

Title	Extended application of <i>Alcaligenes</i> lipid A as a vaccine adjuvant
Author(s)	刘, 子莱
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/101948
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Extended application of *Alcaligenes* lipid A as a vaccine adjuvant

アルカリゲネスリピド A のワクチンアジュvantとして
の応用展開

Liu Zilai

Laboratory of Vaccine Materials, Graduate School and School of Pharmaceutical Sciences, Osaka University

Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and
Laboratory of Gut Environmental System, National Institutes of Biomedical
Innovation, Health, and Nutrition (NIBIOHN)

1 **Abstract**

2 Research from ours and other laboratories previously identified *Alcaligenes* spp.
3 as a commensal bacterium that resides in lymphoid tissues, including Peyer's patches.
4 We found that *Alcaligenes*-derived lipopolysaccharide acted as a weak agonist of
5 Toll-like receptor 4 due to the unique structure of lipid A, which lies in the core of
6 lipopolysaccharide. This feature allowed the use of chemically synthesized
7 *Alcaligenes* lipid A as a safe synthetic vaccine adjuvant that induces Th17
8 polarization to enhance systemic IgG and respiratory IgA responses to T-cell-
9 dependent antigens (e.g., ovalbumin and pneumococcal surface protein A) without
10 excessive inflammation. Here, I conducted two investigations aimed at expanding the
11 adjuvant functionality of *Alcaligenes* lipid A.

12 The first investigation focused on its adjuvant effect on T-cell-independent
13 antigens, which has not been previously examined. For this purpose, I examined the
14 adjuvant activity of *Alcaligenes* lipid A on a *Haemophilus influenzae* B conjugate
15 vaccine that contains capsular polysaccharide polyribosyl ribitol phosphate (PRP), a
16 T-cell-independent antigen, conjugated with the T-cell-dependent tetanus toxoid
17 (TT) antigen (i.e., PRP-TT). When mice were subcutaneously immunized with PRP
18 alone or mixed with TT, *Alcaligenes* lipid A did not affect PRP-specific IgG
19 production. In contrast, PRP-specific serum IgG responses were enhanced when mice
20 were immunized with PRP-TT, but these responses were impaired in similarly
21 immunized T-cell-deficient nude mice. Furthermore, TT-specific—but not PRP-
22 specific—T-cell activation occurred in mice immunized with PRP-TT together with
23 *Alcaligenes* lipid A. In addition, coculture with *Alcaligenes* lipid A promoted
24 significant proliferation of and enhanced antibody production by B cells. Together,
25 these findings suggest that *Alcaligenes* lipid A exerts an adjuvant activity on thymus-
26 independent Hib polysaccharide antigen in the presence of a T-cell-dependent
27 conjugate carrier antigen.

28 Second purpose of my study is to verify the application of *Alcaligenes* lipid A as
29 a mucosal vaccine adjuvant. Mucosal vaccination is an ideal method to induce
30 protective immunity against various pathogens. However, antigens alone are
31 insufficient to elicit robust mucosal immune responses, necessitating the development
32 of effective adjuvants. In this study, I also evaluated the effectiveness of *Alcaligenes*-
33 derived lipid A as an adjuvant for sublingual immunization, a novel vaccination route
34 garnering significant attention. Comparing to nasal administration as we previously
35 examined, sublingual administration is able to not only induce immune responses in
36 respiratory tracts but also in intestinal tracts with fewer safety issues. When mice were
37 sublingually immunized with *Alcaligenes* lipid A and ovalbumin (OVA), a model
38 antigen, an enhanced production of OVA-specific IgA was detected in both the
39 respiratory and intestinal tracts, along with increased OVA-specific IgA and IgG

40 antibodies in serum. Additionally, sublingual immunization with cholera toxin B
41 subunit (CTB) and lipid A resulted in elevated levels of CTB-specific IgG and IgA
42 responses in the intestinal tract and systemic compartments, leading to the suppression
43 of diarrhea induced by oral challenge with cholera toxin. Furthermore, immunization
44 with pneumococcal surface protein A (PspA) plus *Alcaligenes* lipid A induced high
45 levels of PspA-specific Th17 responses, as well as IgA and IgG responses, in both the
46 respiratory tract and systemic compartments, providing protection against
47 *Streptococcus pneumoniae* infection. These findings suggest that *Alcaligenes*-derived
48 lipid A is a potent sublingual vaccine adjuvant with potential efficacy against both
49 respiratory and intestinal infectious diseases.

50 As a conclusion, *Alcaligenes* lipid A could enhance immune responses against
51 both T cell-dependent antigens and T cell-independent antigens and furtherly exert a
52 role as a suitable sublingual vaccine adjuvant to help protect infection pathogens.

53

54 **1. General Introduction**

55 Vaccines must use the host immune sequence of innate and adaptive phases for
56 effectively promote the induction of an antigen-specific defense especially during the
57 adaptive immune response (Messina et al., 2019). The activation of adaptive
58 immunity involves antigen-presenting cells (APCs), such as dendritic cells (DCs), a
59 key immune cell bridging the innate and adaptive phases of host immunity. For
60 example, DCs can recognize microbial components (e.g., lipopolysaccharide [LPS])
61 through pattern-recognition receptors such as Toll-like receptors (Lipscomb and
62 Masten, 2002), which induce the secretion of immune enhancing cytokines and
63 promote antigen processing and presentation for the initiation and enhancement of
64 antigen-specific immune responses (Lee and Iwasaki, 2007).

65 Adjuvants can enhance immune responses induced by vaccines due to the poor
66 immunogenicity of vaccine antigens themselves, especially for mucosal vaccines to
67 ensure that the vaccination induces protective immunity rather than immune
68 tolerance, which can prevent excessive and harmful immune responses (Lycke, 2012).
69 Various studies have verified that certain microbial components and metabolites can
70 influence host immunity, like toll-like receptors (TLRs) and LPS as mentioned before.
71 However, the vaccine adjuvants especially mucosal vaccine adjuvants are numbered,
72 such as monophosphoryl-lipid A (MPLA). The development of new effective and safe
73 adjuvants for mucosal vaccines are necessary.

74 We previously showed that the commensal bacterium *Alcaligenes* specifically
75 resides within Peyer's patches, a well characterized mucosa-associated lymphoid
76 tissue for the initiation of antigen-specific immune responses in the intestine (Obata et
77 al., 2010; Kunisawa and Kiyono, 2012). *Alcaligenes* organisms are taken up by
78 dendritic cells (DCs) and promote the production of antibody-enhancing cytokines,
79 including interleukin 6 (IL-6), thus leading to an elevated IgA antibody response in
80 the intestine (Obata et al., 2010; Sato et al., 2013). In addition, compared with non-
81 symbiotic *Escherichia coli*, symbiotic *Alcaligenes* have low inflammatory activity,
82 which is explained at least partly by the unique features of its LPS (Fung et al., 2016;
83 Shibata et al., 2018; Hosomi et al., 2020).

84 Several lines of evidence suggest that the structure of lipid A, which lies within
85 the core of the LPS molecule, is related to its activity as a TLR4 ligand (Chandler and
86 Ernst, 2017; Shimoyama et al., 2021). Compared with *E. coli*-derived lipid A,
87 *Alcaligenes*-derived lipid A has shorter acyl chains that are modified with several
88 functional groups, leading to appropriate activation of host immunity without
89 excessive inflammation (Shimoyama et al., 2021). These characteristics prompted us
90 to evaluate *Alcaligenes*-derived LPS and lipid A as a new and safe adjuvant candidate.
91 Indeed, we found that both purified *Alcaligenes* LPS and chemically synthesized lipid
92 A enhanced antibody production and Th17 responses to systemically or nasally
93 immunized antigens (i.e., ovalbumin and pneumococcal surface protein A [PspA], a
94 surface virulence factor of *Streptococcus pneumoniae*) (Wang et al., 2020; Yoshii et
95 al., 2020; Wang et al., 2021).

96 As a conclusion, the *Alcaligenes* lipid A is supposed to be one ideal adjuvant. In
97 this study, I, based on previous research, expended the examination of *Alcaligenes*
98 lipid A and provided more information to support the application of lipid A as a
99 vaccine adjuvant.

100

101 **2. Materials and Methods**

102 **Mice**

103 Because Hib vaccines are mainly used in infants, female BALB/c and nu/nu
104 BALB/c mice were obtained after finishing lactation (age, 4 weeks, CLEA Japan) and
105 kept for 1 week before experiments were initiated.

106 Female BALB/c mice (age, 8 weeks, CLEA Japan) were purchased and kept for
107 1 week before experiments were initiated. All animal experiments were conducted in
108 accordance with the Animal Care and Use Committee guidelines of the National
109 Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN) and the
110 Committee on the Ethics of Animal Experiments of NIBIOHN (approval nos. DSR04-
111 37R7 and DSR04-38R7).

112

113 **Preparation of *Alcaligenes* lipid A and PRP-tyramine**

114 *Alcaligenes* lipid A (PEPTIDE INSTITUTE inc; or chemically synthesized as
115 previously described (Shimoyama et al., 2021) was dissolved in dimethyl sulfoxide
116 (Nacalai Tesque), and stored at –30 °C.

117 For use as the coating antigen in enzyme-linked immunosorbent assays
118 (ELISAs), PRP (National Institute for Biological Standards and Control) was coupled
119 to tyramine as follows. Briefly, 5 mg of PRP was dissolved in 10 mL of 0.01 N NaOH
120 (Nacalai Tesque); 65 µL of acetonitrile (FUJIFILM) containing 65 mg of cyanogen
121 bromide (FUJIFILM) was then added to the NaOH solution. The pH of the solution
122 was maintained at 10.8 with 0.1 N NaOH and incubated at room temperature for 10
123 min. After PRP was activated, 1 mL of 0.5 M NaHCO₃ (Nacalai Tesque) containing
124 50 mg of tyramine hydrochloride (FUJIFILM) was added to the solution, and the pH
125 was adjusted to 8.5 with 0.1 N HCl (FUJIFILM). The solution was transferred into
126 dialysis bags (Sigma-Aldrich) and dialyzed against distilled water at 4 °C for 24 h
127 followed by phosphate-buffered saline (PBS) at 4 °C for 24 h (Kaplan et al., 1983;
128 Barra et al., 1988). The coupled PRP-tyramine was stored at –80 °C until use.

129

130 **Preparation of PspA protein and endotoxin removal**

131 The PspA gene was amplified by polymerase chain reaction (PCR) and cloned
132 into pET16b plasmid (Novagen), as previously described, to yield pET16b-PspA
133 plasmid (Suzuki et al., 2015). To obtain PspA recombinant proteins, the plasmids

were transformed into *E. coli* strain BL21 (DE3) (Takara). The expression of recombinant protein was induced by adding isopropyl- β -D-thiogalactopyranoside (Nacalai Tesque). The pellets were sonicated for a minute three times in buffer A (10 mM Tris-HCl [pH 8.0] (Nippon Gene), 400 mM NaCl (Nacalai Tesque), 5 mM MgCl₂ (Nacalai Tesque), 0.1 mM PMSF (Nacalai Tesque), 1 mM 2-mercaptoethanol (Nacalai Tesque), and 10 % glycerol (Nacalai Tesque)). After centrifugation of the mixture at 4 °C and 17,800 \times g for 15 min, the supernatants were filtered through a 0.45 μ m Millex-HV filter unit (Merck Millipore), and the recombinant protein was purified by using an NGC chromatography system (Bio-Rad, Hercules, California, USA) with a HisTrap HP columns (Cytiva). PspA was eluted with buffer A containing 100 to 500 mM imidazole (Nacalai Tesque). The eluted protein was loaded into a 30K centrifugal filter units (Merck Millipore) for concentration and exchange with PBS (Nacalai Tesque). After concentration, Triton X-114 (Nacalai Tesque) was added into the eluted protein to make a 1 % of concentration. After vortex, the protein was kept on ice for 5 min. Then, the protein was kept on 37 °C water bath for 5 min. Finally, after centrifugation at 25 °C and 3000 \times g for 3 min, the supernatant was collected. After repeating for 3 times, the concentration of purified protein was measured by using a BCA protein assay kit (Thermo Fisher) and the concentration of endotoxin was measured by using LAL Endotoxin Assay Kit, Chromogenic, ToxinSensor (Funakoshi). The purity of the eluted protein was confirmed in a NuPAGE electrophoresis system (Invitrogen) followed by staining with Coomassie brilliant blue (ATTO).

156

157 Immunization

158 Mice were anesthetized with isoflurane (FUJIFILM) and then subcutaneously
159 immunized with a total volume of 200 μ L PBS containing either 0.01 μ g of the Hib
160 capsular polysaccharide PRP, 0.01 μ g of PRP plus 0.024 μ g of tetanus toxoid (TT)
161 (EMD Millipore), Haemophilus B PRP–TT conjugate vaccine (ActHIB; Sanofi)
162 equivalent to 0.01 μ g of PRP or 1 μ g of PRP with or without 1 μ g of *Alcaligenes* lipid
163 A (Wang et al., 2020), or PBS only.

164 Mice were anesthetized with isoflurane and then sublingually immunized with a
165 total volume of 5 μ L PBS containing either 5 μ g of the OVA with or without 1 μ g of
166 *Alcaligenes* lipid A, or 5 μ g of the PspA with or without 1 μ g of *Alcaligenes* lipid A,
167 or 2 μ g of the Cholera toxin B subunit (CTB) (FUJIFILM) with or without 1 μ g of
168 *Alcaligenes* lipid A or PBS only. After immunization, mice were left forward bending
169 under anesthetized for 30 min. Mice received three immunizations at 1-week
170 intervals.

171 Mice received 3 immunizations at 1-week intervals. One week after the final
172 immunization, blood was harvested from the mice and kept on ice until centrifuged at
173 4 °C, 3000 \times g for 10 min. The serum was transferred into a fresh tube and stored at –
174 80 °C.

175

176 **Detection of antigen-specific antibodies by enzyme-linked immunosorbent assay
(ELISA)**

178 The production of PRP, TT, OVA, PspA and CT-specific antibodies was
179 detected by ELISA. Briefly, 96-well immunoplates (Thermo Fisher Scientific) were
180 coated with 100 μ L of 5 μ g/mL PRP-tyramine or 0.1 μ g/mL TT or 1 mg/mL of OVA
181 or 5 μ g/mL of CT or 5 μ g/mL of PspA in PBS at 4 °C overnight. After the coating
182 solution was removed, the plates were saturated with 170 μ L of 1 % bovine serum
183 albumin (BSA, Nacalai Tesque) dissolved in PBS for 2 h at room temperature. Plates
184 were then rinsed 3 times with 200 μ L of wash buffer (PBS containing 0.05 % Tween
185 20 [Nacalai Tesque]). Each well then received mouse serum (2-fold serially diluted in
186 PBS containing 0.05 % Tween 20 and 1 % BSA), and the plates were incubated at
187 room temperature for 2 h. The plates were then again washed 3 times with 200 μ L of wash
188 buffer; goat anti-mouse IgG, IgG1, IgG2a, IgG3, IgA antibody conjugated with
189 horseradish peroxidase (SouthernBiotech; diluted 1:4000 in PBS containing 1 % BSA
190 and 0.05 % Tween 20) was added to each well; and the plates were incubated at room
191 temperature for 1 h. The plates again were washed 3 times with 200 μ L of wash
192 buffer; tetramethylbenzidine peroxidase substrate (SeraCare Life Sciences) was added
193 to the plates; and the plates were incubated at room temperature for 2 min, after which
194 0.5 N HCl (Nacalai Tesque) was added to each well. The absorbance of samples at
195 450 nm (OD₄₅₀) was measured by using an iMark™ Microplate Absorbance Reader
196 (Bio-Rad Laboratories).

197 **T-cell assay**

198 At 1 week after the final immunization, the submandibular lymph nodes
199 (SMLNs) and spleens from immunized mice were harvested, homogenized, and then
200 filtered through 100- μ m cell strainers (Corning) separately. These single-cell
201 suspensions were treated with 1 mL of red blood cell lysis buffer (10 mM NaHCO₃
202 [Nacalai Tesque], 1 mM EDTA-2Na·2H₂O [Dojindo Molecular Technologies], 0.15
203 M NH₄Cl [Nacalai Tesque]) for 1 min at room temperature. After washing with
204 MACS Buffer (2 mM EDTA-2Na·2H₂O, 0.5 % BSA in PBS), CD4⁺ T cells were
205 purified by using a magnetic cell separation system and anti-mouse CD4 (L3T4)
206 magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) and MS columns
207 (Miltenyi Biotec). Purified CD4⁺ T cells were purified by using a magnetic cell
208 separation system and anti-mouse CD4 (L3T4) magnetic beads (Miltenyi Biotec) and
209 MS columns (Miltenyi Biotec). Purified CD4⁺ T cells were resuspended in RPMI
210 medium (Sigma) containing 10 % fetal bovine serum (Serana), 1 mM sodium
211 pyruvate solution (Nacalai Tesque), 1 % penicillin–streptomycin mixed solution
212 (Nacalai Tesque), and 0.1 % 2-mercaptoethanol (Gibco) and were seeded at a
213 concentration of 2×10^5 cells/well into 96-well plates (Nunc 96-Well, Nunclon Delta-
214 Treated, U-Shaped-Bottom Microplates, Thermo Fisher Scientific). Each well also
215 received splenic APCs (2×10^4 cells/well) from unimmunized mice that had been
216 treated with 30 Gy of ionizing radiation (MBR-1520R-4). The purified CD4⁺ T cells
217 mixed with APCs were incubated in the presence or absence of 1 mg/mL of OVA or 4

218 µg/mL of PspA at 37 °C in 5 % CO₂. After 4 days of incubation, live T cells were
219 counted by using CyQUANT™ Direct Cell Proliferation Assay Kits (Invitrogen).
220 Cytokines in the supernatant was measured by the BD™ Cytometric Bead Array
221 (CBA) Mouse Th1/Th2/Th17 Cytokine Kit (BD Biosciences) according to
222 manufacturing instructions and analyzed with a MACSQuant® Analyzer (Miltenyi
223 Biotec). Data analysis was performed using FlowJo 10.0.7 (Tree Star).
224

225 **Coculture of B cells with *Alcaligenes* lipid A and measurement of IgG production**

226 Spleens from naïve mice were homogenized and filtered through 100-µm cell
227 strainers. The suspensions were treated with 1 mL of red blood cell lysis buffer for 1
228 min at room temperature. After washing with MACS Buffer, splenic B220⁺ cells
229 were purified by using a magnetic cell separation system with anti-mouse CD45R
230 (B220) magnetic beads (Miltenyi Biotec) and LS Columns (Miltenyi Biotec). The B
231 cells were then seeded (10⁵ cells/well) into 96-well plates without or with 100 ng/mL
232 of *Alcaligenes* lipid A and incubated at 37 °C in 5 % CO₂. After the 5-day incubation,
233 live B cells were counted by using CyQUANT™ Direct Cell Proliferation Assay
234 Kits.

235 The total IgG contents in the B-cell culture supernatant were measured by using
236 antigen-specific ELISAs as mentioned before. Briefly, 96-well immunoplates were
237 coated with 100µL of 2 µg/mL goat anti-mouse Ig (SouthernBiotech). After the plates
238 were washed with wash buffer (3 × 200 µL/well), dilutions of culture supernatant and
239 2-fold serially diluted standard antibody (unconjugated mouse IgG, SouthernBiotech)
240 were added to wells, and plates were incubated at room temperature for 2 h. The
241 plates were washed again with wash buffer (3 × 200 µL/well); goat anti-mouse IgG
242 antibody conjugated with horseradish peroxidase (diluted 1 : 4000 in PBS containing
243 1 % BSA and 0.05 % Tween 20) was added to each well; and the plates were
244 incubated at room temperature for 1 h. The plates were washed again with wash
245 buffer (3 × 200 µL/well); tetramethylbenzidine peroxidase substrate was added to the
246 plates; and the plates were incubated at room temperature for 2 min, after which 0.5 N
247 HCl was added to each well. The absorbance of samples at 450 nm was measured by
248 using an iMark™ Microplate Absorbance Reader.
249

250 ***S. pneumoniae* culture and infection model**

251 *S. pneumoniae* Xen10 was cultured in brain-heart infusion broth (Becton) at
252 37 °C in 5 % CO₂ with no aeration overnight. *S. pneumoniae* was then collected by
253 centrifugating for 15 min at 4 °C, 3000 × g and then washed twice with PBS for 3 min
254 at 4 °C, 9100 × g. One week after the final immunization, mice were nasally
255 challenged with 1.5 × 10⁷ CFU (40 µL per mouse) of *S. pneumoniae* under anesthesia.
256 The survival and body weight of the infected mice were monitored for 14 days.
257

258 **CT challenging**

259 One week after the final immunization, mice were fasted for 8 h and orally
260 challenged with 50 µg CT in 200 µL. 16 h after CT challenging, the volume of water
261 in cecum was measured.

262 **Statistical analysis**

263 Data are presented as mean \pm 1 SD. Statistical analyses were performed by using
264 Student's t-test and one-way ANOVA with Tukey's multiple comparison test after
265 ROUT outlier identification (PRISM 10.1.2, GraphPad Software, San Diego, CA,
266 United States). Statistical significance was established at $p < 0.05$.

269 **3. Chemically synthesized *Alcaligenes* Lipid A as an adjuvant to augment
270 immune responses against *Haemophilus Influenzae* type B conjugate vaccine**

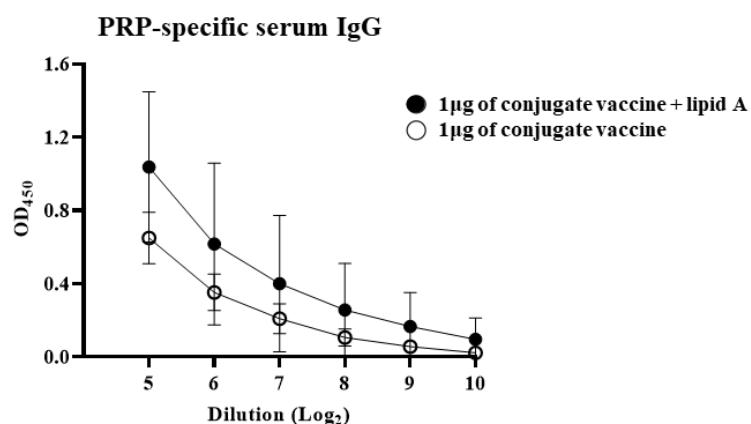
271 **3.1 Specific introduction**

272 Host immunity includes both innate and adaptive phases for the induction of
273 antigen-specific immune responses. In general, the innate phase, a beginning of
274 immune response reacts foreign antigen or pathogen in prompt manner using the
275 pattern-recognition system (e.g., TLRs), which leads to the activation of the adaptive
276 immune response recognizes and eliminates pathogens specifically (Netea et al.,
277 2019).

278 B-cell responses are divided into two types, which differ according to their need
279 for T-cell involvement. T-cell-independent (TI) antigens induce rapid but short-lived
280 production of IgM (Nutt et al., 2015). Because TI antigens, which include most
281 polysaccharides, cannot be presented to T cells through major histocompatibility
282 complex (MHC) class II (Mond et al., 1995), B-cell development and IgG class
283 switching cannot be induced without input from T cells. In contrast, during T-cell-
284 dependent (TD) B-cell responses, T cells are activated via their interaction with APCs
285 through receptor pairing to MHC molecules and various costimulatory molecules
286 (Mond et al., 1995).

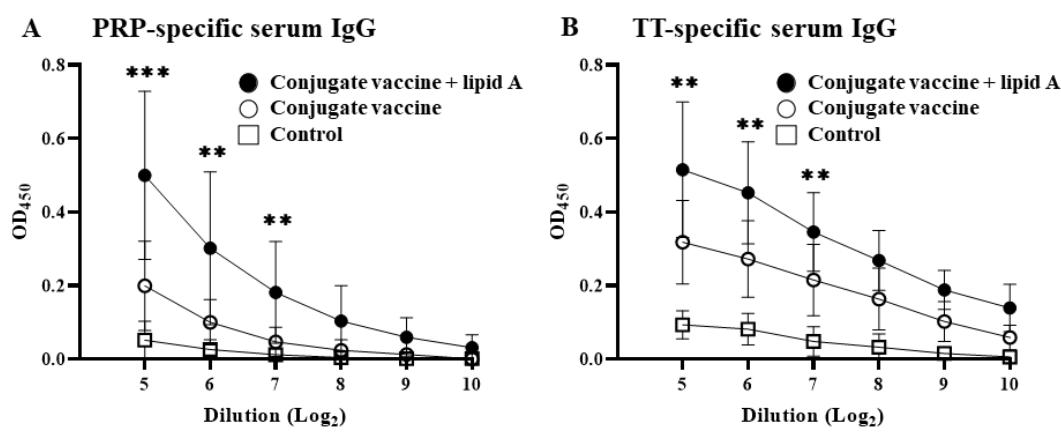
287 *Haemophilus influenzae* type B (Hib), a gram-negative pathogenic bacterium, is
288 a frequent cause of bacterial meningitis among children (Anderson et al., 1977). The
289 polyribosyl ribitol phosphate (PRP) of Hib has been used as the antigen for vaccines
290 against Hib. Because PRP is a TI antigen, commercially available vaccines (e.g.,
291 ActHib) include a modified PRP to which a TD carrier protein antigen (e.g., tetanus
292 toxoid) has been conjugated, to enhance the immunogenicity of PRP (Gutormsen et
293 al., 1999; Kelly et al., 2004).

294 Although our previous studies (Wang et al., 2020; Yoshii et al., 2020; Wang et
295 al., 2021) demonstrated that *Alcaligenes* lipid A is an effective adjuvant for TD
296 antigens such as ovalbumin and PspA, whether it also efficiently boosts the
297 antigenicity of TI antigens remained unclear. Here we aimed to extend the application
298 of *Alcaligenes* lipid A by determining its adjuvanticity on a *Haemophilus* B conjugate

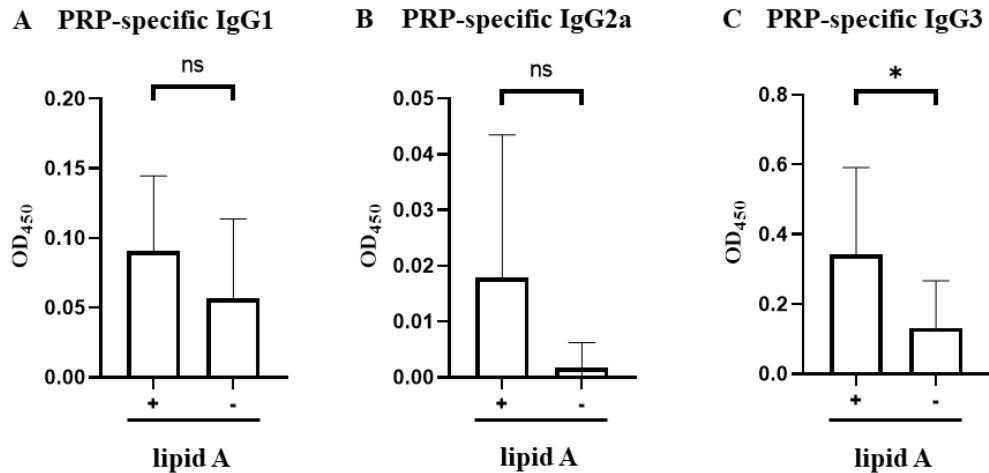

299 vaccine as an example TI antigen-based conjugate vaccine.

300

301 **3.2 Results**


302 ***Alcaligenes* lipid A enhances both PRP- and TT-specific IgG responses after**
303 **immunization with *Haemophilus* B conjugate vaccine**

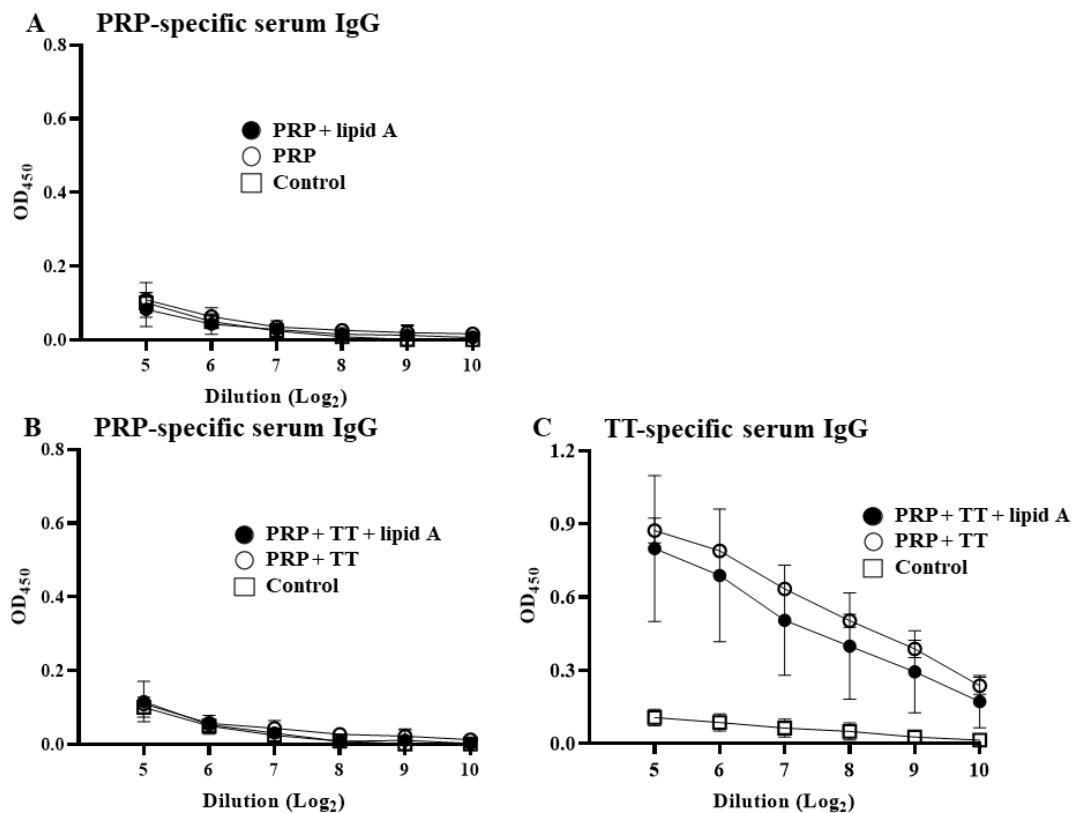
304 When PRP is conjugated to a protein, such as TT, the complex acts as a TD
305 antigen and thus induces PRP-specific IgG production (Guttermoen et al., 1999; Kelly
306 et al., 2004). Therefore, whether *Alcaligenes* lipid A enhances the immune response
307 against the conjugated PRP of the *Haemophilus* B conjugate vaccine was examined
308 first. Consistent with a previous study (Schneerson et al., 1980), PRP-specific IgG
309 production was induced in mice immunized with the *Haemophilus* B conjugate
310 vaccine compared with PBS (as a control). Specifically, mice immunized with
311 *Haemophilus* B conjugate vaccine in the presence of *Alcaligenes* lipid A had higher
312 levels of PRP-specific serum IgG than did mice immunized with *Haemophilus* B
313 conjugate vaccine alone at different antigen doses of 0.01 and 1 μ g of PRP (Figure 1,
314 2A). Among IgG subtypes, higher levels of IgG3 were detected in groups immunized
315 with *Alcaligenes* lipid A (Figure 3C). In addition, mice immunized with *Haemophilus*
316 B conjugate vaccine plus *Alcaligenes* lipid A had higher levels of TT-specific serum
317 IgG (Figure 2B). These results show that *Alcaligenes* lipid A can enhance the
318 production of IgG against PRP, a TI antigen, when PRP is conjugated to TT.


319

320 Figure 1. *Alcaligenes* lipid A enhanced PRP-specific IgG production in *Haemophilus*
 321 B conjugate vaccination at high dose antigen. Mice were immunized subcutaneously
 322 with *Haemophilus* B conjugate vaccine containing 1 μ g of PRP with or without 1 μ g
 323 of *Alcaligenes* lipid A. Serum was collected 1 week after the final immunization and
 324 PRP-specific IgG was measured by ELISA (n = 3/group). The data are presented as
 325 mean \pm 1 SD.

326

327 Figure 2. *Alcaligenes* lipid A enhanced antigen-specific IgG production in
 328 *Haemophilus* B conjugate vaccination. Mice were immunized subcutaneously with
 329 PBS (control group) or *Haemophilus* B conjugate vaccine containing 0.01 μ g of PRP
 330 with or without 1 μ g of *Alcaligenes* lipid A. Serum was collected 1 week after the
 331 final immunization, and the levels of (A) PRP-specific IgG and (B) TT-specific IgG
 332 were measured by ELISA (n = 11/group). The results shown are presented as mean \pm
 333 1 SD. Data are combined from two independent experiments, and statistical
 334 significance was evaluated by using one-way ANOVA (**, P < 0.01; ***, P < 0.001;
 335 the asterisks represent the significant difference between two experimental groups).

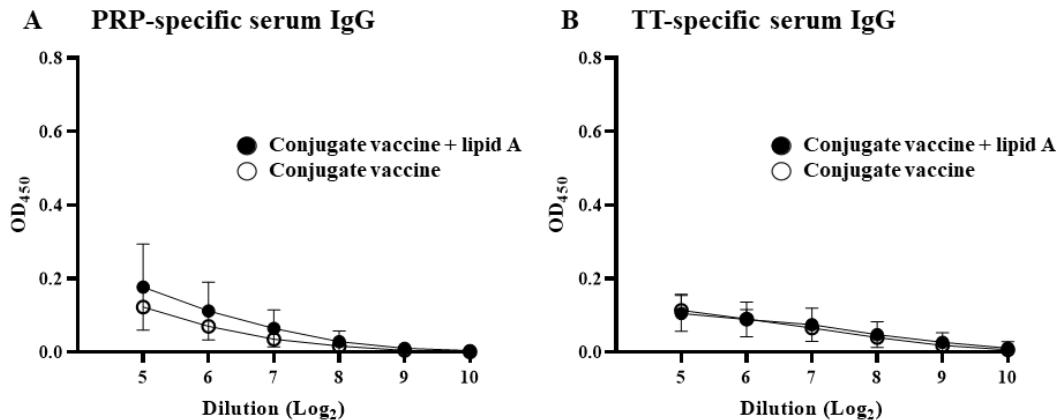

336

337 Figure 3. PRP-specific IgG3 is enhanced by *Alcaligenes* lipid A. Mice were
 338 immunized subcutaneously with *Haemophilus* B conjugate vaccine containing 0.01
 339 µg of PRP with or without 1 µg of *Alcaligenes* lipid A. The subtypes of PRP-specific
 340 IgG were detected with ELISA. Low levels of IgG1 (A) and few IgG2a (B) were
 341 detected while significant enhancement on IgG3 (C) was observed, suggesting that
 342 the *Alcaligenes* lipid A may not influence T cells. Data are combined from two
 343 independent experiments and are presented as mean \pm 1 SD. The statistical
 344 significance was evaluated by using Student's *t*-test ($n = 11$ /group; ns, not significant;
 345 *, $P < 0.05$).
 346

347 **Conjugation of PRP to the TT carrier protein is necessary for *Alcaligenes* lipid
 348 A-mediated enhancement of a PRP-specific IgG response**

349 To verify the importance of the conjugation of carbohydrate antigen PRP to
 350 protein carrier TT for the adjuvant activity of *Alcaligenes* lipid A in the enhanced
 351 PRP-specific IgG production, mice were next immunized with either PRP only or
 352 mixed (no physical coupling) with TT in the presence or absence with *Alcaligenes*
 353 lipid A. Neither immunization with PRP alone nor with PRP plus lipid A induced an
 354 IgG response (Figure 4A). Furthermore, no PRP-specific IgG response was detected
 355 in mice immunized with both antigens (PRP mixed with TT) even with *Alcaligenes*
 356 lipid A (Figure 4B); meanwhile, TT-specific IgG response was not enhanced (Figure
 357 4C). These findings indicate that only when PRP is conjugated with TT, *Alcaligenes*

358 lipid A could enhance IgG production against PRP.

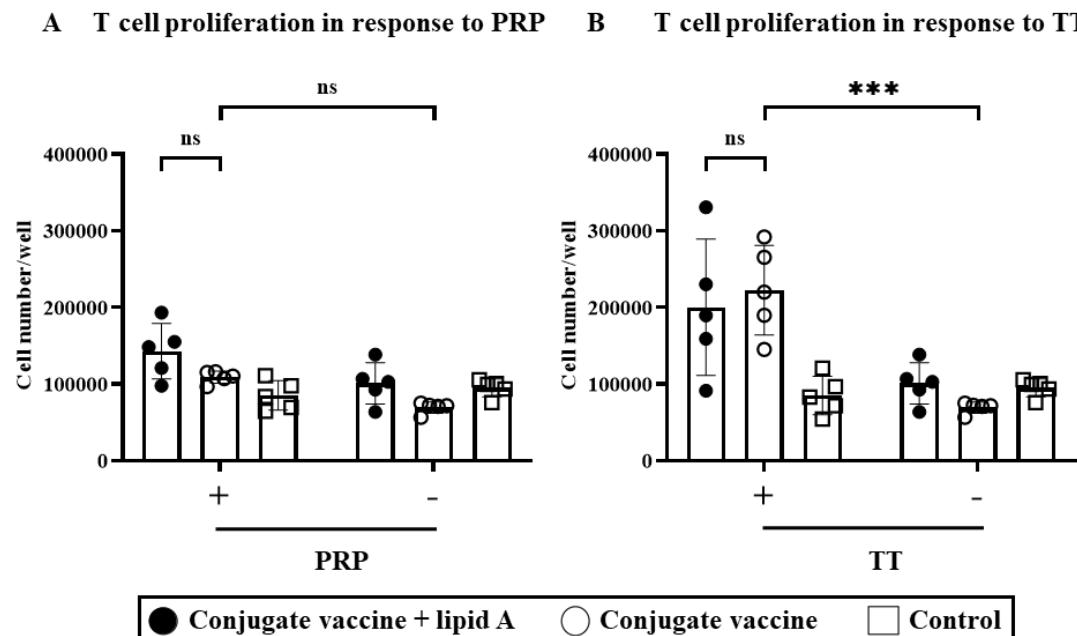

359

360 Figure 4. Conjugation of PRP to TT carrier protein is essential for enhancement of
361 PRP-specific IgG production by *Alcaligenes* lipid A. **(A)** Mice were immunized
362 subcutaneously with PBS (control group) or 0.01 µg of unconjugated PRP with or
363 without 1 µg of *Alcaligenes* lipid A. **(B)** Mice were immunized subcutaneously with
364 PBS (control group) or 0.01 µg of unconjugated PRP plus 0.024 µg of TT and with or
365 without 1 µg of *Alcaligenes* lipid A. Serum was collected 1 week after the final
366 immunization, and the level of PRP-specific IgG was measured by ELISA
367 (experimental group, n = 5; control group, n = 4). Data are representative of two
368 independent experiments and are presented as mean ± 1 SD.
369

370 T cells are required for the induction of a PRP-specific IgG response

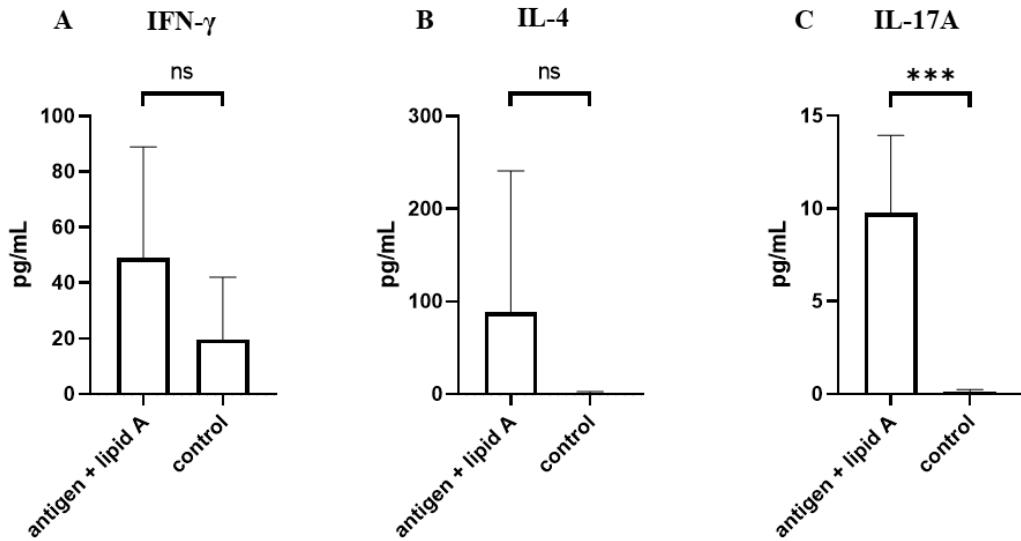
371 It has been found that conjugation of PRP with TT is necessary for the induction
372 and augmentation of PRP-specific IgG response by *Alcaligenes* lipid A. These
373 findings led me to examine the importance of T cells in *Alcaligenes* lipid A-mediated
374 enhancement of antigen-specific IgG production. Immunization of nude mice, which
375 have a deteriorated or absent thymus and thus lack T cells, with *Haemophilus* B
376 conjugate vaccine with or without *Alcaligenes* lipid A induced scant PRP-specific IgG
377 production (Figure 5A) and no TT-specific IgG response (Figure 5B). These results
378 show that *Haemophilus* B conjugate vaccine-induced IgG responses to either PRP or
379 TT require T cells and that *Alcaligenes* lipid A cannot augment these IgG responses in

380 the absence of T cells.


381

382 Figure 5. T cells are required for *Alcaligenes* lipid A–promoted PRP-specific IgG
383 production. T cell–deficient nude mice were immunized subcutaneously with
384 *Haemophilus* B conjugate vaccine with or without 1 μ g of *Alcaligenes* lipid A. Serum
385 was collected 1 week after the final immunization, and the levels of (A) PRP-specific
386 IgG and (B) TT-specific IgG were measured by ELISA. Data are representative of
387 two independent experiments and are presented as mean \pm 1 SD. (n = 4/group).
388

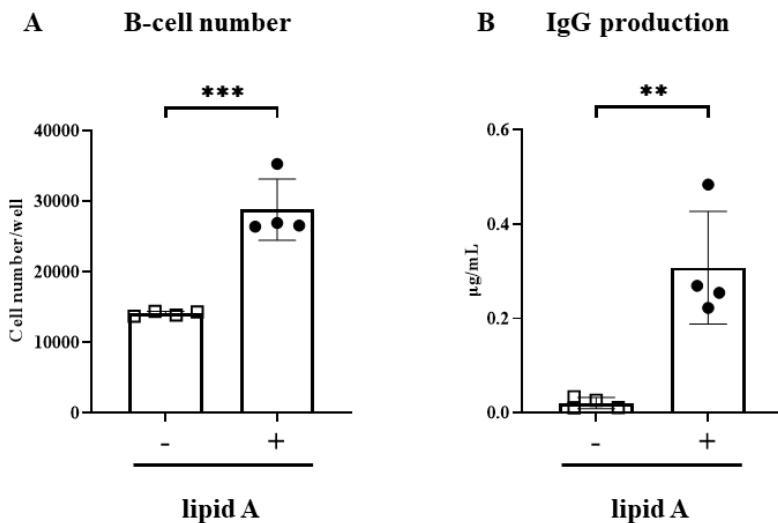
389 **T cells are induced by *Haemophilus* B conjugate vaccine but are not enhanced by
390 *Alcaligenes* Lipid A**


391 Since T cells are required for adjuvanticity of *Alcaligenes* lipid A to enhance
392 antigen-specific antibody production in response to the *Haemophilus* B conjugate
393 vaccine, next the effects of *Alcaligenes* lipid A on T cells were investigated. Splenic
394 CD4⁺ T cells were isolated from mice immunized with *Haemophilus* B conjugate
395 vaccine with or without *Alcaligenes* lipid A and measured their ability to proliferate
396 ex vivo upon stimulation with antigen (e.g., PRP and TT) in the presence of APCs.
397 Stimulation with TT (Figure 4B)—but not PRP (Figure 6A)—increased T-cell counts
398 in the immunized groups. However, including *Alcaligenes* lipid A at immunization
399 did not further increase the number of T cells (Figure 6B). Cytokine analysis revealed
400 that IL-17A was preferentially detected in the immunized groups (Figure 7C) while
401 there were no significant differences between IFN- γ (Figure 7A) and IL-4 (Figure

402 7B). These results show that although the *Haemophilus* B conjugate vaccine induces a
403 TT-specific T-cell response, concurrent immunization with *Alcaligenes* lipid A does
404 not enhance it.

405

406 Figure 6. *Alcaligenes* lipid A has no effect on the TT-specific T-cell response. Mice
407 were immunized subcutaneously with *Haemophilus* B conjugate vaccine with or
408 without 1 μ g of *Alcaligenes* lipid A; control mice were immunized with PBS. Splenic
409 CD4 $^{+}$ cells were collected 1 week after the final immunization and stimulated with (+)
410 or without (-) (A) 2.08 μ g/mL PRP or (B) 5 μ g/mL TT. After stimulation for 4 days,
411 live CD4 $^{+}$ cells were counted. Data are representative of two independent experiments
412 and are presented as mean \pm 1 SD. (n = 5/group), and statistical significance was
413 evaluated by using one-way ANOVA (ns, not significant; ***, P < 0.001).



414

415 Figure 7. IL-17 is induced by *Alcaligenes* lipid A. Mice were immunized
 416 subcutaneously with *Haemophilus* B conjugate vaccine with or without 1 μ g of
 417 *Alcaligenes* lipid A; control mice were immunized with PBS. Splenic CD4 $^{+}$ cells were
 418 collected 1 week after the final immunization and stimulated with 5 μ g/mL TT. After
 419 the stimulation, all the supernatant of T cells was collected to measure the IFN- γ (A),
 420 IL-4 (B), and IL-17 (C). Data are representative of two independent experiments and
 421 are presented as mean \pm 1 SD. The statistical significance was evaluated by using
 422 Student's *t*-test (n = 5/group; ns, not significant; ***, P < 0.001).
 423

424 ***Alcaligenes* lipid A activates B cells, leading to enhanced cell numbers and
 425 antibody production**

426 Given that *Alcaligenes* lipid A failed to enhance the T-cell response to the
 427 *Haemophilus* B conjugate vaccine, it is wondered whether direct stimulation of B
 428 cells might lead to upregulation of IgG secretion. Therefore, naïve splenic B220 $^{+}$ B
 429 cells were then cocultured with *Alcaligenes* lipid A. Treatment with *Alcaligenes* lipid
 430 A significantly increased the number of B cells (Figure 8A) and the amounts of IgG
 431 (Figure 8B) in culture supernatants. These results indicate that *Alcaligenes* lipid A
 432 directly promotes B-cell proliferation and antibody production.

433

434 Figure 8. *Alcaligenes* lipid A directly activates B cells. Splenic B220⁺ cells were
 435 isolated from naive mice. After 4 days of culture with (+) or without (-) *Alcaligenes*
 436 lipid A, (A) live B cells were counted, and the (B) IgG content in the culture
 437 supernatant was measured. Data are representative of two independent experiments
 438 and are presented as mean \pm 1 SD, and statistical significance was evaluated by using
 439 Student's *t*-test (n = 4/group; **, *P* < 0.01; ***, *P* < 0.001).

440 **3.3 Specific Discussion**

441 An unexpected finding in the current study was that *Alcaligenes* lipid A did not
 442 enhance the T cell-response to immunization (Figure 6), suggesting that the pathway
 443 through which *Alcaligenes* lipid A increases the IgG response differs from that
 444 through which it activates DCs and thus influences the T-cell response. One possible
 445 reason might be the way through which antigens are presented to T cells. For TD
 446 antigens, DCs act as the major APCs and present antigens to T cells for activation
 447 together with costimulatory molecules such as CD80 (Tai et al., 2018). Meanwhile,
 448 cytokines secreted by DCs also sense T cells, inducing different types of response
 449 (Terhune et al., 2013), which then activate B cells through cell-contact. In contrast, B
 450 cells recognize glycoconjugate antigens because of their carbohydrate portion and
 451 thus retrieve the entire antigen through B-cell receptors (Popi et al., 2016; Avci et al.,
 452 2019). After being processed, the peptide portion is presented to T cells via MHC II,
 453 thus activating T cells, which then secrete cytokines to activate B cells (Avci and
 454 Kasper, 2010; Avci et al., 2011). During the first type of response, DCs produce T-

455 cell-activating cytokines, including IL-12 (which induces Th1 differentiation), IL-4
456 (Th2 differentiation), and IL-6, IL-23, and TGF- β (Th17 differentiation) (Kimura and
457 Kishimoto, 2010; Terhune et al., 2013). In contrast, B cells, which might secrete only
458 negligible amounts of other cytokines, produce considerable IL-6 (Chousterman and
459 Swirski, 2015), suggesting that the T-cell response induced by B cells may differ from
460 that induced by DCs. Hence, perhaps the way in which T cells are activated by APCs
461 influences the subsequent T-cell response. Thus, *Alcaligenes* lipid A may
462 preferentially activate B cells directly to yield adjuvanticity for the *Haemophilus* B
463 conjugate vaccine.

464 TLR4 is expressed not only on APCs such as DCs (Vaure and Liu, 2014), which
465 has been proved to be a target for *Alcaligenes* lipid A (Shibata et al., 2018) during
466 responses induced by TD antigens such as PspA, but also on B cells (Vaure and Liu,
467 2014), thus suggesting at least two possible mechanisms through which *Alcaligenes*
468 lipid A exerts its effects on antigen-specific IgG production. Regarding the first
469 possibility of a direct effect of lipid A on B cells, coculture with *Alcaligenes* lipid A
470 increased B-cell numbers and their ability to secrete IgG (Fig 8). These effects likely
471 occurred through the TLR4 pathway. B-cell proliferation might involve the
472 phosphatidylinositol 3-kinase signaling pathway (Venkataraman et al., 1999), which
473 can be induced through TLR4 signaling (Dil and Marshall, 2009). In addition, due to
474 upregulation of MyD88, B cells in germinal centers (GCs) show increased reactivity
475 to TLR ligands, leading to enhanced proliferation and promotion of class-switching
476 recombination; MyD88 facilitates B-cell differentiation into plasma cells (Rawlings et
477 al., 2012). The second possible mechanism underlying the enhancement of IgG
478 production in response to *Alcaligenes* lipid A is through effects on DC-mediated
479 antigen-specific T-cell responses. Because PRP is a TI antigen (Guttermoen et al.,
480 1999; Kelly et al., 2004), the induction of a PRP-specific IgG response required both
481 T cells and conjugation of PRP with TT. Indeed, lacking the help from T cells,
482 polysaccharide-activated B cells undergo apoptosis and thus fail to mount a PRP-
483 specific IgG response (Rappuoli, 2018; Rappuoli et al., 2019; Cobb et al., 2004). The
484 conjugation with TT may not only induce T cell-response but also affect the antigen
485 uptake. It was reported that the TD portion of conjugate vaccine mediated their uptake
486 by DCs, which will trigger the formation of GCs (Rappuoli, 2018). Meanwhile, our
487 previous study demonstrated that *Alcaligenes* lipid A induced the formation of GCs
488 (Yoshii et al., 2020) in which B cells activated through TLRs show higher viability
489 (Rawlings et al., 2012). These findings collectively implicate a possibility that
490 *Alcaligenes* lipid A may enhance the antibody production against conjugated vaccine
491 directly through the contact to B cells and indirectly through the simultaneous
492 induction of GCs. However, apart from the conjugation, the TT itself might also
493 influence the response because, unexpectedly, when TT was co-administered with
494 PRP together with *Alcaligenes* lipid A, TT-specific response was not enhanced. The
495 mechanism has not been fully explained because the reaction of LPS-induced TT-
496 specific response is not very representative (Mohammadi et al., 2014).

497 In general, vaccination with TI antigens induces IgM-mediated immunity only,

498 and long-lasting IgG-mediated immunity has been difficult to achieve. Conjugation of
499 TD carrier proteins to some TI antigens can induce class-switching (Avci et al., 2011).
500 The resulting induction of IgG production has increased the efficacy of immune
501 responses against various TI antigens to provide sufficient protection and even
502 prevention in some cases (Cochi et al., 1985; Granoff et al., 1993). In the current
503 study, the adjuvant activity of the *Alcaligenes* lipid A on the TI antigen in the
504 *Haemophilus* B conjugate vaccine (i.e., PRP) presumably was mediated through the
505 direct activation of B cells instead of via enhancement of T-cell responses. In addition
506 to creating a conjugate vaccine that induces a sufficient T-cell response for the
507 induction of class-switching to IgG, enhancing the proliferation of B cells and their
508 IgG secretion will enhance immune responses to TI antigens. As a result, *Alcaligenes*
509 lipid A induced higher immune responses with a lower dose of antigens, reducing the
510 required amount of antigens which can reduce the side effect of antigens themselves
511 is one important characteristic of the adjuvant. Thus, our current findings support the
512 use of *Alcaligenes* lipid A as an adjuvant to augment and accelerate vaccine-induced
513 immune responses.

514 As a short summary, I showed that *Alcaligenes* lipid A successfully enhanced
515 immune responses against T-cell independent antigens. For the application of
516 *Alcaligenes* lipid A as an adjuvant in clinical in the future, I then focused on the effect
517 of *Alcaligenes* lipid A on the sublingual vaccines, one potential mucosal vaccine.

518

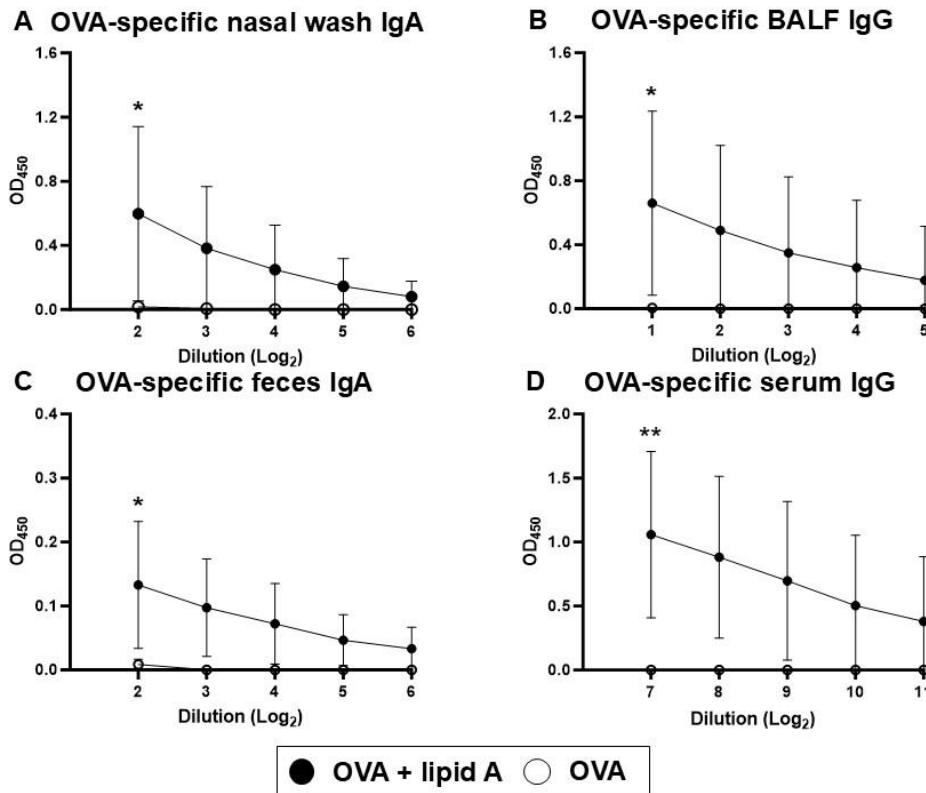
519 **4. Chemically synthesized *Alcaligenes* Lipid A as a sublingual adjuvant to
520 augment protective immune responses in the respiratory and gastrointestinal
521 tracts**

522 **4.1 Specific introduction**

523 Mucosal tissues are capable of preventing the colonization and invasion of
524 various microbes, due to their biological barriers (e.g., epithelium, mucus, and
525 antimicrobial peptide) (Holmgren and Cerkinsky, 2005). Several types of immune-
526 related cells such as M cells specialized antigen-uptake cells to transport antigens into
527 gut-associated lymphoid tissue, DCs, T cells, and B cells, contribute to the creation of
528 highly specialized mucosal immune systems (Holmgren and Cerkinsky, 2005;
529 Takahashi et al., 2009). Especially, antigen-specific secreted IgA antibodies on the
530 surface of the tissues play a predominant role in the humoral immune responses to
531 protect the host from pathogens (Holmgren and Cerkinsky, 2005; Takahashi et al.,
532 2009; Kunisawa et al., 2008). Mucosal vaccines are capable of inducing antigen-
533 specific IgA antibody production, making them potentially more suitable for
534 combating mucosa-related infectious diseases compared to the injection-type vaccines
535 which primarily induce systemic immune responses, such as IgG antibody production
536 in the blood.

537 Sublingual administration is recognized as an advantageous method for drug

538 delivery. Drugs administered sublingually can easily and directly enter the systemic
539 circulation through various blood vessels located beneath the thin sublingual
540 epithelium, bypassing the enterohepatic first-pass effect. This results in rapid and
541 highly efficient absorption comparing to traditional oral delivery systems (Hua, 2019).
542 Additionally, a network of lymphatic vessels under the sublingual epithelium
543 facilitates the induction of immune responses in the sublingual mucosa. It has been
544 reported that APCs, such as DCs in the sublingual mucosa, uptake antigens and
545 migrate to regional lymph nodes before disseminating to distant lymph nodes, thereby
546 inducing humoral responses at distant mucosal sites (Kraan et al., 2014; Paris et al.,
547 2021). Considering the limitations of mucosal vaccines like oral vaccines which
548 mainly induce a strong immune response in the intestinal tract, sublingual vaccines
549 are potentially to be a better type of mucosal vaccine.

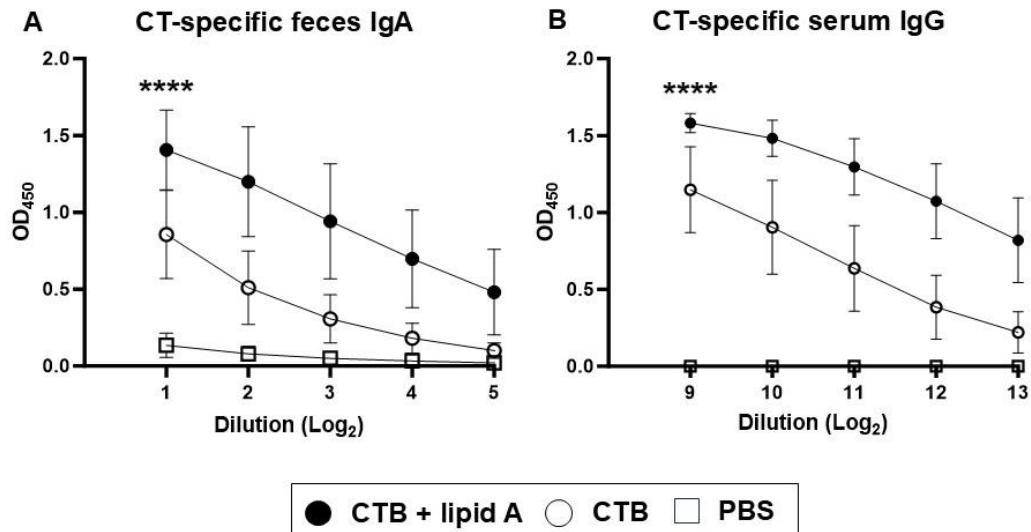

550 Focusing on the application of *Alcaligenes* lipid A, I also demonstrate that
551 *Alcaligenes* lipid A effectively induces antigen-specific IgA responses in both the
552 respiratory (PspA-specific) and intestinal (CT-specific) tracts, providing protection
553 against *S. pneumoniae* infection and cholera toxin-induced diarrhea.

554

555 **4.2 Results**

556 **Sublingual administration of OVA together with *Alcaligenes* lipid A enhanced 557 antigen-specific immune responses at the respiratory and gastrointestinal tracts 558 together with systemic compartments**

559 In order to examine whether *Alcaligenes* lipid A can enhance immune responses
560 in both respiratory and intestinal tracts, I co-administered mice sublingually with
561 *Alcaligenes* lipid A and ovalbumin (OVA), a model antigen to analyze the humoral
562 immune responses. In respiratory tract, OVA-specific antibody responses-evidenced
563 by elevated by IgA levels in nasal wash fluids (Figure 9A) and IgG in
564 bronchoalveolar lavage fluids (BALF) (Figure 9B) were enhanced in mice
565 sublingually immunized with OVA together with *Alcaligenes* lipid A, compared to
566 OVA alone. Notably, despite individual variations, a trend towards increased OVA-
567 specific IgA in the BALF was also observed (data not shown). Meanwhile, the
568 enhanced OVA-specific fecal IgA responses highlighted the effect of *Alcaligenes*
569 lipid A on intestinal immunity (Figure 9C). Moreover, OVA-specific IgG in serum
570 were enhanced in mice sublingually immunized with OVA alongside *Alcaligenes*
571 lipid A (Figure 9D). Collectively, these findings demonstrated that sublingual
572 immunization using *Alcaligenes* lipid A as an adjuvant robustly enhances antigen-
573 specific antibody production not only in the respiratory and intestinal tracts but also
574 systemically.


575

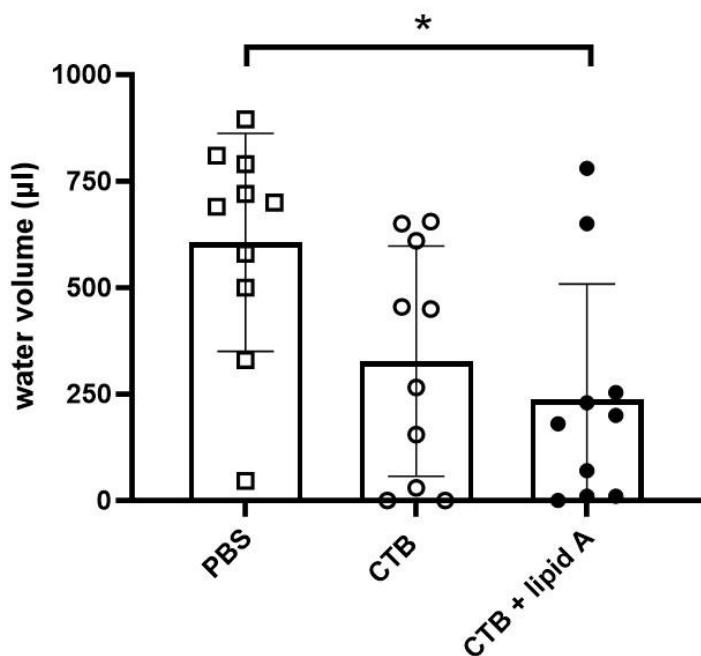
576 Figure 9. Sublingual administration of *Alcaligenes* lipid A enhanced the production of
 577 OVA-specific antibodies both in the mucosal and systemic compartments. Mice were
 578 immunized sublingually with OVA with or without *Alcaligenes* lipid A. Nasal wash,
 579 BALF, feces, serum were collected 1 week after the final immunization, and the
 580 levels of (A) OVA-specific nasal wash IgA (n = 6/group) and (B) OVA-specific
 581 BALF IgG (n = 6/group) and (C) OVA-specific feces IgA (n = 6/group) and (D)
 582 OVA-specific serum IgG (experimental group, n = 6/group; control group, n =
 583 5/group). were measured by ELISA The results shown are presented as mean \pm 1 SD.
 584 Data are a combination of two independent experiments, and statistical significance
 585 was evaluated by using Student's t-test (*, P < 0.05; **, P < 0.01).
 586

587 **Sublingual administration of *Alcaligenes* lipid A enhanced cholera toxin B
 588 subunit-specific mucosal and systemic humoral immune responses**

589 Having verified that *Alcaligenes* lipid A could enhance antigen-specific antibody
 590 production in the intestinal tract, we next explored its potential as an adjuvant for
 591 sublingual vaccines against intestinal diseases. In this issue, CTB was employed as a
 592 model vaccine against *Vibrio cholerae* (Baldauf et al., 2015). Unlike OVA, mice
 593 immunized with CTB alone exhibited a measurable CT-specific IgA response in feces
 594 (Figure 10A) and IgG response in serum (Figure 10B). Notably, co-administration of
 595 CTB with *Alcaligenes* lipid A resulted in elevated levels of IgA responses in feces
 596 (Figure 10A) and IgG in serum (Figure 10B). These findings suggest that *Alcaligenes*
 597 lipid A is a potent enhancer of antigen-specific antibody responses against intestinal

598 pathogens and toxins.

599

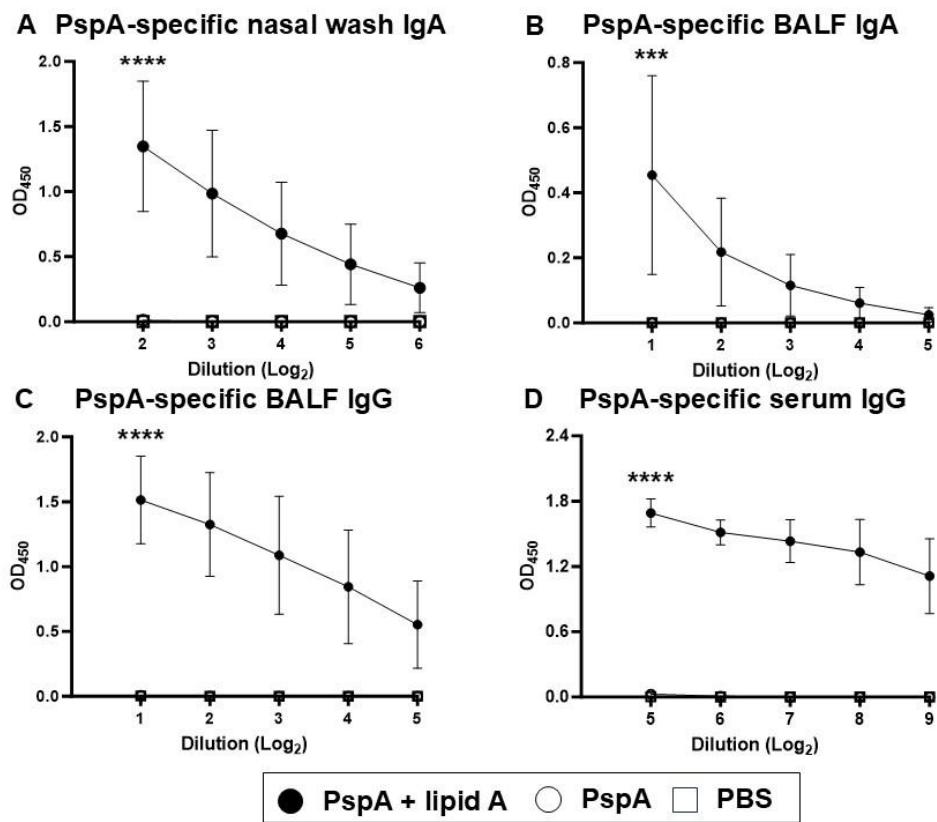

600 Figure 10. Sublingual administration of *Alcaligenes* lipid A enhanced the production
601 of CTB-specific antibodies. Mice were immunized sublingually with PBS or CTB
602 with or without *Alcaligenes* lipid A. Feces and serum were collected 1 week after the
603 final immunization, and the levels of (A) CTB-specific feces IgA (n = 10/group) and
604 (B) CTB-specific serum IgG (positive experimental group, n = 9/group; negative
605 experimental group and control group, n = 10/group) were measured by ELISA. The
606 results shown are presented as mean \pm 1 SD. Data are a combination of two
607 independent experiments, and statistical significance was evaluated by using one-way
608 ANOVA (****, P < 0.0001; the asterisks represent the significant difference between
609 two experimental groups).

610

611 **Sublingual administration of CTB together with *Alcaligenes* lipid A prevented
612 cholera toxin-induced diarrhea**

613 Based on these results, we sought to determine whether sublingual
614 administration of CTB with *Alcaligenes* lipid A could confer protective immunity
615 against CT challenge. One week after final immunization, mice were orally
616 challenged with CT, and water content in the cecum was collected and measured to
617 assess diarrhea symptoms. As anticipated from the data on intestinal IgA production,
618 mice immunized with CTB alone exhibited a trend toward reduced water content in
619 the cecum, but the difference was not statistically significant, because CTB possesses
620 high antigenicity (Figure 11). In contrast, mice immunized with CTB with

621 *Alcaligenes* lipid A demonstrated a significant reduction in cecal water content
622 compared to unimmunized controls. These results indicate that *Alcaligenes* lipid A
623 serves as a potent adjuvant for sublingual vaccines, offering protection against
624 intestinal infections.

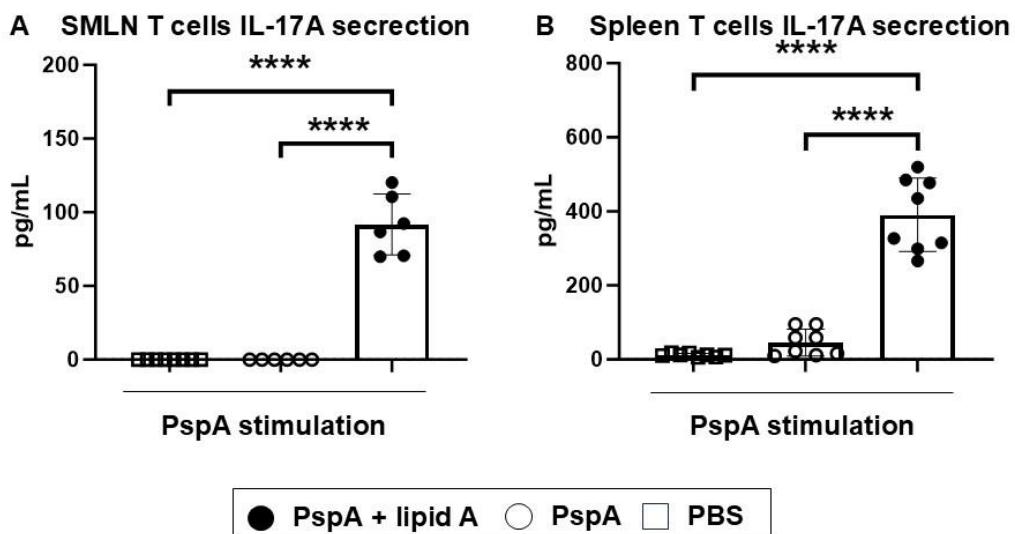


625
626 Figure 11. The enhancement of CT-specific immune responses by the sublingual
627 administration of *Alcaligenes* lipid A suppressed CT-induced diarrhea. Mice were
628 immunized sublingually with PBS or CTB with or without *Alcaligenes* lipid A. one
629 week after the final immunization, mice were fasted and orally challenged with a high
630 dose of CT. The cecum water volume was measured (n = 10/group). Data are a
631 combination of two independent experiments, and statistical significance was
632 evaluated by using one-way ANOVA (*, P < 0.05).
633

634 **Sublingual administration of PspA combined with *Alcaligenes* lipid A enhanced**
635 **PspA-specific mucosal and systemic humoral immune responses**

636 To further assess the potential of *Alcaligenes* lipid A as an adjuvant for
637 respiratory infections, we evaluated its effect using PspA, a broadly expressed antigen
638 across most serotypes of *S. pneumoniae* and known for its protective role against
639 pneumococcal infection in mice (Larry et al., 1991; Briles et al., 2000). In mice
640 immunized with PspA alone, no PspA-specific antibody response was detected in any
641 of the samples measured. In contrast, in mice sublingual immunization with PspA and
642 *Alcaligenes* lipid A resulted in a robust enhancement of PspA-specific IgA antibodies
643 in the nasal cavity and BALF (Figure 12A, and 12B), as well as increased PspA-

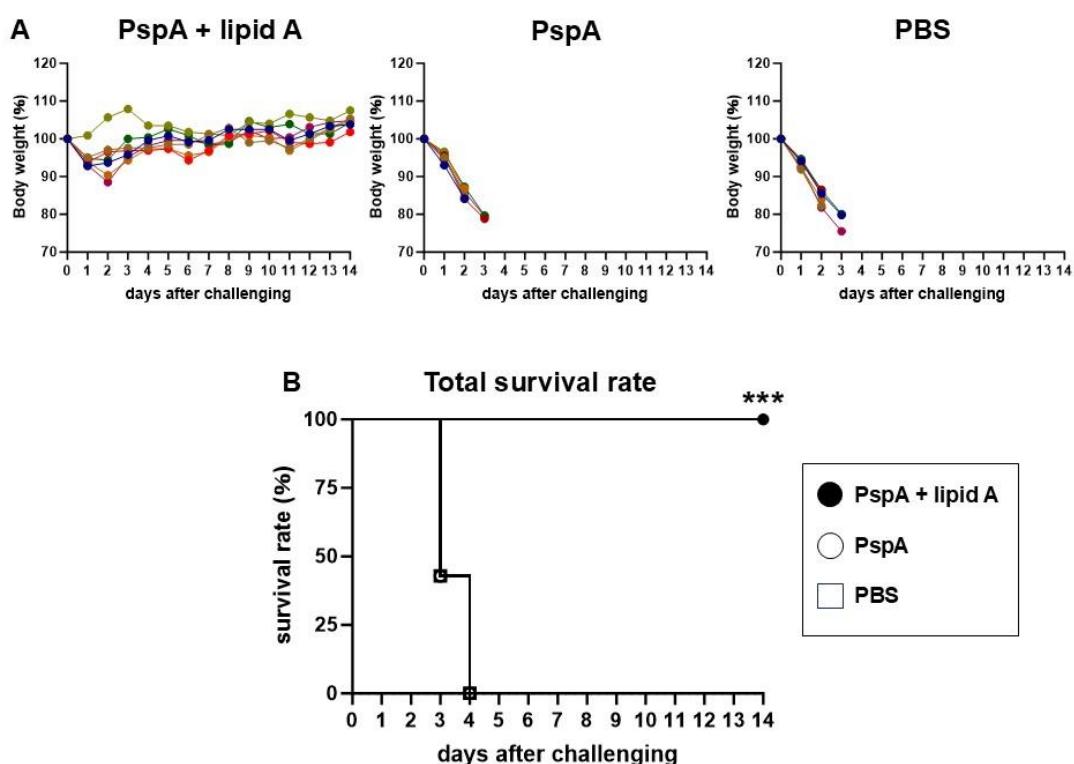
644 specific IgG responses in both BALF and serum (Figure 12C, and 12D). These
 645 findings suggested that *Alcaligenes* lipid A could effectively amplify antigen-specific
 646 humoral immune responses against respiratory infectious diseases.


647
 648 Figure 12. Sublingual administration of *Alcaligenes* lipid A enhanced the production
 649 of PspA-specific antibodies. Mice were immunized sublingually with PBS or PspA
 650 with or without *Alcaligenes* lipid A. Nasal wash, BALF, serum were collected 1 week
 651 after the final immunization, and the levels of (A) PspA-specific nasal wash IgA
 652 (positive experimental group, n = 7/group; negative experimental group, n = 8/group,
 653 control group, n = 6/group) and (B) PspA-specific BALF IgA (positive experimental
 654 group, n = 8/group; negative experimental group, n = 6/group, control group, n =
 655 7/group) (C) PspA-specific BALF IgG (positive experimental group, n = 8/group;
 656 negative experimental group, n = 6/group, control group, n = 8/group) and (D) PspA-
 657 specific serum IgG (positive experimental group, n = 8/group; negative experimental
 658 group and control group, n = 6/group) were measured by ELISA. The results shown
 659 are presented as mean \pm 1 SD. Data are a combination of two independent
 660 experiments, and statistical significance was evaluated by using one-way ANOVA
 661 (***, P < 0.001; ****, P < 0.0001; the asterisks represent the significant difference
 662 between two experimental groups).

663

664 **Sublingual immunization of PspA in combination with *Alcaligenes* lipid A
 665 enhanced PspA-specific Th17 responses**

666 Beyond humoral immunity, Th17 responses are critical in defending host against


667 extracellular bacteria such as *S. pneumoniae* (Curtis and Way, 2009). We therefore
 668 explored whether *Alcaligenes* lipid A could induce Th17 responses through sublingual
 669 immunization, as we previously reported in nasal or systemic immunization (Wang et
 670 al., 2020). To test this possibility, CD4⁺ T cells isolated from SMLNs, a primary site
 671 for immune responses to sublingual antigen (Hervouet et al., 2014) (Figure 13A), and
 672 spleen (Figure 13B). Upon in vitro restimulation with antigen presenting cells plus
 673 PspA, CD4⁺ T cells from both tissues of mice immunized with PspA plus *Alcaligenes*
 674 lipid A secreted higher levels of IL-17A comparing to those from naïve mice or mice
 675 immunized with PspA alone. These findings suggested that *Alcaligenes* lipid A could
 676 enhance antigen-specific Th17 immune responses, offering enhanced protection
 677 against respiratory infectious diseases.

678
 679 Figure 13. Sublingual administration of *Alcaligenes* lipid A enhanced PspA-specific
 680 Th17 responses. Mice were immunized sublingually with PBS or PspA with or
 681 without *Alcaligenes* lipid A. CD4⁺ T cells from SMLNs and spleens were collected 1
 682 week after the final immunization, and the levels of IL-17A from PspA-stimulated T
 683 cells of (A) SMLNs (positive experimental group, n = 6/group; negative experimental
 684 group, n = 7/group, control group, n = 8/group) and (B) spleens (n = 8/group) were
 685 measured by CBA kit. The results shown are presented as mean ± 1 SD. Data are a
 686 combination of two independent experiments, and statistical significance was
 687 evaluated by using one-way ANOVA (****, P < 0.0001).
 688

689 **Sublingual immunization of PspA together with *Alcaligenes* lipid A protects**
 690 **respiratory infection against *S. pneumoniae***

691 Our findings on humoral and Th17 responses allowed us to investigate whether
 692 sublingual immunization of PspA plus *Alcaligenes* lipid A could provide protective
 693 immunity against *S. pneumoniae* infection. One week after the last immunization,
 694 mice were challenged with *S. pneumoniae* via respiratory route, and their body weight
 695 was monitored for 14 days along with survival rates. The body weight of naïve mice
 696 and mice immunized with PspA alone rapidly declined (Figure 14A), and all mice
 697 succumbed before day 3 (Figure 14B). On the other hand, mice immunized with PspA
 698 together with *Alcaligenes* lipid A showed a rapid recovery in body weight from day 2,
 699 and all survived. These results indicate that *Alcaligenes* lipid A could be an effective
 700 adjuvant for sublingual vaccines, providing effective protection against respiratory
 701 infection by *S. pneumoniae* in mice.

702

703 Figure 14. *Alcaligenes* lipid A-enhanced PspA-specific immune responses protected
 704 mice from *S. pneumoniae* infection. Mice were immunized sublingually with PBS or
 705 PspA with or without *Alcaligenes* lipid A. one week after the final immunization and
 706 after one more day for recovery of sampling, mice were nasally challenged with a
 707 lethal dose of *S. pneumoniae*. The (A) body weights and (B) survival rates were
 708 calculated each day for 2 weeks (n = 7/group). Data are a combination of two
 709 independent experiments, and statistical significance was evaluated by using Kaplan-
 710 Meier survival analysis (***, P < 0.001; the asterisks represent the significant
 711 difference between two experimental groups).

712

713 **4.3 Specific Discussion**

714 During sublingual immunization, the migration of immune cells was reported to
715 play a significant role. For example, CCL19 and CCL21 expression level were
716 significantly enhanced in lymph nodes comparing with activation of antigen-specific
717 CD4⁺ T and B cell responses induced by DCs (Song et al., 2009). After activation,
718 DCs, T and B cells are recruited to distant mucosal tissues (e.g., nasopharynx
719 associated lymphoid tissues and Peyer's patches) through the axis of CCL19/CCL21-
720 CCR7, resulting in the protection both of respiratory and intestinal infection.

721 In this study, sublingual immunization with CTB together with *Alcaligenes* lipid
722 A induced CTB-specific IgA antibody production to suppress CT-induced diarrhea as
723 expected. Meanwhile, co-administration of PspA and *Alcaligenes* lipid A induced
724 PspA-specific IgA helped protect mice from invasion of *S. pneumoniae*. Considering
725 our previous studies reported that the *Alcaligenes*-driven LPS and lipid A could
726 activate DCs with enhanced T cell-responses and antibody responses, the direct
727 activation of DCs of *Alcaligenes* lipid A is thought to be main mechanism to enhance
728 protective immune responses during sublingual administration of *Alcaligenes* lipid A.

729 A few numbers of adjuvants have been examined for mucosal vaccines including
730 MPLA, which has been reported to act as a TLR4 agonist (Mata-Haro et al., 2007)
731 and enhance humoral immune responses (Chen et al., 2019). Focusing on the
732 application of *Alcaligenes* lipid A as an adjuvant, we previously compared the effect
733 and potential mechanism of MPLA and *Alcaligenes* lipid A. Results of intranasal
734 administration to mice showed the *Alcaligenes* lipid A induced higher levels of the
735 production of antigen-specific IgA antibodies in nasal wash fluids, compared to
736 MPLA (Sun et al., 2024). Mechanistically, it has been previously reported that MPLA
737 is a TRIF-biased TLR4 agonist (Mata-Haro et al., 2007), while our previous study
738 demonstrated that the *Alcaligenes* lipid A could activate DCs through both MyD88
739 and TRIF signaling pathways and the enhanced secretion of IL-6 and expression of
740 costimulatory molecules were related to the MyD88 pathway (Sun et al., 2023).
741 Another study also verified that *Alcaligenes* lipid A upregulated the expression of
742 CCL2 on stromal cells and CCL3 on CD45⁺ immune cells and thus enhanced the
743 recruitment and infiltration of DCs into nasal tissues (Sun et al., 2024). These results
744 might furtherly express how the *Alcaligenes* lipid A activate DCs during sublingual
745 administration. It is known that the structure of lipid A differs among bacteria, and it
746 has been reported recently that *Alcaligenes* lipid A possesses hexa-acylated species
747 that was composed of a bisphosphorylated glucosamine disaccharide backbone
748 carrying 14:0 (3-OH) as primary and 12:0 (3-OH) and 10:0 as secondary fatty acids
749 with distribution in a 3 + 3 symmetric fashion with respect to the disaccharide
750 backbone, which were different from *E. coli* lipid A that has 4 + 2 asymmetry and is
751 composed of 14:0 (3-OH) as primary and 14:0 and 12:0 as secondary fatty acids
752 (Shimoyama et al., 2021) and could be used to enhance immune responses against T
753 cell-dependent antigens (Wang et al., 2020 and Yoshii et al., 2020). Although further
754 studies are required to consummate the theory, it is suggested that the differences
755 between the *Alcaligenes*-driven lipid A and *E. coli*-driven lipid A contribute to the
756 safety of *Alcaligenes*-driven lipid A. And as an example, the different structure of

757 MPLA from *Alcaligenes* lipid A, one single phosphoryl group, is thought to lead to an
758 inefficient dimerization of the TLR4–MD-2 complex and thus decrease the activation
759 of MyD88 (Sun et al., 2023). The unique structure of *Alcaligenes* lipid A might
760 contribute to its application as a suitable sublingual vaccine adjuvant.

761 Also, in the past, one of our previous studies showed that nasal administration of
762 PspA together with *Alcaligenes* lipid A to mice recruited neutrophils to inoculation
763 site and prevented bacterial growth in the lung tissues, resulting in the protection of *S.*
764 *pneumoniae* infection (Yoshii et al., 2020). However, the side effects of nasal
765 vaccination itself related to the transition to the central nervous system should be
766 considered (Lemiale et al., 2003). Indeed, accumulation of antigens was observed in
767 the olfactory bulbs and brain in mice administered intranasally while antigens
768 remained undetectable in the olfactory bulbs and brain after sublingual administration,
769 theoretically suggesting the sublingual administration a safer alternative comparing to
770 nasal administration (Song et al., 2008). Fortunately, we obtained the same results in
771 this study when we applied *Alcaligenes* lipid A sublingually without the same risk
772 (Song et al., 2008). Furtherly, the sublingual administration of *Alcaligenes* lipid A
773 induced a strong immune response in intestinal tract and successfully helped suppress
774 the damage caused by antigen covered the shortage that administration of *Alcaligenes*
775 lipid A as an oral vaccine adjuvant did not enhance immune responses in intestinal
776 tract (data not shown). It can be concluded that sublingual vaccines are more suitable
777 for the application of *Alcaligenes* lipid A as a mucosal adjuvant, though the sublingual
778 route is now wildly used for sublingual immunotherapy for allergy responses (Paris et
779 al., 2021) instead of vaccination. Finally, a suitable adjuvant requires high effect and
780 safety. Apart from MPLA, when comparing to CT which can be used to enhance
781 immune responses in noses and intestines but will induce excessive inflammation like
782 recruiting extra neutrophils (Yoshii et al., 2020), *Alcaligenes* lipid A showed higher
783 safety like stable body weight and body temperature (Wang et al., 2020). Thus,
784 *Alcaligenes* lipid A could be an ideal adjuvant with high efficiency and high safety for
785 sublingual vaccines.

786

787

788 **5. General Discussion**

789 We previously reported that *Alcaligenes* LPS acts as an TLR4 agonist, thereby
790 enhancing antigen-specific immune responses without excessive inflammation and
791 leading to the possibility of its use as a safe adjuvant (Shibata et al., 2018 and Wang
792 et al., 2021). My current study extended our research. Besides, we are planning for
793 non-clinical trials to examine the effect of *Alcaligenes* lipid A in the future.

794 In conclusion, the first research demonstrated the efficacy of *Alcaligenes* lipid A
795 as an adjuvant for a Hib vaccine that includes the TI antigen PRP. Specifically,
796 *Alcaligenes* lipid A enhanced the PRP-specific IgG response when Hib PRP was
797 conjugated to a TD antigen (i.e., TT) as a carrier protein. Together, current findings
798 indicate that *Alcaligenes* lipid A exerted adjuvant activity for a TI polysaccharide

799 antigen only when it was conjugated to a TD carrier protein. The induction pathway
800 for the TI antigen did not include enhancement of T-cell responses and thus differs
801 from that of TD antigens.

802 Furtherly, the second research showed that *Alcaligenes* lipid A enhanced both
803 PspA- and CT-specific humoral responses both in the respiratory and intestinal tracts
804 as well as systemic compartments and thus protected both respiratory and intestinal
805 infections, indicating that *Alcaligenes* lipid A could exert a role as a sublingual
806 vaccine adjuvant to induce strong antigen-specific Th17 responses and antibody
807 production in both respiratory and intestinal tracts, resulting in the protection from
808 extracellular bacteria and toxins.

809

810 6. References

811 Messina, N.L., et al. (2019). The impact of vaccines on heterologous adaptive
812 immunity. *Clin Microbiol Infect.* 25, 1484-1493.

813 Lipscomb, M.F., and Masten, B.J. (2002). Dendritic cells: immune regulators in
814 health and disease. *Physiol Rev.* 82, 97-130.

815 Lee, H.K., and Iwasaki, A. (2007). Innate control of adaptive immunity: dendritic
816 cells and beyond. *Semin Immunol.* 19, 48-55.

817 Lycke, N. (2012). Recent progress in mucosal vaccine development: potential and
818 limitations. *Nat Rev Immunol.* 12, 592-605.

819 Obata, T., et al. (2010). Indigenous opportunistic bacteria inhabit mammalian gut-
820 associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. *Proc
821 Natl Acad Sci U S A.* 107, 7419-7424.

822 Kunisawa, J., and Kiyono, H. (2012). *Alcaligenes* is Commensal Bacteria Habituating
823 in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA
824 Responses. *Front Immunol.* 3, 65.

825 Sato, S., et al. (2013). Transcription factor Spi-B-dependent and -independent
826 pathways for the development of Peyer's patch M cells. *Mucosal Immunol.* 6, 838-
827 846.

828 Fung, T.C., et al. (2016). Lymphoid-Tissue-Resident Commensal Bacteria Promote
829 Members of the IL-10 Cytokine Family to Establish Mutualism. *Immunity.* 44, 634-
830 646.

831 Shibata, N., et al. (2018). Lymphoid tissue-resident *Alcaligenes* LPS induces IgA
832 production without excessive inflammatory responses via weak TLR4 agonist activity.
833 *Mucosal Immunol.* 11, 693-702.

834 Hosomi, K., et al. (2020). Lymphoid Tissue-Resident *Alcaligenes* Establish an
835 Intracellular Symbiotic Environment by Creating a Unique Energy Shift in Dendritic
836 Cells. *Front Microbiol.* 11, 561005.

837 Chandler, C.E., and Ernst, R.K. (2017). Bacterial lipids: powerful modifiers of the
838 innate immune response. *F1000Res.* 6.

839 Shimoyama A., et al. (2021). Lipopolysaccharide from Gut-Associated Lymphoid-
840 Tissue-Resident *Alcaligenes* faecalis: Complete Structure Determination and
841 Chemical Synthesis of Its Lipid A. *Angew Chem Int Ed Engl.* 60, 10023-10031.

842 Wang, Y., et al. (2020). Adjuvant Activity of Synthetic Lipid A of *Alcaligenes*, a Gut-
843 Associated Lymphoid Tissue-Resident Commensal Bacterium, to Augment Antigen-
844 Specific IgG and Th17 Responses in Systemic Vaccine. *Vaccines (Basel)*. 8.

845 Yoshii, K., et al. (2020). Chemically Synthesized *Alcaligenes* Lipid A Shows a Potent
846 and Safe Nasal Vaccine Adjuvant Activity for the Induction of *S. pneumoniae*-Specific
847 IgA and Th17 Mediated Protective Immunity. *Microorganisms*. 8.

848 Wang, Y., et al. (2021). Lipopolysaccharide Derived From the Lymphoid-Resident
849 Commensal Bacteria *Alcaligenes* faecalis Functions as an Effective Nasal Adjuvant to
850 Augment IgA Antibody and Th17 Cell Responses. *Front Immunol.* 12, 699349.

851 Kaplan, S.L., et al. (1983). Enzyme-linked immunosorbent assay for detection of
852 capsular antibodies against *Haemophilus influenzae* type b: comparison with
853 radioimmunoassay. *J Clin Microbiol.* 18, 1201-1204.

854 Barra, A., et al. (1988). Measurement of anti-*Haemophilus influenzae* type b capsular
855 polysaccharide antibodies by ELISA. *J Immunol Methods*. 115, 111-117.

856 Suzuki, H., et al. (2015). C-Terminal Clostridium perfringens Enterotoxin-Mediated
857 Antigen Delivery for Nasal Pneumococcal Vaccine. *PLoS One*. 10, e0126352.

858 Netea, M.G., et al. (2019). Innate and Adaptive Immune Memory: an Evolutionary
859 Continuum in the Host's Response to Pathogens. *Cell Host Microbe*. 25, 13-26.

860 Nutt, S.L., et al. (2015). The generation of antibody-secreting plasma cells. *Nat Rev
861 Immunol.* 15, 160-171.

862 Mond, J.J., et al. (1995). T cell independent antigens. *Curr Opin Immunol.* 7, 349-354.

863 Anderson, P., et al. (1977). Antibody of polyribophosphate of *Haemophilus influenzae* type
864 b in infants and children: effect of immunization with polyribophosphate. *J Infect Dis.*
865 136 Suppl, S57-62.

866 Guttermosen, H.K., et al. (1999). Cognate stimulatory B-cell-T-cell interactions are
867 critical for T-cell help recruited by glycoconjugate vaccines. *Infect Immun.* 67, 6375-
868 6384.

869 Kelly, D.F., et al. (2004). *Haemophilus influenzae* type b conjugate vaccines.
870 *Immunology*. 113, 163-174.

871 Schneerson, R., et al. (1980). Preparation, characterization, and immunogenicity of
872 *Haemophilus influenzae* type b polysaccharide-protein conjugates. *J Exp Med.* 152,
873 361-376.

874 Tai, Y., et al. (2018). Molecular Mechanisms of T Cells Activation by Dendritic Cells
875 in Autoimmune Diseases. *Front Pharmacol.* 9, 642.

876 Terhune, J., et al. (2013). Dendritic Cell-Induced Th1 and Th17 Cell Differentiation
877 for Cancer Therapy. *Vaccines (Basel)*. 1, 527-549.

878 Popi, A.F., et al. (2016). An Overview of B-1 Cells as Antigen-Presenting Cells. *Front*
879 *Immunol.* 7, 138.

880 Avci, F., et al. (2019). Glycoconjugates: What It Would Take To Master These Well-
881 Known yet Little-Understood Immunogens for Vaccine Development. *mSphere*. 4.

882 Avci, F.Y., and Kasper, D.L. (2010). How bacterial carbohydrates influence the
883 adaptive immune system. *Annu Rev Immunol.* 28, 107-130.

884 Avci, F.Y., et al. (2011). A mechanism for glycoconjugate vaccine activation of the
885 adaptive immune system and its implications for vaccine design. *Nat Med.* 17, 1602-
886 1609.

887 Kimura, A., and Kishimoto, T. (2010). IL-6: regulator of Treg/Th17 balance. *Eur J*
888 *Immunol.* 40, 1830-1835.

889 Chousterman, B.G., and Swirski, F.K. (2015). Innate response activator B cells:
890 origins and functions. *Int Immunol.* 27, 537-541.

891 Vaure, C., and Liu, Y. (2014). A Comparative Review of Toll-Like Receptor 4
892 Expression and Functionality in Different Animal Species. *Front Immunol.* 5.

893 Venkataraman, C., et al. (1999). Bacterial lipopolysaccharide induced B cell
894 activation is mediated via a phosphatidylinositol 3-kinase dependent signaling
895 pathway. *Immunol Lett.* 69, 233-238.

896 Dil, N., and Marshall, A.J. (2009). Role of phosphoinositide 3-kinase p110 delta in
897 TLR4- and TLR9-mediated B cell cytokine production and differentiation. *Mol*
898 *Immunol.* 46, 1970-1978.

899 Rawlings, D.J., et al. (2012). Integration of B cell responses through Toll-like
900 receptors and antigen receptors. *Nat Rev Immunol.* 12, 282-294.

901 Rappuoli, R. (2018). Glycoconjugate vaccines: Principles and mechanisms. *Sci Transl*
902 *Med.* 10.

903 Rappuoli, R., et al. (2019). On the mechanisms of conjugate vaccines. *Proc Natl Acad*
904 *Sci U S A.* 116, 14-16.

905 Cobb, B.A., et al. (2004). Polysaccharide processing and presentation by the MHCII
906 pathway. *Cell.* 117, 677-687.

907 Mohammadi, M., et al. (2014). Improved immunogenicity of tetanus toxoid by
908 Brucella abortus S19 LPS adjuvant. *Iran J Immunol.* 11, 189-199.

909 Cochi, S.L., et al. (1985). Immunization of US children with *Hemophilus influenzae*

910 type b polysaccharide vaccine. A cost-effectiveness model of strategy assessment.
911 *JAMA*. 253, 521-529.

912 Granoff, D.M., et al. (1993). Induction of immunologic memory in infants primed
913 with *Haemophilus influenzae* type b conjugate vaccines. *J Infect Dis*. 168, 663-671.

914 Holmgren, J., and Czerkinsky, C. (2005). Mucosal immunity and vaccines. *Nat Med*.
915 11, S45-53.

916 Takahashi, I., et al. (2009). New horizon of mucosal immunity and vaccines. *Curr*
917 *Opin Immunol*. 21, 352-358.

918 Kunisawa, J., et al. (2008). Immunological commonalities and distinctions between
919 airway and digestive immunity. *Trends Immunol*. 29, 505-513.

920 Hua, S. (2019). Advances in Nanoparticulate Drug Delivery Approaches for
921 Sublingual and Buccal Administration. *Front Pharmacol*. 10, 1328.

922 Kraan, H., et al. (2014). Buccal and sublingual vaccine delivery. *J Control Release*.
923 190, 580-592.

924 Paris, A.L., et al. (2021). Sublingual vaccination and delivery systems. *J Control*
925 *Release*. 332, 553-562.

926 Baldauf, K.J., et al. (2015). Cholera toxin B: one subunit with many pharmaceutical
927 applications. *Toxins (Basel)*. 7, 974-996.

928 Larry S., et al. (1991). PspA, a Surface Protein of *Streptococcus pneumoniae*, Is
929 Capable of Eliciting Protection against Pneumococci of More Than One Capsular
930 Type. *Infect Immun*. 59, 222-8.

931 Briles D.E., et al. (2000). Immunization of humans with recombinant pneumococcal
932 surface protein A (rPspA) elicits antibodies that passively protect mice from fatal
933 infection with *Streptococcus pneumoniae* bearing heterologous PspA. *J Infect Dis*.
934 182, 1694-701.

935 Curtis, M.M., and Way, S.S. (2009). Interleukin-17 in host defence against bacterial,
936 mycobacterial and fungal pathogens. *Immunology*. 126, 177-185.

937 Sun, X., et al (2024). *Alcaligenes* lipid A functions as a superior mucosal adjuvant to
938 monophosphoryl lipid A via the recruitment and activation of CD11b⁺ dendritic cells
939 in nasal tissue. *Int Immunol*. 36, 33-43.

940 Hervouet C., et al. (2014). Antigen-bearing dendritic cells from the sublingual mucosa
941 recirculate to distant systemic lymphoid organs to prime mucosal CD8 T cells.
942 *Mucosal Immunol*. 7, 280-91.

943 Song, JH., et al. (2009). CCR7-CCL19/CCL21-regulated dendritic cells are
944 responsible for effectiveness of sublingual vaccination. *J Immunol*. 182, 6851-60.

945 Mata-Haro, V., et al. (2007). The vaccine adjuvant monophosphoryl lipid A as a TRIF-
946 biased agonist of TLR4. *Science*. 316, 1628-32.

947 Chen, C., et al. (2019). Monophosphoryl-Lipid A (MPLA) is an Efficacious Adjuvant
948 for Inactivated Rabies Vaccines. *Viruses*. 11, 1118.

949 Sun, X., et al (2023). TLR4 agonist activity of *Alcaligenes* lipid a utilizes MyD88 and
950 TRIF signaling pathways for efficient antigen presentation and T cell differentiation
951 by dendritic cells. *Int Immunopharmacol*. 117, 109852.

952 Lemiale, F., et al. (2003). Enhanced mucosal immunoglobulin A response of
953 intranasal adenoviral vector human immunodeficiency virus vaccine and localization
954 in the central nervous system. *J Virol*. 77, 10078-87.

955 Song, JH., et al. (2008). Sublingual vaccination with influenza virus protects mice
956 against lethal viral infection. *Proc Natl Acad Sci U S A*. 105, 1644-9.