2
T f3 , (E.10)

where f = u, d, e, ν, and T f3 and Qf are the SU(2)L isospin and the electromagnetic charge for
f , respectively. The divergent parts of the fermion contributions are given by

F
(F type)
+ |div =

√
2s2WNc

v

1

m2
W −m2

H±

(
(ρu†)llm

3
ul
+ (ρd)llm

3
dl

)
∆

+

√
2s2W
v

1

m2
W −m2

H±
(ρe)llm

3
el
∆, (E.11)

Finally, the A type contributions are given by

F
(A1)
+ =

2

cW

s2W
2
(Ri2 − iRi3)

−1

m2
Hi

Ti
v
,

F
(A2)
+ =

2

cW
m2
W s

2
W

1

2
(Ri2 − iRi3)

1

m2
H± −m2

W

−1

m2
Hi

Ti
v
,

F
(A3)
+ =

2

cW

s2W
2

(1
2
(Z4 + Z5)Ri2 −

i

2
(Z4 − Z5)Ri3 + Z6Ri1

)
v2

1

m2
H± −m2

G±

−1

m2
Hi

Ti
v
,

F
(A4)
+ =

2

cW

s2W
2

1

m2
H± −m2

G±
ΠH+G− ,

G
(A type)
+ = H

(A type)
+ = 0, (E.12)

where we denote the tadpole and the self energy of H+G− as

Ti ≡
Hi

, ΠH+G− ≡ H+ G− .
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By using the relation between R andM2 in Eq. (4.8), the A type contributions can be simplified
as

F
(A type)
+ =

2

cW

s2W
2

1

m2
H± −m2

W

(
− (Ri2 − iRi3)

Ti
v

+ΠH+G−

)
. (E.13)

When we write the tadpole of Hi as T
(p)
i , where a particle p runs inside the loop, they are given

by

T
(G±)
i =

1

16π2v
(Z1Ri1 + ZR

6 Ri2 − ZI
6Ri3)v

2A0[m
2
G± ],

T
(G0)
i =

1

16π2v

1

2
(Z1Ri1 + ZR

6 Ri2 − ZI
6Ri3)v

2A0[m
2
G0 ],

T
(H±)
i =

1

16π2v
(Z3Ri1 + ZR

7 Ri2 − ZI
7Ri3)v

2A0[m
2
H± ],

T
(Hj)
i =

1

16π2v
(λHijj + λHjij + λHjji)v

2A0[m
2
Hj
],

T
(ul)
i = −

√
2Nc

16π2

(
Ri2(ρu + ρ†u)ll − iRi3(ρu − ρ†u)ll

)
mulA0[m

2
ul
],

T
(dl)
i = −

√
2Nc

16π2

(
Ri2(ρd + ρ†d)ll + iRi3(ρd − ρ†d)ll

)
mdlA0[m

2
dl
],

T
(el)
i = −

√
2

16π2

(
Ri2(ρe + ρ†e)ll + iRi3(ρe − ρ†e)ll

)
melA0[m

2
el
]. (E.14)

We here have defined λHijk as

λHijk ≡
1

2
Ri1Rj1

(
Z1Rk1 + 3ZR

6 Rk2 − 3ZI
6Rk3

)
+

1

2
Rj2Rk2

(
(Z3 + Z4 + Z5)Ri1 + ZR

7 Ri2 − ZI
7Ri3

)
+

1

2
Rj3Rk3

(
(Z3 + Z4 − Z5)Ri1 + ZR

7 Ri2 − ZI
7Ri3

)
. (E.15)

We note that the gauge and ghost fields cause the tadpole diagram for Hi, however, they do
not give the A type contributions. This is because the scalar-gauge-gauge and the scalar-ghost-
ghost interactions are proportional to Ri1, and the A type contributions from these tadpole
are proportional to

∑
iRi1(Ri2 − iRi3) = 0. The self energies Π

(p)

H+G− , where a scalar particle
p runs inside the loop, are given by

Π
(G±)

H+G− =
1

16π2v2
2Z6v

2A0[m
2
G± ],

Π
(G0)

H+G− =
1

16π2v2
1

2
Z6v

2A0[m
2
G0 ],

Π
(H±)

H+G− =
1

16π2v2
2Z7v

2A0[m
2
H± ],

Π
(Hi)

H+G− =
1

16π2v2
1

2

(
(Z4 + Z5)Ri1Ri2 − i(Z4 − Z5)Ri1Ri3

+ Z6Ri1Ri1 + Z7(Ri2Ri2 +Ri3Ri3)
)
v2A0[m

2
Hi
]. (E.16)

The divergent parts of the A type contributions are given by

F
(A type)
+ |div =

s2W
2

1

m2
H± −m2

W

(Z6m
2
W + Z7m

2
H±)∆
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+
s2W
2

1

m2
H± −m2

W

v2

2

(
− 2Z7

m2
H±

v2
− 2Z1Z6 − 2Z3Z6 − Z4Z6 − Z4Z7 − Z5Z

∗
6 − Z5Z

∗
7

)
∆

−
√
2s2W
v

1

m2
W −m2

H±

(
Nc(ρ

†
u)llm

3
ul
+Nc(ρd)llm

3
dl
+ (ρe)llm

3
el

)
∆. (E.17)

From Eqs. (E.3), (E.7), (E.11) and (E.17), all of the divergences are cancel out.
By using the above results, we can derive the coefficients of the tensor decomposition for the

decay H− → W−Z. The coefficients F−, G− and H− from the A, B and C type contributions
can be obtained by just taking complex conjugate of the coupling constants in front of the loop
functions in the above results. The fermion contributions of F−, G− and H− can be obtained
by replacing as

Γfml →
(
Γf†
)
lm

(f = u, d, e), (V †
CKM)lm → (VCKM)ml, (E.18)

and i→ −i in F (F type)
+ , G

(F type)
+ and H

(F type)
+ .
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Appendix F

Formulae of the vertex functions for
the mass-dependent beta function in
the toy model

In this appendix, analytic formulae for the vertex functions in the toy model are given at the
one-loop level.

The one-point vertex function of ρ is given by

Γ(1)
ρ (0) =

1

16π2

(
3

2
λ1vA0[m

2
ρ] + λ3vA0[m

2
ϕ2
]

)
+

1

2
vm2

ρ

(
Zµ1 − Zλ1

)
, (F.1)

where A0 does not have any momentum dependence.
The self energies for ρ and ϕ2 fields are given by

Πρρ(k
2) =

1

16π2

(
3

2
λ1A0[m

2
ρ] + λ3A0[m

2
ϕ2
] +

9

2
λ1m

2
ρB0[k

2;m2
ρ,m

2
ρ] +

1

2
λ1m

2
ρB0[k

2; 0, 0]

+ λ23v
2B0[k

2;m2
ϕ2
,m2

ϕ2
]

)
+ (Zϕ1 − 1)k2 − 1

2

(
3(Zλ1 − 1)− (Zµ1 − 1)

)
m2
ρ, (F.2)

and

Πϕ2ϕ
†
2
(k2) =

1

16π2

(
2λ2A0[m

2
ϕ2
] +

1

2
λ3A0[m

2
ρ] + λ23v

2B0[k
2;m2

ρ,m
2
ϕ2
]

)
+ (Zϕ2 − 1)k2

−
(
(Zµ2 − 1)µ2

2 +
1

2
(Zλ3 − 1)λ3v

2
)
. (F.3)

The corresponding two-point vertex function is obtained by

Γ(2)(k2) = k2 −m2 +Π(k2). (F.4)

The four-point vertex functions at the symmetric point are given by

16π2Γ
(4)

ρρϕ2ϕ
†
2

∣∣∣
k=sym.

= −16π2Zλ3λ3 +
3

2
λ1λ3B0[m

2
ρ,m

2
ρ] +

1

2
λ1λ3B0[0, 0] + 2λ2λ3B0[m

2
ϕ2
,m2

ϕ2
]

+ 2λ23B0[m
2
ϕ2
,m2

ρ] + 9λ1λ3m
2
ρC0[m

2
ρ,m

2
ρ,m

2
ρ] + λ1λ3m

2
ρC0[0, 0, 0] + 12λ23m

2
ρC0[m

2
ϕ2
,m2

ρ,m
2
ρ]

+ 3λ23m
2
ρC0[m

2
ρ,m

2
ρ,m

2
ϕ2
] + 4λ2λ

2
3v

2C0[m
2
ϕ2
,m2

ϕ2
,m2

ϕ2
] + λ33v

2C0[m
2
ϕ2
,m2

ϕ2
,m2

ρ]

+ 4λ33v
2C0[m

2
ϕ2
,m2

ρ,m
2
ϕ2
] + 18λ23m

4
ρD0[m

2
ϕ2
,m2

ρ,m
2
ρ,m

2
ρ] + 6λ33m

2
ρv

2D0[m
2
ϕ2
,m2

ρ,m
2
ϕ2
,m2

ρ]

+ 2λ43v
4D0[m

2
ϕ2
,m2

ϕ2
,m2

ϕ2
,m2

ρ], (F.5)

119



F Formulae of the vertex functions for the mass-dependent beta function in the toy model

and

16π2Γ
(4)

ϕ2ϕ
†
2ϕ2ϕ

†
2

∣∣∣
k=sym.

= −32π2Zλ2λ2 + 10λ22B0[m
2
ϕ2
,m2

ϕ2
] + λ23B0[m

2
ρ,m

2
ρ] + λ23B0[0, 0]

+ 12λ2λ
2
3v

2C0[m
2
ϕ2
,m2

ϕ2
,m2

ρ] + 4λ33v
2C0[m

2
ρ,m

2
ρ,m

2
ϕ2
] + 4λ43v

4D0[m
2
ϕ2
,m2

ϕ2
,m2

ρ,m
2
ρ]. (F.6)

Here we have defined shorthand notations as

B0[a, b] ≡ B0

[
− 4

3
Q2; a, b

]
,

C0[a, b, c] ≡ C0

[
− 4

3
Q2,−Q2,−Q2; a, b, c

]
,

D0[a, b, c, d] ≡

D0

[
− 4

3
Q2,−Q2,−4

3
Q2,−Q2,−Q2,−Q2; a, b, c, d

]
. (F.7)

After imposing the seven renormalization conditions given in Eqs. (9.12), (9.15) and (9.16),
the MD beta functions are obtained as

βλ1 = DQλ1 = λ1DQ log
(
Z−1
λ1
Z2
ϕ1

)
,

βλ2 = DQλ2 = λ2DQ log
(
Z−1
λ2
Z2
ϕ2

)
,

βλ3 = DQλ3 = λ3DQ log
(
Z−1
λ3
Zϕ1Zϕ2

)
. (F.8)
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