

Title	On certain quadratic forms related to symmetric riemannian spaces
Author(s)	Kaneyuki, Soji; Nagano, Tadashi
Citation	Osaka Mathematical Journal. 1962, 14(2), p. 241-252
Version Type	VoR
URL	https://doi.org/10.18910/10195
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kaneyuki, S. and Nagano, T.
Osaka Math. J.
14 (1962), 241-252.

ON CERTAIN QUADRATIC FORMS RELATED TO SYMMETRIC RIEMANNIAN SPACES

By

SOJI KANEYUKI and TADASHI NAGANO

In his recent works [8] [9], Matsushima investigates the Betti numbers of a certain type of compact locally symmetric riemannian manifolds and he shows that lower dimensional Betti numbers of such a manifold can be determined if we know that certain quadratic forms are positive definite. In order to verify the last condition, it is sufficient to compute the minimal eigenvalue of a linear transformation Q which is defined in terms of the curvature tensor of the manifold. Let M be the universal covering manifold of the manifold in question. In the case that M is an irreducible symmetric bounded domain in C^n , the eigenvalues of Q were computed by Calabi-Vesentini [4] and Borel [2], and Betti numbers are given by Matsushima himself. In the paper [7], the authors have treated the case that the compact form of M is a group manifold. The purpose of the present paper is to study the eigenvalues of Q for the case which remains to be treated, i. e. the case that M is a non-compact irreducible symmetric riemannian manifold not isomorphic to a bounded domain in C^n . Applying the results of Matsushima, we see that the p -th Betti number b_p of the compact locally symmetric space treated here is equal to that of the compact form of M if the ratio $p/\dim M$ is sufficiently small; in particular, b_1 vanishes in most cases. Our results give also informations about the Betti numbers of G/Γ where G is a semi-simple Lie group without compact simple factors and Γ is a discrete subgroup of G with compact quotient space G/Γ .

It is our pleasure to acknowledge Prof. Y. Matsushima for his valuable suggestions and having given us a chance to read his manuscripts of [8] [9] before publication.

§ 1. Preliminaries.

The notations settled in this section will be used throughout this paper. We denote by \mathfrak{g} a real semi-simple Lie algebra and by $\varphi_{\mathfrak{g}}$ the Killing form of \mathfrak{g} . Let \mathfrak{f} be a subalgebra of \mathfrak{g} . We say that the pair

(g, \mathfrak{k}) is a *symmetric pair*, if the vector space g admits a direct sum decomposition $g = \mathfrak{k} + m$ such that $[\mathfrak{k}, m] \subset m$ and $[m, m] \subset \mathfrak{k}$. By the *symmetric square* $m \vee m$ we mean the vector space of the symmetric tensors belonging to $m \otimes m$. The restriction of φ_g to m is a non-degenerate inner product on m , and this gives rise to non-degenerate inner products on $m \otimes m$ and $m \vee m$, which are denoted by $\langle \cdot, \cdot \rangle_{m \otimes m}$ and $\langle \cdot, \cdot \rangle_{(g, \mathfrak{k})}$ respectively. For brevity we write $\langle \cdot, \cdot \rangle$ instead of $\langle \cdot, \cdot \rangle_{(g, \mathfrak{k})}$. We define a linear endomorphism Q of the tensor space $m \otimes m$ by the formula

$$(1.1) \quad \langle Q(X \otimes Y), Z \otimes U \rangle_{m \otimes m} = \varphi_g([Y, U], [Z, X])$$

for any $X, Y, Z, U \in m$. The subspace $m \vee m$ is stable under Q , and we shall denote also by Q the restriction of Q to $m \vee m$. It is obvious that Q is a self-adjoint operator on $m \vee m$ with respect to the inner product $\langle \cdot, \cdot \rangle$. Now, following Matsushima [9], we define a quadratic forms H^r ($r = 1, 2, \dots$) on $m \vee m$ by putting

$$(1.2) \quad H^r(\xi) = \frac{b_{(g, \mathfrak{k})}}{r} \langle \xi, \xi \rangle + \langle Q\xi, \xi \rangle$$

for any $\xi \in m \vee m$, where

$$(1.3) \quad 2b_{(g, \mathfrak{k})} = \min_{X \in \mathfrak{k}} \{1 + \varphi_{\mathfrak{k}}(X, X); \varphi_g(X, X) = -1\}$$

and $\varphi_{\mathfrak{k}}$ is the Killing form of \mathfrak{k} . Matsushima [8] defines also a quadratic form H on $m \vee m$ which coincides with H^1 in the case that g is non-compact simple and \mathfrak{k} is a compact semi-simple Lie algebra. In the following, we shall write Q , H^r , H also as $Q_{(g, \mathfrak{k})}$, $H^r_{(g, \mathfrak{k})}$, $H_{(g, \mathfrak{k})}$ respectively; if g is a non-compact simple Lie algebra, \mathfrak{k} means always the subalgebra corresponding to a maximal compact subgroup of the adjoint group of g . The theorems of Matsushima are now stated as follows :

Theorem A ([8] Theorem 1). *Let G be a semi-simple Lie group, all of whose simple factors are non-compact. Suppose that, for each simple factor G_i of G , the quadratic form $H_{(g_i, \mathfrak{k}_i)}$ associated to the Lie algebra g_i of G_i is positive definite. Let Γ be a discrete subgroup of G with compact quotient space G/Γ . Then the first Betti number of G/Γ is equal to 0.*

Theorem B ([9] Theorem 1 and §9). *Let M be a simply connected, irreducible symmetric riemannian manifold which is non-compact and non-euclidean. Let G be the identity component of the group of all isometries of M . Let Γ be a discrete subgroup of G with compact quotient G/Γ and without element of finite order different from the identity, so that Γ is a*

discontinuous group of isometries of M with compact quotient M/Γ . Let M_u be the compact form of M . If the quadratic form $H'_{(g, \mathfrak{k})}$ is positive definite, then the r -th Betti number b_r of M/Γ is equal to the r -th Betti number $b_r(M_u)$ of M_u .

We shall see when the quadratic forms $H_{(g, \mathfrak{k})}$ and $H'_{(g, \mathfrak{k})}$ are positive definite for a real non-compact simple Lie algebra g . In the case that the center of \mathfrak{k} is not trivial, this question is already discussed by Matsushima [8] [9]. We shall therefore confine ourselves to the case that the center of \mathfrak{k} reduces to (0) so that \mathfrak{k} is a compact semi-simple algebra. We know that $H=H^1$ in this case. Thus our results on H' , given in §4, are sufficient to apply Theorems A and B for this case.

In order that the quadratic form H' is positive definite, it is necessary and sufficient that the absolute value of the minimal eigenvalue of Q is strictly smaller than $\frac{b_{(g, \mathfrak{k})}}{r}$. Now, under the assumption that g is non-compact simple and \mathfrak{k} is semi-simple, the value $b_{(g, \mathfrak{k})}$ is computed as follows :

(a) If \mathfrak{k} is simple, then we have by [8]

$$(1.4) \quad b_{(g, \mathfrak{k})} = \frac{\dim \mathfrak{m}}{4 \dim \mathfrak{k}}$$

(b) When \mathfrak{k} is semi-simple and has the same rank as g ,

$$(1.5) \quad 2b_{(g, \mathfrak{k})} = \text{Min} \{1 - \varphi_g(\alpha_g, \alpha_g)/\varphi_{\mathfrak{k}}(\alpha_k, \alpha_k); \alpha \text{ is a root of } \mathfrak{k}^c\}$$

where α_g or α_k is the contravariant representative of α with respect to the Killing form of g or \mathfrak{k} respectively.

(c) (A_3, D_2) and $(D_l, B_q \times B_{l-q-1})$ are the only symmetric pairs for which \mathfrak{k} is semi-simple and is not of the same rank as g . One finds

$$(1.6) \quad \begin{aligned} 2b &= \frac{3}{4} \quad \text{for } (g, \mathfrak{k}) = (A_3, D_2) \\ 2b &= \frac{p}{2(l-1)} \quad \text{for } (g, \mathfrak{k}) = (D_l, B_q \times B_{l-q-1}), \quad \text{and } p < l, \end{aligned}$$

where $p=2q+1$

§ 2. Relation with the group manifold.

Given a symmetric pair (g, \mathfrak{k}) with non-compact simple g and compact \mathfrak{k} , we wish to compare the minimal eigenvalue of $Q_{(g, \mathfrak{k})}$ with that of Q for symmetric pair $(g_u \times g_u, g_u)$. Let $g=\mathfrak{k}+\mathfrak{m}$ be the Cartan decomposi-

tion. Denoting by g^c the complexification of g , the space $g_u = \mathfrak{k} + \sqrt{-1}m$ is also a compact simple subalgebra of g^c . The pair (g_u, \mathfrak{k}) is also a symmetric pair, the *compact form* of (g, \mathfrak{k}) . By an obvious identification $\sqrt{-1}m \vee \sqrt{-1}m = m \vee m$, one obtains the equality $Q_{(g_u, \mathfrak{k})} = -Q_{(g_u, \mathfrak{k})}$ directly from the definition (1.1). In order to verify that $H'_{(g, \mathfrak{k})}$ is positive definite it is thus sufficient to show that $b_{(g, \mathfrak{k})}/r$ is strictly greater than the maximal eigenvalue of $Q_{(g_u, \mathfrak{k})}$. Let σ be the injective homomorphism of g_u into $g_u \times g_u$ defined by $\sigma(X) = (X, X)$ for any $X \in g_u$. We define another injection $\tau: g_u \rightarrow g_u \times g_u$ by $\tau(X) = (X, -X)/\sqrt{2}$; τ is isometric with respect to the Killing forms. The pair $(g_u \times g_u, \sigma(g_u))$, briefly denoted by u , is a symmetric pair with the Cartan decomposition $g_u \times g_u = \sigma(g_u) + \tau(g_u)$.

Lemma 2.1. *The notations being as above, if κ (resp. κ_u) is the maximal eigenvalue of $Q_{(g_u, \mathfrak{k})}$ (resp. Q_u), then we have the inequality: $\kappa \leq 2\kappa_u$*

Proof. If $\tau \vee \tau: g_u \vee g_u \rightarrow \tau(g_u) \vee \tau(g_u)$ denotes the mapping naturally induced by τ and if π denotes the orthogonal projection of $(\tau \vee \tau)(g_u \vee g_u)$ onto $(\tau \vee \tau)(m \vee m)$ then one obtains

$$\pi \cdot Q_u \cdot (\tau \vee \tau) = \frac{1}{2} (\tau \vee \tau) Q_{(g_u, \mathfrak{k})}$$

In fact, one has

$$\begin{aligned} & 2\langle Q_u(\tau(X) \vee \tau(X)), \tau(Y) \vee \tau(Y) \rangle_u \\ &= 2\varphi_{g_u \times g_u}([\tau(X), \tau(Y)], [\tau(Y), \tau(X)]) \\ &= \varphi_{g_u \times g_u}(\tau([X, Y]), \tau([Y, X])) \\ &= \varphi_{g_u}([X, Y], [Y, X]) \\ &= \langle Q_{(g_u, \mathfrak{k})}(X \vee X), Y \vee Y \rangle_{(g_u, \mathfrak{k})} \\ &= \langle (\tau \vee \tau) \cdot Q_{(g_u, \mathfrak{k})}(X \vee X), \tau(Y) \vee \tau(Y) \rangle_u \end{aligned}$$

for any $X, Y \in m$. For any eigenvector ξ of $Q_{(g_u, \mathfrak{k})}$ corresponding to κ , one therefore finds

$$\begin{aligned} & 2\kappa_u \langle \xi, \xi \rangle_{(g_u, \mathfrak{k})} = 2\kappa_u \langle (\tau \vee \tau)(\xi), (\tau \vee \tau)(\xi) \rangle_u \\ & \geq 2\langle Q_u((\tau \vee \tau)(\xi)), (\tau \vee \tau)(\xi) \rangle_u \\ &= \langle Q_{(g_u, \mathfrak{k})}(\xi), \xi \rangle_{(g_u, \mathfrak{k})} = \langle \kappa \xi, \xi \rangle_{(g_u, \mathfrak{k})} = \kappa \langle \xi, \xi \rangle_{(g_u, \mathfrak{k})} \end{aligned}$$

Lemma 2.2. *The number $2\kappa_u$ in lemma 2.1 equals $\varphi_{g_u}(\vartheta, \vartheta)$ where ϑ is the highest root of g_u*

For the proof, see [7].

It follows from the above arguments that $H_{(g, \mathfrak{k})}$ is positive definite if $b_{(g, \mathfrak{k})} > \varphi_{g_u}(\vartheta, \vartheta)$. The table I gives the values $b_{(g, \mathfrak{k})}$ and $\varphi_{g_u}(\vartheta, \vartheta)$ for all symmetric pairs (g, \mathfrak{k}) with non-compact simple g and compact semi-simple \mathfrak{k} . We get then.

Lemma 2.3. *The quadratic form $H_{(g, \mathfrak{k})}$ is positive definite for all (g_u, \mathfrak{k}) except for the cases AII ($l=2, 3$), BII, DII, CII ($p=1, 2$), GI, or FII.*

Table I.

	(g_u, \mathfrak{k})	$b_{(g, \mathfrak{k})}$	$2\kappa_u = \varphi_{g_u}(\vartheta, \vartheta)$
A I	$(A_l, B_{l/2})$ $(A_l, D_{(l+1)/2})$	$\begin{cases} l \geq 2 \\ l \geq 3 \end{cases}$	$(l+3)/4(l+1)$
A II	(A_{2l-1}, C_l)		$(l-1)/4l$
B I	$(B_l, D_p \times B_{l-p})$	$l-1 \geq p \geq 2$	$\text{Min} \left(\frac{p}{2l-1}, \frac{2l-2p+1}{2(2l-1)} \right)$
D I	$(D_l, D_p \times D_{l-p})$	$l \geq 2, p \geq 4$	$p/2(l-1)$
	$(D_l, B_p \times B_{l-p-1})$	$l-1 \geq 2, p \geq 2$	$(2p+1)/4(l-1)$
B II	(B_l, D_l)		$1/2(2l-1)$
D II	(D_l, B_{l-1})		$1/4(l-1)$
C II	$(C_l, C_p \times C_{l-p})$	$2p \leq l$	$p/2(l+1)$
E I	(E_6, C_4)		$7/24$
E II	$(E_6, A_1 \times A_5)$		$1/4$
E IV	(E_6, F_4)		$1/8$
E V	(E_7, A_7)		$5/18$
E VI	$(E_7, A_1 \times D_6)$		$2/9$
E VIII	(E_8, D_8)		$4/15$
E IX	$(E_8, A_1 \times E_7)$		$1/5$
G I	$(G_2, A_1 \times A_1)$		$1/4$
F I	$(F_4, A_1 \times C_3)$		$5/18$
F II	(F_4, B_4)		$1/9$

§ 3. The exceptional cases

In this section we shall determine the eigenvalues of $Q_{(g, \mathfrak{k})}$ for the exceptional cases in lemma 2.3 by the method employed in [7]. Given a symmetric pair (g, \mathfrak{k}) , we write ρ for the linear isotropy representation

$\rho(X)=ad(X)|\mathfrak{m}$, $X \in \mathfrak{k}$. We may extend ρ and Q to a representation of \mathfrak{k}^c on \mathfrak{m}^c and to an endomorphism of $\mathfrak{m}^c \vee \mathfrak{m}^c$ respectively, which will be denoted by the same letters. Q commutes with $\rho \vee \rho$, the restriction of $\rho \otimes \rho$ to $\mathfrak{m}^c \vee \mathfrak{m}^c$. Let $\rho \vee \rho = \rho_1 + \dots + \rho_s$ be the decomposition of $\rho \vee \rho$ into irreducible representations. The highest weights $\Lambda_{(i)}$ of ρ_i are assumed to be in the order $\Lambda_{(i)} > \dots > \Lambda_{(s)}$ with respect to some ordering: this assumption will be satisfied in the following cases. Each subspace W_i of $\mathfrak{m}^c \vee \mathfrak{m}^c$ spanned by the weight vectors of $\Lambda_{(i)}$ is stable under Q . We write $(TrQ)_i$ for the trace of Q restricted to W_i . We know in [7] that Q is represented by a scalar matrix in the irreducible invariant subspace of $\mathfrak{m}^c \vee \mathfrak{m}^c$ corresponding to ρ_i . If κ_i denote the unique eigenvalue of Q restricted to the subspace, then

$$(3.1) \quad (TrQ)_i = \sum_{1 \leq j \leq i} m_j(\Lambda_{(i)}) \kappa_j;$$

where $m_j(\Lambda_{(i)})$ is the multiplicity of the weight $\Lambda_{(i)}$ in ρ_j .

$$(3.1)' \quad m_1(\Lambda_{(1)}) = 1 \text{ and so } (TrQ)_1 = \kappa_1.$$

Moreover, if \mathfrak{g} is compact simple, which will be the case in the sequel, one has

$$(3.2) \quad TrQ = (\dim \mathfrak{m})/4, \dim \mathfrak{m} = \dim \mathfrak{g} - \dim \mathfrak{k},$$

(3.3) $-1/2$ is an eigenvalue with multiplicity one of Q . These formulas (3.1) to (3.3) are given in [7] and will be used to compute the eigenvalues of Q . Hereafter a representation and its highest weight will be denoted by the same letter.

(I) The case of $A\text{II}$: $(\mathfrak{g}_u, \mathfrak{k}) = (A_{2l-1}, C_l)$ $l \geq 2$

First we try to find the highest weight of ρ and its weight vector: For an arbitrary square matrix X of degree $2l$, we divide X into four parts

$$X = \begin{pmatrix} A_X & B_X \\ C_X & D_X \end{pmatrix}$$

where A_X, B_X, C_X, D_X are square matrices with complex coefficients of degree l . \mathfrak{g}^c is the Lie algebra $\mathfrak{sl}(2l, \mathbf{C}) = \{X; Tr(A_X + D_X) = 0\}$. If J denotes a $(2l, 2l)$ -matrix such that $A_J = D_J = 0$ and $B_J = -C_J = E$ (= the unit matrix), \mathfrak{k}^c is $\{X \in \mathfrak{sl}(2l, \mathbf{C}); {}^t X J + J X = 0\}$. Hence the orthogonal complement \mathfrak{m}^c of \mathfrak{k}^c consists of the matrices Y such that ${}^t Y J - J Y = 0$, or equivalently, such that B_Y, C_Y are skew-symmetric matrices and one has ${}^t A_Y = D_Y$. An element X of \mathfrak{k}^c operates on \mathfrak{m}^c by $Y \in \mathfrak{m}^c \rightarrow \rho(X)Y = [X, Y] = XY - YX$. On the other hand, the identity representation of \mathfrak{k}^c operating

on \mathbf{C}^{2l} naturally induces a representation ρ' on $\mathbf{C}^{2l} \wedge \mathbf{C}^{2l}$ which we take as the space of skew-symmetric matrices of degree $2l$; $\rho'(X)Z = XZ + Z^t X$, Z skew-symmetric. $\rho'(\mathfrak{f}^c)$ leaves J invariant, and ρ' is irreducible on the space \mathfrak{n} of skew-symmetric matrices which are orthogonal to J . This irreducible representation, denoted also by ρ' , has the highest weight $\Lambda_2 = \lambda_1 + \lambda_2$ if a Cartan subalgebra of \mathfrak{f}^c consists of diagonal matrices, H , and a base (H_i) is so chosen that $H = \sum \lambda_i H_i$ in case that the (i, i) -element of A_H is λ_i . If $\alpha(Y)$ denotes the skew-symmetric matrix $-YJ$ for any Y in \mathfrak{m}^c , $\alpha: \mathfrak{m}^c \rightarrow \mathfrak{n}$ is an isomorphism of \mathfrak{f}^c -modules. Thus the highest weight of ρ is also Λ_2 , as was shown by E. Cartan. Let $e_i = (0, \dots, 1, \dots, 0)$ be the element of \mathbf{C}^{2l} whose elements are all zero except that the i -th equals one, and $W \in \mathfrak{n}$ be the skew-symmetric matrix corresponding to $e_1 \wedge e_2$, or equivalently such that $A_W = E_{12} - E_{21}$ and B_W, C_W , and D_W are zeros. Then W and therefore WJ is clearly the weight vector corresponding to Λ_2 . For brevity we write X for WJ . The transposed $'X$ is a weight vector of $-\Lambda_2$. By (3.1)', we obtain $\kappa_1 = (TrQ)_1 = \langle Q(X \otimes X), 'X \otimes 'X \rangle / \langle X \otimes X, 'X \otimes 'X \rangle$, which is computed with (1.1). Thus we find

$$\kappa_1 = \varphi_{\mathfrak{g}^c}([X, 'X], ['X, X]) / \varphi_{\mathfrak{g}^c}(X, 'X)^2 = 1/4l$$

With the method in [7], $\Lambda_2 \vee \Lambda_2$ turns out to be decomposed into two (resp. three) irreducible representations for $l=2$ (resp. 3). This fact, combined with (3.1) to (3.3), gives the eigenvalues of Q . Assume $l=3$, for instance. The three irreducible components of $\Lambda_2 \vee \Lambda_2$ are $2\Lambda_2$, Λ_2 and Λ_0 (=the trivial representation of degree 1). The degree of $2\Lambda_2$ and Λ_2 are 90 and 14 respectively. Hence we have $7/2 = \dim \mathfrak{m}^c/4 = TrQ = 90\kappa_1 + 14\kappa_2 + \kappa_3$, where $\kappa_1 = 1/12$ as above and $\kappa_3 = -1/2$ by (3.3). This shows $\kappa_2 = -1/4$. So κ_1 is the largest eigenvalue of Q (as in the other cases). Since $b_{(\mathfrak{g}, \mathfrak{f})}$ equals 1/6, for $(\mathfrak{g}, \mathfrak{f})$ whose compact form is (A_5, C_3) , $b_{(\mathfrak{g}, \mathfrak{f})}$ exceeds κ_1 and eventually $H_{(\mathfrak{g}, \mathfrak{f})}$ is positive definite in this case.

(II) The case of CII : $(\mathfrak{g}_u, \mathfrak{f}) = (C_l, C_p \times C_{l-p})$ ($p=1, 2$). ρ is $\Lambda_1(C_p) \otimes \Lambda_1(C_{l-p})$ and $\rho \vee \rho$ decomposed into the irreducible components shown in the first column of the following table.

$2\Lambda_1(C_p) \otimes 2\Lambda_1(C_{l-p})$	$\kappa_1 = 1/2(l+1)$
$\Lambda_2(C_p) \otimes \Lambda_2(C_{l-p})$	$\kappa_2 = -1/2(l+1)$
$\Lambda_0(C_p) \otimes \Lambda_2(C_{l-p})$	$\kappa_3 = -(p+1)/2(l+1)$
$\Lambda_2(C_p) \otimes \Lambda_0(C_{l-p})$	$\kappa_4 = -(l-p+1)/2(l+1)$
$\Lambda_0(C_p) \otimes \Lambda_0(C_{l-p})$	$\kappa_5 = -1/2$

For $p=1$, $-1/2(l+1)$ and $-(l+p+1)/2(l+1)$ must be omitted. Since $b_{(g, \mathfrak{k})}=1/2(l+1)$ for $p=1$ and $b_{(g, \mathfrak{k})}=1/(l+1)$ for $p=2$, we see that $H_{(g, \mathfrak{k})}$ is non-negative but not positive definite for $p=1$ and positive definite for $p=2$.

(III) The case of $GI:(g_u, \mathfrak{k})=(G_2, A_1 \times A_1)$

$$\begin{aligned}\rho &= \Lambda_1(A_1) \otimes 3\Lambda_1(A_1) \\ \rho \vee \rho &= 2\Lambda_1 \otimes 6\Lambda_1 + 2\Lambda_1 \otimes 2\Lambda_1 + \Lambda_0 \otimes 4\Lambda_1 + \Lambda_0 \otimes \Lambda_0\end{aligned}$$

and the eigenvalues of $Q_{(g_u, \mathfrak{k})}$ are $1/4, -1/6, -1/4, -1/2$. Hence $H_{(g, \mathfrak{k})}$ is non-negative but not positive definite.

(IV) The case of $FII:(g_u, \mathfrak{k})=(F_4, B_4)$

$$\begin{aligned}\rho &= \Lambda_4(B_4) \\ \rho \vee \rho &= 2\Lambda_4 + \Lambda_1 + \Lambda_0\end{aligned}$$

The eigenvalues of Q are $1/18, -5/18, -1/2$. Therefore $H_{(g, \mathfrak{k})}$ is positive definite.

(V) The case of $BDII:(g_u, \mathfrak{k})=(B_l, D_l)$ or (D_l, B_{l-1}) . The symmetric Riemannian space $BDII$ is of the constant negative curvature. Since $AII(l=2)=A_3/C_2=D_3/B_2$, $AII(l=2)$ is contained in this case. If $\dim(BDII)=n$, we know $b_{(g, \mathfrak{k})}=1/2(n-1)$ from Table I. On the other hand, the curvature tensor of the space of constant curvature is given by

$$R_{ijkl} = K(g_{ii}g_{jk} - g_{ik}g_{ji})$$

From this relation and the fact that the Ricci tensor is $(-1/2)$ -times metric tensor, we have $K=\frac{1}{2(n-1)}$. Therefore we see from the definition of $Q_{(g, \mathfrak{k})}$ that

$$\begin{aligned}H_{(g, \mathfrak{k})}(\xi) &= \frac{1}{2(n-1)} \sum_{i,l} \xi_{il} \xi^{il} + \frac{1}{2(n-1)} \left[\left(\sum_{i,l} g_{il} \xi^{il} \right)^2 - \sum_{i,l} \xi_{il} \xi^{il} \right] \\ &= \frac{1}{2(n-1)} \left(\sum_{i,l} g_{il} \xi^{il} \right)^2\end{aligned}$$

Hence $H_{(g, \mathfrak{k})}$ is non-negative but not positive definite.

REMARK. For each symmetric pair (g_u, \mathfrak{k}) such that g_u is simple and \mathfrak{k} is of the same rank and semi-simple or simple, the system of the fundamental roots of \mathfrak{k}^c is obtained from the diagram of the fundamental

simplex of g_u^c by omitting a vertex which we denote by the black vertex (cf. Borel-Siebenthal [3]). We can check case by case that the highest weight of the linear isotropy representation of \mathfrak{k}^c coincides with the root $-\alpha$ where α is the root which corresponds to the black vertex.

§ 4. The Main Theorem.

In the following, we shall use the notation set down by Berger [1] for each simple Lie group.

Theorem 4.1. *The quadratic form $H'_{(g, \mathfrak{k})}$ is positive definite for the following values of r :*

(i) *if G is a complex simple Lie group with rank l ,*

type of G	r	type of G	r
A_l	$r < \frac{l+1}{2}$	E_6	$r \leq 5$
B_l	$r \leq l-1$	E_7	$r \leq 8$
C_l	$r < \frac{l+1}{2}$	E_8	$r \leq 14$
D_l	$r \leq l-2$	F_4	$r \leq 4$
		G_2	$r \leq 1$

(ii) *if G is a real non-compact simple Lie group,*

type of G	r	type of G	r
$SL(l, \mathbf{R})$	$r < \frac{l+2}{4}$	E_7^1	$r \leq 4$
$SU^*(2l)$	$r < \frac{l-1}{2}$	E_7^2	$r \leq 3$
$SO^i(2l+1)$	$r < \text{Min} \left(\frac{i}{2}, \frac{2l-i+1}{2} \right)$	E_8^1	$r \leq 7$
$SO^i(2l)$	$r < \frac{i}{2} \leq \frac{l}{2}$	E_8^2	$r \leq 5$
$Sp^i(l)$	$r < i \leq \frac{l}{2}$	G_2^*	$r < 1$
E_6^1	$r \leq 3$	F_4^1	$r \leq 2$
E_6^2	$r \leq 2$	F_4^2	$r \leq 1$
E_6^4	$r \leq 1$		

Proof. If G is complex simple we have $b_{(g, \mathfrak{k})} = 1/4$ by [7]. And we know by lemma 2.2 the value of κ_u . (i) is a direct consequence of these facts. Next we consider the case of more general symmetric pairs (g, \mathfrak{k}) with semi-simple \mathfrak{k} . If \mathfrak{k} is of the same rank, we can easily calculate

the maximal eigenvalue κ of $Q_{(g_u, \mathfrak{k})}$, using the method explained in § 3, and we obtain $\kappa=2\kappa_u$ for all cases other than *BII*, *DII*, *CII* and *FII*. As for *BII*, *DII*, *CII* and *FII*, we have $\kappa=\kappa_u$. If \mathfrak{k} is not of the same rank, the computation of κ is very complicated but we know by Lemma 2.1 that $(b_{(g, \mathfrak{k})}/r)-2\kappa_u > 0$ implies $(b_{(g, \mathfrak{k})}/r)-\kappa > 0$. (ii) is an immediate consequence of these facts.

Using Theorem 4.1. and Theorem B, we have the following

Corollary. *Let G be a non-compact simple Lie group, K a maximal compact subgroup of G and Γ be a discrete subgroup of G without non-trivial element of finite order. Suppose that the quotient space G/Γ is compact. Then the r -th Betti number $b_r(K \setminus G/\Gamma)$ of a compact locally symmetric space $K \setminus G/\Gamma$ equals the r -th Betti number $b_r(M_u)$ of the compact form M_u of $K \setminus G$ for the values of r which satisfy the condition in Theorem 4.1.*

§ 5. Betti numbers of G/Γ .

As a corollary of Theorem 4.1, we get

Theorem 5.1. *Let G be a connected semi-simple Lie group, each of whose simple factors is non-compact and not locally isomorphic to any of $SL(2, \mathbf{C})$, $SU^1(n)$, $SO^1(n)$, $Sp^1(n)$, G_2^* . Let Γ be a discrete subgroup with the compact quotient space G/Γ . Then the first Betti number of G/Γ vanishes.*

Proof. From the results of Matsushima [8] and of [7] and the consideration in §§ 2 and 3, the quadratic form H of each simple factor of G is positive definite. Therefore we see from Theorem A in § 1 that $b_1(G/\Gamma)=0$.

Theorem 5.2. *Let G be a complex simple Lie group with rank l and Γ be a discrete subgroup with the compact quotient space G/Γ . Let $b_i(G/\Gamma)$ be the i -th Betti number of G/Γ . Then*

- (1) $b_2(G/\Gamma)=0$, if $l \geq 4$ or if $G=B_3$.
- (2) $b_3(G/\Gamma)=2$ and $b_4(G/\Gamma)=0$, if $G=A_l$ ($l \geq 8$), B_l ($l \geq 5$), C_l ($l \geq 8$), D_l ($l \geq 6$), E_6 , E_7 , E_8 or F_4 .
- (3) $b_5(G/\Gamma)=1$ or 2 if $G=A_l$ ($l \geq 10$); $b_5(G/\Gamma)=0$ if $G=B_l$ ($l \geq 6$), C_l ($l \geq 10$), D_l ($l \geq 7$), E_6 , E_7 , or E_8 .

Proof. Suppose that Γ has elements of finite order. Then we know in Selberg [10] that there exists a normal subgroup Γ_0 of Γ with finite index which contains no non-trivial element of finite order. Since G/Γ_0 is a finite covering of G/Γ , it is sufficient for $b_r(G/\Gamma)=0$ to show that $b_r(G/\Gamma_0)=0$. Hence we can suppose without loss of generality that Γ

contains no non-trivial element of finite order. Let K be a maximal compact subgroup of G . G/Γ is a principal fibre bundle over a compact locally symmetric space $K\backslash G/\Gamma$ with structure group K . From the hypothesis for the rank of G and from theorem 4.1, we see $b_i(K\backslash G/\Gamma) = b_i(K) = 0$ for $0 < i < 3$, since K is simple. Hence, by Serre [11], the following exact sequence of real cohomology groups associated to the above principal bundle is valid for the dimension ≤ 5 , since the structure group K is connected.

$$(5.1) \quad 0 \rightarrow H^1(K\backslash G/\Gamma) \rightarrow H^1(G/\Gamma) \rightarrow H^1(K) \rightarrow H^2(K\backslash G/\Gamma) \rightarrow H^2(G/\Gamma) \\ \rightarrow H^2(K) \rightarrow \cdots \rightarrow H^5(K\backslash G/\Gamma) \rightarrow H^5(G/\Gamma) \rightarrow H^5(K)$$

(i) is a direct consequence of the above facts.

As for (2), we see from the hypothesis for the rank of G $b_4(K\backslash G/\Gamma) = b_4(K) = 0$, since K is simple (For the Betti numbers of compact simple Lie groups, see for instance [5], [6]). On the other hand, $H^3(K\backslash G/\Gamma) \cong H^3(K) \cong \mathbf{R}$. Therefore we get $H^3(G/\Gamma) \cong \mathbf{R} + \mathbf{R}$ from (5.1), which implies (2).

Using the above exact sequence, we know by the similar method that the later half of (2) and (3) are valid.

Theorem 5.3. *Let G be a non-compact real simple Lie group and Γ be a discrete subgroup of G with compact quotient space G/Γ . Then the second Betti number $b_2(G/\Gamma)$ of G/Γ equals zero if the type of G is E_6^i ($i=1,2$), E_7^i ($i=1, 2, 3$), E_8^i ($i=1,2$) or F_4^1 , or if G is classical and satisfies the following conditions :*

type of G	l	type of G	l
$SL(l+1, \mathbf{R})$	$l \geq 6$	$SO^i(2l)$	$\frac{l}{2} \geq \frac{i}{2} > 2$
$SU^*(2l)$	$l \geq 6$	$SO^*(2l)$	$l \geq 7$
$SU^i(l+1)$	$\frac{l+1}{2} \geq i \geq 5$	$Sp(l, \mathbf{R})$	$l \geq 7$
$SO^i(2l+1)$	$\text{Min} \left(\frac{i}{2}, \frac{2l+1-i}{2} \right) > 2$	$Sp^i(l)$	$\frac{l}{2} \geq i \geq 3$

Proof. We can suppose without loss of generality that Γ contains no non-trivial element of finite order. Let K be a maximal compact subgroup of G . First we consider the case where $K\backslash G$ has no complex structure. For this case, the first and the second Betti numbers of compact form M_u of $K\backslash G$ equal zero. From the hypothesis on G , we have $b_i(K\backslash G/\Gamma) = b_i(M_u) = 0$ for $0 < i < 3$. We have $b_i(K) = 0$ for $0 < i < 3$, since K is semi-simple. Therefore we get $b_2(G/\Gamma) = 0$ by the exact

sequence (5.1). In the case where $K \setminus G$ has a complex structure, we know by Matsushima [9] that $H^1(G/\Gamma) = 0$, $H^2(K \setminus G/\Gamma) \cong H^2(M_u) \cong \mathbf{R}$. On the other hand, we have $H^2(K) = 0$. Therefore the exact sequence (5.1) are valid for the dimension < 3 , from which we obtain $H^2(G/\Gamma) = 0$.

OSAKA UNIVERSITY
UNIVERSITY OF TOKYO

(Received August 8, 1962)

Bibliography

- [1] M. Berger: *Les espaces symétriques non compacts*, Ann. Sci. École Norm. Sup. **74** (1957), 85–177.
- [2] A. Borel: *On the curvature tensor of the hermitian symmetric manifolds*, Ann. of Math., **71** (1960), 508–521.
- [3] A. Borel and J. Siebenhaar: *Les sous-groupes fermés de rang maximum des groupes de Lie clos*, Comm. Math. Helv. **23** (1949), 200–221.
- [4] E. Calabi and E. Vesentini: *On compact locally symmetric kähler manifolds*, Ann. of Math. **71** (1960), 472–507.
- [5] C. Chevalley: *The Betti numbers of the exceptional simple Lie groups*, Proc. Internat. Congress Math. Cambridge, Mass., 1950, Vol. 2, 21–24.
- [6] H. Samelson: *Topology of Lie groups*, Bull. Amer. Math. Soc. **58** (1952), 2–37.
- [7] S. Kaneyuki and T. Nagano: *On the first Betti numbers of compact quotient spaces of complex semi-simple Lie groups by discrete subgroups*, Sci. Papers Coll. Gen. Ed. Univ. Tokyo. **12** (1962), 1–11.
- [8] Y. Matsushima: *On the first Betti number of compact quotient spaces of higher-dimensional symmetric spaces*, Ann. of Math. **75** (1962), 312–330.
- [9] Y. Matsushima: *On Betti numbers of compact, locally symmetric Riemannian manifolds*, Osaka Math. J. **14** (1962), 1–20.
- [10] A. Selberg: *On discontinuous groups in higher-dimensional symmetric space*, Proceedings of Bombay Conference on Analytic Functions 1960.
- [11] J. P. Serre: *Homologie singulière des espaces fibrés*, Ann. of Math. **54** (1951), 425–505.