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0. Statement of main result

We consider a compact oriented fopological n-manifold M. Let ¢ be an
element of the first integral cohomology H*M) and M be the infinite cyclic
covering space of M associated with . The covering transformation group is
infinite cyclic and denoted by <{t> with a generator ¢, specified by v. A subboun-
dary, A, of M is () or a compact (z—1)-submanifold of the boundary 0M such
that A'=cly,(0M—A) is @ or a compact (n—1)-submanifold of 9. The pair
(4, A’) is called a splitting of 0M. Let A be the lift of A, i.e., the preimage of
A under the covering M— M. Let A be the integral group ring of <t>. The
integral homology H (M, A) forms a finitely generated A-module, because by
[K/S] (M, A) is homotopy equivalent to a compact polyhedral pair and A is
Noetherian. For an abelian group H, let ¢ H=Exty(H; Z) (so that ¢ H=0 for
1>2 and Hom(H, Z)=:"H), tH=the Z-torsion part of H and bH=H|tH. When
H is a A-module, let E‘H=Ext}(H, A) (so that Hom(H, A)=E°H) and TH=
the A-torsion part of H and BH=H|TH. Since A has the global dimension 2
(cf. MacLane [Ma, p. 205]), we have E‘H=0 for i>3. The following A-submo-
dule, DH, of H was introduced by Blanchfield [B]:

DH = {x€H |3 coprime Ay, Ay, ***, M, EA(m>2) with Ax = 0, Vi} .

If H is finitely generated over A, then we see that DH is the (unique) maximal
finite A-submodule of H and there are natural A-isomorphisms DH=<E?E’H and
TH|DH==E'E'H. Further, E°H is A-free and there is a natural A-monomorphism
BH — E°E°H whose cokernel is finite. The purpose of this paper is to establish
the Zeroth, First and Second Duality Theorems giving dual structures between
E'E'H M, A) and E‘E'H,_, (M, A") for i=0, 1 and 2, respectively. It turns
out that the first two are similar to the Blanchfield Dualities [B] and the third,
the Farber/Levine Duality [F], [L]. Let f: (M;; 4,, A})— (M,; A,, A5) be a
proper oriented homotopy equivalence (on each of M;, 4, and A{) with f*(v,)=
7, for compact oriented #-manifolds M; with splittings (4;, A7) of 0M; and v;&
HY(M;), i=1,2. For the covering spaces M; of M, associated with v;, f lifts to
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a proper homotopy equivalence f: (i,; 4,, A) — (M,; A,, A%), which induces
A-isomorphisms E'E°H. «(M, A)=E'E°‘H (M, A;) and E'E*H (M,, A})=E’E'H,
(M, A3) denoted by f.

The Zeroth Duality Theorem. For a compact oriented n-manifold M with
vyEHY(M) and a splitting (A, A") of OM and integers p, q with p-+q=n, there is a
pairing

S: E°E°H (M, A)x E°E°"H (M, A') - A

such that

(1) (Homotopy invariance) A proper oriented homotopy equivalence f: (M,; A,, A1)
— (My; A, Ab) with f*(v;)=1, induces the identity S(fx(x), f«(¥))=S(x,y) for
xEE°E°H(M,, A,) and y = E°E°H (M, A7),

(2) S is sesquilinear, i.e., ANS(x, y)=S(Xx, y)=S(x, Ny) for x€E°E°H,(M, 4),
yEEE’H (M, A') and NE A, where—denotes the involution on A sending t to t™°,
(3) S is &(pq)-Hermitian, i.e., S(x, y)=E&(pq)S(y, x) for x€E'E°H,(M, A) and
yEEE’H (M, A'), where &(m)=(—1)",

4) S is non-singular, i.e., S induces a t-anti A-isomorphism

E°E°H (M, A)=Hom (E°E°H (M, 4'), A) .

In fact, we construct S by extending the A-intersection pairing Int: BH (M, A)
X BH (M, A"y — A. Blanchfield [B] has formulated a similar duality over local
rings of A. Let Q(A) be the quotient field of A.

The First Duality Theorem. For a compact oriented n-manifold M with
yEHYM) and a splitting (A, A’) of 0M and integers p, r with p-+r+1=n, there is

a pairing
L: E'E'H,(M, A)x E'E'H,(M, 4') - Q(A)/A

such that

(1) (Homotopy invariance) A proper oriented homotopy equivalence f: (M,; A,, A1)
= (M,y; Ay, Aj) with f*(v,)=", induces the identity L(fy(x), fx(3))=L(x,y) for
xEE'E'H,(M,, A,) and y = E'E*H,(M,, 4),

(2) L is sesquilinear, i.e., NL(x, y)=L(Xx, y)=L(x, Ay) for x&E'E*H, (M, A),
yEEE'H(M, A') and AEA,

(3) L is &(pr-+-1)-Hermitian, i.e., L(x, y)=&(pr-+1)L(y, x) for x€E'E'"H (M, A)
and ye E*E'H(M, A"),

(4) L is non-singular, i.e., L induces a t-anti A-tsomorphism

E'E*H,(M, A)=~Hom (E'E'H/M, A'), Q(A)/A) .

When M is triangulated, we can see that our pairing L is essentially the same
as (precisely, the z-conjugate of) a pairing of Blanchfield [B] (cf. Remark
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5.5). Our next plan is to give a dual structure between E?E?H,(M, A) and
E"’EZH,(M, A') with p+s+2=n, but it turns out that there is not in general any
non-singular pairing on these whole modules [In fact, E*E?H (M, A)>zE*E*H,
(M, 4') as abelian groups in general]. For this reason, we construct (in 6) a z-anti
A-epimorphism 0: E*E’H,(M, A) — E'BH,. (M, A') which is invariant under a
proper oriented homotopy equivalence f: (M;; A, A7) — (M,; A, A3) with f*(vv2)
=v,. Let E*E*H,(A4, M)° be the kernel of . Similarly, E?E*H,(M, A')° for the
kernel of : E*E*H (M, A") — E'BH, (M, A).

The Second Duality Theorem. For a compact oriented n-manifold M
with yEHYM) and a splitting (A, A') of 0M and integers p,s with p-+s+2=n,
there is a pairing

I: E*E*H (M, A)* x E>E*H(M, 4')° — Q|Z
such that
(1) (Homotopy invariance) A proper oriented homotopy equivalence f: (M,; A,, A7)
— (My; Ay, A3) with f*(vv,)=", induces the identity (fy(x), fx(¥))=Ux, y) for x&
E’E*H (M, A,)° and y= E’E*H(M,, A)",
(2) s t-isometric, i.e., l(tx, ty)=Ix,y) for xSE*E*H, (M, A)°* and y=E’E*H,
(M, 4’y
(3) 1is &(ps+-1)-symmetric, i.e., l(x, y)=E(ps+1)(y, x) for xE*E*H,(M, A)°
and ye E’E*H (M, A",
(4) lis non-singular, i.e., l induces a t-anti A-isomorphism

E?E*H (W, A)®~Hom,(E*E*H (1, A')’, Q|Z) .

Since a finitely generated torsion-free A-module H is A-free if and only if
E'H=0 (cf. 3), it follows that BH,, (M, A) and BH,, (M, A’) are A-free if and
and only if / defines a pairing

E’E*H,(M, A)x E*E*H (M, A") — Q|Z .

Hence we see that tH,(M, A), tH,(M, A') are finite and BH (M, A), BH, (M,
A') are A-free if and only if / defines a pairing

tH(M, A)x tH,(, A') —> Q|Z,

since a finitely generated A-module H has tH=DH(=E*E*H) if and only if
tH is finite. Farber [4] and Levine [L] constructed the same pairing when
tH (M, A), tH(M, A') are finite and BH (M, A)=BH, (M, A')=0.% There-
fore, our pairing / may be considered as an extreme generalization of their pair-
ing. A basic idea of proving these Duality Theorems is to examine a universal
coefficient exact sequence for cohomology over A, which has been done by

*) They also assumed that manifolds are piecewise-linear.
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Levine [L] in an important special case (cf. Corollary 1.3).

In §1 we construct a universal coeflicient exact sequence for chomology over
a ring of global dimension <2. In §2 we describe the Reidemeister duality on'a
regular covering of a (topologiacl) manifold. In §3 we note several properties
of A-modules needed for our purpose. In §4, 5 and 6 we prove the Zeroth,
First and Second Duality Theorems, respectively.

1. A universal coeflicient exact sequence for chomology over a
ring of global dimension <2

Let T' be a ring with unit. Let C={C,, 0} be a left T"-projective chain
complex and F, a left I'-module. In general, H*(C; F)=H*(Homp(C, F)) and
Exti,(H4(C), F) are abelian groups, but when T" is commutative, they can be
considered as I'-modules. Let : H*(C; F) — Homp(H«(C), F) be the homo-
morphism defined by A({f}) ({z})=f(2) for {f} €H*(C; F) and {z} €H4(C).
Let K*(C; F) be the kernel of 2. 'We assume that I" has the left global dimen-
sion<2. Then Exty(Hy(C), F)=0 for i>3 and we obtain the following Universal
Coefficient Exact Sequence, referred to as UCES:

Theorem 1.1. For all q, there is a natural exact sequence
C h
0 —-K(C; F)— HY(C; F) — Homp(H,(C), F) 2 Exti(H,-,(C), F)
A
— K*(C; F) £ Extn(H,(C), F)— 0.

The proof is quite elementary. The following corresponds to the usual uni-
versal coefficient theorem:

Corollary 1.2. If Exti(H«(C),F)=0, then for all q there is a natural short
exact sequence

0 — Extr(H,-,(C), F)P—> H'(C; F) - Homp(H,(C),F)—0.
The following corresponds to the case considered by Levine [L]:

Corollary 1.3. If Homy(H(C),F)=0, then for all q there is a natural short

exact sequence

A
0 — Ext3(H,_,(C), F) > HY(C; F) & Ext\(H,_,(C), F) - 0.

1.4 Proof of Theorem 1.1. For all ¢, B,(C)=0C,, has the I'-projective dimen-
sion<1, since C, is I'-projective and 0 — B,(C)— C,— C,/B,(C) — 0 is I"-exact
and C,/B,(C) has the I"-projective dimension<2. So, Z,(C)=Ker(3: C,—C,_))

0
is I'-projective by the short I"-exact sequence 0—Z,(C)—C,—B,_,(C)—0. This
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sequence also induces an exact sequence

q
0 - BH(C) — C* 1> Z¥(C) — Exth(B,(C), F) ~ 0,

where B*(C)=Hom(B,_,(C), F), C'=Hom(C,, F) and Z*(C)=Hom(Z,(C),
F) and j* is the map induced from the inclusion Z,(C)cC,. Let Z{(C)=Im j°.
Then we have an exact sequence 0 — B?*"}(C) - C? — Z{(C) — 0 and an isomor-
phism Z*(C)/Z{(C)=<Extn(B,-,(C),F). Regarding B*(C)={B*"{(C)} and Z}(C)
={Z{(C)} as cochain complexes with trivial coboundary operators, we obtain
from the short exact sequence 0 — B*(C) - C*— Z}(C) — 0 a long cohomology
exact sequence

— H™H(Z3(C)) Ly (B¥(C)) = H'(C; F) — H'(Z1(C)) L “HBC)) = .

Note that the coboundary map 8: H(Z4(C))— H**'(B**(C)) is identical with
the restriction ¢{: Z{(C)— B*(C) of the map i*: Z(C)— B%(C), induced from the
inclusion B, (C)cZ,(C). We have the following four short exact sequences.

0 — Coker i{™' - H(C; F) - Keri{ = 0,
C
0 — Ker ¢f - Ker ' — Ker #*/Ker i{ -0,
C
0 — (Ker i*4-Z{(C))/Z1(C) — Z*(C)|Z{(C) — Z*(C)[(Ker '+ Z§(C)) — 0,

0 — Im #*/Im 7§ — Coker i — Coker :* — 0.
Using the isomorphisms Ker #*/Ker i{=<(Ker :*+Z{(C))/Z{(C) and Z*(C)/(Ker i
+Z%(C))=<Im ¢*/Im #{, we can construct an exact sequence
0 — Coker i1~ 2 HY(C; F) Z Ker i* 22 29(C)23(C) 2 Coker i 2 Coker 1~ 0.

Since Z,(C) is I'-projective, the short exact sequence 0— B,(C)— Z,(C)— H,(C)
—0 induces an isomorphism Extn(B,(C),F)=Exti(H,(C), F) and an exact se-
q

quence 0 — Homp(H,(C), F) — Z*(C) AN BY(C) — Extr(H,(C), F) — 0, so that
Homp(H,(C), F)==Ker i* and Coker ’=~Ext(H,(C),F). Note that the composite

HY(C; F) & Ker i=Hom(H,(C), F) is given by &.  So, «; induces an isomor-
phism Coker 1§'==K(C; F). Let 7 be the composite Homp(H,(C), F)=Ker i’
& Z'(C)|Z4(C) == Extr(B,-,(C), F) = Ext%(H,_,(C), F) and A, the composite
a
Ext’(H,_(C), F)=Exth(B,-,(C), F)=Z*(C)/Zi(C) = Coker {{=K*(C; F) and
a
p, the composite K*Y(C; F) Coker 2 — Coker i* &< Exth(H,(C), F), where =
denotes one of the isomorphisms constructed above or its inverse. Then we

obtain the exact sequence stated in Theorem 1.1. It is easy to check from con-
struction that a T'-chain map between left I'-projective chain complexes induces
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homomorphisms commuting the resulting two exact sequences. It is similar for
a I'-homomorphism between coeflicient left I'-modules. This completes the
proof.

2. The Reidemeister duality on a regular covering of a manifold

Let X be an oriented (possibly, non-compact) #-manifold and 9,X, i=1, 2,
be ¢ or (n—1)-submanifolds of .X with 8, X=clyx(0X—0,X) and 0,X=cl,5x(0X
—8,X). By Spanier [Sp, p. 301] the orientation of X determine determines a
unique element of Hj(X, 8X)=lim {H,(X,(X—K)UdX)|KcX, compact},
which we call the fundamental class of X and denote by [X]. For integers p, g
with p+g=n the map N [X]: HY(X, 8,X) — H (X, 0,X) is well defined by taking
the limit of N[X]x: H?(X, (X—K)U0,X)— H (X, 3,X) for all K, where [X]cE
H,(X, (X—K)U?0X) denotes the projection image of [X].

2.1. The Poincaré duality theorem. The map N[X]: HX(X, 0,X)—
H (X, 0,X) is an isomorphism.

This is known (cf., for example, [Ka;, Appendix A] for an outlined proof).
Let (M, 4) be a regular covering space over a compact pair (M, A) with covering
transformation group G. The singular chain complex AyM, 4) forms a left ZG-
free chain complex. H*(M, A) is the cohomology of the complex A¥(M7, A) of all
singular cochains with compact supports. Let H%(M, A) be the cohomology of
A% (M, A)=Hom;(Ay(M, A), ZG). We define a cochain map

¢: AYM, A) — AYo(M, A)
by the identity ¢(f) (%)= 3,ccflgx)g™* for fEAYM, A) and x<Ay(M, A),

where the sum is easily checked to be a finite sum.

Lemma 2.2. If (M, A) is homotopy equivalent to a compact polyhedral pair,
then the induced map ¢*: H¥(M, A)— H% (M, A) is an isomorphism.

Proof. Since H¥(M,A) and H%(M,A) are proper G-homotopy type
invariants and ¢ commutes with proper G-maps, it suffices to show that ¢* is an
isomorphism when (M, 4) is a compact polyhedral pair. Let (M*, A*) be a
triangulation of (M, 4) and (M*, A*) be its lift. For a subcomplex N* of M*,
let Ay(M*, A* UN*) (or Cy(B1*, A* UN¥*), resp.) be the ordered (or oriented,
resp.) chain complex. Let ky: A(M*, A*UN*)— Ay(M, AUN), N=|N*|,
and k,: Ay(BT*, A* U N*) — Cy(M*, A* UN*) be the natural chain equivalences
(cf. [Sp, 4.3.8 and 4.6.8]). Let A¥M*, A*) (or CHM*, A*), resp.) be the
complex of all finite ordered (or oriented, resp.) cochains. Let A%q(M*, A%)
=Hom,4(Ay(M*, A*), ZG) and C%e(M*, A*)=Hom ,c(Cy(M*, A*), ZG). We
have the following commutative diagram:
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]
a4 % s, a4 B ovare, am
o T

where ¢; are defined by the same rule as ¢. Note that all of the k%’s in this
diagram induce isomorphisms in cohomology. In fact, for the upper A%, it can
be seen by taking the limit of the sequence

_ B, B
AY(M, AUN) — A(IT*, A% UN*) < CHM*, A* UN¥)

for all cofinite subcomplexes N* of M*, and for the lower k%, Eilenberg [E, p.
392] proved it. Since Cy(M*, A*) is ZG-free of finite rank, we see that ¢, is
bijective. Hence we have the isomorphism ¢*: H*(M, A)=H% (M, A), complet-
ing the proof.

2.3. The Reidemeister duality theorem. For a compact oriented n-
manifold M and a splitting (A, A") of 0M and integers p, q with p+q=n, there
is an isomorphism D: HY% o(M, A)=~H (M, A").

Proof. By [K/S] (M, A4) is homotopy equivalent to a compact polyhedral
pair. So, by Lemma 2.2 ¢*: H¥(M, A)— H% (M, H) is an isomorphism. We

~ . P n [M] o
take as D the composite H%o(M, A) = H%(M, A) H, (M, A'), where the
later denotes the Poincaré duality. 'This completes the proof.

This duality is due to Reidemeister when M is triangulated (cf. Milnor [Mi,]).
Wall [W] also considered it from a different viewpoint. We can always give
H%o(M, A) a left ZG-module structure so that D is a ZG-isomorphism (cf.
[M1i,]), but in this paper we never use it to avoid making a confusion. When G
is abelian, H¥(M, A) and H%;(M, A) form ZG-modules by the action of G, so
that ¢* is a ZG-isomorphism and D is a g-anti map, i.e., g7'D=Dg, for all
2E€G. Here we used the identity g[M]=[M]. The following chain level version
of this identity is used in 5 and 6:

Lemma 2.4. For a splitting (A, A") of 0M, there is a cycle 2 in Ay(M; A, 4")
ZILIP{A”(M )(AL(M—K)+A,(A)+A(A')) | K © M, compact} representing [M] <
H(M,0M) such that gZ2=Z2 for all gG.

Proof. Let 2=3% n,0,€ A,(M) represent an element of H,(Ay(M)/(Ay(A4)
+Ay(4"))) coresponding to [M]eH;(M,0M) under the natural isomorphisms
H(A(MD(AdA)+ A A"))) = H,(M, 0M) = H5(M,0M) (ct. [Sp, 6.3.7]). Let o
j € J, be the lifts of the singular z-simplex o; to M. For any compact K CM,
o;,; are in A,(M—K) except a finite number of j and we let Zz= 3" 7,3} ,c/0; ;
EA(M) [ (A(M—K)+A(A)+A,(A’)). Then we see that Z is a cycle and
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{2} x determines a cycle 2 in AL(M; A, A') with gZ=2 for all g€G. Take ZE
VI so that Vis an open ball and the projection M—> M sends ( ¥, %) to a pair
(V, x) homeomorphically. For any cycle z.= 3" n}ciE A (M, M—x) with
{2i} = {2} in H,(M,M—x), let 2:=3,"1n} X ;c;0} ;€A (M, M—X). Then 2%
is a well-defined cycle with {2%} ={2;} in H, (M, M—ZX). Let 2} be in AV,
V—x). Since VN g V=0 for g1, we see from the isomorphisms

H,(M, M—%) < H,(V, V—%) > H/(V, V—3) > H,(M, M—=)

that 2% represents [M]; so that 2 represents [M] (cf. [Sp, 6.3.3]). This completes
the proof.

3. Several properties of A-modules

Let A;=A®,Q and for the field Z, of prime order p, A,=AQ,Z, For
any finitely generated A-module H, note that E?H is Z-torsional and E'H is A-
torsional, since E?HQ® ,Q=E'HR® ,Q(A)=0. Let H?={xeH|px=0}. H®
is a A,-module.

Lemma 3.1. A/(m, Ay, +++, \,) is a finite A-module for coprime non-zero m,
A, M EA (r>1) with m an integer.

Proof. Let m=-p,p,++* p, be a prime decomposition. A/(ps, Ay, =+, A,)=
Ap, /(A +++, A,) is finite.  Since

A/(Pl'“ps—l’ POTRLEN 7\'r) & A/(m» Agy *tty 7\'r) g A/(P‘, Agy *tty 7\‘r)

is exact, the induction on s shows that A/(m, A, -++, A,) is finite, completing the
proof.

Corollary 3.2. A finitely generated A-module H has mH=(t" —1)H=0
for some non-zero integers m, m' if and only if H is finite

Proof. The “if”” part is easy. The “only if” part follows from Lemma
31, since H is a quotient of a direct sum of finite copies of A/(m, t* —1). This
completes the proof.

Corollary 3.3. For any A-module H, DH is the smallest A-submodule of
H containing all finite A-submodules. Further, if H is finitely generated over A,
then DH is finite.

Proof. By Corollary 3.2 DH contains all finite A-submodules. For x& DH
let Ay, ++, A, €A (r>2) be non-zero coprime elements with A;x=0 for all 7. Since
A, is PID, there are Af, :-*, A;EA and non-zero m&Z such that AN+
AN =m. Then mx=0 and x is in the image of a A-homomorphism A/(m, Ay, *-+,
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A,)—H. Since m, 7y, +:+, A, are coprime, we see from Lemma 3.1 that x isin a
finite A-submodule of H, showing the first half. If H is finitely generated over
A, sois DH. Then DH is a quotient of a direct sum of a finite number of finite
A-modules and hence is finite. 'This completes the proof.

Lemma 3.4. For a finitely generated A-module H, E*H is finite and there
are natural isomorphisms E*H=FE*DH and DH ~E*E’H.

Proof. Since E?»H is Z-torsional and finitely generated over A, there is an

integer m==0 with mE*»H =0. By the short exact sequence 0 — bH z bH —
bH|mbH — 0, we have E2bH=mE*»H=0. So, E*H=<E*H by the short exact
sequence 0 — tH — H—bH — 0. Let H, be the p-component of tH. We show
that E’H , is finite by induction on #>0 with p"H,=0. The short exact sequence

0—pH, S H,— H,/pH,— 0 induces an exact sequence E*(H,/pH,)— E’°H,
— EpH,). H,pH,is a finitely generated A,-module and splits into a free A ,-
module and a torsion (i.e., finite) A,-module T',, so that E*(H,[pH,)=E’T, is
finite (by Corollary 3.2). By the inductive hypothesis, E*(pH,) is finite. Hence
E’H, is finite. Since tH is finitely generated over A, H,=0 except a finite
number of p. Therefore, E*H ==E*tH =~ E*H , is finite. Next let H'=tH|DH.

Take an integer m’ =0 with (" —1)E2H'=0. Since 0—H’ —> H'—>H'/(t’"l 1)
H'—0 is exact, " —1: E*H’ — E*H’ is onto, so that E2H'—0 and E*H =~E*DH.
Thus, E*H=E’tH=FE*DH. Since DH is finite and E'DH =~Hom,(DH, Q(A)/A)
=0, we see from [L, (3.6)] that DH=E?E*DH. Using E?’H=E?DH, we complete
the proof.

Lemma 3.5. For a finitely generated A-module H, there are a natural short
exact sequence 0 — E'BH — E'H — E(TH|DH) — 0 and natural isomorphisms
E'BH=DE'H and TH/DH=E'E'H.

Proof. By Lemma 3.4, E2BH=0. The short exact sequence 0 > TH — H
— BH — 0 induces an exact sequence (S) 0— E'BH — E'H— E'TH— 0. Since
E°DH=E'DH=0, ETH|/DH)=E'TH. Combining it with (S), we obtain a
desired sequence. Directly, DE'TH==D Hom,(TH, Q(A)/A)=0. By (S),
DE'BH=DE'H. For a free A-module F of finite rank containing BH (cf.
Cartan/Eilenberg [C/E, p. 131]), we have E'BH=FE*F/BH). By Lemma 3.4,
E'BH is finite and E'BH=DE'BH=DE'H. Then E'E'TH=E'E'H by (S).
Since E*(TH/DH)=0 by Lemma 3.4, TH/DH has the projective dimension<1
by [L, (3.5)]. By (L, (3.6)], we have TH/DH =E'ETH|DH). Since E(TH|DH)
=E'TH, the proof is completed.

Lemma 3.6. For a finitely generated A-module H, E°H is A-free and there
is a natural exact sequence 0— BH — E°E°H — E*E'BH — 0.
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Proof. Since E°BH=E°H, we may assume that H=BH. Then H has the
projective dimension <1, for there is a A-free module F containing H and F/H
has the projective dimension <2. A A-projective (i.e., A-free by [Se]) resolution
0—F'—-F'—>H—0 of H with F* of finite rank induces an exact sequence (S¥*)
0—E°H—E°F°— E°F'— E'H—0. Since E'H has the projective dimension <2
and E°F are A-free, E°H is A-projective that is A-free by [Se]. By Lemma 3.5,
E'E'H=0. Then (S*) induces an exact sequence 0— E°E°F' — E°E°F°— E°E°H
— E?E'H— 0. Using F'=E°E°F' and the natural injection H— E°E°H, we obtain
a natural short exact sequence 0 — H — E°E°H— E*E'H— 0. This completes the
proof.

The following is obtained from I.emmas 3.4, 3.5 and 3.6:

Corollary 3.7. A finitely generated A-module H is A-free if and only if
E'H=E*H=0.

Corollary 3.8. The foliowing conditions on a finitely generated A-module H
are equivalent:

(1) E*H=0,

(2) DH=0,

(3) H® is A ,~free for all prime p,

(4) H has the projective dimension <1.

Proof. Take a short exact sequence 0— H'— F— H— 0 with F, A-free of
finite rank. Assuming (1), E'H'=E’H=0. By Lemma 3.6, H'=E°E°H’ is A-
free, showing (1) = (4). 'The others are trivial or follow from Lemma 3.4. This
completes the proof.

Corollary 3.8 generalizes [L, (3.5)] and implies that a self-reciprocal A-module
in [Ka,] has the A-projective dimension <1. The following observation is
originally due to Kervaire [Ke] (when A=t—1):

Corollary 3.9. Let AEA be no unit in A, for all prime p. If a finitely ge-
nerated A-module H has \H=H, then »: H=H, H=TH and tH is finite.

Proof. The Noetherian property gives A: H=<H (cf. Shinohara/Sumners
[S/S]). E°H is A-free by Lemma 3.6 and A: E°H=E°H, meaning that E°H=
0, i.e., H=TH. If tH/DH=0, then there is a prime p with (¢tH/DH)® 0.
(tH/DH)® is A ,-free by Corollary 3.8 and \: (¢H/DH)®=(tH/DH)®, meaning
that (#H/DH)® =0, a contradiction. Hence tH=DH, which is finite by Corollary
3.3. This completes the proof.

4. Proof of the Zeroth Duality Theorem

For a A-projective chain complex C with H,(C) finitely generated over A,
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we see from UCES that TH*(C; A)=K*(C; A) and h: H*(C; A) — E°H(C)
induces a monomorphism BH*(C; A) — E°H(C), also denoted by 2. We now
return to 0 where M is a compact oriented #-manifold and (4, A4’) is a splitting of
0M and (M; A, A’) is an infinite cyclic covering of (M; A, A’), associated with
yEH(M). We denote by &y the augmentation map Hy(M; G)— G for any
(untwisted) coefficient group G.

For integers p, ¢ with p+g=n, the Z-intersection pairing

Int: H,(M, A)xH,(M, A"~ Z
is given by the identity Int(x, y)=&x((4 Uv) N [M])=En(xN y) for x& H (M, A),

eH,(M,A'),uc H(M,A'), ve H (M, ) with x=u N [M], y=v N [M] (cf. [Kay,
Appendix A]). Then the A-intersection pairing

Int: H,(M, A)x H(M, A') — A

is given by the identity Int(x,y)=3);:=.. Int(x, #y)t~*. By A-sesquilinearity of
Int, Int induces a pairing

Intg: BH,(M, A)x BH (M, A') — A .
Let 8 be the composite #-anti A-homomorphism
H,(M, A)D;Hg(ﬂ, V) ke E°H (M, A",
where D denotes the Reidemeister duality in 2.

Lemma 4.1. For x&H,M, 4) and yeH (M, A'). we have B(x) (y)=Int
(%, 9)-

Proof. For u,={f,} €HYM, A') with x=u, N [M] and y={c,}, B(¥) (v)=
(f.) (¢,) =it fullic, )t =301 Em(u, N t'y)t*=Int(x, ¥), as desired.

4.2 Proof of the Zeroth Duality Theorem. Let B; be the composite #-anti
A-monomorphism
y—-1

BH (M, 4) 2 BH(M, A') A E°H (M, A') = E°BH (M, A")

induced from B. By UCES and Lemma 3.4, the cokernel of B; is a finite A-
module. By Lemma 3.5, B, induces a ¢-anti A-isomorphism 8%: E°E°BH (M, A")
=~E°BH (M, A) and hence a f-anti A-isomorphism @¥*: E"E°BH (M, A)=
E°E°E°BH (M, A"). Regard BH (M, A)C E°E°BH (M, A) and BH (M, 4')c
E°E°BH (M, A’) in a natural way. We can see from Lemmas 3.4, 3.5 and 3.6 that

$*| BH (M, A)=3; under the identification E°E°E°BH (M, A)=E°BH (M, A).
We define a pairing
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S: E°E°H (M, A) X E°E°H (M, A') = E°E°BH (M, A) x E°E°BH (M, A') — A

by S(x,y)=RB%*(x) (). By Lemma 4.1, S is an extension of the pairing Int,:
BH (M, A)x BH (M, A')— A. From construction, (2) and (4) are satisfied. To
see (1), let f: (M,; A4,, A))—(M,; Ay, A3) be a proper oriented homotopy equi-
valence with f*(v,)=v, The lift f: (M,; 4y, A1) — (M,; 4,, A%) induces A-
isomorphisms fy: (E°E°BH (M,, A,), BH (M,, A,))=<(E°E°BH ,(M,, 4,), BH ,(M,,
A)) and fy: (E°E°BH (M,, A?), BH (M,, A))=~=(E°E°BH ,(M,, A%), BH ,(M,, A3%)).
For x€ E°E°BH (M,, A4,), yE E°E°BH ((M,, A}), there are non-zero integers m, m’
such that mx=x'& BH (M, A,), m'y=y' € BH (M, A?), by Lemmas 3.4 and 3.6.
Since fy[M;]=[M,], it is easily proved that Inty(fu(x’), fu(y')=Intgz(x’,y").
Then mm'S(fi(x), fu(3)=S(Fu(x"), Fiu(y))=Ints(Fu(x"), Fu(»")=Ints(x’, y') =
S(x’, y")=mm’'S(x,y). That is, S(f«(x), fx(¥))=S(x,y), showing (1). To see
(3), let x=E°E°BH ,(M, A) and yeE°E’BH, (M, 4"). For x'=mxecBH,(M,
A) and y'=m'yeBH, (M, A') with mm'=+0, we have mm’'S(x, y)=S(x',y")=
Intp(x’, y') = €(pg)Ints(y’, x) = E(pg)S(y', x') = mm'E (pg)S(, %), i.e., S(x,y)=
&(pq)S(y, x). This completes the proof.

5. Proof of the First Duality Theorem

For a A-module H, we have a A-exact sequence Hom,(H, Q(A))
| HomA(H Q(A)/A) — E'H — 0 induced from the short exact sequence 0 — A

— Q(A) — Q(A)/A — 0, by which we identify E'H with the cokernel of »,. Let
C be a projective A-chain complex with Hy(C) finitely generated over A. For
u={f,} € TH"™(C; A) we have a non-zero AEA and a cochain f : C,— A such
that A f,=8(f3). Letting p'(u) (¢)=fx(c)/NEQ(A)/A for ceZ (C), we obtain a
well-defined A-homomorphism p’: TH**(C; A) — E'H (C).

Lemma 5.1.  For the map p: TH*(C;A)— E'H (C) appearing in UCES,
there is a natural A-isomorphism p”: E'H (C)=E'H (C) such that p=p"p’.

Proof. Recall that p is the cornposite
TH*(C; A) = K**(C; A) ! Coker 7 % > Coker ¢ = < E'H,(C).

For u={f,} € TH""(C; A), we have f,(Z,,(C))=0 and hence a map f7: B,(C)

-1
8_2 CqH/ZqH(C)jj;A. Then note that p,(#)={fZ} €Coker 7. The map a;

is an obvious surjection. We shall construct a natural A-isomorphism pj: Coker
'=E'H,(C). For fE€B*(C) we have a non-zero A A and fZ& Z*(C) such that
f?|B,(C)=xf*[Note that Coker i*=<E'H (C) is A-torsional]. Letting p5(f?) (c)
=f%(c)IA€Q(A)/A for ceZ (C), we obtain a well-defined A-homomorphism pj:
Coker i* — E'H (C). 'The naturality of pj is clear. Given a A-homomorphism
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f: H(C)— Q(A)/A, we have a A-homomorphism f: Z,(C) — Q(A) inducing f,
because Z,(C) is A-projective. Then f(B,(C))CA and we can see that the cor-
respondence {f} € E'H, (C) — {f | B,(C)} € Coker ' is the well-defined inverse
of pj. So, p} is a natural A-isomorphism. The identity piasp,=p’ is easily
checked. Letting p”’=p,p5 ', we obtain the identity p=p"p’, completing the
proof.

5.2 Proof of the First Duality Theorem. By UCES and Lemma 5.1, p’ induces
a A-isomorphism THY (M, A")|DHY (M, A')= E'H, (M, A")|DE'H,(M, 4"),
also denoted by p’. By Lemma 3.5, the latter is identical with ENTH, (M, 4")/
DH (M, A"))=Hom,(TH,(M,A")|DH, (M, A"), Q(A)/A) = Hom(E*E'H (M, A"),
Q(A)/A). By the Reidemeister duality, we have a t-anti A-isomorphism D:
TH\(M, A')|DH (M, A")=TH (M, A)|DH (M, A)= E'E*H,(M, A). Then

we define a pairing

L: E'E'H (M, A)x E*E'H (M, A')
= TH (M, A)|DH (M, A)x TH, M, A"\|DH (M, 4') - Q(A)/A

by L(x,y)=&(p-+1)p'D7'(x) (y). By construction, (2) and (4) are satisfied. To
see (1), let f: (M,; A,, A1) — (M,; A,, A%) be a proper oriented homotopy equi-
valence wiht f*(v,)=7v,. The lift f induces the following commutative diagram
(Use fy[M,]=[M,] for the left square):

_ D N _ ! _
E'E'H (M1, )< THY" (¥, A1)\ DH 5 (W1,, A1) > Hom y(E*E'HL (W1, A7), Q(A)/A)
=ifx 5 =1 f* ., =1 f*
E'E*H (M, A)< TH} (W1, A)| DH " (W, A%) > Hom y(E*E'H (WL, 4%),Q(A) ).

This means L(f(%), f4(¥))=L(x,y), showing (1). To see (3), let x={c,}
eTH,M, 4), y=A{c} €TH,(M, A'), u,={f} ETH:*(M,4') and u,={f}e
TH?*(M, A) with u,N[M]=x and u,N[M]=y. Then there are non-zero A,,
NEA and ¢ €A,y (M, A) and cf € A,1,(M, A') such that dc;=2x,c, and dc} =
A,cy. Since Xu,=X,u,=0, there are fi € AL(M, A’) and f3 € A%(M, A) such that
3(f3)=A.f, and 8(f;)=X,f,. By definition,

L(x,5) = &(p+1) Stoe fH(Ee,)t7 X, (mod A) .
Assertion 5.3. L(x,y)=¢&((p+1)r) itz +(l"'6,)t"'/)\,, (mod A).

From this, we have L(x,y)=¢&(pr+4-1)L(y, x), showing (3), since L(y, x)=&r-+1)
Sitz.fy(Fe)t !X, (mod A). This completes the proof of the First Duality
Theorem, except for the proof of Assertion 5.3.

5.4. Proof of Assertion 5.3. By Lemma 2.4, we have a ¢-invariant cycle Z&
AYM; A, A') representing [M]. The map NZz: AXM,A)— A, (M, 4'), NZ:
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ANM,A')— Ayi(M,A) or N2: AN ; A, A")— A,_(M) is defined to be the limit
(on K) of the cap product map NZg: A*M, (M—K)U A)— A,_ (M, A"), NZx:
AYIT, (M—K)UA") = A,_(M, A) or N Zg: Homy (A1) /(A —K)+Ag(A)
+Ayd")), Z) = A, (M) with respect to the Alexander/Whitney diagonal ap-
proximation respectively. Assume that f, N 2=c, and f,NZ=c,. Let T: MxM
—>M X M be the map changing the factors and 7" : Ay(M)® Ay(M )—>A,(M ) ®A,(M )
be the chain map defined by 7"(c?Qc")=&(pq)c’@c?. Let 7: Ay(M X M)— Ay(M)
®Ay(M) be a natural chain equivalence so that 7dy is the Alexander/Whitney
diagonal approximation, where d: M— M x M is the diagonal map. Since there
is a natural chain homotopy Dj: Ty=T"7 (cf. [Sp, 5.3.8]), we have 8d*Di+
d*D¥S=d*T*—d*r*T"*, where each summand is regarded as a homomorphism
ANM, AYQAYM, A) — AY(M; A, A') of degree 0. Using that 7dy and 77Tdy are
the Alexander/Whitney diagonal approximations, we obtain 84*Di(¢'f; ® f,)+
EDI(E 1@ L) =11 U f—e((p+1)n)f, Ut 2. But, 8dDI(E f1@f,)N2=0
and DI En(@EDIS(HfI@f,) N2t =\, 2tz En(d*DI(H £, Q f,) N 2) 17",

Hence

Shlzofr(te,)t Re=022uEm(£'f 7 U £,) N 2)t7° [N, = &((p+1)r) i Ea((f, U
£ f3)N2)t7 [, (mod A)=&((p+1)r) iz 2w €x((8(f5) UL f2) N 2)t™ [Ah ,=E((p+
DN&(p+1) iz 2-En(f5 UES(f2)) N2 [N A, =E((p+1))E(p+1) it 2w f5(t7c,)
N,
The result follows.
REMARK 5.5. Assume that x, y are represented by c,, ¢, with |c,| N |#c,]
=@ for all . For example, if M is triangulable, then this assumption is satisfied.

Then the intersection numbers Int(c;,?'c,) are defined (cf. [Ka;, Appendix A])
and we have

L(x,y) = 3it=.Int(ci, te,)t X, .

Infact, L(x,y)=E&(p+1) 2it 2w [ (#0cy )t AN, =E(p+1) 201 20 ful# X265 )E T (XN,
=&(p+1) it Int(c,, X,03) 7 X, (cf. [Kay, A. 4])-—8(p—|—1)2,,,_w1nt(8c,,,
tey )t X, =017 Int (e, #¥0cy )t~ /X A= 2% Int (3, te, )X,

6. Proof of the Second Duality Theorem

Since the infinite cyclic covering M— M is the pullback of the exponential
covering exp: R—> S* by a map fy: M— S* representing v, the lift fy: M—R of
fyis a proper map. Let M{=f7'(i, + ) and M7 =f7'(—oo, —i). Let H*(M,
&+)Ud) =.li£I°1° H*(M,M# U A). Taking the limit i— -+ oo of the Mayer/Vietoris

sequence for (M; M U4, M7 U ), we obtain an exact sequence
- . _ _ 3, _
— HYM, A)— H*(M,&(+) U A)DH (M, s(—) U A)— H (M, A) - HI* (M, A)—.
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Lemma 6.1. There is one and only one element u of H,_ (M, M) such
that
(1) (t—1)u=0, o
(2) The map py: H, (M, 0M)— H,_ (M, 0M) sends p to v N[M], where p de-
notes the covering projection.
Further, u is given by 8,(1) N [M] for 8,: H'(M)— H}(M).

Proof. For uniqueness, let u, p’ have (1) and (2). By the Wang exact se-

quence H,_,(M, OM)tle,,_l(M, 6M)P—>* H,_ (M, oM) (cf. [Mi,]), we have p—
p'=(t—1)x for an x&H,_,(M, 3M). By (1), (!—1)>x=0. By the Reidemeister
duality and UCES, TH,_,(M, M)=THA(M)=E'H (M) and the last is easily
seen to be a direct sum of modules of type A/(#*—1)(g=0) (cf. [Ka,, Lemma 1]).
Hence (¢—1)2x=0 means (t—1)x=0 and p=p'. Next, let p”’=35,(1)N [M].
Since t1=1 and #[M]=[M], " has (1). To see that it has (2), first assume that
fy has a leaf ¥V in M (cf. [Ka;]). Regard V"M and thicken VX ICM so that
F7Y0)=V and f7 U=V xI and fy|VxI: VxI—I is the projection, where I=
[0, €] for a small £>0. The following commutative diagram is obtained (i =I—
ol):

H‘(I 61) (2lV VXD H\VxI,VXal) —[—V—>I]H,, (VI (aV)xI)
|
H‘(R R 1)fl> H\M, M—V X I) 5 l
) B N [M]v«i
¥ Nn[M]

H! (R) SERAN HX\M)  —— H,(M,0oM)

Since 8,(1)=F%[R] (cf. [Ka,, p. 98]), we see that u”=[V]€H,_(M, oM). So,
ps(p”)=[V]€H,_(M,dM), which equals y N[M]. Hence " has (2). If ¢ has
no leaf, then we take Mp=M X CP? and yp,=v X 1€H Mp). Thenby [K/S] v,
has a leaf. By the identity (§,(1)x 1) N ([M]X [CP?)=(8.(1) N [M])x [CP?, 1"
has also (2). This completes the proof.

We call p of Lemma 6.1 the fundamental class of the covering M — M. By
Lemmas 3.4 and 3.5, the epimorphism p: TH4 (M, A) — E*H (M, A) in UCES
induces an epimorphism DH4*(M, A) — E'BH (M, 4), also denoted by p. We
define a #-anti epimorphism

6: DH M, A) — E*'BH, (M, A"
. f)"
by the composite DH (M, A) == DH&*(M, /I’)—>EIBH,+,(M A"). Cleatly, any
proper oriented homotopy equivalence f: (M,; 4,, A{)— (M,; A,, A3) with f*(v,)
=, induces the following commutative square:
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. 0 ~
DH,M,, A)) - E'BH,.(M,, 4%)
= | f4 9 =t f*
DH (M, 4,) — E*BH,,(M,, A3) .
Let DH (M, A)® be the kernel of 6. By identifying DH (M, A) with E*E*H,
(M, 4) in a natural way, we also consider 6 as
6: E*E*H (M, A) — E'BH, (M, 4") .
In this case, the kernel of 6 is denoted by E?E’H (M, A)*. Note that DH (M, A')°,
E’E*H,(M, A')* are the kernels of 6: DH,(M, A') — E'BH ,.(M, A), 0: E’E*H,
(M, A') — E'BH, (M, A), respectively. Let : ¢H (M, A) — H***(M, A) be
the monomorphism p~' in Corollary 1.2 with I'=F=Z. Then the following
square is commutative:

&tH (M, A) - HP(iT, A)
surjection 1 i 1 80/2
Hom,(H (M, 4), Q|Z) < H*(M, 4;Q|Z),

where 8¢/, denotes the Bockstein coboundary map. Let wH**(M, A)=r¢'H,
(M, A)=38o,,H (M, 4; Q|Z). By UCES with T=F=2Z, u={f} € H"*'(M, 4) is
in TH?(M, A) iff f| Z . 06(M, A)=0. Let 7,H?*'(M, A) be the A-submodule
of TH?* (M, A) consisting of all elements u={f} such that f(c)=0 (mod d) for
{e.} €DH (M, A)°, cE A, (M, A) and d(+0)€Z with dc—=dc,. Regarding
¢N(H (M, A)|DH (M, A)®)ce'H (M, A) in a natural way, we can obtain from an
argument similar to [F, §1] the following (whose proof is omitted):

Lemma 6.2. 7 ,H?*Y(M, A)y=re'(H (M, A)/DH (M, A)°) .
We consider the z-anti homomorphism N u: TH?*Y(M, A)— H (M, 4').
Lemma 6.3. ~H"*\(M, A)N ncDH,(M, A')°.

Proof. By Lemma 6.1, TH**(M, A)N p=((~H**(M, A) Us,(1)) N [M]=
SH (M, A)N[M]. For {f} erH**}(M, A), there are f*& A?*Y(M, M+ U A)
(¢=1) such that f=f*—f" in AP (M, A). Then 8,{f}={8f*}. Since f1Z s
(M, A)=0, it follows that f*=f" on Z,., Ay, A) and $(f*) is well-defined on
it. Let fa=¢(f*) | Z,1106(M, A)YEEZ,,A(M, A). Noting that some multiple
Afa is extendable to A, (M, A) (for E'B,A(M, A)=E*H (M, 4) is finite) and
H(8f+*)=8f4, we see from Lemma 5.1 that {¢p8f+} € TH4 (M, A) and p’ {p8 f*}

-1

_ _ D
=0=p{pSf*}. This means that TH**'(M, A) N\ pC Ker[TH,(M, A') =

TH%(M, A)—P>E‘HP+I(A7I, A)], which equals DH,(M, A")? by UCES. This com-
pletes the proof.
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Lemma 6.4. Ker[ N u: 7H? (I, A)— H,(M, A')]C . H (M, A).

Proof. Let u={f} €rH?*'(M, A) have un u=0. Then Su=0 and there
are {f*} €H**(M, &(£)U ) with f=f*—f~ in A**'(M, A). Since f induces
the zero map H ,,+1(M , A)— Z, f* induce the same map H erl(IW, A)y—Z. Hence
SV Z 41840, A) is well-defined and defines an element fy& E°H (M, A).
Take an integer m>>0 so that (¢"—1)DH (M, A)=0. By UCES and Lemma 3.4,
(1—"fa=h¢p*{f} for some {f} €H?*(M, A). Then we have f*+—f*1"=f°
on Z,,A(M, A). Define f,, fas€ MM, A) by fu(c)=ut=. f(#me), frlc)=

i fi(#"c) and f,=fn—fm. We have that 8(fs)=0=f5|A,.(MF ud, 4,
taking 7 so large that f° represents an element of H**\(M, M} UM7 U A). More-
ovre, for x&Z, Af(M, A), fou() =3t f(#"0) = St =u(fH{E"2) —f F (7 7x))
=0 and similarly, f(x)=f"(x), so that fn(x)=f"(x)=f"(x). Let fy;=f—f, and

§=f*—f%. Then fy—f¢—fs and f# represent elements of H**\(M, M; U A)
for a large 7 and f7|Z ,,HA,(M , A)=0. By construction, f, and f, represent
elements #,, and u, of TH**(M, A), respectively. To prove that u,,, u,E7eH?**
(M, A), let x={c,} eDH (M, AY, c€ A, (M, A) and d(0)EZ such that dc=
dc,. Since t"DH p(M , A)Y=DH ,(M, A)?, we can find an element {ci} of H, (M}
U4, A) of finite order sending to x under the natural map H,(M; U4, 4)—
H,(M, A). Thatis, there are At A, (M, ), d(F0)€Z and ct€ A, (M} U
4, A)such that ¢, —cf =8h* and 8ct =dict. Letet=dic—ddh*—dct € A, (M, 4).
Then 8¢*=0 in A (M, A) and f(c*)=d,fi(c)—dd,fs(h*)—dfi(c*)=0. But,
fo(c")=0, so that fi(c)=dfs(h*)=0 (mod d). Similarly, f5(c)=0 (mod d).
Thus, fy(c)=0 (mod d), meaning that u,&,H**'(M, A). To see that u, ErsH?**
(M, A), it suffices to show that f,(co)EZ for some Q-chains co€ A, (M; 4, Q)
with 9co=c,, where f,, is extended to a map A, (M, A)QQ—Q. We may take
¢, so that ¢;=f$ N2 for {fi} € H:**(, A') of finite order and Z in Lemma 2.4.
Let fo€ A (M, A'; Q) have 8f,—f5. We use the same ¢ for the Q-extension
of ¢ ASFYM, A" —E°A, (M, A"). Then ¢(f5): Ao M, A')— A, induces a map
(;b( fo): Hsﬂ(M , A= A/A. Since {c,} eDH p(M , A)8, it follows from the defi-
nition of @ that there is a A-homomorphism f%: H,, (M, A")— A, inducing
H(f5). Note that the composite
*
¥ : H;“(M,A’)@th@lE*’H,ﬂ(M,A')@Q
aHom(H,+,(M, 4"), Ao)

is onto by UCES. Let {f¢} €H:* (M, A'; Q) be a preimage of f%/. Let fo=
fo—f4. Then f% induces the zero map H,, (M, A')—Q|Z. Let cq=E(p-+1)
fonzeA, (M, 4; Q). Then dcq=&(p+1)E(s+1—n)SfyNZ=¢c, (cf. [Sp, p.
253]). Regarding f§ as a cocycle A,,,(M, A')—>Q|Z, we have in Q|Z

fu(e) = ZzZe f(#7co) = E(p+1) ZulZoEn((#"f°U fo) N 2)
= &(p+1)9) SizZ-En((fo U )N 2) = &((p+1)s) T2 fo(#"f'N2) = 0,

H (M, A';Q)=H:" (M, A')RQ
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for mf*N2EZ,  A(M, A'). Thus, u,reH (M, A) and u=u,,+u, S H*
(M, 4). This completes the proof.

Theorem 6.5. The maps :H (M, A) 5 g (M, A)%H,(M, A’ induce
isomorphisms

SDH (T, Ay Z =HP (I, A)yroH (5T, A) "L DE (L, A7y |

Proof. Let 7xH?*' be the kernel of N u. By Lemmas 6.2, 6.3 and 6.4, we
obtain the following diagram:

TH Y (M, A)|v HP ——— in:lf:on
} surjection
¢ H (WX, A)Je*(H (M, A)(DH (B, AY) = H?*\(Ii, A)|=,H? (0, A)
{
¢DH (M, Ay
Since ¢'DH (M, A)*=DH (M, A)° as abelian groups, it follows that | DH (M, A)°|
<|DH,M, A'|. Interchanging the roles of H,(M, A) and H(M, 4"), we
have |DH (M, A')’| = |DH (M, A)°|. This means that 7xH?*'=,H?*\(, )
and N p: TH (M, A)|voH (M, A)y=<DH,(M, A’)°. This completes the proof.

DH,(1, A"

6.6. Proof of the Second Duality Theorem. By Theorem 6.5, we define a
pairing
I: E?E*H (M, A) x E?E*H (M, A" = DH (M, A)* x DH(M, 4')° — Q|Z
by U(x,y)=&(s+1)f(y) for f. €e'DH, (M A'Y=Hom,(DH,(M, A", Q|Z) with
7f. N u=xEDH (M, A)* and yeDH,(M, A')*. By construction, / has (2) and
(4). For any u,e H'(M, A'; Q|Z) and u,c H (M, 4; Q|Z) with S¢/;(u,) N p=x
and 8¢/z(u,) N p=y, we also have in Q/Z
U(x, y) = &(s+1)€m((w: U Sarz(w,)) N 1) = El((Sarz(tt) Uny) N 1)

(cf. [F, Lemma 3.8]). We have l(x, y)=&(ps+1)I(y, x), showing (3). (1) is

obvious, since g is invariant under a proper oriented homotopy equivalence
f: My,— M, with f*(v;)=v,. This completes the proof.
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