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Optimizing multilayered diffractive optical elements
for compressive sensing in imaging systems

Tomoya Nakamura® and Mohamad Ammar Alsherfawi Aljazaerly®

*SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan

ABSTRACT

This study explored the optimization of multi-layered diffractive optical elements (DOEs) for compressive sensing
in imaging systems. We investigated how increasing the number of DOE layers with optimization affected the
coherence value of the system’s transmission matrix, a key performance indicator for image reconstruction in
compressive sensing. Through wave-optics simulations, we demonstrated that coherence decreased monotonically
up to 8 layers before increasing, suggesting an optimal layer count exists. Our findings indicated that optimized
multi-layer DOEs can significantly e nhance t he p erformance o f c ompressive s ensing a pplications, potentially
improving accuracy in snapshot super-resolution and multi-dimensional imaging.
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1. INTRODUCTION

Computational coded imaging is a hybrid approach that combines optically coded measurement and computa-
tional decoding to achieve image aquisition. Among such approaches, pupil phase coding by using a diffractive
optical element (DOE), which realizes point spread function (PSF) engineering, has been widely studied for
its potential to improve the performance of imaging systems. For example, past studies on DOE-based PSF
engineering enabled snapshot digital super-resolution,”? three-dimensional imaging,® hyperspectral imaging,*
depth-of-field e xtension,? " lensless imaging,® ? and so on.

An important aspect of DOE-based PSF engineering is the ability to integrate the compressive-sensing (CS)
framework with an imaging system.!®!'! CS framework in imaging is a method for reconstructing a higher-
dimensional and/or larger-resolution image than a captured data. To achieve this reconstruction by continuous
optimization method, particularly ¢;-norm minimization method, the transmission matrix,'? '® which is a matrix
to describe the linear forward process of image sensing, must have a low coherence value.'* The transmission
matrix H is typically represented as a set of the column vector a; which represents an impulse responce of a
space-variant point-source input as:

H:[alaa2>”'aaN]7 (1)

where N is the number of pixels in the image. Note that the a. where c is the center of the image is defined as the
PSF if the impulse response has the space-invariant characteristics.!? The coherence value y of the transmission
matrix is defined as the maximum value of the column-vector correlation as:

= max (B2 @
5 Tadllay 2

where a; and a; are the i-th and j-th column vectors of the transmission matrix, respectively. If the low-coherence
value is satisfied in the matrix by the appropreate optical design, the higher-dimensional and/or larger-resolution
image X can be numerically reconstructed from given measurement data y by the error minimization method
with the sparsity constraint as:

% = arg min||Hy — x||3 + 7¥(x), (3)
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where 7 is a regularization parameter, and ¥(x) is a regularization function. This minimization problem can be
solved by using the iterative algorithm such as ADMM!'® or TwIST'¢ algorithms.

As mentioned above, the design of DOE for implementing the low-coherence transmission matrix is a key to
achieve the high performance of CS framework in imaging. In previous studies, the random diffuser or random
mask is known as a good design of DOE for the low-coherence matrix.®'” Recently, the optimization of the DOE
design has been studied to improve the performance of CS-based imaging.*'® However, the most of previous
studies have focused on the optimization of a single-layer DOE. This strategy can flexibly design the single PSF,
but the freedom of design of the matriz is limited by the shift-invariance of the PSF.

To overcome this limitation, we propose the use of multi-layered DOEs, which can provide additional degrees
of freedom in the design of the transmission matrix. In our previous study on computational lensless imaging,
we demonstrated that the multi-layerd random coded apertures can achieve the lower condintion-number trans-
mission matrix than the single coded aperture.'® In this study, we extend the concept of this matriz-engineering
by multi-layerd coded optics to lense- and DOE-based CS imaging, and invesitigate the effect of optimization of
the coded optics for the multi-layered system. In this study, we also investigate the effect of the number of DOE
layers on the coherence value through simulation results.

2. METHOD
2.1 Forward model of imaging with multi-layer DOEs
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Figure 1. Schematic diagram of an imaging system with multi-layered DOEs.

Figure 1 shows the schematic of the imaging system with multi-layered DOEs. A vector of a complex wave
field u can be represented by the following equation:

u=Aexp (jk®), (4)

where A is a vector of the amplitude distribution of the wave field, k is the wavenumber, and ® is a vector of
the phase distribution of the wave field. The phase modulation A® by the i-th DOE can be described by the
following equation:

A‘Pi = —nli, (5)

where n is the refractive index of the DOE, and 1; is a vector of the thickness of the i-th DOE. Under the Fresnel
approximation, the propagation of the wave field to distance z from i-th DOE plane to ¢ + 1-th DOE plane can
be simply described by the following equation:'?

;1 = h(z) xu;, (6)

where h(z;) is a vector of the Fresnel kernel with the propagation distance z;. After the modulations by the
multi-layered DOE system, the wave field at the output plane is converted to the convering wave for focusing
near the image plane. The phase modulation by the lens can be described by the following equation:

1‘2+y2
2f

(7)

AP eng = nliens =
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where x and y are the spatial coordinates, and f is the focal length of the lens. By using above equations, the
forward model of the imaging system with multi-layered DOEs can be described by the algorithm 1. In the
algorithm, Np is the total number of the DOE, ® denotes the Hadamard product, * denotes the 2D convolution
operation, and -* denotes phase conjugate. Note that the ug indicates the incident wave field to the DOE
system, and the Iiyg is a vector of the intensity distribution of the image. In the algorithm, several operations
are cascaded, however the whole process can be optimized by gradient method because every operation is

differentiable. To simulate spatial imaging at far field, we assumed tilted planer waves as the incident wave
fields.

Algorithm 1 Forward Wave-Propagation Algorithm

1: fori=0to Np —1do > Loop over each propagation layer
2 if i > 0 then

3 u; + u; © exp(JEAD;) > Phase modulation by a DOE to u;
4 end if

5: w41 < h(z) *xu, > Propagation of a wavefront
6: end for

7: unp < upnp © exp(jEAPons) > Phase modulation by a lens
8: Uimg + h(zny) * unyg > Propagation to the image plane
9: Limg ¢ Wimg © u;"mg > Calculate intensity at the image plane

2.2 Optimization

To optimize DOEs, the [l3,15, - ,15] are set to the optimization variables, and they are optimized to minimize
the predefined loss function that evaluates the coherence of the transmission matrix. The most straightfoward
design of the loss function is just the summation of column-vector correlation of the transmission matrix as
follows:

a a;
coherence Z ”a . j (8)

ill2 IIagllz

where a; and a; are the i-th and j-th column vectors of the transmission matrix, respectively. Here, the max-
selection operation in Eq. (2) has been replaced with a summation operation to ensure the differentiability of the
computation. This design of loss function is simple and reasonable; however, the size of the transmission matrix
for spatial imaging is typically so huge that the computation of the Eq. (8) is impractical. As a substitute, we
focused on the PSF a. as a representive impulse-response vector, and we define the alternative loss function
using the PSF as:

1

Lacr—mrr = ACF(a.) + ’YW@)’ (9)

where ACF(+) is the sum of 2D autocorrelation function of the PSF, MTF(:) is the sum of modulation transfer
function calculated by the PSF, and « is a parameter to balance the two terms. The ACF evaluates the
randomness of the PSF, and the MTF evaluates the continuity of the abundance of high-frequency components
of the PSF. Therefore, both the ACF and reciprocal MTF term in the loss function and minimization of them
contributes to the suppression of the coherence value of the transmission matrix. The optimization problem that
we solved in simulation is defined as:

min  Lacr—mrr(li,l2, -, InD). (10)
11,12, ,InD]

3. SIMULATIONS

We performed wave-optics simulations to investigate the effect of the number of DOE layers on the coherence
value of the transmission matrix with the optimization of DOEs. The DOE was designed with a size of 2048 x 2048
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pixels with the pitch of 1.0 pm. Wavelength was set to 630 nm, and the focal length of the lens was set to 2.0 mm.
The phase modulation map (i.e. thickness) of each DOE was optimized with the loss function of Eq. (9). « in
the loss function was set to 4. The optimization was implemented by using PyTorch and Adam optimizer.2® We
performed the optimization operation with 10,000 epochs, and learning rate was set to 1e-07.
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Figure 2. Coherence values of the transmission matrix with increasing the total number of DOEs.

Figure 2 shows the coherence value of the transmission matrix as a function of the number of DOE layers.
Note that the coherence value for each layer count was calculated using the DOE optimized under each respective
condition. As shonw in the figure, the coherence value decreased monotonically up to 8 DOEs before increasing.
This result suggests that an optimal number of layers exists for minimizing the coherence value. The coherence
value of the transmission matrix was reduced to 0.821 with optimized 8-DOE system, which was significantly
lower than the value of 0.997 with a single DOE system.

DOE 1 DOE 2 DOE 3 DOE 4 DOE 5 DOE 6 DOE 7 DOE 8
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Figure 3. Phase-modulation maps of optimized 8-layer DOEs. The intensity values represent the phase delay amounts
implemented by the DOE element.

Figure 3 shows the phase-modulation maps of the optimized 8-layer DOEs. The phase modulation map of the
optimized DOE was effective in suppressing the coherence value, but it appeared to resemble a seemingly random
pattern. This seemingly random yet designed phase modulation is thought to have structured the PSF randomly,
resulting in output light with low correlation in response to the shift of the input point source. Consequently, it
implemented a matrix with a lower coherence value.

4. CONCLUSIONS

In this study, we investigated whether an optical design method that involves multilayer placement and optimiza-
tion of DOEs in a pupil-phase-modulation-based imaging optical system is effective in improving the performance
of compressive sensing. The analysis results from wave optics simulations revealed that the coherence value of
the transmission matrix, which is one of the indicators of compressive sensing performance, can be improved
through the multilayering and optimization of DOEs. Furthermore, it was revealed that there is an optimal
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number of layers in the design of multilayer DOE optical systems. Additionally, it was visualized that the DOE’s
height maps output from the optimization process exhibit an apparently random structure.

Our findings indicated that the optical design involving optimized multi-layer DOEs can significantly enhance
the performance of CS-based imaging, potentially improving accuracy in CS-based snapshot super-resolution and
multi-dimensional imaging. In future work, further performance analysis of multilayer DOE optical systems and
proof-of-concept demonstrations based on physical implementation will be conducted.
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