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Abstract—Power consumption remains a critical bottleneck in
the design of sensor systems. To investigate power consumption
problems in sensor circuits, we surveyed the latest developments
in analog-to-digital converter (ADC) integrated circuits, which
are indispensable components of sensor front ends. An evaluation
based on the Walden figure-of-merit, using data from ADCs
presented at the International Solid-State Circuits Conference,
revealed a slowdown in the energy-efficiency improvement of
state-of-the-art ADCs. To overcome this limitation, we are devel-
oping a compressed-sensing (CS)-based solution: a low-power
sensing approach that combines random undersampling with
CS reconstruction. A prototype wireless electroencephalogram
system implemented on a general-purpose microcontroller re-
duces both sampling activity and radio duty cycle, achieving
continuous operation at 72 µW while maintaining signal fidelity.
These efforts are expected to pave the way for next-generation
ultralow-power and energy-harvesting sensor networks.

Index Terms—Analog-to-digital converter (ADC), compressed
sensing (CS), energy efficiency, figure-of-merit (FoM)

I. INTRODUCTION

The rapid expansion of the Internet of Things and digital
transformation is driving the widespread deployment of wire-
less sensor systems that collect and transmit data to clouds or
edge computers. Such sensor systems are now being applied
to a wide range of fields. Examples include healthcare [1]
and BrainTech [2], structural health monitoring [3] of roads,
bridges, and buildings, fault detection [4] in industrial equip-
ment, and early warning of natural disasters [5], all of which
will be critical for sustaining modern society. However, every
sensor requires a power source, and many rely on batteries or,
ideally, energy harvesters that scavenge the ambient energy.
In battery-powered sensor networks, increasing the number
of sensors leads to higher costs for battery replacement and
maintenance. Although energy harvesters offer a potential
solution to these challenges, the energy they can provide is
fundamentally constrained.

A fundamental solution is to reduce the power consumption
of the sensor circuitry. Ultralow-power operation contributes
not only to battery life and maintenance cost reduction, but
also to the development of fully battery-free systems that
operate solely with harvested energy. Achieving such an effi-
ciency requires fundamental technological innovation across
the entire sensing chain, from the analog front-end to the
wireless transceiver.

Fig. 1. Recent FoMw,hf trend of state-of-the-art ADCs reported in ISSCC
(1997–2025). The red circles indicate the yearly medians. The plot shows
a steady year-on-year improvement up to roughly 2010. Between 2010 and
2020 the rate of improvement slows noticeably, and from 2020 onward the
median FoMw,hf appears to exhibit a pronounced slowdown.

This technical note briefly reviews the evolution of
energy-efficiency improvements in analog-to-digital converters
(ADCs), which are key circuits in analog front ends and repre-
sent one of the major bottlenecks in many sensing applications.
It then introduces a novel sampling strategy, developed by the
authors, that enables low-power sensing under severe energy
constraints.

II. FOM TREND ANALYSIS

An ADC is a core building block of any sensing system that
translates analog sensor outputs into digital data for subsequent
processing. Since an ADC handles both the analog and digital
domains and often integrates circuitry from both, it serves as
a useful proxy for analyzing broader trends in sensor-oriented
integrated circuit designs.



Multiple ADC architectures are available, including the
flash, successive-approximation register, and delta–sigma
types. Their performance is typically analyzed in terms of
power consumption P , effective number of bits (ENOB), and
signal bandwidth BW . These parameters are interdependent
and present inherent trade-offs for power efficiency.

Figure-of-merit (FoM) metrics are widely used to compare
the energy efficiency across designs. Two well-known exam-
ples are the FoM proposed by Richard Schreier, denoted FoMs,
and that proposed by Richard H. Walden, denoted FoMw.
Because either metric leads to a similar conclusion in this
technical note, we adopt FoMw for our analysis, which is
defined as

FoMw =
P

2ENOB · 2BW
. (1)

Because the ENOB depends on the input signal frequency, we
adopt FoMw,hf , calculated based on the ENOB measured with
a high-frequency sinusoidal input, for our analysis.

Figure 1 shows a graph based on a comprehensive table
compiled by Prof. Boris Murmann [6], which summarizes
FoMw,hf data for ADCs presented at the International Solid-
State Circuits Conference (ISSCC). Each gray dot represents
the FoMw,hf of an ADC reported in a given year, whereas the
red circles denote the yearly medians, which are connected by
a solid line to clarify the overall trend. The plot presents a
steady year-on-year improvement up to approximately 2010.
Between 2010 and 2020, the rate of improvement slowed down
noticeably, and from 2020 onward, the improvement in the
median FoMw,hf showed signs of saturation. A possible reason
for this slowdown is that further progress in analog circuitry is
constrained by physical factors, such as thermal noise, jitter,
and low supply voltages (for example, [7], [8]).

Uniform sampling, grounded in the sampling theorem, en-
ables perfect signal reconstruction; therefore, it is regarded
as a fundamental and universal approach. For applications
requiring exact signal reconstruction, sampling based on the
Nyquist criterion [9] is essential. However, in cases where
a slight performance degradation is acceptable, alternative
sampling strategies may be explored to achieve significant
reductions in power consumption.

Given the pronounced slowdown in conventional circuit-
level improvements, architecture-level innovation is required
to continue enhancing energy efficiency. To address this, we
are developing a compressed-sensing (CS)-based solution: a
low-power sensing system that enables data acquisition with
inherent compression and represents one of the promising
approaches for next-generation energy-efficient sensing.

III. ENERGY-EFFICIENT SENSING SYSTEMS BASED ON A
CS APPROACH

Figure 2(a) depicts the sampling behavior and power con-
sumption of a conventional uniform-sampling sensing system.
In this system, data are sampled periodically at intervals of
Ts, and each sampling action consumes a specific amount
of energy. When a predetermined amount of data has been
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Fig. 2. Relationship between signal sampling (top) and power consumption
(bottom). (a) shows conventional uniform sampling, and (b) shows random
undersampling. “TX” denotes wireless transmission. Random undersampling
reduces the number of activations of sampling circuits and decreases the
frequency of wireless transmissions, thereby lowering overall power consump-
tion.

collected, it is transmitted through a wireless transceiver that
consumes a significant amount of power. As described in
the previous section, low-power circuit design is an effective
approach to decrease the power consumption in such systems.
However, because significant progress has already been made
in energy-efficient integrated circuit designs, achieving further
substantial reductions in circuit-level power consumption has
become increasingly difficult.

To address this limitation, we propose a different approach:
by employing random undersampling, the number of sampling
operations can be reduced, thereby decreasing the volume of
the acquired data (Fig. 2(b)). Consequently, the frequency
of wireless transmission can also be significantly reduced.
Although this method generates compressed signal repre-
sentations, the original waveform can be reconstructed by
leveraging the inherent sparsity of the signal in an appropriate
transform basis and solving a suitable optimization problem
on edge devices, personal computers, and cloud servers, where
power constraints are less critical.

First, we developed a proof-of-concept wireless electroen-
cephalogram (EEG) transmitter that applied random under-
sampling on a general-purpose microcontroller (Nordic Semi-
conductor nRF52840), which includes the path from the ADC



to the Bluetooth Low Energy transceiver, and consumed 97
µW [10]. The use of a generic frequency-domain basis lim-
ited both the compression ratio and reconstruction accuracy;
however, it reduced the power by 72% relative to uniform
sampling. A miniature thermoelectric generator driven by a
2 ◦C-gradient powered the system continuously, demonstrating
battery-free operation.

Next, to increase sparsity and enable higher compression,
we previously demonstrated that basis learning on archived
EEG signals significantly improves reconstruction accuracy
[11]. More recently, we proposed a novel approach that
constructs a basis by aligning similar waveforms obtained in
the past, leveraging signal similarity rather than relying on
traditional learning algorithms. This method achieves higher-
fidelity reconstruction, even under high compression ratios
[12]. Finally, we integrated this latter method into a second
prototype with high compression based on the nRF52840,
which operates at 72 µW with a normalized mean-squared
error (NMSE) of 0.116 [13]. Despite achieving higher fidelity,
it consumes less power than a custom ASIC-based wireless
EEG transmitter [14], which operates at 90 µW.

We have also addressed artifacts that reduce sparsity and
degrade CS accuracy. In particular, we have published several
papers on exploiting the properties of random undersampling
for mitigation schemes based on independent component anal-
ysis and outlier detection (for example, [15]–[17]). Our tech-
nique has also been applied to integrated circuit designs (for
example, [18]–[21]). Furthermore, we have investigated the
feasibility of leveraging the intrinsic randomness of random
undersampling in lightweight cryptography [22].

Collectively, these efforts are part of an ongoing program
to redefine sensing using CS. When perfect reconstruction
is essential, uniform Nyquist rate sampling is required. In
contrast, if a certain level of signal degradation is acceptable,
the deliberate undersampling enabled by our proposed CS-
based approach can yield significant power savings and enable
new directions in signal-processing-driven sensing systems.

IV. CONCLUSION

This study quantified the recent slowdown in ADC power
efficiency by analyzing FoMw,hf data reported at ISSCC.
To address this challenge, we are currently investigating a
CS-based solution, which combines random undersampling
with CS reconstruction. Experimental prototypes built using
a general-purpose microcontroller have demonstrated that this
approach reduces both the sampling activity and further lowers
the wireless transmission duty cycle of an EEG transmitter,
thereby enabling operation at 72 µW while maintaining signal
fidelity (NMSE = 0.116). Future work will focus on developing
dedicated CS-based sensing chips and extending this approach
to lightweight cryptographic sensor nodes. These efforts show
a viable path toward the advancement of next-generation
ultralow-power and energy-harvesting sensor networks.
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