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0. Statement of main result

We consider a compact oriented topological n-manifold M. Let y be an
element of the first integral cohomology H}(M) and M be the infinite cyclic
covering space of M associated with y. The covering transformation group is
infinite cyclic and denoted by </> with a generator t, specified by y. A subboun-
dary, A, of M is 0 or a compact (n—l)-submanifold of the boundary dM such
that A'=cldM(dM—A) is 0 or a compact (n—l)-submanifold of 3M. The pair
(Af A') is called a splitting of dM. Let A be the lift of A, i.e., the preimage of
A under the covering 1V[-+ M. Let Λ be the integral group ring of </>• The
integral homology H*(M, A) forms a finitely generated Λ-module, because by
[K/S] (M, A) is homotopy equivalent to a compact polyhedral pair and Λ is
Noetherian. For an abelian group Hy let eiH=Ext^(H; Z) (so that eιH=Q for
/>2 and Homz(H,Z)=<PH), tH=the Z-torsion part of H and bH=H/tH. When
H is a Λ-module, let EiH=Έ^Xi

A(Hy Λ) (so that HomΛ(#, A)=E°H) and TH=
the Λ-torsion part of H and BH=HjTH. Since Λ has the global dimension 2
(cf. MacLane [Ma, p. 205]), we have E'H^O for />3. The following Λ-submo-
dule, DH} of H was introduced by Blanchfield [B]:

DH= {*<Ξiϊ|3 coprime λ b λ2, •••, λmeΛ(/rc>2) with λt * = 0, Mi} .

If H is finitely generated over Λ, then we see that DH is the (unique) maximal
finite Λ-submodule of H and there are natural Λ-isomorphisms DH^E2E2H and
TH\DH^ElElH. Further, E°His Λ-free and there is a natural Λ-monomorphism
BH->E°E°H whose cokernel is finite. The purpose of this paper is to establish
the Zeroth, First and Second Duality Theorems giving dual structures between
Et&HpffiyA) and E^H^p^^A') for £=0, 1 and 2, respectively. It turns
out that the first two are similar to the Blanchfield Dualities [B] and the third,
the Farber/Levine Duality [F], [L]. Let /: (M^ Aly AΊ)-*(M2; A2, A'2) be a
proper oriented homotopy equivalence (on each of Ml9 Aλ and A[) with/*(γ 2 )=
yλ for compact oriented w-manifolds M f with splittings (Ah A'ή of 9M, and y, e
H\Mt), £=1, 2. For the covering spaces M, of M t associated with yh f lifts to
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a proper homotopy equivalence / : (Stx\ Aly A{) -» (ΛΪ2; A?y A2)y which induces
Λ-isomorphisms EiEΉ*(Xϊ1,A1)^EiEΉ*(AΪ2iA2) and E'EΉ^M^AΊ^&EΉ*
(ififc, Λί) denoted by /*.

The Zeroth Duality Theorem. For a compact oriented n-manifold M with
y^H\M) and a splitting (Ay A') of dM and integers p, q with p-\-q=n, there is a
pairing

S: E°E°Hp(Λϊy A) xE0E0Hq(JMy Ά) -* Λ

such that
(1) {Homotopy invariance) A proper oriented homotopy equivalence f: (Mλ\Aλy A{)
-> (Λf2; A2, Aζ) with /*(y 2 )=γ 1 induces the identity S(f*(x)9 f*(y))=S(x,y) for

q

(2) S is sesquilinear, i.e., \S(x,y)=S&x,y)=S(x,Xy) for x(EEQE°Hp(M[y A),
y^E°E°Hq(My A') and λEΛ, where—denotes the involution on Λ sending t to Γι,
(3) S is £{pq)-Hermitiany i.e., S(xyy)=S(pq)S(y,x) for x(=E°E°Hp(MyA) and
yt=E°E°Hq(My A'), where S(m)=(-l)m

y

(4) S is non-singular, i.e., S induces a t-anti A-isomorphism

E°E°Hp(My A)^UomA(E0E°Hq(My A')y Λ).

In fact, we construct S by extending the Λ-intersection pairing Int: BHp(Xϊy A)
X BHq{Άίy A') -» Λ. Blanchίield [B] has formulated a similar duality over local
rings of Λ. Let (?(Λ) be the quotient field of Λ.

The First Duality Theorem. For a compact oriented n-manifold M with
γGϋΓ^Λf) and a splitting {A, A') of dM and integersp, r with p+r+ί=n, there is
a pairing

L: EιEιHp{$[y A)xE1E1Hr(My A') -> Q(A)/A

such that
(1) (Homotopy invariance) A proper oriented homotopy equivalence f: (Mx\ Aly A[)
-»(M2;A2,Aί) with / * ( γ 2 ) = γ 1 induces the identity L(f*(x), f*(y))=L(x,y) for
x£ΞEιEΉp(Mly Ax) andyϊΞEιEΉr(Mly Aί)y

(2) L is sesquilinear, i.e., \L(xyy)=L(λχyy)=L(xyXy) for x^EιEιHp(My A)y

y^ExEλHr(βy A') and λGΛ,
(3) L is 6(pr+l)-Hermitian, i.e., L{x, y)=£(pr+\)L(y, x) for x^EιEιHp(My A)
andyεΞEιEιHr(βyA')y

(4) L is non-singular, i.e., L induces a t-anti A-isomorphism

EιEιHp(JUy J ^ H o m (EιEιHr(My A')y Q(Λ)/Λ).

When M is triangulated, we can see that our pairing L is essentially the same
as (precisely, the ί-conjugate of) a pairing of Blanchfield [B] (cf. Remark



THREE DUALITIES ON THE INTEGRAL HOMOLOGY 635

5.5). Our next plan is to give a dual structure between E2E^Hp{Nly A) and
E2Ί?Hs(β/ίy A') with p-\-s+2=n, but it turns out that there is not in general any
non-singular pairing on these whole modules [In fact, E2E2Hp(My A)^E2E2HS

(ΛϊjA') as abelian groups in general]. For this reason, we construct (in 6) a ί-anti
Λ-epimorphism θ: E2E2Hp{My A) -» EιBHs+ι(My A') which is invariant under a
proper oriented homotopy equivalence/: (Mx; AlyA{) -» (M2; A2yA2) with/*(γ2)
= t t . Let E2E2Hp(AyM)θ be the kernel of θ. Similarly, E2EΉS(AΪ, A')• for the
kernel of θ: E2EΉs(My A') -> EιBHp+ι(My A).

The Second Duality Theorem. For a compact oriented n-manifold M
with γeϋΓ(M) and a splitting (A, A') of dM and integers p,s with ρ-\-s-\-2=ny

there is a pairing

I: E2E2Hp(βy A)θ x E2E2Hs(Λϊy A')θ -> Q\Z

such that
(1) (Homotopy invariance) A proper oriented homotopy equivalence f: (Mx; Aly A{)
-> (M2; A2) A'2) with f*{y2)=Ύι induces the identity /(/*(*), f*(y))=Kx>y)for χζΞ

E2E2Hp(Mly Axγ andy^E2E2Hs(Mly A[)\
(2) Its t-isometric, i.e., l(txy ty)=l(xyy) far x^E2EΉp(My Af and y^E2E2Hs

(3) / is S(ps+iysymmetric, i.e., l(x,y)=S(ps+ί)l(y,x) for x^E2E2Hp(My Af
andy(ΞE2E2Hs(M[yAγy

(4) / is non-singular, i.e., I induces a t-anti K-isomorphism

E2E2Hp(βy Ay^Komz(E2E2Hs{My A')«y Q/Z).

Since a finitely generated torsion-free Λ-module H is Λ-free if and only if
EιH=0 (cf. 3), it follows that BHp+ι(Λϊy A) and BHs+l{MyA') are Λ-free if and
and only if / defines a pairing

E2E2Hp(βy A) x E2E2Hs(βy A) -> Q\Z.

Hence we see that tHp(Λϊy A)y tHs(My A) are finite and BHp+l(M[y A)y BHs+ι{My

A') are Λ-free if and only if / defines a pairing

mp(βy A) x m&(βy A) -> Q\Z ,

since a finitely generated Λ-module H has tH=DH(^E2E2H) if and only if
tH is finite. Farber [4] and Levine [L] constructed the same pairing when
tHp(βyA)y tHs(My A1) are finite and BHp+1(My A)=BHs+1(My A')=0*> There-
fore, our pairing / may be considered as an extreme generalization of their pair-
ing. A basic idea of proving these Duality Theorems is to examine a universal
coefficient exact sequence for cohomology over Λ, which has been done by

*} They also assumed that manifolds are piecewise-linear.
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Levine [L] in an important special case (cf. Corollary 1.3).
In § 1 we construct a universal coefficient exact sequence for chomology over

a ring of global dimension <2. In §2 we describe the Reidemeister duality on* a
regular covering of a (topologiacl) manifold. In §3 we note several properties
of Λ-modules needed for our purpose. In §4. 5 and 6 we prove the Zeroth,
First and Second Duality Theorems, respectively.

1. A universal coefficient exact sequence for chomology over a
ring of global dimension <2

Let Γ be a ring with unit. Let C= {Cq) 9} be a left Γ-projective chain
complex and Fy a left Γ-module. In general, H*(O; F)=H*(HomΓ(Cy F)) and
Ext^i/^C), F) are abelian groups, but when Γ is commutative, they can be
considered as Γ-modules. Let h: £Γ*(C; F) -> HomΓ(iϊ^(C), F) be the homo-
morphism defined by *({/})({*})=/(*) for if} <=H*(C;F) and {*} eff#(O).
Let K*(C; F) be the kernel of h. We assume that Γ has the left global dimen-
sion:^. Then Έxtι

Γ(H*(C),F)=0 for i>3 and we obtain the following Universal
Coefficient Exact Sequence, referred to as UCES:

Theorem 1.1. For all q, there is a natural exact sequence

t— h

0 -+K\C; F) — H\C; F) -> HomΓ(iϊ,(C), F) %> Έxt2

Γ(Hq^(C)y F)

* K«+1(C; F) t ExtH#,(C), F)-+θ'.

The proof is quite elementary. The following corresponds to the usual uni-
versal coefficient theorem:

Corollary 1.2. // Extl(H*(C),F)=0, then for all q there is a natural short
exact sequence

0 -> ExtK#,-i(C), F)P-+ H\C; F) A HomΓ(#,(C), F) -> 0 .

The following corresponds to the case considered by Levine [L]:

Corollary 1.3. // HomΓ(H*(C),F)=0, then for all q there is a natural short
exact sequence

0 -> Ext2

T(Hq.2(C), F) * Hq(C; F) & ExtK^-i(C), F) -> 0 .

1.4 Proof of Theorem 1.1. For all q, Bq(C)=dCq+1 has the Γ-projective dimen-
sion^ 1, since Cq is Γ-projective and 0 -* Bq(C) -*Cq-+ Cq/Bq(C) -> 0 is Γ-exact
and CJBq(C) has the Γ-projective dimension<2. So, Zq(C)=Ktr(d: Cq-^Cq.^)

9
is Γ-projective by the short Γ-exact sequence 0-^Zq(C)^Cq->Bq^(C)-^0. This
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sequence also induces an exact sequence

>C9^ Z\C) -> Ext^B^C), F) -> 0 ,

where Bq-χC)=Uomτ(Bq.1(C), F)9 Cq=Homv(Cq, F) and Z\C)=HomΓ(Zq(C),
F) andj9 is the map induced from the inclusion Zq(C)dCq. Let Zί(C)=Imjq.
Then we have an exact sequence 0 —> Bq~\C) -> C9 -» Z\(C) -* 0 and an isomor-
phism Z*(C)/Z?(C)^Extί<5g-i(C), JF) Regardingβ - 1(C)= { ^ ( C ) } and Zf(C)
= {Zί(C)} as cochain complexes with trivial coboundary operators, we obtain
from the short exact sequence 0 -> B*~\C) -> C*->Z\(C) -»0a long cohomology
exact sequence

δ δ
-> Hq-\Z\(C)) -> Hq(B*-χθ)) -> Hq(C; F) - ίΓ(Zf(C))

Note that the coboundary map δ: ^ ( Z f ί C ^ - ^ f f ^ β -^C)) is identical with
the restriction/!: Z?(C)->ΰ?(C) of the map iq: Z\C)-+Bq(C), induced from the
inclusion Bq(C)(ZZq(C). We have the following four short exact sequences.

0 -^ Coker H~l -> Hq{C\ F) -> Ker if -> 0 ,

0 -> Ker if ^ Ker i« -> Ker ί /Ker ff -> 0 ,

0 -> (Ker /9+Zf(C))/Zί(C) ^ Z*{C)IZ\{C) - Z^Q/ίKer ί +Zf(C)) - 0 ,

0 ^ Im £7Im i\ -> Coker if -> Coker z** -> 0 .

Using the isomorphisms Ker i /Keτ z*ί^(Ker i +Zf(C))/Zf(C) and Z9(C)/(Ker z9

/Im if, we can construct an exact sequence

0 -> Coker if 1 5 /Γ(C; F) ^ Ker i 5 Zq(C)\Z\(C) ^ Coker if ^ 5 Coker iq ~> 0 .

Since Z,(C) is Γ-projective, the short exact sequence 0->Bq(C)-+Zq(O)->Hq(C)

->0 induces an isomorphism Έxtr(Bq(C),F)^Έxtr(Hq(C)y F) and an exact se-

quence 0 ^ HomΓ(if,(C), ί1) ^ Z\C) ^ JB9(C) -> ExtK^(C), F) — 0, so that

HomΓ(fl,(C),.F)«Ker i* and Coker z^Ext^ ί f^C),^) . Note that the composite

Hq(C; F) -> Ker iq^HomΓ(Hq(O), F) is given by h. So, ax induces an isomor-
phism Coker iΓιs^K\C\ F). Let η be the composite HomΓ(£Γ9(C), F ) ^ K e r iq

^Zq(C)IZl(C)^Έxth(Bq_.1(C),F)^Έxt2

Γ(Hq__1(C),F) and Δ, the composite

S Coker / ? ^ ^ + 1 ( C ; F) and

p, the composite Kq+\C;F) Coker if ^ 5 Coker i*«Extί,(#β(C), F), where ^
denotes one of the isomorphisms constructed above or its inverse. Then we
obtain the exact sequence stated in Theorem 1.1. It is easy to check from con-
struction that a Γ-chain map between left Γ-projective chain complexes induces
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homomorphisms commuting the resulting two exact sequences. It is similar for
a Γ-homomorphism between coefficient left Γ-modules. This completes the
proof.

2. The Reidemeister duality on a regular covering of a manifold

Let X be an oriented (possibly, non-compact) w-manifold and dtXy z = l , 2,
be 0 or (w-l)-submanifolds of dX with d1X=cl9x(dX— d2X) and 82X=cl9x(dX
—diX). By Spanier [Sp, p. 301] the orientation of X determine determines a
unique element of Hc

n(Xy dX)=lim+{Hn{X, (X-K)\JdX)\K<zXy compact},
which we call the fundamental class of X and denote by [X]. For integers p> q
with p+q=n the map Π [X]: Hp

c(Xy 9,Z) -» Hq(X, d2X) is well defined by taking
the limit of Π [X]κ: HP(X, (X-K) U dxX)-*Hq(X, 32X) for all K, where [X]κtΞ
Hn(X, (X—K) U dX) denotes the projection image of [X],

2.1. The Poincare duality theorem. The map Π [X]: HP

C(X, dxX) -»
Hq(X, d2X) is an isomorphism.

This is known (cf., for example, [Ka3, Appendix A] for an outlined proof).
Let (M, A) be a regular covering space over a compact pair (M, A) with covering
transformation group G. The singular chain complex Δ$(M, A) forms a left ZG-
free chain complex. Hf(MyA) is the cohomology of the complex Δ?(i0r,^ί) of all
singular cochains with compact supports. Let H*G(M, A) be the cohomology of
A*ZG{AΪ, A)=KomZG(A^(Ri) A), ZG). We define a cochain map

φ:A*(M,A)-+A*ZG(M[yA)

by the identity φ(f)(x)= Έg^cΛg^g"1 for ftΞA\{&[yA) and ^eA#(M", A),
where the sum is easily checked to be a finite sum.

Lemma 2.2. // (M, A) is homotopy equivalent to a compact polyhedral pair,
then the induced map φ*: H?(AΪ,A)->Hz

i

G(M,A) is an isomorphism.

Proof. Since Hf(MyA) and H%G{M,A) are proper G-homotopy type
invariants and φ commutes with proper G-maps, it suffices to show that φ* is an
isomorphism when (M, A) is a compact pofyhedral pair. Let (M*, ̂ 4*) be a
triangulation of (Λf, A) and (iίϊ*, A*) be its lift. For a subcomplex ΛΓ* of iίϊ*,
let Δ,(M*, J:* UΛf*) (or C#(M*, A*{jN*)y resp.) be the ordered (or oriented,
resp.) chain complex. Let kx: Δ#(M*, A* U ΛΓ*) -> Δ#(M, ̂ 4 U ΛΓ), N= | ΛΓ* |,
and &2: Δ#(M*, Jί* UΛΓ*) -^ C#(M*, ̂ ϊ* UΛΓ*) be the natural chain equivalences
(cf. [Sp, 4.3.8 and 4.6.8]). Let Δ^M*, A*) (or C*f(M*, A*), resp.) be the
complex of all finite ordered (or oriented, resp.) cochains. Let Δ l c ^ * , A*)
-HomZG(Δ#(i0r*, A% ZG) and C\G(M*y A*)=HomZG(Cs{M*, . ί*), ZG). We
have the following commutative diagram:
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\ Φ ,, I Φl , , \ Φi

A>zc(ti, A) - A>ZG(tt*,A*) ^ C>ZG(M*, A * ) ,

where φ ; are defined by the same rule as φ. Note that all of the kVs in this
diagram induce isomorphisms in cohomology. In fact, for the upper M, it can
be seen by taking the limit of the sequence

Δ*(M, A U N) ΐ &*(&*, A* U ΛΓ*) i 2 C\M*, A* U ΛΓ*)

for all cofinite subcomplexes iV* of M*, and for the lower k\> Eilenberg [E, p.
392] proved it. Since C$(M*, A*) is ZG-free of finite rank, we see that φ2 is
bijective. Hence we have the isomorphism φ*: Hf(AΪy A)^H^G(]\Ϊ, A), complet-
ing the proof.

2.3. The Reidemeister duality theorem. For a compact oriented n-
manifold M and a splitting {A, A') of dM and integers p, q with p-\-q—n, there
is an isomorphism D: HP

ZG(M, A)^Hq(M, A').

Proof. By [K/S] (M9A) is homotopy equivalent to a compact polyhedral
pair. So, by Lemma 2.2 φ*: Hf(M, A)->H*G(M, A) is an isomorphism. We

ώ*' 1 n \Mλ
take as D the composite Hp

ZG(M,Ay^ HP

C(M,A) a Hq(M, A% where the
later denotes the Poincarό duality. This completes the proof.

This duality is due to Reidemeister when M is triangulated (cf. Milnor [MiJ).
Wall [W] also considered it from a different viewpoint. We can always give
H^G{My A) a left ZG-module structure so that D is a ZG-isomorphism (cf.
[MiJ), but in this paper we never use it to avoid making a confusion. When G
is abelian, Hf(M, A) and H*G(AΪ, A) form ZG-modules by the action of G, so
that φ* is a ZG-isomorphism and D is a £-anti map, i.e., g~1D=Dgf for all
g^G. Here we used the identity g[fiϊ]=[M] The following chain level version
of this identity is used in 5 and 6:

Lemma 2.4. For a splitting (A, A') of dM, there is a cycle 2 in Ac

n(M; A, Ά)
=lim{An(lfyl(An(]M-K)+An(A)+AjA'))\Kc:My compact} representing [M]<Ξ

Rc

n{M}dM) such thatg2=Zfor allg<=ΞG.
Proof. Let #=»Σfϊi rc, σ\ G An(M) represent an element of Hn(Ai(M)l(A^(A)

coresponding to \M\^Hc

n(M,dM) under the natural isomorphisms
^ ^ (cf. [Sp, 6.3.7]). Let σ y ,

j ^J, be the lifts of the singular n-simplex σ{ to M. For any compact KdM,
σitj are in An(M— K) except a finite number of j and we let ^ iΓ=Σ»-iW l Σye/σ"ί,i
eίAn{M)l(An(M-K)+An{A)+An{A')). Then we see that 2K is a cycle and
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{2K}K determines a cycle 2 in Δ£(]Sϊ;AyA') w i t h ^ ^ ^ for all g^G. Take
FcΛ? so that Fis an open ball and the projection AΪ-+M sends (F, X) to a pair
(F, x) homeomorphically. For any cycle # ί = Σ i ϊ i f l ί σ ί e Δ Λ ( M , M—#) with
{*£} = {*} in f f^M.M-*) , let ^ μ Σ t ^ ! Σ / e / σ ! , ; GΔn(M, it3Γ—Λ). Then ^
is a well-defined cycle with {2~} = {^} in Hn(ΛΪ,M-Z). Let s£ be in An(V,
V—x). Since FΪΊ £ Ϋ=0 for ^ Φ 1 , we see from the isomorphisms

Hn(M, M-η " #„( Ϋ, V-X) S #n(j7, V-x) ^ # n (M, M - x )

that %~ represents [M]χ so that 2 represents [M] (cf. [Sp, 6.3.3]). This completes
the proof.

3. Several properties of Λ-modules

Let AO=A®ZQ and for the field Zp of prime order p, AP=A(S)ZZP. For
any finitely generated Λ-module H> note that E2H is Z-torsional and EιH is Λ-
torsional, since EΉ®zQ=EΉ®AQ(A)=0. Let Hw={x^H\px=O}. H(p)

is a Λ^-module.

Lemma 3.1. Aj{my λx, •••, \) is a finite A-module for coprίme non-zero m,
^i> "*>\^A (r> 1) ^ίA m an integer.

Proof. Let nι—zizpip2'"ps be a prime decomposition. A/(pS) \ly •••, Xr)=^
ApJ(Xu ••-, λ r) is finite. Since

ps-i, λi, —, λr) - i Λ/(m, λi, •••, λ r) -> Λ/(ρ,, λx, —, λ r)

is exact, the induction on s shows that Λ/(m, λly •••, Xr) is finite, completing the
proof.

Corollary 3.2. 4̂ yinώφ generated A-module H has mH=(tm'—l)H=0
for some non-zero integers m, m! if and only if H is finite

Proof. The "if" part is easy. The "only if" part follows from Lemma
3 1, since H is a quotient of a direct sum of finite copies of Λ/(wi, tm'— 1). This
completes the proof.

Corollary 3.3. For any A-module H, DH is the smallest A-submodule of
H containing all finite A-submodules. Further, if H is finitely generated over Λ,
then DH is finite.

Proof. By Corollary 3.2 DH contains all finite Λ-submodules. For x
let λj, •••, λ r GΛ (r>2) be non-zero coprime elements with λ, # = 0 for all i. Since
Λo is PID, there are λί, •••, λ£^Λ and non-zero m&Z such that λ1λί + +
\r\

/

r^=m. Then mx=0 and x is in the image of a Λ-homomorphism Λ/(w, λ1? •••,
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Xr)-+H. Since my λ1? •••, λ r are coprime, we see from Lemma 3.1 that x is in a
finite Λ-submodule of Hy showing the first half. If H is finitely generated over
Λ, so is DH. Then DH is a quotient of a direct sum of a finite number of finite
Λ-modules and hence is finite. This completes the proof.

Lemma 3.4. For a finitely generated A-module Hy E2H is finite and there
are natural isomorphisms E2H^E2DH and DH^E2E2H.

Proof. Since E2bH is Z-torsional and finitely generated over Λ, there is an

integer mΦO with mE2bH=0. By the short exact sequence 0 -» bH -> bH->
bH/mbH->0, we have E2bH=mE2bH=0. So, E2H^EHH by the short exact
sequence 0 -> tH —• H-+ bH -> 0. Let Hp be the ̂ -component of tH. We show
that E2HP is finite by induction o n « > 0 with pnHp=0. The short exact sequence

0 -*pHp ->Hp-> HPlpHp -» 0 induces an exact sequence E\HPlpHp) -> E2HP

-» E2(pHp). HPlpHp is a finitely generated Λ^-module and splits into a free Λ -̂
module and a torsion (i.e., finite) Λ^-module Tp, so that E2(HplpHp)^E2Tp is
finite (by Corollary 3.2). By the inductive hypothesis, E2(pHp) is finite. Hence
E2Hp is finite. Since tH is finitely generated over Λ, Hp=0 except a finite
number of p. Therefore, EΉ^E2tH^®pEΉp is finite. Next, let H'=tH\ΏH.

tm' — 1
Take an integer m'ΦO with (tm'-l)EΉ'=0. Since 0->/Γ > Hf->H'l(tm'-l)
i/'-^0 is exact, Γ ' - l : E2Hf->EΉ' is onto, so that EΉ'=0 and E2tH^E2DH.
Thus, EΉ^EHH^E2DH. Since Zλff is finite and E^H^Hom^DH, Q(Λ)/Λ)
=0, we see from [L, (3.6)] that DH^E2E2DH. Using EΉ^E2DH, we complete
the proof.

Lemma 3.5. ίor a finitely generated A-module H, there are a natural short
exact sequence 0 -^ EιBH -* EλH-> E\TH/DH) -+ 0 a/fc/ /zαtara/ isomorphisms

Ή and

Proof. By Lemma 3.4, E2BH=0. The short exact sequence 0-
BH-> 0 induces an exact sequence (5) 0 -* EιBH^ EλH-+ EιTH-> 0. Since

DH=ΰ, E\THIDH)^EιTH. Combining it with (S), we obtain a
desired sequence. Directly, DElTH^DHomA{TH, Q(Λ)/Λ) = 0. By (5),
DEιBH^DEιH. For a free Λ-module ί1 of finite rank containing Bi ϊ (cf.
Cartan/Eilenberg [C/E, p. 131]), we have EιBH^E\FjBH). By Lemma 3.4,
EιBH is finite and E1BH=DE1BH^DEΉ. Then EιEιTH^EιEιH by (5).
Since E2(TH/DH)=0 by Lemma 3.4, THjDH has the projective dimensional
by [L, (3.5)]. By (L, (3.6)], we have THIDH^EιE\THjDH). Since E\TH/DH)

y the proof is completed.

Lemma 3.6. For a finitely generated K-module H, E°H is A-free and there
is a natural exact sequence O
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Proof. Since E°BH=E°H, we may assume that H=BH. Then H has the
protective dimension < 1 , for there is a Λ-free module F containing H and F/H
has the protective dimension <2. A Λ-projective (i.e., Λ-free by [Se]) resolution
0->F 1-^F°-»H-^0 of H with Fi of finite rank induces an exact sequence (S*)
0->E°H-+E0F0->E°F1-+EΉ-*0. Since EιH has the projective dimension < 2
and E0F{ are Λ-free, E°H is Λ-projective that is Λ-free by [Se]. By Lemma 3.5,
EιEΉ=Q. Then (S*) induces an exact sequence Q->E0E»Fι->E0EΨ0->EQE°H
-+ E2EιH-> 0. Using F'^EΉΨ' and the natural injection H-> E°EΉ, we obtain
a natural short exact sequence 0->H->E°E°H->E2E1H->Q. This completes the
proof.

The following is obtained from Lemmas 3.4, 3.5 and 3.6:

Corollary 3.7. A finitely generated A-module H is A-free if and only if

Corollary 3.8. The following conditions on a finitely generated A-module H
are equivalent:

(1) EΉ=0,
(2) DH=0,
(3) Wp) is AP'free for all prime p,
(4) H has the projective dimension < 1.

Proof. Take a short exact sequence 0->Hr-+F->H->0 with Fy Λ-free of
finite rank. Assuming (1), EιH'^E2H=ΰ. By Lemma 3.6, H'^E°EΉ' is Λ-
free, showing (1) =#> (4). The others are trivial or follow from Lemma 3.4. This
completes the proof.

Corollary 3.8 generalizes [L, (3.5)] and implies that a self-reciprocal Λ-module
in [Ka2] has the Λ-projective dimension < 1 . The following observation is
originally due to Kervaire [Ke] (when X=t— 1):

Corollary 3.9. Let λGΛ be no unit in Ap for all prime p. If a finitely ge-
nerated A-module H has \H=H, then λ: H^H, H= TH and tH is finite.

Proof. The Noetherian property gives X.H^H (cf. Shinohara/Sumners
[S/S]). E°H is Λ-free by Lemma 3.6 and λ: E°H^E°H, meaning that E°H=
0, i.e., H=TH. If tH/DH^O, then there is a prime p with (tH/DHyp)Φθ.
(tHjDH)W is A-free by Corollary 3.8 and λ: {tHIDH)^^(tHIDH)(p\ meaning
that (tHIDH)(p)=0, a contradiction. Hence tH=DH, which is finite by Corollary
3.3. This completes the proof.

4. Proof of the Zeroth Duality Theorem

For a Λ-projective chain complex C with H*(C) finitely generated over Λ,
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we see from UCES that TH*(C;Λ)=K*(C;A) and h: H*(C; Λ) -* E°H*(C)
induces a monomorphism BH*(C; A) -» E°H*(C), also denoted by A. We now
return to 0 where M is a compact oriented w-manifold and (AyA

f) is a splitting of
3M and (M; ̂ ί, ^f') is an infinite cyclic covering of (M; ̂ 4, ̂ 4'), associated with
y^H\M), We denote by £M the augmentation map H0(M; G)-*G for any
(untwisted) coefficient group G.

For integers p, q with p-{-q=ny the Z-intersection pairing

Int: HP{M, A) X /ί,(M, J ' ) -> Z

is given by the identity ϊnt(x,y)=SM((u {Jv)ft [M])=SM(U Π y) for x^Hp(M, A),
y<ΞΞHq(M,A'), ueΞHΐ(MyΆ), v^Hp

c(MyA) with *=*/Π [M],y=v Π [it?] (cf. [Ka3,
Appendix A]). Then the Λ-intersection pairing

Tnt: HP(M, A) X Hq(M, A')->A

is given by the identity lnt(x,y)=ΎΣiiZoo Int(#, fy)^*. By Λ-sesquilinearity of
Int, Int induces a pairing

ϊnt*: BHP(M, A) X BHq(M, A')^A.

Let β be the composite ί-anti Λ-homomorphism

HP(RΪ, A{LHl{M, A') ί &Hjβt A'),

where D denotes the Reidemeister duality in 2.

Lemma 4.1. For x^Hp(M, A) and y^Hq{My A'), we have β(x) (y)=ϊnt
(x,y).

Proof. For ux= {fx} £ΞH9

C(M, A') with x=ux Π [M] and y= \cy}, β(x) (y)=
Φ(fχ) fe)=Σtί-oo fx{ϊcy)Γ'=Σ3ιl-JBtiμ, Π ty)r'=ϊnt(*,3;), as desired.

4.2 Proof of the Zeroth Duality Theorem. Let βB be the composite ί-anti
Λ-monomorphism

D~ι h
BHP(M} A) ^ BH9

A(M, A') -+ E°Hg(M, Ά) = E°BHq(M, A')

induced from β. By UCES and Lemma 3.4, the cokernel of βB is a finite Λ-
module. By Lemma 3.5, βB induces a ί-anti Λ-isomorphism β%: E°E°BHq(M,A')
^E°BHP(M,A) and hence a ί-anti Λ-isomorphism βt*: E°EoBH0[y A)^
E0E°E°BHq(M,Ά). Regard BHp(My A)czE°E°BHp(My A) and BHq{MfA')cz
E°E°BHq(M,Af) in a natural way. We can see from Lemmas 3.4, 3.5 and 3.6 that
/3f* I BHP(M, A)=βB under the identification E°E°EQBHq(M, A)=E°BHq(Ai9 A).
We define a pairing
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S: E°E°HP(M, A) x E°E°Hq(My A') = E°E°BHP{M, A) X E°E°BHq(M, Ά) -* Λ

by S(xyy)=β**(x) (y). By Lemma 4.1, 5 is an extension of the pairing Intβ :
BHp{My A)xBHq(My A')->A. From construction, (2) and (4) are satisfied. To
see (1), let/: (Mx\ Alf AΊ)->(M2; A2, A2) be a proper oriented homotopy equi-
valence with /*(7 2)=7i. The lift / : (Mΰ Ah A[) -» (M2; ̂ ί2, Aζ) induces Λ-
isomorphisms /* : (E°E°BHp(Mly Λ), BHp(Mly AβcxiEWBHp(tt2, A2)y BHp{M2y

A2)) and /* : (E°E°BHq(Mly A[)y BHq(MlyAί))^(E0E°BHq(M2yAQy BHq{M2yA'2)).
For x<=ΞE0E°BHp(Mly A,), y^E°E°BHq(MlyA{)y there are non-zero integers m3m'
such that mx=x'<=BHp(MlyA^y m'y=y' (=BHq(MlyA[)y by Lemmas 3.4 and 3.6.
Since /*[Mi]=[M2]> it is easily proved that ϊ n t ^ / * ^ ' ) , f*(y')=ϊntB(x',y').
Then tnrn'S(U(x)y f*(y)) = S(f*(x'), f*(y'))=IntB{f*(x'), U(yf))=ΊntB(xf, y') =

S(Λr/

>y/)=»»»/'S(^y) T h a t i s

? S(f*(x)J*(y))=S(x>y)> showing (1). To see
(3), let xeΞE°E°BHp(MyA) and y^E°E°BHq(My A'). For x'=mx£ΞBHp(My

A) and yt=m!y^BHq{MyΆ) with mm'ΦO, we have mm'S(xyy)=S(x',y')=
J g), i.e., 5(Λ,y)=j

S{pq)S(y, x). This completes the proof.

5. Proof of the First Duality Theorem

For a Λ-module //, we have a Λ-exact sequence HomΔ(i/, Q(Λ))

-> HomΛ(/f, Q(Λ)/Λ) -^ E1/? -> 0 induced from the short exact sequence 0 -> Λ

-> Q(A) -> Q(Λ)/Λ -> 0, by which we identify £ 1 i ϊ with the cokernel of v§. Let
C be a protective Λ-chain complex with H*(C) finitely generated over Λ. For
u= {fu} G THq+1(C; Λ) we have a non-zero λGΛ and a cochain/ί: Cq->A such
that λ/ l l =δ(/ ί ) . Letting pr(«) (c)=/ί(c)/λeQ(A)/Λ for c^Zq{C), we obtain a
well-defined Λ-homomorphism p ' : THq+\C'y Λ) -^ EιHq(C).

Lemma 5.1. .For ίfe mop p: TH9+1(C;A) -> EιHq{C) appearing in UCES,
there is a natural A-isomorphism ρ"\ EιHq(C)^EιHq(C) such that p=p"p'.

Proof. Recall that p is the composite

TH'+\C; A) = K*+\C\ Λ) ~ Coker i\ ^ Coker iq ~ EιHq{C) .

For u= ίfu} e THq+\C; Λ), we have /u(Z g + 1(C))=0 and hence a map /f: fiβ(C)
9-1 f

^ Cq+1IZq+1(C) -^ A. Then note that px{u)={f*} <ΞCoker if. The map a5

is an obvious surjection. We shall construct a natural Λ-isomorphism ρ2: Coker
iq^EιHq{C). For fB <Ξ 59(C) we have a non-zero λ E Λ a n d f e Z*(C) such that
fz\Bq(C)=Xf B[Note that Coker iq^EΉq{C) is Λ-torsional]. Letting p^/*) (c)
=/z(c)/λGQ(Λ)/Λ foi c^Zq(C)y we obtain a well-defined Λ-homomorphism p 2 :
Coker iq -> EιHq{C). The naturality of p2 is clear. Given a Λ-homomorphism
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/: Hq(C) -> Q(Λ)/Λ, we have a Λ-homomorphism / : Zq(C) -» Q(Λ) inducing /,
because Zq(C) is Λ-projective. Then f(Bq(C))(ZA and we can see that the cor-
respondence {f}EΞEιHq(C)-> {f\Bq(C)} (ΞCόker iq is the well-defined inverse
of p£. So, p2 is a natural Λ-isomorphism. The identity pk^Pi—p' is easily-
checked. Letting p//=p2ρ2~\ we obtain the identity p—pr/p'y completing the
proof.

5.2 Proof of the First Duality Theorem. By UCES and Lemma 5.1, p induces
a Λ-isomorphism THr

A

+1(M, Ά)jDHA

+1(MyΆ)^EΉr(]U[y A')jDEιHr{My A')y

also denoted by p'. By Lemma 3.5, the latter is identical with E\THr(My A')j
DHr(ΛΪy A')) = HomΔ( THr(My Ά)\DHr(βy Ά\ (?(Λ)/Λ) = Hom^E'E'H^M, A')y

Q(Λ)/Λ). By the Reidemeister duality, we have a ί-anti Λ-isomorphism D:
THr

A

+1(My A')IDHΆ+\M, iϊ')«THP{M, A)lDHp(β, A) = EιEΉp(βy A). Then
we define a pairing

L: EιEιHp{M, A) x EλEιHr(M, A')

= THP{M, A)IDHP(M, A) x THr(Mf A')jDHr{My A') -> Q(Λ)/Λ

by L(x,y)=S(p+l)ρ'D~\x) (y). By construction, (2) and (4) are satisfied. To
see (1), let/: {Mx\ Aly A[) -» (M2; A2, Af

2) be a proper oriented homotopy equi-
valence wiht f*(72)=Ύi- The lift / induces the following commutative diagram
(Use /*[MJ=[M 2] for the left square):

This means L(Je^(x)9f^{y))=L(x,y)9 showing (1). To see (3), let x={cx}
ϋϊ , iϊ), y = {c,} eΓί ί r (M,i ί ' ) , κ , = {/,} e THrS\M,Ά) and «,= {/,} e
M, A) with */, Π [iίϊ]=Λ? and ^ Π [M]=^. Then there are non-zero \χy

and tf eΔ^+ 1(M,iϊ) and c j G ^ M , ! ) such that 9cJ=λxί:x and 8< =
\yCy. Since X J f ι ι x =X^=0, there are ft e ΔJ(M, iϊ ') and /+ e Δ ? ^ , ^ϊ) such that

i ) = V . and δ(f;)=Xyfr By definition,

- / ί ( ^ ) r V ^ (mod Λ).

Assertion 5.3. L(Λ?,y)

From this, we have L(jc,3/)==£(pr+l)L(y, Λ;), showing (3), since L(y, x)=S(r-\-l)
Σ/ί-oo/ίίί^r'VX, (modΛ). This completes the proof of the First Duality
Theorem, except for the proof of Assertion 5.3.

5.4. Proof of Assertion 5.3. By Lemma 2.4, we have a ί-invariant cycle
Ac

n(M;A,A') representing [M]. The map Π^r Ak

c(M9A)-*An-k(M,Ά)y
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')-* An-k(M,A) or Π 2:Ak

c(M;AyΆ')->An_k(M) is defined to be the limit
(onK) of the cap product map Π V Ak(My (M-K) \jA)->An-k(M,Ά), Π ^ :
Ak(M, (M-K) U A') -*jV*(M, A) or n Zκ: Hom z(Λ4(i0)/(Δ*(M-iQ+Δ*(J)
+ΔΛ(^ί')), Z) -> Δn_Λ(M) with respect to the Alexander/Whitney diagonal ap-
proximation, respectively. Assume that/* Π %=cx and/,, Π Z=cr Let T: MxM
-^MxMbethemap changing the factors and T\ Δ#(M)®Δ#(M)->Δ#(M)(g)Δ#(M)
be the chain map defined by T'(cp®cq)=S(pq)cq®cp. Let r : Δ#(MxM)->Δ#(M)
®Δ|(M) be a natural chain equivalence so that τdt is the Alexander/Whitney
diagonal approximation, where d: M-^MxMis the diagonal map. Since there
is a natural chain homotopy Dx: TT%—T'r (cf. [Sp, 5.3.8]), we have δi*Z)f+
d*D\h=d*T*τ*—d*τ*Tf*> where each summand is regarded as a homomorphism
Δ*(M;Ά)®A*(MyA) -> A*(M;A,A') of degree 0. Using that τd% and rT^ are
the Alexander/Whitney diagonal approximations, we obtain Bd*D\(ttft®fy)

Jr

and Σ / I - - W # ! δ(ί*/ί ®/,) Π 2) r ' = λ, Σ ^-.^(^Df(fΛ®/,)
Hence

'/ί) Π «)r'/X, (mod Λ)=£((ί»+l)r)Σ. ί=»^((δ(Λ+) U ί'/ί) Π «)r'/λ,λ,=f ((/>+

r'/λ,.

The result follows.

REMARK 5.5. Assume that x,y are represented by cχy cy with \cx\ Π U ^ l
= 0 for all /. For example, if M is triangulable, then this assumption is satisfied.
Then the intersection numbers I n t ^ ί , ^ ) are defined (cf. [Ka3, Appendix A])
and we have

L{xyy) = Σ,;-ooInt(cί, t'cjr'β, .

Λ

+ ) r 7 X Λ λ , (cf. [Ka3, A.4]) = €(p+l)23/i

6. Proof of the Second Duality Theorem

Since the infinite cyclic covering M-+M is the pullback of the exponential
covering exp: R-+S1 by a map/v: M-+S1 representing 7, the lift fy: M->R of
fy is a proper map. Let Λfί" =fy\h + °°) and Mτ=fy\— 00, —/). Let H*(M,
S(±) U A)=hm H*(M, Λf f U -4). Taking the limit ί-» + 00 of the Mayer/Vietoris

sequence for (M Mf U A, Mj U -ίί), we obtain an exact sequence
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L e m m a 6.1. There is one and only one element μ of JBΓΛ_1(i(3
r, dl\3) such

that
(1) ( ί — 1 ) ^ = 0 ,
(2) The map p*: H^Sϊ, dM)->Hn_x(My dM) sends μ to γΠ [M], where p de-
notes the covering projection.
Further, μ is given by δc(ί) Π [M]for Sc: H\M)->Hι

c(M).

Proof. For uniqueness, let μ, μ have (1) and (2). By the Wang exact se-
^ ^ t-\ _ _ p*

quence Hn_ι(My dM) -* Hn_x(M, dM) -» Hn^(My dM) (cf. [Mi2])y we have μ—
μ'={t-l)x for an x^Hn.x{My dM). By (1), (t-l)2x=0. By the Reidemeister

duality and UCES, THn_x(My dM)^THlψϊ)^EΉ0(M) and the last is easily

seen to be a direct sum of modules of type Λ/(^—IK^Z^O) (cf. [Ka^ Lemma 1]).

Hence (t—l)2x=0 means (t—l)x=0 and μ=μ'. Next, let μ"=δ c ( l) Π [iίϊ].

Since tl = l and t[M]=[AΪ]y μtr has (1). To see that it has (2), first assume that

fy has a leaf V in M (cf. [Ka3]). Regard F c M and thicken VxIdAΪ so that

f-\0)=V and fy1I=VxI and / γ | F x J: VxI->I is the projection, where / =

[0, f] for a small £>0. The following commutative diagram is obtained (1=1—

dl):

H\I, di) ̂ ^i}*H\vx i, vx dη n-^/ ] i/ s. 1(Fx /, (dV) x /)

H\(R) - ^ >

Since Be(l)=ff[R\ (cf. [Ka1? p. 98]), we see that ^=[V]^Hn^(l[iy dft). So,
pt{μ") = \y\^Hn-ι(M, dM), which equals γΠ [M]. Hence μ" has (2). If <y has
no leaf, then we take MP=Mx CP2 and γ P = γ X1 ^H\MP). Then by [i£/S] γ P

has a leaf. By the identity (δc(l) X1) Π ([M] X [OP2])=(Sc(ί) Π [Λ?]) X [CP2], //'
has also (2). This completes the proof.

We call μ of Lemma 6.1 the fundamental class of the covering M'-» M. By
Lemmas 3.4 and 3.5, the epimorphism p: THγ\M, A) -> EιHq(My A) in UCES
induces an epimorphism DHγι(M, A) -> EιBHq(My A)y also denoted by p. We
define a ί-anti epimorphism

θ: DHP(M, A) -> EιBHs+ι(My Ά)

β-1 P

by the composite DHp(My A) β DHs

A

+2(Λϊy Ά)^>EιBHs+λ(My Ά). Clearly, any
proper oriented homotopy equivalence/: (Mx; -4X> A[)->(M2\ A2y A2) with/*(72)
=rγι induces the following commutative square:
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DHjβlt A,) i EιBHs+1(^lt Λl)

θ

DHp(Λί2, A2) -* EλBHs+ι(M2, Aί).
Let DHP{M, A)e be the kernel of 0. By identifying DHP(AΪ, A) with E2EΉP

(ΛΪ, A) in a natural way, we also consider θ as

θ: E2EΉP(M, A) -+ EλBHs+1{M, A').

In this case, the kernel of θ is denoted by E2EΉp(JΪΪ,A)β. Note that DHs(Λί,A'y,
E2EΉS(AΪ, AJ are the kernels of θ: DHS(M, A') -> EιBHp+1{M, A), θ: E2EΉS

(&, A') -* E'BH^M, A), respectively. Let T: eιHp{M, A) -* H*+\M, A) be
the monomorphism p" 1 in Corollary 1.2 with Γ = F = Z . Then the following
square is commutative:

eιHp{M, A) ^ W+Xfiϊ, A)

surjection f , \ 8Q/Z

Homz(Hp(Xϊ, A), Q\Z) S H\M, A; Q\Z),

where SQ/Z denotes the Bockstein coboundary map. Let τHp+1(lH, A)=τe1Hp

{M, A)=8Q/zH^lH, A; QjZ). By UCES with T=F=Z, u= {/} eH"+\Aί, A) is
in τHp+\B, A) iff/1 Zί+1Δ,(itf, A)=0. Let TfH^φί, A) be the Λ-submodule
of τHp+1(ΆΪ, A) consisting of all elements w= {/} such that f(c)=0 (mod d) for
{ca^DHt(M, A)\ c(ΞAp+1(lίϊ, A) and </(Φ0)eZ with dc=dc1. Regarding
e\Hp(AΪ, A)IDHP(M, A)e)(Ze1Hp(M, A) in a natural way, we can obtain from an
argument similar to [F, § 1] the following (whose proof is omitted):

Lemma 6.2. τ ^ + 1 ( i ί ? , A)=re\Rp{U, A)jDHp{M, A)*).

We consider the ί-anti homomorphism Π μ: τHp+\M, A)-*Hs(lΐϊ, A').

Lemma 6.3. τHp+\M, A) Π μczDHs{M, A')e.

Proof. By Lemma 6.1, τHp+\M, A)Γ\ μ=((τHp+\Λί, A) Uδ c (l))n[M]=
ScτHp+\liϊ, A) Π [M]. For {/} (ΞτHp+1(AΪ, A), there are /± e Δ ί H ( M , M* U A)
(te 1) such t h a t / = / + - / " in Δ ί + 1(M, J ) . Then δc{/} = {δ/+}. Since /1 Z ί + 1 Δ,
(i^, Jί)=0, it follows that / + = / ~ on Zp+1At(fil, A) and φ(f+) is well-defined on
it. Let / Λ = φ(/+) I Zp+1At(M, A) e£%+ 1Δ,(Λ?, iί). Noting that some multiple
λ/Δ is extendable to Δp+λ{M,A) (for EιBpΔtψί, A)^E2HP{M, A) is finite) and
φ(S/+)=δ/Δ, we see from Lemma5.1 that {φδf+}<=THp

A

+2(ltf,A) and p'{φSf+}

= 0 = p {φδ/+}. This means that τHp+1 (&, i)n/iCKer[Γ/f,(iίί, A')

THί+\M, A)?>
pletes the proof.
THί+\M, A)?>EΉp+ι{M, A)], which equals DHS(ΛΪ, A')' by UCES. This com-
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Lemma 6.4. Ker[n^: τHp+1(M, A)->Hs{My A
f)]dτθH

p+\My A).

Proof. Let u= {/} SΞτH^ψl, A) have u Π μ=0. Then Scu=^0 and there
are {/±} ^Hp+\liϊ, S(±) UA) with / = / + - / - in Δ*+1(M, J ) . Since / induces
the zero map Hp+ι(M, A)-+Z,f± induce the same map HP+1(M> A)->Z. Hence
φ(f+)\Zp+1As(M,A) is well-defined and defines an element fA(ΞE0Hp+1(My A).
Take an integer m>0 so that (tm—l)DHp(M,A)=0. By UCES and Lemma 3.4,
(l-tm)fA=hφ*if} for some if} £ΞHp+1(lMy A). Then we have f+-f+iM=fc

on Z,+1Δ#(M, A). Define fm9 f^Ap+\AΪy A) by Mc^Σkt^fp-c), /ί(*)=
Σ2-"o/*(ί*" <:) and fm=f+

m-U We have that δ(/^)=O=/SI A +̂1(M*f U i , J ) ,
taking ί so large that f represents an element of HP+1(M, Mf U Mr U A). More-
ovre, for xeZ,+1Δ#(M, A) J . W ^ Σ . ί ^ / V ^ ^ Σ ^ - ^ Γ ^ ^ - Γ ^ ^ ^ ) )
=0 and similarly, fl{x)=f+(x), so that/;(#)=f+{x)=f~(x). Let fo=f—fm and
/o±=/±-/S. Then fo=ft-fo and /f represent elements of ίί ί+1(M, M? IM)
for a large ι and /f|Z ί+1Δ#(M, Jί)=0. By construction, /m and f0 represent
elements um and u0 of rHp+\M, A), respectively. To prove that um, uo^τθH

p+1

(M, A), let ΛT= {cx} <=ΞDHβϊy A)\ CEΞAP+1(M} A) and J ( Φ 0 ) G Ξ Z such that 9c—
dcv Since tmDHp(ΛΪ, A)Θ=DHP(M, A)θ, we can find an element {ct} of fΓ^M?
U iί, A) of finite order sending to x under the natural map Hp(Mf U A, A) —>

^(iίϊ", iϊ). That is, there are h+£ΞAp+1(M, A), ^ ( Φ θ ) e Z and c+^Ap+1{Mf U
J:,^ί) such that cx—ct=dh+ and dc+=d1cΐ. Let c+=d1c-dd1h

+-dc+ G Δ ^ + ^ - I ) .
Then 9?+=0 in Δ ^ i ) and f^(c+)=d1ft(c)-ddin(h+)-df^(c+)=O. But,
/ί(έ:+) = 0, so that /J(c)^J/ί(A+) = 0(mod rf). Similarly, /5Γ(C)Ξ0 (mod <*).
Thus,/0(c) = 0 (mod J), meaning that uo<=τθH

p+1(M, A). To see that um^rθH
p+1

(My A), it suffices to show that fm(cQ)^Z for some Q-chains cQ^Ap+ι(M\ A, Q)
with dcQ—cly where fm is extended to a map AP+1(M, A)®Q->Q. We may take
cx so that q = / ί Π 2 for {/f} <=HS

C

+2(M, Ά) of finite order and ^ in Lemma 2.4.
Let /£ <Ξ As

c

+1(Mf A' Q) have δf'Q =fl We use the same φ for the Q-extension
of φ: AS

C

+1(ΛΪ,Ά)-+EOAS+1(M,Ά). Then φ(f'Q): AS+1(M,Ά)->AO induces a map
Φ(/Q): ^5+I(Λ?, iϊ')-*Λo/A. Since fe} tΞDHp(M, A)\ it follows from the defi-
nition of 0 that there is a Λ-homomorphίsm /Λ : Hs+1(&ϊ, Ά) ~> Λo inducing

. Note that the composite

is onto by UCES. Let {/̂ } ςΞHs

c+\My Ά\ Q) be a preimage of f'A'. Let /& =
/Q~/Q Then /c

0 induces the zero map HS+,(M, A')-^QiZ. Let cQ=S(ρ+l)
Λ f l l E V ^ i ; (?). Then 8cβ=e(p+l)e(f+l-n)δ/i&n2f = c1 (cf. [Sp, p.
253]). Regarding/^ as a cocycle ΔS+1(M, A')->Q\Z, we have in Q/Z

- o,
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forί*-/Π«eZ f + 1Δ l(i0Γ

>iϊ /). Thus, umζΞτeHp+1(liϊ,A) and u=um+uotΞτΘHp+1

(ΛΪ, A). This completes the proof.

Theorem 6.5. The maps eιHp{N[y A) -^ τHp+1(My Ay^Hs(My Ά) induce
isomorphisms

eιΌHp(βy A)θ L τHp+\My A)lτeHP+\β[, A)

Proof. Let τκH
p+1 be the kernel of Π μ. By Lemmas 6.2, 6.3 and 6.4, we

obtain the following diagram:

J££z DHS(AΪ, AJ
\ surjection

ly A)\e\Hp(My A)/DHp(My A)θ) ί τHp+1(M, A)lτθH
p+1(M, A)

II
eιDHp{M, A)9

Since eλΏHp(β, A)θ^DHp(My A)θ as abelian groups, it follows that | DHP(M, A)θ \
<\DHS(M,A')Θ\. Interchanging the roles of Hp{MyA) and HJlβ, Ά\ we
have I DHS(M, Aj \ = \ DHp{My A)θ \. This means that rκH

p+ι=reH
p+\My A)

and Π μ: rHp+\M, A)jτeH
p+\My A)^DHS(M, A')θ. This completes the proof.

6.6. Proof of the Second Duality Theorem. By Theorem 6.5, we define a
pairing

/: E2E2Hp(Λt, A)θ x E2E2HS(M, Aj = DHP(M, A)θ x DHS(M, AJ -^ Q\Z

by l{x,y)=e{s+\)fp) for fx^DHs(My Aγ=lίomz(DHs(M9 A')\ Q\Z) with
τfxΠμ=x^DHp(My A)θ and y(=DHs(My Ά)\ By construction, / has (2) and
(4). For any uxEΞHs(My Ά QjZ) and u,<ΞHp(My A; Q\Z) with SQ/Z(ux) Πμ=x
and $Q/z(uy) Π μ=y, we also have in Q\Z

K*> y) = S{S+ \)SM{{UX U SQ/Z(U,)) Πμ) = SM((SQ/Z(UX) U Uy) fΊ μ)

(cf. [F, Lemma 3.8]). We have l(xyy)=S(ps+l)l(y,x)y showing (3). (1) is

obvious, since μ is invariant under a proper oriented homotopy equivalence

/: Mλ->M2 with/*(γ2)=7i. This completes the proof.
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