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When to efficiently rebalance a portfolio*

Masayuki Ando and Masaaki Fukasawa†

Graduate School of Engineering Science, Osaka University, 560-8531 Japan

Abstract

A constant weight asset allocation is a popular investment strategy and
is optimal under a suitable continuous model. We study the tracking error
for the target continuous rebalancing strategy by a feasible discrete-in-
time rebalancing under a general multi-dimensional Brownian semimartin-
gale model of asset prices. In a high-frequency asymptotic framework, we
derive an asymptotically efficient sequence of simple predictable strategies.

Keywords. Discretization of stochastic integrals, Asymptotic analysis,
Constant weight asset allocation, Impulse control, Pearson’s inequality.

1 Introduction

Consider a multi-dimensional risky asset S = (S1, . . . ,Sd)⊤ and a risk-free asset
S0 with

dSi
t

Si
t

= µi
tdt +

m∑
j=1

σi j
t dW j

t ,
dS0

t

S0
t

= µ0
t dt (1)

where (W1, . . . ,Wm) is an m-dimensional standard Brownian motion, and µi

and σi j are locally bounded adapted processes with

Σt = [Σi j
t ], Σi j

t :=
m∑

k=1

σik
t σ

jk
t

being positive definite for all t ≥ 0. For any d dimensional locally bounded
adapted process π = (π1, . . . , πd)⊤ and a locally bounded adapted process c, the
equation

dVt

Vt
=

d∑
i=0

πi
t
dSi

t

Si
t

− ctdt (2)
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describes the dynamics of the wealth process V associated with a self-financing
strategy under the consumption plan c and the admissibility constraint V > 0,
where π0 = 1−

∑d
i=1 π

i. For each i, πi represents the ratio of the wealth invested
in Si to the total wealth V.

A constant weight asset allocation refers to such an investment strategy that
π is kept constant in time, and appears as, for example, the growth optimal
portfolio strategy when

θ := Σ−1(µ − r)

is constant, where µ = (µ1, . . . , µd)⊤ and r = µ0(1, . . . , 1)⊤. Indeed,

log VT = log V0 +

∫ T

0

dVt

Vt
−

1
2

∫ T

0
π⊤t Σtπt dt

and so, under a suitable admissibility condition,

E
[
log

VT

V0

]
=

∫ T

0
E

[
−

1
2

(πt − θt)⊤Σt(πt − θt) +
1
2
θ⊤t Σtθt + µ

0
t − ct

]
dt,

which is maximized by π = θ. The simplest concrete model with constant
θ is the Black-Scholes model, where µ, r and Σ are constant. Under the
Black-Scholes model, the optimal strategy of the consumption and investment
problem is known to be proportional to the constant vector θ under power
utilities [16], or more generally, the Epstein-Zin stochastic differential utilities
[17], or even under relative performance criteria [18]. Also under model uncer-
tainty, the superiority of an equal-weighted portfolio, also known as the 1/N
portfolio, has been documented in the literature (e.g., [5]). Beyond these theo-
retical frameworks, a constant weight asset allocation has been popular in the
asset management industry, dated back to Talmud (1200 BC - 500 AD) [10]. In
this paper, we assume a continuous-time constant weight strategy (π, c) to be
given for whatever reason and consider how to implement it under a general
Brownian semimartingale model (1) and (2).

Denote by H = (H1, . . . ,Hd)⊤, Hi := Vπi/Si, the numbers of shares associated
with the asset allocation strategy π. Notice that H is not of finite variation even
though π is so. Indeed, we see in Section 2 that the quadratic covariation of H
is nondegenerate. Now the question is how to implement H in reality, where
a continuous adjustment of portfolio is infeasible. Asset re-allocations have to
be discrete in time and should be as less frequent as possible to avoid various
kind of costs. Then the question is when and how to rebalance a portfolio
efficiently.

Finding an efficient discrete-in-time rebalancing strategy amounts to finding
an efficient approximation to a stochastic integral by one with a simple pre-
dictable integrand. In the case of d = 1, an asymptotically efficient sequence of
simple predictable approximations was derived in [6, 7, 8]. An extension to the
multi-dimensional case in a hedging context was given by [11], which however
does not cover investment strategies such as constant weight asset allocations.
In this paper, we give an extension to this missing direction. Further, in contrast

2



to [11], we do not restrict candidate strategies to discretization schemes but dis-
cuss asymptotic efficiency in a broader class of simple predictable strategies.
From a mathematical point of view, this extension involves a novel inequality
for centered moments of a general random vector that generalizes Pearson’s
inequality for one-dimensional kurtosis and skewness.

For the multi-dimensional Black-Scholes model, an asymptotic analysis of
the optimal consumption investment problem under fixed transaction costs
was given in [2]. Under the fixed transaction costs, the number of rebalancing
penalizes the total wealth. The asymptotic solution of [2] is a discretization
of the Merton portfolio, a constant weight strategy which is optimal in the
frictionless market, by a sequence of stopping times. Although our optimization
problem is different from [2], our solution has a similar structure to that of [2],
obtained by solving the same algebraic Riccati equation.

In Section 2, we compute the quadratic covariation ⟨H,H⟩ of H when π
is positive. We observe that the covariation matrix is nondegenerate under
(2) with (1) if πi > 0 for all i = 1, . . . , d and π0 , 0. In Section 3, we state
our main result relying on the nondegeneracy condition on H under a more
abstract framework of continuous semimartingales than (1) and (2). In Section 4,
we derive an asymptotically efficient strategy and discuss the efficiency loss
of the equidistant discretization. In Section 5, we observe from numerical
experiments that the asymptotically efficient strategy is indeed effective in
practical situations. In Section 6, we give the proof of the main theorem stated
in Section 2. In Section 7, we prove an inequality for centered moments of a
general random vector that generalizes Pearson’s inequality for one-dimensional
kurtosis and skewness.

2 The structure of the continuous strategy

Here we compute the quadratic covariations of the process H = (H1, . . . ,Hd)⊤,
Hi = Vπi/Si, which plays a key role in our analysis in the next section. Let
{ei}

d
i=1 denote the standard basis of Rd, I = (e1, . . . , ed) denote the d × d identity

matrix, 1 =
∑d

i=1 ei = (1, . . . , 1)⊤, and diag(H) denote the d × d diagonal matrix
with diagonal elements H, that is,

e⊤i diag(H)e j = Hie⊤i e j.

Lemma 1 Assume πi to be a positive constant for each i = 1, . . . , d. Under (1) and
(2),

d⟨H,H⟩t = Jtdt, (3)

where
J = diag(H)(π1⊤ − I)⊤Σ(π1⊤ − I)diag(H). (4)

Further, det Jt , 0 for all t ≥ 0 if and only if π0 , 0.

Proof: Recall that Hi = Vπi/Si, so that

d⟨log Hi, log H j
⟩t = d⟨log V − log Si, log V − log S j

⟩t = (π − ei)⊤Σt(π − e j)dt,
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Therefore,
d⟨Hi,H j

⟩t = (Ui
t)
⊤U j

tdt, Ui
t = Hi

tΣ
1/2
t (π − ei),

which implies (3) noting that J = (U)⊤U, U = (U1, . . . ,Ud).
Since Σ is assumed to be positive definite, it is clear that det Jt , 0 if and

only if det(π1⊤ − I) , 0. For any a ∈ Rd, a⊤(π1⊤ − I) = (a⊤π)1⊤ − a⊤. Therefore
the column vectors of π1⊤ − I is linearly dependent if and only if 1⊤π = 1.
Therefore det(π1⊤ − I) , 0 if and only of π0 = 1 − 1⊤π , 0. □

3 The main result

Here we give a mathematical formulation of the problem and then state our
main result. Let (Ω,F ,P, {Ft}t∈[0,1]) be a filtered probability space satisfying the
usual assumptions. A simple predictable process is a stochastic process of the
form

X =
∞∑

i=0

ξi1((τi,τi+1]],

where {τi}i≥0 is a nondecreasing sequence of stopping times taking values in
[0, 1] and ξi is an Fτi measurable d-dimensional random variable. For X of the
above form and for a d-dimensional continuous semimartingale S, the stochastic
integral X · S is defined by

(X · S)t =

∞∑
i=0

ξ⊤i (Sτi+1∧t − Sτi∧t).

For given d-dimensional continuous semimartingales H and S, we are interested
in an efficient approximation to the stochastic integral H ·S by a sequence Xn

·S,
where Xn are simple predictable processes.

We say an adapted process X is locally bounded if there is a nondecreasing
sequence of [0, 1]-valued stopping times {τi} such that the stopped process Xτi

is bounded for each i and that for each ω ∈ Ω there exists N(ω) ∈N such that
τN(ω)(ω) = 1. Denote by S≥d and S>d respectively the sets of d × d nonnegative
definite matrices and positive definite matrices.

Assumption 1 There exist an S>d -valued continuous adapted process J, an S≥d -
valued continuous adapted process K, and a continuous nondecreasing adapted
process A such that

d⟨H,H⟩ = J dA, d⟨S,S⟩ = K dA.

The finite variation part of H is absolutely continuous with respect to A and the
associated Radon-Nikodym derivative is locally bounded.
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Under (1) with (2), by Lemma 1, for a constant weight asset allocation strategy
π with πi > 0 for i = 1, . . . , d and π0 , 0, Assumption 1 is satisfied with At = t
and K = diag(S)Σdiag(S). It is however violated when, say, π0 = 0, since the
matrix J given by (4) becomes singular. Note that Assumption 1 is stable against
a continuous time-change. This means that if the assumption is true for (H,S),
it remains true for the time-changed process (HA,SA) for any continuous non-
decreasing process A. This time-change process A is not necessarily absolutely
continuous and so, the time-changed model SA can represent, for example, a
multi-dimensional version of the hyper rough Heston model [15].

For positive continuous adapted processes Q and N fixed and for a sim-
ple predictable process X, we introduce the cost functionals Q[X] and N[X]
respectively of approximation error and of approximation effort as

Q[X] =
∫ 1

0
Qt d⟨H · S − X · S ⟩t, N[X] =

∑
t∈(0,1)

Nt1{|∆Xt |,0}.

In particular, if N = 1 then N[X] counts the number of jumps of X, that is, the
number of rebalancing in our financial context, and if Q is the density process
of an equivalent martingale measure Q for S then E[Q[X]] = EQ[(H ·S−X ·S)2

1].
Note that the expected approximation error E[Q[X]] can be arbitrarily made
small by taking X sufficiently close to H, while it inevitably makes the expected
approximation effort E[N[X]] large because H has a nondegenerate quadratic
variation. We then seek an efficient frontier for the trade-off between E[Q[X]]
and E[N[X]]. We take an asymptotic approach to have an explicit solution.

Definition 1 We say a sequence of simple predictable processes Xn is admissible
if

1. Xn is locally bounded for each n,

2. sup
t∈[0,1]

|Xn
t −Ht| → 0 in probability as n→∞,

3. E[Q[Xn]] < ∞ and
Q[Xn]

E[Q[Xn]]
is uniformly integrable.

Now we state our main result, of which the proof is deferred to Section 6.

Theorem 1 Let H and S be d-dimensional continuous semimartingales satisfy-
ing Assumption 1, and let Q and N be positive continuous adapted processes.
Then, for any admissible sequence Xn,

lim
n→∞

E[N[Xn]]E[Q[Xn]] ≥ E
[∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt)dAt

]2

, (5)

where L = ℓ(J,K) and ℓ is the solution map given in Lemma 2.
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Lemma 2 For any J ∈ S>d and K ∈ S≥d , there exists a unique L = ℓ(J,K) ∈ S≥d
such that

2tr(LJ)L + 4LJL = K.

Further, the map ℓ is continuous on S>d × S
≥

d , and L ∈ S>d if K ∈ S>d .

Lemma 2 is a straightforward extension of Lemma 3.1 of [11] that dealt with
the case that J is the identity. The proof of Lemma 2 reduces to that case
by considering L̃ := J1/2LJ1/2 and so omitted. This algebraic Riccati equation
first appeared in [3] to describe an approximate solution to the variational
inequality for an optimal consumption investment problem under the Black-
Scholes model with fixed-type transaction costs. The existence of the solution
with an efficient computational algorithm was given in [3]. More specifically,
it is given by L = J−1/2L̃J−1/2 with

L̃ = Pdiag(λ1, . . . , λd)P⊤,

where the matrix P diagonalizes K as

K = Pdiag(k1, . . . , kd)P⊤, PP⊤ = I,

k j, j = 1, . . . , d, are the eigenvalues of Σ, and

λ j =
1
4

(
−t +

√
t2 + 4k j

)
(6)

for the unique solution t of the equation

(d + 4)t =
d∑

j=1

√
t2 + 4k j.

The same algebraic Riccati equation naturally appeared in [2].

Remark 1 Theorem 1 extends 1-dimensional results in [7, 8]. A related central
limit theorem with a pathwise version of (5) for the 1-dimensional case is
given in [6]. Multi-dimensional extensions of the pathwise version are given in
[11, 12], where the integrand H is assumed to be of the form Ht = v(t,St) and
the sequence Xn is assumed to be of the form Xn

t = Hτn
j

for t ∈ [τn
j , τ

n
j+1) for

a sequence of stopping times {τn
j }. In [12], the covariation of Ht = v(t,St) is

allowed to be degenerate in contrast to Assumption 1.
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4 Efficient and inefficient strategies

4.1 An asymptotically efficient sequence

Here we show that the sequence

Xn =

∞∑
i=0

ξn
i 1((τn

i ,τ
n
i+1]] (7)

defined by

ξn
j = Hτn

j
, τn

j+1 = inf
{
t > τn

j ; (Ht − ξ
n
j )⊤Lτn

j
(Ht − ξ

n
j ) = ϵnQ−1/2

τn
j

N1/2
τn

j

}
∧1 (8)

and τn
0 = 0 with a deterministic positive sequence ϵn with ϵn → 0 as n→∞ is

asymptotically efficient, where L = ℓ(J,K) and ℓ is the solution map given in
Lemma 2.

Theorem 2 Let H and S be d-dimensional continuous semimartingales satisfy-
ing Assumption 1 with K being S>d -valued, and let Q and N be positive continuous
adapted processes. For the sequence Xn defined by (7) with (8), we have

ϵ−1
n Q[Xn]→

∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt)dAt (9)

and

ϵnN[Xn]→
∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt)dAt (10)

in probability as n→∞.

Proof: We are going to apply Itô’s formula to the function f (x) = (x⊤Lx)2 for
a d × d matrix L and x ∈ Rd. Note that

∇ f (x) = 4
√

f (x)Lx, ∇2 f (x) = 4
√

f (x)L + 8(Lx)(Lx)⊤.

Now, by Itô’s formula,(
(Hτn

j+1
− ξn

j )⊤Lτn
j
(Hτn

j+1
− ξn

j )
)2

=
(
(Hτn

j
− ξn

j )⊤Lτn
j
(Hτn

j
− ξn

j )
)2

+ 4
∫ τn

j+1

τn
j

(Ht − ξ
n
j )⊤Lτn

j
(Ht − ξ

n
j )(Ht − ξ

n
j )⊤Lτn

j
dHt

+

∫ τn
j+1

τn
j

(Ht − ξ
n
j )⊤

(
2tr(Lτn

j
Jt)Lτn

j
+ 4Lτn

j
JtLτn

j

)
(Ht − ξ

n
j ) dAt.

(11)
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For (8),(
(Hτn

j+1
− ξn

j )⊤Lτn
j
(Hτn

j+1
− ξn

j )
)2
= ϵnQ−1/2

τn
j

N1/2
τn

j
(Hτn

j+1
−Hτn

j
)⊤Lτn

j
(Hτn

j+1
−Hτn

j
),(

(Hτn
j
− ξn

j )⊤Lτn
j
(Hτn

j
− ξn

j )
)2
= 0

and so,

ϵ−1
n Q[Xn] = ϵ−1

n

∫ 1

0
(Ht − Xn

t )⊤Kt(Ht − Xn
t )Qt dAt

=

∞∑
j=0

Q1/2
τn

j
N1/2
τn

j
(Hτn

j+1
−Hτn

j
)⊤Lτn

j
(Hτn

j+1
−Hτn

j
) + En

1 + En
2 ,

where

En
1 = ϵ

−1
n

∞∑
j=0

∫ τn
j+1

τn
j

(Ht −Hτn
j
)⊤En, j

t (Ht −Hτn
j
) dAt,

En
2 = 4ϵ−1

n

∞∑
j=0

∫ τn
j+1

τn
j

(Ht −Hτn
j
)⊤Lτn

j
(Ht −Hτn

j
)(Ht −Hτn

j
)⊤Lτn

j
dHt,

En, j
t = K⊤t JtKtQt −

(
2tr(Lτn

j
Jt)Lτn

j
+ 4Lτn

j
JtLτn

j

)
Qτn

j
.

Using Lemma 3.4 of [8], we can show that sup j≥0(τn
j+1 − τ

n
j ) → 0 as n → ∞

in probability. Since J, K and Q are continuous and L = ℓ(J,K) with ℓ being
continuous by Lemma 2, we then have

sup
t∈[0,1], j≥0

∣∣∣∣En, j
t 1{τn

j≤t<τn
j+1}

∣∣∣∣→ 0

in probability. Note also that

sup
t∈[0,1], j≥0

ϵ−1
n (Ht −Hτn

j
)⊤(Ht −Hτn

j
)1{τn

j≤t<τn
j+1}
< ∞ (12)

under (8). These imply that En
1 → 0 in probability. We also have En

2 → 0 in
probability because

ϵ−2
n

∫ 1

0
((Ht − Xn

t )⊤(Ht − Xn
t ))3tr(Jt) dAt → 0

in probability by (12) again, with the aid of the Lenglart inequality. Here, we
also have used that the finite variation part of H is absolutely continuous with
respect to A and the associated Radon-Nikodym derivative is locally bounded.
We then conclude (9).

To see (10), observe that

ϵnN[Xn] =
∞∑
j=0

Nτn
j+1

Q1/2
τn

j
N−1/2
τn

j
(Hτn

j+1
−Hτn

j
)⊤Lτn

j
(Hτn

j+1
−Hτn

j
). (13)

under (8). □
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Theorem 3 Consider a constant weight asset allocation strategy under (1) and
(2). Assume that Q, N and the largest eigenvalue of Σ are bounded. Assume
also that Q, N and the smallest eigenvalue of Σ are lower bounded away from
0. Then, the sequence Xn defined by (7) with (8) is admissible and attains the
equality in (5).

Proof: Here we use C to denote a generic constant which does not depend on
n but may vary line by line. First we show that Xn is admissible. For each n,
Xn is locally bounded because so is H. Since K = diag(S)Σdiag(S), under (8),
by Lemma 3 below,

sup
t∈[0,1]

|Ht − Xn
t |

2
≤ Cϵn max

t∈[0,1],i=1,...,d

1
|Si

t|
2

max
t∈[0,1]

jmax(t)→ 0,

where jmax(t) denotes the largest eigenvalue of Jt. By Theorem 2, using Fatou’s
lemma, we have

lim inf
n→∞

ϵ−1
n E[Q[Xn]] ≥ E

[∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt)dAt

]
> 0.

Therefore, for the admissibility of Xn, it remains to show that ϵ−1
n Q[Xn] is

uniformly integrable. By Lemma 3 again,

ϵ−1
n Q[Xn] ≤ C sup

t∈[0,1]
|Ht − Xn

t |
2
≤ C max

t∈[0,1],i=1,...,d

1
|Si

t|
2

max
t∈[0,1]

jmax(t) (14)

for all n. By (4),

jmax(t) = max
x,0

x⊤ Jtx
x⊤x

≤ C sup
t∈[0,1]

|Ht|
2. (15)

Since Hi = Vπi/Si with (1) and (2), the right hand side of (14) is integrable.
Now, we are going to show that the equality is attained in (5). Since we

have already seen that ϵ−1
n Q[Xn] is uniformly integrable, we have

lim
n→∞
ϵ−1

n E[Q[Xn]] = E
[∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt)dAt

]
by Theorem 2. It remains then to show that

lim
n→∞
ϵnE[N[Xn]] = E

[∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt)dAt

]
. (16)

By (13),

ϵnN[Xn] ≤ C max
t∈[0,1],i=1,...,d

1
|Si

t|
2

max
t∈[0,1]

jmax(t)
∞∑
j=0

|Hτn
j+1
−Hτn

j
|
2.

9



By (15), supt∈[0,1] jmax(t) is Lp integrable for any p > 1. In order to show that
ϵnN[Xn] is uniformly integrable, we are going to show

E


 ∞∑

j=0

|Hτn
j+1
−Hτn

j
|
2


p ≤ C

for some p > 1. There exists an equivalent measure P′ to P such that H is a
martingale under P′ and dP/dP′ is Lq integrable under P′ for any q > 1. We
have

E


 ∞∑

j=0

|Hτn
j+1
−Hτn

j
|
2


3/2 ≤ E′

[( dP
dP′

)4]1/4

E′


 ∞∑

j=0

|Hτn
j+1
−Hτn

j
|
2


2

3/4

,

where E′ denotes the expectation under P′. By Lemma 1.7.3 of [20], we have

E′


 ∞∑

j=0

|Hτn
j+1
−Hτn

j
|
2


2 ≤ CE′[|H1 −H0|

4] < ∞.

Thus we conclude that ϵnN[Xn] is uniformly integrable. Then (16) follows from
Theorem 2. □

Lemma 3 Let ℓmin and kmin denote the smallest eigenvalues of L = ℓ(J,K) and K
respectively. Let jmax denote the largest eigenvalue of J. Then,

ℓmin ≥
2

1 +
√

17

kmin

jmaxtr(K1/2)
.

Proof: By (6), we have

0 ≤ t =
d∑

j=1

λ j =

d∑
j=1

k j

t +
√

t2 + 4k j

≤
1
2

d∑
j=1

√
k j =

tr(K1/2)
2

and so that

λ j =
k j

t +
√

t2 + 4k j

≥
2

1 +
√

17

k j

tr(K1/2)
.

Since

ℓmin = min
x,0

x⊤Lx
x⊤x

≥ min
y,0

y⊤L̃y⊤

y⊤y
min
x,0

x⊤ J−1x
x⊤x

=
λmin

jmax
,

we obtain the result. □

Remark 2 Under (1) and (2),

Vt = V0 exp

 d∑
i=0

πi
u

dSi
u

Si
u
−

∫ t

0

(
cu +

1
2
π⊤uΣuπu

)
du

 .
10



Notice that

Hi
τn

j
=
πi
τn

j

Si
τn

j

Vτn
j
= ξ̂n,i

j +
πi
τn

j

Si
τn

j

(Vτn
j
− Vn

τn
j
),

where ξ̂n,i
j = π

i
τn

j
Vn
τn

j
/Si
τn

j
is the number of share to invest πi

τn
j
portion of the total

wealth

Vn
τn

j
= V0 +

∫ τn
j

0

Vn
t − (Xn

t )⊤St

S0
t

dS0
t +

∫ τn
j

0
(Xn

t )⊤dSt −

∫ τn
j

0
ct dt (17)

in Si at time τn
j .

4.2 The equidistant discretization

Here we compute the efficiency loss for the equidistant discretization strategy

ξn
j = Hτn

j
, τn

j =
j
n

under the additional assumption that At = t.

Theorem 4 Let H and S be d-dimensional continuous semimartingales satisfy-
ing Assumption 1 with At = t for t ∈ [0, 1] and J and K being h-Hölder continuous
for some h > 0. Let Q and N be positive h-Hölder continuous adapted processes.
Then,

nQ[Xn]→
∫ 1

0
Qt(tr(Lt Jt)2 + 2tr(Lt JtLt Jt)) dt (18)

and

n−1N[Xn]→
∫ 1

0
Nt dt (19)

in probability as n→∞.

Proof: Under the additional assumption of At = t, we know that S and H
are Brownian semimartingales and in particular their sample paths are 1/2 − ϵ
Hölder continuous almost surely for any ϵ > 0. Therefore, using (11), we have

nQ[Xn] = n
∫ 1

0
(Ht − Xn

t )⊤Kt(Ht − Xn
t )Qt dAt

= n
∞∑
j=0

Qτn
j

(
(Hτn

j+1
−Hτn

j
)⊤Lτn

j
(Hτn

j+1
−Hτn

j
)
)2
+ En

11



with En converging to 0 in probability. On the other hand, for L, J ∈ S≥d and a
Gaussian random vector X = (X1, . . . ,Xd) ∼ N(0, J), we have

E


 d∑

i, j=1

XiX jLi j


2 =

d∑
i, j,k,l=1

E[XiX jXkXl]Li jLkl

=

d∑
i, j,k,l=1

(E[XiX j]E[XkXl] + E[XiXk]E[X jXl] + E[XiXl]E[XkX j])Li jLkl

= tr(LJ)2 + 2tr(LJLJ)

by Isserlis’ theorem. Then by a standard argument in the high-frequency data
analysis (see e.g., [1] or [14]), we obtain

n
∞∑
j=0

Qτn
j

(
(Hτn

j+1
−Hτn

j
)⊤Lτn

j
(Hτn

j+1
−Hτn

j
)
)2
→

∫ 1

0
Qt(tr(Lt Jt)2 + 2tr(Lt JtLt Jt)) dt

in probability. Thus we conclude (18), while (19) is trivial. □

The efficiency loss for the equidistant discretization can be decomposed
into two parts. First,

E
[∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt)dt

]2

≤ E
[∫ 1

0
Nt dt

]
E

[∫ 1

0
Qttr(Lt Jt)2 dt

]
by the Cauchy-Schwarz inequality. Second,

E
[∫ 1

0
Qttr(Lt Jt)2 dt

]
≤ E

[∫ 1

0
Qttr(Lt Jt)2

(
1 +

2tr(Lt JtLt Jt)
tr(Lt Jt)2

)
dt

]
.

The loss from the first inequality is due to that the equidistant scheme does
not take the time varying nature of N1/2Q1/2tr(LJ) into account. The loss from
the second inequality is due to the use of deterministic time (or more generally,
strongly predictable time; see [1]). Indeed, the factor 1 + 2/d for the case of LJ
being the identity matrix coincides with the ratio of the asymptotic variance of
the equidistant Euler-Maruyama scheme for discretizing stochastic differential
equations to that of its hitting time counterpart given by [9].

5 Numerical experiments

In this section, we examine numerically the efficiency of the strategy (8) com-
pared with the equidistant discretization under the Black-Scholes model.

12



efficient equidistant
mean 0.2543986 0.9792202
mse 0.9824209 47.8588

Table 1: The mean of the error V − Vn and the mean squared error

5.1 2-dimensional case

First we consider the case d = m = 2. We have simulated 10,000 sample paths
of S = (S1,S2)⊤ from (1) with the parameters

µ0 = 0, S0 =

(
1
2

)
, µ =

(
0.2
0.3

)
σ =

(
0.1 0.1
0 0.2

)
with discretization size ∆t = 0.01 on the time interval [0, 1]. We consider the
growth optimal portfolio

π = Σ−1(µ − r) =
(
0.02 0.02
0.02 0.04

)−1 (
0.2
0.3

)
=

(
5
5

)
with π0 = −9. We take Q = N = 1 for cost functions and ϵn = 0.1. Our efficient
strategy (8) is therefore

ξn
j = Hτn

j
, τn

j+1 = inf
{
t > τn

j ; (Ht − ξ
n
j )⊤Lτn

j
(Ht − ξ

n
j ) ≥ 0.1

}
∧ 1 (20)

with τn
0 = 0, where t is limited on the grid {0, 0.01, 0.02, . . . , 0.99, 1}. Here,

we numerically solve (2) with c = 0 and V0 = 1 pathwise (with the same
discretization size ∆t = 0.01 using the simulated sample paths of S) to compute
the values of V and then H. For the computation of L, we follow the idea
of [3], which we have already used in the proof of Lemma 3. The size of ϵn
controls how frequent we rebalance, and our choice of ϵn = 0.1 has resulted
in the average number of rebalancing 9.7612 for the simulated 10,000 sample
paths. Therefore we also construct the equidistant discretization of H with the
number of rebalancing n = 10 for the same sample paths for a fare comparison.

Figure 1 shows the histogram of the tracking error V1−Vn
1 , where Vn

1 is the
terminal wealth associated with the efficient strategy (20) in the left figure, and
it is with the equidistant discretization (n = 10) in the right figure. It is clearly
seen that the tracking error is more concentrated around 0 and has a lighter
tail for the efficient strategy (left). Table 1 shows the Monte-Carlo estimates of
E[V1 − Vn

1 ] and E[(V1 − Vn
1 )2] from the 10,000 samples.

13
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Figure 1: Histogram of V − Vn

efficient equidistant
mean 0.003018715 -0.001761582
mse 0.6918363 1.322438

Table 2: The mean of the relative error (V − Vn)/V and the mean squared
relative error

Figure 2 shows the histogram of the relative tracking error (V1 − Vn
1 )/V1,

where Vn
1 is again, the terminal wealth associated with the efficient strategy

(20) for the left figure, and with the equidistant discretization (n = 10) for
the right figure. Although the relative error is not the objective functional in
our definition of the efficiency, it is again observed that the relative tracking
error is more concentrated around 0 and has a lighter tail for the efficient
strategy (20). Table 2 shows the Monte-Carlo estimates of E[(V1 − Vn

1 )/V1]
and E[(V1 − Vn

1 )2/V2
1] from the 10,000 samples. The superiority of (20) is

significant.

5.2 50-dimensional case

Here we extend the analysis to the higher dimensional case of d = m = 50.
We have simulated 10,000 sample paths of S = (S1, . . . ,S50)⊤ from (1) with the
parameters

µ0 = 0, Si
0 =

1 i is odd,
2 i is even,

σi j =


0.1 i < j,
0.2 i = j,
0 i > j,

µ = σσ⊤θ, θi = 0.04

14
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Figure 2: Histogram of (V − Vn)/V

efficient equidistant
mean 0.001996048 0.01321023
mse 0.004135032 0.02211172

Table 3: The mean of the error V − Vn and the mean squared error

with discretization size ∆t = 0.01 on the time interval [0, 1]. We consider the
growth optimal portfolio

πi =

0.04 i = 1, . . . , 50,
−19 i = 0.

We take Q = N = 1 for cost functions and ϵn = 0.008. This choice in (8) resulted
in the average number of rebalancing 9.6751. We therefore compare it with the
equidistant discretization with n = 10 again.

Figure 3 shows the histogram of the tracking error V1 − Vn
1 , where Vn

1 is
the terminal wealth associated with the efficient strategy in the left figure, and
it is with the equidistant discretization in the right figure. It is again clearly
seen that the tracking error is more concentrated around 0 and has a lighter
tail for the efficient strategy (left). Table 3 shows the Monte-Carlo estimates of
E[V1 − Vn

1 ] and E[(V1 − Vn
1 )2] from the 10,000 samples.
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Figure 3: Histogram of V − Vn

efficient equidistant
mean 0.0004519002 -0.001055898
mse 0.00267405 0.006681065

Table 4: The mean of the relative error (V − Vn)/V and the mean squared
relative error

Figure 4 shows the histogram of the relative tracking error (V1 − Vn
1 )/V1,

where Vn
1 is again, the terminal wealth associated with the efficient strategy

for the left figure, and with the equidistant discretization for the right figure.
Although the relative error is not the objective functional in our definition of
the efficiency, it is again observed that the relative tracking error is more
concentrated around 0 and has a lighter tail for the efficient strategy. Table 4
shows the Monte-Carlo estimates of E[(V1−Vn

1 )/V1] and E[(V1−Vn
1 )2/V2

1] from
the 10,000 samples.

5.3 Summary and comments

Both the cases of d = 2 and d = 50 under the Black-Scholes model, the asymp-
totically efficient strategy (8) has exhibited significant improvements in reducing
the tracking error for the growth optimal portfolio over regular rebalancing.
Regarding the time interval [0, 1] as one year length, a rebalance occurs per
1.2 month in average under our choices of ϵn. These numerical experiments
suggest that the asymptotic analysis of this paper provides practical approxi-
mations to optimal rebalancing times in realistic situations.

The relation between the size of ϵn and the average number of rebalancing
in (8) depends on d, π and Σ in particular. In practice we need to determine
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Figure 4: Histogram of (V − Vn)/V

ϵn based on simulations to adjust the average number of rebalancing, or the
average total cost of rebalancing, to fall within an acceptable range.

In practice we also need to estimate Σ. The substitution of an estimator Σ̂
to Σ would not cause a serious efficiency loss in usual situations because Σ can
be estimated by using high-frequency data, such as, 5 minute returns of S, that
are much more frequent than rebalancing times. It is well-known that the con-
vergence rate of the realized covariance estimator to the quadratic covariation
is the square root of the number of data; see e.g.,[1]. For such a rebalancing
frequency as once in a month or less, the estimation error of Σ is negligible
at least in our asymptotic framework. A care is however necessary when d is
large, since the realized covariance might be too noisy in high-dimensions; see
e.g. [4] for a recent remedy for this problem. Note also that a model-adaptive
optimal discretization is studied in [13], where the unknown parameters are
simultaneously estimated in the efficient discretization of a stochastic integral.

6 Proof of Theorem 1

It suffices to consider a case where E[N[Xn]]E[Q[Xn]] converges. Then, since
Q[Xn]/E[Q[Xn]] is uniformly integrable so is E[N[Xn]]Q[Xn]. By localization,
we can also assume without loss of generality that all the locally bounded
processes are bounded, and that all the positive continuous processes, includ-
ing the smallest eigenvalues of S≥d valued continuous processes J and K, are
bounded away from 0. Let

Xn =

∞∑
j=0

ξn
j 1((τn

j ,τ
n
j+1]]
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and

Yn =

∞∑
j=0

Yτn
j
1((τn

j ,τ
n
j+1]]

for Y = J,K,L and Q. Since sup0≤t≤1 |X
n
t −Ht| → 0 in probability, we have that

sup j≥0 |τ
n
j+1 − τ

n
j | → 0 in probability and as a result, sup0≤t≤1 |Y

n
t − Yt| → 0 in

probability for Y = J,K,L and Q. We refer to [8] for more technical details
on these observations in the one dimensional case; the proofs are trivially
extended to the multi-dimensional case.

By (11), we have(
(Hτn

j+1
− ξn

j )⊤Lτn
j
(Hτn

j+1
− ξn

j )
)2

=
(
(Hτn

j
− ξn

j )⊤Lτn
j
(Hτn

j
− ξn

j )
)2

+ 4
∫ τn

j+1

τn
j

(Ht − Xn
t )⊤Ln

t (Ht − Xn
t )(Ht − Xn

t )⊤Ln
t dHt

+

∫ τn
j+1

τn
j

(Ht − Xn
t )⊤

(
2tr(Ln

t Jt)Ln
t + 4Ln

t JtLn
t
)

(Ht − Xn
t ) dAt

and so,

Q[Xn] =
∫ 1

0
(Ht − Xn

t )⊤Kt(Ht − Xn
t )Qt dAt

=

∞∑
j=0

Gn
j Qτn

j

(
((∆n

j + δ
n
j )⊤(∆n

j + δ
n
j ))2
− ((δn

j )⊤δn
j )2

)
+ En

1 + En
2 ,

where

∆n
j = L1/2

τn
j

(Hτn
j+1
−Hτn

j
),

δn
j = L1/2

τn
j

(Hτn
j
− ξn

j ),

En
1 =

∫ 1

0
(Ht − Xn

t )⊤
(
KtQt −

(
2tr(Ln

t Jt)Ln
t + 4Ln

t JtLn
t
)

Qn
t Gn

t
)

(Ht − Xn
t ) dAt,

En
2 = 4

∞∑
j=0

Gn
j

∫ τn
j+1

τn
j

(Ht − Xn
t )⊤Ln

t (Ht − Xn
t )(Ht − Xn

t )⊤Ln
t dHt,

Gn =

∞∑
j=0

Gn
j 1((τn

j ,τ
n
j+1]], Gn

j = exp

−
∫ τn

j+1

τn
j

G⊤t J−1
t dMt −

1
2

∫ τn
j+1

τn
j

G⊤t J−1
t Gt dAt


and M and G are respectively the local martingale part of H and the Radon-
Nikodym derivative of the finite variation part of H with respect to A.
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Since L = ℓ(J,K) and ℓ is continuous by Lemma 1, we have

sup
0≤t≤1

∣∣∣KtQt −
(
2tr(Ln

t Jt)Ln
t + 4Ln

t JtLn
t
)

Qn
t

∣∣∣
= sup

0≤t≤1

∣∣∣(2tr(Lt Jt)Lt + 4Lt JtLt) Qt −
(
2tr(Ln

t Jt)Ln
t + 4Ln

t JtLn
t
)

Qn
t

∣∣∣→ 0

in probability. Together with sup0≤t≤1 |G
n
t −1| → 0 and the uniform integrability

of E[N[Xn]]Q[Xn], we deduce E[N[Xn]]E[|En
1 |]→ 0.

Define probability measures Qn
j by

dQn
j

dP
= Gn

j .

By the Girsanov-Maruyama theorem, H·∧τn
j+1
− H·∧τn

j
is a martingale under Qn

j
for each j ≥ 0. This implies E[En

2] = 0 and

E

 ∞∑
j=0

Gn
j Qτn

j

(
((∆n

j + δ
n
j )⊤(∆n

j + δ
n
j ))2
− ((δn

j )⊤δn
j )2

)
= E

 ∞∑
j=0

Qτn
j
EQn

j

[(
((∆n

j + δ
n
j )⊤(∆n

j + δ
n
j ))2
− ((δn

j )⊤δn
j )2

)
|Fτn

j

] .
Here we have used the fact that all the partial sums of the infinite series are
uniformly bounded as shown by rewriting them as integrals using Itô’s formula.
Further by Lemma 4 in Section 7, this expectation is lower bounded by

E

 ∞∑
j=0

Qτn
j
EQn

j

[
(∆n

j )⊤∆n
j |Fτn

j

]2

 .
Thus,

lim
n→∞

E[N[Xn]]E[Q[Xn]] ≥ lim
n→∞

E[N[Xn]]E

 ∞∑
j=0

Qτn
j
EQn

j

[
(∆n

j )⊤∆n
j |Fτn

j

]2


≥ lim

n→∞
E

 ∞∑
j=0

N1/2
τn

j
Q1/2
τn

j
EQn

j

[
(∆n

j )⊤∆n
j |Fτn

j

]
2

= lim
n→∞

E

 ∞∑
j=0

N1/2
τn

j
Q1/2
τn

j
Gn

j

∫ τn
j+1

τn
j

tr(Lτn
j
Jt) dAt


2

= E
[∫ 1

0
N1/2

t Q1/2
t tr(Lt Jt) dAt

]2

with the aid of the Cauchy-Schwarz inequality.
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7 Kurtosis-Skewness inequality

Here we prove an inequality for centered fourth and third moments of a general
random vector. This is a version of multi-variate Pearson’s inequality; see [19, 21]
for related preceding results.

Lemma 4 Let ∆ be a d-dimensional L4 random variable with E[∆] = 0 and
δ ∈ Rd. Then,

E[((∆ + δ)⊤(∆ + δ))2] − (δ⊤δ)2
≥ E[∆⊤∆]2.

Proof: We have

E[((∆ + δ)⊤(∆ + δ))2] − (δ⊤δ)2

= E[(∆⊤∆ + 2δ⊤∆ + δ⊤δ)2] − (δ⊤δ)2

= E[(∆⊤∆)2] + 4δ⊤E[∆∆⊤]δ + 4E[δ⊤∆(∆⊤∆)] + 2δ⊤δE[∆⊤∆].

Taking the gradient with respect to δ,

2(4E[∆∆⊤]) + 2E[∆⊤∆])δ + 4E[∆(∆⊤∆)]

and so, the minimum is attained at

δ = −(2E[∆∆⊤] + E[∆⊤∆])−1E[∆(∆⊤∆)].

Substitute this to get

E[((∆ + δ)⊤(∆ + δ))2] − (δ⊤δ)2

≥ E[(∆⊤∆)2] − E[(∆⊤∆)∆⊤]
(
E[∆∆⊤] +

1
2

E[∆⊤∆]I
)−1

E[∆(∆⊤∆)].

The result then follows from the Lemma 5. □

Lemma 5 Let ∆ be a d-dimensional L4 random variable with E[∆] = 0. Then,

E[(∆⊤∆)2] − E[(∆⊤∆)∆⊤]
(
E[∆∆⊤] +D

)−1 E[∆(∆⊤∆)] ≥ E[∆⊤∆]2

for any D ∈ S>d .

Proof: For any α ∈ R and β ∈ Rd,

E[(α(∆⊤∆ − E[∆⊤∆]) + β⊤∆)2] ≥ 0

The left hand side is a quadratic form with respect to the symmetric matrix(
E[(∆⊤∆ − E[∆⊤∆])2] E[∆⊤(∆⊤∆)]

E[∆(∆⊤∆)] E[∆∆⊤]

)
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and the above nonnegativity implies that the matrix is nonnegative definite.
Therefore the matrix (

E[(∆⊤∆ − E[∆⊤∆])2] E[∆⊤(∆⊤∆)]
E[∆(∆⊤∆)] E[∆∆⊤] +D

)
is also nonnegative definite and so, has a nonnegative determinant. By the
determinant formula for block matrices, the determinant is computed as∣∣∣E[∆∆⊤] +D

∣∣∣
×

(
E[(∆⊤∆ − E[∆⊤∆])2] − E[(∆⊤∆)∆⊤]

(
E[∆∆⊤] +D

)−1 E[∆(∆⊤∆)]
)
,

which implies the claim. □

Remark 3 As easily seen from the proof, the equality is attained in Lemma 5
when ∆⊤∆ = E[∆⊤∆], or equivalently, ∆ is supported on a sphere. We apply
the inequality in Section 6 for ∆ = L1/2

τn
j

(Xτn
j+1
−Xτn

j
), so we have ∆⊤∆ = E[∆⊤∆]

when Xτn
j+1
−Xτn

j
is supported on an ellipsoid characterized by Lτn

j
. This explains

the construction of our efficient strategy (8) in Section 4.

Disclosure of interest. The authors declare that there are no relevant financial
or non-financial competing interests to report.
Acknowledgement. This work was supported by the Japan Society for the
Promotion of Science under Grant 21K03369.

References

[1] Aı̈t-Sahalia, Y. and Jacod, J. (2014) High-Frequency Financial Econometrics,
Princeton University Press.

[2] Altarovici, A., Muhle-Karbe, J. and Soner, H.M. (2015). Asymptotics for fixed
transaction costs. Finance and Stochastics 19, 363–414.

[3] Atkinson, C. and Wilmott, P. (1995). Portfolio management with transaction
costs: an asymptotic analysis of the Morton and Pliska model. Mathemat-
ical Finance 5, 357–367.

[4] Buccheri, G. and Mboussa Anga, G. (2022). High-dimensional realized co-
variance estimation: a parametric approach. Quantitative Finance 22,
2093-2107.

[5] DeMiguel, V., Garlappi, L. and Uppal, R. (2009). Optimal versus naive
diversification: How inefficient is the 1/N portfolio strategy? Review of
Financial Studies 22:1915-53.

[6] Fukasawa, M. (2011). Discretization error of stochastic integrals. Annals of
Applied Probability 21, 1436-1465.

21



[7] Fukasawa, M. (2011). Asymptotically efficient discrete hedging, Stochastic
Analysis with Financial Applications. Progress in Probability 65, 331-346.

[8] Fukasawa, M. (2014). Efficient discretization of stochastic integrals. Finance
and Stochastics 18, 175-208.
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