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 A B S T R A C T

This paper derives the optimal capital structure of a firm whose earnings follow a geometric Brownian motion 
with a lower reflecting barrier. The barrier can be interpreted as a market intervention threshold (e.g., a price 
floor) by the government or an exit threshold of weak competitors in the market. Unlike in the standard model 
with no barrier, the firm is able to issue riskless debt to a certain capacity determined by the barrier. The higher 
the barrier, the larger the riskless debt capacity, and the firm prefers riskless capital structure rather than risky 
capital structure. Notably, with intermediate barrier levels, the firm can choose riskless capital structure with 
lower leverage than the level with no barrier. This mechanism can help explain debt conservatism observed 
in practice. The paper also entails several implications of public intervention by examining the lowest barrier 
(i.e., the weakest intervention) to achieve riskless capital structure.
1. Introduction

This paper analyzes an optimal capital structure model of a firm 
that receives stochastic flows of earnings above a floor. The floor 
can be interpreted as the government’s intervention to protect par-
ticular companies or industries (e.g., utility, agricultural, or financial 
industries) against downside risks. Apart from regulated markets, the 
floor may represent an exit threshold of weak competitors. Then, the 
model can approximate a firm with a certain competitive advantage 
or protection against downside risks. In the model, we reveal that 
such a firm can determine capital structure through a mechanism that 
diverges from standard trade-off theory; indeed, a firm can maximize 
debt level within the riskless debt capacity generated by the floor. This 
paper sheds new light on capital structure of firms with competitive 
advantage or in regulated markets and suggests potential policies to 
prevent corporate bankruptcy efficiently.

The baseline model builds on the standard real options models of 
optimal capital structure (e.g., Goldstein, Ju, & Leland, 2001; Leland, 
1994; Shibata & Nishihara, 2012). As in the standard literature, we 
assume that a firm has an option to issue consol debt at an initial 
time and that shareholders of the firm have an option to default debt 
in place. The firm’s earnings are modeled by a geometric Brownian 
motion (GBM) with a lower reflecting barrier (i.e., a floor), which is 

I This work was supported by the JSPS KAKENHI (Grant numbers JP20K01769, JP23K20613, JP24K00272). The author thanks anonymous referees and Artur 
Rodrigues for helpful comments. The author also thanks the participants at FMA 2022 in Kyoto and Real Options Workshop 2022 (online) for helpful feedback. 
Declarations of interest: none.
∗ Corresponding author.
E-mail addresses: nishihara@econ.osaka-u.ac.jp (M. Nishihara), tshibata@hosei.ac.jp (T. Shibata).

1 As we will explain in Section 3.2, riskless debt in our theory can be identified as debt with very low default risk in empirics.

a difference from the standard models. We also extend the baseline 
model to a model with a debt financing constraint. In the models with 
a barrier, we analytically derive the equity, debt, firm values, leverage, 
and credit spreads, as well as their sensitivities to barrier levels. The 
results are explained below.

A most notable difference from the standard results with no barrier 
(e.g., Goldstein et al., 2001; Leland, 1994; Shibata & Nishihara, 2012) is 
that a barrier generates a capacity of riskless debt financing. Naturally, 
the higher the barrier, the larger the riskless debt capacity. Compared 
to risky debt, riskless debt has an advantage of no bankruptcy cost but 
a disadvantage of the debt level being limited by the capacity. If the 
barrier is lower than a critical level (i.e., the riskless debt capacity is 
insufficient), then the firm prefers risky capital structure. In this case, 
the presence of a barrier hardly affects the equity, debt, firm values, 
leverage, and credit spreads because the firm chooses leverage by the 
standard trade-off between the tax benefits and bankruptcy costs of 
debt.

If the barrier is higher than the critical level (i.e., the riskless debt 
capacity is sufficient), then the firm prefers riskless capital structure. In 
the no-default case, barrier levels greatly affect all the values because 
the riskless debt capacity (depending on barrier levels) rather than the 
standard trade-off is a key determinant of capital structure. Notably, 
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the barrier close to the critical level leads to lower debt and leverage 
levels than the optimal levels with no barrier. That is, in contrast 
to the straightforward intuition that the firm increases debt with a 
floor, the firm voluntarily reduces debt to take advantage of having 
no bankruptcy risk. This result can help explain empirical observations 
of debt conservatism (e.g., Ghoul, El, Guedhami, Kwok, & Zheng, 2018; 
Graham, 2000; Strebulaev & Yang, 2013); some firms have quite low 
leverage and bankruptcy risk compared to the optimal levels predicted 
by standard trade-off theory. Indeed, our model suggests that firms do 
not choose risky capital structure based on the standard trade-off but 
optimally choose riskless capital structure with low leverage if they 
have certain degrees of competitive advantage or protection against 
downside risks.1 Our theory can also help understand intra-industry 
variation in leverage (e.g., Graham & Leary, 2011; MacKay & Phillips, 
2005). In fact, our result is consistent with empirical evidence that a 
firm that occupies a stronger position within its industry tends to have 
lower leverage (e.g., MacKay & Phillips, 2005; Mitani, 2014).

We also examine the comparative statics with respect to key pa-
rameters. With a given barrier level, a higher volatility, bankruptcy 
cost, lower growth rate, corporate tax rate, and stronger debt issuance 
constraint tend to lead to the no-default case. The switch to the no-
default case can cause the comparative static results to differ from 
those of the standard trade-off models. For instance, with a constant 
barrier level, a higher volatility increases leverage and firm value 
in the no-default case because the barrier becomes more effective. 
Although this result is contrasted to the standard result, it can explain 
empirical findings of Ovtchinnikov (2010). Indeed, he found a strong 
positive relation between leverage and volatility in regulated markets, 
in contrast to the strong negative relation observed after deregulation. 
We argue that public protection against downside risks in regulated 
markets can lead to the positive relation.

This paper focuses on the lowest barrier to attain the no-default 
case because it can be interpreted as the weakest intervention by the 
government that prevents the firm from bankruptcy. We show that the 
critical level is lower than the level necessary to save the firm from 
bankruptcy ex post. This result emphasizes the importance of the ex 
ante information disclosure of the intervention policy. The appropriate 
commitment by the government leads a firm to adopt riskless capital 
structure with low leverage rather than leading the firm to take moral 
hazard behavior of increasing debt. A higher volatility and lower 
growth rate decrease the critical barrier level but increase the frequency 
of hitting the barrier. A higher bankruptcy cost, lower corporate tax 
rate, and stronger debt issuance constraint decrease advantages of risky 
debt, decreasing the critical barrier level and the frequency of hitting 
the barrier. These results suggest that the government can weaken 
and reduce market interventions with a more stringent bankruptcy law 
(i.e., a higher bankruptcy cost), lower corporate tax rate, and stronger 
leverage regulation.

Finally, we will briefly explain technically related literature. Leahy 
(1993) solves a competitive market model, where a price ceiling and 
floor arise as entry and exit thresholds in equilibrium. Dixit and Pindyck 
(1994) solve the entry and exit timing models with a price ceiling and 
floor and entail many implications of market competition and regula-
tion. By extending the models, Dobbs (2004) shows that the optimal 
price ceiling delays investment in a monopoly, whereas Roques and 
Savva (2009) show that it accelerates investment in an oligopoly. Evans 
and Guthrie (2012) study a firm’s production capacity adjustments 
under a price ceiling and quantity floor and show that with economies 
of scale, the firm invests in smaller, more frequent, increments than the 
social planner. Adkins, Paxson, Pereira, and Rodrigues (2019) examine 
the optimal duration of regulation in the investment timing model with 
a finite/retractable price ceiling and floor. Unlike this paper, the above 
papers assume all-equity firms and do not examine any capital structure 
problem.

Sarkar (2016) develops a Leland-type capital structure model with 
a price ceiling and shows that the price ceiling significantly increases 
657 
leverage. He also shows that the price ceiling can counterintuitively 
decrease consumer welfare. In contrast to Sarkar (2016), we show that 
leverage can either increase or decrease (i.e., it can be nonmonotonic) 
with floor levels. Rodrigues (2025) is closest to our paper. He investi-
gates the investment timing and capital structure model with a revenue 
ceiling and floor, which is more generalized than our baseline model. 
However, our paper has four advantages. First, we derive the explicit 
solutions and sensitivities, while he relies on numerical analysis. Sec-
ond, we investigate the impact of a debt issuance constraint, which 
he does not address. Third, we show the positive relation between 
leverage and volatility in the no-default region, which is not observed 
in his paper. Finally, our reflecting barrier model, unlike the shadow 
process models in Rodrigues (2025) and Sarkar (2016), can capture not 
only public protection but also competitive advantage against downside 
risks.

The paper is organized as follows. Section 2 explains the model 
setup. In Section 3.1, we explain the solutions in the benchmark model 
with no barrier, and in Section 3.2, we derive the explicit solutions 
in the baseline model with a barrier. We also analytically derive the 
sensitivities to barrier levels. In Section 3.3, we derive the explicit 
solutions in the extended model with a debt issuance constraint. Sec-
tion 4 examines the sensitivities to the key parameters numerically, and 
Section 5 concludes.

2. Model setup

The baseline model builds on the standard capital structure model 
based on trade-off theory (e.g., Goldstein et al., 2001; Leland, 1994). 
Tables  1 and 2 summarize the notations used throughout this paper. 
Consider a firm that receives continuous streams of earnings before 
interest and taxes (EBIT) 𝑋(𝑡) until bankruptcy. Under the risk-neutral 
measure, EBIT 𝑋(𝑡) follows a GBM2

d𝑋(𝑡) = 𝜇𝑋(𝑡)d𝑡 + 𝜎𝑋(𝑡)d𝐵(𝑡) (𝑡 > 0), 𝑋(0) = 𝑥 (1)

with lower reflecting barrier 𝑥𝐿(> 0), where 𝐵(𝑡) denotes the standard 
Brownian motion defined in a filtered probability space (𝛺, ,P, {𝑡})
and growth rate 𝜇, volatility 𝜎(> 0), and initial value 𝑋(0) = 𝑥(≥ 𝑥𝐿) are 
constants. For convergence, 𝑟 > 𝜇 is assumed, where a positive constant 
𝑟 denotes the risk-free interest rate, and 𝑋(0) = 𝑥 is assumed to be 
sufficiently high level so that the firm is not bankrupt at time 0.

At time 0, the firm issues consol debt to maximize the firm value, 
where the tax benefits and bankruptcy costs of debt will be clarified 
in the next section. For debt in place, shareholders can stop coupon 
payments (i.e., declare default) to maximize the equity value. In the 
default case, shareholders receive nothing, and debt holders receive 
the post-bankruptcy firm value, which is equal to the unlevered firm 
value multiplied by (1 − 𝛼). This means that a fraction 𝛼 ∈ (0, 1) of 
the unlevered firm value is lost to the deadweight costs of bankruptcy. 
Equity, debt, and firm values are fairly priced based on the rational 
expectation of ex post shareholders’ default behavior.3

The presence of lower reflecting barrier 𝑥𝐿 is a difference from the 
standard capital structure model. Intuitively, lower reflecting barrier 
𝑥𝐿 means that 𝑋(𝑡) is pulled back to 𝑥𝐿 and moves again from 𝑥𝐿 im-
mediately after 𝑋(𝑡) falls below 𝑥𝐿. It is different from the assumption 

2 Debt financing models (e.g., Charalambides & Koussis, 2018; Eisdorfer, 
Morellec, & Zhdanov, 2024; Elkamhi, Kim, & Salerno, 2024; Goldstein et al., 
2001; Hackbarth, Mathews, & Robinson, 2014; Jeon, 2021) often assume EBIT 
following a GBM, although Luo, Wang, and Yang (2016) assume EBIT with 
jump risk.

3 For simplicity, this paper assumes market debt that is nonrenegotiable. 
Such papers as Morellec, Valta, and Zhdanov (2015) and Shibata and Nishihara 
(2015) also consider bank debt that is negotiable. This paper’s main results 
(i.e., the no-default case) remain unchanged even if bank debt is consid-
ered. The results may change when lenders have market power as modeled 
in Huberts, Wen, Dawid, Huisman, and Kort (2025).
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that 𝑋(𝑡) equals a GBM 𝑆(𝑡) (i.e., the shadow process) for 𝑆(𝑡) ≥ 𝑥𝐿
but remains at 𝑥𝐿 for 𝑆(𝑡) < 𝑥𝐿. Although the shadow process model 
requires the value function in regions 𝑆(𝑡) < 𝑥𝐿 and 𝑆(𝑡) ≥ 𝑥𝐿, the 
reflecting barrier model requires only one region, 𝑋(𝑡) ≥ 𝑥𝐿.4 By this 
technical simplicity, we can solve the model explicitly in the next 
section. In addition, as we will explain below, the reflecting barrier 
model, unlike the shadow process model, can approximate a firm that 
occupies a strong position within its industry.

The model with barrier 𝑥𝐿 can approximate the following two situ-
ations. First, governments might try to intervene in markets to protect 
specific firms or industries (e.g., utility, agricultural, or financial indus-
tries) against downside risks. For instance, European Union countries’ 
governments purchase particular agricultural products to prevent their 
prices from dropping to unsustainably low levels. Although such market 
interventions require direct and indirect costs, governments can adopt 
the market measures if the bankruptcy costs of these firms, including 
indirect costs, such as threats to national security, are higher than the 
intervention costs. In this case, 𝑥𝐿 is interpreted as the intervention 
threshold.5 Chapter 9 of Adkins et al. (2019), Dixit and Pindyck (1994), 
and Rodrigues (2025) also examine real options models with floors (and 
ceilings) in terms of public intervention. Sections 3.3 and 4.6 study the 
effects of leverage regulation in addition to the public intervention by 
incorporating a debt issuance constraint into the baseline model.

Second, the baseline model may capture firms with strong com-
petitive advantage against downside risks. For instance, consider oil 
prices. Relatively weak shale oil producers tend to exit the markets 
when oil prices fall to unsustainably low levels for them. After the 
exit of shale oil producers, oil prices are likely to rebound. Thus, the 
biggest oil companies, which have sufficient competitive advantage to 
survive downturns, could receive cash flows above certain levels. More 
generally, the cash flow dynamics of resilient firms may have such a 
trend. Our model can formally represent a market with one strong firm 
and an infinite number of weaker firms, where 𝑥𝐿 arises as the weak 
firms’ exit threshold in equilibrium, as in Leahy (1993). Leahy (1993) 
examines a competitive market with homogeneous firms with no lever-
age. Baldursson (1998) and Chapter 8 of Dixit and Pindyck (1994) 
further explore competitive and oligopoly markets using reflecting 
barriers, providing theoretical foundations for our model structure.

Finally, we clarify model limitations. While incorporating an upper 
reflecting barrier to represent a price cap in regulated markets or 
the entry threshold for small firms is logical, the presence of both 
upper and lower reflecting barriers prevents the explicit derivation 
of model solutions. To analytically prove the intriguing effects of a 
revenue floor on valuations and capital structure, we have structured 
the baseline model to include only a floor. Appendix  F numerically 
verifies that the baseline results are unchanged when extending the 
model to include both a floor and ceiling. Another potential exten-
sion involves examining the firm’s dynamic leverage adjustments and 
the government’s dynamic intervention policy to prevent bankruptcy. 
However, we acknowledge that this would significantly complicate the 
model, and we currently lack a solution framework for it.

3. Model solutions

3.1. EBIT with no barrier

This subsection explains the benchmark model with no barrier 
(i.e., 𝑥𝐿 = 0). The following results are well known in previous 

4 We do not think that the technical difference greatly affects the results. 
Indeed, Rodrigues (2025), who studies a more complicated model based on 
the shadow process, find similar results to our results. For instance, a higher 
floor also leads to riskless capital structure in Rodrigues (2025).

5 When the product price follows a GBM with a floor, EBIT also follows a 
GBM with a floor in the standard setups (e.g., Dixit & Pindyck, 1994). Then, 
for simplicity, this paper directly assumes EBIT with a floor.
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literature (e.g., Goldstein et al., 2001; Shibata & Nishihara, 2012; 
Sundaresan, Wang, & Yang, 2015), and hence, the details of derivation 
are omitted. First, suppose that the firm issues consol debt with coupon 
𝐶. For given coupon 𝐶, the equity, debt, and firm values are expressed 
as

𝐸0(𝑥;𝐶) = 𝜋𝑥 −
(1 − 𝜏)𝐶

𝑟
+
(

𝑥
𝑥0(𝐶)

)𝛾 ( (1 − 𝜏)𝐶
𝑟

− 𝜋𝑥0(𝐶)
)

(2)

𝐷0(𝑥;𝐶) =
𝐶
𝑟
−
(

𝑥
𝑥0(𝐶)

)𝛾
(𝐶
𝑟
− (1 − 𝛼)𝜋𝑥0(𝐶)

)

(3)

𝐹0(𝑥;𝐶) = 𝜋𝑥 + 𝜏𝐶
𝑟

−
(

𝑥
𝑥0(𝐶)

)𝛾
(

𝛼𝜋𝑥0(𝐶) +
𝜏𝐶
𝑟

)

(4)

for 𝑥 ≥ 𝑥0(𝐶), where 𝜏 denotes a corporate tax rate, 𝑥0(𝐶) denotes the 
default threshold, and

𝜋 = 1 − 𝜏
𝑟 − 𝜇

, (5)

𝛾 = 1
2
−
𝜇
𝜎2

−

√

(

𝜇
𝜎2

− 1
2

)2
+ 2𝑟
𝜎2

(6)

denote the unlevered firm value’s coefficient (i.e., 𝜋𝑥 is the unlevered 
firm value) and a negative characteristic root, respectively. Subscript 
0 stands for the benchmark model with no barrier. The first, second, 
and last terms in equity value (2) correspond to the unlevered firm 
value, perpetual coupon payments, and the value of the default option, 
respectively. The first and second terms in debt value (3) are the 
perpetual coupon receipts (i.e., the riskless debt value) and loss due 
to default risk, respectively. The first, second, and last terms in firm 
value (4) are the unlevered firm value, perpetual tax benefits of debt, 
and bankruptcy costs, respectively. Note that shareholders determine 
𝑥0(𝐶) to maximize its own value 𝐸0(𝑥;𝐶) for debt in place. By solving 
argmax𝑥0(𝐶)≥0 𝐸0(𝑥;𝐶), we obtain default threshold 

𝑥0(𝐶) = 𝐶∕𝛿, (7)

where 𝛿 is a constant given by 

𝛿 =
(𝛾 − 1)𝑟
𝛾(𝑟 − 𝜇)

(> 1). (8)

Now, consider the optimal capital structure. The firm chooses 
coupon 𝐶 to maximize firm value 𝐹0(𝑥;𝐶) based on the trade-off 
between the tax benefits and bankruptcy costs of debt. By solving 
argmax𝐶≥0 𝐹0(𝑥;𝐶), we obtain optimal coupon 

𝐶0(𝑥) = 𝛿𝑥∕ℎ, (9)

where ℎ is a constant given by 

ℎ =
[

1 − 𝛾
(

1 − 𝛼 + 𝛼
𝜏

)]− 1
𝛾 (> 1). (10)

The optimally levered firm value 𝐹0(𝑥) is 

𝐹0(𝑥) = 𝐹0(𝑥;𝐶0(𝑥)) = 𝜓𝜋𝑥, (11)

where 𝜓 is a constant given by 
𝜓 = 1 + 𝜏

(1 − 𝜏)ℎ
(> 1) (12)

and is interpreted as the leverage effect. Indeed, the levered firm value 
𝐹0(𝑥) is the unleverd firm value 𝜋𝑥 multiplied by 𝜓(> 1). From (2), 
(3), and (9), the optimally levered equity and debt values, 𝐸0(𝑥) =
𝐸0(𝑥;𝐶0(𝑥)) and 𝐷0(𝑥) = 𝐷0(𝑥;𝐶0(𝑥)), respectively, also become linear 
functions of initial EBIT 𝑥, and the firm’s leverage 𝐿𝑉0(𝑥) = 𝐷0(𝑥)∕𝐹0(𝑥)
and credit spreads 𝐶𝑆0(𝑥) = 𝐶0(𝑥)∕𝐷0(𝑥) − 𝑟 are independent of 𝑥, 
although the detailed expressions are omitted for space limitations.

3.2. EBIT with a lower reflecting barrier

This subsection solves the baseline model with lower reflecting 
barrier 𝑥 = 𝑘 𝑥, where we use the notation 𝑘 ∈ (0, 1) to simplify 
𝐿 𝐿 𝐿
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Table 1
Notations. The table also includes the baseline parameter values used in Section 4.
 Notation Description Baseline value 
 Parameters:  
 𝑥 = 𝑋(0) Initial value of EBIT 𝑋(𝑡) following GBM (1). 1  
 𝜇, 𝜎 Growth rate and Volatility of EBIT 𝑋(𝑡). 0.01, 0.2  
 𝑟 Risk-free interest rate. 0.05  
 𝜏 Corporate tax rate. 0.15  
 𝛼 Fraction of bankruptcy costs to the unlevered firm value. 0.4  
 𝑥𝐿 = 𝑘𝐿𝑥 Lower reflecting barrier. 0.2  
 𝐶̄ = 𝑘𝐶𝑥 Upper limit of coupon.  
 Constants:  
 𝜋 Unlevered firm value’s coefficient (5). 21.25  
 𝛾 Negative constant (6). −1.351  
 𝛿 Positive constant (8). 2.175  
 ℎ Positive constant (10). 3.491  
 𝜓 Positive constant (12). 1.051  
Table 2
Notations. The table also presents the baseline values in Section 4 , computed based on the parameter values in Table  1.
 Notation Description Baseline value  
 No-barrier model:  
 𝐸0(𝑥;𝐶) Equity value (2) for coupon 𝐶.  
 𝐷0(𝑥;𝐶) Debt value (3) for coupon 𝐶.  
 𝐹0(𝑥;𝐶) Firm value (4) for coupon 𝐶.  
 𝑥0(𝐶) Default threshold (7) for coupon 𝐶.  
 𝐶0(𝑥) Optimal coupon (9). 0.623  
 𝐸0(𝑥), 𝐷0(𝑥), 𝐹0(𝑥) Equity, Debt, and Firm values for optimal coupon 𝐶0(𝑥). 11.49, 10.84, 22.32 
 𝐿𝑉0(𝑥) Leverage. 0.485  
 𝐶𝑆0(𝑥) Credit spreads. 0.00751  
 Baseline model:  
 𝐸𝑑 (𝑥;𝐶) Equity value (14) for coupon 𝐶 in the default-possible case.  
 𝐷𝑑 (𝑥;𝐶) Debt value (15) for coupon 𝐶 in the default-possible case.  
 𝐹𝑑 (𝑥;𝐶) Firm value (16) for coupon 𝐶 in the default-possible case.  
 𝐸𝑛(𝑥;𝐶) Equity value (17) for coupon 𝐶 in the no-default case.  
 𝐷𝑛(𝑥;𝐶) Debt value (18) for coupon 𝐶 in the no-default case.  
 𝐹𝑛(𝑥;𝐶) Firm value (19) for coupon 𝐶 in the no-default case.  
 𝐸(𝑥;𝐶) Equity value for coupon 𝐶.  
 𝐷(𝑥;𝐶) Debt value for coupon 𝐶.  
 𝐹 (𝑥;𝐶) Firm value for coupon 𝐶.  
 𝐶(𝑥) Optimal coupon. 0.435  
 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥) Equity, Debt, and Firm values for optimal coupon 𝐶(𝑥). 14.21, 8.7, 22.91  
 𝐿𝑉 (𝑥) Leverage. 0.38  
 𝐶𝑆(𝑥) Credit spreads. 0  
 Constrained model:  
 𝐶̄(𝑥) Optimal coupon.  
 𝐸̄(𝑥), 𝐷̄(𝑥), 𝐹 (𝑥) Equity, Debt, and Firm values for optimal coupon 𝐶̄(𝑥).  
 𝐿𝑉 (𝑥) Leverage.  
 ̄𝐶𝑆(𝑥) Credit spreads.  
the equations derived in this section. First, suppose that the firm issues 
debt with coupon 𝐶. For given 𝐶, shareholders choose whether they 
default. Then, equity value 𝐸(𝑥;𝐶) is expressed as 

𝐸(𝑥;𝐶) = max{𝐸𝑑 (𝑥;𝐶), 𝐸𝑛(𝑥;𝐶)}, (13)

where 𝐸𝑑 (𝑥;𝐶) and 𝐸𝑛(𝑥;𝐶) represent the equity values in the default-
possible and no-default cases, which will be defined later. The next 
proposition shows the equity, debt, and firm values, denoted by 𝐸(𝑥;𝐶),
𝐷(𝑥;𝐶), and 𝐹 (𝑥;𝐶), respectively, for given coupon 𝐶. For proof, see 
Appendix  A.

Proposition 1.  For 𝐶 > 𝛿𝑘𝐿𝑥, the firm goes bankrupt at default threshold 
𝑥0(𝐶) = 𝐶∕𝛿 (i.e., the default-possible case). The equity, debt, and firm 
values are given by

𝐸(𝑥;𝐶) = 𝐸𝑑 (𝑥;𝐶) = 𝐸0(𝑥;𝐶), (14)

𝐷(𝑥;𝐶) = 𝐷𝑑 (𝑥;𝐶) =
𝐶
𝑟
−
(

𝑥
𝑥0(𝐶)

)𝛾
(𝐶
𝑟
− (1 − 𝛼)𝜋𝑥0(𝐶)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐷0(𝑥;𝐶)

−
𝑘1−𝛾𝐿 (1 − 𝛼)𝜋𝑥

𝛾
,

(15)
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𝐹 (𝑥;𝐶) = 𝐹𝑑 (𝑥;𝐶) = 𝜋𝑥 + 𝜏𝐶
𝑟

−
(

𝑥
𝑥0(𝐶)

)𝛾
(

𝛼𝜋𝑥0(𝐶) +
𝜏𝐶
𝑟

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐹0(𝑥;𝐶)

−
𝑘1−𝛾𝐿 (1 − 𝛼)𝜋𝑥

𝛾
.

(16)

Otherwise, the firm never goes bankrupt (i.e., the no-default case). The 
equity, debt, and firm values are given by

𝐸(𝑥;𝐶) = 𝐸𝑛(𝑥;𝐶) = 𝜋𝑥 −
(1 − 𝜏)𝐶

𝑟
−
𝑘1−𝛾𝐿 𝜋𝑥
𝛾

, (17)

𝐷(𝑥;𝐶) = 𝐷𝑛(𝑥;𝐶) =
𝐶
𝑟
, (18)

𝐹 (𝑥;𝐶) = 𝐹𝑛(𝑥;𝐶) = 𝜋𝑥 + 𝜏𝐶
𝑟

−
𝑘1−𝛾𝐿 𝜋𝑥
𝛾

. (19)

It follows from (7) that 𝐶 > 𝛿𝑘𝐿𝑥 is equivalent to 𝑥0(𝐶) > 𝑘𝐿𝑥. First, 
we explain the default-possible case, in which 𝑥0(𝐶) is higher than 𝑘𝐿𝑥. 
Equity value 𝐸𝑑 (𝑥;𝐶) does not depend on 𝑘𝐿 because 𝑋(𝑡) does not 
hit the barrier before bankruptcy. Then, 𝐸𝑑 (𝑥;𝐶) is the same as the 
benchmark value 𝐸0(𝑥;𝐶) (see (14)). However, debt and firm values, 
𝐷𝑑 (𝑥;𝐶) and 𝐹𝑑 (𝑥;𝐶), respectively, benefit by the barrier. The first and 
second terms in (15) coincide with 𝐷0(𝑥;𝐶), and the last term is the 
value added by the barrier (note that 𝛾 < 0). The additional value arises 
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from the fact that the post-default value, which debt holders obtain, 
increases with higher barrier level 𝑘𝐿.6 Indeed, in (28) in Appendix  A, 
the post-default value (1 − 𝛼)𝐹𝑛(𝑥0(𝐶); 0) is higher than (1 − 𝛼)𝜋𝑥0(𝐶)
(i.e., the post-default value in the model with no barrier). Firm value 
𝐹𝑑 (𝑥;𝐶) has the same benefit from the barrier (see the last terms in (15) 
and (16)) because of 𝐹𝑑 (𝑥;𝐶) = 𝐸0(𝑥;𝐶) +𝐷𝑑 (𝑥;𝐶).

Now, we explain the no-default case. By 𝐶 ≤ 𝛿𝑘𝐿𝑥, 𝐸𝑛(𝑘𝐿𝑥;𝐶) ≥ 0
holds in (17). Then, for any 𝑋(𝑡) ≥ 𝑘𝐿𝑥, shareholders are better off con-
tinuing operation with coupon payments rather than declaring default. 
The first, second, and third terms in (17) represent the unlevered firm 
value, perpetual coupon payments, and value created by the barrier 
(note that 𝛾 < 0). Shareholders benefit by the barrier. Debt holders 
also benefit by the barrier because it removes the default risk. Then, 
𝐷𝑛(𝑥;𝐶) agrees with the riskless debt value in (18). In (19), firm value 
𝐹𝑛(𝑥;𝐶) consists of the unlevered firm value, perpetual tax benefits, 
and additional value by the barrier. Unlike 𝐹0(𝑥;𝐶), 𝐹𝑛(𝑥;𝐶) does not 
include any term representing bankruptcy costs.

Proposition  1 implies that 𝐷𝑛(𝑥; 𝛿𝑘𝐿𝑥) = 𝛿𝑘𝐿𝑥∕𝑟 is the capacity 
of riskless debt. Of course, for 𝐶 ≤ 𝑘𝐿𝑥, the firm always receives 
nonnegative cash flows 𝑋(𝑡) − 𝐶, and hence, shareholders continue 
operation perpetually. Note that 𝛿 > 1. Considering the possibility 
that 𝑋(𝑡) goes beyond 𝑘𝐿𝑥 due to volatility 𝜎, shareholders prefer to 
operate perpetually for 𝐶 ≤ 𝛿𝑘𝐿𝑥. Indeed, the expected cash flows of 
perpetual operation are nonnegative (i.e., 𝐸𝑛(𝑥;𝐶) ≥ 0) for 𝐶 ≤ 𝛿𝑘𝐿𝑥. 
This is how the presence of barrier 𝑥𝐿 = 𝑘𝐿𝑥 creates the riskless 
debt capacity 𝛿𝑘𝐿𝑥∕𝑟. Proposition  1 nests the benchmark case with 
no barrier as the limiting case of 𝑘𝐿 → 0. Indeed, lim𝑘𝐿→0 𝐸(𝑥;𝐶) =
𝐸0(𝑥;𝐶), lim𝑘𝐿→0𝐷(𝑥;𝐶) = 𝐷0(𝑥;𝐶), and lim𝑘𝐿→0 𝐹 (𝑥;𝐶) = 𝐹0(𝑥;𝐶)
hold.

Next, consider the optimal capital structure. We need to solve 
max𝐶≥0 𝐹 (𝑥;𝐶). By (9) and (16), we have argmax𝐶≥0 𝐹𝑑 (𝑥;𝐶) =
argmax𝐶≥0 𝐹0(𝑥;𝐶) = 𝐶0(𝑥), which reflects the standard trade-off 
between the tax benefits and bankruptcy costs of debt. By (19), 𝐹𝑛(𝑥;𝐶)
increases linearly in 𝐶, implying that argmax𝐶∈[0,𝛿𝑘𝐿𝑥] 𝐹𝑛(𝑥;𝐶) = 𝛿𝑘𝐿𝑥. 
This reflects the fact that a higher debt level increases firm value via 
greater tax benefits in the no-default case. Comparing (16) and (19), we 
have 𝐹𝑑 (𝑥;𝐶) < 𝐹𝑛(𝑥;𝐶) for any (𝑥, 𝐶) because 𝐹𝑑 (𝑥;𝐶), unlike 𝐹𝑛(𝑥;𝐶), 
includes the term of bankruptcy costs. Therefore, max𝐶≥0 𝐹 (𝑥;𝐶) =
max{𝐹𝑑 (𝑥;𝐶0(𝑥)), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)} holds. For graphical images of 𝐹 (𝑥;𝐶), 
see Fig.  1. By (11) and (16), we obtain 

𝐹𝑑 (𝑥;𝐶0(𝑥)) =

(

𝜓 −
𝑘1−𝛾𝐿 (1 − 𝛼)

𝛾

)

𝜋𝑥, (20)

and by (19), we obtain 

𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) =

(

1 +
𝜏𝛿𝑘𝐿
𝑟𝜋

−
𝑘1−𝛾𝐿
𝛾

)

𝜋𝑥. (21)

From (12), (20), and (21), we have

𝐹𝑛(𝑥; 𝛿𝑥𝐿) − 𝐹𝑑 (𝑥;𝐶0(𝑥)) = 𝑔(𝑘𝐿)𝜋𝑥,

where 

𝑔(𝑘𝐿) =
𝜏𝛿𝑘𝐿
𝑟𝜋

− 𝜏
(1 − 𝜏)ℎ

−
𝑘1−𝛾𝐿 𝛼
𝛾

. (22)

The next proposition shows the equity, debt, firm values, coupon, 
leverage, and credit spreads, denoted by 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥), 𝐶(𝑥), 𝐿𝑉 (𝑥), 
and 𝐶𝑆(𝑥) respectively, under optimal capital structure. For proof, see 
Appendix  B.

6 As in Goldstein et al. (2001) and Leland (1994), our model does not 
specify either liquidation or reorganization bankruptcy but assumes that the 
post-default firm value is the unlevered value discounted by bankruptcy costs. 
The unlevered value increases in barrier level 𝑘 .
𝐿
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Proposition 2.  There exists a unique solution 𝑘∗𝐿 ∈ (0, 𝛾∕((𝛾 − 1)ℎ)) to 
𝑔(𝑘∗𝐿) = 0, and 𝑘𝐿 < 𝑘∗𝐿 is equivalent to 𝑔(𝑘𝐿) < 0.

For 𝑘𝐿 < 𝑘∗𝐿, the firm issues risky debt with coupon 𝐶0(𝑥) and 
goes bankrupt at default threshold 𝑥0(𝐶0(𝑥)) = 𝑥∕ℎ (i.e., the default-
possible case). The equity, debt, firm values, coupon, leverage, and credit 
spreads are given by 𝐸(𝑥) = 𝐸0(𝑥;𝐶0(𝑥)), 𝐷(𝑥) = 𝐷𝑑 (𝑥;𝐶0(𝑥)), 𝐹 (𝑥) =
𝐹𝑑 (𝑥;𝐶0(𝑥)), 𝐶(𝑥) = 𝐶0(𝑥), 𝐿𝑉 (𝑥) = 𝐷𝑑 (𝑥;𝐶0(𝑥))∕𝐹𝑑 (𝑥;𝐶0(𝑥)), and
𝐶𝑆(𝑥) = 𝐶0(𝑥)∕𝐷𝑑 (𝑥;𝐶0(𝑥)) − 𝑟, respectively.

Otherwise, the firm issues riskless debt with coupon 𝛿𝑘𝐿𝑥 and never goes 
bankrupt (i.e., the no-default case). The equity, debt, firm values, coupon, 
leverage, and credit spreads are given by 𝐸(𝑥) = 𝐸𝑛(𝑥; 𝛿𝑘𝐿𝑥), 𝐷(𝑥) =
𝛿𝑘𝐿𝑥∕𝑟, 𝐹 (𝑥) = 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥), 𝐶(𝑥) = 𝛿𝑘𝐿𝑥,𝐿𝑉 (𝑥) = 𝛿𝑘𝐿𝑥∕(𝑟𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)), 
and 𝐶𝑆(𝑥) = 0, respectively. 

In Proposition  2, firm value 𝐹 (𝑥) = max{(20), (21)} is a linear 
function of initial EBIT 𝑥 = 𝑋(0). As in (11), 𝐹 (𝑥) is the unlevered 
firm value (i.e., 𝜋𝑥) multiplied by the constant that represents the 
leverage and barrier effects. Similarly, 𝐸(𝑥), 𝐷(𝑥), and 𝐶(𝑥) are linear 
with respect to 𝑥, and 𝐿𝑉 (𝑥) and 𝐶𝑆(𝑥) are independent of 𝑥.

First, we explain the default-possible case (i.e., 𝑘𝐿 < 𝑘∗𝐿). The firm 
prefers to issue risky debt due to the insufficient riskless debt capacity. 
In this case, the optimal coupon and default timing are the same as 
those of the benchmark model with no barrier. The other values are 
obtained by substituting coupon 𝐶0(𝑥) into the default-possible case 
of Proposition  1. Note that 𝐶0(𝑥) > 𝛿𝑘𝐿𝑥 holds by 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) <
𝐹𝑑 (𝑥;𝐶0(𝑥)) < 𝐹𝑛(𝑥;𝐶0(𝑥)).

Next, we focus on the no-default case (i.e., 𝑘𝐿 ≥ 𝑘∗𝐿). The firm is 
better off issuing riskless debt 𝛿𝑘𝐿𝑥∕𝑟 because of the sufficient riskless 
debt capacity. Notably, 𝛿𝑘𝐿𝑥 is not necessarily higher than 𝐶0(𝑥). Both 
𝛿𝑘𝐿𝑥 < 𝐶0(𝑥) and 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) ≥ 𝐹𝑑 (𝑥;𝐶0(𝑥)) can be satisfied in (20) 
and (21) because 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥), unlike 𝐹𝑑 (𝑥;𝐶0(𝑥)), includes no term of 
bankruptcy cost 𝛼 (e.g., see the top panel of Fig.  1). In other words, 
the firm chooses riskless capital structure if the gain from having no 
bankruptcy risk dominates the inefficiency from the upper limit of 
riskless debt.

In Proposition  2, 𝑘∗𝐿 stands for the lowest level to achieve the no-
default case. The critical barrier 𝑘∗𝐿𝑥 is lower than the benchmark 
default threshold 𝑥0(𝐶0(𝑥)) = 𝑥∕ℎ by 𝑘∗𝐿 < 𝛾∕((𝛾 − 1)ℎ) < 1∕ℎ. This 
result has the following implication for public intervention. Suppose 
that the government attempts to prevent the firm from bankruptcy. 
Without commitment to an intervention threshold, the firm issues debt 
with coupon 𝐶0(𝑥) (as in the benchmark case with no barrier). In this 
scenario, by Proposition  1 with 𝐶 = 𝐶0(𝑥), the government needs 
bailout threshold 𝑥𝐿 = 𝐶0(𝑥)∕𝛿 = 𝑥∕ℎ to prevent the firm from 
bankruptcy. In contrast, the government can prevent the firm from 
bankruptcy by committing to bailout threshold 𝑘∗𝐿𝑥(< 𝑥∕ℎ). This is 
because by considering the committed barrier, the firm strategically 
reduces debt (i.e., 𝛿𝑘∗𝐿𝑥 < 𝐶0(𝑥)) and chooses riskless capital structure. 
Although in both cases, the bailout happens precisely when bankruptcy 
would occur without intervention, our model shows that government 
commitment can effectively lower the firm’s leverage and the frequency 
of bailouts. As we will check numerically in Section 4, the ex ante 
required level 𝑘∗𝐿𝑥 is much lower than the ex post required level 𝑥∕ℎ, 
which highlights the importance of the credible commitment to the 
public bailout policy.7

We can analytically prove the comparative statics with respect to 
barrier level 𝑘𝐿 because Proposition  2 derives all the values explicitly. 
For proof, see Appendix  C.

7 This paper focuses on the public intervention policy to prevent the firm 
from bankruptcy. An alternative policy of annual fixed subsidies does not 
necessarily prevent default (see Appendix  G), while subsidies are effective in 
the context of investment (e.g., Lukas & Thiergart, 2019; Zhang, Chronopoulos, 
Kyriakou, & Dimitrova, 2024).
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Proposition 3.  For 𝑘𝐿 < 𝑘∗𝐿 (i.e., the default-possible case), 𝐷(𝑥), 𝐹 (𝑥), 
and 𝐿𝑉 (𝑥) increase in 𝑥𝐿, 𝐶𝑆(𝑥) decreases in 𝑘𝐿, and 𝐶(𝑥) = 𝐶0(𝑥), 
𝑥0(𝐶0(𝑥)) = 𝑥∕ℎ, and 𝐸(𝑥) = 𝐸0(𝑥;𝐶0(𝑥)) are constant.

At 𝑘𝐿 = 𝑘∗𝐿 (i.e., the switching point), 𝐸(𝑥) jumps upward, 𝐷(𝑥), 𝐶(𝑥),
𝐿𝑉 (𝑥), and 𝐶𝑆(𝑥) jump downward, and 𝐹 (𝑥) is continuous.

For 𝑘𝐿 ≥ 𝑘∗𝐿 (i.e., the no-default case), 𝐷(𝑥), 𝐹 (𝑥), 𝐶(𝑥) = 𝛿𝑘𝐿𝑥, and 
𝐿𝑉 (𝑥) increase in 𝑘𝐿, 𝐸(𝑥) decreases in 𝑘𝐿, and 𝐶𝑆(𝑥) is 0. 

Note that the values approach the benchmark values with no barrier 
for 𝑘𝐿 → 0. At 𝑘𝐿 = 𝑘∗𝐿, the values, except firm value 𝐹 (𝑥), jump 
because the firm switches coupon 𝐶(𝑥) from 𝐶0(𝑥) (i.e., the default-
possible case) to 𝛿𝑘∗𝐿𝑥 (i.e., the no-default case). The switch results from 
maximization of 𝐹 (𝑥), and hence, the switch does not cause a jump 
in 𝐹 (𝑥). Interestingly, 𝐸(𝑥), 𝐷(𝑥), 𝐶(𝑥), and 𝐿𝑉 (𝑥) are nonmonotonic 
with respect to 𝑘𝐿 because of the switch. Section 4.1 will show the 
quantitative effects of 𝑘𝐿 on the results in numerical examples.

The no-default case with 𝑘𝐿 close to 𝑘∗𝐿 is most intriguing. In this 
region, 𝐷(𝑥) and 𝐿𝑉 (𝑥) are lower than 𝐷0(𝑥) and 𝐿𝑉0(𝑥) because of 
𝛿𝑘∗𝐿𝑥 < 𝐶0(𝑥). As explained previously, this result implies that by 
the credible commitment to the market intervention threshold, the 
government can decrease the firm’s debt and remove its bankruptcy 
risk.

Furthermore, this result can help explain debt conservatism. It is 
well known as debt conservatism that many firms have low leverage 
and bankruptcy risk compared to the optimal level predicted by trade-
off theory (e.g., Ghoul et al., 2018; Graham, 2000; Strebulaev & Yang, 
2013). For instance, Ghoul et al. (2018) observe that about 40% of 
firms have nonpositive net debt, which implies very low default risk. 
Myers (2001) criticize trade-off theory, stating, ‘‘if theory is right, a 
value-maximizing firm should never pass up interest tax shields when 
the probability of financial distress is remotely low. Yet there are 
many established, profitable companies with superior credit ratings 
operating for years at low debt ratios, including Microsoft and the 
major pharmaceutical companies’’.

Debt conservatism is often explained by theories of dynamic (and 
infrequent) leverage adjustment and financial slack for future invest-
ments and downside risks, but our model adds an alternative mecha-
nism. Indeed, firms can optimally choose low leverage with remotely 
low default risk if they have a certain degree of competitive advantage 
or protection against downside risks. Here, as in Leary and Roberts 
(2010), riskless debt in our model should be understood as debt with 
very low default risk rather than debt entirely without risk. In our 
model, due to the assumption that the government will intervene at 
the barrier or that the firm’s strong market position prevents EBIT 
from falling below the threshold. However, in practice, a bailout may 
fail, or a firm may lose its market position due to unforeseen events 
(e.g., corporate scandals), resulting in potential bankruptcies. Empirical 
findings by Ovtchinnikov (2010) and Sanyal and Bulan (2011) indi-
cate significantly lower bankruptcy probabilities for regulated firms, 
aligning with our model’s outcome of riskless debt.

Our result can also help explain the empirical relation between 
competitive advantage and leverage. It is widely observed that leverage 
ratios vary across firms within an industry (e.g., Graham & Leary, 2011; 
MacKay & Phillips, 2005). In the oil industry, relatively weak shale oil 
producers tend to have much higher leverage and bankruptcy risk than 
those of biggest oil companies. More broadly, as Myers (2001) criti-
cized, strong firms appear to forgo tax benefits despite their very low 
default probabilities. MacKay and Phillips (2005) show that incumbents 
tend to have lower leverage and higher profitability than entrants and 
exiters, whereas Mitani (2014) shows that firms with higher market 
share tend to have lower leverage. These empirical observations are 
frequently explained through theories related to the difficulties weak 
firms face in executing debt buybacks, debt overhang, and dynamic 
(and infrequent) leverage adjustments. Our model, however, provides 
an alternative explanation for these phenomena.

Following the standard models (e.g., Goldstein et al., 2001; Leland, 
1994), our model assumes the post-bankruptcy value as the discounted 
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value of the unlevered value. However, some papers, including Lam-
brecht and Myers (2008), Mella-Barral and Perraudin (1997), Nishihara 
and Shibata (2021), and Shibata and Nishihara (2018) assume a con-
stant component of the post-bankruptcy value (e.g., constant scrap 
value). The presence of constant liquidation value generates the possi-
bility of riskless debt financing, but its mechanism is different from that 
of this paper. In these models, shareholders can retire the principal of 
debt by a part of the constant liquidation value and obtain the residual 
value. In such a situation, the firm exits the market, but debt becomes 
riskless.8 In contrast, in our model, protection against downside risks 
can lead the firm to operate perpetually in the market, which makes 
debt riskless.

Finally, it should be noted that our model does not help resolve 
the credit spread puzzle. The credit spread puzzle means that observed 
credit spreads are much higher than those implied by structural models 
(especially those based on a GBM). High observed spreads require un-
realistically high default probabilities in structural models. Specifically, 
historical default probabilities of investment grade bonds are much 
lower than the model-implied default probabilities. Many studies, such 
as Huang and Huang (2001), argue that observed spreads incorporate 
components beyond default probabilities (e.g., liquidity and asset risk 
premiums), framing the puzzle as a pricing issue. As in the standard 
structural models (e.g., Goldstein et al., 2001; Leland, 1994), our model 
does not account for liquidity and asset risk premiums. Therefore, while 
our model explains why firms with very low default probabilities may 
adopt conservative leverage, it does not address why such firms’ credit 
spreads remain elevated despite these low default probabilities. This 
pricing question lies outside our paper’s scope.

3.3. Debt issuance constraint

This subsection interprets 𝑥𝐿 = 𝑘𝐿𝑥 as the public intervention 
threshold. In such regulated markets (e.g., utility, agricultural, and 
financial industries), governments might not only save firms from 
financial distress but also regulate excessive uses of debt to remove 
bankruptcy risk. To explore the effects of such a leverage regulation 
on the outcome, this subsection extends the baseline model to a model 
with an upper limit of debt issuance. The extended model assumes that 
coupon 𝐶 must satisfy 𝐶 ≤ 𝐶̄ = 𝑘𝐶𝑥 for a given upper limit 𝐶̄ = 𝑘𝐶𝑥, 
where we use the notation 𝑘𝐶 (> 0) to simplify the equations derived 
in this section. The constraint is interpreted as a constraint on the 
book value of debt (i.e., 𝐶∕𝑟 ≤ 𝑘𝐶𝑥∕𝑟). However, as we will see in 
Section 4.5, 𝐷(𝑥) and 𝐿𝑉 (𝑥) monotonically increases in 𝑘𝐶 . Hence, the 
results will remain unchanged even if we assume a constraint on the 
market value of debt or leverage. Assume that 𝐶̄ < 𝐶0(𝑥), i.e., 𝑘𝐶 < 𝛿∕ℎ
because the firm is unconstrained otherwise.

For 𝑘𝐶 ≤ 𝛿𝑘𝐿, the firm optimally chooses the maximum coupon 
𝑘𝐶𝑥 and obtain firm value 𝐹𝑛(𝑥; 𝑘𝐶𝑥) because there is no possibility of 
bankruptcy (see Proposition  1). For 𝑘𝐶 ∈ (𝛿𝑘𝐿, 𝛿∕ℎ), the firm solves 
max{𝐹𝑑 (𝑥; 𝑘𝐶𝑥), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)} because 𝐹𝑑 (𝑥;𝐶) increases in 𝐶 ≤ 𝐶0(𝑥) =
𝛿𝑥∕ℎ. It follows from (16) that 

𝐹𝑑 (𝑥; 𝑘𝐶𝑥) =

(

1 +
𝜏𝑘𝐶
𝑟𝜋

−
(

𝑘𝐶
𝛿

)1−𝛾 (

𝛼 +
𝜏𝑘𝐶𝛿
𝑟𝜋

)

−
𝑘1−𝛾𝐿 (1 − 𝛼)

𝛾

)

𝜋𝑥.

(23)

By (21) and (23), we have
𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) − 𝐹𝑑 (𝑥; 𝑘𝐶𝑥) = 𝑔̄(𝑘𝐿)𝜋𝑥,

8 Luo et al. (2016) and Wang, Yang, and Zhang (2015) examine joint invest-
ment and financing decisions with guarantee contracts. With such guarantee 
contracts, debt is also riskless for lenders because insurers will compensate 
lenders for loss due to bankruptcy.
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where 

𝑔̄(𝑘𝐿) =
𝜏(𝛿𝑘𝐿 − 𝑘𝐶 )

𝑟𝜋
+
(

𝑘𝐶
𝛿

)1−𝛾 (

𝛼 +
𝜏𝑘𝐶𝛿
𝑟𝜋

)

−
𝑘1−𝛾𝐿 𝛼
𝛾

. (24)

The next proposition shows the equity, debt, firm values, coupon, 
leverage, and credit spreads, denoted by 𝐸̄(𝑥), 𝐷̄(𝑥), 𝐹 (𝑥), 𝐶̄(𝑥), 𝐿𝑉 (𝑥), 
and ̄𝐶𝑆(𝑥), respectively, under the debt issuance constraint. For proof, 
see Appendix  D.

Proposition 4.  There exists a unique solution 𝑘𝐿 ∈ (0,min{𝑘∗𝐿, 𝑘𝐶∕𝛿}) to 
𝑔̄(𝑘𝐿) = 0. The solution 𝑘𝐿 increases in 𝑘𝐶 .

For 𝑘𝐿 < 𝑘𝐿, the firm issues risky debt with coupon 𝑘𝐶𝑥 and goes 
bankrupt at default threshold 𝑥0(𝑘𝐶𝑥) (i.e., the default-possible case). The 
equity, debt, firm values, coupon, leverage, and credit spreads are given 
by 𝐸̄(𝑥) = 𝐸0(𝑥; 𝑘𝐶𝑥), 𝐷̄(𝑥) = 𝐷𝑑 (𝑥; 𝑘𝐶𝑥), 𝐹 (𝑥) = 𝐹𝑑 (𝑥; 𝑘𝐶𝑥), 𝐶̄(𝑥) =
𝑘𝐶𝑥, 𝐿𝑉 (𝑥) = 𝐷𝑑 (𝑥; 𝑘𝐶𝑥)∕𝐹𝑑 (𝑥; 𝑘𝐶𝑥), and ̄𝐶𝑆(𝑥) = 𝑘𝐶𝑥∕𝐷𝑑 (𝑥; 𝑘𝐶𝑥) − 𝑟, 
respectively.

For 𝑘𝐿 ∈ [𝑘𝐿, 𝑘𝐶∕𝛿], the firm riskless debt with coupon 𝛿𝑘𝐿𝑥 and 
never goes bankrupt (i.e., the no-default case). The equity, debt, firm values, 
coupon, leverage, and credit spreads are given by 𝐸̄(𝑥) = 𝐸𝑛(𝑥; 𝛿𝑘𝐿𝑥), 𝐷̄(𝑥)
= 𝛿𝑘𝐿𝑥∕𝑟, 𝐹 (𝑥) = 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥), 𝐶̄(𝑥) = 𝛿𝑘𝐿𝑥, 𝐿𝑉 (𝑥) = 𝛿𝑘𝐿𝑥∕(𝑟𝐹𝑛(𝑥;
𝛿𝑘𝐿𝑥)), and ̄𝐶𝑆(𝑥) = 0, respectively.

For 𝑘𝐿 > 𝑘𝐶∕𝛿, the firm riskless debt with coupon 𝑘𝐶𝑥 and never 
goes bankrupt (i.e., the no-default case). The equity, debt, firm values, 
coupon, leverage, and credit spreads are given by 𝐸̄(𝑥) = 𝐸𝑛(𝑥; 𝑘𝐶𝑥), 𝐷̄(𝑥) =
𝑘𝐶𝑥∕𝑟, 𝐹 (𝑥) = 𝐹𝑛(𝑥; 𝑘𝐶𝑥), 𝐶̄(𝑥) = 𝑘𝐶𝑥, 𝐿𝑉 (𝑥) = 𝑘𝐶𝑥∕(𝑟𝐹𝑛(𝑥; 𝑘𝐶𝑥)), and 
̄𝐶𝑆(𝑥) = 0, respectively. 
As in Proposition  2, in each case of Proposition  4, 𝐹 (𝑥), 𝐸̄(𝑥), 𝐷̄(𝑥), 

and 𝐶̄(𝑥) are linear with respect to initial EBIT 𝑥 = 𝑋(0), and 𝐿𝑉 (𝑥)
and ̄𝐶𝑆(𝑥) are independent of 𝑥. We can interpret 𝑘𝐿 as the lowest level 
to achieve the no-default case. For 𝑘𝐿 < 𝑘𝐿 (i.e., the default-possible 
case), riskless debt capacity 𝛿𝑘𝐿𝑥∕𝑟 is not sufficient, and hence, the firm 
issues risky debt with the maximum coupon 𝑘𝐶𝑥. For 𝑘𝐿 ∈ [𝑘𝐿, 𝑘𝐶𝑥∕𝛿]
(i.e., the no-default case), riskless debt capacity 𝛿𝑘𝐿𝑥∕𝑟 is large enough 
to lead the firm to choose riskless debt. For 𝑘𝐿 > 𝑘𝐶∕𝛿 (i.e., the no-
default case), debt with any 𝐶 ≤ 𝑘𝐶𝑥 becomes riskless, and hence, the 
firm issues riskless debt with the maximum coupon 𝑘𝐶𝑥.9 Proposition 
4 nests Proposition  2 as the limiting case of 𝑘𝐶 → 𝛿∕ℎ because 𝑔̄(𝑘𝐿)
and 𝑘𝐿 agree with 𝑔(𝑘𝐿) and 𝑘∗𝐿 in the limiting case.

Proposition  4 shows that lower 𝑘𝐶 decreases 𝑘𝐿 and firm value 
𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥). That is, with a stronger leverage regulation, the govern-
ment can weaken market intervention, but the firm value lowers. In 
reality, the government’s regulation and intervention require direct and 
indirect costs, causing spillover effects on other firms and industries. 
The combination of strong regulation (i.e., low 𝑘𝐶 ) and weak interven-
tion (i.e, low 𝑘𝐿) will decrease the intervention cost but increase the 
regulation cost. The government chooses one from the set {(𝑘𝐶 , 𝑘𝐿) ∣
0 ≤ 𝑘𝐶 ≤ 𝛿∕ℎ} so that it can minimize the total costs based on the 
trade-off. It is beyond the scope of this paper to model the total social 
costs and derive the optimal choice. Note that the critical barrier 𝑘𝐿𝑥
is lower than 𝑥0(𝑘𝐶𝑥) = 𝑘𝐶𝑥∕𝛿. As in Proposition Proposition  2, this 
implies that by the ex ante commitment, the government can improve 
the efficiency of the market intervention policy.

Although this paper interprets 𝑘𝐶 as a leverage regulation, it can be 
interpreted as a financing constraint imposed by debt holders. In this 
context, some papers investigate the effects of a borrowing constraint 
on the investment and financing timing problems with no barrier 
(e.g., Shibata & Nishihara, 2012, 2015, 2018). In particular, Nishihara 
et al. (2023) and Shibata and Nishihara (2018) show that under very 

9 Although the debt issuance constraint is imposed even for riskless debt 
in this paper, it may be imposed only for risky debt to reduce default risk 
(see Nishihara, Shibata, & Zhang, 2023). In that setup, the firm issues riskless 
debt 𝛿𝑘𝐿𝑥∕𝑟 for any 𝑘𝐿 ≥ 𝑘𝐿, and it does not matter whether 𝑘𝐿 is higher than 
𝑘 ∕𝑟.
𝐶
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hard borrowing constraints, the firm tends to issue riskless debt in the 
models with constant liquidation value.10 The previous results align 
with our result that lower 𝑘𝐶 decreases 𝑘𝐿.

As in Proposition  3, we can analytically prove the comparative 
statics with respect to barrier level 𝑘𝐿. For proof, see Appendix  E.

Proposition 5.  For 𝑘𝐿 < 𝑘𝐿 (i.e., the default-possible case), 𝐷̄(𝑥), 𝐹 (𝑥), 
and 𝐿𝑉 (𝑥) increase in 𝑘𝐿, ̄𝐶𝑆(𝑥) decreases in 𝑘𝐿, and 𝐶̄(𝑥) = 𝑘𝐶𝑥, 
𝑥0(𝐶̄) = 𝑘𝐶𝑥∕𝛿, and 𝐸̄(𝑥) = 𝐸0(𝑥; 𝑘𝐶𝑥) are constant.

At 𝑘𝐿 = 𝑘𝐿 (i.e., the switching point), 𝐸̄(𝑥) jumps upward, 𝐷̄(𝑥), 𝐶̄(𝑥),
𝐿𝑉 (𝑥), and ̄𝐶𝑆(𝑥) jump downward, and 𝐹 (𝑥) is continuous.

For 𝑘𝐿 ∈ [𝑘𝐿, 𝑘𝐶∕𝛿] (i.e., the no-default case), 𝐷̄(𝑥), 𝐹 (𝑥), 𝐶̄(𝑥), and 
𝐿𝑉 (𝑥) increase in 𝑘𝐿, 𝐸̄(𝑥) decreases in 𝑘𝐿, and ̄𝐶𝑆(𝑥) is 0.

For 𝑘𝐿 > 𝑘𝐶∕𝛿 (i.e., the no-default case), 𝐸̄(𝑥) and 𝐹 (𝑥) increase in 
𝑥𝐿, 𝐿𝑉 (𝑥) decrease in 𝑘𝐿, and 𝐷̄(𝑥) = 𝑘𝐶𝑥∕𝑟, 𝐶̄(𝑥) = 𝑘𝐶𝑥, ̄𝐶𝑆(𝑥) = 0 are 
constant. 

Proposition  5 shows that the comparative statics with respect to 
barrier level 𝑘𝐿 are mostly unchanged from Proposition  3, even if the 
model includes the debt issuance constraint. At 𝑘𝐿 = 𝑘𝐿, the values, 
except firm value 𝐹 (𝑥), jump because coupon 𝐶̄(𝑥) jumps from 𝑘𝐶𝑥
(i.e., the default-possible case) to 𝛿𝑘𝐿𝑥 (i.e., the no-default case). All 
the values are continuous at 𝑘𝐿 = 𝑘𝐶∕𝛿 because 𝐶̄(𝑥) is continuous. 
Due to the switching point 𝑘𝐿 = 𝑘𝐿, 𝐸̄(𝑥), 𝐷̄(𝑥), 𝐶̄(𝑥), and 𝐿𝑉 (𝑥) become 
nonmonotonic with respect to 𝑘𝐿.

4. Numerical analysis and implications

4.1. Baseline results

This section conducts numerical analyses, including comparative 
statics with respect to barrier level 𝑘𝐿, volatility 𝜎, growth rate 𝜇, 
bankruptcy cost 𝛼, and debt limit level 𝑘𝐶 . The baseline parameter 
values are set as in Table  1, where the values of 𝑟, 𝜇, 𝜎, 𝜏, and 𝛼 are 
standard in dynamic corporate finance literature and reflect a typical 
S&P firm (e.g., Arnold, 2014; Morellec, 2001; Nishihara et al., 2023). 
The initial EBIT value is normalized as 𝑥 = 𝑋(0) = 1. For these 
parameter values, 𝜋, 𝛾, 𝛿, ℎ, and 𝜓 are computed as in Table  1, and the 
lowest level to achieve the no-default case becomes 𝑘∗𝐿 = 0.153. In the 
baseline case, we set 𝑘𝐿 = 0.2 (i.e., the no-default case), which is close 
to 𝑘∗𝐿 = 0.153, so that the outcome will switch between the no-default 
and default-possible cases with varying levels of other parameters (cf. 
Section 4.3, 4.4, and 4.5). We calculated the expected time for 𝑋(𝑡)
to hit the barrier, finding it to be log(𝑘𝐿)∕(𝜇 − 0.5𝜎2) = 160.9 and 
187.7 years for 𝑘𝐿 = 0.2 and 𝑘∗𝐿 = 0.153, respectively. However, the 
expected time may be less informative as it becomes infinite when 
𝜇 − 0.5𝜎2 > 0 due to the assumption that 𝑋(𝑡) follows a GBM. As 
an alternative, we consider the probability of 𝑋(𝑡) hitting the barrier 
within five years, yielding probabilities of 11.6% and 6.6% for 𝑘𝐿 = 0.2
and 𝑘∗𝐿 = 0.153, respectively.

Although a full model calibration is outside the scope of this paper, 
we briefly outline the process for estimating 𝑘𝐿. First, we calibrate a 
GBM 𝑋(𝑡) using a firm’s EBIT. When the firm’s EBIT is primarily deter-
mined by a specific commodity price (e.g., oil price for an oil producer 
or a specific agricultural product price for its producer), we estimate the 
EBIT function of the commodity price using historical price and EBIT 
data. The price floor can then be estimated using historical thresholds, 
such as break-even prices or exit points for shale oil producers, and 
break-even prices or intervention thresholds for agricultural producers. 
Substituting this price floor into the EBIT function provides 𝑘𝐿. When 

10 In these previous models, a firm optimally chooses risky debt financing in 
the first-best case with no financing constraint. This differs from this paper’s 
result (cf. Proposition  2). Regarding this issue, Shibata and Nishihara (2023) 
show that with a high degree of information asymmetry between managers 
and shareholders, the firm can use riskless debt financing.
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EBIT cannot be directly linked to a specific price, estimating 𝑘𝐿 may 
be challenging. An alternative approach is to estimate the probability 
of critical events (e.g., competitor exits or market interventions) within 
a certain time horizon (e.g., five years) using historical data. From this 
probability, 𝑘𝐿 can be calibrated indirectly.

Fig.  1 depicts firm value 𝐹 (𝑥;𝐶) for varying levels of coupon 𝐶 and 
barrier level 𝑘𝐿. As shown by (19) in Proposition  1, 𝐹 (𝑥;𝐶) increases 
linearly in 𝐶 up to 𝐶 = 𝛿𝑘𝐿𝑥 = 0.435, 0.333, and 0.217 in the top, 
center, and bottom panels, respectively. In each panel, 𝐹 (𝑥;𝐶) jumps 
downward after point 𝐶 = 𝛿𝑘𝐿𝑥 because 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) > 𝐹𝑑 (𝑥; 𝛿𝑘𝐿𝑥)
holds in (16) and (19). All the results are shown by line graphs in 
Section 4, and lines that look vertical stand for jumps. For the baseline 
parameter values, we have 𝐶0(𝑥) = 0.623. For 𝐶 > 𝛿𝑘𝐿𝑥, 𝐹 (𝑥;𝐶) =
𝐹𝑑 (𝑥;𝐶) takes its maximum value at 𝐶 = 𝐶0(𝑥) = 0.623, whereas for 
𝐶 ≤ 𝛿𝑘𝐿𝑥, 𝐹 (𝑥;𝐶) = 𝐹𝑛(𝑥;𝐶) takes its maximum value at 𝐶 = 𝛿𝑘𝐿𝑥 =
0.435, 0.333, and 0.217 in the panels. In the center panel (i.e., 𝑘𝐿 =
𝑘∗𝐿 = 0.153), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) agrees with 𝐹𝑑 (𝑥;𝐶0(𝑥)), and hence, the firm is 
indifferent to the choice between coupon 𝛿𝑘𝐿𝑥 = 0.333 or 𝐶0(𝑥) = 0.623. 
In the baseline case (i.e., 𝑘𝐿 = 0.2; see the top panel), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) is 
higher than 𝐹𝑑 (𝑥;𝐶0(𝑥)), and the firm chooses 𝐶(𝑥) = 𝛿𝑘𝐿𝑥 = 0.435
(i.e., riskless debt). In the bottom panel (i.e., 𝑘𝐿 = 0.1), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)
is lower than 𝐹𝑑 (𝑥;𝐶0(𝑥)), and the firm chooses 𝐶(𝑥) = 𝐶0(𝑥) = 0.623
(i.e., risky debt).

Table  2 presents the values with no barrier and barrier level 𝑘𝐿 =
0.2, which are computed for the baseline parameter values in Table 
1. In the baseline model, the firm prefers riskless capital structure 
(i.e., the no-default case). The firm issues debt up to the riskless debt 
capacity (i.e., 𝐷(𝑥) = 𝛿𝑥𝐿∕𝑟 = 8.7) to obtain the maximum tax benefits. 
Leverage becomes 𝐿𝑉 (𝑥) = 0.38, but credit spreads are 𝐶𝑆(𝑥) = 0
because of riskless debt. In the no-barrier model, the firm chooses 
coupon 𝐶0(𝑥) = 0.623 based on the trade-off between the tax benefits 
and bankruptcy costs of debt. The firm will go bankrupt when 𝑋(𝑡)
falls to 𝑥0(𝐶0(𝑥)) = 0.287. Hence, 𝐷0(𝑥) = 10.84 is discounted from 
𝐶0(𝑥)∕𝑟 = 12.46 due to default risk, and credit spreads are positive 
(i.e., 𝐶𝑆0(𝑥) = 0.00751).

In Table  2, it holds that 𝐶(𝑥) < 𝐶0(𝑥), 𝐸(𝑥) > 𝐸0(𝑥), 𝐷(𝑥) <
𝐷0(𝑥), 𝐹 (𝑥) > 𝐹0(𝑥), 𝐿𝑉 (𝑥) < 𝐿𝑉0(𝑥), and 𝐶𝑆(𝑥) < 𝐶𝑆0(𝑥). It is straight-
forward that 𝐹 (𝑥) > 𝐹0(𝑥) and 𝐶𝑆(𝑥) < 𝐶𝑆0(𝑥), and 𝐸(𝑥) > 𝐸0(𝑥)
readily follows from 𝐶(𝑥) < 𝐶0(𝑥). Inequalities 𝐶(𝑥) < 𝐶0(𝑥), 𝐷(𝑥) <
𝐷0(𝑥), and 𝐿𝑉 (𝑥) < 𝐿𝑉0(𝑥) are notable. As discussed after Proposition 
3, these inequalities imply that barrier level 𝑘𝐿 = 0.2 leads the firm to 
strategically reduce debt to take advantage of riskless capital structure 
rather than to increase debt. In particular, 𝐿𝑉 (𝑥) = 0.38 is much lower 
than 𝐿𝑉0(𝑥) = 0.485. As explained in Section 3.2, the model can help 
explain firms with very low default probabilities observed in the real 
world.

4.2. Effects of barrier level 𝑘𝐿

Fig.  2 depicts 𝐶(𝑥), 𝑥0(𝐶(𝑥)), 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥), 𝐿𝑉 (𝑥), and 𝐶𝑆(𝑥) for 
varying levels of barrier 𝑘𝐿.11 Region 𝑘𝐿 < 𝑘∗𝐿 = 0.153 is the default-
possible case, whereas region 𝑘𝐿 ≥ 𝑘∗𝐿 = 0.153 is the no-default case. 
Default threshold 𝑥0(𝐶(𝑥)) is depicted only in the default-possible case. 
For comparison, Fig.  2 also depicts the benchmark results with no 
barrier by dashed lines. The benchmark results do not depend on 𝑥𝐿.

Although Proposition  3 has already shown the comparative static re-
sults analytically, Fig.  2 shows them more closely and quantitatively.12 

11 Rodrigues (2025) also studies the comparative statics with respect to floor 
levels in numerical examples. Although his model is more complicated than 
our model, the effects of floor levels on capital structure are qualitatively 
unchanged from our results. Indeed, Rodrigues (2025) also shows that a higher 
floor leads to riskless capital structure.
12 Fig.  7 in Appendix  F shows that these results hold robustly in the extended 
model with both upper and lower reflecting barriers.
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Fig. 1. Firm value 𝐹 (𝑥;𝐶) for varying levels of coupon 𝐶. The top, center, and bottom 
panels show firm value 𝐹 (𝑥;𝐶) for barrier level 𝑘𝐿 = 0.2 (baseline), 𝑘𝐿 = 𝑘∗𝐿 = 0.153, 
and 𝑘𝐿 = 0.1, respectively, where 𝐹 (𝑥;𝐶) agrees with the no-default firm value 𝐹𝑛(𝑥;𝐶)
for 𝐶 ≤ 𝛿𝑘𝐿𝑥 = 0.435, 0.333, and 0.217 and the default-possible firm value 𝐹𝑑 (𝑥;𝐶) for 
𝐶 > 𝛿𝑘𝐿𝑥 = 0.435, 0.333, and 0.217, respectively. The parameter values are set as in 
Table  1. In all the panels, the default-possible firm value 𝐹𝑑 (𝑥;𝐶) takes the maximum 
at 𝐶 = 𝐶0(𝑥) = 0.623.

For instance, we find that the effects of 𝑘𝐿 on 𝐷(𝑥), 𝐹 (𝑥), 𝐿𝑉 (𝑥), and 
𝐶𝑆(𝑥) are very weak in the default-possible region (i.e., 𝑘𝐿 < 𝑘∗𝐿 =
0.153). This is because 𝐶(𝑥) = 𝐶0(𝑥) and 𝐸(𝑥) = 𝐸0(𝑥) do not depend 
on 𝑘𝐿 and the third term in (15) is very small. Thus, 𝑘𝐿 does not 
largely change 𝐷(𝑥), 𝐹 (𝑥), 𝐿𝑉 (𝑥), and 𝐶𝑆(𝑥) from the benchmark values 
𝐷0(𝑥), 𝐹0(𝑥), 𝐿𝑉0(𝑥), and 𝐶𝑆0(𝑥). However, in the no-default region 
(i.e., 𝑘𝐿 ≥ 𝑘∗𝐿 = 0.153), the effects of 𝑥𝐿 on 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥), and 𝐿𝑉 (𝑥)
are strong because 𝐶(𝑥) = 𝛿𝑘𝐿𝑥 increases linearly in 𝑘𝐿. As discussed 
after Proposition  3, 𝐶(𝑥), 𝐷(𝑥), and 𝐿𝑉 (𝑥) are lower than 𝐶0(𝑥), 𝐷0(𝑥), 
and 𝐿𝑉0(𝑥) for 𝑘𝐿 close to 𝑘∗𝐿 = 0.153, whereas 𝐶(𝑥), 𝐷(𝑥), and 𝐿𝑉 (𝑥)
are higher than 𝐶0(𝑥), 𝐷0(𝑥), and 𝐿𝑉0(𝑥) for 𝑘𝐿 > 0.3.

These results entail several implications. First, we interpret 𝑘𝐿 as 
the degree of competitive advantage. Then, the model shows that 
leverage can be nonmonotonic with respect to the degree of compet-
itive advantage. Notably, firms with intermediate levels of competitive 
advantage can take low leverage with only riskless debt. As discussed 
after Proposition  3, this result aligns with empirical evidence that a 
firm that has competitive advantage in its industry tends to have lower 
leverage than relatively weaker competitors (e.g., MacKay & Phillips, 
2005; Mitani, 2014).

Next, we interpret 𝑘𝐿 as the strength of public intervention. The 
critical intervention threshold 𝑘∗ 𝑥 = 0.153 is not very high. In absence 
𝐿
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Fig. 2. Comparative statics with respect to barrier level 𝑘𝐿. The other parameter values are set as in Table  1. The figure depicts coupon 𝐶(𝑥), default threshold 𝑥0(𝐶(𝑥)), equity 
value 𝐸(𝑥), debt value 𝐷(𝑥), firm value 𝐹 (𝑥), leverage 𝐿𝑉 (𝑥), and credit spread 𝐶𝑆(𝑥) in the baseline model by solid lines. Region 𝑘𝐿 < 𝑘∗𝐿 = 0.153 is the default-possible case, 
whereas region 𝑘𝐿 ≥ 𝑘∗𝐿 = 0.153 is the no-default case. The dashed lines represent the benchmark results with no barrier.
of the ex ante commitment to the intervention threshold, as explained 
after Proposition  2, the government would need intervention threshold 
𝑥𝐿 = 𝑘𝐿𝑥 = 𝑥0(𝐶0(𝑥)) = 0.287 to prevent the firm from bankruptcy 
ex post. With a credible commitment, the government can prevent 
the firm from bankruptcy with less effort. In fact, the probability of 
𝑋(𝑡) hitting the barrier within five years becomes 6.6% and 22.5% for 
𝑘∗𝐿 = 0.153 and 𝑘𝐿 = 0.287, respectively. Of course, in the real world 
including uncertainty and diversity of firm parameter values, it may 
be difficult for the government to match 𝑘𝐿 = 𝑘∗𝐿 perfectly. A low 
market intervention threshold (i.e., 𝑘𝐿 < 𝑘∗𝐿 = 0.153) hardly influences 
capital structure, bankruptcy probability, and firm value, whereas a 
high market intervention threshold (say, 𝑘𝐿 > 0.3) prevents bankruptcy 
but leads to the firm’s moral hazard (i.e., increasing leverage to gain tax 
benefits). It is important to set an appropriate intervention threshold 
(i.e., 𝑘𝐿 ≈ 𝑘∗𝐿 = 0.153) to prevent bankruptcy and reduce leverage 
effectively.
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Ovtchinnikov (2010) and Sanyal and Bulan (2011) show that firms 
in regulated markets tend to have higher leverage than those in unregu-
lated markets, with deregulation reducing leverage by about 25%. This 
decrease is partly due to changes in bankruptcy risk but also other busi-
ness factors such as 𝜎 and 𝜇. Our model suggests that protection against 
downside risk in regulated markets might be overly strong (e.g., 𝑘𝐿 =
0.35), potentially leading to inefficiencies. Bortolotti, Cambini, Rondi, 
and Spiegel (2011) empirically show that regulated firms strategically 
increase leverage to obtain better regulatory outcomes (i.e., higher 
regulated prices). Our model captures this behavior when 𝑘𝐿 increases 
with debt level 𝐶. In an extreme scenario where the government’s 
intervention prevents bankruptcy entirely (i.e., 𝑥𝐿 = 𝑘𝐿𝑥 = 𝑥𝑑 (𝐶)
for any 𝐶), the firm increases leverage and exploits the tax benefits, 
expecting the guaranteed bailout. This firm behavior is regarded as 
a moral hazard. We argue that a policy linking increased protection 
to higher debt level (i.e., 𝑘𝐿(𝐶) as an increasing function) is more 
problematic than providing protection without commitment (i.e., 𝑘 =
𝐿
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Fig. 3. Comparative statics with respect to volatility 𝜎. The other parameter values are set as in Table  1. The figure depicts coupon 𝐶(𝑥), default threshold 𝑥0(𝐶(𝑥)), equity value 
𝐸(𝑥), debt value 𝐷(𝑥), firm value 𝐹 (𝑥), leverage 𝐿𝑉 (𝑥), credit spread 𝐶𝑆(𝑥), critical barrier 𝑘∗𝐿, and state price (𝑘∗𝐿)−𝛾 in the baseline model by solid lines. Region 𝜎 < 0.17 is the 
default-possible case, while region 𝜎 ≥ 0.17 is the no-default case. The dashed lines represent the benchmark results with no barrier.
0.287). The commitment to appropriate protection independent of debt 
level (i.e., 𝑘∗𝐿 = 0.153) leads to the first-best result (i.e., preventing 
bankruptcy and reducing leverage).

4.3. Effects of volatility 𝜎

Fig.  3 depicts 𝐶(𝑥), 𝑥0(𝐶(𝑥)), 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥), 𝐿𝑉 (𝑥), 𝐶𝑆(𝑥), 𝑘∗𝐿, and 
(𝑘∗𝐿)

−𝛾 for varying levels of volatility 𝜎. Region 𝜎 < 0.17 is the default-
possible case, whereas region 𝜎 ≥ 0.17 is the no-default case. Default 
threshold 𝑥0(𝐶(𝑥)) is depicted only in the default-possible case. For 
comparison, Fig.  3 also depicts the benchmark results with no barrier 
by dashed lines.

In the default-possible region (i.e., 𝜎 < 0.17), each value moves 
in the same way as in the benchmark case with no barrier. In fact, 
higher 𝜎 decreases 𝐶(𝑥), 𝑥0(𝐶(𝑥)), 𝐷(𝑥), 𝐹 (𝑥), and 𝐿𝑉 (𝑥) and increases 
𝐸(𝑥). These results can be intuitively interpreted as follows. Higher 𝜎
increases bankruptcy risk, and the firm reduces leverage to mitigate 
bankruptcy risk. However, decreased leverage does not fully offset 
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increased bankruptcy risk with higher 𝜎, and hence, credit spreads 
increase in 𝜎. Firm value decreases in 𝜎 due to the lower leverage effect, 
although equity value increases due to decreased coupon payments. 
These results align with the standard results in previous literature 
(e.g., Leland, 1994). As in Fig.  2, Fig.  3 also shows that 𝑘𝐿 hardly affects 
the values in the default-possible region.

At 𝜎 = 0.17, the result switches from the default-possible case to the 
no-default case. Then, 𝐶(𝑥), 𝐸(𝑥), 𝐷(𝑥), 𝐿𝑉 (𝑥), and 𝐶𝑆(𝑥) jump at this 
point. In the no-default region (i.e., 𝜎 ≥ 0.17), 𝐶(𝑥), 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥), 
and 𝐿𝑉 (𝑥) move contrary to the benchmark case with no barrier. The 
comparative statics are explained by the sensitivity of riskless debt 
capacity 𝛿𝑘𝐿𝑥∕𝑟 to 𝜎. Note that 𝛿𝑘𝐿𝑥∕𝑟 increases in 𝜎 by 𝜕𝛿∕𝜕𝜎 >
0. Then, 𝐶(𝑥) = 𝛿𝑘𝐿𝑥,𝐷(𝑥) = 𝛿𝑘𝐿𝑥∕𝑟, 𝐹 (𝑥), and 𝐿𝑉 (𝑥) increase in 
𝜎, whereas 𝐸(𝑥) decreases in 𝜎 due to increased 𝐶(𝑥). That is, with 
higher 𝜎, the barrier becomes more effective, allowing the firm to 
increase leverage and enjoy tax benefits while avoiding default. This 
result suggests that the effects of volatility on leverage and firm value 
for firms with sufficient competitive advantage or protection against 
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downside risks can differ from those of standard firms. Ovtchinnikov 
(2010) found a strong positive relation between leverage and volatility 
in regulated industries, in contrast to the strong negative relation 
observed after deregulation. Our model provides a novel mechanism 
to explain this positive relation in the regulated markets.

Note that the above results are based on the assumption of constant 
barrier level 𝑘𝐿 = 0.2. Barrier level 𝑘𝐿 = 0.2 is more effective with 
higher 𝜎 because the probability of 𝑋(𝑡) hitting the barrier increases 
with higher 𝜎. The bottom-right panel of Fig.  3 shows that the critical 
level 𝑘∗𝐿 and the state price13 (𝑘∗𝐿)−𝛾 decrease and increase, respectively, 
in 𝜎. The comparative statics of 𝑘∗𝐿 are explained by the decrease in 
𝐹𝑑 (𝑥) and increase in 𝐹𝑛(𝑥) with higher 𝜎 (see 𝐹 (𝑥) of Fig.  3). By these 
two effects, 𝑘∗𝐿, which is the unique solution to (22), decreases in 𝜎. 
Despite the decrease in 𝜎, (𝑘∗𝐿)−𝛾 increases in 𝜎 due to 𝜕𝛾∕𝜕𝜎 > 0. In 
other words, higher 𝜎 makes 𝑋(𝑡) more volatile and increases the prob-
ability of 𝑋(𝑡) hitting barrier 𝑘∗𝐿𝑥. In terms of public intervention, these 
results suggest that the government needs a lower market intervention 
threshold but more frequent interventions to prevent a more volatile 
firm from bankruptcy.

An acquisition tends to increase EBIT and decrease EBIT volatility 
through diversification, thus lowering the probability of 𝑋(𝑡) hitting 
the barrier and the firm’s benefit from the barrier.14 This may cause 
the firm to shift its capital structure from riskless debt to risky debt 
by increasing leverage after an acquisition. However, the barrier level 
may also change with acquisition. For example, the government could 
optimally adjust the intervention threshold so that the firm could 
maintain its riskless debt structure after an acquisition.

4.4. Effects of growth rate 𝜇

Fig.  4 depicts 𝐶(𝑥), 𝑥0(𝐶(𝑥)), 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥), 𝐿𝑉 (𝑥), 𝐶𝑆(𝑥), 𝑘∗𝐿, and 
(𝑘∗𝐿)

−𝛾 for varying levels of growth rate 𝜇. Region 𝜇 ≤ 0.0252 is the 
no-default case, whereas region 𝜇 > 0.0252 is the default-possible case. 
Default threshold 𝑥0(𝐶(𝑥)) is depicted only in the default-possible case. 
For comparison, Fig.  4 also depicts the benchmark results with no 
barrier by dashed lines.

As in Figs.  2 and 3, Fig.  4 shows that all the values in the baseline 
case are almost the same as those in the benchmark case in the default-
possible region (i.e., 𝜇 > 0.0252). One reason is that the firm choose 
the same coupon 𝐶(𝑥) = 𝐶0(𝑥), and the other reason is that the state 
price contingent on 𝑋(𝑡) hitting the barrier (i.e., 𝑘−𝛾𝐿 ) is very low. We 
omit the details of the comparative statics in the default-possible case 
because they are the same as those in the standard model with no 
barrier (e.g., Leland, 1994).

At the switching point 𝜇 = 0.0252, 𝐶(𝑥), 𝐸(𝑥), 𝐷(𝑥), 𝐿𝑉 (𝑥), and 
𝐶𝑆(𝑥) jump. Even in the no-default region (i.e., 𝜇 ≤ 0.0252), 𝐶(𝑥), 𝐸(𝑥),
𝐷(𝑥), and 𝐹 (𝑥) change with 𝜇 in the same way as in the benchmark 
values. More notably, 𝐿𝑉 (𝑥) decreases in 𝜇, contrary to 𝐿𝑉0(𝑥). The 
reason is as follows. Riskless debt capacity 𝐷(𝑥) = 𝛿𝑘𝐿𝑥∕𝑟 increases in 
𝜇 by 𝜕𝛿∕𝜕𝜇 > 0, and equity value 𝐸(𝑥) = 𝐸(𝑥; 𝛿𝑘𝐿𝑥) also increases in 𝜇
by 𝜕𝜋∕𝜕𝜇 > 0. The latter effect dominates the former effect, and hence 
𝐿𝑉 (𝑥) decreases in 𝜇. This sensitivity is novel and contrasted with the 
standard result. In fact, the standard trade-off models (e.g., Leland, 
1994) predict a positive relation between leverage and growth rate 
(see 𝐿𝑉0(𝑥) in Fig.  4), but empirical studies (e.g., Frank & Goyal, 2015; 
Titman & Wessels, 1988) show a negative relation. This is well known 
as a deficit of the standard trade-off models (e.g., Demarzo, 2019). 
While numerous explanations exist for the negative relation between 
profitability and leverage, our paper provides an additional perspective. 

13 The state price denotes the present values of $1 contingent on 𝑋(𝑡) hitting 
barrier 𝑘∗𝐿𝑥.
14 In reality, the target’s EBIT may not be perfectly correlated with the 
acquirer’s EBIT. However, a model where EBIT follows the sum of GBMs is 
not analytically tractable.
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Indeed, the model predicts the negative relation for firms with sufficient 
competitive advantage or protection against downside risks because 
they set debt level by riskless debt capacity rather than the trade-off 
between the tax benefits and bankruptcy costs.

The bottom-right panel of Fig.  4 shows that 𝑘∗𝐿 and (𝑘∗𝐿)−𝛾 increase 
and decrease, respectively, in 𝜇. The former result is caused by 𝐹𝑑 (𝑥)
increasing in 𝜇 more than 𝐹𝑛(𝑥) does. Despite the increase in 𝜎, (𝑘∗𝐿)−𝛾
decreases in 𝜇 due to 𝜕𝛾∕𝜕𝜇 < 0 (i.e., higher 𝜇 decreases the prob-
ability of 𝑋(𝑡) hitting 𝑘∗𝐿𝑥). These results entail a policy implication 
that the government needs a higher market intervention threshold but 
less frequent market interventions to prevent a high-growth firm from 
bankruptcy.

4.5. Effects of bankruptcy cost 𝛼

Fig.  5 depicts 𝐶(𝑥), 𝑥0(𝐶(𝑥)), 𝐸(𝑥), 𝐷(𝑥), 𝐹 (𝑥), 𝐿𝑉 (𝑥), 𝐶𝑆(𝑥), 𝑘∗𝐿, and 
(𝑘∗𝐿)

−𝛾 for varying levels of bankruptcy cost 𝛼. Region 𝛼 < 0.199 is 
the no-default case, whereas region 𝛼 ≥ 0.199 is the default-possible 
case. Default threshold 𝑥0(𝐶(𝑥)) is depicted only in the default-possible 
case. For comparison, Fig.  5 also depicts the benchmark results with no 
barrier by dashed lines.

In the no-default region (i.e., 𝛼 ≥ 0.199), neither value depends on 𝛼
because the firm will never go bankrupt. In the default-possible region 
(i.e., 𝛼 < 0.199), all the values change with 𝛼 in the same way as in the 
benchmark values with no barrier. In this region, higher 𝛼 increases the 
disadvantages of debt and hence decreases 𝐶(𝑥), 𝐷(𝑥), and 𝐿𝑉 (𝑥). Firm 
value 𝐹 (𝑥) and 𝐶𝑆(𝑥) also decrease in 𝛼 due to the decreased leverage 
effect, whereas 𝐸(𝑥) increases in 𝛼 due to decreased coupon payments.

By (22) and 𝜕ℎ∕𝜕𝛼 > 0, we can easily prove that 𝑘∗𝐿 decreases in 
𝛼. The bottom-right panel of Fig.  3 numerically verifies the sensitivity 
of 𝑘∗𝐿 to 𝛼. Note that state price (𝑘∗𝐿)−𝛾 changes in the same way as 𝑘∗𝐿
because 𝛾 does not depend on 𝛼. This result is intuitively explained 
as follows. Higher 𝛼 increases the disadvantages of risky debt and 
decreases the leverage effect. Then, the firm is more likely to be 
better off using riskless debt rather than relying on risky debt. For 
the same reason, lower corporate tax rate 𝜏 decreases 𝑘∗𝐿 and (𝑘∗𝐿)−𝛾 , 
although we omit a figure illustrating the comparative statics with 
respect to 𝜏. Indeed, lower 𝜏 decreases the tax advantages of debt, 
which decreases the firm’s motive to use risky debt. The comparative 
static results have the following implications of public intervention. 
The government can prevent the firm from bankruptcy by weaker and 
fewer market interventions if it imposes a lower corporate tax rate and 
a more stringent bankruptcy law with higher bankruptcy penalty. This 
is because with such public policies, the firm has fewer advantages from 
issuing risky debt and is more likely to choose riskless capital structure.

4.6. Effects of debt limit level 𝑘𝐶

So far, we have examined the effects of the key parameters on the 
results in the baseline model. This subsection studies the effects of 
upper limit 𝐶̄ = 𝑘𝐶𝑥 in the constrained model of Section 3.3. For the 
baseline parameter values (i.e., Table  1), the no-default case holds by 
𝑘∗𝐿 = 0.1529 < 𝑘𝐿 = 0.2 in absence of debt issuance constraint. By Propo-
sition  4, we have 𝑘𝐿 < 𝑘∗𝐿 = 0.153 < 𝑘𝐿 = 0.2, and hence, the no-default 
case holds for any 𝑘𝐶 . We reset 𝑘𝐿 = 0.1 to depict both the no-default 
and default-possible cases. The other parameter values are set as in 
Table  1. Fig.  6 depicts 𝐶̄(𝑥), 𝑥0(𝐶̄(𝑥)), 𝐸̄(𝑥), 𝐷̄(𝑥), 𝐹 (𝑥), 𝐿𝑉 (𝑥), ̄𝐶𝑆(𝑥), 𝑘𝐿, 
and (𝑘𝐿)−𝛾 for varying levels of 𝑘𝐶 (≤ 𝛿∕ℎ = 0.623). Note that 𝑘𝐶 does 
not bind the firm for 𝑘𝐶 ≥ 𝛿∕ℎ = 0.623. Region 𝑘𝐶 ≤ 0.261 is the no-
default region, whereas region 𝑘𝐶 > 0.261 is the default-possible region. 
Default threshold 𝑥0(𝐶̄(𝑥)) is depicted only in the default-possible case. 
The no-default region is classified into region 𝑘𝐶 ∈ [0.218, 0.261], where 
𝐶̄(𝑥) = 𝛿𝑘𝐿𝑥 = 0.218 does not depend on 𝑘𝐶 , and region 𝑘𝐶 < 0.218, 
where 𝐶̄(𝑥) = 𝑘𝐶𝑥 (see Proposition  4). For comparison, Fig.  5 also 
depicts the benchmark results with no barrier under upper limit 𝐶̄ =
𝑘 𝑥 by dashed lines. In this benchmark case, the firm chooses coupon 
𝐶
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Fig. 4. Comparative statics with respect to growth rate 𝜇. The other parameter values are set as in Table  1. The figure depicts coupon 𝐶(𝑥), default threshold 𝑥0(𝐶(𝑥)), equity 
value 𝐸(𝑥), debt value 𝐷(𝑥), firm value 𝐹 (𝑥), leverage 𝐿𝑉 (𝑥), credit spread 𝐶𝑆(𝑥), critical barrier 𝑘∗𝐿, and state price (𝑘∗𝐿)−𝛾 in the baseline model by solid lines. Region 𝜇 ≤ 0.0252
is the default-possible case, whereas region 𝜇 > 0.0252 is the no-default case. The dashed lines represent the benchmark results with no barrier.
𝑘𝐶𝑥 because firm value 𝐹0(𝑥;𝐶) (see (4)) monotonically increases in 𝐶
up to 𝐶 = 𝐶0(𝑥) = 0.623.

In the default-possible region (i.e., 𝑘𝐶 > 0.261) of Fig.  6, the pres-
ence of 𝑘𝐿 hardly affects each value. The main reason is that the firm 
chooses the maximum coupon 𝑘𝐶𝑥 regardless of 𝑘𝐿. All the comparative 
static results are straightforward and the same as the benchmark results 
with no barrier. Higher 𝑘𝐶 increases 𝐷̄(𝑥) and 𝐿𝑉 (𝑥). The increased 
leverage effects increase 𝐹 (𝑥), although the increased coupon payments 
decrease 𝐸̄(𝑥) and increase ̄𝐶𝑆(𝑥). Note that each value agrees with that 
of the unconstrained baseline model for 𝑘𝐶 = 𝛿∕ℎ = 0.623 (i.e., the right 
end of each panel of Fig.  6).

The no-default region 𝑘𝐶 ∈ [0.218, 0.261] is most intriguing. In 
this region, the firm chooses riskless capital structure because 𝑘𝐿 ≤
𝑘𝐿 = 0.1 (see the bottom-right panel of Fig.  6). Riskless debt capacity 
𝛿𝑘𝐿𝑥 = 0.218 rather than debt issuance limit 𝑘𝐶𝑥 binds the firm due 
to 𝛿𝑘𝐿𝑥 = 0.218 ≤ 𝑘𝐶𝑥. Then, coupon 𝐶̄(𝑥) = 𝛿𝑘𝐿𝑥 = 0.218 is constant 
in this region. This also implies that 𝐸̄(𝑥), 𝐷̄(𝑥), 𝐹 (𝑥), and 𝐿𝑉 (𝑥) are 
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constant in this region. These results are contrasted with the benchmark 
results with no barrier.

Lastly, we turn to the no-default region 𝑘𝐶 < 0.218. In this region, 
debt issuance limit 𝑘𝐶𝑥 rather than riskless debt capacity 𝛿𝑘𝐿𝑥 = 0.218
binds the firm due to 𝑘𝐶𝑥 < 𝛿𝑘𝐿𝑥 = 0.218. Then, the firm chooses the 
maximum coupon 𝑘𝐶𝑥 as in the benchmark case with no barrier. The 
comparative static results other than ̄𝐶𝑆(𝑥) = 0 are the same with the 
standard results with no barrier. Note that each value converges to that 
of the all-equity firm for 𝑘𝐶 → 0 (i.e., the left end of each panel of Fig. 
6).

As shown by Proposition  4, the bottom-right panel of Fig.  6 shows 
that the critical level 𝑘𝐿 increases in 𝑘𝐶 . State price (𝑘𝐿)−𝛾 similarly in-
creases in 𝑘𝐶 because 𝛾 does not depend on 𝑘𝐶 . These results show that 
by regulating leverage, the government can reduce the market interven-
tion threshold and frequency to prevent the firm from bankruptcy. As 
discussed after Proposition  4, the optimal policy would lie in {(𝑘𝐶 , 𝑘𝐿) ∣
0 ≤ 𝑘𝐶 ≤ 𝛿∕ℎ}, but it may be difficult for the government to find 
a perfectly optimal pair (𝑘 , 𝑘 ). In fact, the government tends to 
𝐶 𝐿
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Fig. 5. Comparative statics with respect to bankruptcy cost 𝛼. The other parameter values are set as in Table  1. The figure depicts coupon 𝐶(𝑥), default threshold 𝑥0(𝐶(𝑥)), equity 
value 𝐸(𝑥), debt value 𝐷(𝑥), firm value 𝐹 (𝑥), leverage 𝐿𝑉 (𝑥), credit spread 𝐶𝑆(𝑥), critical barrier 𝑘∗𝐿, and state price (𝑘∗𝐿)−𝛾 in the baseline model by solid lines. Region 𝛼 < 0.199
is the default-possible case, whereas region 𝛼 ≥ 0.199 is the no-default case. The dashed lines represent the benchmark results with no barrier.
impose a uniform regulation and protection policy over firms within the 
same industry, although cash flows are affected by firm-specific factors 
and risks. That is, (𝑘𝐶 , 𝑘𝐿) differs over firms in the industry, but the 
government must choose one policy for all the firms. Regulation that 
is too weak cannot prevent bankruptcy (i.e., the region 𝑘𝐶 > 0.261), 
whereas regulation that is too strong decreases firm value inefficiently 
(i.e., the region 𝑘𝐶 < 0.218). Even if the government cannot find a 
perfect solution for all the firms, it can choose a policy within the 
plausible region (i.e., the region 𝑘𝐶 ∈ [0.218, 0.261]).

5. Conclusion

This paper investigates the capital structure model with earnings 
above a reflecting barrier. The model can approximate a firm with 
competitive advantage or public protection against downside risks. In 
the former, the barrier represents an exit threshold of competitors, 
whereas in the latter, it represents a public intervention threshold. 
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This paper explicitly derives the equity, debt, firm values, leverage, 
and credit spreads and shows their comparative statics with respect to 
barrier levels. The main results are summarized below.

First, and most notably, the barrier generates the riskless debt 
capacity, and the firm chooses either riskless or risky capital structure 
by comparing the values with the maximum riskless debt and with risky 
debt. The higher the barrier, the larger the riskless debt capacity, and 
the firm tends to prefer riskless capital structure. With intermediate 
barrier levels, the firm chooses lower leverage than the level with no 
barrier to take advantage of riskless debt.

This result can help explain debt conservatism observed in the real 
world. Indeed, the model predicts that firms with certain degrees of 
competitive advantage or public protection can issue lower levels of 
riskless debt rather than adjusting risky debt levels based on the trade-
off between the tax benefits and bankruptcy costs of debt. The result 
can also help explain why strong firms may forgo tax benefits despite 
their low default probabilities. In the no-default case, leverage increases 
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Fig. 6. Comparative statics with respect to coupon limit level 𝑘𝐶 . Barrier level 𝑘𝐿 is set at 0.1. The other parameter values are set as in Table  1. The figure depicts coupon 𝐶̄(𝑥), 
default threshold 𝑥0(𝐶̄(𝑥)), equity value 𝐸̄(𝑥), debt value 𝐷̄(𝑥), firm value 𝐹 (𝑥), leverage 𝐿𝑉 (𝑥), credit spread ̄𝐶𝑆(𝑥), critical barrier 𝑘𝐿, and state price (𝑘𝐿)−𝛾 in the model with 
upper limit 𝐶̄ = 𝑘𝐶𝑥 by solid lines. Region 𝑘𝐶 ≤ 0.261 is the no-default case, whereas region 𝑘𝐶 > 0.261 is the default-possible case. The dashed lines represent the benchmark 
results with no barrier under upper limit 𝐶̄ = 𝑘𝐶𝑥.
with higher volatility and lower growth rates, contrasting with standard 
trade-off theory. The former result aligns with empirical observations of 
a positive relation between leverage and volatility in regulated markets, 
while the latter supports empirical evidence of a negative relation 
between leverage and profitability.

The model also entails several implications of public intervention to 
protect specific firms or industries from financial distress. High lever-
age levels observed in regulated markets imply that public protection 
against downside risks may be excessively strong, potentially leading 
to inefficiencies. Using the ex ante commitment to an appropriate 
intervention threshold, the government can efficiently lead firms to 
adopt riskless capital structure with low leverage. With a more stringent 
bankruptcy law (i.e., higher bankruptcy cost), lower corporate tax rate, 
and stronger leverage regulation, the government needs weaker and 
fewer market interventions to prevent the firms from bankruptcy.
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Fig. 7. Comparative statics with respect to lower reflecting barrier level 𝑘𝐿 in the extended model, where the upper reflecting barrier is set at 5, and the other parameter values 
are set as in Table  1. The figure depicts coupon 𝐶(𝑥), default threshold 𝑥0(𝐶(𝑥)), equity value 𝐸(𝑥), debt value 𝐷(𝑥), firm value 𝐹 (𝑥), leverage 𝐿𝑉 (𝑥), and credit spread 𝐶𝑆(𝑥)
in the model with upper and lower reflecting barriers by solid lines. Region 𝑘𝐿 < 0.148 is the default-possible case, whereas region 𝑘𝐿 ≥ 0.148 is the no-default case. The dashed 
lines represent the benchmark results with no barrier.
Appendix A. Proof of Proposition  1

First, derive the equity value of the firm that operates perpetually, 
i.e., 𝐸𝑛(𝑥;𝐶). The derivation process is the same as in the reflecting 
barrier models in Chapter 8 of Dixit and Pindyck (1994). Equity value 
𝐸𝑛(𝑥;𝐶) satisfies the differential equation 

𝜇𝑥
𝜕𝐸𝑛(𝑥;𝐶)

𝜕𝑥
+ 𝜎2𝑥2

2
𝜕2𝐸𝑛(𝑥;𝐶)

𝜕2𝑥
+ (1 − 𝜏)(𝑥 − 𝐶) = 𝑟𝐸𝑛(𝑥;𝐶) (25)

for 𝑥 > 𝑥𝐿 with the boundary conditions
𝜕𝐸𝑛(𝑥𝐿;𝐶)

𝜕𝑥
= 0, (26)

lim
𝑥→∞

𝐸𝑛(𝑥;𝐶)
𝜋𝑥

<∞. (27)

Note that (26) means that the derivative of 𝐸𝑛(𝑥;𝐶) must be 0 at re-
flecting barrier 𝑥  because 𝑋(𝑡) surely increases from 𝑋(0) = 𝑥 , while 
𝐿 𝐿
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(27) stems from the fact the probability of 𝑋(𝑡) hitting 𝑥𝐿 approaches 
0 for 𝑋(0) → ∞. By (25) and (27), 𝐸𝑛(𝑥;𝐶) is expressed as

𝐸𝑛(𝑥;𝐶) = 𝜋𝑥 −
(1 − 𝜏)𝐶

𝑟
+ 𝐴𝑥𝛾 ,

where 𝐴 is a constant. By (26), we can derive

𝐴 = −
(1 − 𝛼)𝜋𝑥1−𝛾𝐿

𝛾
.

Then, 𝐸𝑛(𝑥;𝐶) is expressed as (17), where 𝑥𝐿 is replaced with 𝑘𝐿𝑥. 
Note that 𝐸𝑛(𝑘𝐿𝑥;𝐶) ≥ 0 holds if and only if 𝐶 ≤ 𝛿𝑘𝐿𝑥. Accordingly, 
for 𝐶 ≤ 𝛿𝑘𝐿𝑥, 𝐸𝑛(𝑥;𝐶) ≥ 0 holds for all 𝑥 ≥ 𝑘𝐿𝑥, which implies 
that shareholders do not prefer to receive default value 0 by declaring 
default. Then, equity value 𝐸(𝑥;𝐶) becomes 𝐸𝑛(𝑥;𝐶) in this case. Debt 
is riskless, and hence 𝐷𝑑 (𝑥;𝐶) = 𝐶∕𝑟 holds. By summing this and 
𝐸 (𝑥;𝐶), we have 𝐹 (𝑥;𝐶) as (19).
𝑛 𝑛
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On the other hand, for 𝐶 > 𝛿𝑘𝐿𝑥, 𝐸𝑛(𝑘𝐿𝑥;𝐶) < 0 holds, which 
implies that shareholders prefer to declare default at a sufficiently low 
threshold 𝑥𝑑 (≥ 𝑘𝐿𝑥). Note that 𝐶 > 𝛿𝑘𝐿𝑥 is equivalent to 𝑥0(𝐶) ≥ 𝑘𝐿𝑥. 
As in the standard literature (e.g., Goldstein et al., 2001; Shibata & 
Nishihara, 2012; Sundaresan et al., 2015), the equity value of the firm 
that defaults at the optimal timing, i.e., 𝐸𝑑 (𝑥;𝐶), is expressed as

𝐸𝑑 (𝑥;𝐶) = sup
𝑥𝑑≥𝑥𝐿

(

𝜋𝑥 −
(1 − 𝜏)𝐶

𝑟
+
(

𝑥
𝑥𝑑

)𝛾 ( (1 − 𝜏)𝐶
𝑟

− 𝜋𝑥𝑑

))

= 𝜋𝑥 −
(1 − 𝜏)𝐶

𝑟
+
(

𝑥
𝑥0(𝐶)

)𝛾 ( (1 − 𝜏)𝐶
𝑟

− 𝜋𝑥0(𝐶)
)

= 𝐸0(𝑥;𝐶).

Hence, equity value 𝐸(𝑥;𝐶) becomes 𝐸𝑑 (𝑥;𝐶) = 𝐸0(𝑥;𝐶) in this case. It 
should be noted that 𝐸0(𝑥;𝐶) > 𝐸𝑛(𝑥;𝐶) holds for 𝑥 ≥ max{𝑘𝐿𝑥, 𝑥0(𝐶)}
if and only if 𝐶 > 𝛿𝑘𝐿𝑥.

Debt value is derived as

𝐷𝑑 (𝑥;𝐶) =
𝐶
𝑟
−
(

𝑥
𝑥0(𝐶)

)𝛾
(𝐶
𝑟
− (1 − 𝛼)𝐹𝑛(𝑥0(𝐶); 0)

)

(28)

= 𝐶
𝑟
−
(

𝑥
𝑥0(𝐶)

)𝛾
(𝐶
𝑟
− (1 − 𝛼)𝜋𝑥0(𝐶)

)

−
𝑘1−𝛾𝐿 (1 − 𝛼)𝜋𝑥

𝛾
.

By summing this and 𝐸0(𝑥;𝐶), we also obtain 𝐹𝑑 (𝑥;𝐶) as (16).

Appendix B. Proof of Proposition  2

By (22) and 𝛾 < 0, 𝑔(𝑘𝐿) is continuously increases in 𝑘𝐿 ∈ [0, 1]. By 
(8) and (22), we also have
𝑔(0) = − 𝜏𝑥

(𝑟 − 𝜇)ℎ
< 0 (29)

𝑔(𝑘𝐿) = −
𝑘𝐿

1−𝛾𝛼
𝛾

> 0, (30)

where 𝑘𝐿 = 𝛾∕((𝛾−1)ℎ). Therefore, a unique solution 𝑘∗𝐿 ∈ (0, 𝑘𝐿) exists 
to 𝑔(𝑘∗𝐿) = 0.

For 𝑘𝐿 < 𝑘∗𝐿, 𝑔(𝑘𝐿) < 0 holds, which leads to max𝐶≥0 𝐹 (𝑥;𝐶) =
max{𝐹𝑑 (𝑥;𝐶0(𝑥)), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)} = 𝐹𝑑 (𝑥;𝐶0(𝑥)). Hence, the firm chooses 
coupon 𝐶(𝑥) = 𝐶0(𝑥) at time 0. Note that 𝐶0(𝑥) = 𝛿𝑥∕ℎ > 𝛿𝑘𝐿𝑥 follows 
from 𝑘𝐿𝑥 < 𝑘∗𝐿𝑥 < 𝛾𝑥∕((𝛾 − 1)ℎ). Then, the equity, debt, firm values, 
coupon, default threshold, leverage, and credit spreads are equal to 
those of the default-possible case with 𝐶 = 𝐶0(𝑥) in Proposition  1.

For 𝑘𝐿 ≥ 𝑘∗𝐿, 𝑔(𝑘𝐿) ≥ 0 holds, which leads to max𝐶≥0 𝐹 (𝑥;𝐶) =
max{𝐹𝑑 (𝑥;𝐶0(𝑥)), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)} = 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥). Hence, the firm chooses 
coupon 𝐶(𝑥) = 𝛿𝑘𝐿𝑥 at time 0. Then, the equity, debt, firm values, 
coupon, default threshold, leverage, and credit spreads are equal to 
those of the no-default case with 𝐶 = 𝛿𝑘𝐿𝑥 in Proposition  1.

Appendix C. Proof of Proposition  3

By Propositions  1 and 2, for 𝑘𝐿 < 𝑘∗𝐿, 𝐷(𝑥) = 𝐷𝑑 (𝑥;𝐶0(𝑥)) increases 
in 𝑘𝐿, while 𝐶(𝑥) = 𝐶0(𝑥), 𝑥0(𝐶0(𝑥)) = 𝑥∕ℎ, and 𝐸(𝑥) = 𝐸0(𝑥;𝐶0(𝑥)) are 
constant. Then, 𝐹 (𝑥) and 𝐿𝑉 (𝑥) increase in 𝑘𝐿, 𝐶𝑆(𝑥) decreases in 𝑘𝐿.

At 𝑘𝐿 = 𝑘∗𝐿, coupon 𝐶(𝑥) changes from 𝐶0(𝑥) = 𝛿𝑥∕ℎ to 𝛿𝑘∗𝐿𝑥. 
It follows from 𝑘∗𝐿 < 𝛾∕((𝛾 − 1)ℎ) that 𝐶0(𝑥) = 𝛿𝑥∕ℎ > 𝛿𝑘∗𝐿𝑥 (i.e., a 
downward jump). At 𝑘𝐿 = 𝑘∗𝐿𝑥, 𝐸(𝑥) changes from 𝐸0(𝑥;𝐶0(𝑥)) to

𝐸𝑛(𝑥; 𝛿𝑘∗𝐿𝑥) = 𝜋𝑥 −
(1 − 𝜏)𝛿𝑘∗𝐿𝑥

𝑟
−

(𝑘∗𝐿)
1−𝛾𝜋𝑥
𝛾

= 𝐸0(𝑥; 𝛿𝑘∗𝐿𝑥)

> 𝐸0(𝑥;𝐶0(𝑥))

(i.e., an upward jump), where we obtained the last inequality by 
𝐶0(𝑥) > 𝛿𝑘∗𝐿𝑥. By definition of 𝑘∗𝐿 (i.e., 𝑔(𝑘∗𝐿) = 0), 𝐹𝑑 (𝑥;𝐶0(𝑥))
continuously changes to 𝐹𝑛(𝑥; 𝛿𝑘∗𝐿𝑥) at 𝑘𝐿 = 𝑘∗𝐿. By the continuity 
of 𝐹 (𝑥) and the upward jump of 𝐸(𝑥), 𝐷(𝑥) must jump downward at 
𝑘𝐿 = 𝑘∗𝐿. Then, 𝐿𝑉 (𝑥) = 𝐷(𝑥)∕𝐹 (𝑥) jumps downward at 𝑘𝐿 = 𝑘∗𝐿, and 
𝐶𝑆(𝑥) also jumps downward to 0 (i.e., riskless debt).
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By Propositions  1 and 2, for 𝑘𝐿 ≥ 𝑘∗𝐿, 𝐷(𝑥) = 𝛿𝑘𝐿𝑥∕𝑟 and 𝐹 (𝑥) =
𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥), 𝐶(𝑥) = 𝛿𝑘𝐿𝑥 increase in 𝑘𝐿, while 𝐶𝑆(𝑥) is 0. Define

𝐻(𝑘𝐿) = 𝐸𝑛(𝑥; 𝛿𝑘𝐿) = 𝜋𝑥 −
(1 − 𝜏)𝛿𝑘𝐿𝑥

𝑟
−
𝑘1−𝛾𝐿 𝜋𝑥
𝛾

and compute the derivative
d𝐻(𝑘𝐿)
d𝑘𝐿

= −
(𝛾 − 1)(1 − 𝑘−𝛾𝐿 )𝜋𝑥

𝛾
< 0,

where the last inequality follows from 𝑘𝐿 < 1 and 𝛾 < 0. Hence, 
𝐸(𝑥) = 𝐸𝑛(𝑥; 𝛿𝑘𝐿𝑥) decreases in 𝑘𝐿. By the decrease of 𝐸(𝑥) and increase 
of 𝐷(𝑥), 𝐿𝑉 (𝑥) increases in 𝑘𝐿.

Appendix D. Proof of Proposition  4

By (24), and 𝛾 < 0, 𝑔̄(𝑘𝐿) is continuously increases in 𝑘𝐿 ∈ [0, 1]. By 
(24), we can show that

𝑔̄(0) = −
𝜏𝑘𝐶
𝑟𝜋

+
(

𝑘𝐶
𝛿

)1−𝛾 (

𝛼 +
𝜏𝑘𝐶𝛿
𝑟𝜋

)

=
𝜋𝑥 − 𝐹0(𝑥; 𝑘𝐶𝑥)

𝜋𝑥
< 0, (31)

𝑔̄(𝑘∗𝐿) =
𝐹𝑛(𝑥; 𝛿𝑘∗𝐿𝑥) − 𝐹𝑑 (𝑥; 𝑘𝐶𝑥)

𝜋𝑥

=
𝐹𝑑 (𝑥;𝐶0(𝑥)) − 𝐹𝑑 (𝑥; 𝑘𝐶𝑥)

𝜋𝑥
> 0, (32)

𝑔̄(𝑘𝐶∕𝛿) =
(

𝑘𝐶
𝛿

)1−𝛾 (

𝛼 +
𝜏𝑘𝐶𝛿
𝑟𝜋

)

−
(

𝑘𝐶𝑥
𝛿

)1−𝛾 𝛼
𝛾
> 0,

where we used 𝜋𝑥 = 𝐹0(𝑥; 0) < 𝐹0(𝑥; 𝑘𝐶𝑥) in (31), and we used 
𝐹𝑛(𝑥; 𝛿𝑘∗𝐿𝑥) = 𝐹𝑑 (𝑥;𝐶0(𝑥)) and the optimality of 𝐶0(𝑥) in (32). Hence, a 
unique solution 𝑘𝐿 ∈ (0,min{𝑘∗𝐿, 𝑘𝐶∕𝛿}) exists to 𝑔̄(𝑘𝐿) = 0.

For 𝑘𝐿 < 𝑘𝐿, 𝑔̄(𝑘𝐿) < 0 holds, which leads to max𝐶∈[0,𝑘𝐶𝑥] 𝐹 (𝑥;𝐶) =
max{𝐹𝑑 (𝑥; 𝑘𝐶𝑥), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)} = 𝐹𝑑 (𝑥; 𝑘𝐶𝑥). Then, the firm chooses 
coupon 𝐶(𝑥) = 𝑘𝐶𝑥 at time 0. The results follow from the default-
possible case with 𝐶 = 𝑘𝐶𝑥 in Proposition  1.

For 𝑘𝐿 ∈ [𝑘𝐿, 𝑘𝐶∕𝛿], 𝑔̄(𝑘𝐿) ≥ 0 holds, which leads to max𝐶∈[0,𝑘𝐶𝑥]
𝐹 (𝑥;𝐶) = max{𝐹𝑑 (𝑥; 𝑘𝐶𝑥), 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥)} = 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥). Then, the firm 
chooses coupon 𝐶(𝑥) = 𝛿𝑘𝐿𝑥 at time 0. The results follow from the 
no-default case with 𝐶 = 𝛿𝑘𝐿𝑥 in Proposition  1.

For 𝑘𝐿 > 𝑘𝐶∕𝛿, debt with any coupon 𝐶(≤ 𝑘𝐶𝑥) becomes riskless, 
which leads to max𝐶∈[0,𝑘𝐶𝑥] 𝐹 (𝑥;𝐶) = 𝐹𝑛(𝑥; 𝑘𝐶𝑥). Then, the firm chooses 
coupon 𝐶(𝑥) = 𝑘𝐶𝑥 at time 0. The results follow from the no-default 
case with 𝐶 = 𝑘𝐶𝑥 in Proposition  1.

Appendix E. Proof of Proposition  5

By Propositions  1 and 4, for 𝑘𝐿 < 𝑘𝐿, 𝐷̄(𝑥) = 𝐷𝑑 (𝑥; 𝑘𝐶𝑥) increases 
in 𝑘𝐿, while 𝐶̄(𝑥) = 𝑘𝐶𝑥, 𝑥0(𝑘𝐶𝑥) = 𝑘𝐶𝑥∕𝛿, and 𝐸̄(𝑥) = 𝐸0(𝑥; 𝑘𝐶𝑥) are 
constant. Then, 𝐹 (𝑥) and 𝐿𝑉 (𝑥) increase in 𝑘𝐿, while ̄𝐶𝑆(𝑥) decreases 
in 𝑘𝐿.

At 𝑘𝐿 = 𝑘𝐿, coupon 𝐶̄(𝑥) changes from 𝑘𝐶𝑥 to 𝛿𝑘𝐿𝑥. By Proposition 
4, 𝑘𝐶 > 𝛿𝑘𝐿 holds. At 𝑘𝐿 = 𝑘𝐿, 𝐸̄(𝑥) changes from 𝐸0(𝑥; 𝑘𝐶𝑥) to

𝐸𝑛(𝑥; 𝛿𝑘𝐿𝑥) = 𝜋𝑥 −
(1 − 𝜏)𝛿𝑘𝐿𝑥

𝑟
−

(𝑘𝐿)1−𝛾𝜋𝑥
𝛾

= 𝐸0(𝑥; 𝛿𝑘𝐿𝑥)
> 𝐸0(𝑥; 𝑘𝐶𝑥)

(i.e., an upward jump), where we obtained the last inequality by 𝑘𝐶𝑥 >
𝛿𝑘𝐿𝑥. By definition of 𝑘𝐿 (i.e., 𝑔̄(𝑘𝐿) = 0), 𝐹𝑑 (𝑥; 𝑘𝐶𝑥) continuously 
changes to 𝐹𝑛(𝑥; 𝛿𝑘𝐿𝑥) at 𝑘𝐿 = 𝑘𝐿. By the continuity of 𝐹 (𝑥) and the 
upward jump of 𝐸̄(𝑥), 𝐷̄(𝑥) must jump downward at 𝑘𝐿 = 𝑘𝐿. Then, 
𝐿𝑉 (𝑥) jumps downward at 𝑥𝐿 = 𝑥𝐿, and ̄𝐶𝑆(𝑥) also jumps downward 
to 0.

For 𝑘𝐿 ∈ [𝑘𝐿, 𝑘𝐶∕𝛿], the results follow from proof of Proposition  3 
(see the third paragraph of Appendix  C).

By Propositions  1 and 4, for 𝑘𝐿 > 𝑘𝐶∕𝛿, 𝐸̄(𝑥) = 𝐸𝑛(𝑥; 𝑘𝐶𝑥) increases 
in 𝑘𝐿, while 𝐷̄(𝑥) = 𝑘𝐶𝑥∕𝑟, 𝐶̄(𝑥) = 𝑘𝐶𝑥, and ̄𝐶𝑆(𝑥) = 0 are constant. 
Then, 𝐹 (𝑥) increases in 𝑘 , and 𝐿𝑉 (𝑥) decreases in 𝑘 .
𝐿 𝐿
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Appendix F. EBIT with both upper and lower reflecting barriers

With the inclusion of both upper and lower reflecting barriers, we 
cannot derive the default threshold explicitly in the default-possible 
case (in contrast to 𝑥0(𝐶) in (7) of Proposition  1). Indeed, for given 
coupon 𝐶, the default threshold must be computed numerically as a so-
lution to a nonlinear equation. Hence, we need to compute the optimal 
coupon by solving the firm value maximization problem numerically 
(in contrast to 𝐶0(𝑥) in (9) of Proposition  2). Thus, we have constrained 
our analysis to the baseline model with only a lower reflecting barrier 
to establish the analytical results. Nonetheless, we verified numeri-
cally that the primary results are unchanged in the extended model 
incorporating both barriers. Fig.  7 illustrates the comparative statics 
with respect to lower reflecting barrier level 𝑘𝐿 in the extended model, 
where the upper reflecting barrier is set at 5, and the other parameter 
values are set as in Table  1. Region 𝑘𝐿 < 0.148 is the default-possible 
case, whereas region 𝑘𝐿 ≥ 0.148 is the no-default case. Fig.  7 shows 
that the baseline results in Proposition  3 and Fig.  2 hold robustly in 
the extended model. Additionally, we confirmed numerically that the 
sensitivities to the other parameters are unchanged from the baseline 
results, although we opted not to present those figures due to space 
constraints.

Appendix G. Alternative policy of annual subsidies

Assume that the government provides a constant subsidy flow 𝑆 > 0
rather than setting an intervention threshold. Define 𝑆′ = 𝑆∕(1− 𝜏). As 
in Section 3.1, for given coupon 𝐶 > 𝑆′, the equity, debt, and firm 
values are expressed as

𝐸̃(𝑥;𝐶) = 𝜋𝑥 −
(1 − 𝜏)(𝐶 − 𝑆′)

𝑟
+
(

𝑥
𝑥̃(𝐶)

)𝛾 ( (1 − 𝜏)(𝐶 − 𝑆′)
𝑟

− 𝜋𝑥̃(𝐶)
)

,

𝐷̃(𝑥;𝐶) = 𝐶
𝑟
−
(

𝑥
𝑥̃(𝐶)

)𝛾
(𝐶
𝑟
− (1 − 𝛼)

(

𝜋𝑥̃(𝐶) + 𝑆
𝑟

))

,

𝐹 (𝑥;𝐶) = 𝜋𝑥 + 𝜏𝐶 + 𝑆
𝑟

−
(

𝑥
𝑥̃(𝐶)

)𝛾
(

𝛼
(

𝜋𝑥̃(𝐶) + 𝑆
𝑟

)

+ 𝜏𝐶
𝑟

)

for 𝑥 ≥ 𝑥̃(𝐶), where default threshold 𝑥̃(𝐶) = (𝐶 − 𝑆′)∕𝛿. For 𝐶 ≤ 𝑆′, 
shareholders never default on their debt, and equity, debt, and firm 
values are expressed as

𝐸̃(𝑥;𝐶) = 𝜋𝑥 +
(1 − 𝜏)(𝑆′ − 𝐶)

𝑟
,

𝐷̃(𝑥;𝐶) = 𝐶
𝑟
,

𝐹 (𝑥;𝐶) = 𝜋𝑥 + 𝜏𝐶 + 𝑆
𝑟

.

Firm value 𝐹 (𝑥;𝐶) increases with 𝐶 ≤ 𝑆′ and is continuous at 
𝐶 = 𝑆′ because of lim𝐶↓𝑆′ 𝑥̃(𝐶)−𝛾 = 0. We can also show that 
lim𝐶↓𝑆′ 𝜕𝐹∕𝜕𝐶(𝑥;𝐶) > 0 for 𝛾 < −1. Hence, argmax𝐶≥0 𝐹 (𝑥;𝐶) > 𝑆′

holds for 𝛾 < −1, implying that the firm chooses risky capital structure 
regardless of subsidy levels 𝑆.15 This scenario arises for the baseline 
parameter value (i.e., 𝛾 = −1.351 in Table  1).

For −1 ≤ 𝛾 < 0 (which tends to hold for higher volatility 𝜎), 
higher 𝑆 can lead to argmax𝐶≥0 𝐹 (𝑥;𝐶) = 𝑆′, implying that the firm 
issues debt up to the riskless debt capacity. In this case, we confirmed 
numerically that the results resemble those of our baseline model; 
indeed, intermediate subsidy levels lead to lower leverage and riskless 
capital structure, though the figure is excluded from the paper due to 
space constraints.

15 In the presence of 𝑆 > 0, we cannot derive argmax 𝐹 (𝑥;𝐶) explicitly.
𝐶>𝑆′
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