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Abstract—Achieving power savings while maintaining accuracy
is essential for wireless electroencephalogram (EEG) measure-
ment devices, enabling them to be lighter with smaller bat-
teries and longer operating times. To meet this requirement,
we developed a wireless EEG transmission system that utilizes
compressed sensing (CS) with random undersampling to achieve
high-accuracy reconstruction while reducing sensing and trans-
mission power. As a key feature of the implemented system, we
designed and employed a suitable basis from previously obtained
EEG signals for the block sparse Bayesian learning algorithm.
Measurements showed that our system achieved significant power
savings with a compression ratio of 6, consuming only 72 µW,
which is lower than that reported in the latest CS-based study.
Notably, despite the reduced power consumption, we reduced
the normalized mean square error to 0.116, achieving more than
twice the reconstruction accuracy reported in the previous study.

Index Terms—Compressed sensing, electroencephalogram
(EEG), EEG basis, high reconstruction accuracy, low-power.

I. INTRODUCTION

Healthcare technologies, including those for the early de-
tection of Alzheimer’s disease [1], [2], and brain technologies
such as brain-computer interfaces that connect the brain to a
computer [3], [4], are attracting increasing attention. To enable
the practical use of these technologies in everyday life, it is
essential to develop compact, long-lasting devices, such as
wireless electroencephalogram (EEG) devices that can operate
for extended periods without burdening the user (e.g., [5]).
Therefore, reducing power consumption is crucial to enable a
smaller battery and extend operational time to realize easy-to-
use wireless EEG measurement devices. As everyone knows,
power-saving technologies in integrated circuits have indeed
advanced significantly. However, due to recent slowdowns
in semiconductor microfabrication, achieving further power
reductions using conventional signal processing methods has
become challenging (e.g., [6]).

Power is consumed during each sampling, and a significant
amount of power is used whenever data are sent wirelessly
in EEG measurements. Therefore, compressed sensing 　
(CS) [7], which compresses information while sensing it,
is attracting increasing attention as one of the power-saving
technologies. Among CS methods, those that use random
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undersampling achieve compression by subsampling signals
with randomly selected samples [8]. This approach simplifies
the compression process, providing significant benefits for
circuit integration and power efficiency. Therefore, random
undersampling can reduce the power consumption of many
EEG measurement circuits and systems (e.g., [9]–[11]).

In general, achieving high compression can significantly
reduce power consumption. However, in CS, reconstruction
accuracy especially decreases for highly compressed signals
if the signal sparsity is insufficient, as sparsity is utilized
in the reconstruction process. Therefore, despite using CS,
achieving both high accuracy and power saving remains
challenging. To address this challenge, a theoretical method
was proposed that achieves high-accuracy reconstruction for
highly compressed signals by generating a suitable basis using
previously obtained signals, with a focus on signal similarity
[12]. In this study, we designed a CS-based wireless EEG
transmission system utilizing EEG basis (EEGB), generated
by considering similarity to the previously obtained EEG
signals. Then, we implemented the CS-based system that
enables high-accuracy reconstruction under high compression.
By evaluating its operation on an actual device, we confirmed
that it achieves both high reconstruction accuracy and reduced
power consumption.

The remainder of this study is organized as follows: Section
II describes the CS theory and similarity-based basis. Sec-
tion III discusses the designed low-power and high-accuracy
wireless EEG transmission system using CS and EEGB.
Section IV presents measurement results on actual EEG signal
transmission. Finally, Section V concludes the study.

II. BACKGROUND OF CS AND SIGNAL SIMILARITY-BASED
BASIS GENERATION

A. Basics of CS

Fig. 1 illustrates the basic principle of CS. The color
depth indicates the numerical size of each element. The white
elements indicate zeros, and each element is normalized by
the maximum value, with the highest value shown in black.
The CS theory is utilized to obtain a signal vector x ∈ RN ,
which is k-sparse in a basis matrix Ψ ∈ RN×P . Here, k-sparse
implies that only k (<< P ) elements of the coefficient vector
s ∈ RP , indicating that x = Ψ s, are nonzero. In this example,
Ψ is represented using a square matrix with N = P = 12,



Fig. 1. Compression of the signal x using random undersampling for
measurement matrix Φ to produce a low-dimensional compressed vector y.
In CS, the reconstruction accuracy significantly depends on the basis matrix
that enables the sparse representation of the vector x as s.
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Fig. 2. Compared to equally spaced sampling, random undersampling reduces
the number of sampling cycles and the number of radio transmissions.

and sparsity of s is k = 3. Various forms of Ψ exist, including
the discrete cosine transform (DCT) [13] and the Gabor basis
[14], which are classical basis matrices. Additionally, there is
a method for creating a basis that uses the characteristics of
the target signal (e.g., [15]). A key feature of this study is the
direct use of the characteristics of previously obtained signals
as a basis in the implemented system, as detailed in Sec.II-B.

The compressed signal y ∈ RM can be expressed as:

y = Φx = ΦΨs = Θs, (1)

where Φ is an M × N measurement matrix. Various Φ
matrices exist (e.g., [16], [17] ). This study focuses on random
undersampling matrices as measurement matrices, which en-
able power savings (e.g., [18]–[21] ). Random undersampling
matrices are matrices where each row contains exactly one
element with a value of 1, while all other elements are 0,
where 0 represents white and 1 represents black. Additionally,
they have the characteristic that if there is a 1 at row i and
column j, then the 1 in row i+1 appears in a column after j+1.
The matrix-vector product of a random undersampling matrix
and the signal vector x represents acquiring the components
of x through random and intermittent sampling. Fig. 2(a) and
(b) show the circuit operations and power consumption during
uniform sampling and random intermittent sampling. Random

undersampling not only reduces the amount of wireless trans-
mission but also allows for power savings by limiting the num-
ber of samples, enabling significantly greater power reduction
compared to uniform sampling, while also simplifying circuit
implementation. In this study, N

M is defined as the compressed
ratio (CR); thus, for example, when M = 6, the CR = 2.

Next, reconstruction is discussed. Here, y is a known vector,
and Φ and Ψ are known matrices. Thus, we define Θ = Φ Ψ
as the sensing matrix [22]. (1) is underdetermined because
the length of y is smaller than that of s. Therefore, several
reconstruction algorithms such as orthogonal matching pursuit
(OMP) [23] and block sparse Bayesian learning (BSBL) [24]
have been employed for solving the problems by utilizing Θ
and y to realize a sparse vector s.

B. Signal similarity-based basis generation

The vector x has a block/sparse structure for signals in
nature, such as biological signals [25]. Subsequently, with a
suitable Ψ, we can assume that s can be represented by g
blocks as:

s = [s1, · · · , sd1︸ ︷︷ ︸
sT1

, · · · , sdg−1+1, · · · , sdg︸ ︷︷ ︸
sTg

]T. (2)

Among the g blocks, only the j (j ≪ g) blocks are nonzero;
however, their locations are unknown. Various reconstruction
algorithms, such as the BSBL algorithm, benefit from the
structure to achieve high accuracy [26]. In particular, due to
its high reconstruction accuracy, the BSBL algorithm is widely
used as a reconstruction method in many CS applications.

Generally, there is often a high degree of similarity between
the target signal and previously obtained signals, and research
has been conducted to leverage this property in CS (e.g., [27]).
Additionally, by applying this property, it has been found
that by selectively consolidating and arranging only highly
correlated signals for generating signal similarity-based basis
matrix to realize block/sparse structure in sparse vector s, an
optimal and compact basis for reconstruction using the BSBL
algorithm can be efficiently generated [12].

III. DEVELOPED SYSTEM WITH CS AND EEGB

A. Generation of EEGB from EEG signals

We used signal similarity to create a basis matrix suitable
for high-compression signal reconstruction of the BSBL al-
gorithm. Similarity can be confirmed in various ways. In this
design, the mean frequency of the histogram was calculated,
and EEG signals with the most frequent values were arranged
to form a basis matrix, ΨEEG, which is called EEGB. In
creating the ΨEEG, we used FP1-F7 channel data from the
CHB-MIT scalp EEG database [28], with each segment span-
ning 3 s. The data, originally sampled at 256 sample/s (SPS),
were converted to 200 SPS, resulting in N = 600 samples
per segment. Additionally, as a preprocessing step, DC offset
was removed from all segment data, and segments with values
exceeding 150 µV were excluded to avoid potential artifact
contamination. After excluding seizure segments, we selected



chb01-05, each with 2,000 segments

(DC cut, 200 SPS, amplitude < 150 μV, 3 s/segment)

(Selected 600 segments)

Fig. 3. Mean frequency was calculated for the EEG data from chb01 to chb05
(2,000 segments each). The basis matrix ΨEEG was generated using the 600
segments with the highest frequencies ranging from 2.5 to 3 Hz.
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Fig. 4. An overview of our designed EEG transmission system and test-
bench, comprising four sections: Signal Generator, Transmitter, Receiver,
and Reconstruction. Microcontroller of transmitter uses Φ to realize random
undersampling. The receiver uses the Φ and ΨEEG for reconstruction.

2,000 segments from each of the subjects chb01 to chb05.
Here, EEG signals from subjects chb01 to chb05 are consid-
ered previously acquired data, not from the target subject to be
measured. For experiments to evaluate our designed system,
EEG data from a different subject were used, as explained
in the next subsection. Fig. 3 shows a histogram of 10,000
segments of EEG signals arranged in order of mean frequency.
A peak in the range of 2.5 Hz to 3 Hz was observable.
We arranged 600 columns of EEG signals positioned at this
peak and generated ΨEEG. This operation is not limited to
EEG signal reconstruction in the 2.5–3 Hz range. ΨEEG,
constructed by leveraging frequently occurring EEG signals
with a mean frequency in this range, is expected to exhibit
high similarity to the input signals.

B. Designed System

Fig. 4 shows an overview of our designed EEG measure-
ment system and the testbench, comprising four sections: the
Signal Generator, Transmitter, Receiver, and Reconstruction
Sections. For the EEG signals in the Signal Generator Section,
we used the FP1-F7 channel data from subject chb14 in the

DMM 7510 
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 (Nordic Semiconductor) 

2230GJ-30-1
 (Tektronix) 

PXIe-8861 & PXIe-4463
(National Instruments) 

nRF 52840 
(Nordic Semiconductor) 

Fig. 5. Photograph of the system used for verification. The system can perform
reconstruction and power measurement while operating.

CHB-MIT scalp EEG database, downsampled to 200 SPS,
and then divided into 3 s segments for use as test data. The
DC offset and amplitude of the signal were adjusted to a
suitable level, considering the input range of the analog-to-
digital converter (ADC) in the Transmitter Section. The data
were output from the PXIe-4463 (National Instruments), which
serves as a digital-to-analog converter (DAC).

The Transmitter Section uses a general-purpose microcon-
troller, nRF52840 (Nordic Semiconductor), which supports
Bluetooth Low Energy (BLE), and integrates an ADC and
a packetizer. The timing of the AD conversion was performed
intermittently using a pre-created Φ. The packetizer and
wireless module also perform operations based on the Φ,
enabling efficient generation and wireless transmission of the
compressed signal y while reducing the number of operations.

In this verification, nRF 52840 was also used in the Receiver
Section. The received y is reconstructed in the Reconstruction
Section consisting of PXIe-8861 (National Instruments), used
as a PC with Xeon CPU and memory 16 GB RAM. All signal
processing related to signal acquisition and reconstruction was
performed using Python 3. The reconstruction process uses the
same Φ from the Transmitter Section, along with ΨEEG, to
obtain the reconstructed signal x̂ using the BSBL algorithm.

IV. EVALUATION OUR DEVELOPED SYSTEM

Fig. 5 shows a photo of the experimental environment used
to realize the system block in Fig. 4. This study adopted a
CR of 6 to demonstrate that high-accuracy reconstruction is
achievable even at high compression. We used 100 segments of
the test EEG signal from subject chb14, creating five patterns
of random undersampling matrices for analysis. Therefore, we
experimentally verified the reconstruction accuracy through
500 iterations. In Fig. 5, the distance between the Trans-
mitter and Receiver Sections is intentionally kept close for
photographic purposes. We confirmed, however, that no issues
occurred even with a separation of at least 5 m.

The power supply for the nRF 52840 in the Transmitter
Section was set to 3.3V and provided by the 2230J-30-1
(Tektronix). An ammeter (DMM7510 (Tektronix)) capable of
displaying 7.5 digits was placed between the power supply
and the nRF 52840. In this measurement, it was crucial to
accurately measure the steady current, the single-shot current



TABLE I
PERFORMANCE OF WIRELESS EEG TRANSMISSION SYSTEMS.

This work T. Miyata et al. [11] C. Chen et al. [29] X. Liu et al. [30]
CS-based Acquisition Yes (CR = 6) Yes (CR = 4) No Yes (CR = 8(1))

Power Consumption [µW] 72(2) 97(2) 90(3) 230(4)

Sampling Rate [SPS], Resolution [bit] 200, 12 256, 12 300, 12 500, 10
Measured Average NMSE (Iterations) 0.116 (500) 0.24 (100) N/A N/A

Reconstruction Algorithm, Basis BSBL, EEGB OMP, DCT N/A ℓ1-norm base, Not reported
(1) At 500 SPS, (2) General-purpose Microcontroller (nRF 52840), (3) ASIC (2 ADCs + TX + XO + PMU), (4) ASIC (PGA + ADC + CS Core + TX)

BLE Transmission

Random Undersampling Operation

Fig. 6. Results of measuring current during operation. The power consumption
for BLE communication can be confirmed after intermittent sampling by
random undersampling. The average current consumption was 21.8µA.

during AD conversion, and the current during BLE trans-
mission. The ammeter was chosen for its ability to measure
currents ranging from tens of mA to several µA. Fig. 6
shows the measured current waveform, in which the current
consumption occurs at the timing of AD conversion and BLE
transmission. A significant amount of current consumption
occurs when the data are transmitted wirelessly. The average
current over 120 s was 21.8 µA. Therefore, the measured
power consumption was 72µW.

In this study, we used the normalized mean square error
(NMSE) index, as shown in the following formula, to evaluate
the accuracy of the reconstruction:

NMSE =
∥x− x̂∥22
∥x∥22

. (3)

In this study, we cut the DC component to suppress its
influence and calculated the NMSE. A lower NMSE indi-
cates a smaller difference between the original signal x and
the reconstructed signal x̂, suggesting higher reconstruction
accuracy. At a CR of 6, the average NMSE across 500
reconstruction iterations was 0.116. This result indicates that
the difference between the original and reconstructed signals
was minimal, demonstrating high reconstruction accuracy even
with repeated iterations around 500. Fig. 7 illustrates an
example of reconstruction, in which NMSE is 0.114, and the
reconstructed signal waveform utilizing signal similarity at
CR = 6 is close to the original signal.

Table I compares the power consumption and other system
characteristics of our designed system with those of recently
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Fig. 7. This is one of the reconstructed waveforms using the BSBL
algorithm and ΨEEG, with the NMSE of 0.114 for this segment, close to the
average NMSE obtained from the measurement results of 500 iterations. The
reconstructed waveform closely matches the original signal.

proposed systems. [11] is an example of a system that has
adopted random undersampling and implemented a transmis-
sion system, which reduced power consumption to 97µW.
However, our developed system achieved a CR = 6, reducing
power consumption to 72µW. Despite this power reduction,
the NMSE was kept at 0.116, which is less than half of
the NMSE in [11], indicating a reconstruction accuracy more
than twice as high. Unlike ASIC-based studies [29], [30],
the proposed system with a general-purpose microcontroller
achieves superior power efficiency, which is also significant.

V. CONCLUSION

In this study, we designed a wireless EEG transmission
system using the EEG signal similarity basis ΨEEG, achieving
high-accuracy reconstruction, high compression, and power
saving. We developed the system using the general-purpose
microcontroller nRF52840, applying random undersampling.
The study results yielded a significant reduction in power
consumption by setting CR = 6, achieving 72µW in actual
measurements. Despite this power reduction, the NMSE was
maintained at 0.116, achieving significantly higher accuracy in
reconstruction than previous CS study. These results address
the challenge of achieving both high compression and high-
accuracy reconstruction in CS, demonstrating the potential for
further advancements in sensor accuracy and power efficiency.
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