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Quantum Monte Carlo integration (QMCI) is a quantum algorithm to estimate expectations of random
variables, with applications in various industrial fields such as financial derivative pricing. When QMCI is
applied to expectations concerning a stochastic process X (t ), e.g., an underlying asset price in derivative pricing,
the quantum circuit UX (t ) to generate the quantum state encoding the probability density of X (t ) can have a large
depth. With time discretized into N points, using state-preparation oracles for the transition probabilities of X (t ),
the state preparation for X (t ) results in a depth of O(N ), which may be problematic for large N . Moreover, if
we estimate expectations concerning X (t ) at N time points, the total query complexity scales on N as O(N2),
which is worse than the O(N ) complexity in the classical Monte Carlo method. In this paper, to improve this,
we propose a method to divide UX (t ) based on orthogonal-series-density estimation. This approach involves
approximating the densities of X (t ) at N time points with orthogonal series, where the coefficients are estimated
as expectations of the orthogonal functions by QMCI. By using these approximated densities, we can estimate
expectations concerning X (t ) by QMCI without requiring deep circuits. Our error and complexity analysis shows
that to obtain the approximated densities at N time points, our method achieves the circuit depth and total query
complexity scaling as O(

√
N ) and O(N3/2), respectively.

DOI: 10.1103/PhysRevA.111.042431

I. INTRODUCTION

Quantum Monte Carlo integration (QMCI) [1] built upon
quantum amplitude estimation (QAE) [2] is a prominent quan-
tum algorithm to estimate expectations of random variables.
For an estimation with accuracy ε, it runs with O(1/ε) query
complexity, showing a quadratic speedup compared to the
classical counterpart with complexity O(1/ε2). One reason for
its prominence is that it has the potential to provide quantum
advantages in practical problems in science and industry. For
example, applications of QMCI to finance, especially financial
derivative pricing, are widely investigated [3–9]. In addition,
its applications are considered in various fields including
statistical physics [1,10], lattice gauge theory [11], nuclear
physics [12], and machine learning [13–17].

In many use cases of Monte Carlo integration, whether
classical or quantum, we run the time evolution of a stochastic
process X (t ). For example, in derivative pricing, we evolve
underlying asset prices because the derivative price is given
as an expectation concerning the asset prices at a future time.
This paper focuses on such time evolution on a quantum
computer.

Let us suppose that we evolve X (t ) from t = 0 to t =
T to calculate an expectation concerning X (T ). We set the
discretized time points t0 = 0, t1, . . . , tN = T with a small in-
terval and evolve X (t ) with the transition probability densities
pi between X (ti ) and X (ti+1). To run QMCI, we construct
the quantum circuits Upi that encode pi into quantum states
and combine them in sequence, yielding an oracle UX (tN ) to

*Contact author: miyamoto.kouichi.qiqb@osaka-u.ac.jp

generate a quantum state | fX (tN )〉 that encodes the probability
density fX (tN ) of X (tN ) in the amplitudes. The oracle UX (tN )

obviously has O(N ) circuit depth and when it is used in QMCI
iteratively, the total depth of the quantum circuit becomes
O(N/ε). This depth growth in N , along with the dependence
on ε, may make it challenging to run long time evolutions in
QMCI with high accuracy, especially in the early stages of
fault-tolerant quantum computers (FTQCs).

There is another issue when we estimate multiple ex-
pectations related to X (t1), . . . , X (tN ), the values of X (t )
at different times. If we naively perform individual runs of
QMCI, each of which uses UX (ti ) O(1/ε) times, the total
number of queries to {Upi}i becomes O(N2/ε). This quadratic
scaling on N is worse than the classical Monte Carlo method:
In the classical way, we store many realizations of X (ti ) in
memory and use them to calculate the expectation concerning
X (ti ) and also as initial values for time evolution after ti, which
leads to the total complexity scaling on N as O(N ). Worse
scaling on N in the quantum setting has already been pointed
out in [8], which considers expectation estimation at multiple
times in optimal stopping problems.

Motivated by these issues, in this paper we propose a way
to divide the time evolution oracle UX (tN ) based on orthogonal-
series-density estimation (OSDE) [18]. Orthogonal-series-
density estimation is a numerical technique to approximate
unknown probability density functions with orthogonal func-
tion series.1 The idea is that at each time, we save the density
fi of X (ti ) as an orthogonal series. The coefficient of a basis

1For another OSDE-based quantum algorithm for financial risk
aggregation, see [19].
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function Pl in the orthogonal series approximation of fi is
given via the expectation of Pl (X (ti )). Therefore, we conceive
the following procedure. Using QMCI with Up0 , we estimate
the expectations of the basis functions and get an orthogo-
nal series approximation f̂1 of f1. Then, by combining the
quantum circuit U SP

f̂1
to generate a state encoding f̂1 with Up1 ,

we get a quantum circuit ŨX (t2 ), which approximately acts
as UX (t2 ), and by QMCI with this, we get an approximation
f̂2 of f2. By repeating this, we get the approximated density
functions f̂1, . . . , f̂N and the quantum circuits U SP

f̂1
, . . . ,U SP

f̂N
,

whose depth is not O(N ) but constant. Using these, we can
estimate expectations concerning X (ti ).

Although this seems to work well, we are concerned that
estimating the coefficients in f̂i by QMCI may require deep
quantum circuits and a large number of queries. Note that the
estimation of f̂i depends on the previous estimation of f̂i−1

and the estimation error can accumulate. Through the N-step
estimation of fN , the errors of ε′ in N steps may accumulate to
O(Nε′). If so, to suppress the overall error to a specified level
ε, we need to take ε′ � ε/N , which results in a circuit depth
of O(N/ε) and a total query number of O(N2/ε), the same as
the naive way.

We evade this by utilizing the unbiased QAE devised in
[10]. By this modified version of QAE, the bias of the error
in estimation is suppressed while the variance of the error is
kept similar to the original QAE. By using QMCI based on
unbiased QAE, the bias in f̂i is suppressed and the variance
accumulates linearly with respect to N , which means the typ-
ical error level of f̂i scales on N as O(

√
N ). Through a more

detailed analysis of the error and complexity, we reveal that
in our method, the circuit depth is of Õ(

√
N/ε) and the total

query number is of Õ(N3/2/ε), which show the improvement
by a factor

√
N compared to the naive way.

The rest of this paper is organized as follows. Section II is
a preliminary one. There we explain Legendre polynomials,
which we use as basis functions in OSDE in this paper, and
the accuracy of function approximation by them, followed by
a brief review of OSDE and quantum algorithms, (unbiased)
QAE and QMCI. In Sec. III we explain quantum circuits for
the time evolution of stochastic processes and issues in their
implementation, which are briefly explained above, in more
detail. Then, in Sec. IV, we elaborate our method to divide
time evolution quantum circuits based on OSDE, presenting
the concrete procedure as Algorithm 1 and the result of the
rigorous analysis of the error and complexity as Theorem 3,
whose proof is given in Appendix B. We make a comparison
between the proposed method and existing ones in Sec. V. In
Sec. VI we conduct a numerical demonstration of our method,
taking a kind of stochastic process used in some fields as an
example, and compare it to other methods, seeing that our
method becomes advantageous in some cases. We summarize
this paper in Sec. VII.

II. PRELIMINARY

A. Notation

Here N0 := {0} ∪ N defines the set of all non-negative
integers. For n ∈ N, we define [n] := {1, . . . , n} and
[n]0 := {0, 1, . . . , n} for any n ∈ N0. We also define

R>a := {x ∈ R | x > a} and R�a := {x ∈ R | x � a} for a ∈
R, where R+ denotes the set of all positive real numbers,
that is, R>0. For a, b ∈ N0, δa,b denotes the Kronecker delta,
which is 1 if a = b and 0 otherwise. For d ∈ N and �l1, �l2 ∈
Nd

0 , we also define δ�l1,�l2 , which is 1 if �l1 = �l2 and 0 otherwise.
For �x ∈ Rd , ‖�x‖ denotes its Euclidean norm and ‖�x‖∞ denotes
its maximum norm. In addition, �0 denotes the vector with all
the entries equal to 0.

B. Approximation of a function by Legendre expansion

For l ∈ N0, the lth Legendre polynomial Pl is defined by

Pl (x) := 1

2l l!

dl

dxl
(x2 − 1)l , (1)

where x ∈ [−1, 1]. The Legendre polynomials satisfy the or-
thogonal relationship∫ 1

−1
Pl (x)Pl ′ (x)dx = 2

2l + 1
δl,l ′ (2)

for any l, l ′ ∈ N0. In the multivariate case, where the number
of the variables is d ∈ N, we define the tensorized Legendre
polynomials by

P�l (�x) :=
d∏

i=1

Pli (xi ), (3)

where �l = (l1, . . . , ld ) ∈ Nd
0 and �x = (x1, . . . , xd ) ∈ �d :=

[−1, 1]d . The orthogonal relationship is now∫
�d

P�l (�x)P�l ′ (�x)d�x = 1

C(�l )
δ�l,�l ′ , (4)

where C(�l ) := ∏d
i=1(li + 1

2 ).
Let us suppose that we are given a d-variate analytic

function f : �d → R and want to approximate it. We now
consider its Legendre expansion, that is, the series of ten-
sorized Legendre polynomials approximating f ,

f ≈ PL[ f ] :=
∑
�l∈�L

a f ,�l P�l , (5)

where we take the index set �L := [L]d
0 with L ∈ N and, for

each �l ∈ �L, the coefficient a�l is defined by

a f ,�l := C(�l )
∫

�d

P�l (�x) f (�x)d�x. (6)

The accuracy of the Legendre expansion was considered
in [20], which in fact studied the expansion by more gen-
eral orthogonal polynomials. We now present the following
theorem on the accuracy of the Legendre expansion, which
is equivalent to Theorem 4.1 in [20] restricted to the case of
Legendre expansion. The statement is informal; the exact one
is given in Appendix A.

Theorem 1 (simplified). For f : �d → R with some prop-
erties, there exist K ∈ R+ and ρ ∈ R>1 such that, for any
integer L satisfying L > d

2 ln ρ
,

max
�x∈�d

|PL[ f ](�x) − f (�x)| � Kρ−L (7)

holds.
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Now let us present some properties of the Legendre poly-
nomials, which will be used later. They are bounded as
follows: For any l ∈ N0 and x ∈ [−1, 1],

|Pl (x)| � Pl (1) = 1, (8)

which is the specific case of Eq. 18.14.1 in [21]. We thus have

|P�l (x)| � 1 (9)

for any �l ∈ Nd
0 . In addition, for the later convenience, we

define

�′
L := �L \ {�0}. (10)

C. Orthogonal-series-density estimation

Orthogonal-series-density estimation is a technique to ap-
proximate the probability density function f �X of an Rd -valued
random variable �X by a series of orthogonal functions [18].
According to the range of the values �X can take, we choose
some orthogonal function system. Hereafter, we assume that
the range is a hyperrectangle and more specifically it is �d ,
without loss of generality. Then, as orthogonal functions we
take the tensorized Legendre polynomials f �X ≈ PL[ f �X ] =∑

�l∈�L
a f �X ,�l P�l with L set appropriately. Note that each coef-

ficient a f �X ,�l is written as the expectation of the corresponding

basis function P�l ( �X ),

a f �X ,�l = C(�l )
∫

�d

f �X (�x)P�l (�x)d�x = C(�l )E �X [P�l ( �X )], (11)

where E �X [·] denotes the expectation with respect to the ran-
domness of �X .

Although OSDE usually refers to obtaining an orthogonal
series approximation of the density function with sampled
values of �X , in this paper we consider not the sample-based
estimation but the quantum algorithm to estimate the coeffi-
cients a f �X ,�l . While the error in sample-based OSDE includes
the error due to the finite series approximation and the sta-
tistical error due to the finite sample size, it is now sufficient
to consider only the former, which is bounded as Eq. (A2) if
f �X satisfies the condition in Theorem 1. The error due to es-
timating the coefficients by the quantum method is discussed
later.

A common issue in OSDE is that the estimated density
function f̂ �X might not be bona fide. More specifically, we
are concerned that it might violate some conditions that any
density function must satisfy naturally. First, the positive def-
initeness

f̂ �X (�x) � 0 ∀ �x ∈ �d (12)

might not hold. In the later discussion on the correctness
of our quantum algorithm, we will make some assumptions
about the true density function f �X so that Eq. (12) holds
when the algorithm guarantees the estimation accuracy to
some extent. On the other hand, the requirement that the total
probability is 1, namely,∫

�d

f̂ �X (�x)d�x = 1, (13)

can be satisfied easily when we use the Legendre polyno-
mial system. The lowest-order polynomial, P�l with �l = �0, is
P�0 = 1, and plugging this into Eq. (11) yields a f �X ,�0 = 2−d for

any distribution. In addition,
∫
�d

P�l (�x)d�x = 0 holds for any
�l 
= �0. Combining these, we see that f̂ �X written in the form of∑

�l a f �X ,�lP�l with a f �X ,�0 = 2−d satisfies Eq. (13).
A widely used indicator of the accuracy of the estimated

density function f̂ �X is the mean integrated squared error
(MISE) EQ[

∫
�d

[ f̂ �X (�x) − f �X (�x)]2d�x]. Here EQ[·] denotes the
expectation with respect to the randomness in the algorithm.
In our quantum algorithm proposed later, the randomness
stems from the building-block algorithm QAE, or more funda-
mentally the quantum nature of the algorithm. With the MISE
bounded by ε2, the error of the expectation of a function g( �X )
of �X estimated with f̂ �X is also bounded:∣∣∣∣EQ

[∫
�d

f̂ �X (�x)g(�x)d�x −
∫

�d

f �X (�x)g(�x)d�x
]∣∣∣∣

�
(
EQ

[∫
�d

[ f̂ �X (�x) − f �X (�x)]2d�x
])1/2(∫

�d

[g(�x)]2d�x
)1/2

= O(ε), (14)

where we use the Cauchy-Schwarz inequality. This matches
some situations including financial derivative pricing de-
scribed later, where we aim to get the derivative price as the
expected payoff.

D. Quantum circuits for arithmetics

In this paper we consider computation on systems con-
sisting of multiple quantum registers. We use the fixed-point
binary representation for real numbers and, for each x ∈ R,
we denote by |x〉 the computational basis state on a quantum
register that holds the bit string equal to the binary represen-
tation of x. For �x = (x1, . . . , xd ) ∈ Rd , we define the quantum
state on an n-register system |�x〉 := |x1〉 · · · |xd〉. We assume
that every register has a sufficiently large number of qubits and
thus neglect errors caused by finite-precision representation.

We can perform arithmetic operations on numbers repre-
sented on registers. For example, we can implement quantum
circuits for four basic arithmetic operations such as addition
Oadd : |a〉 |b〉 |0〉 �→ |a〉 |b〉 |a + b〉 and multiplication Omul :
|a〉 |b〉 |0〉 �→ |a〉 |b〉 |ab〉, where a, b ∈ Z. For concrete im-
plementations, see [22] and the references therein. In the
finite-precision binary representation, these operations are im-
mediately extended to those for real numbers. Furthermore,
using the above circuits, we obtain a quantum circuit Up to
compute a polynomial p(x) = ∑N

n=0 anxn on real numbers x:
Up |x〉 |0〉 = |x〉 |p(x)〉. Also for p as an elementary function
such as exp, sin, or cos, we have a similar circuit to compute it,
given a piecewise polynomial approximation of p [23]. Here-
after, we collectively call these circuits arithmetic circuits.

E. Quantum amplitude estimation with suppressed bias

Quantum amplitude estimation [2] is a quantum algorithm
to estimate the squared amplitude of a target basis state in a
quantum state and is used in various quantum algorithms as
a core subroutine. In this paper, to be concrete, we consider
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the case where the target basis state and the other ones are
distinguished by whether a specific qubit takes |1〉 or |0〉.
More specifically, we suppose that we are given the oracle A
to generate a quantum state |ψ〉 on a system S consisting of a
register R1 and a qubit R2,

A |0〉 |0〉 = √
a |ψ1〉 |1〉 + √

1 − a |ψ0〉 |0〉 =: |ψ〉 , (15)

where |ψ0〉 and |ψ1〉 are some quantum states on R1. Although
QAE can be considered in more general settings, the above
setting is enough for the purposes of this paper. Then we can
construct a quantum algorithm that outputs an estimation â
of a within accuracy ε with high probability, making O(1/ε)
uses of A along with some elementary quantum gates.

The original version of QAE only guarantees that â is
close to a within a distance ε with high probability and is
not concerned about the bias of â; E[â − a] might not be
0. Some previous works proposed versions of QAE whose
outputs have reduced biases [10,24,25]. In particular, Ref. [10]
presented a version of QAE that outputs an estimation with
the bias suppressed to an arbitrary level with the logarithmic
overhead in the query complexity. We present here a theorem
on its accuracy and complexity taken from Ref. [10] with
some modification.

Theorem 2 (Theorem 2.2 in [10], modified). Let δ, ε ∈
(0, 1). Suppose that we have access to the oracle A that acts
as Eq. (15) with a ∈ (0, 1). Then there exists a quantum algo-
rithm UBQAE(A, ε, δ) that outputs a random real number â
such that

|E[â − a]| � δ (16)

and

E[(â − a)2] � ε2 + δ (17)

hold, making O( 1
ε

ln ln( 1
ε

) ln( 1
δε

)) queries to A.
We give some comments on the difference between

Theorem 2 as stated above and Theorem 2.2 in [10].
First, in Theorem 2.2 in [10], it is assumed that we have

access to the two reflection operators, which do not appear
in Theorem 2 apparently. The first one is I − 2 |ψ〉 〈ψ |, the
reflection operator with respect to |ψ〉, and, in the current case,
constructed with O(1) uses of A and some elementary gates
[2]. The second one is the reflection operator with respect to
the target state. In the current case, it is U1 := IS − 2IR1 ⊗
|1〉 〈1|, where IS and IR1 are the identity operators on S and
R1, respectively, and U1 is just the Pauli Z gate on R2. Thus,
assuming naturally that A is much more costly than U1, we do
not consider the number of queries to it in Theorem 2.

Second, the method considered in Theorem 2.2 in [10] is
nondestructive: It is assumed that a single copy of the quantum
state |ψ〉 is given initially, and after the estimation of a, |ψ〉 is
restored. In this paper we do not require this property, and we
use the oracle A to generate |ψ〉 repeatedly. Thus, we do not
perform the process to restore |ψ〉 in the nondestructive coin
flip, a subroutine in the method in [10], which is an iterative
procedure with iteration number unbounded. Therefore, we
give just a deterministic upper bound on the query complexity
in Theorem 2, while Theorem 2.2 in [10] gives the complexity
upper bound as an expectation.

F. Quantum Monte Carlo integration

Among quantum algorithms built upon QAE, quantum
Monte Carlo integration [1] is particularly prominent. We now
briefly outline it. The aim of QMCI is to calculate the expected
value of a random variable. Let us suppose that we want to cal-
culate the expectation E �X [g( �X )] for g : �d → [0, 1]. To use
QMCI, we assume that we are given the following quantum
circuits. The first one is the state-preparation oracle U �X that
acts as

U �X |0〉 =
∑
�x∈X

√
f̃ �X (�x) |�x〉 . (18)

Here X ⊂ �d is a finite set and f̃ �X is a map from X to [0,1]
such that

∑
�x∈X f̃ �X (�x) = 1. While �X is originally a random

variable that takes continuous values in �d with density f �X ,
we introduce here a kind of discretized approximation such
that �X takes only values �x in X with probability f̃ �X (�x). The
second oracle we use is Ug that acts as

Ug |�x〉 |0〉 = |�x〉 [
√

g(�x) |1〉 +
√

1 − g(�x) |0〉] (19)

for any �x ∈ S . Combining U �X and Ug, we construct a quantum
circuit to generate the quantum state∑

�x∈S

√
f̃ �X (�x)g(�x) |�x〉 |1〉 +

∑
�x∈S

√
f̃ �X (�x)[1 − g(�x)] |�x〉 |0〉 ,

(20)
and using it, we estimate

∑
�x∈S f̃ �X (�x)g(�x) as an approximation

of E �X [g( �X )] by QAE.
These oracles are in fact implementable in some cases.

For U �X , many methods for function encoding into quantum
states have been proposed so far, including the pioneering
Grover-Rudolph method [26] and other improved methods
[7,27–35]. In these methods, the gate cost scales logarithmi-
cally with respect to the number of the points in X , which
means that we can take an exponentially fine grid as X and
thus

∑
�x∈S f̃ �X (�x)g(�x) approximates E �X [g( �X )] well.

Let us make some additional remarks on U �X . First, more
generally than Eq. (18), we may consider U �X that, accompa-
nying ancilla qubits, acts as

U �X |0〉 |0〉 =
∑
�x∈X

√
f̃ �X (�x) |�x〉 |φ�x〉 , (21)

where |φ�x〉 is a quantum state on the ancillas that may de-
pend on �x. This makes no essential change in the following
discussion, and we assume the form of U �X as Eq. (18) for
simplicity. Second, the ability to efficiently prepare such a
state may seem to contradict the previous work [36], which ar-
gues that the Grover-Rudolph method [26] involved in QMCI
does not yield any quantum speedup. In the Grover-Rudolph
method, we compute the integrals of the density f �X over small
intervals, for which Ref. [26] originally proposed to use the
classical Monte Carlo method, and, according to Ref. [36],
this ruins the quantum speedup. Fortunately, there are some
ways to avoid this. Reference [7] pointed out that, for some
distributions, the aforementioned integrals of f �X can be an-
alytically computed, which enables efficient encoding of f �X .
The methods in [29,33,35] approximate f �X with functions that
can be easily encoded. Also note that if �X is computed by
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an analytic formula �X = h( �W ) from another random variable
�W for which we have the encoding oracle U �W , we also have

the oracle like Eq. (21) by combining U �W with the arithmetic
circuit for h.

When it comes to Ug, if we assume that g is explic-
itly given as an elementary function, Ug is constructed with
arithmetic circuits and Urot. Here Urot is the Y -rotation
gate with controlled angle, which acts as Urot |θ〉 |ψ〉 =
|θ〉 (cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2) ) |ψ〉 for any θ ∈ R and one-qubit state
|ψ〉; its implementation is considered in [37].

G. Applying QMCI to derivative pricing

Among various applications of QMCI proposed so far,
applications to derivative pricing are particularly prominent
[3–9]. Although we leave a detailed explanation of it to text-
books such as [38], we now provide the outline briefly. A
derivative is a two-party contract in which a party receives
payoffs determined by the prices of some underlying assets
(say, stocks) from the other. A simple example is a European
call option: It grants a party the right to buy an asset at a
prefixed price K at a future time T , which is equivalent to
getting a payoff max{X (T ) − K, 0}, where X (t ) is the asset
price at time t . To diversify trading strategies and improve risk
management, various kinds of derivatives are traded in the fi-
nancial market. To price a derivative with a payoff gpay( �X (T ))
determined by �X (T ) = (X1(T ), . . . , Xd (T )), the prices of the
d underlying assets at T , the standard approach is as follows.
We first model the dynamics of �X (t ) with a stochastic differ-
ential equation (SDE)

d �X (t ) = �μ(t, �X (t ))dt + 
(t, �X (t ))d �W (t ), (22)

where �W (t ) is a d ′-dimensional Brownian motion and �μ and

 are Rd - and Rd×d ′

-valued functions of (t, �X (t )), respec-
tively. Then the derivative price is given by the expected
payoff 2 E �X (T )[gpay( �X (T ))].

We can estimate this type of expectation by QMCI if
we have quantum circuits U �X (T ) like Eq. (18) and Ugpay like
Eq. (19). We can in fact implement U �X (T ) for various models
of the asset price dynamics as discussed in [3–5,7,9]. We
discretize Eq. (22) in time by some scheme, e.g., the Euler-
Maruyama scheme [39] �X (t + �t ) = �X (t ) + �μ(t, �X (t ))�t +

(t, �X (t ))� �W , where � �W is a vector of normal random
variables, and iterating this discretized evolution yields �X (T ).
Since the normal distribution can be efficiently encoded into
a quantum state [7,29,31,34], we can construct a quantum
circuit to encode the density of �X (T ), namely, U �X (T ), similarly
to Eq. (21). In addition, because gpay is usually given as a
simple function, Ugpay can be implemented with arithmetic
circuits mentioned in Sec. II D.

III. QUANTUM CIRCUIT FOR THE TIME EVOLUTION
OF A STOCHASTIC PROCESS

We now focus on how to implement the state-preparation
oracle U �X in the case that �X is a value of some stochastic

2Strictly speaking, the discount factor must be involved.

process �X (t ) at a fixed time t = T , as in derivative pricing
mentioned above. This is motivated by the issue described
below.

In this case, usually, we implement U �X as a circuit to
simulate the time evolution of the stochastic process. The
meaning of this is as follows. Let us consider an �d -valued
stochastic process { �X (ti )}i∈[N]0 on the (N + 1)-point discrete
time t0, . . . , tN = T , with the initial value �X (t0) being de-
terministic. We denote by pi(·|·) the conditional transition
probability density at each time ti,

Pr{ �X (ti+1) ∈ A| �X (ti) = �xi} =
∫
A

pi(�xi+1|�xi )d�xi+1, (23)

where A ⊂ �d . The density function of �X (ti ) is then given by

fi(�x) :=
{

p0(�x1|�x0), i=1∫
�d

d�x1 · · · ∫
�d

d�xi−1
∏i−1

j=0 p j (�x j+1|�x j ), i=2, . . . , N.

(24)

We assume that, as is the case when pi is given via some SDE
as described in Sec. II G, we can construct the oracle Upi to
generate the quantum state encoding the transition probability

Upi |�xi〉 |0〉 =
∑

�xi+1∈Xi+1

√
p̃i(�xi+1|�xi ) |�xi〉 |�xi+1〉 , (25)

where again we introduce the discretized approximation such
that conditioned on �X (ti) = �xi, �X (ti+1) takes the values in a
finite set Xi+1 with a probability mass function p̃i+1(·|�xi).
Given Up0 , . . . ,UpN−1 , we combine them into the quantum
circuit shown in Fig. 1 to obtain the state-preparation oracle
U �X for �X = �X (tN ),

U �X (tN ) |�x0〉 |0〉⊗N

=
∑
�x1∈X1

· · ·
∑

�xN ∈XN

√√√√N−1∏
i=0

p̃i(�xi+1|�xi ) |�x0〉 |�x1〉 · · · |�xN 〉

=
∑

�xN ∈XN

√
f̃N (�xN ) |ψ (�xN )〉 |�xN 〉 =: | f̃N 〉 , (26)

FIG. 1. (a) Quantum circuit for time evolution over a time step,
which, given the value of �X (ti ), generates the superposition of the
possible values of �X (ti+1) like Eq. (25). (b) State preparation circuit
U �X (tN ) for �X (ti+1) is constructed by combining Up0 , . . . ,UpN−1 in
series.
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where, for j ∈ [N],

f̃ j (�x j ) :=
∑
�x1∈X1

· · ·
∑

�x j−1∈X j−1

j−1∏
i=0

p̃i(�xi+1|�xi ) (27)

and

|ψ (�x j )〉 := 1√
f̃ j (�x j )

∑
�x1∈X1

× · · ·
∑

�x j−1∈X j−1

√√√√ j−1∏
i=0

p̃i(�xi+1|�xi ) |�x0〉 |�x1〉 · · · |�x j−1〉 .

(28)

Regarding the first register in the last line in Eq. (26) as
ancillary and adopting the discrete approximation that �X (tN )
takes �xN ∈ XN with probability f̃N (�xN ), we can see U �X (tN ) in
Eq. (26) as a state-preparation oracle like Eq. (18).

Hereafter, for a set U of quantum circuits, we say that the
U depth of a quantum circuit C is D if D elements in U are
combined in series in C. For example, the Up depth of the
circuit in Fig. 1(b) is N , where Up := {Up0 , . . . ,UpN−1}. If U
consists of one circuit U , we use the term U depth.

The quantum circuit U �X (tN ) has O(N ) Up depth, and for
large N , this might be an issue in implementing U �X (tN ) on real
quantum hardware, especially in the early-FTQC era, in which
the circuit depth might be limited. By this, we are motivated
to divide U �X (tN ) into several pieces.

In addition to this hardware perspective, we point out the
following issue: In quantum computing, we need to simulate
�X (t ) from the initial time t0 every time we get the distribu-
tions at t1, . . . , tN . Although in the above we have described
the state preparation for �X (t ) at the terminal time t = tN ,
we often need the states encoding the distributions of �X (t )
at the intermediate times t1, . . . , tN−1 too. For example, in
practice, we often price derivative contracts that are written
on the same asset but have different maturities. More specif-
ically, for derivatives with payoffs g1( �X (t1)), . . . , gN ( �X (tN ))
determined by the values of the asset price �X (t ) at dif-
ferent times t = t1, . . . , tN , we estimate their prices V1 :=
E �X (t1 )[g1( �X (t1))], . . . ,VN := E �X (tN )[gN ( �X (tN ))]. In runs of
QMCI to estimate these, we use U �X (t1 ), . . . ,U �X (tN ) to generate
the quantum states | f1〉 , . . . , | fN 〉 encoding the distribu-
tions at t1, . . . , tN . Note that U �X (t1 ), . . . ,U �X (tN ) are operated
on the same initial state |�x0〉 |0〉⊗N . They have O(N ) Up

depth each and make O(N2) queries to oracles in Up in
total. This scaling on N is worse than that of the sam-
ple complexity of classical Monte Carlo integration, which
scales as O(N ). Classically, we can store the intermediate
values of �X (t ) in memory: Having �X (1)(ti ), . . . , �X (Npath )(ti),
Npath sample values of �X (ti ), we can use them to calculate

1
Npath

∑Npath

j=1 gi( �X ( j)(ti )) as an approximation of Vi and also get

�X (1)(ti+1), . . . , �X (Npath )(ti+1) sample values at the next time
ti+1, evolved from �X (1)(ti ), . . . , �X (Npath )(ti ). This means that
in the classical Monte Carlo method for V1, . . . ,VN , the total
number of sampling scales on N as O(N ).

IV. DIVIDING QUANTUM CIRCUITS FOR THE TIME
EVOLUTION OF STOCHASTIC PROCESSES

A. Idea

Motivated by the above issues, we propose a method to
divide U �X (tN ) based on OSDE.3 Our aim is to generate the
quantum state | fN 〉 that encodes the probability density fN of
the value of the stochastic process �X (t ) at time t = tN . Since
we are given only its initial value �X (0) and the transition prob-
ability pi, we need to apply the N operators Up0 , . . . ,UpN−1 .
However, what if we know the probability density fi of �X (t )
at some intermediate time ti, i ∈ [N − 1]? If so, starting from
the quantum state | fi〉 encoding fi, we can get | fN 〉 only
by applying the operators Upi , . . . ,UpN−1 , which results in a
smaller circuit depth and query number. Of course, we do
not know any of the intermediate density functions { fi}i∈[N−1]

beforehand. Then how about estimating them? To do so, we
conceive a method described as a loop of the following steps.

(1) Given (an approximation of) fi, generate the quantum
state | fi〉 that encodes it.

(2) By operating Upi , generate the quantum state | fi+1〉 that
encodes fi+1.

(3) Using | fi+1〉, get an approximation of fi+1.
We require that, in step 3, we get some classical data that

determine the approximating function. This means that each
round of this loop starts by inputting the classical data and
ends by outputting the other classical data. If this is possible,
we can realize the rounds of the above loop as separate quan-
tum algorithms, which means that dividing U �X (tN ) is achieved.

We then concretize the above rough sketch of the method.
In particular, given the quantum state | fi+1〉, how can we get
an approximation function of fi+1 in a way that allows for
some classical description? We can do this by OSDE de-
scribed in Sec. II C. In the quantum algorithm presented later,
we estimate the Legendre expansion coefficients {a fi+1,�l}�l for

fi+1, which is given via the expectations of {P�l ( �X (ti+1))}�l as
shown in (11), using QMCI. These coefficients are just a set
of real numbers, and thus we can have them as classical data.

B. Quantum algorithm

Now we present a detailed description of the aforemen-
tioned method. We start by presenting the informal version
of our main theorem on the accuracy and complexity of our
algorithm. In the proof, we only show the procedure of our
algorithm. The exact statement of the theorem and the rest of
the proof, which is on the accuracy and complexity, are given
in Appendix B.

Theorem 3 (simplified). Let α, δ, ε ∈ (0, 1). Let { �X (ti )}
i∈[N]0 be a �d -valued stochastic process with the determin-
istic initial value �x0 and the conditional transition probability

3We refer to a previous work [40], which also proposed using
function approximation with a series of basis functions in the context
of QMCI. In that method, the series approximation of not the density
but the integrand is classically precomputed. Then the expectations
of basis functions are estimated by QMCI, and these estimates are
combined with series expansion coefficients, yielding an estimate of
the wanted integral.
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ALGORITHM 1. Get the orthogonal series approximation of the
density function of �X (tN ).

1: for �l ∈ �′
L

2: Construct O1,�l .
3: Run UBQAE(O1,�l , ε

′, δ′), where

ε ′ := ε

4
√

2N (L + 1
2 )d [ln(2L + 1) + 1

2 ]d/2
, (40)

δ′ := ε

8
√

2N (L + 1
2 )d [ln(2L + 1) + 1

2 ]d/2
. (41)

Let the output be b̂1,�l and define â1,�l := (2b̂1,�l − 1)C(�l ).
4: end for
5: Define f̂1 = ∑

�l∈�L
â1,�l P�l with â1,�0 = 2−d .

6: for i = 1, . . . , N − 1 do
7: for �l ∈ �′

L do
8: Construct Of̂i,i+1,�l .
9: Run UBQAE(Of̂i,i+1,�l , ε

′, δ′). Let the output be

b̂i+1,�l and define âi+1,�l := (2b̂i+1,�l − 1)C(�l ).
10: end for
11: Define f̂i+1 = ∑

�l∈�L
âi+1,�l P�l with âi+1,�0 = 2−d .

12: end for
13: return f̂N .

density pi(·|·). Set L ∈ N sufficiently large. Suppose that the
following assumptions on the access to oracles hold.

(i) For each i ∈ [N − 1]0, we have access to the or-
acle Upi acting as Eq. (25). Here X1, . . . ,XN ⊂ �d are
finite sets, X0 := {�x0}, and p̃i : Xi+1 × Xi → [0, 1], i ∈ [N −
1]0, satisfies

∑
�xi+1∈Xi+1

p̃i(�xi+1|�xi ) = 1 for any �xi ∈ Xi and
approximates pi.

(ii) For f : �d → R�0 written as f = ∑
�l∈�L

a�lP�l with any
real number set {a�l}�l∈�L

including a�0 = 2−d , we have access
to the oracle U SP

f that acts as

U SP
f |0〉 = | f 〉 :=

∑
�x∈X f

√
f̃ (�x) |�x〉 . (29)

Here X f ⊂ �d is a finite set and f̃ : X f → [0, 1] is a map that
satisfies

∑
�x∈X f

f̃ (�x) = 1 and approximates f .

(iii) For any �l ∈ Nd
0 , we have access to the oracle U amp

P�l
that

acts as

U amp
P�l

|�x〉 |0〉 = |�x〉
(√

1 + P�l (�x)

2
|1〉 +

√
1 − P�l (�x)

2
|0〉

)

(30)

for any �x ∈ Rd .
Then there exists a quantum algorithm that, with prob-

ability at least 1 − α, outputs approximation functions
f̂1, . . . , f̂N : �d → R�0 for f1, . . . , fN with the following
properties: Each f̂i is written as f̂i = ∑

�l∈�L
âi,�l P�l , with ran-

dom coefficients {âi,�l}�l∈�′
L

and âi,�0 = 2−d , and its MISE is
bounded as

EQ

[∫
�d

[ f̂i(�x) − fi(�x)]2d�x
]

� ε2, (31)

where EQ[·] denotes the expectation with respect to the ran-
domness in the algorithm. In this algorithm, we use quantum
circuits with Uall depth of

O

(((√
N

ε
Ld lnd/2 L ln ln

[(√
N

ε
Ld lnd/2 L

)]

× ln

(
N

ε
Ld lnd/2 L

))))
, (32)

and the total number of queries to oracles in Uall is

O

(((
N3/2

ε
L2d lnd/2 L ln ln

(√
N

ε
Ld lnd/2 L

)

× ln

(
N

ε
Ld lnd/2 L

))))
, (33)

where Uall := {Upi}i∈[N−1]0 ∪ {U SP
f } f ∪ {U amp

P�l
}�l∈�L

.

Proof. Algorithm. By combining Up0 and U amp
P�l

, we get the
quantum circuit O1,�l that acts as

O1,�l |�x0〉 |0〉 |0〉 =
∑
�x1∈X1

√
p̃0(�x1|�x0) |�x0〉 |�x1〉

⊗
(√

1 + P�l (�x1)

2
|1〉 +

√
1 − P�l (�x1)

2
|0〉

)
.

(34)

Using this, UBQAE gives us an approximation b̂1,�l of

b̃1,�l :=
∑
�x1∈X1

p̃0(�x1|�x0)
1 + P�l (�x1)

2
(35)

and thus an approximation â1,�l of

ã1,�l := (2b̃1,�l − 1)C(�l ) = C(�l )
∑
�x1∈X1

p̃0(�x1|�x0)P�l (�x1). (36)

Similarly, for a function f for which we have U SP
f , combining

U SP
f , Upi , and U amp

P�l
gives us the quantum circuit O f ,i+1,�l that

acts as

O f ,i+1,�l |0〉 |0〉 |0〉

=
∑
�xi∈X f

∑
�xi+1∈Xi+1

√
f̃ (�xi ) p̃i(�xi+1|�xi ) |�xi〉 |�xi+1〉

⊗
(√

1 + P�l (�xi+1)

2
|1〉 +

√
1 − P�l (�xi+1)

2
|0〉

)
, (37)

and using this, UBQAE gives us an approximation b̂ f ,i+1,�l of

b̃ f ,i+1,�l :=
∑
�xi∈X f

∑
�xi+1∈Xi+1

f̃ (�xi ) p̃i(�xi+1|�xi )
1 + P�l (�xi+1)

2
(38)
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FIG. 2. Schematic diagram to outline Algorithm 1. Given an ap-
proximating function f̂i of the density fi, we estimate the coefficients
ai+1,�l by unbiased QAE and get the orthogonal series approximation
f̂i+1 of the density fi+1 at the next time step. In this QAE we use an
oracle Of̂i,i+1,�l that generates a quantum state encoding ai+1,�l in the
amplitude, and Of̂i,i+1,�l is constructed as a combination of oracles
U SP

f̂i
, Upi , and U amp

P�l
, which act as Eqs. (29), (25), and (30), respec-

tively. [Here, for clarity, the resulting states shown in the figure are
not exact; see Eqs. (29), (25), and (30) for the exact ones.] We iterate
this step until we get f̂N .

and thus an approximation â f ,i+1,�l of

ã f ,i+1,�l := (2b̃i,�l − 1)C(�l )

= C(�l )
∑
�xi∈X f

∑
�xi+1∈Xi+1

f̃ (�xi ) p̃i(�xi+1|�xi )P�l (�xi+1). (39)

Based on these, we construct Algorithm 1.
The rest of the proof is left to Appendix B. �
To illustrate Algorithm 1 visually, we present a schematic

diagram in Fig. 2.
Extracting only the dependence on ε and N except loga-

rithmic factors from the bounds (32) and (33), we get

Õ

(√
N

ε

)
(42)

and

Õ

(
N3/2

ε

)
, (43)

respectively. These are the evaluations that were mentioned in
the Introduction.

V. COMPARISON OF THE PROPOSED METHOD
WITH OTHER METHODS

Now let us compare the proposed method with other
methods, considering the estimation of expectations at mul-
tiple time points: estimating E[g1( �X (t1))], . . . ,E[gN ( �X (tN ))],
where g1, . . . , gN : �d → [0, 1] are given functions.

First, we consider the naive way that we generate | fi〉 by
combining Up0 , . . . ,Upi−1 in series as Fig. 1(b) and use it
in QMCI. With the accuracy ε required, for estimating the
ith expectation E[gi( �X (ti ))] in this way, we use a quantum
circuit with Up depth of Õ(N/ε) and the number of queries
to oracles in Up is of the same order in total. For estimat-
ing all the expectations, the total query number piles up
to Õ(N2/ε).

The proposed method improves this with respect to the
scaling on N . We obtain approximating functions f̂1, . . . , f̂N

for the density functions f1, . . . , fN , using quantum circuits
with Uall depth of Õ(

√
N/ε) and querying the circuits in

Uall, Õ(N3/2/ε) times in total. After that, we can generate
the quantum state | f̂i〉 by using U SP

f̂i
only once. If we use

this instead of the quantum state | fi〉 in QMCI for estimat-
ing E[gi( �X (ti ))], the U SP

f̂i
depth and the number of queries

to U SP
f̂i

are Õ(1/ε) and the total query number in estimat-

ing all the expectations is Õ(N/ε). Throughout the entire
process, obtaining f̂1, . . . , f̂N makes the dominant contribu-
tion in terms of both the circuit depth and query number,
which are, as a consequence, Õ(

√
N/ε) and Õ(N3/2/ε),

respectively.
Note that there is a version of QMCI that reduces the

circuit depth in compensation for the query number [41].
By the algorithm in [41], which is a version of maximum-
likelihood-estimation–based QAE (MLQAE) [42], we can
estimate E[gi( �X (ti ))] with accuracy ε, using quantum circuits
with U �X (ti )

depth of Õ(1/ε1−β ) and querying U �X (ti )
, Õ(1/ε1+β )

times in total, where β is an arbitrary number in (0,1]. If
U �X (ti )

is a sequence of O(N ) oracles in Up, the Up depth and
the number of queries to those oracles are Õ(N/ε1−β ) and
Õ(N/ε1+β ), respectively. This means that if we set

β = ln(
√

N )/ ln(1/ε), (44)

which is in (0,1] as long as ε < 1/
√

N , the circuit depth
and query number are Õ(

√
N/ε) and Õ(N3/2/ε), respectively.

This query number is for estimating a single expecta-
tion, and to estimate all the expectations, it piles up to
Õ(N5/2/ε).

There exist also quantum algorithms that estimate multi-
ple expectations simultaneously [43,44]. We can apply these
algorithms to the current problem: These algorithms can
estimate E[g1( �X (t1))], . . . ,E[gN ( �X (tN ))] querying U �X (tN ), be-
cause U �X (tN ) generates the state that encodes the joint

probability distribution of �X (t1), . . . , �X (tN ) as Eq. (26). In this
way, the depth and query number with respect to U �X (tN ) are

both Õ(
√

N/ε), and thus those with respect to oracles in Up

are both Õ(N3/2/ε).
In the classical Monte Carlo method, as discussed in Sec. I,

the total query number scales as Õ(N/ε2). Here we consider
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TABLE I. Summary of the circuit depth and query number in
estimating the expectations E[g1( �X (t1))], . . . ,E[gN ( �X (tN ))] by vari-
ous methods. Here we focus on only the scaling on N and ε.

Method Circuit depth Query number

Proposed method Õ(
√

N/ε) Õ(N3/2/ε)
Naive method Õ(N/ε) Õ(N2/ε)
Low-depth methoda Õ(

√
N/ε) Õ(N5/2/ε)

Simultaneous methodb Õ(N3/2/ε) Õ(N3/2/ε)
Classical method Õ(N/ε2)

aFrom [41].
bFrom [43,44].

not queries to Up but classical sampling trials from the transi-
tion probabilities pi.

The above discussion is summarized in Table I. Existing
methods can be comparable to the proposed method in terms
of either circuit depth or query number, but not in both aspects
simultaneously.

We should also note the dependence of the complexity
of the proposed method on other parameters. In particular,
Eqs. (32) and (33) have the factors Ld and L2d , respec-

tively, which are exponential with respect to the dimension
d . These exponential dependences stem from choosing the
tensorized Legendre polynomials as the basis functions for
density estimation: The number of basis functions increases
exponentially with respect to d . This may make the proposed
method difficult to apply in high-dimensional situations.

VI. NUMERICAL DEMONSTRATION

We now conduct a demonstrative experiment to confirm the
above theoretical findings numerically.

As an example of stochastic processes that match the cur-
rent setting that �X (t ) is bounded, �X (t ) ∈ �d , we take the
one-dimensional two-sided reflected Brownian motion X (t )
[45–47], which is used in fields such as queuing theory and
mathematical finance. It is described by the SDE

dX (t ) = μdt + σdW (t ) (45)

with constant parameters μ ∈ R and σ ∈ R+, the initial value
X (t0) = x0, and the reflective boundary condition at X = c, d ,
which is now set to c = 1 and d = −1. Its transition probabil-
ity density from t = s and X (t ) = x to t = s′ and X (t ) = x′ is
analytically given as [45]

pRBM(x′, s′; x, s)

=
∞∑

n=−∞

[
1

σ
√

2π (s′ − s)
exp

(
2μn(c − d )

σ 2

)
exp

(−(x′ + 2n(d − c) − x − μ(s′ − s))2

2σ 2(s′ − s)

)]

+
∞∑

n=−∞

[
1

σ
√

2π (s′ − s)
exp

(−2μ(nd − (n + 1)c + x)

σ 2

)
exp

(−[2nd − 2(n + 1)c + x + x′ − μ(s′ − s)]2

2σ 2(s′ − s)

)]

− 2μ

σ 2

∞∑
n=0

{
exp

(
2μ(nd − (n + 1)c + x′)

σ 2

)[
1 − �

(
μ(s′ − s) + 2nd − 2(n + 1)c + x + x′

σ
√

s′ − s

)]}

+ 2μ

σ 2

∞∑
n=0

[
exp

(
2μ(nc − (n + 1)d + x′)

σ 2

)
�

(
μ(s′ − s) − 2(n + 1)d + 2nc + x + x′

σ
√

s′ − s

)]
, (46)

where � is the cumulative distribution function of the stan-
dard normal distribution. In practice, the infinite sum is
truncated at some finite value of n, which we denote by
n = ±nc. Due to this formula, we can compare the results of
our demonstration with exact values, except for the truncation
of the infinite sum, and thus evaluate how accurate our method
is. This is also a reason why we choose this stochastic process
as a test case.

We run Algorithm 1 for this X (t ) to obtain its approximate
density functions f̂1, . . . , f̂N . Then, to quantity the accuracy
of our method, we estimate

qN := Pr[X (tN ) > x0] =
∫ 1

x0

pRBM(x, tN ; x0, t0)dx, (47)

the probability that X (t ) exceeds the initial value at the termi-
nal time, by q̂N := ∫ 1

x0
f̂N (x)dx, and compare it with the exact

value. Since the current quantum hardware cannot be used for
QMCI, we replace it in Algorithm 1 with classical simulation.

More specifically, we compute

b f̂i,i+1,l :=
∫ 1

−1
dxi

∫ 1

−1
dxi+1 f̂i(xi )pRBM(xi+1, ti+1; xi, ti )

× 1 + Pl (xi+1)

2
(48)

classically (concretely, the dblquad function in SCIPY [48]),
run a classical simulation of QAE with b f̂i,i+1,l the squared

amplitude to be estimated, and let its output be b̂i+1,l . Here,
instead of the unbiased QAE UBQAE in [10], we con-
sider the random-depth QAE (RQAE) in [25], for which
the classical simulation is easier. As a modified version of
MLQAE, RQAE uses not the fixed schedule of the increas-
ing number of Grover operator applications but the randomly
fluctuating one, and in [25] bias reduction was demonstrated
numerically despite the lack of a mathematical proof. We
run Algorithm 3, whose output obeys the same probability
distribution as that of RQAE. Here mi, j corresponds to the
random depth of the quantum circuit. The total query num-
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ALGORITHM 2. Classical simulation of random-depth QAE.
(Here the original procedure in [25] is modified in the following
points. First, in [25], the number K of rounds is an input parameter,
but here the accuracy ε is input and K is determined by it. Second, in
the last round, the upper bound of the range from which mi, j is drawn
is not a power of 2 but �1/ε�, so we do not make unnecessarily many
oracle calls to achieve the accuracy ε.)

Input: estimation accuracy ε, number of shots in each round R,
squared amplitude to be estimated a

1: Set Kε = �log2( 1
ε

)�.
2: Set Nr = Kε + 1 if 2Kε < � 1

ε
� or Nr = Kε otherwise.

3: Set a0 = a.
4: for j = 1, . . . , R dp
5: Generate a sample n0, j from the Bernoulli distribution with

p = a.
6: end for
7: for i = 1, . . . , Nr − 1 do
8: for j = 1, . . . , R do
9: Sample an integer mi, j uniformly from

2i, . . . , max{2i+1, � 1
ε
�}.

10: Generate a sample ni, j from the Bernoulli distribution
with p = ai, j := sin2(mi, jθ ), where θ = arcsin

√
a.

11: end for
12: end for
13: Find and output â that minimizes∏Nr−1

i=0

∏R
j=1[ai, j (â)]ni, j [1 − ai, j (â)]1−ni, j , where

ai, j (â) = sin2(mi, j arcsin
√

â) with m0, j = 1.

ber in one run of RQAE is counted as
∑Nr−1

i=0

∑R
j=1 mi, j ,

and the maximum depth of quantum circuit used in it
is maxi, j mi, j .

We compare the results of our method with those of the
low-depth method. We run Algorithm 3, a classical simulation
of the low-depth QAE (LQAE), inputting qN as the square
amplitude a to be estimated and letting its output be the sim-
ulated output of the low-depth method for estimating qN . In
Algorithm 3, 2mk + 1 corresponds to the depth of the quantum
circuit used in the kth round. Thus, the total query number in
one run of the LQAE is

∑K
k=1 R(2mk + 1) and the maximum

circuit depth is 2mK + 1.
In the current demonstration, we do not consider the simul-

taneous method, which is not formulated as MLQAE and not
as easy to simulate as RQAE and LQAE. We can regard this
demonstration as a simulation of QMCI with the circuit depth
limited to a certain level, where our method and the low-depth
method are natural candidates for the base method, but the
simultaneous method is not.

We now show the result of the numerical experiment
in Fig. 3. Here we set the parameters as μ = 0.5, σ = 1,
x0 = 0, nc = 5, and t0 = 0, with t1, . . . , tN the N equidistant
points between t1 = 0.2 and tN = 0.6. We vary N as N =
8, 11, 16, 22, 32, 45, 64 and see how the result changes. In
our method, we set R = 12 and ε = ε

RQAE
N := 2−10/

√
N in

Algorithm 2 and the maximum polynomial degree in Leg-
endre expansion to L = 5. In LQAE as Algorithm 3, we set
R = 12, ε = 0.0029, and β by Eq. (44). Figure 3(a) shows the
root-mean-square errors (RMSEs) of the estimates in ten runs
of our method and the low-depth method, which indicates that
in the current setting, our method has a better or comparable

(a) RMSE

(b) Total query number

(c) Maximum circuit depth

FIG. 3. Results of the numerical experiments to estimate qN for
various N . The blue and orange lines correspond to our method and
the low-depth method, respectively. (a) The RMSE of the estimates
in ten runs of each method. (b) Total query number and (c) maximum
depth of the circuits used in each method averaged over ten runs. In
(b) we also show the total query number in the classical Monte Carlo
method to achieve the RMSE of 0.0004.

accuracy compared to the low-depth method for every N .
Figure 3(b) shows the total query number in each method aver-
aged over ten runs. It also shows, as a reference, the number of
sampling trials from the transition probabilities in the classical
Monte Carlo method with an RMSE of 0.0004, below which
our method’s RMSE is for every N . From this figure, we
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ALGORITHM 3. Classical simulation of low-depth QAE.

Input: estimation accuracy ε, speed of the increase of Grover
operator applications β, number of shots in each round R,
squared amplitude to be estimated a

1: Set K = �max{ε−2β, ln(1/ε)}�.
2: for k = 1, . . . , K
3: Generate R samples from the Bernoulli distribution with

p = ak := sin2[(2mk + 1)θ ], where mk := �k(1−β )/2β� and
θ := arcsin

√
a, and let the number of 1’s be nk .

4: end for
5: Find and output â that minimizes∏K

k=1[ak (â)]nk [1 − ak (â)]R−nk , where
ak (â) = sin2[(2mk + 1) arcsin

√
â].

see that, as expected, the low-depth method has a rapidly
increasing query number of Õ(N5/2). On the other hand, the
query number in our method shows the milder increase, which
is of Õ(N3/2), and is smaller than that of the low-depth method
for N = 64.4 Figure 3(c) shows the maximum depth of the
circuits used in each method averaged over ten runs. Both our
method and the low-depth method show the scaling of Õ(

√
N )

as expected.

VII. SUMMARY

In this paper we have focused on the time evolution of a
stochastic process �X (t ) in QMCI for estimating expectations
concerning �X (t ). Given the transition probability densities
p0, . . . , pN−1 between discrete time points t0, . . . , tN , we can
combine the quantum circuits Up0 , . . . ,UpN−1 for state prepa-
ration for {pi}i to generate a state encoding the distribution of
�X (tN ). However, this results in O(N ) circuit depth, and if we
estimate expectations concerning �X (t1), . . . , �X (tN ), the total
number of queries to Upi scales on N as O(N2). We have
aimed to improve this. We have proposed a method to divide
the time evolution quantum circuits based on OSDE. In this
method, we estimate the coefficients in the orthogonal series
approximation of the density fi of X (ti ) by unbiased QAE-
based QMCI and get the approximating function f̂i of fi, and
this f̂i is used in estimating the next density fi+1. We iterate
this step and get all the approximations f̂1, . . . , f̂N , which can
be used to estimate expectations concerning �X (t1), . . . , �X (tN ).
In this approach, the dependences of the circuit depth and the
total query number on N are reduced to O(

√
N ) and O(N3/2),

respectively. We have also compared our method with other
versions of QMCI that aim for depth reduction or estimating
multiple expectations, as summarized in Table I. In addition,

4In fact, the total query number in our method noncontinuously
increases with respect to N , like a bump between N = 16 and 22
in Fig. 3(b). This is understood as follows. In Algorithm 2, the
considerable contribution to the total query number comes from the
penultimate round, i = Nr − 2, where the upper bound of the random
depth mi, j is 2Kε . With ε set to ε

RQAE
N in the current demonstration,

2Kε noncontinuously increases with respect to N , which leads to the
noncontinuous increase of the total query number. Nevertheless, the
total query number scales as Õ(N3/2).

we have conducted a numerical demonstration of our method
on the simulation of the reflected Brownian motion and seen
that our method can have an advantage in terms of the query
number compared to the low-depth method.

We should note that the current setting does not necessarily
match some important problems. In particular, as described
in Appendix B, we make assumptions of the boundedness of
�X (t ) and the positive lower bound of the density in order for
the estimated density to be bona fide, and this does not match
cases that �X (t ) is unbounded, as is common in derivative
pricing. We will try to extend our algorithm so that it can be
applied to more general settings in future works.

Although in this paper we consider a problem setting with
derivative pricing as an application example in mind, it is also
interesting to explore further applications beyond derivative
pricing, using the currently proposed method as a base tech-
nology. A possible target is the McKean-Vlasov process [49]
described by the SDE

d �X (t ) = �μ(t, �X (t ), f �X (t ))dt + 
(t, �X (t ), f �X (t ))d �W (t ) (49)

with drift and diffusion coefficients depending on �X (t )’s dis-
tribution f �X (t ) in the form of expectation, which often appears
not only in finance [50] but also in fields of physics such
as fluid dynamics [51] and interacting particle systems [52].
Solving this SDE involves estimating �μ and 
 as expectations
at every time step, to which we expect the currently proposed
method can be applied. The exploration of such an application
is left for future works.
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APPENDIX A: EXACT STATEMENT OF THEOREM 1

Definition A1. For s, a ∈ R+, Ns,a ⊂ C denotes the open
region bounded by the ellipse with foci 0 and s, and leftmost
point −a.

Definition A2. For h ∈ R+, we define

Dh :=
{

(z1, . . . , zd ) ∈ Cd

∣∣∣∣∣
d∑

i=1

z2
i ∈ Nd,h2

}
. (A1)

Theorem 1. Let f : �d → R be an analytic function and
suppose that there exists h ∈ R+ such that f has an analytic
extension to Dh. Then there exist K ∈ R+ and ρ ∈ R>1 such
that, for any integer L satisfying L > d

2 ln ρ
,

max
�x∈�d

|PL[ f ](�x) − f (�x)| � Kρ−L (A2)

holds.

APPENDIX B: MORE ON THEOREM 3

1. Exact statement and proof of Theorem 3

Theorem 3. Let α, δ, ε ∈ (0, 1). Let { �X (ti )}i∈[N]0 be an �d -
valued stochastic process with the deterministic initial value
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�x0 and the conditional transition probability density pi(·|·).
Suppose that the following assumptions on the access to or-
acles hold.

Assumption B1. For each i ∈ [N], �X (ti ) has the density
function fi that satisfies the condition in Theorem 1 with com-
mon h ∈ R+, Eq. (A2) with common K ∈ R+ and ρ ∈ R>1,
and

min
�x∈�d

fi(�xi ) � fmin := 2(L + 1)3d/2ε
√

N
√

α
[

ln(2L + 1) + 1
2

]d/2 , (B1)

where

L := 1

ln ρ
ln

(
2(d+2)/2K

ε

)
. (B2)

Assumption B2. For each i ∈ [N − 1]0, we have access to
the oracle Upi acting as Eq. (25). Here X1, . . . ,XN ⊂ �d

are finite sets, X0 := {�x0}, and p̃i : Xi+1Xi → [0, 1], i ∈ [N −
1]0, satisfies

∑
�xi+1∈Xi+1

p̃i(�xi+1|�xi ) = 1 for any �xi ∈ Xi.

Assumption B3. For any �l ∈ �L,∣∣∣∣∣∣
∫

�d

f1(�x1)P�l (�x1)d�x1 −
∑
�x1∈X1

p̃0(�x1|�x0)P�l (�x1)

∣∣∣∣∣∣
� ε

4
√

2N
(

ln(2L + 1) + 1
2

)d/2 (B3)

holds.
Assumption B4. For f : �d → R�0 written as f =∑
�l∈�L

a�lP�l with any real number set {a�l}�l∈�L
including

a�0 = 2−d , we have access to the oracle U SP
f that acts as

Eq. (29). Here X f ⊂ �d is a finite set and f̃ : X f → [0, 1]
is a map such that

∑
�x∈X f

f̃ (�x) = 1. In addition, X f and f̃ ,
along with Xi and p̃i in (A2), satisfy∣∣∣∣∣

∫
�d

d�xi

∫
�d

d�xi+1 f (�xi )pi(�xi+1|�xi )P�l (�xi+1)

−
∑
�xi∈X f

∑
�xi+1∈Xi+1

f̃ (�xi ) p̃i(�xi+1|�xi )P�l (�xi+1)

∣∣∣∣∣
� ε

4
√

2N
[

ln(2L + 1) + 1
2

]d/2 (B4)

for any �l ∈ �L and i ∈ [N − 1].
Assumption B5. For any �l ∈ Nd

0 , we have access to the
oracle U amp

P�l
that acts as Eq. (30) for any �x ∈ Rd .

Assumption B6. For any i ∈ [N − 1]0 and �l ∈ �L,∑
�l ′∈�′

L

|ci,�l,�l ′ | � 1 (B5)

holds, where

ci,�l,�l ′ := C(�l )
∫

�d

d�xi

∫
�d

d�xi+1P�l ′ (�xi )pi(�xi+1|�xi )P�l (�xi+1).

(B6)
Then there exists a quantum algorithm that, with prob-

ability at least 1 − α, outputs approximation functions
f̂1, . . . , f̂N : �d → R�0 for f1, . . . , fN with the following

properties: Each f̂i is written as f̂i = ∑
�l∈�L

âi,�l P�l , with ran-
dom coefficients {âi,�l}�l∈�′

L
and âi,�0 = 2−d , and its MISE is

bounded as Eq. (31). In this algorithm, we use quantum
circuits with Uall depth of order (32), and the total number
of queries to oracles in Uall is of order (33), where Uall :=
{Upi}i∈[N−1]0 ∪ {U SP

f } f ∪ {U amp
P�l

}�l∈�L
.

Proof. The algorithm is as shown in Sec. IV. The rest of the
proof is as follows.

Accuracy. We define

δ fi := f̂i − PL[ fi] :=
∑
�l∈�′

L

δai,�l P�l , (B7)

where

δai,�l := âi,�l − a fi,�l . (B8)

Now we show that for any i ∈ [N], we have a decomposition
that

δai,�l = δaQAE

i,�l + δadisc
i,�l

+
i−1∑
j=1

∑
�li−1∈�′

L

· · ·
∑
�l j∈�′

L

ci−1,�l,�li−1
ci−2,�li−1,�li−2

· · · c j,�l j+1,�l j

× (
δaQAE

j,�l j
+ δadisc

j,�l j

)
, (B9)

with

δaQAE

i,�l :=
{

â1,�l − ã1,�l , i = 1
âi,�l − ã f̂i−1,i,�l , i � 2,

(B10)

δadisc
i,�l :=

{
ã1,�l − a f1,�l , i = 1
ã f̂i−1,i,�l − a f̂i−1,i,�l , i � 2.

(B11)

For i = 1, this holds trivially. Suppose that this holds for i. We
have

δai+1,�l = δaQAE

i+1,�l + δadisc
i+1,�l + δaacc

i+1,�l , (B12)

where δaacc
i+1,�l is defined as δaacc

i+1,�l := a f̂i,i+1,�l − a fi+1,�l , with

a f̂i,i+1,�l := C(�l )
∫

�d

d�xi

∫
�d

d�xi+1 f̂i(�xi )pi(�xi+1|�xi )P�l (�xi+1)

(B13)

and

a fi+1,�l = C(�l )
∫

�d

d�xi

∫
�d

d�xi+1 fi(�xi )pi(�xi+1|�xi )P�l (�xi+1)

(B14)

and thus written as

δaacc
i+1,�l =

∑
�li∈�′

L

ci,�l,�liδai,�li . (B15)

By plugging Eq. (B9) for i into this, we obtain Eq. (B9) for
i + 1.
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Now let us evaluate the variance of δai,�l . To do so, we first
see that due to Assumption B6,∣∣∣∣∣∣∣

∑
�li−1∈�′

L

· · ·
∑
�l j∈�′

L

ci−1,�l,�li−1
ci−2,�li−1,�li−2

· · · c j,�l j+1,�l j

∣∣∣∣∣∣∣
�

∑
�li−1∈�′

L

· · ·
∑
�l j∈�′

L

|ci−1,�l,�li−1
||ci−2,�li−1,�li−2

| · · · |c j,�l j+1,�l j
|

� 1 (B16)

holds. In addition,∣∣EQ
[
δaQAE

i,�l
]∣∣ � 2C(�l )δ′, (B17)

EQ
[(

δaQAE

i,�l
)2] � [2C(�l )ε′]2, (B18)

and ∣∣δadisc
i,�l

∣∣ � 2C(�l )δ′ (B19)

follow from Theorem 2 and Assumption B4. Using these and
noting that {δaQAE

i,�l }i,�l are mutually independent, we have

|EQ[δai,�l ]| � i[2C(�l )δ′ + 2C(�l )δ′]

� ε

2
√

2
[

ln(2L + 1) + 1
2

]d/2 (B20)

and

EQ[(δai,�l )
2] � i[2C(�l )ε′]2 + i2[2C(�l )δ′]2

+ 2i2[2C(�l )δ′]2C(�l )δ′ + i2[2C(�l )δ′]2

� ε2

4
[

ln(2L + 1) + 1
2

]d
. (B21)

Finally, let us evaluate the MISE of f̂i. Young’s inequality
gives us

EQ

[∫
�d

[ f̂i(�x) − fi(�x)]2d�x
]

� 2EQ

[∫
�d

[δ fi(�x)]2d�x
]

+ 2
∫

�d

{PL[ fi](�x) − fi(�x)}2d�x.
(B22)

We have

EQ

[∫
�d

[δ fi(�x)]2d�x
]

�
∑
�l∈�′

L

1

C(�l )
EQ[(δai,�l )

2] � ε2

4
, (B23)

where we use Eqs. (4) and (B21) along with

∑
�l∈�′

L

1

C(�l )
�

(
ln(2L + 1) + 1

2

)d

, (B24)

which can be checked by elementary calculus. Under the
definition of L in Eq. (B2), Theorem 1 implies

max
�x∈�d

|PL[ f ](�x) − f (�x)| � ε

2(d+2)/2
. (B25)

Plugging Eqs. (B23) and (B25) into Eq. (B22) leads to
Eq. (31).

Positive definiteness. Here we show that, with probability
at least 1 − α, f̂1, . . . , f̂N output by Algorithm 1 are positive
definite. We have

Pr

(
|δai,�l | � fmin

2(L + 1)d

)

� Pr

(
|δai,�l − EQ[δai,�l ]| � fmin

2(L + 1)d
− |EQ[δai,�l ]|

)

� Pr

(
|δai,�l − EQ[δai,�l ]| � (L + 1)d/2ε

√
N

2
√

α[ln(2L + 1) + 1
2 ]d/2

)

� α

N (L + 1)d
, (B26)

where we use Eqs. (B1) and (B20) in the second inequality,
and the third inequality follows from Chebyshev’s inequality
and Eq. (B21). Note that if |δai,�l | <

fmin

2(L+1)d holds for any i ∈
[N] and �l ∈ �L, we have

f̂i(�x) = fi(�x) + { f̂i(�x) − PL[ fi]} + {PL[ fi](�x) − fi(�x)}
� fmin −

∑
�l∈�′

L

|δai,�l ||P�l (�x)| − ε

2(d+2)/2

� 0 (B27)

for any i ∈ [N] and �x ∈ �d , where we use Eq. (B25) in the
first inequality and we use |δai,�l | <

fmin

2(L+1)d , |P�l (�x)| � 1, and
Eq. (B1) in the second inequality. Thus, we obtain

Pr{all of f̂1, . . . , f̂N are positive definite}

� Pr

{
|δai,�l | <

fmin

2(L + 1)d
for alli ∈ [N], �l ∈ �L

}

� 1 −
∑
i∈[N]

∑
�l∈�′

L

Pr

(
|δai,�l | � fmin

2(L + 1)d

)

� 1 − N (L + 1)d α

N (L + 1)d

� 1 − α, (B28)

where we use Eq. (B26) in the third inequality.
Complexity. Finally, let us evaluate the circuit depth and

the total query complexity of Algorithm 1 in terms of the
number of queries to the oracles Upi , U SP

f , and U amp
P�l

. Since
each UBQAE in Algorithm 1 is run as a separate quan-
tum algorithm, the number of oracle calls in it is an upper
bound of the depth of quantum circuits used in Algorithm
1. Because we make O(1) uses of Upi , U SP

f , and U amp
P�l

in
O1,�l and O f̂i,i+1,�l , we see from Theorem 2 that each UBQAE
calls these oracles O( 1

ε′ ln ln( 1
ε′ ) ln( 1

δ′ε′ )) times. Plugging
Eqs. (40) and (41) into this followed by some simplification
yields the circuit depth bound in Eq. (32). Because Algorithm
1 runs UBQAE N (L + 1)d times in total, multiplying this by
Eq. (32) yields the total query number bound in Eq. (33). �

2. Assumptions in Theorem 3

Theorem 3 accompanies many assumptions and for some
of them, it is not apparent why they are made and whether
they are reasonable. We now explain such points.
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In Assumption B1 we assume that the density functions
fi are lower bounded by some positive number as Eq. (B1).
We make this assumption in order to ensure that the estimated
density functions f̂i are bona fide [18]. Because of the errors
due to Legendre expansion and estimating the coefficients by
QAE, the value of f̂i at each point in �d deviates from the true
value and can be even negative. However, if fi has a positive
lower bound and the error in f̂i is suppressed compared to
the bound, it is ensured that f̂i is positive definite. Note that∫
�d

f̂i(�x)d�x is satisfied because of setting âi,�0 = 2−d .
Assuming that each fi has the positive lower bound is

reasonable in the current setting that �X (t ) is in �d , a bounded
region. There are some concrete examples of stochastic pro-
cesses that have bounded ranges and are of practical interest
such as the two-sided reflected Brownian motion considered
in Sec. VI. This makes the proposed method with the assump-
tion of the bounded range meaningful. Nevertheless, many
stochastic processes such as Brownian motions with no re-
flective boundary have unbounded ranges, and their density
functions can be arbitrarily close to 0. Extending the proposed
method to such a case with estimated density functions kept
bona fide is left for future work.

Assumptions B2–B4 are on the availability of the state-
preparation oracles for the transition probability densities pi

and Legendre series. As explained in Sec. II F, there are some

methods for state preparation with exponentially fine grid
points, and thus assuming that integrals can be approximated
by finite sums on the grid points as Eqs. (B3) and (B4) is
reasonable.

The oracles in Assumption B5 can be also implemented
with arithmetic circuits and controlled rotation gates, as men-
tioned in Sec. II F.

Assumption B6 looks less trivial than the others. To con-
sider this, we expand pi(�xi+1|�xi ) as a function of �xi and �xi+1

with tensorized Legendre polynomials:

pi(�xi+1|�xi ) =
∑

�l,�l ′∈Nd
0

api,�l,�l ′P�l (�xi+1)P�l ′ (�xi ). (B29)

Then we see that Eq. (B5) holds if

∑
�l ′∈�′

L

|api,�l,�l ′ |
C(�l ′)

� 1. (B30)

Even if |api,�l,�l ′ | decreases with respect to �l ′ weakly, say,

|api,�l,�l ′ | = O((‖�l ′‖∞)−ω ) with ω ∈ R+, the left-hand side of
Eq. (B30) converges with small �l ′ making the dominant contri-
bution. This consideration implies that Assumption B6 holds
in a wide range of situations.
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