

Title	口腔バイオフィルムの栄養的な連係を強化する Fusobacterium nucleatum の代謝特性と歯周病への影響
Author(s)	坂中, 哲人; 久保庭, 雅恵; 天野, 敦雄
Citation	大阪大学歯学雑誌. 2024, 68(2), p. 27-30
Version Type	VoR
URL	https://hdl.handle.net/11094/101991
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

口腔バイオフィルムの栄養的な連係を強化する Fusobacterium nucleatum の代謝特性と歯周病への影響

坂中 哲人*, 久保庭 雅恵*, 天野 敦雄*

(令和6年4月22日受付)

はじめに

バイオフィルムは多種多様な微生物の共生体であり、 人体の中でも口腔との親和性が高く、歯周病の直接的な原因となる。近年、口腔バイオフィルムの「多即一」という二面性、即ち多の振る舞いが一つの機能として統合されるダイナミズムが病因の一つとして注目されている¹¹。Fusobacterium nucleatumは豊富な接着因子を介して多くの口腔細菌と結合する特性が知られているが、代謝物の交換を通じた異種細菌間の栄養的な相互作用については不明な点が多い。我々は以前、初期定着菌 Streptococcus gordoniiが ArcD 輸送体を介してオルニチンを放出し、それが F. nucleatum のバイオフィルムを増加させることを示した²¹。本研究では新たに口腔常在菌 Veillonella parvula を加え、F. nucleatumのバイオフィルム内での栄養的な役割や歯周病への影響を探求した。

異種細菌間の栄養的な連係を介した F. nucleatum の代謝変動

Transwell を使用して物理的に細菌を分離しつつ代謝物の交換を可能にし、S. gordonii または V. parvula との共培養下における F. nucleatum の細胞内外の代謝物の変化を調査した。その結果、S. gordonii との共培養ではオルニチンの上清濃度が 24.7 倍に増加し、F.

nucleatum の細胞内でプトレシンが 4.2 倍に増加することが確認された。また酪酸の細胞外濃度も 9.4 倍に増加した。 V. parvula との共培養ではカダベリンの上清濃度が増加し、F. nucleatum の細胞内でリジンが有意に増加した。F. nucleatum はオルニチンおよびリジン脱炭酸酵素をコードする遺伝子(FN0501)を有し、これがプトレシンとカダベリンの産生に寄与すると考えられる。リアルタイム RT-PCR により、この遺伝子の発現は S. gordonii および V. parvula と共培養時に20 倍以上増加することが確認された。したがって、F. nucleatum がこれらの細菌から放出されるオルニチンとリジンを取り込み、プトレシンとカダベリンを生成することが示唆された(図 1)。

この栄養的な連係をさらに検証したところ、F. nucleatum と S. gordonii 野生株との共培養でプトレシンが生成される一方、S. gordonii $\Delta arcD$ 変異体との共培養ではプトレシンの生成が大きく減少した。従って、F. nucleatum によるプトレシンの生成は、S. gordonii の ArcD を介したオルニチンの放出に依存することが示された。

栄養的な連係によるポリアミンの産生が 歯周病原性バイオフィルムに及ぼす影響

以上の結果は、異種細菌間の化学的な相互作用により F. nucleatum のポリアミン産生が誘導されることを

* 大阪大学大学院歯学研究科 予防歯科学講座

本総説の内容の一部は、令和6年2月29日に開催された大阪大学歯学会第136回例会において、令和5年度弓倉 奨励賞の受賞講演(対象論文: Sakanaka A, Kuboniwa M, Shimma S, Alghamdi SA, Mayumi S, Lamont RJ, Fukusaki E, Amano A. (2022): *Fusobacterium nucleatum* metabolically integrates commensals and pathogens in oral biofilms. *mSystems*, 7 (4), e0017022.) として発表した。

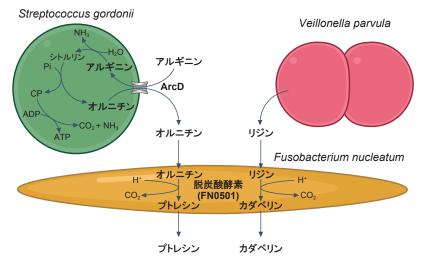


図1 異種細菌間の栄養的な連係を介した F. nucleatum のポリアミン産生

示している。この知見を基に、歯周病菌 Porphyromonas gingivalis のバイオフィルムの表現型に対する主要な生 理活性ポリアミン(プトレシン、スペルミジン、スペ ルミン, カダベリン) の影響を評価した。各ポリアミ ンを P. gingivalis バイオフィルムに添加して 12 時間 嫌気培養し、Live/Dead 試薬で染色してバイオフィル ム形成量を評価したところ(生細胞=緑,死細胞=赤). プトレシン, カダベリン, スペルミジンでバイオフィ ルムの増加を認めた(図2A)。特にプトレシンは、バ イオフィルムだけでなく浮遊凝集塊の増加も認めた一 方、カダベリンは浮遊凝集塊の少ない堅固なバイオフ ィルムを形成した。さらに、洗浄手順がバイオフィル ムの脱離に影響する可能性を排除した前染色法を用い ても、 プトレシンの用量依存的なバイオフィルムの形 成と浮遊凝集塊の増加が観察された(図2B)。以上よ り、これらのポリアミンが P. gingivalis のバイオフィ ルムの表現型に異なる影響を及ぼすこと、特にプトレ シンはバイオフィルムのライフサイクル(付着、成熟、 脱離、再付着)を加速させることが示唆された。さら に、F. nucleatum と S. gordonii 野生株の共培養から 得られた無細胞上清が、P. gingivalis のバイオフィル ム形成を促進することが確認された(図2C)。また、ア ルギニン存在下での F. nucleatum, S. gordonii, P. gingivalis 三種混合バイオフィルム形成実験において, ArcD の欠損は P. gingivalis のバイオフィルムと浮遊 凝集塊の減少をもたらしたが、他の種に有意な変化は 見られなかった (図 2D, E)。我々は以前, ArcD の欠 損が S. gordonii の単独または P. gingivalis との混合

バイオフィルムに影響しないことを報告している 2)。したがって S. gordonii E F. nucleatum o ArcD 依存的なプトレシン生成が P. gingivalis oバイオフィルムの表現型を変化させ、病原性を高めることが示唆された。

ヒト歯垢試料を用いた仮説の検証

上記知見のヒトロ腔内での臨床的妥当性を検証するために、健康な 102 名の被験者から採取した歯垢試料を分析し、P. gingivalis、S. gordonii の arcD 遺伝子および F. nucleatum の FN0501 遺伝子の共起関係を調査した。その結果、P. gingivalis は歯周病患者で検出頻度が高く、P. gingivalis 陽性検体では S. gordonii の arcD 遺伝子量が増加し、arcD 遺伝子と FN0501 遺伝子の組み合わせは P. gingivalis 検出予測に高い精度を示した(図 3)。これは、S. gordonii と F. nucleatumのプトレシン産生遺伝子が P. gingivalis と高い共起関係にあることを示している。以上より、口腔バイオフィルムでの F. nucleatum と初期定着菌との化学的相互作用が、P. gingivalis のバイオフィルム化と離脱を促進し、微生物共同体の高病原化に寄与する可能性が示された(図 4)。

おわりに

F. nucleatum は多くの接着因子を持ち、他菌種との 共凝集能力が高いため、初期定着菌と P. gingivalis の ような後期定着菌との橋渡し役としてバイオフィルム

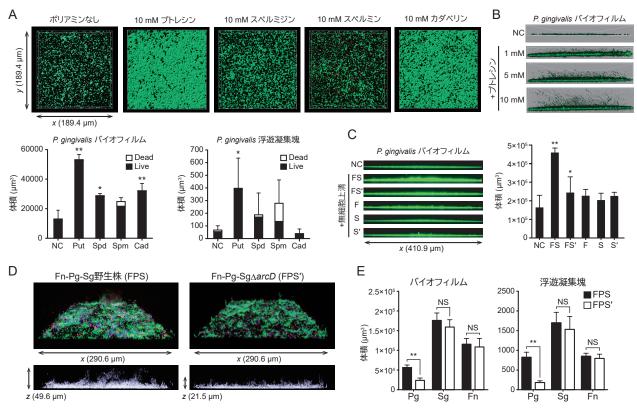


図 2 P. gingivalis バイオフィルムに対するポリアミンの影響

(A) ポリアミン添加による P. gingivalis バイオフィルムへの影響。Put = プトレシン, Spd = スペルミジン, Spm = スペ ルミン, Cad = カダベリン。*p < 0.05, **p < 0.01, Dunnett 検定。(B) プトレシンの用量依存的な P. gingivalis バイオフ ィルムへの影響。(C) F. nucleatum (F) と S. gordonii 野生株 (S) の共培養上清による P. gingivalis バイオフィルム形 成促進効果。S'は $S.\ gordonii\ \Delta arcD$ 変異体。 $^*p < 0.05,\ ^**p < 0.01,\ Dunnett 検定。(D と E)ArcD 欠損が三種混合バイオ$ フィルム形成に及ぼす影響。緑が FITC 標識された F. nucleatum, 赤が HI 標識された S. gordonii, 白が DAPI 標識後, 視 認性を高めるため白に変換された P. gingivalis バイオフィルム。**p < 0.01, Mann-Whitney U 検定。

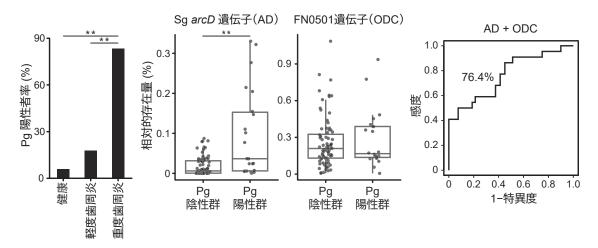


図 3 S. gordonii と F. nucleatum によるプトレシン産生遺伝子モジュールと P. gingivalis の共起性 **p < 0.01, カイ二乗検定(左棒グラフ)。**p < 0.01, Mann-Whitney U 検定(中央左箱ひげ図)。

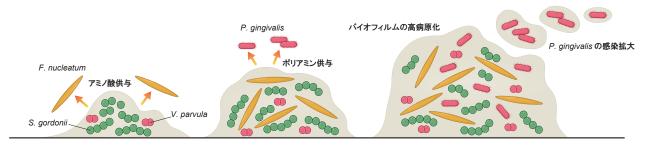


図4 口腔バイオフィルムの異種細菌間の相互作用が生む代謝変動と高病原化

を構造的に支持し、歯垢の成熟において中心的な役割 を果たしていると一般に考えられている³⁾。しかし Mark Welch らの研究で、健康な被験者から採取した歯肉縁上 歯垢の細菌の空間配置が明らかとなり40, 歯肉縁上歯垢 の構造的中心はF. nucleatumではなくCorynebacterium matruchotii であり、同菌が歯面から放射状に配向し、 周囲を多様な細菌が取り巻くヘッジホッグ様の凝集体 を形成することが判明した。ヘッジホッグ中央辺縁部 には Fusobacterium 属が存在するが、明確な橋渡し構 造は確認されていない。このため F. nucleatum が口腔 バイオフィルムの構造的中心であるという従来の考え 方は、少なくとも歯肉縁上においては見直されつつあ る。それでも F. nucleatum は、歯周病菌を含めたグラ ム陰性嫌気性菌との共凝集能力が高く、健康・歯周病 に関わらず歯肉縁下歯垢から高頻度で検出され、歯周 病が進行するとその代謝活動が高まることが示されてい る⁵⁾。我々の研究結果を考え合わせると, F. nucleatum は代謝ネットワークハブとして微生物共同体の栄養的 なつながりを強化し、歯肉縁下バイオフィルムの構築 および高病原化において中心的な役割を担っているこ とが示唆される。

謝辞

本研究の遂行に際し、多大なるご支援や貴重なご指導を 賜りました大阪大学大学院歯学研究科予防歯科学講座の天 野敦雄名誉教授、久保庭雅恵教授、同工学研究科の福﨑英 一郎教授、新間秀一准教授、米国ルイビル大学のリチャー ド・ラモント教授に、深甚なる感謝を申し上げます。

文 献

- Hajishengallis, G., Lamont, R. J. and Koo H. (2023): Oral polymicrobial communities: Assembly, function, and impact on diseases. *Cell Host Microbe*, 31, 528– 538.
- Sakanaka, A., Kuboniwa, M., Takeuchi, H., Hashino, E. and Amano, A. (2015): Arginine-ornithine antiporter ArcD controls arginine metabolism and interspecies biofilm development of *Streptococcus gordonii*. *J Biol Chem*, 290, 21185–21198.
- Kolenbrander P. E., Palmer Jr. R. J., Rickard A. H., Jakubovics N. S., Chalmers N. I. and Diaz P. I. (2006): Bacterial interactions and successions during plaque development. *Periodontol* 2000, 42, 47–49.
- 4) Mark Welch J. L., Rossetti B. J., Rieken C. W., Dewhirst F. E. and Borisy G. G. (2016): Biogeography of a human oral microbiome at the micron scale. *Proc Natl Acad Sci U S A*, 113, 791–800.
- Solbiati J. and Frias-Lopez J. (2018): Metatranscriptome of the oral microbiome in health and disease. *J Dent Res*, 97, 492–500.