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1. Introduction

In this note we prove a Liouville type theorem for p-harmonic maps. Let (M, g),
(N, h) be Riemannian manifolds, and let p > 2. By Nash’s isometric embedding, we
may assume that N is a submanifold of a Euclidean space R%. The Sobolev space
WEP(M, N) is defined to be

loc

loc loc

WP (M, N) = {u € WEP(M,RY);u(z) € N ae. ¢ € M} ,

where W,5P(M,R?) denotes the Sobolev space of R%-valued L} -functions on M
whose derivative belong to LY . A p-harmonic map u : M — N is a weak solution

loc®
of the equation
(L.1) Trace(V(||du||P~2du)) = 0,

i.e., u € WLP(M,N) satisfies

loc
(1.2) - /M ldul||P~2Vu - Vi + /M ldu||P~2 A(u)(Vu, Vu) - ¢ = 0

for any ¢ € C§°(M, N), where A denotes the second fundamental form of N. A
p-harmonic map u is characterized as a critical point of the p-energy functional

(1.3) E,(u) = / dul]
M

in Wlt’f(M, N), if the value of this functional is finite. When p # 2, the degen-
erate ellipticity of the equation (1.1) gives only (partial) C1*-regularity even for
minimizers of the functional (1.3), while in case p = 2, C1%-regularity implies
C>-regularity. So we are concerned with p-harmonic maps which belong to the
C}~class, for general p.

Several studies are given for 2-harmonic maps or harmonic maps. (See Eells
and Lemaire [3], [4].) For these harmonic maps, there are Liouville type theorems,



304 N. NAKAUCHI

which states that a harmonic map u is constant under some conditions. A typical
one of such conditions is the boundedness of u, where we say that u is bounded if
its image is contained in a compact set. As a result with assumptions to images of
maps, a Liouville type property is known when the image is enveloped by a convex
function. (See Gordon [6] for p = 2, L.-F.Cheung and P.-F.Leung [1] for general
p > 2.) The finiteness of the energy is another typical condition; precisely speaking,
a harmonic map u is constant if F»(u) < oo, when M is complete and noncompact
with Ricps > 0 and Secty < 0, where Ricys denotes the Ricci curvature of M, and
Sect denotes the sectional curvature of N. (See Schoen and Yau [8], Hildebrandt
[7].) In this note we extend this result for general p > 2.

Theorem 1. Let M be complete and noncompact. Assume Ricp; > 0 and
Secty < 0. Letu: M — N is a p-harmonic map of C}. .-class such that E,(u) < co.
Then u is a constant map.

In [9], Takeuchi proved Theorem 1, using Hildebrandt’s argument [7], under
the condition E3,_»(u) < oo instead of E,(u) < oco. The exponent 2p — 2, however,
is not compatible in our case, since 2p — 2 # p when p # 2. Our proof of Theorem
I has two steps; the first step (Section 3) for C{ -maps and the second step (Section
4) in general case. The first step is based on a Bochner type formula (Section 2)
and a standard argument of cutoff functions, and the second step depends on the
approximation argument, which is used in [2] when M is an open set in a Euclidean
space.

Acknowledgement. The author would like to thank Professor Shigeo Kawai
for his kind comments to the Bochner type formula.

2. Bochner type formula

In this section we give the following Bochner type formula.

Lemma 1. Letu: M — N be a map of C3 -class. Then the following equality
holds:

(@ [dulP~t & JldulP + (dul|P~2du, (d787 + 5747 (||du]P2du))
= 2|V (leul|P~2du) > ~ ||V [ldu]P~ |12

+ | dul?~* ) "(Ricar (du(e;)), due;))
Jj=1

— [ldul=* 3" (Riemy (du(e:), du(e;))du(e;), du(e:)),

4,j=1
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hence
(b) lldul| A l|dul P~ + (du, (dV 8 + 6V dY )(||du||P~>du))
> [ldul[P~* ) "(Ricas (du(e;)), du(e;))
j=1
—[ldulP=> 3 (Riemy (du(es), dule;))du(e;), dues)),
i,j=1

where {ej};‘?:l is an orthonormal base of the tangent space of M, and d¥ [resp.
6V ] denotes the derivation with respect to ¥ [resp. the L?-adjoint operator of d¥ ].
Therefore, when Ricy; > 0 and Secty < 0, we have

(c) dul| A || dul|P~ + (du, (dV 8V + 6VdY)(||dul[P~2du)) > 0.

Proof of Lemma 1. Using the relation between the rough Laplacian A and
the Hodge-de Rham Laplacian dVéY + 6VdV, we have

Q4 L Al = 2 A | dulPdul?

(=2, A(lduP~d) + |V (dufP~2d)
(P~ du, (@67 + 67 a7)(|duP~du)
IV (P2 ? + Q(w),

where

Qu) = [[dul®* ) (Ricur(du(e)), du(es))

=1

—||du?P~* Z (Riemp (du(e;), du(e;))du(e;), du(e;)).

i,7=1

(cf. Eells and Lemaire [3, p.8, (2.20)] for p = 2; Note that for any harmonic map
(p =2), d¥(du) = §V(du) = 0.) On the other hand, we see

1 - 1 _
25) 5 O ldull=2 = 2 A (ldul )

ldulP~* A fldul P~ + |Vl duf[P~ 2.

Then from (2.4) and (2.5), we have (a). From (a), we have
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@26)  ldulPt A dul]Pt + (|ldul]P~2du, (4567 + 6% d% ) (|ldul]P~2du))
> |ldul|**~* Y " (Ricar(due;)), dule;))
j=1
— ||du]|?P~* Z (Riem y (du(e;), du(e;))du(e;), du(e;)),
1,7=1
since

IV lldul?= | = IV lldulP~*dull || < [V (|ldu]["~*du)].

On any point such that du = 0, the inequality (b) holds trivially. On the other points,
we divide the both sides of (2.6) by ||du|[P~2, and then we have the inequality (b).
0

3. Proof of Theorem 1 for C3 -maps

Throughout this paper, all positive constants Cy, Cy, ... depend only on p, M,
N if there is no special mention. Since u is a p-harmonic map,

8V (||dul||P~2du) = 0.
Then by Lemma 1 (c), we have
(3.7 [ dul| A {|dul[P~" + (du, 8V dY (||du|[P~2du)) > 0.

since Ricps > 0, Secty < 0. Take any point £ € M. Let n be a cutoff function
satisfying that
= on B,(x)
(3.8) n:q €1[0,1 on By,(x)— B,(z)
= on M — By,(x)
and that
C
(3.9) [Vn)? < =5
p
Then from (3.7), we get

(3.10) / ldul|n® A ||dul|P~* +/ (n*du, 8V dY (||dul|P~2du)) > 0.
M M
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We have
1) [ fduly? & P~
M
- / V(| dulln?) - 7 dulP"
M
- -1 /M||duup-2n2||w|du|| 12— 20— 1) /M|1du||P-2nV||du|| Un
4(p —1 4(p — 1
= 222D [ aulpret - X [ faulpr el vy
p M p M .
4(p — 1 C.
)] [ 19 laulpr2i e [ Vil + 2 [ jaule)on?
p M M € JMm
for any € > 0. We see

(3.12) / (n?du, 67 d¥ (|| dul|~2du)) = / (d (n2du), d (|dull?~2du)).
M M

Since

IdY (pdu)|| < Cs||Ve|| [|dull,
we have
(3.13) |(d¥ (n*du), d¥ (| dul|P~2du))|

< Nld¥ (n*dw)|| 14 (||dul[P~*duw)]|

< Cal| Vo2 || ldul] [V [l dulP=2] fldul]
= Csn| V| ldu[[P~ |V | dull |

= Conl| V| |dullP?|| V|| dul /P2

C
< el|Vldul[P]*n? + = dull?| Vn|]*.

From (3.12) and (3.13), we get

(3.14) \ [ au, 674 (laul~2aw)

C
Ss/ IIVIIduIIP/2||2n2+—7/ (| dul|” (|77,
M € Jm

Then from (3.10), (3.11) and (3.14),

4(p—1 C
(—(pz )—26)/ IIVIIduIIP/zu"’nZs—E/ | du||P||[Vn]|2.
p M e Ju
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Lete = P , and then we obtain

p2

C
@1y [ 9P < Co [ aulpioai? < S8 [ jaule.
o(T) M p M
Let p go to infinity, and then we see that V||du||P/? = 0, i.e., ||du| is constant on
M. Note that the volume of M is infinite, since Ricy; > 0. Then by the condition
Ep(u) < oo, we conclude that the constant ||du|| is zero. Therefore u is a constant

map. (]

4. Proof of Theorem 1

In this section we complete our proof of Theorem 1 using an approximation. We
use the arguments in Duzaar and Fuchs [2]. We may assume p > 2, since Theorem
1 holds for p = 2. As mentioned in the introduction, we may assume that the target
manifold N is a submanifold of a Euclidean space R?, and that  is a map into R%.
Then we know

Proposition 1.  For any p-harmonic map u of C}, -class, ||du|P/>~'du belong
to WL (T M, RY).

When M is a domain of a Euclidean space, Proposition 1 is Lemma 2.2 in
Duzaar and Fuchs [2]. In the above general situation, Proposition 1 can be proved
with slight modifications.

Using Proposition 1, we will complete our proof of Theorem 1. Let M, :=
{z € M;||du||(z) # 0}. By Proposition 1, we see that du is of Wllof-class on M,
since

—2
Vdu = V(|| dul/P/*~ du)||du||' ~P/* — pTV(Hdull”/z)lldull_””du’

hence

[Vdul

IA

_ _ p—2 _
lldul|*~*/2||V (|| dul|P/? 1du)ll+Tlldull1 P29 (||dul|P/?))|

IA

p—2 _ _
(”T) ][ P/2)|V ([ldu][7/2~ du)]

Then we can find an approximating sequence {ux}52, C Cp5.(M, R?) such that as
k goes to infinity,

(a) u converges to u in C (M),

(b) wuy converges to u weakly in Wli’f(M), and
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(c) wuy converges to u weakly in Wli’f(M+).
By Lemma 1, we have

[l dug|l & [l du [P~
L V ¢V Vv v p—2 >
tp-D (du, (d¥67 +67d")(||dug||P dux)) > 0,

since Ricys > 0, Secty < 0. Let i be a cutoff function on M satisfying (3.8) and
(3.9), and let

[ dul|(z)

T, < 3 on M
max{[dul[(«), ¢} +

Pe(z) =
0 on M — M+.

Then ¢. € Ly*(M,), where Ly?(M,.) is the completion of C5°(M,), and ¢, — 1,
Ve, — 0in L(l)’2(M+). Using the function ¢.n? instead of n%, we apply the estimates
(3.11), (3.14) for smooth maps ug. Then we have, instead of (3.15),

(4.16) / IIVIIdUkII”/2||2<Pa772+/ ldur|P2n*V || du |P? - V.
M,

My

C
<= llduk||Pee + Crz / (pen?dug, dV 8Y (||duy [P~ duy))
P M, M,

C
<= | lldurlPoe + Cra | 8V (wen?dug)8Y (|| du [P~ 2duy).
e JImy M4

Since uy converge to u in CL (My) N W22 (M),
8Y (e dux)8" (| dux|P~*dur) — | 8" (pendu)8” (||dul|P~*du) = 0.

as k goes to infinity, where the last equality follows from the fact that u satisfies the
p-harmonic map equation 6V (||du||P~2du) = 0. Therefore, let k goes to infinity in
(4.16), and then we have

/ 19 lldull P2 pen® + / | du||P/2n?V || dul|P/? - Vo,
M M,

Cn
< —

lldul[Pepe.

My

Let € go to zero, and then we get

@.17) / IV ldulP/2 )22 < S / dull?
My P Imy



310 N. NAKAUCHI

for any n € C3(M) satisfing (3.8) and (3.9). Here we have used the facts that Vi,
goes to a measure-valued tensor u whose support is in M, and that ||du|| vanishes
there. Let p go to infinity in (4.17), and then we have du = 0 on M4, i.e., u is
constant on M, Hence u is a constant map on M. U

5. A remark.

When M is compact, we have the following result, which is an extension of
facts in harmonic map case (p = 2). (See Eells and Sampson [5].)

Theorem 2. Let M be compact (OM = ). Letuw: M — N be a p-harmonic
map of C'-class.
(a) Assume Ricys > 0 and Secty < 0. Then u is totally geodesic.
(b) In addition to (a), if Ricy; > 0 somewhere, then u is a constant map.
(c) In addition to (a), if Secty < 0, then u is a constant map, or u maps onto a
closed geodesic in N.

Proof. We take an approximating sequence {uy}72 ; such as that in Section
4. Take the function ¢, in Section 4. From Lemma 1 (b),

/ ldullioe A ldug]P~* + / (edug, (V6% + 6% d ) (| dux|P~2duy)) > 0.
M, M,

Using integration by parts, we have
[ Ndulioe & fauelp=
My
- ‘/ eV du]| - Vil dug [P —/ [ duk]| V| duk [P~ - Ve
My My

4(p — 1
_ el / 19 ldu |[P/2] 20 — / dux||V | dug [P~ - V.
p M,

M,

Then from the above inequality, we get

4(p—1

—2) / IV du ||7/2 )| o2
p My

< [ 067 (pudua), 8 (el 2du)

My
4 [ a7 pedue), d (s P
M

— [ (6 (pedun), 67 ()
M
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+ / 1 | 1duue | ¥ (ldux [P~2dusk) .
My

We have used the fact ||dY (¢.dug)|| < Cs || V.|| ||duk||. Let k — oo and let € — 0,
then we have

4(p — 1
-1 / IVldul[P/?|1* < 0.

Therefore ||dul|| is constant on M., hence on M, since ||du| is continuous. From
Lemma 1 (a), we have

—/ ||V(||dUk||p_2duk)|l2goE+/ lldul[?/2V || dug||?2 - Voo
M, o,
[l g, (@757 + 674 ([ due]|P~du)
My
> 0.

We have applied the integration by parts and used the assumption Ricys > 0 and
Secty < 0 and the fact that

IV (lduklP~2du)|* = [V 1 duellP~2due]| 12 2 [V | du]P~H]12.

Let K — oo, and let e — 0, then we get
02 2 [ V(ldulP 2w
My

on M, since ||du| is constant. Hence Vdu = 0, i.e., u is totally geodesic on M.
Since ||du|| is constant, u is a harmonic map; u is totally geodesic on M. We have

(a).
We know, by the proof of (a),

|ldu|| = Const. =: Co on M
Vdu =0 on M,

Then from Lemma | (a) again, we have

M

Il
-

(5.18) 0 < C2P7* (Ricr(dulej)), du(e;))

J

= CP™* ) (Riemy (du(e;), du(e;))du(e;), duf(e;))

1,j=1

3

0

IA
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on M, . If Ricps > 0 somewhere, the inequality (5.18) implies Cy = 0, or du = 0
at this point. Then Cy = 0, and we have (b). If Secty < 0 at a point 2* € M, then
Co = 0 or dim(Image(du(z*))) < 1. If dim(Image(du(z*))) = 0, then |dul|(z) =
Co = ||du|(z*) = 0 for any z € M, i.e. u is a constant map. If dim(Image(du(x))) =
1, we have (c) since u is totally geodesic. ]

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
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