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Theory of Thermal Elastic-Plastic Analysis with A More General

Workhardening Rule T

Yukio UEDA* and Keiji NAKACHO **

Abstract

It is well known that welding thermal stresses and resulting residual stresses influence the strength of welded
construction, causing troubles such as brittle fracture, buckling and weld cracking.

At the instant of welding, a limited portion of the welded joint is heated up to a very high temperature and cooled
down to room temperature. In the thermal cycle which takes place, the temperature distribution changes with time and
the plastic deformation develops. They affect the mechanical properties of the material. In order to perform a reliable
theoretical analysis, the above mentioned factors should be taken into account.

The authors extended their developed theory of thermal elastic-plastic analysis with consideration of the effects of
changes (that is, temperature-dependence and plastic history-dependence) of the material properties, introducing a
combined model of isotropic and kinematic rules as the workhardening rule.

KEY WORDS:
(Mechanical Properties)

1. Introduction

It is well known that welding produces thermal stresses
which cause distortion of structures and residual stresses
which influence buckling strength and brittle fracture
strength of welded structures. Welding cold cracking is
investigated from various points of view, including dy-
namical one. ’ ‘

For better understanding of formulation of welding
residual stresses and causes of weld cracking, it is neces-
sary to obtain more accurate information on the entire
histories of stresses and strains to which the material is
subjected during the process of welding. At the instant of
welding, a limited portion of the welded joint such as the
weld metal and the base metal in its vicinity are heated
up to a very high temperature and thereafter cooled
down to room temperature. In this way, the thermal
cycle proceeds, temperature distribution changes with
time and the mechanical properties of metal depend on
temperature and plastic history. In order to perform a
more reliable analysis, the above mentioned factors should
be taken into account.

Based on the finite element method, the authors had
developed methods of thermal elastic-plastic analysis on
this kind of problems with consideration of the effects of
changes of the mechanical properties! ). And the authors
and their colleague have presented various information on
thermal stress and strain histories in the process-of weld-

(Thermal Elastic-Plastic Analysis) (Workhardening Rule) (Finite Element Method) (Welding Stresses)

ing on many types of welded joints by using their meth-
0ds?)=2). In their theory, it is assumed that the mate-
rial obeys isotropic workhardening rule in the plastic
range. When multipass welding is applied, the material
undergoes multi-thermal cycles and plastic work. For
more accurate analysis, it may be necessary to adopt niore
general workhardening rule including the translation of
the yield surface in the theory.

In this paper, the authors generalize the theory of
thermal elastic-plastic analysis to take into account more
accurately temperature - dependence and plastic history-
dependence of the material properties, introducing a
combined rule of isotropic and kinematic workhardening.

2. Stress-Total Strain Incremental Relation with Con-
sideration of Temperature and Plastic History Depend-
ence of Material Properties

The mechanical properties of material generally change
when temperature changes or its plastic deformation
progresses. Especially in the process of welding, the
magnitudes of changes of the material properties are very
large because the welded joint is heated up to a very high
temperature and thereafter cooled down to room tem-
perature generally with large stresses and plastic strains.
Accordingly, when thermal stresses, strains or deforma-
tions produced by welding are analyzed, it is necessary to
consider such temperature-dependence and plastic histo-
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ry-dependence of the material properties.

In this chapter, stress-total strain incremental relations
with consideration of effects of changes of the material
properties will be developed for the elastic range and
plastic range respectively, introducing a combined rule of
isotropic and kinematic workhardening.

2.1 Stress- total strain incremental relation in elastic
range

In this paper, it is assumed that creep strain is not
produced in the material, and the total increment of
thermal strain including transformation strain is denoted
by { dET} and it will be called simply thermal strain
increment hereafter. Such a thermal strain increment can
be expressed by instantaneous linear expansion coefficient
{ a } and temperature increment dT as

{deT} = {a}dT 1)
The above instantaneous linear expansion coefficient
{ a } is usually a coefficient which indicates the magni-
tude of expansion or shrinkage due to temperature
changes at every instant. By this coefficient, expansion or
shrinkage due to both temperature change and transfor-
mation can be expressed when the material is in the
temperature range of the transformation. Then, in the
elastic range, total strain increment { de} is represented
as the summation of thermal strain increment { deT }
and elastic strain increment { de® } which are produced
to satisfy the conditions of compatibility, that is,

{de}={de®}+ {deT} )

Elastic strains {e®} have always the relation to stresses

{0} as

{o}=1[D°]{e} 3

where [D°]: elasticity matrix or elastic stress-strain
matrix (the components of [ D®] are
generally functions of Young’s modulus,

Poisson’s ratio etc.)

When the stresses { o } , elastic strains {¢® } and
elasticity matrix [D®] change into {o + do} ,
{€® + de®} and [D®] +d [ D®] respectively after the
subsequent increment of loads, new stresses, elastic strains
and elasticity matrix must satisfy the same equation as
Eq. (3),that is,

{o+da}=([D°] +dID°]) {&® + de®} “)

In the case where the elasticity matrix [ D® | (containing
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the material properties) is a function of only temperature,
the increment d[ D® | of elasticity matrix [ D°] in the
above equation can be represented as

_4[D°]

T
dT d

d[ D] &)
Substraction of Eq. (3) from Eq. (4) and introduction of
Eq. (5) provide the relationship between stress increment

and elastic strain increment as

taop= 5] (et + S8 ar tey g
where [DZ] = [D°] +E£1?1 dT

It should be noted that as temperature history and tem-
perature-dependence of elasticity matrix [D®] are
known in advance, the second term a[bej dT in the
above matrix [Dg] does not produce nonlinear term
with respect to unknown quantities but improves the
accuracy of analyses. In the right side of the above Eq.
(6), the first term indicates a part of stress increment due
to an increase of elastic strain, and the second term does
the rest of stress increment due to change of temperature.

Elimination of elastic strain increment { de®} from
Eq. (6) by using Eq. (2) and introduction of Eq. (1) for
thermal strain increment furnish the incremental relation-
ship between stress and total strain as

{do} = D] {de} — D] ({a}

er—1 4[] . .
- [p¢] dT] (%)) dT

(7

2.2 Stress- total strain incremental relation in plastic
range
2.2.1 Yield criterion, workhardening rule and yield sur-
face

When stresses produced at a point reach a certain
magnitude, the material yields and shows complex plastic
behavior for the subsequent loading. In a certain combina-
tion of stresses, a condition which defines the limit of
elasticity of the material is called yield criterion. In the
space (stress space) which co-ordinate axes are stress
components, the yield criterion can be shown by some
curved surface (yield surface). Generally the shape, size
and position of the yield surface change with progress of
plastic deformation of the material. That is, the yield
criterion changes, being subjected to plastic work. The
law for such changes of the yield criterion is called work-
hardening rule. Hitherto, various workhardening rules
have been proposed. Isotropic workhardening rule'®)
assumes that the size of the yield surface changes with
increase of plastic work but the position and shape do not
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F=0 ¢ yield surface ( in this example, circle ) change (see Fig. 1 (a)). This implies that the initial yield
: t hich indicates center of yield surface . . . .

(83 : vector wnich Indicates center of v surface expands uniformly during plastic flow. In kine-
0 : a measure of size of yield surface . 1 l) . ]

( in this example, radius of yield surface ) matic workhardemng rule . it 1s assumed that the y181d

{0} stresses on yleld surface surface does not change its initial size and shape but
i,i+1 : loading step

( suffix f indicates normal component of each increment ) moves in the stress space like a rigid body (see Fig. 1
(b) ). With the aid of this rule, the Bauschinger effect can
be easily represented within a certain degree of accuracy.
Furthermore, in order to represent plastic behavior more
accurately, many complex workhardening rules have been
proposed. In this study, the isotropic and kinematic
workhardening rules will be combined and it is assumed
that the size and position of the yield surface can be
changed but its initial shape can not (see Fig. 1 (c)).
Generally, such combined yield surface can be shown by
the following expression.

f(oj5—0j,0,) =0 ®)

where {0} : translation vector which indicates the
position of center of the yield surface in
the stress space

(a) Isotropic Workhardening Rule o, : a measure of the size of the yield surface

(o = Tog4,)

The above function f which defines the yield surface (the
yield criterion) is called yield function.

02

Next, the following hypothesis is furnished, on which
changes of the size and position of the yield surface
shown by Eq. (8) will be ruled. First, the size of the yield
surface ( o, ) is assumed to be a function of the quantity
e} of plastic strain and temperature T. Here,

N

d0% = dog

ell’ = J defl’ )

0, = constant where dell’ . the length of the vector of the plastic
strain increment (see Eq. (13))

(b) Kinematic Workhardening Rule . )
Concerning translation of the yield surface, it is assumed

that, as a general rule, the yield surface can move only
when the plastic deformation increases. It should be
noted that temperature change can not be the direct cause
to move the yield surface. Such translation increment

{ d8} is proportional to the magnitude de‘l’ of plastic
strain increment {deP} . The above hypotheses can be
expressed as follows.

ao=do(efl’,T) (10)
oo 0o
d0 = d8g + da, (0o = Cogay) do. = —2 3eP + o
0T 6P def + 5 AT
(¢) Combined Workhardening Rule
{de }=k dell){nﬁ} 11)

Fig.1 Schematic Illustration of Workhardening Rules
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where k

{ng} ¢

proportional coefficient

unit vector which indicates the direction
of translation increment of the yield
surface

In general cases, an explicit form of Eq. (10) should be
determined based on the results of experiment. And, in
this paper, the direction of translation increment of the
yield surface is selective, that is, its direction can be
selected to represent well the behavior of the material.
For example, when the Ziegler rule!?) is regarded as
appropriate to describe the behavior of the material based
on the results of experiment, unit vector { ng } in Eq.
(11) is expressed as

{ng}={c—0}/|{o-0}] (12)

1
where 2

[{o—0}|=({c—8}T{o—0})

2.2.2 Plastic
modulus

strain increment

and workhardening

Assuming that the material behaves according to
incremental strain theory of plasticity (plastic flow
theory) in the plastic range and introducing the yield
function (f of Eq. (8) ) as a plastic potential, plastic strain

" increment { deP} is defined as

{deP} = de {n} (13)

where dgll’: magnitude of plastic strain increment
{deP } (that is, the length of the vector

{deP })
{n}: unit vector outward normal to the yield

surface at the stress point

{n}= {a(—e)/f," j
of of

(3] fess )

The above expression implies that the direction of plastic
strain increment {deP } is shown by a vector outward
normal to the yield surface at the stress point (see Fig.
2). When a usual yield function which is independent of
hydrostatic stress is chosen as a plastic potential, plastic
strain increment given by Eq. (13) satisfy the condition
of incompressibility of the material automatically.
Next, a relationship between plastic strain increment

{deP } and stress increment { do } will be considered,

qe=il
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{deP} = deﬁ’ {n}

d0 = H def
(in the case of dT=0)

Fig. 2 Relation between Stress Increment {do }

and Plastic Strain Increment {deP }
(in the Case of dT=0)

based on the following condition which must be satisfied
in the case where the material is under loading in the
plastic range.

df =0 (14)

First, the case where temperature does not change like
usual plastic problem will be discussed. As the yield
surface is defined by Eq. (8) and the changes of its size
and position are calculated by Eqgs. (10) and (11) respec-

tively, the above Eq. (14) may be rewritten in the explicit
form as

- Af = of _
0 = df {a(a e)} {d(s—0)}+2L ds,
= dog — £ k dsp+if-—a—”2dep
] 99t — b KDy, 48 do, ae{’
(15)
T
where dop = {n} {do}
! T
nge = {n} {ng}
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Rearrangement of the above expression for doy and
dell’ may produce

of oo,
do 6511’

) deb (16)

1

dO’f = (kl’lef —vfl,—-l
: o

The above equation represents that the magnitude delp of
plastic strain increment {deP} is proportional to the
normal component doy of stress increment { do } to the
yield surface (see Fig. 2). Accordingly, even for the same
magnitude of stress increment { do} , the magnitude of
plastic strain increment {deP} is not necessarily the
same, depending upon the direction of { do } . That is,
nearer is the direction of { do} to normal to the yield
surface, larger is thé magnitude def’ of plastic strain in-
crement { deP } . Therefore, in this meaning, the normal
component dog of stress increment {do} is called
effective stress increment. For further development of
plastic deformation in the case of usual metals, it is
necessary to increase the stresses if the temperature does
not change. This phenomenon is caused by hardening of
the material due to plastic work and is called workharden-
ing (strain-hardening). As seen from Eq. (16) which
represents the relationship between doy and the magni-
tude deP of plastic strain increment { deP} produced by
{do}, the above-mentioned effective stress increment
do; is the effective one to progress the plastic defor-
mation.

Here, Eq. (16) may be rewritten as

dor=H dell’ )

(18)

— y—1 of ado
H = knaf —f CY

where
1 dg, aelf

In the above equation, H is the proportional coefficient of
Eq. (16) and is called workhardening modulus.

In the case where temperature changes, as the tempera-
ture change affects the mechanical properties, such as
modulus of elasticity and yield stress, the size of the yield
surface changes not only by the plastic deformation but
also by temperature as assumed by Eq. (10). Therefore,
the relationship between stress increment { do } and
plastic strain increment { deP} is influenced by the
temperature change. With consideration of this effect,
Eq. (17) may be rewritten in the following form, from
Egs. (14),(8), (10), (11) and (18).

00,

3T dT

dog = H deP —f/~* O

904

(19)

111

(111)

This represents the relation among stress, plastic strain
and temperature increments.
Again, Eq. (19) is solved for dell’ as

deP =

1 r—1 _of 00,
i 7] (dos + fl 3-6—0 3T dT) (20)

This equation represents that the effective stress incre-
ment dog must exceed the increment (- £ % '5%"2 dT )
due to expansion or shrinkage of the yield surface
by temperature change in order to increase plastic defor-
mation. This may be interpreted that when the yield
surface expands by temperature change, the stress needs
to increase beyond the expansion by the temperature
change for progress of plastic deformation.

2.2.3 Stress - total strain incremental relation

In the plastic range, total strain increment {de} is
expressed by the summation of components as

{de}={de®} + {deP} +{de} 1))

First, the relationship between the magnitude ds‘l’ of
plastic strain increment { deP® } and total strain incre-
{ de } will be obtained. Equation (14) for the
condition of loading in the plastic range may be reformed
by introduction of Eq. (8) for the yield surface, Egs.
(10) and (11) for the changes of its size and position and

Eq. (18) for the workhardening modulus.

ment

o
1l

(=N

=y
|

{ of

T af
= a_(_a——e)} {d(e —6)]‘*‘@‘1%

]

£ {nY {do}— £ k ngp deP

of 99, of 9o
—2 deP + 2 2. 4T
90, 8611’ €l oo, 9T d
_ o T e p, of 09,
f (0T (a0} — ] 1 e + 2 e

(22)
1
1= Ha(aéfe)}’: (i a(aafe) }T {a(aa—f— 9)}>2

1
of '
o(c—9) }/fl

ngr = {n}" {ng}

where

fny={
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The above equation will be further transformed accord-
ing to the following procedure.

(1) To substitute Eq. (6) into stress increment {do} in
the first term of the right side and express in terms of
elastic strain increment {de®} etc.. ‘

(2) To replace elastic strain increment {de®} by total
strain increment { de} etc., using Eq. (21).

(3) To express thermal strain increment {deT} by Eq.
(1) and plastic strain increment {deP} by Eq. (13).

As a result of this manipulation, Eq. (22) is transformed

into a function of only total strain increment {de} and

the magnitude delp of plastic strain increment {deP} as
unknowns. Rearrangement of the equation provides the
relationship between {de} and de as

aep=[ ()" () (aeh—{ (my 1051 ()
-1 d[D°]
dT

af 99,
do, oT

}dT]/s

(23)

-1
] () -1

where S = {n}T[Dg]{n} +H

Next, the incremental relationship between stress and
total strain will be derived. Based on Eq. (6) which
represents the relationship between stress increment {do }
and elastic strain increment { de® } , the right side of Eq.
(6) will be transformed as follows.

(1) To replace elastic strain increment {de® } by total
strain increment { de} etc., using Eq. (21).

(2) To express thermal strain increment { dsT} by Eq.
(1) and plastic strain increment { deP} by Eq.
(13). Further, replace the magnitude delp of {deP}
by { de} etc., using Eq. (23).

As a result of the above calculation, only total strain

increment { de } remains as unknown on the right side

of Eq. (6), and Eq. (6) becomes the incremental equation
representing the relationship between stress increment

{do } and total strain increment {de} . Rearrangement

of the right side and division of the expression into terms

relating to total strain increment { de} and the other
terms (including temperature increment dT) furnish the
following equation.

_1 d[D%]
dT

()

@4

(do}=ID8] {ae} ~{IDR] ({a}- [DF)

of 99,

+ [Dg]{n}fl'"r%ﬁ_/s}dT
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where  [DP] = [DE] — [DS]{n} {n}T [DS] /S

Equation (24) is applied when the material is on load-
ing in the plastic range by the subsequent loading. Then,
the scalar delp, the magnitude of the plastic strain incre-
ment expressed by Eq. (23), is positive. In contrast with
this, if unloading occurs from the plastic range, the be-
havior of the material is elastic and def becomes negative.
Therefore, Eq. (7), the incremental relationship between
stress and total strain in the elastic range, should be used
for the analysis of the subsequent step of loading in place
of Eq. (24).

In order to proceed the analysis at the new increment
of loading, the resulting new size and position of the yield
surface by the previous increment should be obtained. It
is assumed that the size (o, ) of the yield surface is the
function of the quantity 511) of plastic strain and tempera-
ture T as'shown in Eq. (10). In connection with this, an
explicit form of Eq. (10) should have been determined in
advance based on experimental results. The position {0 }
of the yield surface after each increment is known by
summing up all translation increments { df } obtained at
the preceding steps of loading. For calculation of {df},
the proportional coefficient k in Eq. (11) must be
determined and this can be obtained with the aid of Eq.
(18) as the workhardening modulus H has been deter-
mined in advance based on experimental results™®’.

3. Basic Equations for Thermal Elastic - Plastic Analysis
by Finite Element Method

The basic concept of the finite element method, ex-
pressed simply, is to regard a structure as an assembly of
simple structural elements interconnected at a finite
number of nodal points, where the equilibrium and
compatibility conditions are satisfied. Accordingly, the
structure under consideration should be divided into a
finite number of elements at the beginning of the analysis
such as triangular finite elements for plane stress or strain
problems, or tetrahedral finite elements for three - dimen-
sional stress problems.

One of typical finite elements in the continuum con-
cerned is considered here and its mechanical behavior is
represented in matrix forms in the following.

*) One of the methods to obtain the workhardening modulus H
is to conduct usual uniaxial tensile tests at the temperature
range which the material passes (Each test is conducted in a
constant temperature). Then, the workhardening modulus H
may be obtained as a function of the quantity €] of plastic
strain and temperature T, from the resulting stress - plastic

strain diagrams (see Eq. (17) ).
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3.1 Total strain - displacement incremental relation

in an element ,
The displacements {s } of an arbitrary point in an
element will be defined as a function of the nodal dis-
placements { w } .

{s)=INI{w}=[NN, ... ] {ww.. A ©5)

]

where [N] : displacement function (the components
of [ N ] are generally a function of posi-

tions)
{w} : nodal displacements (suffix i, j, ... are

nodal numbers)

Introducing the co-ordinates of any point within the
element into the displacement function [N ], the dis-
placements of the point can be expressed as functions of
the nodal displacements by Eq. (25).

The strains { e } in the element are obtained as
functions of the nodal displacements as a result of appro-
priate differentiation of Eq. (25) (that is, the differentia-
tion of [ N 1) with respect to the co-ordinates,

{e}=[B]{w} (26)

In the case of infinitesimal displacement problem, the
above matrix [B] can be regarded as a constant matrix.
Then, the above equation may be expressed in the form of
increment as

{de } = [B] {dw} (27)

3.2 Stress - total strain incremental relation

When temperature of the element changes during an
increment, the relationship between stress increment and
total strain increment may be generally expressed in the
following form, from Egs. (7) and (24).

{do} = [D,]{de}—{C}dT (28)

where, for the elastic range

[Dy] = [D]

(c3= 5] (a3 - i S gee )
for the plastic range
[D,] = [DY]
-1 d[D%]

(cy=mg (fad — g1 B2 ooy

e r—1 of 0,
+[Dd]{n}f1 3—0'0— 3T /S

113
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3.3 Nodal force - nodal displacement incremental relation

From the basic equations which have been already
shown, the relationship between nodal forces and nodal
displacements will be derived by applying the principle of
virtual displacement.

Here, the nodal forces {F} are defined, which are
statically equivalent to the boundary stresses acting the
element.

{F}={F F...}'

(29)
Each of the forces {F;} must contain the same number
of components as the corresponding nodal displacements
{wi}.

Imposing arbitrary virtual nodal displacements { w* }
to the element, the external work §W, done by the nodal
forces { F } during that displacement is

W, = {w*}" {F } (30)
Similarly, the internal work 8§W; per unit volume done by
the stresses {o } is

sW;={e*}T {0} (31)
{e* }in the above equation are virtual strains due to
virtual nodal displacements {w*} , and they have the
relation of Eq. (26). Thus, expressing the internal work
8W; with virtual nodal displacements {w* } , Eq. (31)
becomes

8W; = {w*}[B]" {0} (32)

Equating the external work by Eq. (30) with the total
internal work obtained by integrating Eq. (32) over the
volume of the element, the following equation is obtain-
ed.

(we}T{F) = (we) T (BT (o} dwo)  (33)
As this relation is valid for any value of the virtual
displacements, the equality of the multipliers must exist.
Therefore,

(F} =[BT {0} devol) (34)

In the case where matrix [ B] can be regarded as a
constant matrix, the above equation may be expressed in
the form of increment as

{aF} = [ [B1 {40} d(voD (35)
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Substitution” of ‘Egs. (28) and (27) into Eq. (35) pro-
vides the incremental relationship between nodal forces
and nodal ‘displacements, that is,

{dF}=[K] {dw}—{dL} (36)
where  [K] =J [B]T [Dy4] [B] d(vol): stiffness matrix

of the element
{aL} J[B {C} dT d(vol): equivalent nodal
force increment
for temperature
change

The equilibrium state of the whole structure will be
kept for satisfying the condition which is obtained as, the
summation of individual equilibrium equation at each
node.

T {dF} =2 [K]{dw} —={dL} 37
(2 means summation of the appropriate
matrices of all elements )

Once the above Eq. (37) is solved for nodal displace-
ment increment {dw }, satisfying the specified boundary
conditions, total strain increment {de} and stress incre-
ment {do} of each element can be evaluated from Egs.
(27) and (28).

4. Concluding Remarks

In this paper, the authors showed the theory of ther-
mal elastic-plastic analysis with consideration of tempera-
ture-dependence and plastic history-dependence of the
mechanical properties of the material. Especially to take
into account more accurately the effects of plastic history
like the Bauschinger effect, the combined model of isotro-
pic and kinematic rules is introduced as the work-
hardening rule. That is, it is assumed that the yield
surface can change its size and position. As a result, it is
possible to adopt many of verious complex work-
hardening rules and more accurate information about

114
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thermal stresses and strains due to welding will be obtain-
ed by the analyses based on this developed theory.
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