

Title	Topology of equilateral polygon linkages in the Euclidean plane modulo isometry group
Author(s)	Kamiyama, Yasuhiko
Citation	Osaka Journal of Mathematics. 1999, 36(3), p. 731–745
Version Type	VoR
URL	https://doi.org/10.18910/10222
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

TOPOLOGY OF EQUILATERAL POLYGON LINKAGES IN THE EUCLIDEAN PLANE MODULO ISOMETRY GROUP

YASUHIKO KAMIYAMA

(Received September 24, 1997)

1. Introduction

We consider the configuration space M'_n of equilateral polygon linkages with n ($n \geq 3$) vertices, each edge having length 1 in the Euclidean plane \mathbf{R}^2 modulo isometry group. More precisely, let \mathcal{C}_n be

$$(1.1) \quad \mathcal{C}_n = \{(u_1, \dots, u_n) \in (\mathbf{R}^2)^n : |u_{i+1} - u_i| = 1 \quad (1 \leq i \leq n-1), \quad |u_1 - u_n| = 1\}.$$

Note that $\text{Iso}(\mathbf{R}^2)$ (= the isometry group of \mathbf{R}^2 , i.e., a semidirect product of \mathbf{R}^2 with $O(2)$), naturally acts on \mathcal{C}_n . We define M'_n by

$$(1.2) \quad M'_n = \mathcal{C}_n / \text{Iso}(\mathbf{R}^2).$$

We remark that M'_n has the following description: We set $M_n = \mathcal{C}_n / \text{Iso}^+(\mathbf{R}^2)$, where $\text{Iso}^+(\mathbf{R}^2)$ denotes the orientation preserving isometry group of \mathbf{R}^2 , i.e., a semidirect product of \mathbf{R}^2 with $SO(2)$. Then we can write M_n as

$$(1.3) \quad M_n = \{(u_1, \dots, u_n) \in \mathcal{C}_n : u_1 = (\frac{1}{2}, 0) \text{ and } u_2 = (-\frac{1}{2}, 0)\}.$$

M_n admits an involution $\sigma = \text{Iso}(\mathbf{R}^2) / \text{Iso}^+(\mathbf{R}^2)$ such that $M'_n = M_n / \sigma$. Under the identification of (1.3), σ is given by

$$(1.4) \quad \sigma(u_1, \dots, u_n) = (\bar{u}_1, \dots, \bar{u}_n),$$

where $\bar{u}_i = (x_i, -y_i)$ when $u_i = (x_i, y_i)$.

Many topological properties of M_n are already known: First we know explicit topological type of M_n ($n \leq 5$) [3],[4],[8]. Next we have the results on the smoothness of M_n [5],[7],[8]. Finally $H_*(M_n; \mathbf{Z})$ are determined in [6],[7] (cf. Theorem 2.1). In particular, the natural inclusion $i_n : M_n \hookrightarrow (S^1)^{n-1}$ (cf. (1.6)) induces isomorphisms of homology groups up to a certain dimension (cf. Proposition 2.2).

On the other hand, concerning M'_n , what we know already are the following: First we know the following examples.

EXAMPLES 1.5. $M'_3 = \{\text{1-point}\}$, $M'_4 = S^1$ and $M'_5 = \#_5 \mathbf{RP}^2$, the five-times connected sum of \mathbf{RP}^2 .

Next some assertions on the smoothness of M'_n are proved in [5]. However, we have few information on $H_*(M'_n; \mathbf{Z})$, although we know $\chi(M'_n)$, the Euler characteristic of M'_n [5] (cf. Proposition 3.4).

The purposes of this paper are as follows.

(i) We prove assertions on the smoothness of M'_n .

(ii) We determine $H_*(M'_n; \mathbf{Z}_p)$, where p is an odd prime, and $H_*(M'_n; \mathbf{Q})$.

In the following (iii)-(v), we assume n to be odd, and set $n = 2m + 1$. Then by the results of (i) and (ii), M'_{2m+1} is a non-orientable manifold of dimension $2m - 2$.

(iii) Find a space V_{2m} and an inclusion $i'_{2m+1} : M'_{2m+1} \hookrightarrow V_{2m}$ so that i'_{2m+1} induces isomorphisms of homotopy groups up to a certain dimension.

(iv) As V_{2m} is a natural space, we determine $H_*(V_{2m}; \mathbf{Z})$ completely. Then in particular we know $H_*(M'_{2m+1}; \mathbf{Z})$ up to some dimension by the result of (iii).

As we will see in Remark 1.9, knowing $H_*(V_{2m}; \mathbf{Z})$ is equivalent to knowing $H_*((S^1)^{2m}/\sigma; \mathbf{Z})$.

(v) Finally we determine $H_*(M'_{2m+1}; \mathbf{Z})$ except the possibility of higher two-torsions in $H_{m-1}(M'_{2m+1}; \mathbf{Z})$ when m is even.

Now we state our results. Concerning (i), we have the following:

Theorem A. (a) M'_{2m+1} is a manifold of dimension $2m - 2$.

(b) M'_{2m} is a manifold of dimension $2m - 3$ with singular points. $(u_1, \dots, u_{2m}) \in M'_{2m}$ is a singular point iff all of u_i lie on the x -axis, i.e., the line determined by u_1 and u_2 (cf. (1.3)). Moreover every singular point of M'_{2m} is a cone-like singularity and has a neighborhood as $C(S^{m-2} \times_{\mathbf{Z}_2} S^{m-2})$, where C denotes cone and action of \mathbf{Z}_2 on both factors is generated by the antipodal map.

Concerning (ii), first we prove the following:

Theorem B. $H_*(M'_n; \mathbf{Z})$ are odd-torsion free.

Thus in order to know $H_*(M'_n; \mathbf{Z}_p)$, we need to know $H_*(M'_n; \mathbf{Q})$, which is given by the following:

Theorem C. *The Poincaré polynomials $PS_{\mathbf{Q}}(M'_n) = \sum_{\lambda} \dim_{\mathbf{Q}} H_{\lambda}(M'_n; \mathbf{Q}) t^{\lambda}$ are given by*

$$(a) PS_{\mathbf{Q}}(M'_{2m+1}) = \sum_{0 \leq 2a \leq m-2} \binom{2m}{2a} t^{2a} + \binom{2m}{m-1} t^{m-1} + \sum_{m \leq 2b+1 \leq 2m-3} \binom{2m}{2b+3} t^{2b+1},$$

$$(b) PS_{\mathbf{Q}}(M'_{4l}) = \sum_{0 \leq 2a \leq 2l-2} \binom{4l-1}{2a} t^{2a} + \binom{4l-1}{2l-2} t^{2l-1} + \sum_{2l+1 \leq 2b+1 \leq 4l-3} \binom{4l-1}{2b+3} t^{2b+1},$$

$$PS_{\mathbf{Q}}(M'_{4l+2}) = \sum_{0 \leq 2a \leq 2l-2} \binom{4l+1}{2a} t^{2a} + \binom{4l+1}{2l+1} t^{2l} + \sum_{2l+1 \leq 2b+1 \leq 4l-1} \binom{4l+1}{2b+3} t^{2b+1},$$

where $\binom{a}{b}$ denotes the binomial coefficient.

Next we go to (iii). By setting $z_i = u_{i+2} - u_{i+1}$ ($1 \leq i \leq n-2$), $z_{n-1} = u_1 - u_n$, and identifying \mathbf{R}^2 with \mathbf{C} , we can write M_n ($n \geq 3$) as

$$(1.6) \quad M_n \cong \{(z_1, \dots, z_{n-1}) \in (S^1)^{n-1} : z_1 + \dots + z_{n-1} - 1 = 0\}.$$

Let $i_n : M_n \hookrightarrow (S^1)^{n-1}$ be the inclusion.

As we have mentioned, $(S^1)^{n-1}$ approximates the topology of M_n up to some dimension (cf. Proposition 2.2). However, for an odd $n = 2m+1$, our low-dimensional computations lead us to give up the hope that $(S^1)^{2m}/\sigma$ might approximate $M'_{2m+1} = M_{2m+1}/\sigma$, where σ acts on $(S^1)^{2m}$ in the same way as in (1.4). The essential reason for this is that the action of σ on $(S^1)^{2m}$ is not free, although on M_{2m+1} is.

Thus we define V_{2m} by

$$(1.7) \quad V_{2m} = \{(S^1)^{2m} - \Sigma_{2m}\} / \sigma,$$

where we set

$$\Sigma_{2m} = \{(z_1, \dots, z_{2m}) \in (S^1)^{2m} : z_i = \pm 1 \ (1 \leq i \leq 2m)\}.$$

Let $i'_{2m+1} : M'_{2m+1} \hookrightarrow V_{2m}$ be the inclusion. Then we have the following map of covering

spaces:

$$\begin{array}{ccc}
 \mathbf{Z}_2 & \xlongequal{\quad} & \mathbf{Z}_2 \\
 \downarrow & & \downarrow \\
 (1.8) \quad M_{2m+1} & \xrightarrow{i_{2m+1}} & (S^1)^{2m} - \Sigma_{2m} \\
 \downarrow & & \downarrow \\
 M'_{2m+1} & \xrightarrow{i'_{2m+1}} & V_{2m}.
 \end{array}$$

Note that $(S^1)^{2m} - \Sigma_{2m}$ is a maximal subspace of $(S^1)^{2m}$ on which σ acts freely. Thus it is natural to consider the topology of V_{2m} .

Now concerning the relation between M'_{2m+1} and V_{2m} , we have the following theorem.

Theorem D. $(i'_{2m+1})_* : \pi_q(M'_{2m+1}) \rightarrow \pi_q(V_{2m})$ are isomorphisms for $q \leq m-2$, and an epimorphism for $q = m-1$.

Concerning (iv), we have the following:

Theorem E. $H_*(V_{2m}; \mathbf{Z})$ is given by

$$H_q(V_{2m}; \mathbf{Z}) = \begin{cases} \bigoplus_{\binom{2m}{q}} \mathbf{Z} & q : \text{even} \leq 2m-2 \\ \bigoplus_{\sum_{i \leq q} \binom{2m}{i}} \mathbf{Z}_2 & q : \text{odd} \leq 2m-3 \\ \bigoplus_{2^{2m-1}} \mathbf{Z} & q = 2m-1 \\ 0 & \text{otherwise,} \end{cases}$$

where $\bigoplus_{\binom{2m}{q}} \mathbf{Z}$ denotes the $\binom{2m}{q}$ -times direct sum of \mathbf{Z} .

Note that Theorems D and E give $H_q(M'_{2m+1}; \mathbf{Z})$ for $q \leq m-2$.

REMARK 1.9. By the Poincaré-Lefschetz duality $H^q((S^1)^{2m}/\sigma, \Sigma_{2m}; \mathbf{Z}) \cong H_{2m-q}(V_{2m}; \mathbf{Z})$, knowing $H_*(V_{2m}; \mathbf{Z})$ is equivalent to knowing $H_*((S^1)^{2m}/\sigma; \mathbf{Z})$.

Concerning (v), we have the following:

Theorem F. (a) For an odd m , we have

$$H_q(M'_{2m+1}; \mathbf{Z}) = \begin{cases} \bigoplus_{\binom{2m}{q}} \mathbf{Z} & q: \text{even} \leq m-1 \\ \bigoplus_{i \leq q} \binom{2m}{i} \mathbf{Z}_2 & q: \text{odd} \leq m-2 \\ \bigoplus_{\binom{2m}{q+2}} \mathbf{Z} \oplus \bigoplus_{i \geq q+3} \binom{2m}{i} \mathbf{Z}_2 & q: \text{odd} \geq m \\ 0 & \text{otherwise.} \end{cases}$$

(b) For an even m , we have

$$H_q(M'_{2m+1}; \mathbf{Z}) = \begin{cases} \bigoplus_{\binom{2m}{q}} \mathbf{Z} & q: \text{even} \leq m-2 \\ \bigoplus_{i \leq q} \binom{2m}{i} \mathbf{Z}_2 & q: \text{odd} \leq m-3 \\ \bigoplus_{\binom{2m}{m-1}} \mathbf{Z} \oplus \text{Tor}_{m-1} & q = m-1 \\ \bigoplus_{\binom{2m}{q+2}} \mathbf{Z} \oplus \bigoplus_{i \geq q+3} \binom{2m}{i} \mathbf{Z}_2 & q: \text{odd} \geq m+1 \\ 0 & \text{otherwise,} \end{cases}$$

where Tor_{m-1} , the torsion submodule of $H_{m-1}(M'_{2m+1}; \mathbf{Z})$, satisfies that $\dim_{\mathbf{Z}_2} \text{Tor}_{m-1} \otimes \mathbf{Z}_2 = \sum_{i \leq m-2} \binom{2m}{i}$.

Thus, in particular, $H_{\text{even}}(M'_{2m+1}; \mathbf{Z})$ are torsion free for all m .

REMARK 1.10. (a) By Theorems D, E and F, we see that $(i'_{2m+1})_* : H_{m-1}(M'_{2m+1}; \mathbf{Z}) \rightarrow H_{m-1}(V_{2m}; \mathbf{Z})$ is an isomorphism when m is odd, but not an isomorphism when m is even.

(b) In order to prove Theorem F, we first determine $H_*(M'_{2m+1}; \mathbf{Z}_2)$, which is given in Proposition 5.1. In particular, we see that $(i'_{2m+1})_* : H_{m-1}(M'_{2m+1}; \mathbf{Z}_2) \rightarrow H_{m-1}(V_{2m}; \mathbf{Z}_2)$ is an isomorphism for all m (cf. Remark 5.2).

This paper is organized as follows. In §2 we recall the results of [7], then prove Theorems A, B and D. In §3 we prove Theorem C. In §4 we prove Theorem E, and in §5 we prove Theorem F.

2. Proofs of Theorems A, B and D

In [7], the following theorem is proved.

Theorem 2.1. $H_*(M_n; \mathbf{Z})$ are free \mathbf{Z} -modules and the Poincaré polynomials $PS(M_n) = \sum_{\lambda} \text{rank} H_{\lambda}(M_n; \mathbf{Z}) t^{\lambda}$ are given by

$$PS(M_{2m+1}) = \sum_{\lambda=0}^{m-2} \binom{2m}{\lambda} t^{\lambda} + 2 \binom{2m}{m-1} t^{m-1} + \sum_{\lambda=m}^{2m-2} \binom{2m}{\lambda+2} t^{\lambda},$$

$$PS(M_{2m}) = \sum_{\lambda=0}^{m-2} \binom{2m-1}{\lambda} t^{\lambda} + \binom{2m}{m-1} t^{m-1} + \sum_{\lambda=m}^{2m-3} \binom{2m-1}{\lambda+2} t^{\lambda}.$$

The essential facts to prove Theorem 2.1 are the following three propositions.

Proposition 2.2. (i) $(i_{2m+1})_* : \pi_q(M_{2m+1}) \rightarrow \pi_q((S^1)^{2m})$ are isomorphisms for $q \leq m-2$, and an epimorphism for $q = m-1$.

(ii) $(i_{2m})_* : H_q(M_{2m}; \mathbf{Z}) \rightarrow H_q((S^1)^{2m-1}; \mathbf{Z})$ are isomorphisms for $q \leq m-2$, and an epimorphism for $q = m-1$.

Proposition 2.3. (i) M_{2m+1} is an orientable manifold of dimension $2m-2$. Thus the Poincaré duality homomorphisms $\cap[M_{2m+1}] : H^q(M_{2m+1}; \mathbf{Z}) \rightarrow H_{2m-2-q}(M_{2m+1}; \mathbf{Z})$ are isomorphisms for all q , where $[M_{2m+1}] \in H_{2m-2}(M_{2m+1}; \mathbf{Z})$ is a fundamental class.

(ii) M_{2m} is a manifold of dimension $2m-3$ with singular points. $(u_1, \dots, u_{2m}) \in M_{2m}$ is a singular point iff all of u_i lie on the x -axis. Moreover every singular point of M_{2m} is a cone-like singularity and has a neighborhood as $C(S^{m-2} \times S^{m-2})$. Thus the Poincaré duality homomorphisms $\cap[M_{2m}] : H^q(M_{2m}; \mathbf{Z}) \rightarrow H_{2m-3-q}(M_{2m}; \mathbf{Z})$ are isomorphisms for $q \leq m-3$ or $q \geq m$, an epimorphism for $q = m-1$, and a monomorphism for $q = m-2$.

Proposition 2.4. (i) $\chi(M_{2m+1}) = (-1)^{m+1} \binom{2m}{m}$.

(ii) $\chi(M_{2m}) = (-1)^{m+1} \binom{2m-1}{m}$.

REMARK 2.5. In order to prove Theorem 2.1, the homological assertion is sufficient for Proposition 2.2 (i). But actually we can prove the homotopical assertion.

Proof of Theorem A. Since σ acts freely on M_{2m+1} , and M_{2m}^{σ} (=the fixed point set of the involution) equals to the set of singular points in M_{2m} , all of the assertions except the type of the singular points of M_{2m}' are deduced from Proposition 2.3.

Let (z_1, \dots, z_{2m-1}) be a singular point of M_{2m} in the identification of (1.6). By Proposition 2.3, we must have $z_i = \pm 1$ ($1 \leq i \leq 2m-1$). As the symmetric group on $(2m-1)$ -letters acts on M_{2m} , we can assume that $z_i = 1$ ($1 \leq i \leq m$) and $z_i = -1$ ($m+1 \leq i \leq 2m-1$). A neighborhood of (z_1, \dots, z_{2m-1}) in $(S^1)^{2m-1}$ is written

by

$$\left\{ \left(\left(\frac{\sqrt{1-y_1^2}}{y_1} \right), \dots, \left(\frac{\sqrt{1-y_m^2}}{y_m} \right), \left(\frac{-\sqrt{1-y_{m+1}^2}}{y_{m+1}} \right), \dots, \left(\frac{-\sqrt{1-y_{2m-1}^2}}{y_{2m-1}} \right) \right) : \right. \\ \left. -\epsilon \leq y_i \leq \epsilon \ (1 \leq i \leq 2m-1) \right\},$$

where $\epsilon > 0$ is a fixed small number. As ϵ is small, it is easy to see that we can write this neighborhood as

$$\left\{ \left(\left(1 - \frac{1}{2}y_1^2 \right), \dots, \left(1 - \frac{1}{2}y_m^2 \right), \left(-1 + \frac{1}{2}y_{m+1}^2 \right), \dots, \left(-1 + \frac{1}{2}y_{2m-1}^2 \right) \right) : \right. \\ \left. -\epsilon \leq y_i \leq \epsilon \ (1 \leq i \leq 2m-1) \right\}.$$

Thus a neighborhood of a singular point in M_{2m} is written as a subspace of \mathbf{R}^{2m-1} defined by two equations

$$(2.6) \quad \left\{ \begin{array}{l} y_1^2 + \dots + y_m^2 - y_{m+1}^2 - \dots - y_{2m-1}^2 = 0 \\ y_1 + \dots + y_m + y_{m+1} + \dots + y_{2m-1} = 0. \end{array} \right.$$

By a linear transformation of parameters, we can write the quadratic form of (2.6), i.e.,

$$y_1^2 + \dots + y_{m-1}^2 + (y_1 + \dots + y_{m-1} + y_{m+1} + \dots + y_{2m-1})^2 - y_{m+1}^2 - \dots - y_{2m-1}^2,$$

as

$$w_1^2 + \dots + w_{m-1}^2 - w_m^2 - \dots - w_{2m-2}^2.$$

Thus a singular point of M_{2m} has a neighborhood $C\{(w_1, \dots, w_{m-1}, w_m, \dots, w_{2m-2}) : w_1^2 + \dots + w_{m-1}^2 = 1, w_m^2 + \dots + w_{2m-2}^2 = 1\}$, which is homeomorphic to $C(S^{m-2} \times S^{m-2})$.

Now it is clear that $\sigma w_i = -w_i$. Hence a singular point of M'_{2m} has a neighborhood $C(S^{m-2} \times_{\mathbf{Z}_2} S^{m-2})$, where $\sigma(\zeta_1, \zeta_2) = (-\zeta_1, -\zeta_2)$ ($\zeta_1, \zeta_2 \in S^{m-2}$). \square

Proof of Theorem B. For $F = \mathbf{Z}_p$ (p : an odd prime) or \mathbf{Q} , we have that $H_*(M'_n; F) \cong H_*(M_n; F)^\sigma$ (= the fixed point set of $H_*(M_n; F)$ under the σ -action) (see for example [2]). As $H_*(M_n; \mathbf{Z})$ are free modules by Theorem 2.1, we have that $\dim_{\mathbf{Z}_p} H_q(M'_n; \mathbf{Z}_p) = \dim_{\mathbf{Q}} H_q(M'_n; \mathbf{Q})$. Hence Theorem B follows. \square

Proof of Theorem D. Let $j_{2m} : (S^1)^{2m} - \Sigma_{2m} \hookrightarrow (S^1)^{2m}$ be the inclusion. Since Σ_{2m} is a discrete set, the general position argument shows that $(j_{2m})_* : \pi_q((S^1)^{2m} - \Sigma_{2m}) \rightarrow \pi_q((S^1)^{2m})$ are isomorphisms for $q \leq 2m - 2$. Then Proposition 2.2 (i) shows that $(i_{2m+1})_* : \pi_q(M_{2m+1}) \rightarrow \pi_q((S^1)^{2m} - \Sigma_{2m})$ are isomorphisms for $q \leq m - 2$ and an epimorphism for $q = m - 1$, where $i_{2m+1} : M_{2m+1} \hookrightarrow (S^1)^{2m} - \Sigma_{2m}$ is the inclusion.

By comparing the homotopy exact sequences of two covering spaces of (1.8), we see that $(i'_{2m+1})_* : \pi_q(M'_{2m+1}) \rightarrow \pi_q(V_{2m})$ are isomorphisms for $q \leq m - 2$ and an epimorphism for $q = m - 1$, where $i'_{2m+1} : M'_{2m+1} \hookrightarrow V_{2m}$ is the map induced from the σ -equivariant inclusion $i_{2m+1} : M_{2m+1} \hookrightarrow (S^1)^{2m} - \Sigma_{2m}$.

This completes the proof of Theorem D. \square

3. Proof of Theorem C

Let $i_n : M_n \hookrightarrow (S^1)^{n-1}$ be the inclusion. Note that i_n is a σ -equivariant map. Hence $(i_n)_* : H_*(M_n; \mathbf{Q}) \rightarrow H_*((S^1)^{n-1}; \mathbf{Q})$ is also a σ -equivariant homomorphism. Since $H_*(M'_n; \mathbf{Q}) = H_*(M_n; \mathbf{Q})^\sigma$, Proposition 2.2 tells us the following:

Proposition 3.1. (i) For $q \leq m - 2$, we have

$$H_q(M'_{2m+1}; \mathbf{Q}) = \begin{cases} \bigoplus_{\binom{2m}{q}} \mathbf{Q} & q : \text{even} \\ 0 & q : \text{odd.} \end{cases}$$

(ii) For $q \leq m - 2$, we have

$$H_q(M'_{2m}; \mathbf{Q}) = \begin{cases} \bigoplus_{\binom{2m-1}{q}} \mathbf{Q} & q : \text{even} \\ 0 & q : \text{odd.} \end{cases}$$

We assume the truth of the following Lemma for the moment. Let $[M_n] \in H_{n-3}(M_n; \mathbf{Q})$ be the fundamental class.

Lemma 3.2. $\sigma_*[M_n] = (-1)^n[M_n]$.

Then we have the following:

Proposition 3.3. (i) For $q \geq m$, we have

$$H_q(M'_{2m+1}; \mathbf{Q}) = \begin{cases} 0 & q : \text{even} \\ \bigoplus_{\binom{2m}{q+2}} \mathbf{Q} & q : \text{odd.} \end{cases}$$

(ii) For $q \geq m$, we have

$$H_q(M'_{2m}; \mathbf{Q}) = \begin{cases} 0 & q: \text{even} \\ \bigoplus_{\binom{2m-1}{q+2}} \mathbf{Q} & q: \text{odd.} \end{cases}$$

Proof of Proposition 3.3. Take an element $\alpha \in H_q(M_{2m+1}; \mathbf{Q})$ ($q \geq m$). By Proposition 2.3, there is an element $f \in H^{2m-2-q}(M_{2m+1}; \mathbf{Q})$ such that $\alpha = f \cap [M_{2m+1}]$. As $\sigma_*(f \cap [M_{2m+1}]) = \sigma^*f \cap \sigma_*[M_{2m+1}] = -\sigma^*f \cap [M_{2m+1}]$, we have that

$$H_q(M_{2m+1}; \mathbf{Q})^\sigma = \{f \in H^{2m-2-q}(M_{2m+1}; \mathbf{Q}) : \sigma^*f = -f\}.$$

Now (i) follows from Proposition 3.1.

(ii) can be proved similarly. \square

Now in order to determine $H_*(M'_n; \mathbf{Q})$, we need to know only $H_{m-1}(M'_{2m+1}; \mathbf{Q})$ and $H_{m-1}(M'_{2m}; \mathbf{Q})$, which are determined if we know $\chi(M'_n)$.

Proposition 3.4 ([5]). (i) $\chi(M'_{2m+1}) = (-1)^{m+1} \binom{2m-1}{m}$.

$$(ii) \chi(M'_{2m}) = \begin{cases} 0 & m: \text{even} \\ \binom{2m-1}{m} & m: \text{odd.} \end{cases}$$

Proof. By a general formula of an involution (see for example [1]), we have $\chi(M_n) + \chi(M'_n) = 2\chi(M'_n)$. Then the result follows from Proposition 2.4. \square

Proof of Lemma 3.2. First we treat the case of $n = 2m + 1$. We define a volume element ω of M_{2m+1} as follows. Fix $(z_1, \dots, z_{2m}) \in M_{2m+1}$ in the identification of (1.6). It is easy to see that the tangent space $T_{(z_1, \dots, z_{2m})} M_{2m+1}$ is given by

$$(3.5) \quad T_{(z_1, \dots, z_{2m})} M_{2m+1} \cong \left\{ \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{2m} \end{pmatrix} \in \mathbf{R}^{2m} : \xi_1 z_1 + \dots + \xi_{2m} z_{2m} = 0 \right\}.$$

Write z_i as (x_i, y_i) . Then for $\eta_1, \dots, \eta_{2m-2} \in T_{(z_1, \dots, z_{2m})} M_{2m+1}$, we set

$$(3.6) \quad \omega(\eta_1, \dots, \eta_{2m-2}) = \det \left(\eta_1, \dots, \eta_{2m-2}, \begin{pmatrix} x_1 \\ \vdots \\ x_{2m} \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_{2m} \end{pmatrix} \right),$$

It is easy to see that ω is nowhere zero on M_{2m+1} .

For $\eta = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{2m} \end{pmatrix} \in T_{(z_1, \dots, z_{2m})} M_{2m+1}$, we see that

$$di_{2m+1}(\eta) = \xi_1(\sqrt{-1}z_1) + \dots + \xi_{2m}(\sqrt{-1}z_{2m}),$$

where $i_{2m+1} : M_{2m+1} \hookrightarrow (S^1)^{2m}$ denotes the inclusion. Hence we see that $d\sigma : T_{(z_1, \dots, z_{2m})} M_{2m+1} \rightarrow T_{(\bar{z}_1, \dots, \bar{z}_{2m})} M_{2m+1}$ is given by

$$(3.7) \quad d\sigma(\eta) = -\eta.$$

Now the formulae $d\sigma(\eta_i) = -\eta_i$ and $\sigma(x_i, y_i) = (x_i, -y_i)$ tell us that $(\sigma^* \omega)(\eta_1, \dots, \eta_{2m-2}) = -\omega(\eta_1, \dots, \eta_{2m-2})$. Hence $\sigma^* \omega = -\omega$ and the result follows.

Next we treat the case of $n = 2m$. Let \bar{M}_{2m} be $M_{2m} - \{\text{singular points}\}$. By the same argument as in the case of $n = 2m + 1$, we see that $\sigma : \bar{M}_{2m} \rightarrow \bar{M}_{2m}$ preserves orientation. As $H_c^{2m-3}(\bar{M}_{2m}; \mathbf{Q}) \cong H^{2m-3}(M_{2m}; \mathbf{Q})$ (H_c = cohomology with compact supports), the result follows. \square

4. Proof of Theorem E

First we determine $H_{2m-1}(V_{2m}; \mathbf{Z})$. The Poincaré-Lefschetz duality tells us that $H_{2m-1}(V_{2m}; \mathbf{Z}) \cong H^1((S^1)^{2m}/\sigma, \Sigma_{2m}; \mathbf{Z})$. As $H^1((S^1)^{2m}/\sigma; \mathbf{Z}) = 0$, we have $H_{2m-1}(V_{2m}; \mathbf{Z}) \cong \bigoplus_{2^{2m-1}} \mathbf{Z}$.

As V_{2m} is a non-compact manifold of dimension $2m$, we have $H_q(V_{2m}; \mathbf{Z}) = 0$ ($q \geq 2m$). Hence in order to complete the proof of Theorem E, we need to determine $H_q(V_{2m}; \mathbf{Z})$ ($q \leq 2m-2$).

Recall that we have a fibration $(S^1)^{2m} - \Sigma_{2m} \rightarrow V_{2m} \rightarrow \mathbf{R}P^\infty$. Set $F_{2m} = (S^1)^{2m} - \Sigma_{2m}$. The local systems of this fibration of dimensions less than or equal to $2m-2$ are easy to describe: We write the generator of $\pi_1(\mathbf{R}P^\infty)$ by σ . Then as a σ -module, we have

$$(4.1) \quad H_q(F_{2m}; \mathbf{Z}) \cong H_q((S^1)^{2m}; \mathbf{Z}) \quad (q \leq 2m-2).$$

Let $\{E_{s,t}^r\}$ be the \mathbf{Z} -coefficient homology Serre spectral sequence of the above fibration. It is elementary to describe $E_{s,t}^2$ ($t \neq 2m-1$) by using the following fact: We define a σ -module \mathcal{S} to be the free abelian group of rank 1 on which σ acts by -1 . Then have that

$$(4.2) \quad H_q(\mathbf{R}P^\infty; \mathcal{S}) = \begin{cases} \mathbf{Z}_2 & q : \text{even} \\ 0 & q : \text{odd.} \end{cases}$$

REMARK 4.3. For our reference, we give $E_{s,2m-1}^2$. Let \mathcal{T} be the free abelian group of rank 2 on which σ acts by $\begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$. And let σ act on \mathbf{Z} trivially. Then we can prove

that

$$H_{2m-1}(F_{2m}; \mathbf{Z}) \cong \bigoplus_{2m} \mathbf{T} \oplus \bigoplus_{2^{2m}-2m-1} \mathbf{Z}.$$

As

$$H_q(\mathbf{RP}^\infty; \mathbf{T}) = \begin{cases} \mathbf{Z} & q = 0 \\ 0 & q > 0, \end{cases}$$

we can determine $E_{s,2m-1}^2$.

We return to $E_{s,t}^2$ ($t \neq 2m-1$). By the dimensional reason, we have the following:

Proposition 4.4. *For $s+t \leq 2m-2$, we have that $E_{s,t}^2 \cong E_{s,t}^\infty$.*

Hence in order to complete the proof of Theorem E, it suffices to determine the extensions of $E_{s,t}^\infty$, where $s+t$ are odd $\leq 2m-3$. To do so, it is convenient to study $H_*(V_{2m}; \mathbf{Z}_2)$.

Proposition 4.5. *For $q \leq 2m-2$, we have*

$$H_q(V_{2m}; \mathbf{Z}_2) = \bigoplus_{\substack{\Sigma \\ i \leq q}} \binom{2m}{i} \mathbf{Z}_2.$$

From Proposition 4.5, we see that the extensions of $E_{s,t}^\infty$ ($s+t \leq 2m-2$) are trivial. Hence Theorem E follows.

Thus in order to complete the proof of Theorem E, we need to prove Proposition 4.5, which we prove for the rest of this section.

Let $\{E_r^{s,t}\}$ be the \mathbf{Z}_2 -coefficient cohomology Serre spectral sequence of the fibration $F_{2m} \rightarrow V_{2m} \rightarrow \mathbf{RP}^\infty$. We prove the following:

Lemma 4.6. *$d_2 : E_2^{0,1} \rightarrow E_2^{2,0}$ equals to 0.*

Lemma 4.6 tells us that elements of $E_2^{s,t}$ ($t \leq 2m-2$) are permanent cycles. Hence Proposition 4.5 follows.

Proof of Lemma 4.6. Suppose that Lemma 4.6 fails. Then we have $H^1(V_{2m}; \mathbf{Z}_2) = \bigoplus_{2m} \mathbf{Z}_2$. By Theorem D and the \mathbf{Z}_2 -coefficient Poincaré duality of M'_{2m+1} , we have $H_{2m-3}(M'_{2m+1}; \mathbf{Z}_2) = \bigoplus_{2m} \mathbf{Z}_2$. Since $H_{2m-3}(M'_{2m+1}; \mathbf{Q}) = \bigoplus_{2m} \mathbf{Q}$ by Theorem C (a), we have

$$(4.7) \quad H_{2m-3}(M'_{2m+1}; \mathbf{Z}) = \bigoplus_{2m} \mathbf{Z}.$$

By Theorem C (a), we have $H_{2m-2}(M'_{2m+1}; \mathbf{Q}) = 0$. Hence by Theorem A (a), M'_{2m+1} is a non-orientable manifold of dimension $2m - 2$. Thus we have $H_{2m-2}(M'_{2m+1}; \mathbf{Z}) = 0$. Then by (4.7), we have $H_{2m-2}(M'_{2m+1}; \mathbf{Z}_2) = 0$. This contradicts the fact that $H_{2m-2}(M'_{2m+1}; \mathbf{Z}_2) = \mathbf{Z}_2$, i.e., M'_{2m+1} is a compact manifold of dimension $2m - 2$.

This completes the proof of Lemma 4.6, and hence also that of Theorem E. \square

5. Proof of Theorem F

In order to calculate $H_*(M'_{2m+1}; \mathbf{Z})$, first we need to determine $H_*(M'_{2m+1}; \mathbf{Z}_2)$. By the Poincaré duality, it suffices to determine $H_q(M'_{2m+1}; \mathbf{Z}_2)$ ($q \leq m - 1$), which are given by the following:

Proposition 5.1. *For $q \leq m - 1$, we have*

$$H_q(M'_{2m+1}; \mathbf{Z}_2) = \bigoplus_{i \leq q} \binom{2m}{i} \mathbf{Z}_2.$$

Proof. First, $H_q(M'_{2m+1}; \mathbf{Z}_2)$ ($q \leq m - 2$) are determined by Theorems D and E together with the universal coefficient theorem. Then $H_{m-1}(M'_{2m+1}; \mathbf{Z}_2)$ is determined by Proposition 3.4. \square

REMARK 5.2. From Theorems D, E and Proposition 5.1, we see that $(i'_{2m+1})_* : H_{m-1}(M'_{2m+1}; \mathbf{Z}_2) \rightarrow H_{m-1}(V_{2m}; \mathbf{Z}_2)$ is an isomorphism for all m .

Now we begin to determine $H_*(M'_{2m+1}; \mathbf{Z})$.

(I) $H_{even}(M'_{2m+1}; \mathbf{Z})$.

These modules are determined from Theorem C and the following:

Proposition 5.3. *$H_{even}(M'_{2m+1}; \mathbf{Z})$ are torsion free.*

Proof. We can inductively prove this proposition from Theorem C and Proposition 5.1 together with the universal coefficient theorem. \square

(II) $H_{odd}(M'_{2m+1}; \mathbf{Z})$.

In order to determine these modules from Theorem C and Proposition 5.1, we need to prove the non-existence of higher two-torsions, i.e., elements of order 2^i ($i \geq 2$).

Let $p : M_{2m+1} \times_{\sigma} \mathbf{R} \rightarrow M'_{2m+1}$ be the real line bundle associated to the covering space $M_{2m+1} \rightarrow M'_{2m+1}$. And let $O(M_{2m+1} \times_{\sigma} \mathbf{R})$ denote the local system of the above vector bundle. Finally, let $O(TM'_{2m+1})$ denote the local system of TM'_{2m+1} , the tangent bundle of M'_{2m+1} .

Concerning these local systems, we have the following:

Lemma 5.4. *As local systems on M'_{2m+1} , we have $O(M_{2m+1} \times_{\sigma} \mathbf{R}) \cong O(TM'_{2m+1})$.*

Proof. Let $\mathbf{R}^2 \rightarrow \nu \rightarrow M_{2m+1}$ denote the normal bundle of M_{2m+1} in $(S^1)^{2m}$ (cf. (1.6)). As $TM_{2m+1} \oplus \nu \cong T((S^1)^{2m})|_{M_{2m+1}}$, we have

$$(5.5) \quad TM'_{2m+1} \oplus \nu/\sigma \cong TV_{2m}|_{M'_{2m+1}},$$

where $\nu/\sigma \rightarrow M'_{2m+1}$ denotes the vector bundle obtained from $\nu \rightarrow M_{2m+1}$ by the action of σ .

We study ν/σ . Recall that TM_{2m+1} is given by (3.5). Similarly, for $(z_1, \dots, z_{2m}) \in M_{2m+1}$, we have

$$T_{(z_1, \dots, z_{2m})}((S^1)^{2m}) \cong \left\{ \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{2m} \end{pmatrix} \in \mathbf{R}^{2m} \right\}.$$

Hence by assigning $\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{2m} \end{pmatrix} \in \nu_{(z_1, \dots, z_{2m})}$ to $\xi_1 z_1 + \dots + \xi_{2m} z_{2m}$, we have

$$(5.6) \quad \nu \cong M_{2m+1} \times \mathbf{R}^2.$$

Under this identification, the bundle homomorphism $d\sigma : \nu \rightarrow \nu$ is given by

$$(5.7) \quad d\sigma((z_1, \dots, z_{2m}); \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}) = ((\bar{z}_1, \dots, \bar{z}_{2m}); \begin{pmatrix} -v_1 \\ v_2 \end{pmatrix}),$$

(cf. (3.7)).

Then (5.6)-(5.7) tell us that

$$(5.8) \quad \nu/\sigma \cong M_{2m+1} \times_{\sigma} \mathbf{R} \oplus M'_{2m+1} \times \mathbf{R}.$$

Now, as V_{2m} is orientable, we see from (5.5) and (5.8) that

$$(5.9) \quad O(TM'_{2m+1}) \otimes O(M_{2m+1} \times_{\sigma} \mathbf{R}) \cong \mathbf{Z},$$

where \mathbf{Z} denotes the simple local system on M'_{2m+1} . By taking a tensor $\otimes O(TM'_{2m+1})$ on both sides of (5.9), the result follows. \square

Let us denote the local systems $O(M_{2m+1} \times_{\sigma} \mathbf{R}) \cong O(TM'_{2m+1})$ (cf. Lemma 5.4) by \mathcal{Z} .

(A) *The case of an odd m .*

We can determine $H_q(M'_{2m+1}; \mathbf{Z})$ ($q : \text{odd} \leq m-2$) by Theorems D and E. Thus we need to determine $H_q(M'_{2m+1}; \mathbf{Z})$ ($q : \text{odd} \geq m$). By the Poincaré duality: $H_q(M'_{2m+1}; \mathbf{Z}) \cong H^{2m-2-q}(M'_{2m+1}; \mathbf{Z})$, it suffices to determine $H^r(M'_{2m+1}; \mathbf{Z})$ ($r : \text{odd} \leq m-2$).

Consider the Gysin sequence of $p : M_{2m+1} \times_{\sigma} \mathbf{R} \rightarrow M'_{2m+1}$:

$$\begin{aligned} \cdots &\xrightarrow{\psi} H^{r-1}(M'_{2m+1}; \mathbf{Z}) \xrightarrow{\mu} H^r(M'_{2m+1}; \mathbf{Z}) \xrightarrow{p^*} H^r(M_{2m+1}; \mathbf{Z}) \\ &\xrightarrow{\psi} H^r(M'_{2m+1}; \mathbf{Z}) \xrightarrow{\mu} \cdots. \end{aligned}$$

Lemma 5.10. *For an odd $r \leq m-2$, we have*

(i) $H^r(M'_{2m+1}; \mathbf{Z}) = 0$.

(ii) $H^r(M_{2m+1}; \mathbf{Z})$ is a free module.

(iii) *The order of a torsion element of $H^{r+1}(M'_{2m+1}; \mathbf{Z})$ is exactly 2, i.e., $H^{r+1}(M'_{2m+1}; \mathbf{Z})$ does not contain higher two-torsions.*

Proof. This lemma is an easy consequence of Theorems D, E, 2.1 and Proposition 5.3. \square

Now suppose that $H^r(M'_{2m+1}; \mathbf{Z})$ contains a higher two-torsion. Then by Lemma 5.10 (iii), $\text{Ker } [\mu : H^r(M'_{2m+1}; \mathbf{Z}) \rightarrow H^{r+1}(M'_{2m+1}; \mathbf{Z})]$ contains a torsion element.

But by Lemma 5.10 (i)-(ii), $\text{Im } [\psi : H^r(M_{2m+1}; \mathbf{Z}) \rightarrow H^r(M'_{2m+1}; \mathbf{Z})]$ is a free module. This is a contradiction. Thus $H^r(M'_{2m+1}; \mathbf{Z})$ ($r : \text{odd} \leq m-2$) does not contain higher two-torsions.

This completes the proof of Theorem F (a).

(B) *The case of an even m .*

As in (A), it suffices to determine $H^r(M'_{2m+1}; \mathbf{Z})$ ($r : \text{odd} \leq m-1$). For an odd $r \leq m-3$, Lemma 5.10 applies and, by the same argument as in (A), we see that $H^r(M'_{2m+1}; \mathbf{Z})$ does not contain higher two-torsions.

But Lemma 5.10 fails when $r = m-1$. Thus our argument cannot apply in this case.

This completes the proof of Theorem F (b). \square

References

- [1] G. Bredon: Introduction to compact transformation groups, Academic Press, 1972.
- [2] P. Conner: *Concerning the action of a finite group*, Proc. Nat. Acad. Sci. U.S.A. **42** (1956), 349-351.
- [3] T. Havel: *The use of distances as coordinates in computer-aided proofs of theorems in Euclidean geometry*, Journal of Symbolic Computation **11** (1991), 579-593.
- [4] Y. Kamiyama: *An elementary proof of a theorem of T. F. Havel*, Ryukyu Math. J. **5** (1992), 7-12.
- [5] Y. Kamiyama: *Topology of equilateral polygon linkages*, Top. and its Applications **68** (1996), 13-31.

- [6] Y. Kamiyama, M. Tezuka and T. Toma: *Homology of the configuration spaces of quasi-equilateral polygon linkages*, Trans. Amer. Math. Soc. **350** (1998), 4869-4896.
- [7] Y. Kamiyama and M. Tezuka: *Topology and geometry of equilateral polygon linkages in the Euclidean plane*, Quart. J. Math. (to appear).
- [8] M. Kapovich and J. Millson: *On the moduli space of polygons in the Euclidean plane*, Journal of Diff. Geometry **42** (1995), 133-164.
- [9] I. Schoenberg: *Linkages and distance geometry, I. Linkages*, Indag. Math. **31** (1969), 42-52.
- [10] E. Spanier: *Algebraic topology*, McGraw-Hill, 1966.

Department of Mathematics
University of the Ryukyus
Nishihara-Cho, Okinawa 903-01, Japan

