

Title	On Hessian structures on the Euclidean space and the hyperbolic space
Author(s)	Kito, Hideyuki
Citation	Osaka Journal of Mathematics. 1999, 36(1), p. 51-62
Version Type	VoR
URL	https://doi.org/10.18910/10216
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON HESSIAN STRUCTURES ON THE EUCLIDEAN SPACE AND THE HYPERBOLIC SPACE

HIDEYUKI KITO

(Received July 24, 1997)

1. Introduction

Let M be a manifold with a flat affine connection D. A Riemannian metric g on M is said to be a Hessian metric if g can be locally written $g = D^2u$ with a local function u. We call such a pair (D,g) a Hessian structure on M and a triple (M,D,g) a Hessian manifold ([5]). Hessian structure appears in affine differential geometry and information geometry ([1], [4]).

If (D,g) is a Hessian structure on M, then in terms of an affine coordinate system (x^i) with respect to D, g can be expressed by $g = \sum_{ij} (\partial^2 u/\partial x^i \partial x^j) dx^i dx^j$. Since a Kähler metric h on a complex manifold can be locally written $h = \sum_{i,j} (\partial^2 v/\partial z^i \partial \bar{z}^j) dz^i d\bar{z}^j$ with a local real-valued function v in terms of a complex local coordinate system (z^i) , a Hessian manifold may be regarded as a real number version of a Kähler manifold. Thus we are interested in similarity between Kähler manifolds and Hessian manifolds.

Given a complex structure on a manifold, the set of Kähler metrics is infinite-dimensional. Similarly, given a flat affine connection, the set of Hessian metrics is infinite-dimensional. We next consider the converse situation. Given a Riemannian metric g, the set of almost complex structures J that makes g into a Kähler metric is finite-dimensional because J is parallel with respect to the Riemannian connection. As a Hessian structure version of this, a question arises whether the set of flat affine connections that makes a given Riemannian metric into a Hessian metric is finite-dimensional. In this paper, we shall show that in the cases of the Euclidean space (\mathbf{R}^n, g_0) and the hyperbolic space (H^n, g_0) , the set of such connections is infinite-dimensional.

We prepare the terminology and notation. Let (M,g) be a Riemannian manifold of dimension ≥ 2 and $S^3(M)$ the space of all symmetric covariant tensor fields of degree 3 on M. We denote by R and ∇ the curvature tensor and the Riemannian connection, respectively. If D is a flat affine connection of M that makes g into a Hessian metric, then the covariant tensor T corresponding to $\hat{T} = D - \nabla$ by g is an element of $S^3(M)$ satisfying $R^{\nabla + \hat{T}} = 0$ on M. Conversely, if the tensor \hat{T} of type (1, 2) corresponding to $T \in S^3(M)$ by g satisfies $R^{\nabla + \hat{T}} = 0$ on M, then $D = \nabla + \hat{T}$ defines

the connection above. By this relation, there is a one-to-one correspondence between the set of flat affine connections of M that makes g into a Hessian metric and the set of $T \in S^3(M)$ satisfying $R^{\nabla + \hat{T}} = 0$ on M. So we say that $T \in S^3(M)$ generates a Hessian structure with g on M if $R^{\nabla + \hat{T}} = 0$ on M and indicate by $\mathcal{H}(M,g)$ the set of such tensors. To consider a local problem, we also define the set $\mathcal{H}(x,g)$ by the set of symmetric covariant tensors of degree 3 defined on a neighborhood of a point $x \in M$ generating a Hessian structure with g on its domain of definition, where we identify two elements coinciding on a sufficiency small neighborhood of x.

Roughly speaking, we shall prove the following:

Theorem 1.1. The set $\mathcal{H}(0,g_0)$ at the origin 0 of \mathbb{R}^2 has the freedom of three local functions on \mathbb{R} .

Corollary 1.2. The set $\mathcal{H}(\mathbf{R}^n, g_0)$ has at least the freedom of n functions on \mathbf{R} . In particular, the set $\mathcal{H}(T^n, g_0)$ on the n-torus T^n has at least the freedom of n periodic functions on \mathbf{R} .

Theorem 1.3. The set $\mathcal{H}(H^n, g_0)$ has at least the freedom of n-1 functions on R.

2. Euclidean case

In this section, we shall show Theorem 1.1 and Corollary 1.2.

Lemma 2.1. Let T be an element of $S^3(M)$ with components T_{ijk} . Then, T generates a Hessian structure with g on M if and only if

$$(2.1) \nabla_k T_{iil} = \nabla_l T_{iik},$$

(2.2)
$$R_{ijkl}^{\nabla} + \sum_{s} (T_{iks} T_{jl}^{s} - T_{ils} T_{jk}^{s}) = 0.$$

Proof. By definition, T generates a Hessian structure with g on M if and only if the tensor \hat{T} of type (1, 2) corresponding to T by g satisfies $R^{\nabla + \hat{T}} = 0$ on M. In terms of T_{ijk} , $R^{\nabla + \hat{T}} = 0$ may be expressed by

$$R_{ijkl}^{\nabla} + \nabla_k T_{ijl} - \nabla_l T_{ijk} + \sum_s (T_{iks} T_{jl}^s - T_{ils} T_{jk}^s) = 0.$$

Subtracting this from the one exchanged i and j in this, we get (2.2) and hence (2.1).

Applying Lemma 2.1 to Euclidean case, we have

Lemma 2.2. Let U be a simply connected neighborhood of the origin 0 of the Euclidean space \mathbb{R}^n and T an element of $S^3(U)$. Let T_{ijk} be the components of T with respect to the natural coordinate system x^1, \ldots, x^n in \mathbb{R}^n . Then, T generates a Hessian structure on U if and only if there exists a function u on U such that

$$(2.3) T_{ijk} = \frac{\partial^3 u}{\partial x^i \partial x^j \partial x^k},$$

(2.4)
$$\sum_{s=1}^{n} \frac{\partial^{3} u}{\partial x^{i} \partial x^{k} \partial x^{s}} \frac{\partial^{3} u}{\partial x^{j} \partial x^{l} \partial x^{s}} = \sum_{s=1}^{n} \frac{\partial^{3} u}{\partial x^{i} \partial x^{l} \partial x^{s}} \frac{\partial^{3} u}{\partial x^{j} \partial x^{k} \partial x^{s}}.$$

Proof. We obtain $\partial T_{ijl}/\partial x^k = \partial T_{ijk}/\partial x^l$ on U from (2.1). Thus by Poincaré's lemma, there exists a function u_{ij} on U such that $T_{ijk} = \partial u_{ij}/\partial x^k$. Moreover, because $\partial u_{ij}/\partial x^k = \partial u_{ik}/\partial x^j$ from the symmetry of T, again by Poincaré's lemma, there exists a function u_i on U such that $T_{ijk} = \partial^2 u_i/\partial x^j \partial x^k$. Once again by using the symmetry of T and Poincaré's lemma, finally we get $T_{ijk} = \partial^3 u/\partial x^i \partial x^j \partial x^k$. Substituting this to (2.2), we have (2.4).

By Lemma 2.2, we see that, up to the quadratic functions of x^1, \ldots, x^n , there is a one-to-one correspondence between the solutions u of (2.4) on a neighborhood of $0 \in \mathbf{R}^n$ and $\mathcal{H}(0,g_0)$ at $0 \in \mathbf{R}^n$ by $u \mapsto (\partial^3 u/\partial x^i \partial x^j \partial x^k)$. So we investigate equation (2.4) in a neighborhood of $0 \in \mathbf{R}^n$.

In case n = 2, (2.4) is reduced to the only one equation:

$$u_{xxx}u_{xyy} + u_{yyy}u_{yxx} = u_{yxx}^2 + u_{xyy}^2,$$

where $x = x^1$, $y = x^2$. Then

$$0 = (u_{xxx} - u_{xyy})u_{xyy} + (u_{yyy} - u_{yxx})u_{yxx}$$

$$= (u_{xx} - u_{yy})_x(u_{xy})_y - (u_{xx} - u_{yy})_y(u_{xy})_x$$

$$= \begin{vmatrix} (u_{xx} - u_{yy})_x & (u_{xx} - u_{yy})_y \\ (u_{xy})_x & (u_{xy})_y \end{vmatrix}.$$

This is equivalent to having a functional relation

$$F(u_{xx} - u_{yy}, u_{xy}) = 0$$

on a neighborhood of $0 \in \mathbb{R}^2$, where F = F(s,t) is an arbitrary function satisfying $F_s^2 + F_t^2 \neq 0$. Furthermore, this can be written

$$(2.5) u_{xx} - u_{yy} = f(u_{xy}) if F_s \neq 0$$

and

(2.6)
$$u_{xy} = \hat{f}(u_{xx} - u_{yy}) \quad \text{if } F_t \neq 0.$$

Since (2.6) is reduced to the type of (2.5): $u_{\xi\xi} - u_{\eta\eta} = \hat{f}(4u_{\xi\eta})$ by the change of variables $\xi = x + y$, $\eta = x - y$, we study (2.5).

We know by the following theorem that (2.5) has a unique solution u(x,y) for any given initial data $(u(0,y),u_x(0,y))$:

Fact ([2]). Let $u_0(y)$, $u_1(y)$ and A(x, y, u, p, q, s, t) are smooth functions. Then, Cauchy problem

$$\begin{cases} u_{xx} = A(x, y, u, u_x, u_y, u_{xy}, u_{yy}) \\ u(0, y) = u_0(y), \ u_x(0, y) = u_1(y) \end{cases}$$

has a unique solution u(x,y) on a neighborhood of x=0 if its linearized equation

$$u_{xx} - au_{xy} - bu_{yy} - (the terms of lower order) = 0$$

with coefficients

$$a(x,y) = A_s(x,y,U,U_x,U_y,U_{xy},U_{yy}),$$

 $b(x,y) = A_t(x,y,U,U_x,U_y,U_{xy},U_{yy}),$

where $U(x,y) = u_0(y) + xu_1(y)$, is hyperbolic.

We check that the linearized equation of (2.5) is hyperbolic for any functions $u_0(y)$, $u_1(y)$. We need to verify that its characteristic equation $\lambda^2 - a\xi\lambda - b\xi^2 = 0$ has two different real roots λ_1 , λ_2 , i.e., its discriminant is positive for any real number $\xi \neq 0$. We get $a(x,y) = f'(u'_1(y))$ and b(x,y) = 1. Thus the characteristic equation is written $\lambda^2 - f'(u'_1(y))\xi\lambda - \xi^2 = 0$. Then because the discriminant is computed as $(f'(u'_1(y))\xi)^2 + 4\xi^2 = \xi^2(f'(u'_1(y))^2 + 4)$, it is positive for any $\xi \neq 0$.

Consequently we have a bijection from the solutions u of $F(u_{xx}-u_{yy},u_{xy})=0$ with $F_s\neq 0$ into the triples of local functions on \mathbf{R} by $u\mapsto (f,u(0,y),u_x(0,y))$. Therefore we obtain

Theorem 1.1. The set $\mathcal{H}(0,g_0)$ at the origin 0 of \mathbb{R}^2 can be expressed by the union of two sets each of which is in one-to-one correspondence with the set of triples of local functions on \mathbb{R} up to finite-dimensional factor.

Now setting $\hat{f} = 0$ at (2.6), we get $u_{xy} = 0$ and, from this, $u = \varphi_1(x) + \varphi_2(y)$ with arbitrary functions φ_1 , φ_2 . If they are global functions on \mathbf{R} , this is a global solution of (2.4) on \mathbf{R}^2 . Especially, if they are periodic, this is one on 2-torus T^2 .

Hence we have an injection from the pairs of functions on \mathbf{R} into $\mathcal{H}(\mathbf{R}^2, g_0)$ by $(\varphi_1, \varphi_2) \mapsto (\partial^3(\varphi_1(x^1) + \varphi_2(x^2))/\partial x^i \partial x^j \partial x^k)$. Restricting it on the periodic ones, we also obtain a mapping into $\mathcal{H}(T^2, g_0)$.

We prove the following lemma to generalize this:

Lemma 2.3. If u is a solution of (2.4) on \mathbb{R}^n and v is an arbitrary function on \mathbb{R} , then $u(x_1, \ldots, x_n) + v(x_{n+1})$ is a solution of (2.4) on \mathbb{R}^{n+1} .

Proof. We have to establish

(2.7)
$$\sum_{s=1}^{n+1} \partial_i \partial_k \partial_s (u+v) \partial_j \partial_l \partial_s (u+v) = \sum_{s=1}^{n+1} \partial_i \partial_l \partial_s (u+v) \partial_j \partial_k \partial_s (u+v),$$

where we write ∂_i for $\partial/\partial x^i$. We may assume i < j, k < l at (2.7) from symmetry. Then $i, k \neq n+1$ and

the left-hand side of (2.7)
$$= \sum_{s=1}^{n+1} (\partial_i \partial_k \partial_s u \partial_j \partial_l \partial_s u + \partial_i \partial_k \partial_s u \partial_j \partial_l \partial_s v + \partial_i \partial_k \partial_s v \partial_j \partial_l \partial_s u + \partial_i \partial_k \partial_s v \partial_j \partial_l \partial_s v)$$

$$= \left(\sum_{s=1}^n \partial_i \partial_k \partial_s u \partial_j \partial_l \partial_s u \right) + \partial_i \partial_k v' \partial_j \partial_l v'$$

$$= \sum_{s=1}^n \partial_i \partial_k \partial_s u \partial_j \partial_l \partial_s u.$$

Similarly

the right-hand side of (2.7) =
$$\sum_{s=1}^{n} \partial_i \partial_l \partial_s u \, \partial_j \partial_k \partial_s u.$$

Since u is a solution of (2.4) on \mathbb{R}^n by the assumption, both sides are equal to one another.

Combining the result of 2-dimensional case and Lemma 2.3, we obtain

Corollary 1.2. The mapping $\Phi: (\varphi_1, \ldots, \varphi_n) \mapsto (\partial^3(\varphi_1(x^1) + \cdots + \varphi_n(x^n))/\partial x^i \partial x^j \partial x^k)$ gives an injection from the set of n-tuples of functions on \mathbf{R} into the set $\mathcal{H}(\mathbf{R}^n, g_0)$ up to finite-dimensional factor. Particularly, Φ restricted on the set of periodic ones gives a mapping into the set $\mathcal{H}(T^n, g_0)$ on n-torus T^n .

56 H. Krio

3. Hyperbolic case

In this section, we shall show Theorem 1.3. We set

$$H^n = \{(x^1, \dots, x^n) \in \mathbf{R}^n | x^n > 0\}$$
 and $g_0 = \frac{1}{(x^n)^2} \{ (dx^1)^2 + \dots + (dx^n)^2 \}.$

It is known that there exists an element $T_0 = ((T_0)_{ijk}) \in S^3(H^n)$ generating a Hessian structure with g_0 on H^n , which is given for $1 \le i \le j \le k \le n$ as follows ([3]):

$$(T_0)_{ijk} = \left\{ egin{array}{ll} \dfrac{1}{(x^n)^3} & 1 \leq i = j \leq n-1, \ k = n \ & & \ \dfrac{2}{(x^n)^3} & i = j = k = n \ & \ 0 & ext{otherwise.} \end{array}
ight.$$

We consider the case n=2 for a while.

An element X of $S^3(M)$ is called an *infinitesimal deformation* of $T \in \mathcal{H}(M,g)$ if $(d/dt)|_{t=0}R^{\nabla+T+tX}=0$.

Lemma 3.1. An infinitesimal deformation $X=(X_{ijk})\in S^3(H^2)$ of $T_0\in \mathcal{H}(H^2,g_0)$ is given by

(3.1)
$$X_{111} = \frac{f''(x)y^2}{8} + \frac{g'(x)}{2} - f(x) + \frac{h(x)}{y^2},$$

(3.2)
$$X_{112} = \frac{f'(x)y}{2} + \frac{g(x)}{y},$$

$$(3.3) X_{122} = f(x),$$

$$(3.4) X_{222} = 0,$$

where $x = x^1$, $y = x^2$, and f, g, h are arbitrary functions.

Proof. In general, by differentiating each of ones substituted T+tX for T in (2.1) and (2.2), we obtain equations for an infinitesimal deformation X of $T \in \mathcal{H}(M,g)$ as follows:

$$\nabla_{k} X_{ijl} - \nabla_{l} X_{ijk} = 0,$$

$$\sum_{s} (X_{iks} T^{s}_{il} + T_{iks} X^{s}_{il} - X_{ils} T^{s}_{ik} - T_{ils} X^{s}_{ik}) = 0.$$

In case $(M,g)=(H^2,g_0)$ and $T=T_0$, this is reduced to

$$(X_{111})_y - (X_{112})_x + \frac{2}{y}(X_{111} + X_{122}) = 0$$

$$(3.6) (X_{112})_y - (X_{122})_x + \frac{1}{y} X_{112} = 0,$$

$$(3.7) (X_{122})_y = 0,$$

$$(3.8) X_{222} = 0.$$

First from (3.7), we get (3.3). Then equation (3.6) is written as

$$(X_{112})_y + \frac{1}{y}X_{112} = f'(x).$$

Solving this, we have (3.2). Finally by (3.2) and (3.3), equation (3.5) is written as

$$(X_{111})_y + \frac{2}{y}X_{111} = \frac{f''(x)y}{2} + \frac{g'(x)}{y} - 2\frac{f(x)}{y}.$$

Solving this, we obtain (3.1).

We find out the elements of $\mathcal{H}(H^2,g_0)$ that has the form of T_0+X . Since both of T_0 and X satisfy (2.1), T_0+X satisfies it. Thereby T_0+X belongs to $\mathcal{H}(H^2,g_0)$ if and only if it satisfies (2.2) in H^2 . In the present case, it is reduced to the only one equation:

$$X_{111}X_{122} + X_{222}X_{112} - X_{112}^2 - X_{122}^2 = 0.$$

Substituting (3.1) \sim (3.4), we get

$$0 = \left(\frac{f''(x)y^2}{8} + \frac{g'(x)}{2} - f(x) + \frac{h(x)}{y^2}\right)f(x) - \left(\frac{f'(x)y}{2} + \frac{g(x)}{y}\right)^2 - f(x)^2$$

$$= \left(\frac{f(x)f''(x)}{8} - \frac{f'(x)^2}{4}\right)y^2 + \frac{f(x)g'(x)}{2}$$

$$-f'(x)g(x) - 2f(x)^2 + (f(x)h(x) - g(x)^2)\frac{1}{y^2}.$$

Hence $T_0 + X$ belongs to $\mathcal{H}(H^2, g_0)$ if and only if

$$(3.9) ff'' - 2f'^2 = 0,$$

$$(3.10) fg' - 2f'g - 4f^2 = 0,$$

$$(3.11) fh - q^2 = 0.$$

We find the global solutions of this:

A. The case f = 0.

From (3.11), we have g = 0. So the solution is

$$\begin{cases} f = 0 \\ g = 0 \\ h \text{: an arbitrary function.} \end{cases}$$

B. The case $f \neq 0$. By supposing $f' \neq 0$, (3.9) can be written

$$\frac{f''}{f'} = 2\frac{f'}{f}.$$

From this, we obtain f=1/(Ax+B) with arbitrary constants A, B. Then f is a global solution if and only if A=0 and $B\neq 0$. But this contradicts with $f'\neq 0$. Thus f'=0, i.e., f is a constant. Setting $f=C_1(\neq 0)$, from (3.10) and (3.11), we get $g=4C_1x+C_2$ and $h=g^2/C_1$. So the solution is

$$\begin{cases} f = C_1 \\ g = 4C_1x + C_2 \\ h = \frac{g^2}{C_1}. \end{cases}$$

Therefore we have

Proposition 3.2. For an infinitesimal deformation $X = (X_{ijk}) \in S^3(H^2)$ of $T_0 \in \mathcal{H}(H^2, g_0)$, $T_0 + X$ belongs to $\mathcal{H}(H^2, g_0)$ if and only if X is given as follows:

(3.12)
$$\begin{cases} X_{111} = \frac{h(x)}{y^2} \\ X_{112} = 0 \\ X_{122} = 0 \\ X_{222} = 0 \end{cases}$$

or

(3.13)
$$\begin{cases} X_{111} = C_1 + \frac{(4C_1x + C_2)^2}{C_1y^2} \\ X_{112} = \frac{4C_1x + C_2}{y} \\ X_{122} = C_1 \\ X_{222} = 0, \end{cases}$$

where h is an arbitrary function and $C_1 \neq 0$ and C_2 are arbitrary constants.

We go back to the general case. On the analogy of (3.12), we obtain

Theorem 1.3. Let $\tilde{X} = (\tilde{X}_{ijk}) \in S^3(H^n)$ be given by

$$ilde{X}_{ijk} = \left\{ egin{array}{ll} rac{f_i(x^i)}{(x^n)^2} & 1 \leq i = j = k \leq n-1 \\ 0 & \textit{otherwise,} \end{array}
ight.$$

where f_i are arbitrary functions. Then, $T_0 + \tilde{X}$ belongs to $\mathcal{H}(H^n, g_0)$.

Proof. We prove that $T_0 + \tilde{X}$ satisfies (2.1) and (2.2). We first verify to satisfy (2.1). Because T_0 satisfies it, we need only verify that \tilde{X} satisfies it, that is,

$$(3.14) \quad \partial_k \tilde{X}_{ijl} - \partial_l \tilde{X}_{ijk} + \sum_s (\Gamma_l^s \tilde{X}_{sjk} + \Gamma_l^s \tilde{X}_{isk} - \Gamma_k^s \tilde{X}_{sjl} - \Gamma_k^s \tilde{X}_{isl}) = 0,$$

where the Christoffel symbols $\Gamma_{j\ k}^{\ i}$ of ∇ is given by

$$\Gamma_{j}^{\ i}_{\ k} = \left\{ \begin{array}{ll} \frac{1}{x^n} & i=n, \ 1 \leq j=k \leq n-1 \\ \frac{-1}{x^n} & 1 \leq i=j \leq n-1, \ k=n; \ \text{or} \ i=j=k=n \\ 0 & \text{otherwise}. \end{array} \right.$$

It suffices to consider (3.14) for $i \le j$, k < l by symmetry.

A. The case i = j.

Then

the left-hand side of (3.14) =
$$\partial_k \tilde{X}_{iil} - \partial_l \tilde{X}_{iik} + 2 \sum_s (\Gamma_l^s \tilde{X}_{sik} - \Gamma_k^s \tilde{X}_{sil})$$

= $\partial_k \tilde{X}_{iil} - \partial_l \tilde{X}_{iik} + 2 \sum_s \Gamma_l^s \tilde{X}_{sik}$.

If i = k, then we get

$$\begin{split} \partial_{k}\tilde{X}_{iil} - \partial_{l}\tilde{X}_{iik} + 2\sum_{s} \Gamma_{l}^{s}{}_{i}\tilde{X}_{sik} &= -\partial_{l}\tilde{X}_{iii} + 2\sum_{s} \Gamma_{l}^{s}{}_{i}\tilde{X}_{sii} \\ &= -\partial_{l}\frac{f_{i}(x^{i})}{(x^{n})^{2}} + 2\Gamma_{l}^{i}{}_{i}\tilde{X}_{iii} \\ &= \begin{cases} 2\Gamma_{l}^{i}{}_{i}\tilde{X}_{iii} &= 0 & l < n \\ 2\frac{f_{i}(x^{i})}{(x^{n})^{3}} + 2\frac{-1}{x^{n}}\frac{f_{i}(x^{i})}{(x^{n})^{2}} &= 0 & l = n. \end{cases} \end{split}$$

If $i \neq k$, then we have

$$\partial_k \tilde{X}_{iil} - \partial_l \tilde{X}_{iik} + 2 \sum_s \Gamma_l \, {}_i^s \tilde{X}_{sik} = \partial_k \tilde{X}_{iil} = \delta_{il} \partial_k \frac{f_i(x^i)}{(x^n)^2} = 0,$$

where δ_{ij} is Kronecker's delta.

B. The case i < j.

Then

the left-hand side of (3.14)
$$= \sum_{s} (\Gamma_{l}^{s} \tilde{X}_{sjk} + \Gamma_{l}^{s} \tilde{X}_{isk} - \Gamma_{k}^{s} \tilde{X}_{sjl} - \Gamma_{k}^{s} \tilde{X}_{isl})$$
$$= \sum_{s} (\Gamma_{l}^{s} \tilde{X}_{sjk} + \Gamma_{l}^{s} \tilde{X}_{isk} - \Gamma_{k}^{s} \tilde{X}_{isl}).$$

Since (3.14) is equal to the one exchanged a pair (i, j) and a pair (k, l), we need only check the following three cases:

If i = k, j = l, then we obtain

$$\begin{split} \sum_{s} (\Gamma_{l} \, _{i}^{s} \tilde{X}_{sjk} + \Gamma_{l} \, _{j}^{s} \tilde{X}_{isk} - \Gamma_{k} \, _{j}^{s} \tilde{X}_{isl}) &= \sum_{s} (\Gamma_{j} \, _{i}^{s} \tilde{X}_{sji} + \Gamma_{j} \, _{j}^{s} \tilde{X}_{isi} - \Gamma_{i} \, _{j}^{s} \tilde{X}_{isj}) \\ &= \sum_{s} \Gamma_{j} \, _{j}^{s} \tilde{X}_{isi} \\ &= \Gamma_{j} \, _{j}^{i} \tilde{X}_{iii} \\ &= 0. \end{split}$$

If i = k, j < l, then we get

$$\begin{split} \sum_{s} (\Gamma_{l} \, _{i}^{s} \tilde{X}_{sjk} + \Gamma_{l} \, _{j}^{s} \tilde{X}_{isk} - \Gamma_{k} \, _{j}^{s} \tilde{X}_{isl}) &= \sum_{s} (\Gamma_{l} \, _{i}^{s} \tilde{X}_{sji} + \Gamma_{l} \, _{j}^{s} \tilde{X}_{isi} - \Gamma_{i} \, _{j}^{s} \tilde{X}_{isl}) \\ &= \sum_{s} \Gamma_{l} \, _{j}^{s} \tilde{X}_{isi} \\ &= \Gamma_{l} \, _{j}^{i} \tilde{X}_{iii} \\ &= 0. \end{split}$$

If i < k, then we have

$$\begin{split} \sum_{s} (\Gamma_{l} \, _{i}^{s} \tilde{X}_{sjk} + \Gamma_{l} \, _{j}^{s} \tilde{X}_{isk} - \Gamma_{k} \, _{j}^{s} \tilde{X}_{isl}) &= \sum_{s} \Gamma_{l} \, _{i}^{s} \tilde{X}_{sjk} \\ &= \begin{cases} \Gamma_{l} \, _{i}^{n} \tilde{X}_{njk} = 0 & l < n \\ \Gamma_{n} \, _{i}^{i} \tilde{X}_{ijk} = 0 & l = n. \end{cases} \end{split}$$

We next establish that $\tilde{T} = T_0 + \tilde{X}$ satisfies (2.2), i.e.,

(3.15)
$$\sum_{s} (\tilde{T}_{iks}\tilde{T}_{jls} - \tilde{T}_{ils}\tilde{T}_{jks}) = \frac{1}{(x^n)^6} (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}),$$

where $\tilde{T} = (\tilde{T}_{ijk})$ is given by

$$\tilde{T}_{ijk} = \begin{cases} \frac{1}{(x^n)^3} & 1 \le i = j \le n-1, \ k = n \\ \frac{f_i(x^i)}{(x^n)^2} & 1 \le i = j = k \le n-1 \\ \frac{2}{(x^n)^3} & i = j = k = n \\ 0 & \text{otherwise.} \end{cases}$$

It suffices to consider (3.15) in the case i = k, j = l, in the case i = k, j < l and in the case i < k under $1 \le i < j \le n$, $1 \le k < l \le n$ from symmetry.

A. The case i = k, j = l.

Equality (3.15) is written as

(3.16)
$$\sum_{s} (\tilde{T}_{iis} \tilde{T}_{jjs} - \tilde{T}_{ijs}^{2}) = \frac{1}{(x^{n})^{6}}.$$

Then

the left-hand side of (3.16)
$$= \tilde{T}_{iii}\tilde{T}_{jji} + \tilde{T}_{iin}\tilde{T}_{jjn} - \tilde{T}_{iji}^2$$

$$= \tilde{T}_{iin}\tilde{T}_{jjn} - \tilde{T}_{iij}^2$$

$$= \begin{cases} \frac{1}{(x^n)^3} \frac{1}{(x^n)^3} = \frac{1}{(x^n)^6} & j < n \\ \\ \frac{1}{(x^n)^3} \frac{2}{(x^n)^3} - \left(\frac{1}{(x^n)^3}\right)^2 = \frac{1}{(x^n)^6} & j = n. \end{cases}$$

B. The case i = k, j < l. Equality (3.15) is simplified as

(3.17)
$$0 = \sum_{s} (\tilde{T}_{iis}\tilde{T}_{jls} - \tilde{T}_{ils}\tilde{T}_{jis}) = \sum_{s} \tilde{T}_{iis}\tilde{T}_{jls}.$$

Then

the right-hand side of $(3.17) = \tilde{T}_{iii}\tilde{T}_{jli} + \tilde{T}_{iin}\tilde{T}_{jln} = 0$.

C. The case i < k. Equality (3.15) is simplified as

$$(3.18) 0 = \sum_{s} (\tilde{T}_{iks}\tilde{T}_{jls} - \tilde{T}_{ils}\tilde{T}_{jks}) = -\sum_{s} \tilde{T}_{ils}\tilde{T}_{jks}.$$

Then

the right-hand side of (3.18) =
$$-\tilde{T}_{ili}\tilde{T}_{jki} = 0$$
.

References

- [1] S. Amari: Differential-Geometric Methods in Statistics, Lecture Notes in Statistics, 28, Springer, New York, 1985.
- [2] J. Hadamard: Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932.
- [3] M. Noguchi: Geometry of statistical manifolds, Diff. Geom. Appl. 2 (1992), 197-222.
- [4] K. Nomizu and T. Sasaki: Affine Differential Geometry—Geometry of Affine Immersions—, Cambridge university press, Cambridge, 1994.
- [5] H. Shima: Hessian manifolds, Séminaire Gaston Darboux de géométrie et topologie différentielle, Université Montpellier, (1988-1989), 1-48.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan e-mail: kitou@math.sci.osaka-u.ac.jp