Osaka University Knowledge Archive

Title	Topology of equilateral polygon linkages in the Euclidean plane modulo isometry group
Author(s)	Kamiyama, Yasuhiko
Citation	0saka Journal of Mathematics. 1999, 36(3), p. $731-745$
Version Type	VoR
URL	https://doi.org/10.18910/10222
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

TOPOLOGY OF EQUILATERAL POLYGON LINKAGES IN THE EUCLIDEAN PLANE MODULO ISOMETRY GROUP

Yasuhiko KamiYama

(Received September 24, 1997)

1. Introduction

We consider the configuration space M_{n}^{\prime} of equilateral polygon linkages with $n(n \geq 3)$ vertices, each edge having length 1 in the Euclidean plane \mathbf{R}^{2} modulo isometry group. More precisely, let \mathcal{C}_{n} be

$$
\begin{equation*}
\mathcal{C}_{n}=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(\mathbf{R}^{2}\right)^{n}:\left|u_{i+1}-u_{i}\right|=1 \quad(1 \leq i \leq n-1),\left|u_{1}-u_{n}\right|=1\right\} . \tag{1.1}
\end{equation*}
$$

Note that $\operatorname{Iso}\left(\mathbf{R}^{2}\right)$ (= the isometry group of \mathbf{R}^{2}, i.e., a semidirect product of \mathbf{R}^{2} with $O(2)$), naturally acts on \mathcal{C}_{n}. We define M_{n}^{\prime} by

$$
\begin{equation*}
M_{n}^{\prime}=\mathcal{C}_{n} / \operatorname{Iso}\left(\mathbf{R}^{2}\right) \tag{1.2}
\end{equation*}
$$

We remark that M_{n}^{\prime} has the following description: We set $M_{n}=\mathcal{C}_{n} / \operatorname{Iso}^{+}\left(\mathbf{R}^{2}\right)$, where $\mathrm{Iso}^{+}\left(\mathbf{R}^{2}\right)$ denotes the orientation preserving isometry group of \mathbf{R}^{2}, i.e., a semidirect product of \mathbf{R}^{2} with $S O(2)$. Then we can write M_{n} as

$$
\begin{equation*}
M_{n}=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{C}_{n}: u_{1}=\left(\frac{1}{2}, 0\right) \text { and } u_{2}=\left(-\frac{1}{2}, 0\right)\right\} \tag{1.3}
\end{equation*}
$$

M_{n} admits an involution $\sigma=\operatorname{Iso}\left(\mathbf{R}^{2}\right) / \operatorname{Iso}^{+}\left(\mathbf{R}^{2}\right)$ such that $M_{n}^{\prime}=M_{n} / \sigma$. Under the identification of (1.3), σ is given by

$$
\begin{equation*}
\sigma\left(u_{1}, \ldots, u_{n}\right)=\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right), \tag{1.4}
\end{equation*}
$$

where $\bar{u}_{i}=\left(x_{i},-y_{i}\right)$ when $u_{i}=\left(x_{i}, y_{i}\right)$.
Many topological properties of M_{n} are already known: First we know explicit topological type of $M_{n}(n \leq 5)$ [3],[4],[8]. Next we have the results on the smoothness of M_{n} [5],[7],[8]. Finally $H_{*}\left(M_{n} ; \mathbf{Z}\right)$ are determined in [6],[7] (cf. Theorem 2.1). In particular, the natural inclusion $i_{n}: M_{n} \hookrightarrow\left(S^{1}\right)^{n-1}$ (cf. (1.6)) induces isomorphisms of homology groups up to a certain dimension (cf. Proposition 2.2).

On the other hand, concerning M_{n}^{\prime}, what we know already are the following: First we know the following examples.

EXAMPLES $1.5 . \quad M_{3}^{\prime}=\{1$-point $\}, M_{4}^{\prime}=S^{1}$ and $M_{5}^{\prime}=\underset{5}{\sharp R} P^{2}$, the five-times connected sum of $\mathbf{R} P^{2}$.

Next some assertions on the smoothness of M_{n}^{\prime} are proved in [5]. However, we have few information on $H_{*}\left(M_{n}^{\prime} ; \mathbf{Z}\right)$, although we know $\chi\left(M_{n}^{\prime}\right)$, the Euler characteristic of M_{n}^{\prime} [5] (cf. Proposition 3.4).

The purposes of this paper are as follows.
(i) We prove assertions on the smoothness of M_{n}^{\prime}.
(ii) We determine $H_{*}\left(M_{n}^{\prime} ; \mathbf{Z}_{p}\right)$, where p is an odd prime, and $H_{*}\left(M_{n}^{\prime} ; \mathbf{Q}\right)$.

In the following (iii)-(v), we assume n to be odd, and set $n=2 m+1$. Then by the results of (i) and (ii), $M_{2 m+1}^{\prime}$ is a non-orientable manifold of dimension $2 m-2$.
(iii) Find a space $V_{2 m}$ and an inclusion $i_{2 m+1}^{\prime}: M_{2 m+1}^{\prime} \hookrightarrow V_{2 m}$ so that $i_{2 m+1}^{\prime}$ induces isomorphisms of homotopy groups up to a certain dimension.
(iv) As $V_{2 m}$ is a natural space, we determine $H_{*}\left(V_{2 m} ; \mathbf{Z}\right)$ completely. Then in particular we know $H_{*}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ up to some dimension by the result of (iii).

As we will see in Remark 1.9, knowing $H_{*}\left(V_{2 m} ; \mathbf{Z}\right)$ is equivalent to knowing $H_{*}\left(\left(S^{1}\right)^{2 m} / \sigma ; \mathbf{Z}\right)$.
(v) Finally we determine $H_{*}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ except the possibility of higher two-torsions in $H_{m-1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ when m is even.

Now we state our results. Concerning (i), we have the following:
Theorem A. (a) $M_{2 m+1}^{\prime}$ is a manifold of dimension $2 m-2$.
(b) $M_{2 m}^{\prime}$ is a manifold of dimension $2 m-3$ with singular points. $\left(u_{1}, \ldots, u_{2 m}\right) \in$ $M_{2 m}^{\prime}$ is a singular point iff all of u_{i} lie on the x-axis, i.e., the line determined by u_{1} and u_{2} (cf. (1.3)). Moreover every singular point of $M_{2 m}^{\prime}$ is a cone-like singularity and has a neighborhood as $C\left(S^{m-2} \times \mathbf{Z}_{2} S^{m-2}\right)$, where C denotes cone and action of \mathbf{Z}_{2} on both factors is generated by the antipodal map.

Concerning (ii), first we prove the following:
Theorem B. $H_{*}\left(M_{n}^{\prime} ; \mathbf{Z}\right)$ are odd-torsion free.
Thus in order to know $H_{*}\left(M_{n}^{\prime} ; \mathbf{Z}_{p}\right)$, we need to know $H_{*}\left(M_{n}^{\prime} ; \mathbf{Q}\right)$, which is given by the following:

Theorem C. The Poincaré polynomials $P S_{\mathbf{Q}}\left(M_{n}^{\prime}\right)=\Sigma_{\lambda} \operatorname{dim}_{\mathbf{Q}} H_{\lambda}\left(M_{n}^{\prime} ; \mathbf{Q}\right) t^{\lambda}$ are given by
(a) $P S_{\mathbf{Q}}\left(M_{2 m+1}^{\prime}\right)=\sum_{0 \leq 2 a \leq m-2}\binom{2 m}{2 a} t^{2 a}+\binom{2 m}{m-1} t^{m-1}$

$$
+\sum_{m \leq 2 b+1 \leq 2 m-3}\binom{2 m}{2 b+3} t^{2 b+1}
$$

(b) $P S_{\mathbf{Q}}\left(M_{4 l}^{\prime}\right)=\underset{0 \leq 2 a \leq 2 l-2}{ }\binom{4 l-1}{2 a} t^{2 a}+\binom{4 l-1}{2 l-2} t^{2 l-1}$

$$
+\underset{2 l+1 \leq 2 b+1 \leq 4 l-3}{\Sigma}\binom{4 l-1}{2 b+3} t^{2 b+1}
$$

$P S_{\mathbf{Q}}\left(M_{4 l+2}^{\prime}\right)=\underset{0 \leq 2 a \leq 2 l-2}{ } \sum\binom{4 l+1}{2 a} t^{2 a}+\binom{4 l+1}{2 l+1} t^{2 l}$

$$
+_{2 l+1 \leq 2 b+1 \leq 4 l-1} \sum_{\binom{4 l+1}{2 b+3}} t^{2 b+1},
$$

where $\binom{a}{b}$ denotès the binomial coefficient.
Next we go to (iii). By setting $z_{i}=u_{i+2}-u_{i+1}(1 \leq i \leq n-2), z_{n-1}=u_{1}-u_{n}$, and identifying \mathbf{R}^{2} with \mathbf{C}, we can write $M_{n}(n \geq 3)$ as

$$
\begin{equation*}
M_{n} \cong\left\{\left(z_{1}, \ldots, z_{n-1}\right) \in\left(S^{1}\right)^{n-1}: z_{1}+\cdots+z_{n-1}-1=0\right\} . \tag{1.6}
\end{equation*}
$$

Let $i_{n}: M_{n} \hookrightarrow\left(S^{1}\right)^{n-1}$ be the inclusion.
As we have mentioned, $\left(S^{1}\right)^{n-1}$ approximates the topology of M_{n} up to some dimension (cf. Proposition 2.2). However, for an odd $n=2 m+1$, our low-dimensional computations lead us to give up the hope that $\left(S^{1}\right)^{2 m} / \sigma$ might approximate $M_{2 m+1}^{\prime}=M_{2 m+1} / \sigma$, where σ acts on $\left(S^{1}\right)^{2 m}$ in the same way as in (1.4). The essential reason for this is that the action of σ on $\left(S^{1}\right)^{2 m}$ is not free, although on $M_{2 m+1}$ is.

Thus we define $V_{2 m}$ by

$$
\begin{equation*}
V_{2 m}=\left\{\left(S^{1}\right)^{2 m}-\Sigma_{2 m}\right\} / \sigma, \tag{1.7}
\end{equation*}
$$

where we set

$$
\Sigma_{2 m}=\left\{\left(z_{1}, \ldots, z_{2 m}\right) \in\left(S^{1}\right)^{2 m}: z_{i}= \pm 1(1 \leq i \leq 2 m)\right\}
$$

Let $i_{2 m+1}^{\prime}: M_{2 m+1}^{\prime} \hookrightarrow V_{2 m}$ be the inclusion. Then we have the following map of covering
spaces:

Note that $\left(S^{1}\right)^{2 m}-\Sigma_{2 m}$ is a maximal subspace of $\left(S^{1}\right)^{2 m}$ on which σ acts freely. Thus it is natural to consider the topology of $V_{2 m}$.

Now concerning the relation between $M_{2 m+1}^{\prime}$ and $V_{2 m}$, we have the following theorem.

Theorem D. $\quad\left(i_{2 m+1}^{\prime}\right)_{*}: \pi_{q}\left(M_{2 m+1}^{\prime}\right) \rightarrow \pi_{q}\left(V_{2 m}\right)$ are isomorphisms for $q \leq m-2$, and an epimorphism for $q=m-1$.

Concerning (iv), we have the following:
Theorem E. $H_{*}\left(V_{2 m} ; \mathbf{Z}\right)$ is given by

Note that Theorems D and E give $H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ for $q \leq m-2$.

Remark 1.9. By the Poincaré-Lefschetz duality $H^{q}\left(\left(S^{1}\right)^{2 m} / \sigma, \Sigma_{2 m} ; \mathbf{Z}\right) \cong$ $H_{2 m-q}\left(V_{2 m} ; \mathbf{Z}\right)$, knowing $H_{*}\left(V_{2 m} ; \mathbf{Z}\right)$ is equivalent to knowing $H_{*}\left(\left(S^{1}\right)^{2 m} / \sigma ; \mathbf{Z}\right)$.

Concerning (v), we have the following:

Theorem F. (a) For an odd m, we have
(b) For an even m, we have
where Tor r_{m-1}, the torsion submodule of $H_{m-1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$, satisfies that $\operatorname{dim}_{\mathbf{Z}_{2}} \operatorname{Tor}_{m-1} \otimes \mathbf{Z}_{2}=\sum_{i \leq m-2}\binom{2 m}{i}$.

Thus, in particular, $H_{\text {even }}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ are torsion free for all m.
Remark 1.10. (a) By Theorems D, E and F, we see that $\left(i_{2 m+1}^{\prime}\right)_{*}: H_{m-1}$ $\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right) \rightarrow H_{m-1}\left(V_{2 m} ; \mathbf{Z}\right)$ is an isomorphism when m is odd, but not an isomorphism when m is even.
(b) In order to prove Theorem F , we first determine $H_{*}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)$, which is given in Proposition 5.1. In particular, we see that $\left(i_{2 m+1}^{\prime}\right)_{*}: H_{m-1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right) \rightarrow H_{m-1}\left(V_{2 m}\right.$; \mathbf{Z}_{2}) is an isomorphism for all m (cf. Remark 5.2).

This paper is organized as follows. In $\S 2$ we recall the results of [7], then prove Theorems A, B and D. In $\S 3$ we prove Theorem C. In $\S 4$ we prove Theorem E, and in $\S 5$ we prove Theorem F.

2. Proofs of Theorems A, B and D

In [7], the following theorem is proved.

Theorem 2.1. $H_{*}\left(M_{n} ; \mathbf{Z}\right)$ are free \mathbf{Z}-modules and the Poincaré polynomials $P S\left(M_{n}\right)=\sum_{\lambda} \operatorname{rank} H_{\lambda}\left(M_{n} ; \mathbf{Z}\right) t^{\lambda}$ are given by

$$
\begin{aligned}
P S\left(M_{2 m+1}\right) & =\sum_{\lambda=0}^{m-2}\binom{2 m}{\lambda} t^{\lambda}+2\binom{2 m}{m-1} t^{m-1}+\sum_{\lambda=m}^{2 m-2}\binom{2 m}{\lambda+2} t^{\lambda}, \\
P S\left(M_{2 m}\right) & =\sum_{\lambda=0}^{m-2}\binom{2 m-1}{\lambda} t^{\lambda}+\binom{2 m}{m-1} t^{m-1}+\sum_{\lambda=m}^{2 m-3}\binom{2 m-1}{\lambda+2} t^{\lambda} .
\end{aligned}
$$

The essential facts to prove Theorem 2.1 are the following three propositions.
Proposition 2.2. (i) $\left(i_{2 m+1}\right)_{*}: \pi_{q}\left(M_{2 m+1}\right) \rightarrow \pi_{q}\left(\left(S^{1}\right)^{2 m}\right)$ are isomorphisms for $q \leq m-2$, and an epimorphism for $q=m-1$.
(ii) $\left(i_{2 m}\right)_{*}: H_{q}\left(M_{2 m} ; \mathbf{Z}\right) \rightarrow H_{q}\left(\left(S^{1}\right)^{2 m-1} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq m-2$, and an epimorphism for $q=m-1$.

Proposition 2.3. (i) $M_{2 m+1}$ is an orientable manifold of dimension $2 m-2$. Thus the Poincaré duality homomorphisms $\cap\left[M_{2 m+1}\right]: H^{q}\left(M_{2 m+1} ; \mathbf{Z}\right) \rightarrow H_{2 m-2-q}\left(M_{2 m+1}\right.$; $\mathbf{Z})$ are isomorphisms for all q, where $\left[M_{2 m+1}\right] \in H_{2 m-2}\left(M_{2 m+1} ; \mathbf{Z}\right)$ is a fundamental class.
(ii) $M_{2 m}$ is a manifold of dimension $2 m-3$ with singular points. $\left(u_{1}, \ldots, u_{2 m}\right) \in$ $M_{2 m}$ is a singular point iff all of u_{i} lie on the x-axis. Moreover every singular point of $M_{2 m}$ is a cone-like singularity and has a neighborhood as $C\left(S^{m-2} \times S^{m-2}\right)$. Thus the Poincaré duality homomorphisms $\cap\left[M_{2 m}\right]: H^{q}\left(M_{2 m} ; \mathbf{Z}\right) \rightarrow H_{2 m-3-q}\left(M_{2 m} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq m-3$ or $q \geq m$, an epimorphism for $q=m-1$, and a monomorphism for $q=m-2$.

Proposition 2.4. (i) $\chi\left(M_{2 m+1}\right)=(-1)^{m+1}\binom{2 m}{m}$.
(ii) $\chi\left(M_{2 m}\right)=(-1)^{m+1}\binom{2 m-1}{m}$.

Remark 2.5. In order to prove Theorem 2.1, the homological assertion is sufficient for Proposition 2.2 (i). But actually we can prove the homotopical assertion.

Proof of Theorem A. Since σ acts freely on $M_{2 m+1}$, and $M_{2 m}^{\sigma}$ (=the fixed point set of the involution) equals to the set of singular points in $M_{2 m}$, all of the assertions except the type of the singular points of $M_{2 m}^{\prime}$ are deduced from Proposition 2.3.

Let $\left(z_{1}, \ldots, z_{2 m-1}\right)$ be a singular point of $M_{2 m}$ in the identification of (1.6). By Proposition 2.3, we must have $z_{i}= \pm 1(1 \leq i \leq 2 m-1)$. As the symmetric group on ($2 m-1$)-letters acts on $M_{2 m}$, we can assume that $z_{i}=1(1 \leq i \leq m)$ and $z_{i}=$ $-1(m+1 \leq i \leq 2 m-1)$. A neighborhood of $\left(z_{1}, \ldots, z_{2 m-1}\right)$ in $\left(S^{1}\right)^{2 m-1}$ is written
by

$$
\begin{aligned}
\left\{\left(\binom{\sqrt{1-y_{1}^{2}}}{y_{1}}, \ldots,\binom{\sqrt{1-y_{m}^{2}}}{y_{m}},\right.\right. & \left.\binom{-\sqrt{1-y_{m+1}^{2}}}{y_{m+1}}, \ldots,\binom{-\sqrt{1-y_{2 m-1}^{2}}}{y_{2 m-1}}\right): \\
& \left.-\epsilon \leq y_{i} \leq \epsilon(1 \leq i \leq 2 m-1)\right\}
\end{aligned}
$$

where $\epsilon>0$ is a fixed small number. As ϵ is small, it is easy to see that we can write this neighborhood as

$$
\begin{gathered}
\left\{\left(\binom{1-\frac{1}{2} y_{1}^{2}}{y_{1}}, \ldots,\binom{1-\frac{1}{2} y_{m}^{2}}{y_{m}},\right.\right. \\
\left.\binom{-1+\frac{1}{2} y_{m+1}^{2}}{y_{m+1}}, \ldots,\binom{-1+\frac{1}{2} y_{2 m-1}^{2}}{y_{2 m-1}}\right): \\
\left.-\epsilon \leq y_{i} \leq \epsilon(1 \leq i \leq 2 m-1)\right\}
\end{gathered}
$$

Thus a neighborhood of a singular point in $M_{2 m}$ is written as a subspace of $\mathbf{R}^{2 m-1}$ defined by two equations

$$
\left\{\begin{array}{l}
y_{1}^{2}+\cdots+y_{m}^{2}-y_{m+1}^{2}-\cdots-y_{2 m-1}^{2}=0 \tag{2.6}\\
y_{1}+\cdots+y_{m}+y_{m+1}+\cdots+y_{2 m-1}=0
\end{array}\right.
$$

By a linear transformation of parameters, we can write the quadratic form of (2.6), i.e.,
$y_{1}^{2}+\cdots+y_{m-1}^{2}+\left(y_{1}+\cdots+y_{m-1}+y_{m+1}+\cdots+y_{2 m-1}\right)^{2}-y_{m+1}^{2}-\cdots-y_{2 m-1}^{2}$,
as

$$
w_{1}^{2}+\cdots+w_{m-1}^{2}-w_{m}^{2}-\cdots-w_{2 m-2}^{2}
$$

Thus a singular point of $M_{2 m}$ has a neighborhood $C\left\{\left(w_{1}, \ldots, w_{m-1}, w_{m}, \ldots, w_{2 m-2}\right)\right.$: $\left.w_{1}^{2}+\cdots+w_{m-1}^{2}=1, w_{m}^{2}+\cdots+w_{2 m-2}^{2}=1\right\}$, which is homeomorphic to $C\left(S^{m-2} \times\right.$ S^{m-2}).

Now it is clear that $\sigma w_{i}=-w_{i}$. Hence a singular point of $M_{2 m}^{\prime}$ has a neighborhood $C\left(S^{m-2} \times_{\mathbf{Z}_{2}} S^{m-2}\right)$, where $\sigma\left(\zeta_{1}, \zeta_{2}\right)=\left(-\zeta_{1},-\zeta_{2}\right)\left(\zeta_{1}, \zeta_{2} \in S^{m-2}\right)$.

Proof of Theorem B. For $F=\mathbf{Z}_{p}$ (p : an odd prime) or \mathbf{Q}, we have that $H_{*}\left(M_{n}^{\prime} ; F\right)$ $\cong H_{*}\left(M_{n} ; F\right)^{\sigma}$ (= the fixed point set of $H_{*}\left(M_{n} ; F\right)$ under the σ-action) (see for example [2]). As $H_{*}\left(M_{n} ; \mathbf{Z}\right)$ are free modules by Theorem 2.1, we have that $\operatorname{dim}_{\mathbf{Z}_{p}} H_{q}\left(M_{n}^{\prime} ; \mathbf{Z}_{p}\right)=$ $\operatorname{dim}_{\mathbf{Q}} H_{q}\left(M_{n}^{\prime} ; \mathbf{Q}\right)$. Hence Theorem B follows.

Proof of Theorem D. Let $j_{2 m}:\left(S^{1}\right)^{2 m}-\Sigma_{2 m} \hookrightarrow\left(S^{1}\right)^{2 m}$ be the inclusion. Since $\Sigma_{2 m}$ is a discrete set, the general position argument shows that $\left(j_{2 m}\right)_{*}: \pi_{q}\left(\left(S^{1}\right)^{2 m}-\right.$ $\left.\Sigma_{2 m}\right) \rightarrow \pi_{q}\left(\left(S^{1}\right)^{2 m}\right)$ are isomorphisms for $q \leq 2 m-2$. Then Proposition 2.2 (i) shows that $\left(i_{2 m+1}\right)_{*}: \pi_{q}\left(M_{2 m+1}\right) \rightarrow \pi_{q}\left(\left(S^{1}\right)^{2 m}-\Sigma_{2 m}\right)$ are isomorphisms for $q \leq m-2$ and an epimorphism for $q=m-1$, where $i_{2 m+1}: M_{2 m+1} \hookrightarrow\left(S^{1}\right)^{2 m}-\Sigma_{2 m}$ is the inclusion.

By comparing the homotopy exact sequences of two covering spaces of (1.8), we see that $\left(i_{2 m+1}^{\prime}\right)_{*}: \pi_{q}\left(M_{2 m+1}^{\prime}\right) \rightarrow \pi_{q}\left(V_{2 m}\right)$ are isomorphisms for $q \leq m-2$ and an epimorphism for $q=m-1$, where $i_{2 m+1}^{\prime}: M_{2 m+1}^{\prime} \hookrightarrow V_{2 m}$ is the map induced from the σ-equivariant inclusion $i_{2 m+1}: M_{2 m+1} \hookrightarrow\left(S^{1}\right)^{2 m}-\Sigma_{2 m}$.

This completes the proof of Theorem D.

3. Proof of Theorem \mathbf{C}

Let $i_{n}: M_{n} \hookrightarrow\left(S^{1}\right)^{n-1}$ be the inclusion. Note that i_{n} is a σ-equivariant map. Hence $\left(i_{n}\right)_{*}: H_{*}\left(M_{n} ; \mathbf{Q}\right) \rightarrow H_{*}\left(\left(S^{1}\right)^{n-1} ; \mathbf{Q}\right)$ is also a σ-equivariant homomorphism. Since $H_{*}\left(M_{n}^{\prime} ; \mathbf{Q}\right)=H_{*}\left(M_{n} ; \mathbf{Q}\right)^{\sigma}$, Proposition 2.2 tells us the following:

Proposition 3.1. (i) For $q \leq m-2$, we have

$$
H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Q}\right)= \begin{cases}\substack{\left(\begin{array}{c}
2 m \\
q
\end{array}\right) \\
0} & q: \text { even } \\
0 & q: \text { odd } .\end{cases}
$$

(ii) For $q \leq m-2$, we have

$$
H_{q}\left(M_{2 m}^{\prime} ; \mathbf{Q}\right)= \begin{cases}\underset{q}{(\underset{q}{2+-1})} \mathbf{Q} & q: \text { even } \\ 0 & q: \text { odd } .\end{cases}
$$

We assume the truth of the following Lemma for the moment. Let $\left[M_{n}\right] \in$ $H_{n-3}\left(M_{n} ; \mathbf{Q}\right)$ be the fundamental class.

Lemma 3.2. $\quad \sigma_{*}\left[M_{n}\right]=(-1)^{n}\left[M_{n}\right]$.
Then we have the following:
Proposition 3.3. (i) For $q \geq m$, we have

$$
H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Q}\right)= \begin{cases}0 & q: \text { even } \\
\substack{\left(\begin{array}{c}
2 m \\
q+2
\end{array}\right)} & q: \text { odd } .\end{cases}
$$

(ii) For $q \geq m$, we have

$$
H_{q}\left(M_{2 m}^{\prime} ; \mathbf{Q}\right)= \begin{cases}0 & q: \text { even } \\ \underset{\substack{(2 m-1 \\ q+2}}{\oplus} \mathbf{Q} & q: \text { odd } .\end{cases}
$$

Proof of Proposition 3.3. Take an element $\alpha \in H_{q}\left(M_{2 m+1} ; \mathbf{Q}\right)(q \geq m)$. By Proposition 2.3, there is an element $f \in H^{2 m-2-q}\left(M_{2 m+1} ; \mathbf{Q}\right)$ such that $\alpha=f \cap$ $\left[M_{2 m+1}\right]$. As $\sigma_{*}\left(f \cap\left[M_{2 m+1}\right]\right)=\sigma^{*} f \cap \sigma_{*}\left[M_{2 m+1}\right]=-\sigma^{*} f \cap\left[M_{2 m+1}\right]$, we have that

$$
H_{q}\left(M_{2 m+1} ; \mathbf{Q}\right)^{\sigma}=\left\{f \in H^{2 m-2-q}\left(M_{2 m+1} ; \mathbf{Q}\right): \sigma^{*} f=-f\right\} .
$$

Now (i) follows from Proposition 3.1.
(ii) can be proved similarly.

Now in order to determine $H_{*}\left(M_{n}^{\prime} ; \mathbf{Q}\right)$, we need to know only $H_{m-1}\left(M_{2 m+1}^{\prime} ; \mathbf{Q}\right)$ and $H_{m-1}\left(M_{2 m}^{\prime} ; \mathbf{Q}\right)$, which are determined if we know $\chi\left(M_{n}^{\prime}\right)$.

Proposition 3.4 ([5]). (i) $\chi\left(M_{2 m+1}^{\prime}\right)=(-1)^{m+1}\binom{2 m-1}{m}$.
(ii) $\chi\left(M_{2 m}^{\prime}\right)= \begin{cases}0 & m: \text { even } \\ \binom{2 m-1}{m} & m: \text { odd } .\end{cases}$

Proof. By a general formula of an involution (see for example [1]), we have $\chi\left(M_{n}\right)+$ $\chi\left(M_{n}^{\sigma}\right)=2 \chi\left(M_{n}^{\prime}\right)$. Then the result follows from Proposition 2.4.

Proof of Lemma 3.2. First we treat the case of $n=2 m+1$. We define a volume element ω of $M_{2 m+1}$ as follows. Fix $\left(z_{1}, \ldots, z_{2 m}\right) \in M_{2 m+1}$ in the identification of (1.6). It is easy to see that the tangent space $T_{\left(z_{1}, \ldots, z_{2 m}\right)} M_{2 m+1}$ is given by

$$
T_{\left(z_{1}, \ldots, z_{2 m}\right)} M_{2 m+1} \cong\left\{\left(\begin{array}{c}
\xi_{1} \tag{3.5}\\
\vdots \\
\xi_{2 m}
\end{array}\right) \in \mathbf{R}^{2 m}: \xi_{1} z_{1}+\cdots+\xi_{2 m} z_{2 m}=0\right\}
$$

Write z_{i} as $\left(x_{i}, y_{i}\right)$. Then for $\eta_{1}, \ldots, \eta_{2 m-2} \in T_{\left(z_{1}, \ldots, z_{2 m}\right)} M_{2 m+1}$, we set

$$
\omega\left(\eta_{1}, \ldots, \eta_{2 m-2}\right)=\operatorname{det}\left(\eta_{1}, \ldots, \eta_{2 m-2},\left(\begin{array}{c}
x_{1} \tag{3.6}\\
\vdots \\
x_{2 m}
\end{array}\right),\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{2 m}
\end{array}\right)\right)
$$

It is easy to see that ω is nowhere zero on $M_{2 m+1}$.

For $\eta=\left(\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{2 m}\end{array}\right) \in T_{\left(z_{1}, \ldots, z_{2 m}\right)} M_{2 m+1}$, we see that

$$
d i_{2 m+1}(\eta)=\xi_{1}\left(\sqrt{-1} z_{1}\right)+\cdots+\xi_{2 m}\left(\sqrt{-1} z_{2 m}\right)
$$

where $i_{2 m+1}: M_{2 m+1} \hookrightarrow\left(S^{1}\right)^{2 m}$ denotes the inclusion. Hence we see that $d \sigma$: $T_{\left(z_{1}, \ldots, z_{2 m}\right)} M_{2 m+1} \rightarrow T_{\left(\bar{z}_{1}, \ldots, \bar{z}_{2 m}\right)} M_{2 m+1}$ is given by

$$
\begin{equation*}
d \sigma(\eta)=-\eta \tag{3.7}
\end{equation*}
$$

Now the formulae $d \sigma\left(\eta_{i}\right)=-\eta_{i}$ and $\sigma\left(x_{i}, y_{i}\right)=\left(x_{i},-y_{i}\right)$ tell us that $\left(\sigma^{*} \omega\right)\left(\eta_{1}\right.$, $\left.\ldots, \eta_{2 m-2}\right)=-\omega\left(\eta_{1}, \ldots, \eta_{2 m-2}\right)$. Hence $\sigma^{*} \omega=-\omega$ and the result follows.

Next we treat the case of $n=2 m$. Let $\bar{M}_{2 m}$ be $M_{2 m}-\{$ singular points $\}$. By the same argument as in the case of $n=2 m+1$, we see that $\sigma: \bar{M}_{2 m} \rightarrow \bar{M}_{2 m}$ preserves orientation. As $H_{c}^{2 m-3}\left(\bar{M}_{2 m} ; \mathbf{Q}\right) \cong H^{2 m-3}\left(M_{2 m} ; \mathbf{Q}\right)\left(H_{c}=\right.$ cohomology with compact supports), the result follows.

4. Proof of Theorem E

First we determine $H_{2 m-1}\left(V_{2 m} ; \mathbf{Z}\right)$. The Poincaré-Lefschetz duality tells us that $H_{2 m-1}\left(V_{2 m} ; \mathbf{Z}\right) \cong H^{1}\left(\left(S^{1}\right)^{2 m} / \sigma, \Sigma_{2 m} ; \mathbf{Z}\right)$. As $H^{1}\left(\left(S^{1}\right)^{2 m} / \sigma ; \mathbf{Z}\right)=0$, we have $H_{2 m-1}\left(V_{2 m} ; \mathbf{Z}\right) \cong \underset{2^{2 m}-1}{\oplus} \mathbf{Z}$.

As $V_{2 m}$ is a non-compact manifold of dimension $2 m$, we have $H_{q}\left(V_{2 m} ; \mathbf{Z}\right)=0$ ($q \geq 2 m$). Hence in order to complete the proof of Theorem E , we need to determine $H_{q}\left(V_{2 m} ; \mathbf{Z}\right)(q \leq 2 m-2)$.

Recall that we have a fibration $\left(S^{1}\right)^{2 m}-\Sigma_{2 m} \rightarrow V_{2 m} \rightarrow \mathbf{R} P^{\infty}$. Set $F_{2 m}=$ $\left(S^{1}\right)^{2 m}-\Sigma_{2 m}$. The local systems of this fibration of dimensions less than or equal to $2 m-2$ are easy to describe: We write the generator of $\pi_{1}\left(\mathbf{R} P^{\infty}\right)$ by σ. Then as a σ module, we have

$$
\begin{equation*}
H_{q}\left(F_{2 m} ; \mathbf{Z}\right) \cong H_{q}\left(\left(S^{1}\right)^{2 m} ; \mathbf{Z}\right)(q \leq 2 m-2) \tag{4.1}
\end{equation*}
$$

Let $\left\{E_{s, t}^{r}\right\}$ be the \mathbf{Z}-coefficient homology Serre spectral sequence of the above fibration. It is elementary to describe $E_{s, t}^{2}(t \neq 2 m-1)$ by using the following fact: We define a σ-module \mathcal{S} to be the free abelian group of rank 1 on which σ acts by -1 . Then have that

$$
H_{q}\left(\mathbf{R} P^{\infty} ; \mathcal{S}\right)=\left\{\begin{array}{lll}
\mathbf{Z}_{2} & q: & \text { even } \tag{4.2}\\
0 & q: & \text { odd }
\end{array}\right.
$$

REMARK 4.3. For our reference, we give $E_{s, 2 m-1}^{2}$. Let \mathcal{T} be the free abelian group of rank 2 on which σ acts by $\left(\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right)$. And let σ act on \mathbf{Z} trivially. Then we can prove
that

$$
H_{2 m-1}\left(F_{2 m} ; \mathbf{Z}\right) \cong \underset{2 m}{\oplus} \mathcal{T} \oplus \underset{2^{2 m}-2 m-1}{\oplus} \mathbf{Z}
$$

As

$$
H_{q}\left(\mathbf{R} P^{\infty} ; \mathcal{T}\right)= \begin{cases}\mathbf{Z} & q=0 \\ 0 & q>0\end{cases}
$$

we can determine $E_{s, 2 m-1}^{2}$.
We return to $E_{s, t}^{2}(t \neq 2 m-1)$. By the dimensional reason, we have the following:
Proposition 4.4. For $s+t \leq 2 m-2$, we have that $E_{s, t}^{2} \cong E_{s, t}^{\infty}$.
Hence in order to complete the proof of Theorem E, it suffices to determine the extensions of $E_{s, t}^{\infty}$, where $s+t$ are odd $\leq 2 m-3$. To do so, it is convenient to study $H_{*}\left(V_{2 m} ; \mathbf{Z}_{2}\right)$.

Proposition 4.5. For $q \leq 2 m-2$, we have

$$
H_{q}\left(V_{2 m} ; \mathbf{Z}_{2}\right)=\underset{\substack{\Sigma_{i \leq q}\left(\begin{array}{c}
2 m \\
i
\end{array}\right)}}{\oplus} \mathbf{Z}_{2} .
$$

From Proposition 4.5, we see that the extensions of $E_{s, t}^{\infty}(s+t \leq 2 m-2)$ are trivial. Hence Theorem E follows.

Thus in order to complete the proof of Theorem E, we need to prove Proposition 4.5, which we prove for the rest of this section.

Let $\left\{E_{r}^{s, t}\right\}$ be the \mathbf{Z}_{2}-coefficient cohomology Serre spectral sequence of the fibration $F_{2 m} \rightarrow V_{2 m} \rightarrow \mathbf{R} P^{\infty}$. We prove the following:

Lemma 4.6. $d_{2}: E_{2}^{0,1} \rightarrow E_{2}^{2,0}$ equals to 0 .
Lemma 4.6 tells us that elements of $E_{2}^{s, t}(t \leq 2 m-2)$ are permanent cycles. Hence Proposition 4.5 follows.

Proof of Lemma 4.6. Suppose that Lemma 4.6 fails. Then we have $H^{1}\left(V_{2 m}\right.$; $\left.\mathbf{Z}_{2}\right)=\underset{2 m}{\oplus} \mathbf{Z}_{2}$. By Theorem D and the \mathbf{Z}_{2}-coefficient Poincaré duality of $M_{2 m+1}^{\prime}$, we have $H_{2 m-3}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)=\underset{2 m}{\oplus} \mathbf{Z}_{2}$. Since $H_{2 m-3}\left(M_{2 m+1}^{\prime} ; \mathbf{Q}\right)=\underset{2 m}{\oplus} \mathbf{Q}$ by Theorem $\mathbf{C}(\mathrm{a})$, we have

$$
\begin{equation*}
H_{2 m-3}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)=\underset{2 m}{\oplus} \mathbf{Z} \tag{4.7}
\end{equation*}
$$

By Theorem C (a), we have $H_{2 m-2}\left(M_{2 m+1}^{\prime} ; \mathbf{Q}\right)=0$. Hence by Theorem A (a), $M_{2 m+1}^{\prime}$ is a non-orientable manifold of dimension $2 m-2$. Thus we have $H_{2 m-2}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)=0$. Then by (4.7), we have $H_{2 m-2}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)=0$. This contradicts the fact that $H_{2 m-2}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)=\mathbf{Z}_{2}$, i.e., $M_{2 m+1}^{\prime}$ is a compact manifold of dimension $2 m-2$.

This completes the proof of Lemma 4.6, and hence also that of Theorem E.

5. Proof of Theorem \mathbf{F}

In order to calculate $H_{*}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$, first we need to determine $H_{*}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)$. By the Poincaré duality, it suffices to determine $H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)(q \leq m-1)$, which are given by the following:

Proposition 5.1. For $q \leq m-1$, we have

$$
H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)=\underset{i \leq q}{\sum_{i}\left({ }_{i}^{2 m}\right)} \underset{2}{ } \mathbf{Z}_{2} .
$$

Proof. First, $H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)(q \leq m-2)$ are determined by Theorems D and E together with the universal coefficient theorem. Then $H_{m-1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right)$ is determined by Proposition 3.4.

Remark 5.2. From Theorems D, E and Proposition 5.1, we see that $\left(i_{2 m+1}^{\prime}\right)_{*}$: $H_{m-1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}_{2}\right) \rightarrow H_{m-1}\left(V_{2 m} ; \mathbf{Z}_{2}\right)$ is an isomorphism for all m.

Now we begin to determine $H_{*}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$.
(I) $H_{\text {even }}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$.

These modules are determined from Theorem C and the following:
Proposition 5.3. $\quad H_{\text {even }}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ are torsion free .
Proof. We can inductively prove this proposition from Theorem C and Proposition 5.1 together with the universal coefficient theorem.
(II) $H_{\text {odd }}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$.

In order to determine these modules from Theorem C and Proposition 5.1, we need to prove the non-existence of higher two-torsions, i.e., elements of order $2^{i}(i \geq 2)$.

Let $p: M_{2 m+1} \times \mathbf{R} \rightarrow M_{2 m+1}^{\prime}$ be the real line bundle associated to the covering space $M_{2 m+1} \rightarrow M_{2 m+1}^{\prime}$. And let $O\left(M_{2 m+1} \underset{\sigma}{\times} \mathbf{R}\right)$ denote the local system of the above vector bundle. Finally, let $O\left(T M_{2 m+1}^{\prime}\right)$ denote the local system of $T M_{2 m+1}^{\prime}$, the tangent bundle of $M_{2 m+1}^{\prime}$.

Concerning these local systems, we have the following:

Lemma 5.4. As local systems on $M_{2 m+1}^{\prime}$, we have $O\left(M_{2 m+1} \times \mathbf{R}\right) \cong O\left(T M_{2 m+1}^{\prime}\right)$.
Proof. Let $\mathbf{R}^{2} \rightarrow \nu \rightarrow M_{2 m+1}$ denote the normal bundle of $M_{2 m+1}$ in $\left(S^{1}\right)^{2 m}$ (cf. (1.6)). As $T M_{2 m+1} \oplus \nu \cong T\left(\left(S^{1}\right)^{2 m}\right) \mid M_{2 m+1}$, we have

$$
\begin{equation*}
T M_{2 m+1}^{\prime} \oplus \nu / \sigma \cong T V_{2 m} \mid M_{2 m+1}^{\prime} \tag{5.5}
\end{equation*}
$$

where $\nu / \sigma \rightarrow M_{2 m+1}^{\prime}$ denotes the vector bundle obtained from $\nu \rightarrow M_{2 m+1}$ by the action of σ.

We study ν / σ. Recall that $T M_{2 m+1}$ is given by (3.5). Similarly, for $\left(z_{1}, \ldots, z_{2 m}\right)$ $\in M_{2 m+1}$, we have

$$
T_{\left(z_{1}, \ldots, z_{2 m}\right)}\left(\left(S^{1}\right)^{2 m}\right) \cong\left\{\left(\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{2 m}
\end{array}\right) \in \mathbf{R}^{2 m}\right\}
$$

Hence by assigning $\left(\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{2 m}\end{array}\right) \in \nu_{\left(z_{1}, \ldots, z_{2 m}\right)}$ to $\xi_{1} z_{1}+\cdots+\xi_{2 m} z_{2 m}$, we have

$$
\begin{equation*}
\nu \cong M_{2 m+1} \times \mathbf{R}^{2} . \tag{5.6}
\end{equation*}
$$

Under this identification, the bundle homomorphism $d \sigma: \nu \rightarrow \nu$ is given by

$$
\begin{equation*}
d \sigma\left(\left(z_{1}, \ldots, z_{2 m}\right) ;\binom{v_{1}}{v_{2}}\right)=\left(\left(\bar{z}_{1}, \ldots, \bar{z}_{2 m}\right) ;\binom{-v_{1}}{v_{2}}\right) \tag{5.7}
\end{equation*}
$$

(cf. (3.7)).
Then (5.6)-(5.7) tell us that

$$
\begin{equation*}
\nu / \sigma \cong M_{2 m+1} \times \underset{\sigma}{ } \times \mathbf{R} \oplus M_{2 m+1}^{\prime} \times \mathbf{R} . \tag{5.8}
\end{equation*}
$$

Now, as $V_{2 m}$ is orientable, we see from (5.5) and (5.8) that

$$
\begin{equation*}
O\left(T M_{2 m+1}^{\prime}\right) \otimes O\left(M_{2 m+1} \times \underset{\sigma}{\times}\right) \cong \mathbf{Z} \tag{5.9}
\end{equation*}
$$

where \mathbf{Z} denotes the simple local system on $M_{2 m+1}^{\prime}$. By taking a tensor $\otimes O\left(T M_{2 m+1}^{\prime}\right)$ on both sides of (5.9), the result follows.

Let us denote the local systems $O\left(M_{2 m+1} \times \underset{\sigma}{\times}\right) \cong O\left(T M_{2 m+1}^{\prime}\right)($ cf. Lemma 5.4) by \mathcal{Z}.
(A) The case of an odd m.

We can determine $H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)(q$: odd $\leq m-2)$ by Theorems D and E. Thus we need to determine $H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)(q$: odd $\geq m)$. By the Poincaré duality: $H_{q}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right) \cong H^{2 m-2-q}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right)$, it suffices to determine $H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right)$ (r : odd $\leq m-2$).

Consider the Gysin sequence of $p: M_{2 m+1} \underset{\sigma}{\times} \mathbf{R} \rightarrow M_{2 m+1}^{\prime}:$

$$
\begin{aligned}
\cdots \xrightarrow{\psi} H^{r-1}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right) \xrightarrow{\mu} H^{r}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right) \xrightarrow{p^{*}} H^{r}\left(M_{2 m+1} ; \mathbf{Z}\right) \\
\quad \xrightarrow{\psi} H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right) \xrightarrow{\mu} \cdots .
\end{aligned}
$$

Lemma 5.10. For an odd $r \leq m-2$, we have
(i) $H^{r}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)=0$.
(ii) $H^{r}\left(M_{2 m+1} ; \mathbf{Z}\right)$ is a free module.
(iii) The order of a torsion element of $H^{r+1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ is exactly 2, i.e., $H^{r+1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)$ does not contain higher two-torsions.

Proof. This lemma is an easy consequence of Theorems D, E, 2.1 and Proposition 5.3.

Now suppose that $H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right)$ contains a higher two-torsion. Then by Lemma 5.10 (iii), $\operatorname{Ker}\left[\mu: H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right) \rightarrow H^{r+1}\left(M_{2 m+1}^{\prime} ; \mathbf{Z}\right)\right]$ contains a torsion element.

But by Lemma 5.10 (i)-(ii), $\operatorname{Im}\left[\psi: H^{r}\left(M_{2 m+1} ; \mathbf{Z}\right) \rightarrow H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right)\right]$ is a free module. This is a contradiction. Thus $H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right)(r$: odd $\leq m-2)$ does not contain higher two-torsions.

This completes the proof of Theorem F (a).
(B) The case of an even m.

As in (A), it suffices to determine $H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right)(r:$ odd $\leq m-1)$. For an odd $r \leq m-3$, Lemma 5.10 applies and, by the same argument as in (A), we see that $H^{r}\left(M_{2 m+1}^{\prime} ; \mathcal{Z}\right)$ does not contain higher two-torsions.

But Lemma 5.10 fails when $r=m-1$. Thus our argument cannot apply in this case. This completes the proof of Theorem F (b).

References

[1] G. Bredon: Introduction to compact transformation groups, Academic Press, 1972.
[2] P. Conner: Concerning the action of a finite group, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 349-351.
[3] T. Havel: The use of distances as coordinates in computer-aided proofs of theorems in Euclidean geometry, Journal of Symbolic Computation 11 (1991), 579-593.
[4] Y. Kamiyama: An elementary proof of a theorem of T. F. Havel, Ryukyu Math. J. 5 (1992), 7-12.
[5] Y. Kamiyama: Topology of equilateral polygon linkages, Top. and its Applications 68 (1996), 13-31.
[6] Y. Kamiyama, M. Tezuka and T. Toma: Homology of the configuration spaces of quasi-equilateral polygon linkages, Trans. Amer. Math. Soc. 350 (1998), 4869-4896.
[7] Y. Kamiyama and M. Tezuka: Topology and geometry of equilateral polygon linkages in the Euclidean plane, Quart. J. Math. (to appear).
[8] M. Kapovich and J. Millson: On the moduli space of polygons in the Euclidean plane, Journal of Diff. Geometry 42 (1995), 133-164.
[9] I. Schoenberg: Linkages and distance geometry, I. Linkages, Indag. Math. 31 (1969), 42-52.
[10] E. Spanier: Algebraic topology, McGraw-Hill, 1966.

Department of Mathematics
University of the Ryukyus
Nishihara-Cho, Okinawa 903-01, Japan

