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Weak error rates for numerical schemes of non-singular Stochastic

Volterra equations with application to stochastic volatility models

Pierre Bras∗† and Masaaki Fukasawa‡

Abstract

We study the weak error rate for the Euler-Maruyama scheme for Stochastic Volterra equations (SVE)
with application to pricing under stochastic volatility models. SVEs are non-Markovian stochastic differential
equations with memory kernel. We assume in particular that the kernel is non-singular and C4. We show
that the weak error rate is of order O(1/N) where N is the number of steps of the Euler-Maruyama scheme,
thus giving the same weak error rate as for SDEs. Our proof consists in adapting the classic weak error
proof for Markov processes to SVEs; to this end we rely on infinite dimensional functionals and on their
derivatives.

Keywords– Stochastic Volterra equation, Rough volatility, Euler-Maruyama scheme, Weak error rate.
MSC Classification– 65C30, 60H35

1 Introduction

Stochastic Volterra equations (SVE) have recently attracted much attention in the mathematical finance com-
munity in the context of rough volatility modelling, which is more able to reproduce some features of asset prices
[4, 21, 12, 14, 6, 28, 16, 17, 18]. SVEs have also been introduced with regular (non-singular) kernel for modelling
in population dynamics, biology and physics [31], in order to generalize modelling to non-Markovian stochastic
systems with some memory effect. They were also motivated in particular by the physics of heat transfer [24]
and have been mathematically studied since [8, 35]. Applications, e.g. pricing options in financial practice,
require numerical methods to simulate the solution of the SVE, such as simulation through Euler-Maruyama
schemes.

In the present paper, we give bounds for the weak error of the Euler-Maruyama scheme with N steps of an
SVE on a finite time interval [0, T ] in the case where the kernel is non-singular. We consider two different Euler
schemes: one where the kernel is not discretized, thus requiring the simulation of a large Gaussian matrix with
covariance, and another one where the kernel is discretized, thus requiring only the simulation of (independent)
Brownian increments.

A first bound on the weak error can be obtained from bounds on the strong error, however this is sub-optimal
in general. For example, for Stochastic Differential Equations (SDE) and under general regularity assumptions
the strong error is of order O(1/

√
N) but the weak error is of order O(1/N). Such bounds get even worse in the

case of SVE with fractional kernel, giving a weak error bounded by the strong error which is order O(N−H),
where H ∈ (0, 1/2) is the Hurst parameter of the fractional kernel and is small (H ≃ 0.1, see for example
[21, 18, 7, 9] for empirical numerical estimations of H) in many financial applications. In [36, 27], the authors
prove strong error rates for rough and regular SVEs and show in particular that in the regular case the strong
error rate is of order O(1/

√
N) as for SDEs, see section 2.2.

Moreover in [36] bounds are given for the weak error for the multi-level Euler-Maruyama scheme, however
the authors only assume that the weak error is bounded by the strong error (see [36, Section 2.3]). In [19, 32]
it is shown that the strong error is exactly of order H and the authors give the expression of the limit law of
the (rescaled) strong error.

Motivated by rough volatility modeling, a series of recent papers [6, 5, 20, 15] focus on the analysis of

the discretization error of XT =
∫ T

0
σ(ŴH

t )dBt where ŴH
t =

∫ t

0
(t − s)H−1/2dWs, H ∈ (0, 1/2), Bt = ρWt +√

1− ρ2W⊥
t , W and W⊥ are independent Brownian motions. [6] considers the case σ(x) = x – which applies
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in particular to the rough Stein-Stein model [37] – and shows that the weak error rate is at least H + 1/2;
the approach is based on an infinite dimensional Markov representation of X. In [5], the authors apply the
duality method to this context to show that the weak error rate is at least H + 1/2 for σ(x) = x and at least
2H under a general model. The same technique is sharpen in [20], where weak error rates are proved to be of
order (3H +1/2)∧ 1 for σ(x) = x or for general σ with cubic test function. More recently, [15] also proved that
the weak error rate is of order (3H + 1/2) ∧ 1 for a reasonably large class of functions σ and polynomial test
functions, including the rough Bergomi and the rough Stein-Stein models [37, 12]. The authors even obtain a
rate of order 1 in the uncorrelated case ρ = 0. In these papers, the proof generally relies on successive Malliavin
integration by parts with respect to the Brownian motion W to obtain a representation of the error as iterated
integrals. In [10], the authors show a weak error rate of at least H+1/2 for smooth test functions. We recall that
a (possibly rough) Volterra stochastic volatility model is a special case of a (possibly singular) two-dimensional
SVE, where the first process is an asset price satisfying dSt = St

√
VtdBt for some Brownian motion B and

where the second process (Vt) is the volatility satisfying some (possibly rough) Volterra stochastic equation,
then giving a matrix kernel K for the joint process being diagonal and constant on its first coordinate. In [3],
the authors propose a numerical scheme based on multifactor SDE approximation that applies to both regular
and rough SVEs where the kernel is completely monotone, and give strong error bounds that depend on the
choice of the kernel approximation.

Our main result states that for SVEs with non-singular kernel, the weak error of the Euler-Maruyama
scheme is of order O(1/N), which is the same rate as in the classic SDE case, under regularity assumptions on
the coefficients and the kernel: we assume that the kernel is defined on the whole interval [0, T ] and is C4, that
the drift and the diffusion coefficients are C5, bounded with bounded derivatives. Our strategy of proof consists
in adapting the domino method from [38] to the SVE case. In the SDE case and for a function f : Rd → R,
the domino strategy consists in a step-by-step decomposition of the weak error to produce an upper bound as
follows:

|Ef(X̄x
T )− Ef(Xx

T )| = |P̄h ◦ · · · ◦ P̄hf(x)− PtN f(x)|

≤
N∑

k=1

∣∣P̄h ◦ · · · ◦ P̄h ◦ (P̄h − Ph) ◦ PtN−tkf(x)
∣∣ , (1.1)

where h = T/N , tk = kh, X is the solution to the SDE and X̄ is the corresponding Euler-Maruyama scheme, P
and P̄ are the semi-group operators associated to X and X̄ respectively. Then showing that with g := Ptn−tkf ,
the short term weak error (P̄h − Ph)g(x) is of order O(1/N2), the sum in (1.1) is then of order O(1/N). An
elementary proof in the SDE case using the domino method can be found in [33, Section 7.6]. This strategy
fundamentally relies on a Markov semi-group and thus cannot be directly applied to the SVE case, as the future
trajectory of X depends on the whole previous trajectory in this last case. Instead, we consider the solution
of an SVE as a Markov process on the infinite dimensional state space of trajectories Ω and then we define
a infinite-dimensional Markov semi-group type operator, allowing us to use the previously introduced domino
method.

We then show that the weak error in small time is of order O(1/N2) by establishing an Itô type formula
for functionals g : Ω → R of SVE processes, involving the Fréchet derivatives of g. Such approach involving
the derivatives of functionals on infinite dimensional state space and establishing Itô formula for SVEs was also
developed in [13] and [39]. In [13] the author gives an Itô formula for dtg((Xs)s∈[0,t]) where Xt is a (Markov)

semi-martingale; in [39] the Itô formula is given for dtg((X̃
t)s∈[0,T ]) where X̃

t is an SVE or rough process for
s ∈ [0, t] and completed by some given Ft-measurable process on times greater than t. The formula we establish

is a new contribution and is valid for dtg(
∫ t

0
Z(·, s)dWs) where Z(u, ·) is an adapted semi-martingale for all u.

Moreover we could not apply the result from [39] to our strategy of proof.
Using a hybrid approach, combining ideas from both finite and infinite dimensional settings, the Itô formula

with a finite dimensional Brownian motion on the one side, and the Fréchet derivatives of path functionals and
the Markov property on an infinite dimensional state space on the other side, we establish the weak convergence
rate of the Euler-Maruyama for SVEs. Studying the non-singular case by adapting the classic domino method to
path-dependent setting could be a first step for studying weak error rates for fractional SVEs. More specifically,
the outline of the proof in this last case would be to follow the same path-wise domino strategy and to still rely
on the new Itô formula in theorem 3.4. This would be achieved by using regular approximations of kernels or
short-time scaling of the kernel. We refer to the proof of theorem 4.1 which is in fact the main proof of the
paper, where we give bounds for the difference between the two semi-group type operators P̄h,tk −Ph,tk in short
time. However, we highlight here that the adaptation to the non-singular case is not straightforward as the
singular is more difficult to tackle and generally requires more advanced techniques. At this stage we are not
sure whether the same technique could be applied and further investigation is needed.
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We give numerical evidence of the convergence rate we obtained on a Monte Carlo option pricing problem
with a stochastic volatility model where the volatility follows some non-singular SVE. Proving weak error rates
allows to design weighted and unweighted multi-level Richardson-Romberg extrapolation estimators [22, 23, 30]
that exploit the faster convergence of the weak error in comparison with the strong error; such application is
particularly critical for the Monte Carlo simulation of Volterra and rough stochastic equations where the Vanilla
Euler-Maruyama scheme has large time complexity (N2).

The article is organized as follows. In section 2 we give the precise setting and assumptions of the problem
we consider, in particular the regularity assumptions on the coefficients and on the kernel of the SVE, we recall
the existing results on strong error rates and we state our main theorem. We then give a list of examples of
SVEs from the literature to which our main result is applicable, and we show how the computational cost of
standard and multi-level estimators can be improved using weak error rates. In section 3, we give general results
on random paths (φt

u)u≥0,t∈[0,T ] which are adapted with respect to t, in particular we establish an Itô formula
for infinite dimensional functionals g : Ω → R. The proof of the theorem is given in section 4. Considering
(1.1), the proof of our main result is decomposed into three parts: we prove that the short term error is of
order O(1/N2), applying Itô formula for a regular functional g : Ω → R as in the classic proof in the SDE case.
Secondly we show that with g being the concatenation of discrete kernels applied to f , then the functional g
is indeed differentiable in the Fréchet meaning and with bounded Fréchet derivatives. Lastly, in section 5, we
empirically check the weak convergence rate for some SVE model with non-singular kernel.

2 Setting and main results

2.1 Setting

Let us consider the following SVE in Rd, d ∈ N:

Xt = X0 +

∫ t

0

K1(t, s)b(Xs)ds+

∫ t

0

K2(t, s)σ(Xs)dWs, t ∈ [0, T ], (2.1)

where (Wt) is a standard Brownian motion in Rq3 defined on some probability space (Ω,A,P), where

b : Rd → Rq1 , K1 : [0, T ]2 → Md,q1(R), σ : Rd → Mq2,q3(R), K2 : [0, T ]2 → Md,q2(R),

and where q1, q2, q3 ∈ N and for a, b ∈ N, Ma,b(R) denotes the set of a× b matrices with coefficients in R. We
denote by (Ft)t∈[0,T ] the filtration generated by the Brownian motion.

The starting point X0 ∈ Rd is fixed. Let us make the following assumptions on the coefficients b and σ and
on the kernels K1 and K2.

For (A, dA) and (B, dB) two metric spaces and k ∈ N, we consider the following sets of functions from A to
B:

• Ck(A,B): functions that are k times differentiable with continuous derivatives,

• Ck
b (A,B): functions that are bounded, k times differentiable with continuous and bounded derivatives,

• C̃k
b (A,B): functions that are k times differentiable with continuous and bounded derivatives.

When there is no ambiguity on the spaces, we also use the notations Ck, Ck
b and C̃k

b respectively.
For f some function between metric spaces, if f is Lipschitz-continuous then we denote [f ]Lip its Lipschitz

constant.

Assumption 2.1.

(i) K1 ∈ C2([0, T ]2,Md,q1(R)) and K2 ∈ C4([0, T ]2,Md,q2(R)), which guarantees that K1 (resp. K2) is
bounded with bounded derivatives up to order 2 (resp. 4).

(ii) b ∈ C̃5
b (Rd,Rq1) and σ ∈ C5

b (Rd,Mq3,q2(R)).

Then theorem 2.1 guarantees that the solution of (2.1) is well defined (see for example [1, Lemma 5.29] and
[27, Theorem 1.1]).

To simplify the notations and for more readability of the proofs, we assume hereafter that all the objects
considered are one-dimensional, i.e. that d = q1 = q2 = q3 = 1. However the main results in section 2.3 remain
valid for any (finite) dimensions d, q1, q2 and q3, re-writing the proofs by replacing the the one-dimensional
products by matrix products and writing them as sums over indices.
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Let us define the Euler-Maruyama scheme associated to (2.1). For N ∈ N, we define the time step and the
regular subdivision

h := T/N, tk := kT/N, k ∈ {0, . . . , N} (2.2)

and

X̄t = X0 +

∫ t

0

K1(t, s)b(X̄
¯
s)ds+

∫ t

0

K2(t, s)σ(X̄
¯
s)dWs, t ∈ [0, T ], (2.3)

where for s ∈ [0, T ], we define

¯
s = ⌊s/h⌋h.

The solution of (2.3) can be recursively simulated as

X̄t = X0 +

k∑
j=0

∫ tj+1∧t

tj

K1(t, s)b(X̄tj )ds+

k∑
j=0

∫ tj+1∧t

tj

K2(t, s)σ(X̄tj )dWs, t ∈ [tk, tk+1],

where the integrals (
∫ tj+1

tj
K2(t, s)dWs)j can be simulated on the discrete grid (tk)0≤k≤N by generating the

independent sequence of Gaussian vectors(∫ tj+1

tj

K2(tk, s)dWs

)
k=j,...,N

, j = 0, . . . , N − 1,

using the Cholesky decomposition of the covariance matrix(∫ tj+1

tj

K2(tk1
, s)K2(tk2

, s)ds
)
k1,k2=j,...,N

.

We also define the Euler-Maruyama scheme associated to (2.1) with discretization of the kernels as

⇀Xt = X0 +

∫ t

0

K1(t,
¯
s)b(⇀X

¯
s)ds+

∫ t

0

K2(t,
¯
s)σ(⇀X

¯
s)dWs, t ∈ [0, T ]. (2.4)

This scheme is more convenient to simulate as it only requires the simulation of the Brownian increments
(Wtk+1

−Wtk)0≤k≤N−1.
With no ambiguity, in the proofs we shall use the notation ψ̄ for ψ some function defined on Rd, such that

for every process Y and every s ∈ [0, T ] we have ψ̄(Ys) = ψ(Y
¯
s).

We extend the definition of K1 and K2 on R+ × R+ with R+ := [0,∞), such that for i = 1, 2, Ki(t, s) = 0
for (t, s) /∈ [0, 2T ]× [0, 2T ] and such that Ki is still bounded with bounded derivatives up to order 2.

In this paper, we use the notation C to denote a positive real constant, which may change from line to line.
The constant C depends on the parameters of the problem: the coefficients and the kernels of the SVE, the
time horizon T .

Let us first prove a bound on the moments.

Lemma 2.2. Let X, X̄, ⇀X be the solution of (2.1), (2.3) and (2.4) respectively; under theorem 2.1 we have

sup
t∈[0,T ]

E|Xt|2 + sup
t∈[0,T ]

E|X̄t|2 + sup
t∈[0,T ]

E|⇀Xt|2 < +∞. (2.5)

Proof. For every t ∈ [0, T ], from the definition of X and using (α+ β + γ)2 ≤ 3(α2 + β2 + γ2) and (α+ β)2 ≤
2(α2 + β2), we get

sup
s∈[0,t]

E|Xs|2 ≤ 3|X0|2 + 3∥K2∥2∞∥σ∥2∞T + 3∥K1∥2∞ sup
s∈[0,t]

E
∣∣∣ ∫ s

0

|b(Xu)|du
∣∣∣2

≤ C + C
(
2T 2|b(0)|2 + 2[b]2LipE

∣∣ ∫ t

0

|Xu|du
∣∣2)

≤ C
(
1 +

∫ t

0

E|Xu|2du
)
≤ C

(
1 +

∫ t

0

sup
u∈[0,s]

E|Xu|2du
)
,

with similar inequalities for X̄ and ⇀X. The result follows from the Grönwall Lemma.
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2.2 Strong error bounds [36]

Let us first recall strong error results for regular SVEs.

Theorem 2.3 (Adapted from [36], Theorem 2.2 and [27], Theorems 1.2 and 1.4). Assume that b and σ are
Lipschitz-continuous and K1,K2 ∈ C1([0, T ]2). Then for p ≥ 1,

E
[∣∣X̄T −XT

∣∣p]+ E
[∣∣⇀XT −XT

∣∣p] ≤ CpN
−p/2. (2.6)

Remark 2.4 • The results from [36, 27] are in fact more general and may also be applied to non regular
settings. The latter [27] requires fewer assumptions than [36] and gives results for X̄, so-called K-discrete

Euler scheme, whereas [36] only gives bounds for⇀X. However for concision we simplify the assumptions and
we adapt these results to our ”regular” setting, assuming in particular that the kernels are differentiable.

• We can deduce a weak error bound from the strong error bound (2.6): if f : Rd → R is Lipschitz-
continuous, then∣∣∣E[f(⇀XT )]− E[f(XT )]

∣∣∣ ≤ E
∣∣∣f(⇀XT )− f(XT )

∣∣∣ ≤ [f ]LipE
[∣∣⇀XT −XT

∣∣] = O(N−1/2), (2.7)

however this result is sub-optimal.

2.3 Main results

Theorem 2.5. Let f : Rd → R be C̃5
b and assume theorem 2.1. Then we have

E[f(X̄T )]− E[f(XT )] = O (1/N) , (2.8)

E[f(⇀XT )]− E[f(XT )] = O (1/N) . (2.9)

Remark 2.6 • Following theorem 2.2, we have

E|XT |+ E|X̄T |+ E|⇀XT | < +∞.

Since f is Lipschitz-continuous, we get

E|f(XT )|+ E|f(X̄T )|+ E|f(⇀XT )| < +∞.

• The strategy of proof we develop in section 4 does not allow us to give weak error bounds for path-
dependent functionals.

• We prove that the weak order of convergence of the Euler-Maruyama scheme for SVEs with regular kernels
is the same as for SDEs, however the computation time for this scheme for SVEs is of order N2, against
order N for SDEs.

• The proofs for (2.8) and (2.9) are largely similar; in the regular setting and provided that Ki and ∂2Ki

are bounded, i = 1, 2, then the numerical error coming from the discretization of the kernels is at most of
same order of the error coming discretization of b and σ, see section 4.5.

Remark 2.7 (Discussion on theorem 2.1) The classic proof in the SDE case [38] requires the assumption

b, σ ∈ C̃4
b (also see [33, Section 7.6]), while we require b ∈ C̃5

b and σ ∈ C5
b . This is mainly because of the

technical assumptions in theorem 3.2 and the Itô formula in theorem 3.4. In the latter, we assume that the
functional G ∈ C̃3

b instead of G ∈ C̃2
b , whereas ∇3G does not appear in the final formula (3.6), thus we require

b and σ to have bounded derivatives up to order 5 instead of 4 in order to obtain theorem 4.2. In the former,
we require in particular supu,s |F (u, s)| ≤ C almost surely, for some fixed C > 0, and thus we need σ to be
bounded in order to get a bound on E∥Pr,t(ω)∥∞.

2.4 Applications

2.4.1 Examples of SVEs satisfying theorem 2.1

We give some examples of SVEs satisfying theorem 2.1, hence to which our main result 2.5 is applicable.
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• Fractional Ornstein-Uhlenbeck processes [11] are defined by the equation:

Xt = X0 − λ

∫ t

0

(Xs − θ)ds+ σWH
t ,

where θ, λ, σ ∈ [0,∞) and WH is a fractional Brownian motion with index H ∈ (0, 1]. Such processes
admit the following Volterra version with regular kernel:

Xt = X0 − λ

∫ t

0

(Xs − θ)ds+ σ

∫ t

0

K2(t, s)dWs

for any K2 satisfying theorem 2.1. This is a particular case of affine Volterra processes [26], where we
consider σ being constant.

• The Gaussian Stein-Stein model, introduced in [2] as a generalization of the classic Stein-Stein model [37],
reads: dSt = StVtdBt, S0 > 0,

Vt = V0 + g0(t) + κ

∫ t

0

K(t− s)Vsds+ ν

∫ t

0

K(t− s)dWs

where B and W are correlated Brownian motions with correlation ρ ∈ [−1, 1], κ, ν ∈ [0,∞), the function
g0 : [0, T ] → R is deterministic and continuous and K is a measurable kernel. In this model, S describes
some asset price and V its square volatility and if K and g0 are regular i.e. K ∈ C4 and g0 ∈ C2, then
the above equation on V falls under our setting. We conduct a further numerical analysis of the weak
convergence rate for this equation in section 5.

• Neural SVEs, introduced in [34], are used to approximate SVEs with neural networks. More precisely
they can be written as

Xt = X0gθ(t) +

∫ t

0

K1,θ(t− s)bθ(Zs)ds+

∫ t

0

K2,θ(t− s)σθ(Zs)dWs

where gθ, Ki,θ, i = 1, 2, σθ are neural functions parametrized by the multi-dimensional parameter θ. More
specifically, let us assume that b and σ are compositions of the sigmoid activation function sig(x) := (1 +
e−x)−1 and the softplus activation function sp(x) := log(1+ex) – which is used as a smooth approximation
of the ReLU function – and affine functions in x parametrized by θ, and furthermore let us assume that for
σ the last function in the composition is the sigmoid function. Then b has bounded successive derivatives
and σ is bounded with bounded successive derivatives, thus satisfying theorem 2.1. This is because we
have sig′(x) = sig(x)(1− sig(x)), sp′(x) = 1− sig(x), so that successive derivatives of sigmoid and softplus
functions can be written as polynomials in the sigmoid function which is bounded with exponentially
decaying derivatives, but we do not give an extensive analysis here.

2.4.2 Error analysis, multi-level Monte Carlo

Given ε > 0, we analyze the computational cost of a Monte Carlo estimator to achieve an error of order O(ε)
on the estimation of Ef(XT ). If M is the number of Monte Carlo samples and N is the number of steps, then

the cost of ⇀X is MN2. To control the statistical error we need to set M = O(ε−2) and to control the bias
discretization error we need to set N = O(ε−1) according to theorem 2.5, which is summarized in the following
proposition.

Proposition 2.8. Let Cost1(ε) be the cost of the Monte Carlo estimator given by simulations of f(⇀XT ) to
achieve an error ε. Then

Cost1(ε) = O(ε−4).

We remark that using the weak error bound (2.9) instead of (2.7), we can improve the cost from O(ε−6) in
[36, Proposition 2.9] to O(ε−4).

The MLMC method. The multi-level Monte Carlo (MLMC) method [22, 30], first introduced for SDEs,
can also be used for SVEs; it consists in correcting the bias with successive layers of refined estimators and
relies on strong and weak error bounds. It can be written as

1

M0

M0∑
i=1

f(⇀XN0,0,i
T ) +

R∑
ℓ=1

1

Mℓ

Mℓ∑
i=1

(
f(⇀XNℓ,ℓ,i

T )− f(⇀XNℓ−1,ℓ,i
T )

)
, (2.10)
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where (Mℓ) are the sizes of the Monte Carlo simulations, R ∈ N is the number of refining layers, (⇀XNℓ,ℓ,i)ℓ,i

are independent simulations of ⇀XT with Nℓ steps with Nℓ = 2−ℓh0 and ⇀XNk1
,ℓ1,i and ⇀XNk2

,ℓ2,j are built on
the same Brownian motion if ℓ1 = ℓ2 and k1 = k2, and independent otherwise. Following the proof of [36,

Proposition 2.11] while improving the bound on the bias terms Ef(⇀XNℓ,ℓ,iT )−Ef(XT ) from N
−1/2
ℓ to N−1

ℓ , we
improve the cost of the MLMC estimator (2.10) from ε−4 to ε−3. Actually, following the optimization procedure
of the parameters R, (Mℓ), h0 described in [30, Theorem 3.11], we obtain that the cost of the optimal MLMC
estimator for level error ε is

Cost2(ε) = O(ε−2 log(1/ε)−2).

We remark the significant benefits of multi-level methods to simulation settings where the bias is computationally
expensive to reduce; in this case, the benefits are greater than when applied to SDEs. Moreover, if we assume
or can obtain a high-order expansion of the weak error (2.9), then we could apply the weighted MLMC method
[30] – also called multi-level Richardson-Romberg (ML2R) – to the simulation of SVEs with even higher gains.

3 Preliminary results on infinite dimensional paths

3.1 State space and path derivatives

For T ′ ∈ R+, we consider the infinite dimensional state space ΩT ′ being the space of R-valued continuous
trajectories on [0,∞) with support included in [0, T ′], with the topology of the supremum norm. For ω ∈ ΩT ′

such that ω is C1, we denote ω̇ its derivative. If ω is Lipschitz-continuous, we denote [ω]Lip its Lipschitz constant.

We denote by 0̃ the path on R+ constant to 0.
For g : ΩT ′ → R and for ω ∈ ΩT ′ , we define, when it exists, ∇g(ω) as the Fréchet derivative of g with respect

to ω, which is a linear operator on ΩT ′ :

g(ω + η) = g(ω) + ⟨∇g(ω), η⟩+ o(∥η∥∞), η ∈ ΩT ′ .

More generally, for ℓ ∈ N we define, when it exists, the derivative of g of order ℓ recursively as the ℓ-multilinear
operator on Ω⊗ℓ

T ′ :

⟨∇ℓ−1g(ω + η1),

ℓ⊗
j=2

ηj⟩ = ⟨∇ℓ−1g(ω),

ℓ⊗
j=2

ηj⟩+ ⟨∇ℓg(ω),

ℓ⊗
j=1

ηj⟩+ o(∥η1∥∞),

ηi ∈ ΩT ′ , i = 1, . . . , ℓ.

We use the notation ⊗ only to enhance the multilinearity of ∇ℓg.

Remark 3.1 The path derivative can be made explicit in some simple cases:

• If g(ω) = g̃(ωu0
) for some fixed u0 ∈ R+ and for some g̃ : R → R, then we have

⟨∇ℓg(ω),

ℓ⊗
j=1

ηj⟩ = ∇ℓg̃(ωu0) ·
ℓ⊗

j=1

ηju0
. (3.1)

• If g(ω) =
∫ T ′

0
g̃(ωu)du for some g̃ : R → R, then we have

⟨∇ℓg(ω),

ℓ⊗
j=1

ηj⟩ =
∫ T ′

0

∇ℓg̃(ωu) ·
ℓ⊗

j=1

ηjudu. (3.2)

3.2 Expectation of the supremum of a random path process

Lemma 3.2. Let F (u, s)u≥0,s∈[0,T ] be a R-valued random process adapted to the filtration F with respect to
its second variable, such that for every s ∈ [0, T ] and u > T ′, F (u, s) = 0, and such that supu,s |F (u, s)| ≤ C
almost surely, ∂1F exists and supu,s |∂1F (u, s)| ≤ C1 almost surely, for some C, C1 ∈ R+, and let (Ms)0≤s≤T

be a R-valued martingale adapted to F with E⟨M⟩T <∞. For r ∈ [0, T ] let us define

φu :=

∫ r

0

F (u, s)dMs, u ≥ 0.

Then there exists a continuous modification φ̃ of φ and a constant C(T ′) depending on T ′ such that

E sup
u≥0

∣∣φ̃u

∣∣2 ≤ C(T ′)2C2
1E⟨M⟩r. (3.3)

7



Proof. For u1, u2 ∈ [0, T ′] we have

E|φu1 − φu2 |2 = E
∣∣∣ ∫ r

0

(F (u1, s)− F (u2, s))dMs

∣∣∣2 = E
∫ r

0

|F (u1, s)− F (u2, s)|2d⟨M⟩s

≤ |u1 − u2|2C2
1E⟨M⟩r,

so that using the Kolmogorov continuity theorem (A.1), there exists a modification φ̃ of φ which is almost
surely α-Hölder for every α ∈ (0, 1/2), and taking for example α = 1/4 we have

E
[(

sup
u1,u2∈[0,T ′],u1 ̸=u2

|φ̃u1
− φ̃u2

|
|u1 − u2|1/4

)2]
≤ C(T ′)3/2C2

1E⟨M⟩r,

where C is an universal constant, so that taking u1 = u and u2 = 0 with φ0 = 0 we obtain

E sup
u≥0

∣∣φ̃u

∣∣2 = E sup
u∈[0,T ′]

∣∣φ̃u

∣∣2 ≤ C(T ′)2C2
1E⟨M⟩r.

Remark 3.3 In the following, we will use theorem 3.2 for families of trajectories (φt)t∈[0,T ] of the form

φt
u =

∫ t

0

F (u, s)dMs or φt
u =

∫ t

0

F (t+ u, s)dMs.

When the assumptions of theorem 3.2 are checked, the bound (3.3) is true up to some modification of φ, i.e.
for a family of trajectories (φ̃t

u) such that

∀t ∈ [0, T ], ∀u ≥ 0, P(φt
u = φ̃t

u) = 1 and ∀t ∈ [0, T ], u 7→ φ̃t
u is continuous.

Without loss of generality, each time we use theorem 3.2 we do not mention explicitly the modification.

3.3 A general Itô formula for path-dependent functionals

In this section we prove an extension of the classic Itô formula to processes of the form G(φt), where G : ΩT ′ → R
and where for every t ∈ [0, T ], φt is some Ft-measurable random path.

Theorem 3.4. Let us consider the family of random paths (φt
u)t∈[0,T ], u≥0 such that

φt
u = φ0

u +

∫ t

0

Z1(u, s)ds+

∫ t

0

Z2(u, s)dWs, (3.4)

where for every u ≥ 0, s 7→ Zi(u, s), i = 1, 2, is an adapted R-valued semi-martingale such that ∂1Zi and ∂
2
11Z2

exist almost surely and there exists some C ≥ 0 such that

sup
s∈[0,T ]

E sup
u≥0

|Z1(u, s)|2 + sup
s∈[0,T ]

E sup
u≥0

|∂1Z1(u, s)| ≤ C,

∥Z2∥∞ + ∥∂1Z2∥∞ + ∥∂211Z2∥∞ ≤ C almost surely, (3.5)

and such that Zi(u, s) = 0 for u > T ′, T ′ ∈ R+. We also assume that φ0 ∈ ΩT ′ ∩C1 and is Lipschitz-continuous.
Moreover, let G : ΩT ′ → R with bounded pathwise derivatives up to order 3. Then we have almost surely

G(φt) = G(φ0) +

∫ t

0

⟨∇G(φs), Z1(·, s)⟩ds+
∫ t

0

⟨∇G(φs), Z2(·, s)⟩dWs

+
1

2

∫ t

0

⟨∇2G(φs), Z2(·, s)⊗2⟩ds. (3.6)

Remark 3.5 We highlight the fact that in (3.4), the values of Zi(u, s) cannot depend on t. For example, if we
consider the SVE

φt
u = φ0

u +

∫ t

0

K2(t+ u, s)σ(As)dWs

for some adapted semi-martingale A, then we need to write φt
u as

φt
u = φ0

u +

∫ t

0

K2(s+ u, s)σ(As)dWs +

∫ t

0

(∫ s

0

∂1K2(s+ u, v)σ(Av)dWv

)
ds.
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Proof. We first remark that if G only depends on a finite number of times u1, . . . , un ∈ R+, i.e. if we have

∀ω ∈ ΩT ′ , G(ω) = G̃(ωu1
, . . . , ωun

), G̃ ∈ C2(Rn,R),

then we have

∀η ∈ Ω, ⟨∇G(ω), η⟩ =
n∑

i=1

∂iG̃(ωu1
, . . . , ωun

)ηui
,

∀η1, η2 ∈ Ω, ⟨∇2G(ω), η1 ⊗ η2⟩ =
∑

1≤i,j≤n

∂ijG̃(ωu1 , . . . , ωun)η
1
ui
η2uj

,

and then (3.6) directly comes from the classic Itô formula.

Then, let us define for n ∈ N the regular subdivision of [0, T ′]: uni = iT ′/n, 0 ≤ i ≤ n and for ω ∈ ΩT ′ we
define ωn as the affine interpolation of ω on the subdivision (uni )i i.e. ω

n is equal to the affine interpolation on
[0, T ′] and then ωn and ω are both equal to 0 on [T ′,∞); we also define Gn as for every ω ∈ ΩT ′ , Gn(ω) = G(ωn).

Then for every ω ∈ Ω2T we have Gn(ω) = G̃n(ωu1 , . . . , ωun) where G̃
n : Rn → R is the composition of the affine

interpolation L n : Rn → Ω2T , which is a bounded linear operator, and of G, so is C2 and then (3.6) is true for
Gn. Moreover for every ω, η ∈ ΩT ′ such that ω is Lipschitz-continuous we have

|G(ω)−Gn(ω)| = |G(ω)−G(ωn)| ≤ ∥∇G∥∞∥ω − ωn∥∞ ≤ C∥∇G∥∞[ω]Lip/n.

Moreover, remarking that the affine interpolation is a bounded linear operator, we get that Gn is also differen-
tiable with

⟨∇Gn(ω), η⟩ = ⟨∇G(ωn), ηn⟩

so that ∣∣⟨∇G(ω), η⟩ − ⟨∇Gn(ω), η⟩
∣∣ ≤ ∥∇2G∥∞∥ω − ωn∥∞∥η∥∞ + ∥∇G∥∞∥ω∥∞∥η − ηn∥∞. (3.7)

Moreover for η1, η2 ∈ ΩT ′ we have

⟨∇2Gn(ω), η1 ⊗ η2⟩ = ⟨∇2G(ωn), (η1)n ⊗ (η2)n⟩

so that∣∣⟨∇2G(ω), η1 ⊗ η2⟩ − ⟨∇2Gn(ω), η1 ⊗ η2⟩
∣∣ ≤ ∥∇3G∥∞∥ω − ωn∥∞∥η1∥∞∥η2∥∞

+ ∥∇2G∥∞
(
∥ω∥∞∥η1 − (η1)n∥∞∥η2∥∞ + ∥ω∥∞∥η1∥∞∥η2 − (η2)n∥∞

)
. (3.8)

Writing (3.6) with Gn gives

Gn(φt) = Gn(φ0) +

∫ t

0

⟨∇G((φs)n), Zn
1 (·, s)⟩ds+

∫ t

0

⟨∇G((φs)n), Zn
2 (·, s)⟩dWs

+
1

2

∫ t

0

⟨∇2G((φs)n), Zn
2 (·, s)⊗2⟩ds, (3.9)

and we have

E|Gn(φt)−G(φt)|2 ≤ 2∥G∥∞E|Gn(φt)−G(φt)| ≤ C∥G∥∞∥∇G∥∞E[φt]Lipn
−1

with φt being C1 with

φ̇t
u = φ̇t

0 +

∫ t

0

∂1Z1(u, s)ds+

∫ t

0

∂1Z2(u, s)dWs,

where the interchange is ensured by the stochastic Fubini theorem. But following theorem 3.2 with assumption
(3.5), E[φt]Lip <∞, so that Gn(φt) converges to G(φt) in L2. We proceed the same way for Gn(φ0).

Moreover, we have

E
∣∣∣ ∫ t

0

⟨∇G((φs)n), Zn
1 (·, s)⟩ds−

∫ t

0

⟨∇G(φs), Z1(·, s)⟩ds
∣∣∣

≤
∫ t

0

E|⟨∇G(φs), Zn
1 (·, s)− Z1(·, s)⟩|ds+

∫ t

0

E|⟨∇G((φs)n)−∇G(φs), Zn
1 (·, s)⟩|ds
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≤ ∥∇G∥∞
∫ t

0

E sup
u≥0

|∂1Z1(u, s)|ds n−1 + ∥∇2G∥∞
∫ t

0

E
[
[φs]Lip sup

u≥0
|Zn

1 (u, s)|
]
ds n−1

≤ T∥∇G∥∞ sup
s∈[0,T ]

E sup
u≥0

|∂1Z1(u, s)|n−1

+ ∥∇2G∥∞
(∫ t

0

E[φs]2Lipds
)1/2(∫ t

0

E sup
u≥0

|Z1(u, s)|2ds
)1/2

n−1

≤ T∥∇G∥∞ sup
s∈[0,T ]

E sup
u≥0

|∂1Z1(u, s)|n−1

+ T 1/2∥∇2G∥∞
(∫ t

0

E[φs]2Lipds
)1/2(

sup
s∈[0,T ]

E sup
u≥0

|Z1(u, s)|2
)1/2 −→

n→∞
0,

where we used (3.7) and that E[φs]2Lip ≤ C with theorem 3.2, where C does not depend on s.
Furthermore, following (3.7) we have

E
∣∣∣ ∫ t

0

⟨∇G((φs)n), Zn
2 (·, s)⟩dWs −

∫ t

0

⟨∇G(φs), Z2(·, s)⟩dWs

∣∣∣2
=

∫ t

0

E
∣∣⟨∇G((φs)n), Zn

2 (·, s)⟩ − ⟨∇G(φs), Z2(·, s)⟩
∣∣2ds

≤ 2

∫ t

0

E
∣∣∥∇G∥∞∥Z2∥∞

(
⟨∇G((φs)n), Zn

2 (·, s)⟩ − ⟨∇G(φs), Z2(·, s)⟩
)∣∣ds

≤ 2C

∫ t

0

E
[
∥∇G∥∞∥Z2∥∞

(
∥∇2G∥∞n−1∥Z2∥∞[φs]Lip + ∥∇G∥∞n−1∥∂1Z2∥∞∥φs∥∞

)]
ds

≤ Cn−1

∫ t

0

(
E[φs]Lip + E∥φs∥∞

)
ds

and using theorem 3.2, we have E∥φs∥∞ ≤ C and E[φs]Lip ≤ C where C does not depend on s, so that the
above quantity converges to 0 as n→ ∞.

Last, using (3.8) we get

E
∣∣∣∣∫ t

0

⟨∇2G((φs)n), Zn
2 (·, s)⊗2⟩ds−

∫ t

0

⟨∇2G(φs), Z2(·, s)⊗2⟩ds
∣∣∣∣

≤
∫ t

0

E
(
C∥∇3G∥∞n−1∥Z2∥2∞[φs]Lipds+ C∥∇2G∥∞∥Z2∥∞∥∂1Z2∥∞n−1∥φs∥∞

)
ds

≤ Cn−1

∫ t

0

E[φs]Lipds+ Cn−1

∫ t

0

E∥φs∥∞ds −→
n→∞

0.

4 Proof of theorem 2.5

In this section, we only give the full proof for (2.8). The proof of (2.9) is similar, as explained in section 4.5.

4.1 Definition of the infinite dimensional semi-group and domino strategy

We define the infinite dimensional semi-group type operator that we use for the domino strategy. We do not
apply the domino strategy on X directly; instead we define an auxiliary process Y such that X can be induced
from Y , as follows. Let us consider the following family of processes:

Yt(u) =

∫ t

0

K1(t+ u, s)b(Xs)ds+

∫ t

0

K2(t+ u, s)σ(Xs)dWs, u ≥ 0, t ∈ [0, T ]. (4.1)

Following theorem 3.2, for every u ≥ 0 and t ∈ [0, T ], Yt(u) is well defined and Yt : u 7→ Yt(u) is continuous.
Moreover, for every t ∈ [0, T ], Yt is Ft-measurable (but the process (Yt(u))u≥0 is not adapted w.r.t. u) and
writing

Yt(u) =

∫ t

0

(∫ u

0

∂1K1(t+ v, s)dv +K1(t, s)
)
b(Xs)ds
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+

∫ t

0

(∫ u

0

∂1K2(t+ v, s)dv +K2(t, s)
)
σ(Xs)dWs

=

∫ u

0

(∫ t

0

∂1K1(t+ v, s)b(Xs)ds
)
dv +

∫ t

0

K1(t, s)b(Xs)ds

+

∫ u

0

(∫ t

0

∂1K2(t+ v, s)σ(Xs)dWs

)
dv +

∫ t

0

K2(t, s)σ(Xs)dWs,

where the interchange is ensured by the stochastic Fubini theorem, we obtain that Yt is almost surely C1 and
Lipschitz-continuous (using theorem 3.2 again) with

Ẏt(u) =

∫ t

0

∂1K1(t+ u, s)b(Xs)ds+

∫ t

0

∂1K2(t+ u, s)σ(Xs)dWs. (4.2)

We also note that
Yt(0) = Xt −X0, t ∈ [0, T ]. (4.3)

Then we have

Xv = X0 + Yt(v − t) +

∫ v

t

K1(v, s)b(Xs)ds+

∫ v

t

K2(v, s)σ(Xs)dWs, (4.4)

Yv(u) = Yt(v − t+ u) +

∫ v

t

K1(v + u, s)b(Xs)ds+

∫ v

t

K2(v + u, s)σ(Xs)dWs, (4.5)

0 ≤ t ≤ v ≤ T, u ≥ 0.

This leads us to define the following non-homogeneous semi-group type operator Pr,t for t ∈ [0, T ] and r ∈
[0, T − t] on Ω2T :

Pr,t(ω)u = ωr+u +

∫ t+r

t

K1(t+ r + u, s)b(X̃s)ds+

∫ t+r

t

K2(t+ r + u, s)σ(X̃s)dWs, u ≥ 0, (4.6)

where (X̃s)s∈[t,t+r] is the solution of the following SVE:

X̃v = X0 + ωv−t +

∫ v

t

K1(v, s)b(X̃s)ds+

∫ v

t

K2(v, s)σ(X̃s)dWs (4.7)

and where we omit here the dependency of X̃ in t and in ω. Since Ki(u, s) = 0 for u ≥ 2T , we have indeed that
for every ω ∈ Ω2T , Pr,t(ω) ∈ Ω2T almost surely and then Pr,t maps Ω2T to a set of Ft+r-measurable trajectories
in Ω2T . Then following (4.4) and (4.5) we have

Pr,t(Yt) = Yt+r, (4.8)

hence the designation ”semi-group type operator”, although Pr,t is not a true semi-group on Ω2T .
Likewise, we define

Ȳt(u) =

∫ t

0

K1(t+ u, s)b(X̄
¯
s)ds+

∫ t

0

K2(t+ u, s)σ(X̄
¯
s)dWs, u ≥ 0, t ∈ [0, T ] (4.9)

as well as the semi-group corresponding to the Euler-Maruyama scheme (2.3) for k ∈ {0, . . . , N − 1} and
r ∈ [0, T − tk]:

P̄r,tk(ω)u = ωr+u +

∫ tk+r

tk

K1(tk + r + u, s)b(X0 + ω0)ds+

∫ tk+r

tk

K2(tk + r + u, s)σ(X0 + ω0)dWs, (4.10)

for u ≥ 0, so that we have
Ȳt(0) = X̄t −X0, t ∈ [0, T ] (4.11)

and for r ∈ [0, h]:

P̄r,tk(Ȳtk)u = Ȳtk(r + u) +

∫ tk+r

tk

K1(tk + r + u, s)b(X0 + Ȳtk(0))ds

+

∫ tk+r

tk

K2(tk + r + u, s)σ(X0 + Ȳtk(0))dWs
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= Ȳtk+r(u).

By a slight abuse of notation, we use the notations P and P̄ also to denote the semi-group type operators
such that for every g : Ω2T → R, ω ∈ Ω2T , t ∈ [0, T ] and r ∈ [0, T − t] we have

Pr,tg(ω) := Eg(Pr,t(ω)), P̄r,tg(ω) := Eg(P̄r,t(ω)).

More precisely, we consider Pr,tg and P̄r,tg for g ∈ C̃1
b (Ω2T ,R) so that for ω ∈ Ω2T ,

E
∣∣g(Pr,t(ω))

∣∣ ≤ |g(0̃)|+ ∥∇g∥∞E∥Pr,t(ω)∥∞ <∞,

as Pr,t(ω) ∈ Ω2T almost surely with E∥Pr,t(ω)∥∞ < ∞ according to theorem 3.2 and theorem 2.2. Then Pr,t

and P̄r,t map C̃1
b (Ω2T ,R) to a set of measurable functions from Ω2T to R.

For general semi-groups Q1, . . . , Qr we denote their composition as

r∏
k=1

Qk := Q1 ◦ . . . ◦Qr.

Then we obtain XT = YT (0) +X0 = PT,0(0̃)0 +X0 and X̄T =
(∏N−1

k=0 P̄h,tN−1−k
(0̃)
)
0
+X0.

Now for f : R → R being C̃5
b we define

f̃ : ω ∈ Ω2T 7→ f(ω0 +X0). (4.12)

Following theorem 3.1, we also have f̃ ∈ C̃5
b . Moreover we can write

Ef(X̄T ) = Ef
((N−1∏

k=0

P̄h,tN−1−k
(0̃)
)
0
+X0

)
= Ef̃

(N−1∏
k=0

P̄h,tN−1−k
(0̃)
)
=

(
N−1∏
k=0

P̄h,tk f̃

)
(0̃).

We highlight that in our notations the order of the operators is reversed whether
∏

k P̄h,tk is applied to some
ω ∈ Ω2T or to some g : Ω2T → R. We then rewrite the weak error as

Ef(X̄T )− Ef(XT ) =

(
N−1∏
k=0

P̄h,tk f̃

)
(0̃)−

(
N−1∏
k=0

Ph,tk f̃

)
(0̃)

=

N−1∑
k=0

Pkh,0 ◦ (P̄h,tk − Ph,tk) ◦
N−1∏

j=k+1

P̄h,tj f̃

 (0̃), (4.13)

where we used a telescopic sum.

4.2 Weak error in small time

In this section, we give a bound on the weak error in small time for the one-step Euler-Maruyama scheme
(P̄h,tk − Ph,tk)g(ω), where g : Ω2T → R is some smooth functional and ω ∈ Ω2T and ω ∈ C2.

Proposition 4.1. Let ω ∈ Ω2T and be C2, g : Ω2T → R with bounded (pathwise) derivatives up to order 5 and
k ∈ {0, . . . , N − 1}. Then we have ∣∣(P̄h,tk − Ph,tk)g(ω)

∣∣ ≤ C(1 + [ω]Lip)h
2, (4.14)

where the constant C does not depend on k nor ω nor h.

Proof. We can assume that ω is Lipschitz-continuous without loss of generality.
• Let us consider (X̃s)s∈[tk,tk+h] as defined in (4.7). Then for v ∈ [tk, tk+1] and ε ∈ [0, tk+1 − v] we have

X̃v+ε − X̃v = ωv+ε−tk − ωv−tk +

∫ v

tk

(K1(v + ε, s)−K1(v, s))b(X̃s)ds

+

∫ v+ε

v

K1(v + ε, s)b(X̃s)ds

+

∫ v

tk

(K2(v + ε, s)−K2(v, s))σ(X̃s)dWs +

∫ v+ε

v

K2(v + ε, s)σ(X̃s)dWs
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so that

dX̃v = ω̇v−tkdv +K1(v, v)b(X̃v)dv +K2(v, v)σ(X̃v)dWv

+

(∫ v

tk

∂1K1(v, s)b(X̃s)ds+

∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

)
dv.

It follows from the classic Itô formula that for ψ : R → R and v ≥ tk we have

dψ(X̃v) = ∇ψ(X̃v)(K1(v, v)b(X̃v)dv + ω̇v−tkdv +K2(v, v)σ(X̃v)dWv)

+
1

2
∇2ψ(X̃v)K

2
2 (v, v)σ

2(X̃v)dv

+∇ψ(X̃v)

(∫ v

tk

∂1K1(v, s)b(X̃s)ds+

∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

)
dv (4.15)

In particular we remark that for r ∈ [0, h] and if ψ is C2 with bounded derivatives,∣∣Eψ(X̃tk+r)− ψ(X0 + ω0)
∣∣ (4.16)

≤ ∥∇ψ∥∞(∥K1∥∞
(
|b(0)|+ [b]Lip sup

v
E|X̃v|

)
r + [ω]Lip) +

1

2
∥∇2ψ∥∞∥K2∥2∞∥σ∥2∞r

+ ∥∇ψ∥∞∥∂1K1∥∞
(
|b(0)|+ [b]Lip sup

v
E|X̃v|

)r2
2

+ ∥∇ψ∥∞∥∂1K2∥∞∥σ∥∞
2r3/2

3

≤ C(1 + [ω]Lip)r, (4.17)

where we use theorem 2.2 on X̃ and where we bound the last term as follows:∣∣∣E ∫ tk+r

tk

∇ψ(X̃v)

(∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

)
dv
∣∣∣

≤ ∥∇ψ∥∞
∫ tk+r

tk

E
∣∣∣ ∫ v

tk

∂1K2(v, s)σ(X̃s)dWs

∣∣∣dv
≤ ∥∇ψ∥∞∥∂1K2∥∞∥σ∥∞

∫ tk+r

tk

(v − tk)
1/2dv.

• On the other side for r ≥ 0 we have

Pr+ε,tk(ω)u − Pr,tk(ω)u = ωr+ε+u − ωr+u +

∫ tk+r+ε

tk+r

K1(tk + r + ε+ u, s)b(X̃s)ds

+

∫ tk+r+ε

tk+r

K2(tk + r + ε+ u, s)σ(X̃s)dWs

+

∫ tk+r

tk

(K1(tk + r + ε+ u, s)−K1(tk + r + u, s))b(X̃s)ds

+

∫ tk+r

tk

(K2(tk + r + ε+ u, s)−K2(tk + r + u, s))σ(X̃s)dWs

so that we can write

dPr,tk(ω)u = K1(tk + r + u, tk + r)b(X̃tk+r)dr +K2(tk + r + u, tk + r)σ(X̃tk+r)dWtk+r

+ ω̇r+udr +

(∫ tk+r

tk

∂1K1(tk + r + u, s)b(X̃s)ds+

∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
dr

so that for G : Ω2T → R being C̃3
b and using theorem 3.4 – checking the assumption (3.5) with theorem 2.2 for

the drift part and theorem 3.2 for the diffusion part – we obtain

dG(Pr,tk(ω)) = ⟨∇G(Pr,tk(ω)), ω̇r+·⟩dr

+ ⟨∇G(Pr,tk(ω)), (K1(tk + r + u, tk + r))u≥0⟩b(X̃tk+r)dr

+ ⟨∇G(Pr,tk(ω)), (K2(tk + r + u, tk + r))u≥0⟩σ(X̃tk+r)dWtk+r

13



+
1

2
⟨∇2G(Pr,tk(ω)), (K2(tk + r + u, tk + r))⊗2

u≥0⟩σ
2(X̃tk+r)dr

+
〈
∇G(Pr,tk(ω)),

(∫ tk+r

tk

∂1K1(tk + r + u, s)b(X̃s)ds

+

∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

〉
dr. (4.18)

In particular, we remark that∣∣EG(Pr,tk(ω))−G(ω)
∣∣

≤ ∥∇G∥∞[ω]Lipr + ∥∇G∥∞∥K1∥∞
(
|b(0)|+ [b]Lip sup

v
E|X̃|v

)
r +

1

2
∥∇2G∥∞∥K2∥2∞∥σ∥2∞r

+ ∥∇G∥∞∥∂1K1∥∞
(
|b(0)|+ [b]Lip sup

v
E|X̃v|

)r2
2

+ C∥∇G∥∞∥σ∥∞∥∂211K2∥2∞
2r3/2

3
,

≤ C(1 + [ω]Lip)r. (4.19)

where we used theorem 3.2 and theorem 2.2 to bound the last term.
Thus for g : Ω2T → R being C5

b we have

Eg(Ph,tk(ω))− g(ω) = E
[ ∫ h

0

⟨∇g(Pr,tk(ω)), ω̇r+·⟩dr

+
1

2

∫ h

0

⟨∇2g(Pr,tk(ω)), (K2(tk + r + u, tk + r))⊗2
u≥0⟩σ

2(X̃tk+r)dr

+

∫ h

0

⟨∇g(Pr,tk(ω)), (K1(tk + r + u, tk + r))u≥0⟩b(X̃tk+r)dr

+

∫ h

0

〈
∇g(Pr,tk(ω)),

(∫ tk+r

tk

∂1K1(tk + r + u, s)b(X̃s)ds

+

∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

〉
dr
]

=:

5∑
i=1

Ii.

Likewise, we obtain a similar formula on Eg(P̄h,tk(ω))− g(ω), replacing b by b̄ and σ by σ̄, and we write

Eg(P̄h,tk(ω))− g(ω) =:

5∑
i=1

Īi.

We shall now inspect the quantity Ii − Īi for every i = 1, . . . , 5.

• For fixed r ∈ [0, h], let Gr : η 7→ ⟨∇g(η), ω̇r+·⟩. Then Gr ∈ C3
b and we have

⟨∇Gr(η), τ⟩ = ⟨∇2g(η), ω̇r+· ⊗ τ⟩, ⟨∇2Gr(η), τ
1 ⊗ τ2⟩ = ⟨∇3g(η), ω̇r+· ⊗ τ1 ⊗ τ2⟩.

Applying the Itô formula (4.18) again to α 7→ EGr(Pα,tk(ω)) for α ∈ [0, r] and with the estimate (4.19), we
obtain

|EGr(Pr,tk(ω))−Gr(ω)| ≤ Cr(1 + [ω]Lip).

Similarly, we have ∣∣EGr(P̄r,tk(ω))−Gr(ω)
∣∣ ≤ Cr(1 + [ω]Lip),

and then ∣∣I1 − Ī1
∣∣ = ∣∣E[ ∫ h

0

Gr(Pr,tk(ω))dr −
∫ h

0

Gr(P̄h,tk(ω))dr
]∣∣ ≤ C(1 + [ω]Lip)

∫ h

0

rdr

≤ C(1 + [ω]Lip)h
2.

• For fixed r ∈ [0, h], let

Gr : η 7→ 1

2
⟨∇2g(η), (K2(tk + r + u, tk + r))⊗2

u≥0⟩.
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Then Gr ∈ C3
b and we have

⟨∇Gr(η), τ⟩ =
1

2
⟨∇3g(η), (K2(tk + r + u, tk + r))⊗2

u≥0 ⊗ τ⟩,

⟨∇2Gr(η), τ
1 ⊗ τ2⟩ = 1

2
⟨∇4g(η), (K2(tk + r + u, tk + r))⊗2

u≥0 ⊗ τ1 ⊗ τ2⟩.

Applying the Itô formulae we obtained in (4.18) and in (4.15) and the classic Itô formula for a product, we get

E[Gr(Pr,tk(ω))σ
2(X̃tk+r)]−Gr(ω)σ

2(X0 + ω0)

= E
[ ∫ r

0

d
(
Gr(Pα,tk(ω))

)
σ2(X̃tk+α) +Gr(Pα,tk(ω))d

(
σ2(X̃tk+α)

)
+ d⟨Gr(P·,tk(ω)), σ

2(X̃tk+·)⟩α
]

=: A1 +A2 +A3,

but σ2 is bounded and following (4.19), we obtain that A1 ≤ C(1 + [ω]Lip)r; the same way and since Gr is
bounded (independently on r) and following (4.17) we have A2 ≤ C(1 + [ω]Lip)r. Moreover we have

d⟨Gr(P·,tk(ω)), σ
2(X̃tk+·)⟩α = ∇σ2(X̃tk+α)K2(tk + α, tk + α)σ2(X̃tk+α)

· ⟨∇Gr(Pα,tk(ω)), (K2(tk + α+ u, tk + α))u≥0⟩dα

so that same way we get A3 ≤ Cr. Thus we finally obtain∣∣EGr(Pr,tk(ω))σ
2(X̃tk+r)−Gr(ω)σ

2(X0 + ω0)
∣∣ ≤ C(1 + [ω]Lip)r. (4.20)

The same way we have∣∣EGr(P̄r,tk(ω))σ
2(X0 + ω0)−Gr(ω)σ

2(X0 + ω0)
∣∣ ≤ C(1 + [ω]Lip)r,

so that ∣∣I2 − Ī2
∣∣ = ∣∣E[ ∫ h

0

(Gr(Pr,tk(ω))σ
2(X̃tk+r)−Gr(P̄r,tk(ω))σ

2(X0 + ω0))dr
]∣∣ ≤ C(1 + [ω]Lip)h

2.

• For r ∈ [0, h] and u ≥ 0 let us define

φr
u :=

∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

and let us write

dφr
u = ∂1K2(tk + r + u, tk + r)σ(X̃tk+r)dWtk+r +

(∫ tk+r

tk

∂211K2(tk + r + u, s)σ(X̃s)dWs

)
dr. (4.21)

Moreover, using theorem 3.2, we have E∥φr∥2∞ ≤ C. We also define

G : (η1, η2) ∈ Ω2
2T 7→ ⟨∇g(η1), η2⟩.

Then G ∈ C3
b with

⟨∇G(η1, η2), (τ1, τ2)⟩ = ⟨∇2g(η1), τ1 ⊗ η2⟩+ ⟨∇g(η1), τ2⟩,
⟨∇2G(η1, η2), (τ1, τ2)⊗2⟩ = ⟨∇3g(η1), (τ1)⊗2 ⊗ η2⟩+ 2⟨∇2g(η1), τ1 ⊗ τ2⟩.

Using (4.18) and (4.21), for every r ∈ [0, h] we have

⟨∇g(Pr,tk(ω)),

(∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

⟩

=

∫ r

0

[
⟨∇2g(Pα,tk(ω)), ω̇r+· ⊗ φα⟩+ ⟨∇2g(Pα,tk(ω)), (K1(tk + α+ u, tk + α))u≥0 ⊗ φα⟩

· b(X̃tk+α)
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+
1

2
⟨∇3g(Pα,tk(ω)), (K2(tk + α+ u, tk + u))⊗2

u≥0 ⊗ φα⟩σ2(X̃tk+α)

+ ⟨∇2g(Pα,tk(ω)),

(∫ tk+α

tk

∂1K1(tk + α+ u, s)b(X̃s)ds

+

∫ tk+α

tk

∂1K2(tk + α+ u, s)σ(X̃s)dWs

)
u≥0

⊗ φα⟩
]
dα

+

∫ r

0

⟨∇2g(Pα,tk(ω)), (K2(tk + α+ u, tk + u))u≥0 ⊗ φα⟩σ(X̃tk+α)dWtk+α

+

∫ r

0

[
⟨∇g(Pα,tk(ω)),

(∫ tk+α

tk

∂211K2(tk + α+ u, s)σ(X̃s)dWs

)
u≥0

⟩dα

+

∫ r

0

⟨∇g(Pα,tk(ω)), (∂1K2(tk + α+ u, tk + α))u≥0⟩σ(X̃tk+α)dWtk+α

+

∫ r

0

⟨∇2g(Pα,tk(ω)), (K2(tk + α+ u, tk + u))u≥0 ⊗ (∂1K2(tk + α+ u, tk + α))u≥0⟩

· σ2(X̃tk+α)dα

so that ∣∣∣E⟨∇g(Pr,tk(ω)),

(∫ tk+r

tk

∂1K2(tk + r + u, s)σ(X̃s)dWs

)
u≥0

⟩
∣∣∣ ≤ C(1 + [ω]Lip)r.

The same way, we obtain∣∣∣E⟨∇g(P̄r,tk(ω)),

(∫ tk+r

tk

∂1K2(tk + r + u, s)σ̄(X0 + ω(0))dWs

)
u≥0

⟩
∣∣∣ ≤ C(1 + [ω]Lip)r

and then
|I5 − Ī5| ≤ C(1 + [ω]Lip)h

2.

• The arguments to prove that

|I3 − Ī3|+ |I4 − Ī4| ≤ C(1 + [ω]Lip)h
2

are the same or simpler.

4.3 Proof that the derivatives of g are bounded

In this section, we prove that if we choose g : Ω → R as in (4.13), then g has bounded derivatives up to order 5
so that we can apply theorem 4.1 to g.

Lemma 4.2. Let k ∈ {0, . . . , N − 1}, let us define

g(ω) :=

N−1∏
j=k

P̄h,tj f̃(ω) = E

f((N−1∏
j=k

P̄h,tN−1+k−j
· ω)0

) ,
where f̃ is defined in (4.12). Then g is five times differentiable with

∥∇ℓg∥∞ ≤ C, ℓ ∈ {1, . . . , 5}.

Proof. We can rewrite

g(ω) = E

[
f(ωT−tk +

∫ T

tk

K1(T, s)b̄(X̂
ω
s )ds+

∫ T

tk

K2(T, s)σ̄(X̂
ω
s )dWs)

]

where X̂ω follows the piecewise SVE:

X̂ω
v = X0 + ωv−tk +

j∑
ℓ=k

b(X̂ω
tℓ
)

∫ tℓ+1∧v

tℓ

K1(v, s)ds+

j∑
ℓ=k

σ(X̂ω
tℓ
)

∫ tℓ+1∧v

tℓ

K2(v, s)dWs,
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v ∈ [tj , tj+1], j ∈ {k, . . . , N − 1}.

The process X̂ω depends on k, but we omit this dependency in the notation without ambiguity. We define the
tangent process (Zω

v )v∈[T−tk,T ] as the process of the linear operators on Ω2T by induction as:

⟨Zω
v , η⟩ = ηv−tk +

j∑
ℓ=k

∇b(X̂ω
tℓ
) · ⟨Zω

tℓ
, η⟩
∫ tℓ+1∧v

tℓ

K1(v, s)ds

+

j∑
ℓ=k

∇σ(X̂ω
tℓ
) · ⟨Zω

tℓ
, η⟩
∫ tℓ+1∧v

tℓ

K2(v, s)dWs, v ∈ [tj , tj+1], j ∈ {k, . . . , N − 1}, (4.22)

so that for every fixed v, we have Zω
v = ∇X̂ω

v , where ∇ is taken with respect to ω. We now give a bound on
∥Zω

v ∥. For every η ∈ Ω2T and v ∈ [Tk, T ] we have

⟨Zω
v , η⟩ = ηv−tk +

∫ v

tk

K1(v, s)∇b̄(X̂ω
s )⟨Zω

¯
s , η⟩ds+

∫ v

tk

K2(v, s)∇σ̄(X̂ω
s )⟨Zω

¯
s , η⟩dWs.

Let us denote
φv := sup

s∈[tk,v]

E∥Zω
s ∥2, v ∈ [tk, T ]

and we have (using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2)):

φv ≤ 3 + 3

∫ v

tk

(T∥K1∥2∞∥∇b∥2∞ + ∥K2∥2∞∥∇σ∥2∞)φsds

so that using the Gronwall inequality:

φv ≤ 3 exp
(
(v − tk)(T∥K1∥2∞∥∇b∥2∞ + ∥K2∥2∞∥∇σ∥2∞)

)
≤ C.

Then we have

⟨∇g(ω), η⟩ = E

∇f((N−1∏
j=k

P̄h,tN−1+k−j
· ω)0

)
·
(
ηT−tk +

∫ T

tk

K1(T, s)∇b̄(X̂ω
s )⟨Zω

¯
s , η⟩ds

+

∫ T

tk

K2(T, s)∇σ̄(X̂ω
s )⟨Zω

¯
s , η⟩dWs

)]

implying

∥∇g∥∞ ≤ ∥∇f∥∞
(
1 +

∫ T

tk

∥K1∥∞∥∇b∥∞φ1/2
s ds+ (

∫ T

tk

∥K2∥2∞∥∇σ∥2∞φsds)
1/2
)

thus implying that ∇g is bounded (independently of k and N).

We prove that the derivatives of g are bounded up to order 5 by following the same method.

4.4 Conclusion: proof of theorem 2.5

Proof. Let us consider (4.13) again and for k ∈ {0, . . . , N − 1} we set ωk := Pkh,0(0̃) and

gk+1 :=

N−1∏
j=k+1

P̄h,tj f̃ .

Then following theorem 4.2, we have that gk+1 ∈ C̃5
b . On the other side, we have that ωk is C2 with

ω̇k
u =

∫ tk

0

∂1K1(tk + u, s)b(X̃s)ds+

∫ tk

0

∂1K2(tk + u, s)σ(X̃s)dWs,

ω̈k
u =

∫ tk

0

∂211K1(tk + u, s)b(X̃s)ds+

∫ tk

0

∂211K2(tk + u, s)σ(X̃s)dWs
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where the interchange is ensured by the stochastic Fubini theorem in the same way as in (4.2), and following
theorem 3.2, we obtain that E[ωk]Lip ≤ C. Then applying theorem 4.1 with g = gk+1 and ω = ωk we get∣∣∣∣∣∣

Pkh,0 ◦ (P̄h,tk − Ph,tk) ◦
n−1∏

j=k+1

P̄h,tj f̃

 (0̃)

∣∣∣∣∣∣ =
∣∣∣(Pkh,0 ◦ (P̄h,tk − Ph,tk)g

)
(0̃)
∣∣∣

≤ E
∣∣((P̄h,tk − Ph,tk)g

)
(ωk)

∣∣ ≤ C(1 + E[ωk]Lip)h
2 ≤ Ch2.

Summing over k ∈ {0, . . . , N − 1} yields

E[f(X̄T )]− E[f(XT )] = O

(
1

N

)
.

4.5 Proof of weak error for the scheme with discretization of the kernels

The proof of (2.9) for the scheme ⇀X defined in (2.4) is similar to the proof for (2.8). We define the associated
semi-group type operator as

⇀Pr,tk(ω)u = ωr+u +

∫ tk+r

tk

K1(tk + r + u, tk)b(X0 + ω0)ds+

∫ tk+r

tk

K2(tk + r + u, tk)σ(X0 + ω0)dWs,

for u ≥ 0. The estimate for the weak error in small time (4.14) also holds for |(⇀Ph,tk − Ph,tk)g(ω)|; the only
necessary adaptation in the proof is for the estimate for I2 and I3. Indeed, instead of (4.20) we need to prove∣∣EGr(Pr,tk(ω))σ

2(X̃tk+r)−
1

2
⟨∇2g(ω),K2(tk + r + ·, tk)⊗2⟩σ2(X0 + ω0)

∣∣ ≤ C(1 + [ω]Lip)r.

But we have
α 7→ ⟨∇2g(ω),K2(tk + r + ·, tk + α)⊗2⟩

is C1 with derivative
α 7→ 2⟨∇2g(ω),K2(tk + r + ·, tk)⊗ ∂2K2(tk + r + ·, tk)⟩

and since g, K2, ∂2K2 and σ are bounded we have∣∣EGr(Pr,tk(ω))σ
2(X̃tk+r)−

1

2
⟨∇2g(ω),K2(tk + r + ·, tk)⊗2⟩σ2(X0 + ω0)

∣∣
≤
∣∣EGr(Pr,tk(ω))σ

2(X̃tk+r)−Gr(ω)σ
2(X0 + ω0)

∣∣
+
∣∣EGr(ω)σ

2(X0 + ω0)−
1

2
⟨∇2g(ω),K2(tk + r + ·, tk)⊗2⟩σ2(X0 + ω0)

∣∣
≤ C(1 + [ω]Lip)r.

The argument for the estimate of I3 is similar.
Having proved the estimate for the weak error in small time, the conclusion of the proof is the same as for

X̄.

5 Simulations

In order to numerically check the convergence rate obtained in theorem 2.5, we empirically measure the weak
convergence rate in the case of a stochastic volatility model where the volatility follows some Volterra equation.
We consider the following Volterra version of the Stein-Stein model [37] where the analogous rough version was
introduced in [2]: dSt = StVtdBt, S0 > 0,

Vt = V0 + g0(t) + κ

∫ t

0

K(t− s)Vsds+ ν

∫ t

0

K(t− s)dWs

(5.1)

where the asset price process S and the square volatility process V take their values in R, the function g0 :
R+ → R is deterministic and continuous, the processes B andW are standard Brownian motions with correlation
ρ ∈ [−1, 1] and the non-singular kernel K is given by the shifted power-law kernel [25]:

K(t) = A1(A2 + t)−1/4,
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Figure 1: Example of trajectory of the asset price and the square volatility processes following the SVE (5.1).

with A1, A2 > 0. The process (St, Vt)
⊤ in (5.1) is a special case of the Volterra equation (2.1) with 2×2 matrix

kernels

K1(t, s) = K2(t, s) =

(
1 0
0 K(t− s)

)
.

We consider the payoff function given by the Call option

f(x) = (x−K)+

with strike K ≥ 0.
We simulate (⇀ST ,

⇀VT ) by discretizing the kernel K using weights matching the second moment, see [20,

Section 3] and we plot Ef(⇀S⌊βN⌋
T ) − Ef(⇀SN

T ) for some β ∈ (1, 2] and for different values of N , where N is the

number of steps in the Euler-Maruyama scheme of the SVE. If Ef(⇀SN
T ) = Ef(ST ) + O(1/N), then we should

also have
Ef(⇀S⌊βN⌋

T )− Ef(⇀SN
T ) = O(1/N).

An example of trajectory is given in fig. 1 and the results are given in fig. 2 with the following parameters:

T = 1, S0 = 1, K = 1, κ = 0.01, X0 = 0.1, ρ = −0.7, ν = 0.05, A1 = 0.3, A2 = 0.02,

β = 1.5, g0 : t 7→ (4θ)/(3A1)t
3/4, θ = 0.01.

We empirically obtain a convergence rate for the weak error which is approximatively −1, thus confirming the
results in theorem 2.5.
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A Appendix

We use the following version of the Kolmogorov continuity theorem, giving the precise upper bound constant.

Theorem A.1 (Kolmogorov continuity theorem). Let (Xt)t∈[0,T ] be a Rd-valued random process and assume
that for some p, ϵ > 0,

E[|Xt −Xs|p] ≤ C0|t− s|1+ε, t, s ∈ [0, T ].

Then there exists a modification X̃ of X which is α-Hölder continuous for every α ∈ (0, ε/p) and with

E

[(
sup

t,s∈[0,T ], t ̸=s

|X̃t − X̃s|
|t− s|α

)p]
≤ C0

(
21+α

1− 2−α

)p
T 1+ε−αp

1− 2−(ε−αp)
.

Proof. We refer to the proof of [29, Theorem 2.9, Lemma 2.10], with an immediate adaptation if we do not
assume T = 1.
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