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ON CERTAIN QUADRATIC FORMS RELATED TO
SYMMETRIC RIEMANNIAN SPACES

By

Soji KANEYUKI and Tapasu:t NAGANO

In his recent works [8] [9], Matsushima investigates the Betti
numbers of a certain type of compact locally symmetric riemannian
manifolds and he shows that lower dimensional Betti numbers of such
a manifold can be determined if we know that certain quadratic forms
are positive definite. In order to verify the last condition, it is sufficient
to compute the minimal eigenvalue of a linear transformation ¢ which
is defined in terms of the curvature tensor of the manifold. Let M be
the universal covering manifold of the manifold in question. In the
case that M is an irreducible symmetric bounded domain in C”, the
eigenvalues of @ were computed by Calabi-Vesentini [4] and Borel [2],
and Betti numbers are given by Matsushima himself. In the paper [7],
the authors have treated the case that the compact form of M is a group
manifold. The purpose of the present paper is to study the eigenvalues
of @ for the case which remains to be treated, i.e. the case that M is
a non-compact irreducible symmetric riemannian manifold not isomorphic
to a bounded domain in C”. Applying the results of Matsushima, we
see that the p-th Betti number b, of the compact locally symmetric
space treated here is equal to that of the compact form of M if the
ratio p/dim M is sufficiently small; in particular, b, vanishes in most
cases. Our results give also informations about the Betti numbers of
G/I' where G is a semi-simple Lie group without compact simple factors
and I" is a discrete subgroup of G with compact quotient space G/I.

It is our pleasure to acknowledge Prof. Y. Matsushima for his
valuable suggestions and having given us a chance to read his mani-
scripts of [8] [9] before publication.

§1. Preliminaries.

The notations settled in this section will be used throughout this
paper. We denote by g a real semi-simple Lie algebra and by @; the
Killing form of g, Let f be a subalgebra of g. We say that the pair
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(g, t) is a symmetric pair, if the vector space g admits a direct sum
decomposition g=f+m such that [f, m]Cm and [m, m]C¥, By the
symmetric square mvm we mean the vector space of the symmetric
tensors belonging to m®m. The restriction of @; to m is a non-
degenerate inner product on m, and this gives rise to non-degenerate
inner products on m®m and m vm, which are denoted by <, Duem and
<, >@.p respectively. For brevity we write (, > instead of { , >gpn. We
define a linear endomorphism @ of the tensor space m®@m by the
formula

for any X, Y,Z, Ue m, The subspace m vm is stable under @, and we
shall denote also by @ the restriction of @ to mvm. It is obvious that
Q is a self-adjoint operator on mvm with respect to the inner product
{,>. Now, following Matsushima [9], we define a quadratic forms
H” (r=1,2,:--) on mvm by putting

1.2) H'®) = Y80 £k, &

for any £€ m vm, where

(1.3) 2bg,p = Min {1+9(X, X); p(X, X) = -1}

and @, is the Killing form of f. Matsushima [8] defines also a quad-
ratic form H on mvm which coincides with H' in the case that g is
non-compact simple and f is a compact semi-simple Lie algebra. In the
following, we shall write @, H”, H also as Qg.vy, H .5y, Hg,p respec-
tively ; if g is a non-compact simple Lie algebra, f means always the
subalgebra corresponding to a maximal compact subgroup of the adjoint
group of g. The theorems of Matsushima are now stated as follows :

Theorem A ([8] Theorem 1). Let G be a semi-simple Lie group, all
of whose simple factors are non-compact. Suppose that, for each simple
factor G; of G, the quadratic form Hg,y, associated to the Lie algebra g;
of G; is positive definite. Let I’ be a discrete subgroup of G with compact
quotient space G|I'. Then the first Betti number of G/I' is equal to 0.

Theorem B ([9] Theorem 1 and §9). Let M be a simply connected,
trreducible symmetric riemannian manifold which is non-compact and non-
euclidean. Let G be the identity component of the group of all isometries
of M. Let I’ be a discrete subgroup of G with compact quotient G/1* and
without element of finite order different from the identity, so that 1" is a
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discontinuous group of isometries of M with compact quotient M/L. Let
M, be the compact form of M. If the quadratic form H' gy is positive
definite, then the r-th Betti number b, of M/I' is equal to the r-th Betti
number b,(M,) of M,.

We shall see when the quadratic forms Hq,yy and H' g,y are positive
definite for a real non-compact simple Lie algebra g. In the case that
the center of f is not trivial, this question is already discussed by
Matsushima [8] [9]. We shall therefore confine ourselves to the case
that the center of f reduces to (0) so that f is a compact semi-simple
algebra. We know that H=H" in this case. Thus our results on H’,
given in §4, are sufficient to apply Theorems A and B for this case.

In order that the quadratic form H” is positive definite, it is neces-
sary and sufficient that the absolute value of the minimal eigenvalue of
Q@ is strictly smaller than %) Now, under the assumption that g is
non-compact simple and f is semi-simple, the value b,y is computed as
follows : '

(a) If t is simple, then we have by [8]

dim m

-y ba = 4 gim

(b) When f is semi-simple and has the same rank as g,
(1.5)  2bg,pn = Min {1—g@y(«,, a,)/p(x,, a;);a is a root of £}

where «, or @, is the contravariant representative of @ with respect to
the Killing form of g or  respectively.
(¢) (4,, D,) and (D,, B,xB,_,_,) are the only symmetric pairs for
which f is semi-simple and is not of the same rank as g. One finds
2 =3 ~
= for @ B = (4, D)

(1. 6)

ZbZZUL_D for (g, f) = Dy, B,xB,_,), and p<_I,

where p=2g+1

§ 2. Relation with the group manifold.

Given a symmetric pair (g, ) with non-compact simple g and compact
f, we wish to compare the minimal eigenvalue of @, with that of @
for symmetric pair (g,%g,, g.). Let g=f+m be the Cartan decomposi-
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tion. Denoting by g° the complexification of g, the space g,=f++/—1m
is also a compact simple subalgebra of g°. The pair (g,, ) is also a
symmetric pair, the compact form of (g, ). By an obvious identification
vV —1mvy/—1m=mvm, one obtains the equality Qg,n= —®Qq,.ry directly
from the definition (1.1). In order to verify that H”qgpy is positive
definite it is thus sufficient to show that by, /7 is strictly greater than
the maximal eigenvalue of Q¢ 1. Let o be the injective homomorphism
of g, into g,Xxg, defined by o(X)=(X, X) for any Xe€g,. We define
another injection T:g,—g,xg, by 7(X)=(X, —X)/\/2 ; = is isometric
with respect to the Killing forms. The pair (g,%xg., o(g.), briefly
denoted by u, is a symmetric pair with the Cartan decomposition g,x g,
= o_(gu) + T(Qu)

Lemma 2.1. The notations being as above, if « (resp. «,) is the
maximal eigenvalue of Qv (resp. ), then we have the inequality : x<2«,

Proof. If vvr; g,Vvg.,—7(a,) vr(g,) denotes the mapping naturally
induced by + and if = denotes the orthogonal projection of (v v7)(g,Vg.)
onto (vVv7)(mvm) then one obtains

7eQue(r V) = %(’TVT)Q@,,,D

In fact, one has

AZQy(r(X) vr(X)), 7(Y) V(Y )y

= 29, xg,([7(X),7(Y)], [~(Y), =(X)])
= @g,xa(7([X, Y]), (LY, X1))

= ¢g,([X, Y], [V,X])

= {Qq,nXVvX), YVYDg,n

=tV 1) Q,.nXVX), 7(Y)Vr(Y)y

for any X, Yem. For any eigenvector & of Qg,.1 corresponding to «,
one therefore finds

2,88, £, = 26, (T )E), (TVT)(EDy
>2Qu((T v7)(E), (v vT)ED
= {Q@,.n(&), E@,p = <k&, E>q,.0 = <& ED@up

Lemma 2.2. The number 2«, in lemma 2.1 equals ¢y, (9, ) where &
is the highest root of g,

For the proof, see [7].



QUADRATIC FORMS RELATED TO SYMMETRIC RIEMANNIAN SPACES 245

It follows from the above arguments that H,y is positive difinite
if bg,n_>Pg,(d,?). The table I gives the values by, and @q (J, ¥) for
all symmetric pairs (g, f) with non-compact simple g and compact semi-
simple £. We get then.

Lemma 2.3. The quadratic form Hyg,y is positive definite for all
(8., b) except for the cases AII (I=2,3), BII, DII, CII (p=1,2), GI, or
FII.

Table I
(Gu> B beg.b ! 20, =g (4, #)
(A, Bij) >2
Al (A;, Dypyre) >3 +3)/40+1D) 1/U+1)
All (Az-1, C) —-1)/41 1/21
Bl (Bi, DpyXBj_p) (b 20=2p+1 .
1—1>p>2 M‘“(21—1, 2(21—1)) 1/2i—1)
pr | PoDpbia) o, p/2(1—1)
D7 B, %<B /) = 1/2(1-1)
e A e (2p+1)/4(1—1)
BII (Bi, Dy) 1/2(2/—1) 1/(21-1)
DII (Dy, Bi-y) 1/4(1—-1) 1/2(1—1)
CII (Ci, CpxCiop) 26U p/2(1+1) 1/(I1+1)
EI (Es, Cy) 7/24
EIl (Es, A1X 4s) 1/4 1/12
EIV | (B, F,) 1/8
EV (E7, A7) 5/18
} 1/18
EVI | (E;, A;xDy) 2/9
EVIIL | (E;, Dy) 4/15
} 1/30°
EIX | (Es, AXE)) 1/5
GI (Gz, A1XAy) 1/4 1/4
FI (Fy, A1XCy) 5/18
} 1/9
FII (Fy, By) 1/9

§3. The exceptional cases

In this section we shall determine the eigenvalues of Q. for the
exceptional cases in lemma 2.3 by the method employed in [7]. Given
a symmetric pair (g, f), we write p for the linear isotropy representation
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pX)=ad(X)|m, Xe¢t. We may extend p and @ to a representation of
£ on m° and to an endomorphism of m°vm* respectively, which will be
denoted by the same letters. @ commutes with p Vv p, the restriction of
pPRp to mvm Let pvp=p,+-+p, be the decomposition of p v p into
irreducible representations. The highest weights A, of p; are assumed
to be in the order A, >--- >A, with respect to some ordering: this
assumption will be satisfied in the following cases. Each subspace W;
of m°vm® spanned by the weight vectors of A, is stable under Q. We
write (77Q); for the trace of @ restricted to W;. We know in [7] that
@ is represented by a scalar matrix in the irreducible invariant subspace
of m°vm° corresponding to p;. If »;, denote the unique eigenvalue of
Q restricted to the subspace, then

3.1 (TrQ); :1 Z?A‘?""j(Aci)) £

where m;(A;,) is the multiplicity of the weight A, in p;.
3.1y m(Ayp) =1 and so (77Q), = «,.

Moreover, if g is compact simple, which will be the case in the
sequel, one has

3.2) TrQ = (dim m)/4, dimm = dimg—dim £,

(8.3) —1/2 is an eigenvalue with multiplicity one of §. These formulas
(3.1) to (3.3) are given in | 7] and will be used to compute the eigen-
values of Q. Hereafter a representation and its highest weight will be
denoted by the same letter.

(I) The case of AlIl: (g,, £)=(Au_,, C)) [ =2

First we try to find the highest weight of p and its weight vector: For
an arbitrary square matrix X of degree 2/, we divide X into four parts

¥ (Ax Bx)
CX DX

where Ay, By, Cx, Dy are square matrices with complex coefficients of
degree /. g° is the Lie algebra 8[(2/, C)={X; Tr(Ax+Dx)=0}. If J
denotes a (2/, 2/)-matrix such that A,=D;=0 and B,=—C;=FE (= the
unit matrix), £ is {Xe€38l(2/,C); ‘XJ+JX=0}. Hence the orthogonal
complement m° of t° consists of the matrices Y such that ‘YJ—JY =0, or
eqivalently, such that By, C, are skew-symmetric matrices and one has
*Ay=Dy. An element X of ¥° operates on m° by Yem’—p(X)Y=[X, Y]
=XY—~YX. On the other hand, the identity representation of {° operating
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on C% naturally induces a representation p’ on C#* AC% which we take as
the space of skew-symmetric matrices of degree 2/; p/(X)Z=XZ+Z'X,
Z=skew-symmetric. p/(f°) leaves J invariant, and p’ is irreducible on
the space n of skew-symmetric matrices which are orthogonal to J.
This irreducible representation, denoted also by p’, has the highest
weight A,=X,+), if a Cartan subalgebra of f° consists of diagonal
matrices, H, and a base (H;) is so chosen that H=3)\H; in case that
the (7, 7)-element of Ay is \;, If «(Y) denotes the skew-symmetric
matrix —YJ for any Y in m%, @; m°—»n is an isomorphism of f{°-
modules. Thus the highest weight of p is also A,, as was shown by E.
Cartan. Let ¢,=(0,---, 1, ---,0) be the element of C* whose elements
are all zero except that the i-th equals one, and We&n be the skew-
symmetric matrix corresponding to e, Ae,, or equivalently such that
Aw=E,—E, and By, Cy. and Dy are zeros. Then W and therefore
W] is clearly the weight vector corresponding to A,. For brevity we
write X for WJ. The transposed *X is a weight vector of —A,. By
(3.1Y, we obtain «,=(77Q),=<{QX X X), X R X>/KX®X, *X®*X>, which
is computed with (1.1). Thus we find

e, = Po([X, X, ['X, XD/ pglX, 'X)'=1/4

With the method in [7], A,V A, turns out to be decomposed into two
(resp. three) irreducible representations for /=2 (resp. 3). This fact,
combined with (3.1) to (3. 3), gives the eigenvalues of . Assume /=3,
for instance. The three irreducible components of A,V A, are 2A,, A,
and A, (=the trivial representation of degree 1). The degree of 2A,
and A, are 90 and 14 respectively. Hence we have 7/2=dim m/4=TrQ
=90 x,+14 x,+«,, where x,=1/12 as above and «,= —1/2 by (3.3). This
shows x,=—1/4. So «, is the largest eigenvalue of @ (as in the other
cases). Since b,y equals 1/6, for (g, f) whose compact form is (4;, C,),
bg,p exceeds x, and eventually H,y is positive definite in this case.

(I) The case of CII: (g, H)=(C,, C,xC,_,) (p=1,2). p is A(C),)
®A(C,-,) and pvp decomposed into the irreducible components shown
in the first column of the following table.

24,(Cp) ®24,(Cy-p) ky=1/2(I+1)

A,(Cp) Q A45,(Cr-p) ry=—1/2(1+1) o
40(Cp) B 4(Cy_y) = —(p+D/23+D)

4(Cp) & 4o(C1_p) k= —(—p+1)/20+1)
4(C) @ 4(C1 ) o= —1/2
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For p=1, —1/2(/+1) and —(/+p+1)/2(/+1) must be omitted. Since
bgn=1/2(/+1) for p=1 and by pn=1/(/+1) for p=2, we see that Hy,y,
is non-negative but not positive definite for p=1 and positive definite
for p=2.

(III) The case of GI:(g,, B)=(G,, A, xA,)

P =N (A1)®3A1(A1)
PVP = 20, @ 6A,+ 20, @ 2A,+ A, Q4+ A, D A,

and the eigenvalues of Qg ) are 1/4, —1/6, —1/4, —1/2. Hence Hg,y
is non-negative but not positive definite.

(IV) The case of FII:(g,, ©)=(F,, B)

= A(B)
pVp =2A,+A+A,

The eigenvalues of @ are 1/18, —5/18, —1/2. Therefore Hy,y is posi-
tive definite.

‘(V) The case of BDII:(g,, £)=(B,, D,) or (D,, B;_,). The sym-
metric Riemannian space BDII is of the constant negative curvature.
Since AIl (/=2)=A,/C,=D,/B,, AII(i=2) is contained in this case. If
dim (BDII)=n, we know bg,p=1/2(n—1) from Table I. On the other
hand, the curvature tensor of the space of constant curvature is given
by

Rijn = K(8ugin—8in&i1)

From this relation and the fact that the Ricci tensor is (—1/2)-times

metric tensor, we have K= 5 1 D Therefore we see from the definition
n_
of Q(g,f) that
H = ; ,1+ ; i0)2 __ Ei Eil
@n@) = 2 _1)2515 1)[(;4&5 ) ; £ ]
$0\2

Hence Hg,y is non-negative but not positive definite.

ReEMARK. For each symmetric pair (g,, ) such that g, is simple and
f is of the same rank and semi-simple or simple, the system of the
fundamental roots of f° is obtained from the diagram of the fundamental
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simplex of g; by omitting a vertex which we denote by the black vertex
(cf. Borel-Siebenthal [3]). We can check case by case that the highest
weight of the linear isotropy representation of f° coincides with the root
—«a where « is the root which corresponds to the black vertex.

§4. The Main Theorem.

In the following, we shall use the notation set down by Berger [1]
for each simple Lie group.

Theorem 4.1. The quadratic form H' gy is positive definite for the
Jollowing values of r :
(i) if G is a complex simple Lie group with rank I,

type of G ’ r ” type of G r
A, r<% E, r<5

B B, B r<li—1 E, r<8
C r<‘7—J2’—1 E, r<14

D, r<ll—-2 F, r<4

G, r<1

(i) if G is a real non-compact simple Lie group,

type of G ‘ r ~ type of G r
SL(/, R) r1i2 El r<a
SU*(20) r<i B r<3
SOi(2/+1) r<Min(;—" Z-it) E! <7
S0i(20) r<%<é E2 r<5
Spi(D) r<i<+ Gx ) r<1

B E} r<3 F} B r<2
E2 o r<{2 F2 r<1
E4 r<1

Proof. If G is complex simple we have bgp=1/4 by [7]. And we
know by lemma 2.2 the value of «,. (i) is a direct consequence of these
facts. Next we consider the case of more general symmetric pairs (g, f)
with semi-simple f. If f is of the same rank, we can easily calculate
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the maximal eigenvalue « of Qg, .1, using the method explained in § 3,
and we obtain x=2«, for all cases other than BII, DII, CII and FII.
As for BII, DII, CII and FII, we have «=«x,. If £ is not of the same
rank, the computation of « is very complicated but we know by Lemma
2.1 that (bg,p/7)—2k, >0 implies (beg,p/7)—x_>0. (ii) is an immediate
consequence of these facts.

Using Theorem 4. 1. and Theorem B, we have the following

Corollary. Let G be a non-compact simple Lie group, K a maximal
compact subgroup of G and T be a discrete subgroup of G without non-trivial
element of finite order. Suppose that the quotient space G/U' is compact.
Then the r-th Betti number b,(K\G/I") of a compact lacally symmetric space
K\G/|T equals the r-th Betti number b,(M,) of the compact form M, of
K\G for the values of v which satisfy the condition in Theorem 4.1.

§5. Betti numbers of G/I.

As a corollary of Theorem 4.1, we get

Theorem 5.1. Let G be a connected semi-simple Lie group, each of
whose simple factors is non-compact and not locally isomorphic to any of
SL(2, C), SU'(n), SO'(n), Sp'(n), G¥. Let I' be a discrete subgroup with the
compact quotient space G/T. Then the first Betti number of G|I' vanishes.

Proof. From the results of Matsushima [8] and of [7] and the con-
sideration in §§2 and 3, the quadratic form H of each simple factor of

G is positive definite. Therefore we see from Theorem A in §1 that
b,(G/T)=0.

Theorem 5.2. Let G be a complex simple Lie group with rank ! and
I’ be a discrete subgroup with the compact quotient space G/I'. Let b(G/T)
be the i-th Betti number of G/I'. Then

1) b(G/D)=0, if I>>4 or if G=B,.

@) b(G/T)=2 and b(G/1)=0, if G=A, (>8), B, (>5), C;, (>8),
Dl (1>6), Es; E7’ Es or F4~

(3 b(G/T)=1 or 2 if G=A4A, (>>10); b(G/1)=0 if G=B, (I>>6), C,
({>10), D, (>7), E,, E,, or E,.

Proof. Suppose that I' has elements of finite order. Then we know
in Selberg [10] that there exists a normal subgroup I', of 1" with finite
index which contains no non-trivial element of finite order. Since G/T
is a finite covering of G/I, it is sufficient for b,(G/I)=0 to show that
b,(G/I)=0, Hence we can suppose without loss of generality that I
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contains no non-trivial element of finite order. Let K be a maximal
compact subgroup of G. G/I' is a principal fibre bundle over a compact
locally symmetric space K\G/I' with structure group K. From the
hypothesis for the rank of G and from theorem 4.1, we see b,(K\G/I)
=b,(K)=0 for 0< i< 3, since K is simple. Hence, by Serre [11], the
following exact sequence of real cohomology groups associated to the
above principal bundle is valid for the dimension <(5, since the structure
group K is connected.

6.1 0-H'K\G/I')-H'G/T)— H'K)—> H*K\G/I')— HG/T)
— H¥K)— - H(K\G/I")-> HG/I")— HK)

(i) is a direct consequence of the above facts.

As for (2), we see from the hypothesis for the rank of G b,(K\G/I)
=p,(K)=0, since K is simple (For the Betti numbers of compact simple
Lie groups, see for instance [5], [6]). On the other hand, H*K\G/I")
=H*K)=R. Therefore we get HG/IY"=R+R from (5.1), which
implies (2).

Using the above exact sequence, we know by the similar method
that the later half of (2) and (3) are valid.

Theorem 5.3. Let G be a non-compact real simple Lie group and I’
be a discrete subgroup of G with compact quotient space G/U. Then the
second Betti number b,(G/I) of G/U' equals zero if the type of G is E}
(¢=1,2), Ei (:=1,2,3), E} (:=1,2) or F}, or if G is classical and satisfies
the following conditions :

type of G i l H txpe of G l
SL(/+1, R) 1>6 S0i(20) 1>1>2
SU*(20) 1>6 SO*(20) 1>7
SUi(I+1) Hlsiss Sp(l, R) 1>7
soi(2r+41) | Min(% ’ LN Spi(D) L>i>s

Proof. We can suppose without loss of generality that I' contains
no non-trivial element of finite order. Let K be a maximal compact
subgroup of G. First we consider the case where K\G has no complex
structure. For this case, the first and the second Betti numbers of
compact form M, of K\G equal zero. From the hypothesis on G, we
have b,(K\G/I')=0b,(M,)=0 for 0< i< 3. We have ;(K)=0 for 0< <3,
since K is semi-simple. Therefore we get b,(G/I)=0 by the exact
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sequence (5.1). In the case where K\G has a complex structure, we
know by Matsushima [9] that H(G/1")=0, H*(K\G/1") = H*(M,) =~ R. On
the other hand, we have H*(K)=0. Therefore the exact sequence (5.1)
are valid for the dimension < 3, from which we obtain H*G/I)=0.
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