

Title	Topology of equilateral polygon linkages in the Euclidean plane modulo isometry group			
Author(s)	Kamiyama, Yasuhiko			
Citation	Osaka Journal of Mathematics. 1999, 36(3), p. 731-745			
Version Type	VoR			
URL	https://doi.org/10.18910/10222			
rights				
Note				

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

TOPOLOGY OF EQUILATERAL POLYGON LINKAGES IN THE EUCLIDEAN PLANE MODULO ISOMETRY GROUP

YASUHIKO KAMIYAMA

(Received September 24, 1997)

1. Introduction

We consider the configuration space M'_n of equilateral polygon linkages with $n \ (n \ge 3)$ vertices, each edge having length 1 in the Euclidean plane \mathbf{R}^2 modulo isometry group. More precisely, let \mathcal{C}_n be

$$(1.1) \ \mathcal{C}_n = \{(u_1, \dots, u_n) \in (\mathbf{R}^2)^n : |u_{i+1} - u_i| = 1 \ (1 \le i \le n-1), \ |u_1 - u_n| = 1\}.$$

Note that $Iso(\mathbf{R}^2)$ (= the isometry group of \mathbf{R}^2 , i.e., a semidirect product of \mathbf{R}^2 with O(2)), naturally acts on \mathcal{C}_n . We define M'_n by

$$M'_n = \mathcal{C}_n/\mathrm{Iso}(\mathbf{R}^2).$$

We remark that M'_n has the following description: We set $M_n = C_n/\text{Iso}^+(\mathbf{R}^2)$, where $\text{Iso}^+(\mathbf{R}^2)$ denotes the orientation preserving isometry group of \mathbf{R}^2 , i.e., a semidirect product of \mathbf{R}^2 with SO(2). Then we can write M_n as

(1.3)
$$M_n = \{(u_1, \dots, u_n) \in \mathcal{C}_n : u_1 = (\frac{1}{2}, 0) \text{ and } u_2 = (-\frac{1}{2}, 0)\}.$$

 M_n admits an involution $\sigma = \text{Iso}(\mathbf{R}^2)/\text{Iso}^+(\mathbf{R}^2)$ such that $M'_n = M_n/\sigma$. Under the identification of (1.3), σ is given by

(1.4)
$$\sigma(u_1,\ldots,u_n)=(\bar{u}_1,\ldots,\bar{u}_n),$$

where $\bar{u}_i = (x_i, -y_i)$ when $u_i = (x_i, y_i)$.

Many topological properties of M_n are already known: First we know explicit topological type of M_n $(n \le 5)$ [3],[4],[8]. Next we have the results on the smoothness of M_n [5],[7],[8]. Finally $H_*(M_n; \mathbf{Z})$ are determined in [6],[7] (cf. Theorem 2.1). In particular, the natural inclusion $i_n: M_n \hookrightarrow (S^1)^{n-1}$ (cf. (1.6)) induces isomorphisms of homology groups up to a certain dimension (cf. Proposition 2.2).

On the other hand, concerning M'_n , what we know already are the following: First we know the following examples.

EXAMPLES 1.5. $M_3' = \{1\text{-point}\}, M_4' = S^1 \text{ and } M_5' = \sharp \mathbf{R}P^2$, the five-times connected sum of $\mathbf{R}P^2$.

Next some assertions on the smoothness of M'_n are proved in [5]. However, we have few information on $H_*(M'_n; \mathbf{Z})$, although we know $\chi(M'_n)$, the Euler characteristic of M'_n [5] (cf. Proposition 3.4).

The purposes of this paper are as follows.

- (i) We prove assertions on the smoothness of M'_n .
- (ii) We determine $H_*(M'_n; \mathbf{Z}_p)$, where p is an odd prime, and $H_*(M'_n; \mathbf{Q})$.

In the following (iii)-(v), we assume n to be odd, and set n=2m+1. Then by the results of (i) and (ii), M'_{2m+1} is a non-orientable manifold of dimension 2m-2.

- (iii) Find a space V_{2m} and an inclusion $i'_{2m+1}:M'_{2m+1}\hookrightarrow V_{2m}$ so that i'_{2m+1} induces isomorphisms of homotopy groups up to a certain dimension.
- (iv) As V_{2m} is a natural space, we determine $H_*(V_{2m}; \mathbf{Z})$ completely. Then in particular we know $H_*(M'_{2m+1}; \mathbf{Z})$ up to some dimension by the result of (iii).

As we will see in Remark 1.9, knowing $H_*(V_{2m}; \mathbf{Z})$ is equivalent to knowing $H_*((S^1)^{2m}/\sigma; \mathbf{Z})$.

(v) Finally we determine $H_*(M'_{2m+1}; \mathbf{Z})$ except the possibility of higher two-torsions in $H_{m-1}(M'_{2m+1}; \mathbf{Z})$ when m is even.

Now we state our results. Concerning (i), we have the following:

Theorem A. (a) M'_{2m+1} is a manifold of dimension 2m-2.

(b) M'_{2m} is a manifold of dimension 2m-3 with singular points. $(u_1,\ldots,u_{2m})\in M'_{2m}$ is a singular point iff all of u_i lie on the x-axis, i.e., the line determined by u_1 and u_2 (cf. (1.3)). Moreover every singular point of M'_{2m} is a cone-like singularity and has a neighborhood as $C(S^{m-2}\times_{\mathbf{Z}_2}S^{m-2})$, where C denotes cone and action of \mathbf{Z}_2 on both factors is generated by the antipodal map.

Concerning (ii), first we prove the following:

Theorem B. $H_*(M'_n; \mathbf{Z})$ are odd-torsion free.

Thus in order to know $H_*(M'_n; \mathbf{Z}_p)$, we need to know $H_*(M'_n; \mathbf{Q})$, which is given by the following:

Theorem C. The Poincaré polynomials $PS_{\mathbf{Q}}(M'_n) = \Sigma_{\lambda} \dim_{\mathbf{Q}} H_{\lambda}(M'_n; \mathbf{Q}) t^{\lambda}$ are given by

$$\text{(a) } PS_{\mathbf{Q}}(M'_{2m+1}) = \sum_{0 \leq 2a \leq m-2} \binom{2m}{2a} t^{2a} + \binom{2m}{m-1} t^{m-1} \\ + \sum_{m \leq 2b+1 \leq 2m-3} \binom{2m}{2b+3} t^{2b+1},$$

$$\text{(b) } PS_{\mathbf{Q}}(M_{4l}') = \sum_{0 \leq 2a \leq 2l-2} \binom{4l-1}{2a} t^{2a} + \binom{4l-1}{2l-2} t^{2l-1} \\ + \sum_{2l+1 \leq 2b+1 \leq 4l-3} \binom{4l-1}{2b+3} t^{2b+1},$$

$$PS_{\mathbf{Q}}(M'_{4l+2}) = \sum_{0 \le 2a \le 2l-2} \binom{4l+1}{2a} t^{2a} + \binom{4l+1}{2l+1} t^{2l} + \sum_{2l+1 \le 2b+1 \le 4l-1} \binom{4l+1}{2b+3} t^{2b+1},$$

where $\binom{a}{b}$ denotes the binomial coefficient.

Next we go to (iii). By setting $z_i = u_{i+2} - u_{i+1}$ $(1 \le i \le n-2)$, $z_{n-1} = u_1 - u_n$, and identifying \mathbf{R}^2 with \mathbf{C} , we can write M_n $(n \ge 3)$ as

$$(1.6) M_n \cong \{(z_1, \dots, z_{n-1}) \in (S^1)^{n-1} : z_1 + \dots + z_{n-1} - 1 = 0\}.$$

Let $i_n: M_n \hookrightarrow (S^1)^{n-1}$ be the inclusion.

As we have mentioned, $(S^1)^{n-1}$ approximates the topology of M_n up to some dimension (cf. Proposition 2.2). However, for an odd n=2m+1, our low-dimensional computations lead us to give up the hope that $(S^1)^{2m}/\sigma$ might approximate $M'_{2m+1}=M_{2m+1}/\sigma$, where σ acts on $(S^1)^{2m}$ in the same way as in (1.4). The essential reason for this is that the action of σ on $(S^1)^{2m}$ is not free, although on M_{2m+1} is.

Thus we define V_{2m} by

(1.7)
$$V_{2m} = \{ (S^1)^{2m} - \Sigma_{2m} \} / \sigma,$$

where we set

$$\Sigma_{2m} = \{(z_1, \dots, z_{2m}) \in (S^1)^{2m} : z_i = \pm 1 \ (1 \le i \le 2m)\}.$$

Let $i'_{2m+1}:M'_{2m+1}\hookrightarrow V_{2m}$ be the inclusion. Then we have the following map of covering

spaces:

Note that $(S^1)^{2m} - \Sigma_{2m}$ is a maximal subspace of $(S^1)^{2m}$ on which σ acts freely. Thus it is natural to consider the topology of V_{2m} .

Now concerning the relation between M'_{2m+1} and V_{2m} , we have the following theorem.

Theorem D. $(i'_{2m+1})_*:\pi_q(M'_{2m+1})\to\pi_q(V_{2m})$ are isomorphisms for $q\leq m-2$, and an epimorphism for q=m-1.

Concerning (iv), we have the following:

Theorem E. $H_*(V_{2m}; \mathbf{Z})$ is given by

$$H_q(V_{2m}; \mathbf{Z}) = egin{cases} igoplus \mathbf{Z} & q: \ even \ \leq 2m-2 \ igoplus \mathbf{Z}_2 & q: \ odd \ \leq 2m-3 \ igoplus \mathbf{Z}_2 & q: \ odd \ \leq 2m-1 \ igoplus \mathbf{Z}_{2^{2m}-1} & q = 2m-1 \ 0 & otherwise, \end{cases}$$

where $\bigoplus_{\binom{2m}{q}} \mathbf{Z}$ denotes the $\binom{2m}{q}$ -times direct sum of \mathbf{Z} .

Note that Theorems D and E give $H_q(M'_{2m+1}; \mathbf{Z})$ for $q \leq m-2$.

REMARK 1.9. By the Poincaré-Lefschetz duality $H^q((S^1)^{2m}/\sigma, \Sigma_{2m}; \mathbf{Z}) \cong H_{2m-q}(V_{2m}; \mathbf{Z})$, knowing $H_*(V_{2m}; \mathbf{Z})$ is equivalent to knowing $H_*((S^1)^{2m}/\sigma; \mathbf{Z})$. Concerning (v), we have the following:

Theorem F. (a) For an odd m, we have

$$H_q(M_{2m+1}';\mathbf{Z}) = \begin{cases} \bigoplus\limits_{\substack{\binom{2m}{q} \\ q}}^{\mathbf{Z}} & q: \ \textit{even} \ \leq m-1 \\ \bigoplus\limits_{\substack{\sum\limits_{i \leq q} \binom{2m}{i} \\ i \leq q}}^{\mathbf{Z}_2} & q: \ \textit{odd} \ \leq m-2 \\ \bigoplus\limits_{\substack{\binom{2m}{q+2} \\ i \geq q+3}}^{\mathbf{Z}} \bigoplus\limits_{\substack{\sum\limits_{i \geq q+3} \binom{2m}{i} \\ i}}^{\mathbf{Z}_2} & q: \ \textit{odd} \ \geq m \\ 0 & \textit{otherwise}. \end{cases}$$

(b) For an even m, we have

where Tor_{m-1} , the torsion submodule of $H_{m-1}(M'_{2m+1}; \mathbf{Z})$, satisfies that $\dim_{\mathbf{Z}_2} Tor_{m-1} \otimes \mathbf{Z}_2 = \sum\limits_{i < m-2} {2m \choose i}$.

Thus, in particular, $H_{even}(M'_{2m+1}; \mathbf{Z})$ are torsion free for all m.

REMARK 1.10. (a) By Theorems D, E and F, we see that $(i'_{2m+1})_*: H_{m-1}(M'_{2m+1}; \mathbf{Z}) \to H_{m-1}(V_{2m}; \mathbf{Z})$ is an isomorphism when m is odd, but not an isomorphism when m is even.

(b) In order to prove Theorem F, we first determine $H_*(M'_{2m+1}; \mathbf{Z}_2)$, which is given in Proposition 5.1. In particular, we see that $(i'_{2m+1})_*: H_{m-1}(M'_{2m+1}; \mathbf{Z}_2) \to H_{m-1}(V_{2m}; \mathbf{Z}_2)$ is an isomorphism for all m (cf. Remark 5.2).

This paper is organized as follows. In §2 we recall the results of [7], then prove Theorems A, B and D. In §3 we prove Theorem C. In §4 we prove Theorem E, and in §5 we prove Theorem F.

2. Proofs of Theorems A, B and D

In [7], the following theorem is proved.

Theorem 2.1. $H_*(M_n; \mathbf{Z})$ are free **Z**-modules and the Poincaré polynomials $PS(M_n) = \sum_{\lambda} \operatorname{rank} H_{\lambda}(M_n; \mathbf{Z}) t^{\lambda}$ are given by

$$PS(M_{2m+1}) = \sum_{\lambda=0}^{m-2} \binom{2m}{\lambda} t^{\lambda} + 2 \binom{2m}{m-1} t^{m-1} + \sum_{\lambda=m}^{2m-2} \binom{2m}{\lambda+2} t^{\lambda},$$

$$PS(M_{2m}) = \sum_{\lambda=0}^{m-2} {2m-1 \choose \lambda} t^{\lambda} + {2m \choose m-1} t^{m-1} + \sum_{\lambda=m}^{2m-3} {2m-1 \choose \lambda+2} t^{\lambda}.$$

The essential facts to prove Theorem 2.1 are the following three propositions.

Proposition 2.2. (i) $(i_{2m+1})_*: \pi_q(M_{2m+1}) \to \pi_q((S^1)^{2m})$ are isomorphisms for $q \leq m-2$, and an epimorphism for q=m-1.

- (ii) $(i_{2m})_*: H_q(M_{2m}; \mathbf{Z}) \to H_q((S^1)^{2m-1}; \mathbf{Z})$ are isomorphisms for $q \leq m-2$, and an epimorphism for q = m-1.
- **Proposition 2.3.** (i) M_{2m+1} is an orientable manifold of dimension 2m-2. Thus the Poincaré duality homomorphisms $\cap [M_{2m+1}]: H^q(M_{2m+1}; \mathbf{Z}) \to H_{2m-2-q}(M_{2m+1}; \mathbf{Z})$ are isomorphisms for all q, where $[M_{2m+1}] \in H_{2m-2}(M_{2m+1}; \mathbf{Z})$ is a fundamental class.
- (ii) M_{2m} is a manifold of dimension 2m-3 with singular points. $(u_1,\ldots,u_{2m})\in M_{2m}$ is a singular point iff all of u_i lie on the x-axis. Moreover every singular point of M_{2m} is a cone-like singularity and has a neighborhood as $C(S^{m-2}\times S^{m-2})$. Thus the Poincaré duality homomorphisms $\cap [M_{2m}]: H^q(M_{2m}; \mathbf{Z}) \to H_{2m-3-q}(M_{2m}; \mathbf{Z})$ are isomorphisms for $q \leq m-3$ or $q \geq m$, an epimorphism for q=m-1, and a monomorphism for q=m-2.

Proposition 2.4. (i)
$$\chi(M_{2m+1}) = (-1)^{m+1} {2m \choose m}$$
.
(ii) $\chi(M_{2m}) = (-1)^{m+1} {2m-1 \choose m}$.

REMARK 2.5. In order to prove Theorem 2.1, the homological assertion is sufficient for Proposition 2.2 (i). But actually we can prove the homotopical assertion.

Proof of Theorem A. Since σ acts freely on M_{2m+1} , and M_{2m}^{σ} (=the fixed point set of the involution) equals to the set of singular points in M_{2m} , all of the assertions except the type of the singular points of M_{2m}' are deduced from Proposition 2.3.

Let (z_1, \ldots, z_{2m-1}) be a singular point of M_{2m} in the identification of (1.6). By Proposition 2.3, we must have $z_i = \pm 1$ $(1 \le i \le 2m-1)$. As the symmetric group on (2m-1)-letters acts on M_{2m} , we can assume that $z_i = 1$ $(1 \le i \le m)$ and $z_i = -1$ $(m+1 \le i \le 2m-1)$. A neighborhood of (z_1, \ldots, z_{2m-1}) in $(S^1)^{2m-1}$ is written

by

$$\Big\{ (\binom{\sqrt{1-y_1^2}}{y_1}), \ldots, \binom{\sqrt{1-y_m^2}}{y_m}, \binom{-\sqrt{1-y_{m+1}^2}}{y_{m+1}}, \ldots, \binom{-\sqrt{1-y_{2m-1}^2}}{y_{2m-1}}) : \\ -\epsilon \le y_i \le \epsilon \; (1 \le i \le 2m-1) \Big\},$$

where $\epsilon > 0$ is a fixed small number. As ϵ is small, it is easy to see that we can write this neighborhood as

$$\left\{ \left(\binom{1 - \frac{1}{2}y_1^2}{y_1}, \dots, \binom{1 - \frac{1}{2}y_m^2}{y_m}, \binom{-1 + \frac{1}{2}y_{m+1}^2}{y_{m+1}}, \dots, \binom{-1 + \frac{1}{2}y_{2m-1}^2}{y_{2m-1}} \right) : -\epsilon \le y_i \le \epsilon \ (1 \le i \le 2m - 1) \right\}.$$

Thus a neighborhood of a singular point in M_{2m} is written as a subspace of \mathbf{R}^{2m-1} defined by two equations

(2.6)
$$\begin{cases} y_1^2 + \dots + y_m^2 - y_{m+1}^2 - \dots - y_{2m-1}^2 = 0 \\ y_1 + \dots + y_m + y_{m+1} + \dots + y_{2m-1} = 0. \end{cases}$$

By a linear transformation of parameters, we can write the quadratic form of (2.6), i.e.,

$$y_1^2 + \dots + y_{m-1}^2 + (y_1 + \dots + y_{m-1} + y_{m+1} + \dots + y_{2m-1})^2 - y_{m+1}^2 - \dots - y_{2m-1}^2,$$

as

$$w_1^2 + \dots + w_{m-1}^2 - w_m^2 - \dots - w_{2m-2}^2$$
.

Thus a singular point of M_{2m} has a neighborhood $C\{(w_1,\ldots,w_{m-1},w_m,\ldots,w_{2m-2}): w_1^2+\cdots+w_{m-1}^2=1,w_m^2+\cdots+w_{2m-2}^2=1\}$, which is homeomorphic to $C(S^{m-2}\times S^{m-2})$.

Now it is clear that $\sigma w_i = -w_i$. Hence a singular point of M'_{2m} has a neighborhood $C(S^{m-2} \times_{\mathbf{Z}_2} S^{m-2})$, where $\sigma(\zeta_1, \zeta_2) = (-\zeta_1, -\zeta_2) \; (\zeta_1, \zeta_2 \in S^{m-2})$.

Proof of Theorem B. For $F = \mathbf{Z}_p$ (p: an odd prime) or \mathbf{Q} , we have that $H_*(M_n';F) \cong H_*(M_n;F)^{\sigma}$ (= the fixed point set of $H_*(M_n;F)$ under the σ -action) (see for example [2]). As $H_*(M_n;\mathbf{Z})$ are free modules by Theorem 2.1, we have that $\dim_{\mathbf{Z}_p} H_q(M_n';\mathbf{Z}_p) = \dim_{\mathbf{Q}} H_q(M_n';\mathbf{Q})$. Hence Theorem B follows.

Proof of Theorem D. Let $j_{2m}:(S^1)^{2m}-\Sigma_{2m}\hookrightarrow (S^1)^{2m}$ be the inclusion. Since Σ_{2m} is a discrete set, the general position argument shows that $(j_{2m})_*:\pi_q((S^1)^{2m}-\Sigma_{2m})\to\pi_q((S^1)^{2m})$ are isomorphisms for $q\leq 2m-2$. Then Proposition 2.2 (i) shows that $(i_{2m+1})_*:\pi_q(M_{2m+1})\to\pi_q((S^1)^{2m}-\Sigma_{2m})$ are isomorphisms for $q\leq m-2$ and an epimorphism for q=m-1, where $i_{2m+1}:M_{2m+1}\hookrightarrow (S^1)^{2m}-\Sigma_{2m}$ is the inclusion.

By comparing the homotopy exact sequences of two covering spaces of (1.8), we see that $(i'_{2m+1})_*:\pi_q(M'_{2m+1})\to\pi_q(V_{2m})$ are isomorphisms for $q\leq m-2$ and an epimorphism for q=m-1, where $i'_{2m+1}:M'_{2m+1}\hookrightarrow V_{2m}$ is the map induced from the σ -equivariant inclusion $i_{2m+1}:M_{2m+1}\hookrightarrow (S^1)^{2m}-\Sigma_{2m}$.

This completes the proof of Theorem D.

3. Proof of Theorem C

Let $i_n: M_n \hookrightarrow (S^1)^{n-1}$ be the inclusion. Note that i_n is a σ -equivariant map. Hence $(i_n)_*: H_*(M_n; \mathbf{Q}) \to H_*((S^1)^{n-1}; \mathbf{Q})$ is also a σ -equivariant homomorphism. Since $H_*(M'_n; \mathbf{Q}) = H_*(M_n; \mathbf{Q})^{\sigma}$, Proposition 2.2 tells us the following:

Proposition 3.1. (i) For $q \leq m-2$, we have

$$H_q(M'_{2m+1};\mathbf{Q}) = \left\{ egin{array}{ll} \oplus \mathbf{Q} & q: \ even \ inom{2m}{q} \ 0 & q: \ odd. \end{array}
ight.$$

(ii) For $q \leq m-2$, we have

$$H_q(M'_{2m};\mathbf{Q}) = \left\{ egin{array}{ll} \oplus & \mathbf{Q} & q: \ even \ inom{2m-1}{q} \ 0 & q: \ odd. \end{array}
ight.$$

We assume the truth of the following Lemma for the moment. Let $[M_n] \in H_{n-3}(M_n; \mathbf{Q})$ be the fundamental class.

Lemma 3.2.
$$\sigma_*[M_n] = (-1)^n [M_n].$$

Then we have the following:

Proposition 3.3. (i) For $q \ge m$, we have

$$H_q(M'_{2m+1}; \mathbf{Q}) = \left\{ egin{array}{ll} 0 & q: \ even \ & \oplus \ \mathbf{Q} & q: \ odd. \ & \left(egin{array}{c} 2m \ q = 0 \end{array}
ight. \end{array}
ight.$$

(ii) For $q \geq m$, we have

$$H_q(M'_{2m};\mathbf{Q}) = \left\{egin{array}{ll} 0 & q: \mathit{even} \ \oplus & \mathbf{Q} \ inom{q: \mathit{q}: \mathit{odd}.} \ inom{q: \mathit{odd}.} \end{array}
ight.$$

Proof of Proposition 3.3. Take an element $\alpha \in H_q(M_{2m+1}; \mathbf{Q})$ $(q \geq m)$. By Proposition 2.3, there is an element $f \in H^{2m-2-q}(M_{2m+1}; \mathbf{Q})$ such that $\alpha = f \cap [M_{2m+1}]$. As $\sigma_*(f \cap [M_{2m+1}]) = \sigma^*f \cap \sigma_*[M_{2m+1}] = -\sigma^*f \cap [M_{2m+1}]$, we have that

$$H_q(M_{2m+1}; \mathbf{Q})^{\sigma} = \{ f \in H^{2m-2-q}(M_{2m+1}; \mathbf{Q}) : \sigma^* f = -f \}.$$

Now (i) follows from Proposition 3.1.

(ii) can be proved similarly.

Now in order to determine $H_*(M'_n; \mathbf{Q})$, we need to know only $H_{m-1}(M'_{2m+1}; \mathbf{Q})$ and $H_{m-1}(M'_{2m}; \mathbf{Q})$, which are determined if we know $\chi(M'_n)$.

Proposition 3.4 ([5]). (i)
$$\chi(M'_{2m+1}) = (-1)^{m+1} {2m-1 \choose m}$$
.

$$(\mathrm{ii}) \ \chi(M'_{2m}) = \left\{ \begin{array}{ll} 0 & m: \ \mathit{even} \\ {2m-1 \choose m} & m: \ \mathit{odd}. \end{array} \right.$$

Proof. By a general formula of an involution (see for example [1]), we have $\chi(M_n) + \chi(M_n^{\sigma}) = 2\chi(M_n')$. Then the result follows from Proposition 2.4.

Proof of Lemma 3.2. First we treat the case of n=2m+1. We define a volume element ω of M_{2m+1} as follows. Fix $(z_1,\ldots,z_{2m})\in M_{2m+1}$ in the identification of (1.6). It is easy to see that the tangent space $T_{(z_1,\ldots,z_{2m})}M_{2m+1}$ is given by

(3.5)
$$T_{(z_1,...,z_{2m})}M_{2m+1} \cong \left\{ \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{2m} \end{pmatrix} \in \mathbf{R}^{2m} : \xi_1 z_1 + \dots + \xi_{2m} z_{2m} = 0 \right\}.$$

Write z_i as (x_i, y_i) . Then for $\eta_1, \ldots, \eta_{2m-2} \in T_{(z_1, \ldots, z_{2m})} M_{2m+1}$, we set

(3.6)
$$\omega(\eta_1,\ldots,\eta_{2m-2}) = \det \left(\eta_1,\ldots,\eta_{2m-2}, \begin{pmatrix} x_1 \\ \vdots \\ x_{2m} \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_{2m} \end{pmatrix}\right).$$

It is easy to see that ω is nowhere zero on M_{2m+1} .

For
$$\eta=\left(egin{array}{c} \xi_1 \ dots \ \xi_{2m} \end{array}
ight)\in T_{(z_1,\ldots,z_{2m})}M_{2m+1},$$
 we see that

$$di_{2m+1}(\eta) = \xi_1(\sqrt{-1}z_1) + \dots + \xi_{2m}(\sqrt{-1}z_{2m}),$$

where $i_{2m+1}:M_{2m+1}\hookrightarrow (S^1)^{2m}$ denotes the inclusion. Hence we see that $d\sigma:T_{(z_1,\ldots,z_{2m})}M_{2m+1}\to T_{(\bar{z}_1,\ldots,\bar{z}_{2m})}M_{2m+1}$ is given by

$$(3.7) d\sigma(\eta) = -\eta.$$

Now the formulae $d\sigma(\eta_i) = -\eta_i$ and $\sigma(x_i, y_i) = (x_i, -y_i)$ tell us that $(\sigma^*\omega)(\eta_1, \ldots, \eta_{2m-2}) = -\omega(\eta_1, \ldots, \eta_{2m-2})$. Hence $\sigma^*\omega = -\omega$ and the result follows.

Next we treat the case of n=2m. Let \bar{M}_{2m} be $M_{2m}-\{\text{singular points}\}$. By the same argument as in the case of n=2m+1, we see that $\sigma:\bar{M}_{2m}\to\bar{M}_{2m}$ preserves orientation. As $H_c^{2m-3}(\bar{M}_{2m};\mathbf{Q})\cong H^{2m-3}(M_{2m};\mathbf{Q})$ (H_c = cohomology with compact supports), the result follows.

4. Proof of Theorem E

First we determine $H_{2m-1}(V_{2m}; \mathbf{Z})$. The Poincaré-Lefschetz duality tells us that $H_{2m-1}(V_{2m}; \mathbf{Z}) \cong H^1((S^1)^{2m}/\sigma, \Sigma_{2m}; \mathbf{Z})$. As $H^1((S^1)^{2m}/\sigma; \mathbf{Z}) = 0$, we have $H_{2m-1}(V_{2m}; \mathbf{Z}) \cong \bigoplus_{2m=1}^{\infty} \mathbf{Z}$.

As V_{2m} is a non-compact manifold of dimension 2m, we have $H_q(V_{2m}; \mathbf{Z}) = 0$ $(q \geq 2m)$. Hence in order to complete the proof of Theorem E, we need to determine $H_q(V_{2m}; \mathbf{Z})$ $(q \leq 2m - 2)$.

Recall that we have a fibration $(S^1)^{2m} - \Sigma_{2m} \to V_{2m} \to \mathbf{R}P^{\infty}$. Set $F_{2m} = (S^1)^{2m} - \Sigma_{2m}$. The local systems of this fibration of dimensions less than or equal to 2m-2 are easy to describe: We write the generator of $\pi_1(\mathbf{R}P^{\infty})$ by σ . Then as a σ -module, we have

(4.1)
$$H_q(F_{2m}; \mathbf{Z}) \cong H_q((S^1)^{2m}; \mathbf{Z}) \ (q \le 2m - 2).$$

Let $\{E^r_{s,t}\}$ be the **Z**-coefficient homology Serre spectral sequence of the above fibration. It is elementary to describe $E^2_{s,t}$ $(t \neq 2m-1)$ by using the following fact: We define a σ -module $\mathcal S$ to be the free abelian group of rank 1 on which σ acts by -1. Then have that

(4.2)
$$H_q(\mathbf{R}P^{\infty}; \mathcal{S}) = \begin{cases} \mathbf{Z}_2 & q : \text{ even} \\ 0 & q : \text{ odd.} \end{cases}$$

REMARK 4.3. For our reference, we give $E_{s,2m-1}^2$. Let $\mathcal T$ be the free abelian group of rank 2 on which σ acts by $\begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$. And let σ act on $\mathbf Z$ trivially. Then we can prove

that

$$H_{2m-1}(F_{2m}; \mathbf{Z}) \cong \bigoplus_{2m} \mathcal{T} \oplus \bigoplus_{2^{2m}-2m-1} \mathbf{Z}.$$

As

$$H_q(\mathbf{R}P^{\infty}; \mathcal{T}) = \begin{cases} \mathbf{Z} & q = 0 \\ 0 & q > 0, \end{cases}$$

we can determine $E^2_{s,2m-1}$. We return to $E^2_{s,t}$ $(t \neq 2m-1)$. By the dimensional reason, we have the following:

Proposition 4.4. For $s+t \leq 2m-2$, we have that $E_{s,t}^2 \cong E_{s,t}^{\infty}$

Hence in order to complete the proof of Theorem E, it suffices to determine the extensions of $E_{s,t}^{\infty}$, where s+t are odd $\leq 2m-3$. To do so, it is convenient to study $H_*(V_{2m}; \mathbf{Z}_2).$

Proposition 4.5. For $q \leq 2m-2$, we have

$$H_q(V_{2m}; \mathbf{Z}_2) = \bigoplus_{\substack{\sum \ i \leq q^{\binom{2m}{i}}}} \mathbf{Z}_2.$$

From Proposition 4.5, we see that the extensions of $E_{s,t}^{\infty}$ $(s+t \leq 2m-2)$ are trivial. Hence Theorem E follows.

Thus in order to complete the proof of Theorem E, we need to prove Proposition 4.5, which we prove for the rest of this section.

Let $\{E_r^{s,t}\}$ be the \mathbb{Z}_2 -coefficient cohomology Serre spectral sequence of the fibration $F_{2m} \to V_{2m} \to \mathbf{R} P^{\infty}$. We prove the following:

Lemma 4.6.
$$d_2: E_2^{0,1} \to E_2^{2,0}$$
 equals to 0.

Lemma 4.6 tells us that elements of $E_2^{s,t}$ $(t \leq 2m-2)$ are permanent cycles. Hence Proposition 4.5 follows.

Proof of Lemma 4.6. Suppose that Lemma 4.6 fails. Then we have $H^1(V_{2m};$ $\mathbf{Z}_2)=\mathop{\oplus}\limits_{2m}\mathbf{Z}_2.$ By Theorem D and the \mathbf{Z}_2 -coefficient Poincaré duality of M'_{2m+1} , we have $H_{2m-3}(M'_{2m+1}; \mathbf{Z}_2) = \bigoplus_{2m} \mathbf{Z}_2$. Since $H_{2m-3}(M'_{2m+1}; \mathbf{Q}) = \bigoplus_{2m} \mathbf{Q}$ by Theorem C (a), we have

$$(4.7) H_{2m-3}(M'_{2m+1}; \mathbf{Z}) = \bigoplus_{\mathbf{Q}, \mathbf{Z}} \mathbf{Z}.$$

By Theorem C (a), we have $H_{2m-2}(M'_{2m+1}; \mathbf{Q}) = 0$. Hence by Theorem A (a), M'_{2m+1} is a non-orientable manifold of dimension 2m-2. Thus we have $H_{2m-2}(M'_{2m+1}; \mathbf{Z}) = 0$. Then by (4.7), we have $H_{2m-2}(M'_{2m+1}; \mathbf{Z}_2) = 0$. This contradicts the fact that $H_{2m-2}(M'_{2m+1}; \mathbf{Z}_2) = \mathbf{Z}_2$, i.e., M'_{2m+1} is a compact manifold of dimension 2m-2.

This completes the proof of Lemma 4.6, and hence also that of Theorem E.

5. Proof of Theorem F

In order to calculate $H_*(M'_{2m+1}; \mathbf{Z})$, first we need to determine $H_*(M'_{2m+1}; \mathbf{Z}_2)$. By the Poincaré duality, it suffices to determine $H_q(M'_{2m+1}; \mathbf{Z}_2)$ $(q \leq m-1)$, which are given by the following:

Proposition 5.1. For $q \leq m-1$, we have

$$H_q(M_{2m+1}';\mathbf{Z}_2) = \underset{\underset{i \leq q}{\sum} \binom{2m}{i}}{\oplus} \mathbf{Z}_2.$$

Proof. First, $H_q(M'_{2m+1}; \mathbf{Z}_2)$ $(q \leq m-2)$ are determined by Theorems D and E together with the universal coefficient theorem. Then $H_{m-1}(M'_{2m+1}; \mathbf{Z}_2)$ is determined by Proposition 3.4.

REMARK 5.2. From Theorems D, E and Proposition 5.1, we see that $(i'_{2m+1})_*: H_{m-1}(M'_{2m+1}; \mathbf{Z}_2) \to H_{m-1}(V_{2m}; \mathbf{Z}_2)$ is an isomorphism for all m.

Now we begin to determine $H_*(M'_{2m+1}; \mathbf{Z})$.

(I) $H_{even}(M'_{2m+1}; \mathbf{Z})$.

These modules are determined from Theorem C and the following:

Proposition 5.3. $H_{even}(M'_{2m+1}; \mathbf{Z})$ are torsion free.

Proof. We can inductively prove this proposition from Theorem C and Proposition 5.1 together with the universal coefficient theorem.

(II)
$$H_{odd}(M'_{2m+1}; \mathbf{Z})$$
.

In order to determine these modules from Theorem C and Proposition 5.1, we need to prove the non-existence of higher two-torsions, i.e., elements of order 2^i $(i \ge 2)$.

Let $p: M_{2m+1} \times \mathbf{R} \to M'_{2m+1}$ be the real line bundle associated to the covering space $M_{2m+1} \to M'_{2m+1}$. And let $O(M_{2m+1} \times \mathbf{R})$ denote the local system of the above vector bundle. Finally, let $O(TM'_{2m+1})$ denote the local system of TM'_{2m+1} , the tangent bundle of M'_{2m+1} .

Concerning these local systems, we have the following:

Lemma 5.4. As local systems on M'_{2m+1} , we have $O(M_{2m+1} \times \mathbf{R}) \cong O(TM'_{2m+1})$.

Proof. Let $\mathbf{R}^2 \to \nu \to M_{2m+1}$ denote the normal bundle of M_{2m+1} in $(S^1)^{2m}$ (cf. (1.6)). As $TM_{2m+1} \oplus \nu \cong T((S^1)^{2m})|M_{2m+1}$, we have

(5.5)
$$TM'_{2m+1} \oplus \nu/\sigma \cong TV_{2m}|M'_{2m+1},$$

where $\nu/\sigma \to M'_{2m+1}$ denotes the vector bundle obtained from $\nu \to M_{2m+1}$ by the action of σ .

We study ν/σ . Recall that TM_{2m+1} is given by (3.5). Similarly, for $(z_1, \ldots, z_{2m}) \in M_{2m+1}$, we have

$$T_{(z_1,\ldots,z_{2m})}((S^1)^{2m})\cong \left\{ \left(egin{array}{c} \xi_1 \ dots \ \xi_{2m} \end{array}
ight)\in \mathbf{R}^{2m}
ight\}.$$

Hence by assigning $\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{2m} \end{pmatrix} \in \nu_{(z_1,\dots,z_{2m})}$ to $\xi_1 z_1 + \dots + \xi_{2m} z_{2m}$, we have

$$(5.6) \nu \cong M_{2m+1} \times \mathbf{R}^2.$$

Under this identification, the bundle homomorphism $d\sigma: \nu \to \nu$ is given by

(5.7)
$$d\sigma((z_1,\ldots,z_{2m});\begin{pmatrix}v_1\\v_2\end{pmatrix})=((\bar{z}_1,\ldots,\bar{z}_{2m});\begin{pmatrix}-v_1\\v_2\end{pmatrix}),$$

(cf. (3.7)).

Then (5.6)-(5.7) tell us that

(5.8)
$$\nu/\sigma \cong M_{2m+1} \underset{\sigma}{\times} \mathbf{R} \oplus M'_{2m+1} \times \mathbf{R}.$$

Now, as V_{2m} is orientable, we see from (5.5) and (5.8) that

$$(5.9) O(TM'_{2m+1}) \otimes O(M_{2m+1} \times \mathbf{R}) \cong \mathbf{Z},$$

where **Z** denotes the simple local system on M'_{2m+1} . By taking a tensor $\otimes O(TM'_{2m+1})$ on both sides of (5.9), the result follows.

Let us denote the local systems $O(M_{2m+1} \underset{\sigma}{\times} \mathbf{R}) \cong O(TM'_{2m+1})$ (cf. Lemma 5.4) by \mathcal{Z} .

(A) The case of an odd m.

We can determine $H_q(M'_{2m+1}; \mathbf{Z})$ $(q: \text{odd} \leq m-2)$ by Theorems D and E. Thus we need to determine $H_q(M'_{2m+1}; \mathbf{Z})$ $(q: \text{odd} \geq m)$. By the Poincaré duality: $H_q(M'_{2m+1}; \mathbf{Z}) \cong H^{2m-2-q}(M'_{2m+1}; \mathbf{Z})$, it suffices to determine $H^r(M'_{2m+1}; \mathbf{Z})$ $(r: \text{odd} \leq m-2)$.

Consider the Gysin sequence of $p: M_{2m+1} \times \mathbf{R} \to M'_{2m+1}$:

$$\cdots \xrightarrow{\psi} H^{r-1}(M'_{2m+1}; \mathcal{Z}) \xrightarrow{\mu} H^r(M'_{2m+1}; \mathbf{Z}) \xrightarrow{p^*} H^r(M_{2m+1}; \mathbf{Z})$$

$$\xrightarrow{\psi} H^r(M'_{2m+1}; \mathcal{Z}) \xrightarrow{\mu} \cdots$$

Lemma 5.10. For an odd $r \le m-2$, we have

- (i) $H^r(M'_{2m+1}; \mathbf{Z}) = 0$.
- (ii) $H^r(M_{2m+1}; \mathbf{Z})$ is a free module.
- (iii) The order of a torsion element of $H^{r+1}(M'_{2m+1}; \mathbf{Z})$ is exactly 2, i.e., $H^{r+1}(M'_{2m+1}; \mathbf{Z})$ does not contain higher two-torsions.

Proof. This lemma is an easy consequence of Theorems D, E, 2.1 and Proposition 5.3.

Now suppose that $H^r(M'_{2m+1}; \mathcal{Z})$ contains a higher two-torsion. Then by Lemma 5.10 (iii), Ker $[\mu: H^r(M'_{2m+1}; \mathcal{Z}) \to H^{r+1}(M'_{2m+1}; \mathbf{Z})]$ contains a torsion element.

But by Lemma 5.10 (i)-(ii), Im $[\psi: H^r(M_{2m+1}; \mathbf{Z}) \to H^r(M'_{2m+1}; \mathcal{Z})]$ is a free module. This is a contradiction. Thus $H^r(M'_{2m+1}; \mathcal{Z})$ $(r: \text{odd} \leq m-2)$ does not contain higher two-torsions.

This completes the proof of Theorem F (a).

(B) The case of an even m.

As in (A), it suffices to determine $H^r(M'_{2m+1}; \mathcal{Z})$ $(r: \text{odd} \leq m-1)$. For an odd $r \leq m-3$, Lemma 5.10 applies and, by the same argument as in (A), we see that $H^r(M'_{2m+1}; \mathcal{Z})$ does not contain higher two-torsions.

But Lemma 5.10 fails when r=m-1. Thus our argument cannot apply in this case. This completes the proof of Theorem F (b).

References

- [1] G. Bredon: Introduction to compact transformation groups, Academic Press, 1972.
- [2] P. Conner: Concerning the action of a finite group, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 349-351.
- [3] T. Havel: The use of distances as coordinates in computer-aided proofs of theorems in Euclidean geometry, Journal of Symbolic Computation 11 (1991), 579-593.
- [4] Y. Kamiyama: An elementary proof of a theorem of T. F. Havel, Ryukyu Math. J. 5 (1992), 7-12.
- [5] Y. Kamiyama: Topology of equilateral polygon linkages, Top. and its Applications 68 (1996), 13-31.

- [6] Y. Kamiyama, M. Tezuka and T. Toma: Homology of the configuration spaces of quasi-equilateral polygon linkages, Trans. Amer. Math. Soc. 350 (1998), 4869-4896.
- [7] Y. Kamiyama and M. Tezuka: Topology and geometry of equilateral polygon linkages in the Euclidean plane, Quart. J. Math. (to appear).
- [8] M. Kapovich and J. Millson: On the moduli space of polygons in the Euclidean plane, Journal of Diff. Geometry 42 (1995), 133-164.
- [9] I. Schoenberg: Linkages and distance geometry, I. Linkages, Indag. Math. 31 (1969), 42-52.
- [10] E. Spanier: Algebraic topology, McGraw-Hill, 1966.

Department of Mathematics University of the Ryukyus Nishihara-Cho, Okinawa 903-01, Japan