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圧縮センシングにおける信号類似性の活用
～省電力無線脳波計測回路システム実現に向けた取り組み～

兼本大輔† 瀧本英智† 廣瀬哲也†

†大阪大学工学研究科 〒565–0871大阪府吹田市山田丘 2–1
E-mail: †dkanemoto@eei.eng.osaka-u.ac.jp

あらまし センシング集積回路の省電力化を目指し，回路が処理する情報量を大幅に削減できる圧縮センシングが注
目されている．しかし，信号のスパース性が低い場合，再構成精度が低下し，圧縮比を上げるのが難しくなるという
課題が存在する．そこで我々は，信号の類似性に着目することでスパース性の改善を行い，高精度な再構成と高圧縮
による省電力の両立を可能にする圧縮センシングの新手法を提案している．本研究では，この手法を無線脳波伝送シ
ステムに応用し，高い再構成精度を保ちつつ，送信デバイスに搭載したマイクロコントローラ（Nordic Semiconductor
nRF52840）の消費電力削減効果を実機で確認した．検証の結果，対象信号に対して等価的 40Hzサンプリングで圧縮
（5倍圧縮)を行った場合でも，高い再構成精度を実現しつつ，消費電力を 83.2𝜇W/chに抑えられることが確認できた．
本成果は，従来の省電力記録に対して 14%の改善を達成したことを意味する．
キーワード 圧縮センシング，低消費電力，信号類似性，脳波，ランダムアンダーサンプリング

Utilization of Signal Similarity in Compressed Sensing

–Realizing Low-power Dissipation Wireless EEG Monitoring Circuit System–

Daisuke KANEMOTO†, Eichi TAKIMOTO†, and Tetsuya HIROSE†

† Graduate School of Engineering, Osaka University 2–1 Yamadaoka, Suita, Osaka, 565–0871 Japan
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Abstract In order to achieve power-saving in sensing integrated circuits, there is a lot of interest in compressed sensing,
which can greatly reduce the amount of information handled by the circuit. However, when the signal is not sparse, the
accuracy of reconstruction deteriorates, making it difficult to increase the compression ratio. Therefore, we have proposed a
new method of compressed sensing that improves the sparsity of the signal by focusing on the similarity of the signal, and
enables both high-precision reconstruction and power saving through high compression. In this study, we applied this method
to a wireless EEG transmission system and confirmed the effect of reducing the power consumption of the microcontroller
(Nordic Semiconductor nRF52840) mounted on the transmission device while maintaining high reconstruction accuracy. As a
result of the verification, it was confirmed that even when the signal was compressed (5x compression) at an equivalent 40Hz
sampling rate, the power consumption could be kept to 83.2𝜇W/ch while maintaining high reconstruction accuracy. This result
means that a 14% improvement has been achieved over conventional power-saving recording.
Key words Compressed sensing, low-power dissipation, signal similarity, EEG, random undersampling

1. ま え が き
ディジタルトランスフォーメーション（DX: Digital Transfor-

mation）は，産業，社会，個人生活など様々な分野を革新する
情報通信分野の中心技術になりつつある [1]．DXを実現するに
は，自然界の情報を大量かつ高精度にセンシングする必要があ

り，今後，センサーの開発がますます重要になることが予測さ
れる．センサーデバイスの運用において，省電力化は極めて重
要な課題であり，センサーデバイスに搭載する集積回路の低消
費電力化に関する研究が進められている (例えば [2])．しかし，
近年の微細加工技術の進展によるセンシング回路の性能向上が
限界に近づいており，さらなる電力削減を実現するために他の
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図 1 等間隔サンプリングに比べ，ランダムアンダーサンプリングを
行った場合，サンプリング回数の削減と無線送信回数を削減でき
るため，省電力化が可能

Fig. 1 Compared to equally spaced sampling, random undersampling re-
duces the number of sampling cycles and the number of radio trans-
missions, thus saving power.

手法を模索する必要性がますます高まっている．つまり，今後
の省電力化には，集積回路の進化に依存せず，ソフトウェアと
ハードウェアの協調による新たな設計アプローチなど，革新的
な取り組みが重要となる．
そこで我々は，新しい試みの一つとして，ランダムアンダー
サンプリングを用いた圧縮センシング [3]に注目している．図
1(a)は従来の等間隔サンプリングを行うシステムの動作と消費
電力を，図 1(b) は圧縮センシングシステムを想定したランダ
ムアンダーサンプリングの動作と消費電力を示している．一般
的に，サンプリングのタイミングで消費電力が発生し，無線で
データを送る度に多くの消費電力が発生する．つまり，等間隔
サンプリングに比べ，ランダムアンダーサンプリングを行うこ
とで扱うデータを削減でき，サンプリング時や無線送信時の電
力消費を抑えることができる．本手法は消費電力を削減する点
で非常に有効な手段であり，例えば，無線脳波計の実現にラン
ダムアンダーサンプリングを積極的に活用し，A/D変換器 [4]
や増幅器 [5], [6]，またシステム全体 [7]の省電力化が可能であ
ることが示されている．また，脳波などの一次元信号に対する
センシングのみならず，画像への応用実績 (例えば [8], [9])もあ
り，幅広い信号への応用に期待が集まっている．
一方，圧縮センシングにおける再構成では，センシング対象
信号が有するスパース性を活用するため，信号のスパース性
が十分でない場合，再構成精度が劣化する課題がある．そこで
我々は，信号類似性に着目し，過去信号を活用した基底を生成
することで高精度な再構成が可能な手法を提案している [10]．
本研究では，圧縮センシングにおける信号類似性を活用するこ
とで，無線脳波伝送における省電力並びに高精度再構成を実現
できることを実機を通して確認することを目的として行った．
本論文では２章に圧縮センシングの基本的な説明を説明する．
３章では信号類似性を活用した手法の紹介を行う．４章にて本
手法を無線脳波伝送システムに応用した場合の検証結果を述べ
る．そして５章にて本論文をまとめる．

2. 圧縮センシングに関する数理の基礎
本章では，圧縮センシングを用いた計測システムを説明する

=

図 2 観測行列 𝚽を用いてセンシング対象信号 xを圧縮し，圧縮信号
yを得る．

Fig. 2 Compresses the signal to be sensed x using the observation matrix𝚽
to obtain the compressed signal y.

=

図 3 適切な基底行列 𝚿が存在すれば，xは基底行列とスパースベクト
ル sに分解可能．

Fig. 3 Given a suitable basis matrix𝚿, x can be decomposed into a basis
matrix and a sparse vector s.

=

図 4 センシング行列 𝚯を用いると，圧縮信号 yとスパースベクトル s
は線形写像により結び付けられる．

Fig. 4 Using the sensing matrix 𝚯, the compressed signal y and the sparse
vector s are related by a linear mapping.

上で必要となる数理について説明する．あるセンシング対象信
号に対し，一定時間 Δ𝑡 秒ごとにおける信号強度を要素として持
つベクトルを x ∈ R𝑁 と定義する．ベクトルの各要素の濃淡は
信号強度を示しており，濃いほど強度が強く，白はゼロを示す．
始めに xの圧縮について説明する．圧縮信号 y ∈ R𝑀 は，観
測行列 𝚽 ∈ R𝑀×𝑁 と yの行列ベクトル積

y = 𝚽x, (1)

で表現できる．ここで，𝑀 < 𝑁 の場合，y は x に比べて要素
数が減少しており，信号圧縮が行われていることがわかる．図
2 は 𝑀 = 5 の例を示している．ここで，圧縮比 (Compressed
Ratio:𝐶𝑅)を 𝐶𝑅 = 𝑁/𝑀 と定義した場合，図 2は 𝐶𝑅 = 2とな
り，xに対して yはデータ量を半分に圧縮できていると解釈で
きる．圧縮センシングにおいて，圧縮は行列ベクトル積で実現
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可能であるが，一般的には直接 yから xを再構成することは難
しい．それは，𝑀 < 𝑁 を満たす 𝚽は横長行列であり，原理上
逆行列が求まらず，yと𝚽から xが一意に決まらない（劣決定
系）ためである．そこで圧縮センシングでは，センシング対象
の信号 xが有するスパース性に着目し，問題解決を行う．
ここで xは，ある基底行列 𝚿 ∈ R𝑁×𝑃 と，ほとんどの要素が

0のスパースベクトル s ∈ R𝑃 を用い

x = 𝚿s, (2)

が成り立つと仮定する．図 3は非ゼロ要素数が３の例であり，
スパース性が高い例を示している．たしかに，どのような xに
対しても式 (2)の表現，つまり xが特定の基底行列とスパース
ベクトルとの積で表現できることは保証されていない．しかし，
例えば脳波はα波やβ波など，周期的な信号波の合成で表現で
きる傾向があり，𝚿を逆フーリエ変換や逆離散コサイン変換に
代表される逆変換行列を用いると，xを 𝚿とスパースベクトル
との行列ベクトル積で表現できる可能性が高く，式 (2)を満た
す場合はある．さらに，3.章で解説するが，信号の類似性に着
目し，すでに過去得られた多くの既知信号を活用することで，
対象信号をスパースベクトルとの積に表現可能な 𝚿 を生成で
きれば，式 (2)が成り立つ状況は多い．
そこで，ここでは xをスパースベクトルに表現できる基底が
存在すると仮定して議論を進める．圧縮センシングでは式 (1)
と式 (2)を用い，

y = 𝚽x = 𝚽𝚿s = 𝚯s, (3)

の関係を活用する（図 4）．式 (3)は，観測で得られた yは，未
知のスパースベクトル sに対して既知の行列であるセンシング
行列 𝚯の写像で表現できることを示している．そこで，圧縮セ
ンシングを用いた対象信号の再構成では，既知のベクトルと行
列である yと 𝚯を使用して，まずはよりスパースなベクトル ŝ
を求める以下の最適化問題から考えることに相当する．

ŝ = arg min
s

∥s∥0 subject to y = 𝚯s, (4)

ここで，∥ · ∥0 は ℓ0 ノルムを意味し，ベクトル内の非ゼロ要素
の数を示している．式 (4)は y = 𝚯𝒔の制約を満たしつつ，最も
非ゼロ数が少ない最適なスパース表現 ŝを見つけ出す ℓ0 最適化
問題を意味する．ただし，ℓ0 最適化問題は計算上の困難さから
直接解く事は難しい（NP困難）[11]．そこで，現実的な方法で
ŝ を見つけ出すための様々な手法が提案されている．例えば，
式 (4)の ℓ0 ノルムの代わりに ℓ1 ノルムに置き換えた後，ℓ1 ノ
ルムを最小化することでスパースな解を再構成する手法として
基底追跡 (basis pursuit : BP)などのアルゴリズムが利用される
[12]. また，式 (4)をいくつかの局所的な部分問題に分割し，
局所的に最も良いものを逐次的に取り込んでいく貪欲法のアル
ゴリズムもスパースベクトルの再構成アルゴリズムとして利用
されている．例えば，直行マッチング追跡 (Orthogonal Matching
Pursuit : OMP)は有名な貪欲法の一種であり，多くの圧縮セン
シングシステムにおけるスパースベクトルの再構成に利用され
ている [13]．一方で，計算負荷が高いが，信号のブロック構造

図 5 (a)過去信号 x1 から x18 を並べて基底を生成．過去信号とセンシ
ング対象信号 xi との間には相関があるため，スパースベクトル
sp が得られる可能性が高い．(b)利用される可能性が高い過去信
号のみを集めてコンパクトな基底 𝚿ps を生成．

Fig. 5 (a) Generate a basis by arranging the past signals from past signal x1

to x18. Because there is a correlation between the past signals and the
sensing target signals, it is highly likely that a sparse vector, sp, will
be obtained. (b) A compact basis, 𝚿ps, is generated by collecting
only the past signals that are likely to be used.

に着目したベイズ推定を行うことで，高精度にスパースベクト
ルを再構成することができるブロックスパースベイジアン学習
（block sparse Bayesian learning : BSBL）を活用したアルゴリズ
ムも広く利用されている [14]．そして様々なアルゴリズムを活
用し ŝを導出することで，最終的に

𝑥 = 𝚿ŝ, (5)

の関係式から，再構成した信号 x̂が得られる．

3. 信号類似性に着目した基底生成技術
2.章で説明した通り，信号をスパース表現できる基底を開発
することは，圧縮センシングの再構成精度向上の観点や，圧縮
比を高めるために重要になる．そこで，我々は様々観点から基
底の研究を進め (例えば [15]など)，最近は以下の２つの観点か
ら新しい基底生成技術に関する研究を行っている．それは，自
然界の信号は取得するセンシング対象の信号と過去取得した信
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号には高い相関があること (例えば [16])，また一般的に生物学
的信号として用いられる xはブロック/グループ構造を持つこと
（例えば [17]）である．つまり，適切な 𝚿を用いることで，sは
𝑔個のブロックで表現できると仮定でき

s = [𝑠1, · · · , 𝑠𝑑1︸       ︷︷       ︸
sT
1

, · · · , 𝑠𝑑𝑔−1+1, · · · , 𝑠𝑑𝑔︸               ︷︷               ︸
sT
𝑔

]T (6)

の式が得られることが予測できる．式 (6)の例では，𝑔 個の
ブロックのうち, 𝑗 個 ( 𝑗 > 𝑔) のブロックのみが非ゼロである．
BSBLは，ブロック内の相関を考慮することで，高い再構成精
度が期待できるため，圧縮センシングの数理を活用したシステ
ムにおいて注目を集めている [18]．そこで我々は上記２つの観
点は BSBLと互換性があることに注目し，信号類似性を活用し
た基底生成技術を研究している．
ここでは例として，本手法の概要を図 5を用いて紹介する．
図 5(a)は，測定対象の脳波信号 xi，スパースベクトル sp，およ
び 𝚿p の関係を示しており，例えば，過去に取得した脳波信号
x1 − x18 を単純に 18個並べた基底行列 𝚿p を次式で定義する

𝚿p
def
= [x1x2 · · · x18] . (7)

本例では，xi が信号 x2 および x4 と高い相関を持つ場合，sp

における x2 および x4 に対応する要素は大きな値で表示され
る．また使用する脳波信号の数が多いほど，スパースベクトル
に高い相関を持つ要素が存在する可能性が高くなることが考え
られる．しかし，複数の脳波信号を用いる手法では基底行列の
サイズが大きくなり，再構成に時間がかかる．また，x1 − x18が
互いに無関係に並べられた場合，xi と相関の高い信号が近傍に
配置されない可能性は高く，sp の非ゼロ要素の位置がブロック
構造に成りにくい．したがって、図 5(b)に示すように使用する
EEG信号を選択して並べ替えることで，疎なベクトル内の任意
の位置に非ゼロ要素の位置を配置し，ブロック構造を人工的に
実現できる．この行列を用いて得られる sps は，非ゼロ要素の
ブロックを生成できるため，BSBLアルゴリズムによる再構成
に適している．本研究では，EEG信号の x1 − x18 の平均周波数
を算出し，平均周波数の値でソートし，平均周波数の分布に基
づいた出現率の高い周波数を過去信号として用いることで，基
底行列の列数を効率よく削減する手法を採用した．

4. 信号類似性に着目した省電力脳波無線伝送シ
ステムの検証

本研究では，信号類似性に着目した圧縮センシングを応用し
た省電力脳波無線伝送システムを構築し，有効性を検証した．
脳波信号のテストデータとして、CHB-MIT頭皮脳波データベー
ス [19]に基づく発作症状期を避けた FP1-F7チャンネルデータ
を用いた．この評価では，１フレーム長を 2.5秒とし，256Hz
サンプリングを 200Hzサンプリングにリサンプリングして検証
に用いた．全フレームに対して直流成分カットを行った後，絶

図 6 DC カットを行い，150𝜇V 以上の信号を含むフレームを除いた
chb01から chb05までの EEGデータ（各 2000フレーム）に対し
て平均周波数を計算し,その結果をヒストグラム化した．最も頻
度が高い 2-3Hzを 500フレーム用いて基底行列 𝚿2-3Hz を生成し
本検証の再構成処理に用いた．

Fig. 6 The mean frequency was calculated for the EEG data from chb01 to
chb05 (2000 frames each) excluding the frames containing signals
above 150𝜇V by DC cut, and the results were histogrammed. The
basis matrix 𝚿2-3Hz was generated using the 500 frames with the
highest frequency of 2-3 Hz.

図 7 検証に用いたシステムブロック図．送信側のマイコンと受信側の
再構成を実施する PCはランダムアンダーサンプリングを実現す
るための𝚽を用いた．また受信側は作成した基底行列 𝚿2-3Hz を
利用し再構成を行う．

Fig. 7 System block diagram used for verification. The microcontroller of
transmitter and the PC of receiver that performs reconstruction use
𝚽 to realize random undersampling. The receiver uses a basis matrix
𝚿2-3Hz for reconstruction.

対振幅が 150𝜇Vを超えるフレームは単純にアーチファクトと
判断して除外処理を行った．信号類似性を活用した基底は，テ
ストデータを生成した被験者である chb14と異なる chb01, 02,
03, 04, 05（各 2,000フレーム）を活用し，テストデータと同じ
く DCカットとアーチファクトフレームの除外処理を行ってい
る．先に得られた信号（10,000フレーム）の平均頻度分布を図
5に示す.今回の評価では，2から 3Hzに分布が集中しているこ
とが分かるため，そのデータを 500フレーム使い，基底 𝚿2-3Hz

を生成した．図 7 は今回の検証に用いた実験系のブロック図
を，図 8は検証に用いたシステムの全体写真を示している．送
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図 8 検証に用いたシステムの写真．通信を行いながら再構成処理と電
力計測を行った．

Fig. 8 Photograph of the system used for verification. The system is ca-
pable of performing reconstruction and power measurement while
communicating.

図 9 計測器を用いて通信時の電流を計測した結果．ランダムアンダー
サンプリングによる疎らなサンプリング動作後に，BLE の通
信に係る電力消費が確認できる．本フレームの平均消費電流は
25.3𝜇Aである．

Fig. 9 Results of measuring the current during communication using an
instrument. The power consumption for BLE communication can
be confirmed after sparse sampling operation by random undersam-
pling. The average current consumption during this frame is 25.3𝜇A.

信・受信両側に 3.3V電源で動作する nRF 52840のマイクロコ
ントローラチップが搭載された評価ボード (nRF 52840-DK)を
用い，通信には BLE5.1を採用した．送信側は電源とマイクロ
コントローラの間にディジタル電流計 DMM 6500(KEITHLEY)
を用いた．受信信号は PXIe-8861において，BSBLアルゴリズ
ム (Python3で実装)を用い，再構成処理を行った．本検証には
chb14の 12フレーム分のデータを使用し，10パターンの𝚽を
あらかじめ生成・利用することで，再構成精度の 120フレーム
平均値が算出できるようにした．今回のシステムでは 𝐶𝑅=5を
採用したため，等価的なサンプリングレートは 40Hzである．
本検証で得られた電流波形を図 9に示す．ランダムアンダー
サンプリングによる疎らなサンプリング動作後に，BLEの通信
に係る電力消費が発生している事が確認できる．本フレーム内
における消費電流は 25.3𝜇Aであり，120フレーム分の平均消
費電流は 25.2𝜇Aとなったため，実装したシステムでは消費電
力を 83.2𝜇W/chに抑えられることが分かった.
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図 10 𝐶𝑅=5における信号類似性を活用した再構成信号波形は元信号
と非常に近いことが分かる．

Fig. 10 The reconstructed signal waveform utilizing signal similarity at
𝐶𝑅=5 is close to the original signal.

図 10は再構成結果をしてしており，この結果からも再構成
信号は元波形と非常に近い値で復元できていることが分かる．
表 1にて，今回得られた検証結果と他の無線脳波伝送システ
ムとの比較を行った．文献 [7]は圧縮センシングを採用してお
り，基底は DCTで再構成アルゴリズムとして OMPを採用して
いる．文献 [20], [21]は等間隔サンプリングをベースとしたシス
テムである．圧縮センシングを活用したシステムは省電力動作
が可能であることが分かるが，本検証結果は省電力だけでなく
再構成精度の改善も大幅に実現できただけでなく，従来の省電
力記録に対して 14%の改善を達成したことを意味する．

5. ま と め
本研究では，信号の類似性に着目した新しい基底生成技術を
応用し，高精度な再構成と省電力効果を両立する圧縮センシン
グシステムの動作検証を行った．無線脳波伝送システムに応用
し，再構成精度の向上と送信デバイスに搭載した nRF52840の
消費電力削減効果を実機で確認した．検証の結果，対象信号に
対して等価的 40Hzサンプリングで圧縮（5倍圧縮)を行った場
合でも非常に高い再構成精度を達成し，同時に nRF52840の消
費電力を 83.2𝜇W/chに抑えることができた．本成果は，従来の
省電力記録に対して 14%の改善を達成したことを意味する．
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