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ABSTRACT

Background: RNA modifications are widely detected in cells and are involved in RNA structural stabilization and regulation of
gene expression. In cancer cells, RNA modifications are altered, resulting in abnormal expression of numerous genes and promot-
ing cancer growth. N1-methyladenosine (m'A), N6-methyladenosine (m°A), N3-methylcytosine (m3C), 5-methylcytosine (m>C),
7-methylguanosine (m’G), and N4-acetylcytidine (ac*C) have been reported as RNA modifications affecting gene expression.
Aim: In this review, the function of m°A in pancreatic cancer is mainly described, and the current status and prospects of RNA
modifications are discussed.

Methodology: We summarize recent reports on m°A writers METTL3, METTL5, METTL14, and METTL16; m°A readers
IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, and YTHDF3; and m°A erasers ALKBHS5 and FTO.

Results: RNA modifications are written to the RNA by the writer, and the reader binds to the RNA modification, causing
gene expression to increase or decrease. Gene expression is also regulated by the removal of RNA modifications by the eraser.
Moreover, our recent investigation into m°A modifications in pancreatic cancer has led to the identification of several promising
candidate biomarkers, highlighting the potential role of epitranscriptomic regulation in tumorigenesis.

Conclusion: These findings suggest that further exploration of RNA modification functions may facilitate the identification of
novel biomarker and therapeutic target molecules for pancreatic cancer.

1 | Background

Pancreatic cancer is difficult to detect in its early stages and
is one of the most difficult-to-treat cancers with a low 5-year
survival rate [1]. Therefore, there is an urgent need to develop
diagnostic methods for early detection and new medicines
for treatment. For this purpose, marker molecules and tar-
get molecules of therapeutic medicines for pancreatic cancer

have been explored [2, 3]. These have been identified by an-
alyzing mutated genes, gene expression patterns, and mole-
cules in the exosome found in pancreatic cancer [4, 5]. Among
them, analysis focusing on RNA modifications has attracted
much attention [6]. RNA modifications are mainly found in
ribosomal RNA (rRNA) and transfer RNA (tRNA), but RNA
modifications have been found to occur in messenger (nRNA)
as well [7]. Adenine modifications in HeLa cell and HEK293
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cell mMRNA were reported to be about 0.04% for m1A and 0.5%
for m®A, and m'A modifications were mostly found in the 5’
untranslated region (5 UTR) near the start codon, indicating
that they are involved in translation regulation [8]. In addi-
tion, about 7000 m°C and 6900 ac*C modifications were found
in HeLa cell mRNA, and gene ontology (GO) enrichment anal-
ysis revealed that m°C and ac*C modifications were found
in mRNA of genes related to cadherin binding and ubiqutin
protein ligase binding [9]. In HCT116 cells, approximately
0.004% of cytosine residues in mRNA were modified with
m3C, whereas around 0.009% were modified with m>C, and
about 0.006% of adenine residues in mRNA carried m'A mod-
ifications, whereas approximately 0.15% were modified with
mCA [10]. Furthermore, about 0.2% of uridine in HEK293T
cell mRNA was pseudouridine [11]. The m’G modification is
essential for mRNA cap structure and is involved in the trans-
lation of all mRNAs [12]. Regulation of translation efficiency
and splicing by m®A modifications may affect gene expres-
sion. Thus, modifications have been detected in mRNA, in
particular, m®A has been detected in many genes and has been
found to have a significant effect on gene expression [13]. m°A
is added to RNA molecules by writer-mediated RNA modifi-
cation, binding by readers inhibits or promotes RNA degrada-
tion, and erasers removes m®A and regulates gene expression
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FIGURE 1 | Writers, readers, and erasers in RNA modification.

Writers perform modifications to RNA, Readers recognize and bind the
modified RNA, and Erasers remove RNA modifications.

[14] (Figure 1). In this review, we summarize the recently dis-
covered function of m®A in pancreatic cancer, including our
recent studies.

2 | Writers
21 | METTL3

In this section, we present seven cases recently reported as
target RNAs of methyltransferase 3 (METTL3). DNA cross-
link repair 1B (DCLRE1B), a 5-to-3’ exonuclease, a DNA
repair gene, is upregulated in pancreatic cancer, promotes
the proliferation of pancreatic cancer cells, and is associ-
ated with poor prognosis. DCLRE1B expression activates
the JAK-STAT signaling pathway, promotes immune check-
point (ICP) gene expression, and influences immunotherapy
sensitivity. DCLRE1IB mRNA is stabilized and upregulated
after m°A modification by METTL3 [15]. IncRNA NNT-AS1
is highly expressed in pancreatic cancer by HIF-1a-mediated
transcription, and m°®A-modified NNT-AS1 by METTL3-HuR
stabilizes ITGB1. Knockdown of NNT-AS1 reduced ITGB1 ex-
pression and growth of pancreatic cancer cell lines, but over-
expression of ITGBI restored growth of pancreatic cancer cell
lines even when NNT-AS1 was knocked down. In addition,
knockdown of NNT-AS1 in a tumor xenograft mouse model
suppressed cancer growth [16]. Amphoteric regulatory pro-
tein (AREG), a member of the epidermal growth factor (EGF)
family, is upregulated in pancreatic cancer. AREG mRNA is
stabilized by m°A modification by METTL3, and the upreg-
ulation of AREG expression promotes cancer progression.
miR-33a-3p suppresses METTL3 expression and decreases
m°A modification of AREG mRNA [17]. METTL3 is upreg-
ulated in pancreatic cancer, and knockdown of METTL3 in a
mouse xenograft model suppressed cancer growth. E2F tran-
scription factor 5 (E2F5) mRNA is m°A-modified by METTL3,
and E2FS5 expression is upregulated. Overexpression of E2F5,
even when METTL3 is knocked down, could promote cancer
growth [18]. IncRNA LIFR-ASI is stabilized by m°A modifi-
cation by METTL3 and promotes pancreatic cancer growth.
LIFR-AS1 sponges miR-150-5p and upregulates the expres-
sion of Vascular Endothelial Growth Factor A (VEGFA), a tar-
get of miR-150-5p. Knockdown of LIFR-ASI1 reduced VEGFA
expression and inhibited AKT and mTOR phosphorylation,
suggesting that LIFR-AS1 contributes to the activation of
AKT/mTOR Signaling [19]. Smoking induces hypomethyla-
tion of the promoter region of METTL3, activating METTL3
transcription and upregulating METTL3 expression. METTL3
stabilizes pri-miR-25 by modifying it with m°®A, resulting in
increased expression of miR-25-3p and decreased expression
of PHLPP2, a target of miR-25-3p. When PHLPP2, a PH do-
main leucine-rich repeat protein phosphatase 2, was knocked
down, an increase in phosphorylation of AKT was observed,
suggesting that m°A modification of pri-miR-25 ultimately
contributes to the activation of the AKT pathway and pancre-
atic cancer progression [20]. Expression of IncRNA DBH-AS1
is suppressed in gemcitabine-resistant pancreatic cancer.
DBH-AS1 is upregulated by m°A modification by METTL3
and sponges miR-3163, resulting in the upregulation of
Ubiquitin Specific Peptidase 44 (USP44), a target gene of miR-
3163. In the xenograft mouse model, overexpression of USP44
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inhibited tumor growth, even when DBH-AS1 was knocked
down. In patient-derived xenograft (PDX) models with high
or low expression of DBH-AS1, when cancer growth in the
presence of gemcitabine was examined, the growth rate was
higher in the group with low expression of DBH-ASI, suggest-
ing that DBH-ASI is associated with USP44-mediated cancer
growth and gemcitabine resistance. DBH-ASI1 is upregulated
by METTL3-mediated m°A modification, and overexpression
of DBH-ASI sponges miR-3163 and upregulates the expression
of USP44, a target gene of miR-3163, thereby reducing gemcit-
abine resistance and suppressing cancer growth [21]. It has
been interestingly reported that lactate upregulates METTL3
expression in colon cancer. Lactate accumulated in the colon
cancer microenvironment is taken up by tumor-infiltrating
myeloid cells (TIMs) and histone H3K18 lactylation activates
METTL3 transcription, resulting in increased METTL3 ex-
pression. The zinc-finger domain of METTL3 contains two
lactylation sites, and lactylation enhances binding to the
METTL3 target RNA. JAK1 mRNA is modified by m°A and
stabilized by binding to YTHDF1, and upregulation of JAK1
enhances the JAK1/STAT3 signaling pathway and suppresses
immunity by upregulating interleukin 6 (IL-6) and interleu-
kin 10 (IL-10) expression [22]. A similar mechanism may exist
in pancreatic cancer. As described above, our knowledge of
RNAs modified by METTL3 and their functions is accumu-
lating. It appears that m®A modification of METTL3 increases
gene expression and enhances proliferative signals in cancer.

2.2 | METTL5, METTL14, and METTL16

In addition to METTL3, there are other molecules that regulate
gene expression through m®A modifications. In this section, we
describe five examples recently reported. Methyltransferase 5
(METTLS5) catalyzes 18S rRNA N6-methylation at adenosine
1832 (m°A1832) and overexpression of METTLS5 in a mouse
xenograft model resulted in tumor growth. Although c-Myc
mRNA is m°A modified and c-Myc expression levels were found
to be slightly positively correlated with METTLS5, further studies
are needed to confirm whether c-Myc mRNA is a direct target of
METTLS5 [23]. Methyltransferase 14 (METTL14) is upregulated
by gemcitabine treatment, and knockdown of METTL14 con-
firmed increased sensitivity to gemcitabine. Mechanistically,
METTLI14 is transcriptionally activated by p65 and increases
gemcitabine resistance by upregulating expression of cytidine
deaminase (CDA), a gemcitabine-inactivating enzyme [24].
Furthermore, overexpression of METTL14 promoted pancreatic
cancer growth. The mRNA of p53 apoptosis effector related to
PMP22 (PERP) involved in apoptosis, was found to be destabi-
lized and down-regulated upon m°A modification by METTL14
[25]. Methyltransferase 16 (METTL16) is downregulated in
pancreatic cancer, and its knockdown promotes metastasis and
invasion. Although METTL16 destabilizes disheveled segment
polarity protein 2 (DVL2) mRNA by m%A modification and sup-
presses its expression, when the expression of DVL2 increases
due to decreased METTL16 expression, Wnt/B-catenin signal-
ing is activated and cancer progression occurs [26]. It was also
observed that overexpression of METTL16 inhibited cancer
growth. Mechanistically, METTL16-mediated m°A modifica-
tion of p21 mRNA upregulates p21 expression and suppresses cy-
clin dependent kinase 1 (CDK1)/Cyclin B, thereby inhibiting cell

proliferation [27]. Thus, the expression of various genes is regu-
lated by writers (Figure 2 and Table 1). METTL family has been
identified as both cancer-promoting and cancer-suppressing.
Although METTL3 has been the main focus of research so far,
further functional analysis of other METTL family members
will be increasingly needed in cancer research.

3 | Readers
3.1 | IGF2BP2

Insulin-like growth factor 2 mRNA-binding protein 2
(IGF2BP2) has been found to bind not only insulin-like
growth factor 2 (IGF2) mRNA but also various mRNAs and
IncRNAs. In this section, we introduce 10 recently reported
cases of IGF2BP2 binding. IGF2BP2 binds to METTL14 m°A-
modified TGFB2 mRNA and upregulates TGFB2 expression,
resulting in enhanced gemcitabine resistance in pancreatic
cancer. Mechanistically, TGFB2 upregulates the expression
of lipogenesis regulator sterol regulatory element binding
factor 1 (SREBF1) and downstream lipogenic enzymes via
PI3K/AKT signaling [28]. One of the methyltransferases, vir-
like m°A methyltransferase associated (VIRMA), is highly
expressed in pancreatic cancer and modifies the 3> UTR of
signaling receptor and transporter of retinol STRA6 (STRAG6)
mRNA with m°A. The m®A-modified STRA6 mRNA is stabi-
lized by the binding of IGF2BP2, which increases downstream
hypoxia-inducible factor 1 subunit alpha (HIF-1a) expression
and enhances glycolysis [29]. High mobility group at-hook 2
(HMGAZ2)is upregulated in pancreatic cancer. HMGA?2 upreg-
ulates IGF2BP2 expression, stabilizes m®A-modified amyloid
beta precursor-like protein 2 (APLP2) mRNA, and promotes
pancreatic cancer. Knockdown of HMGA2 or IGF2BP2 in
a mouse xenograft model suppressed cancer growth [30].
High expression of IGF2BP2 stabilizes m°®A-modified PD-L1
mRNA, which increases PD-L1 expression and promotes can-
cer growth [31]. Myosin 1C (MYO1C) mRNA is m°A-modified
by METTL3 and generates circMYO1C by back splicing.
CircMYOL1 is upregulated in pancreatic cancer and stabilizes
mbA-modified PD-L1 mRNA with IGF2BP2 to upregulate
PD-L1 expression, promoting immune escape [32]. Cleavage
stimulation factor subunit 2 (CSTF2), which is involved in
posttranscriptional regulation, assists the m°A modification
of METTLS3 by slowing the RNA Pol II elongation rate during
the transcription of target genes. CSTF2-mediated m°®A mod-
ification is mainly recognized by IGF2BP2, and centromere
protein F (CENPF), wnt family member 7b (WNT7B), and
neurotensin receptor 1 (NTSR1) were confirmed to be tar-
gets of m°A modification by CSTF2 [33]. TCGA and Gene
Expression Omnibus (GEO) database analysis revealed that
IGF2BP2 is involved in the prognosis of pancreatic cancer and
is a pancreatic cancer marker. UDP-GIcNAc:betaGal beta-1,3-
N-acetylglucosaminyltransferase 6 (B3GNT6) mRNA is mod-
ified with m°A, which is stabilized by IGF2BP2 binding and
contributes to pancreatic cancer progression [34]. Polo-like
kinase 1 (PLK1) mRNA is modified by m°A and stabilized
by binding to IGF2BP2, which increases PLK1 expression
and contributes to cancer progression. Suppression of PLK1
by m®A removal of PLK1 mRNA causes replicating stress
and mitotic catastrophe, induces apoptosis by activating the
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Rad3-related (ATR) signaling pathway [35]. IGF2BP2 was
reported to bind to IncRNA as well as mRNA. LINC00941 is
mbA-modified by METTL14 and stabilized by IGF2BP2 bind-
ing, contributing to the migration and invasion of cancer cells
[36]. IncRNA-PACERR is highly expressed in tumor-associated
macrophages (TAMs) of pancreatic cancer and increases M2-
polarized cells. IncRNA-PACERR is m®A-modified and stabi-
lized by IGF2BP2, which activates the KLF12/p-AKT/c-Myc
pathway by binding to miR-671-3p [37]. Thus, IGF2BP2 was
found to be a positive regulator of cancer growth.

3.2 | IGF2BP1 and IGF2BP3

New reports have also been made on insulin-like growth factor
2 mRNA-binding protein 1 (IGF2BP1) and insulin-like growth
factor 2 mRNA-binding protein 3 (IGF2BP3). miR-383-5p is

modified by m°A and stabilized by IGF2BP1, preventing its de-
stabilization by FTO alpha-ketoglutarate-dependent dioxygen-
ase (FTO). However, in pancreatic cancer, downregulation of
miR-383-5p by upregulation of FTO promotes cancer progres-
sion by upregulating the expression of integrin subunit alpha 3
(ITGA3), a target of miR-383-5p [38]. Glucan branching enzyme
1 (GBE1), which is involved in cellular glycogen metabolism, is
upregulated in pancreatic cancer and is associated with poor
prognosis. Overexpression of GBE1 promotes the proliferation
of pancreatic cancer cells, whereas knockdown of GBE1 allevi-
ates the malignant phenotype. wtl-associated protein (WTAP)/
IGF2BP3 is the m®A regulator of GBE1, and m°A modification
of GBE1 mRNA upregulates GBE1 expression, resulting in the
upregulation of downstream c-Myc expression [39]. Spermine
synthase (SMS) mRNA is m°A-modified by METTL3. IGF2BP3
stabilizes SMS mRNA and upregulates SMS. SMS is upregulated
in pancreatic cancer and suppresses spermidine accumulation
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TABLE1 | Targets of writers and their functions in pancreatic cancer.

Modification
Writers Targets Expression effect on tumor Experiments References
METTL3 DCLREI1B Up Promotive Cell lines [15]
METTL3 IncRNA Up Promotive Cell lines and mouse [16]
NNT-AS1
METTL3 AREG Up Promotive Cell lines and human PC tissues [17]
METTL3 E2F5 Up Promotive Cell lines and mouse [18]
METTL3 IncRNA Up Promotive Cell lines [19]
LIFR-AS1
METTL3 pri-miR-25 Up Promotive Cell lines and human PC tissues [20]
METTL3 IncRNA Up Suppressive Cell lines and mouse [21]
DBH-AS1
METTL5 c-Myc Up Promotive Cell lines and mouse [23]
METTLI14 CDA Up Promotive Cell lines and mouse [24]
METTL14 PERP Down Promotive Cell lines, mouse, and [25]
human PC tissues
METTLI16 DVL2 Down Suppressive Cell lines and human PC tissues [26]
METTLI16 p21 Up Suppressive Cell lines, mouse, and [27]

human PC tissues

Abbreviation: PC, pancreatic cancer.

by converting spermidine to spermine, activating AKT and the
epithelial-mesenchymal transition (EMT) signaling pathway
[40]. Thus, IGF2BP1 and IGF2BP3 were also found to be involved
in gene expression related to cancer progression. Although most
of them are cancer-promoting, future exploration of cases in
which they act in a cancer-suppressive manner is also expected.

3.3 | YTHDF1

This section presents four recent reports on yth né-
methyladenosine RNA-binding protein f1 (YTHDF1). F-box
protein 31 (FBXO31) is upregulated in pancreatic cancer and
worsens the prognosis. m°A modification by METTL3 stabi-
lizes FBXO31 mRNA by binding to YTHDF1, which increases
FBXO031 expression and promotes proteasome-dependent deg-
radation of sirtuin 2 (SIRT2), leading to cancer progression
[41]. Dead-box helicase 23 (DDX23) mRNA is m°®A-modified
by METTL3 and is stabilized by YTHDF1, upregulating DDX3.
DDX23 activates AKT signaling and promotes cancer progres-
sion [42]. Phd finger protein 10 (PHF10) mRNA is m®A-modified
by zinc finger ccch-type containing 13 (ZC3H13) and stabilized
by YTHDF1 binding. PHF10is a member of the PBAF chromatin-
remodeling complex. When PHF10 expression is downregulated
by fisetin, a DNA damage-inducing anticancer drug, DNA dam-
age accumulates, and homologous recombination (HR) repair is
decreased [43]. LINC00901 is m®A-modified and destabilized by
YTHDF1 binding. When LINC00901 is upregulated, IGF2BP2 is
also upregulated, stabilizing MYC mRNA, which in turn upreg-
ulates MYC and promotes cancer progression [44]. Thus, mRNA
may be destabilized as well as stabilized by YTHDF1 binding.

Further mechanistic clarification may be needed to determine
the cause of the destabilization.

3.4 | YTHDF2

This section presents five recent reports on yth N6-
methyladenosine RNA-binding protein F2 (YTHDF2).
Inhibitor of DNA binding 2 (ID2) mRNA is modified with
m°A by METTL3 and stabilized by YTHDF2, resulting in
increased expression of ID2. ID2 induces the expression of
nanog homeobox (NANOG) and sry-box transcription fac-
tor 2 (SOX2), which are cancer stem cell markers, through
the PI3K/AKT pathway, and contributes to cell proliferation
and cancer stem cell maintenance [45]. Histone deacetyl-
ase type 4 (HDAC4) mRNA is stabilized and upregulated by
m®A modification and binding to YTHDF2, which enhances
HIF1a expression. Increased expression of HIF1a in hypoxia
promotes cancer growth by activating glycolysis [46]. Cugbp
elav-like family member 2 (CELF2), an alternative splicing
regulator, is stabilized by alkb homolog 5, RNA demethylase
(ALKBHS5) through regulation of m®A modification of mRNA,
but when ALKBHS5 expression is decreased, YTHDF2 binds
to the m®A modification site and promotes its degradation.
As a result, alternative splicing from CD44s to CD44V is sup-
pressed, CD44s expression increases, and the endoplasmic
reticulum-associated degradation (ERAD) signaling path-
way is activated, leading to cancer progression [47]. Period
circadian regulator 1 (PER1) mRNA mC®A modification by
METTL3/METTL14 promoted mRNA degradation by binding
to YTHDF2, but removal of m°®A by ALKBHS5 increased PER1
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expression, activating ATM-CHK2-P53/CDC25C signaling
[48]. YTHDF?2 is upregulated in pancreatic cancer. YTHDF2
suppresses yesl-associated transcriptional regulator (YAP)
expression and contributes to the activation of TGFf/Smad
signaling [49]. Thus, YTHDF2 binding can stabilize or desta-
bilize mRNA. Further studies are needed to determine what
factors determine this.

In addition, the regulation of gene expression by YTHDF2 seems
to be cooperative with the eraser, ALKBHS. It will be interesting
to see when YTHDF2 or ALKBHS5 becomes dominant.

3.5 | YTHDF3

This section presents two recent reports on YTHDF3.
DICER1-AS1 is downregulated in pancreatic cancer, and its
expression is negatively correlated with glycolytic genes ex-
pression. DICER1-AS1 is degraded by YTHDF3 binding upon
mPA modification. DICER1-AS1 promotes DICER1 expression
by recruiting YY1 to the promoter of DICER1. miR-5586-5p
processed by DICER1 binds to YTHDF3 mRNA and represses
YTHDF3 expression. miR-5586-5p also suppresses the expres-
sion of glycolytic genes, lactate dehydrogenase A (LDHA),
hexokinase 2 (HK2), phosphoglycerate kinase 1 (PGK1), and
solute carrier family 2 member 1 (SLC2A1), thereby sup-
pressing glycolysis and cancer progression [50]. In pancreatic
cancer with proteasome inhibition by celastrol, METTL3 ex-
pression is decreased, m°A levels of Claspin and Bcl-2 mRNA
are lowered, and their expressions are suppressed by YTHDF3
binding, resulting in suppression of cell growth [51]. Thus,
YTHDF3 destabilizes mRNA and suppresses gene expression.
As described above, readers regulate the expression of vari-
ous genes.

3.6 | Other Readers

This section presents three recent reports on readers other than
IGF2BP family and YTHDF family. KH-type splicing regulatory
protein (KHSRP) binds to and stabilizes m°A of the met proto-
oncogene, receptor tyrosine kinase (MET), integrin subunit
alpha v (ITGAV), and integrin subunit beta 1 (ITGB1) mRNAs,
activating the FAK signaling pathway and promoting pancre-
atic cancer growth [52]. Fizzy and cell division cycle 20 related 1
(FZR1) mRNA is mSA-modified, and the binding of gem nuclear
organelle-associated protein 5 (GEMINS) to the m®A-modified
site recruits eukaryotic translation initiation factor 3 subunit a
(eIF3) which upregulates FZR1 expression, maintaining the GO-
G1 quiescent state and enhancing gemcitabine resistance [53].
High expression of heterogeneous nuclear ribonucleoprotein C
(HNRNPC) in pancreatic cancer is associated with metastasis
and poor prognosis. TATA-box binding protein-associated fac-
tor 8 (TAF8) has an m°A modification site at exon 7, and if this
site is not m®A-modified, splicing of TAFSL, an antimetastatic
isoform, occurs, but if m°A is modified, HNRNPC binds to the
site, and TAF8S, a pro-metastatic alternative splicing isoform, is
generated by alternative splicing, which leads to progression of
metastasis [54]. Thus, various readers are involved in the regu-
lation of gene expression of cancer-related genes (Figure 3 and
Table 2).

4 | Erasers
4.1 | ALKBH5

This section presents seven recent reports on ALKBHS. Analysis
of gene expression and copy number variation (CNV) data of
pancreatic cancer patients in the TCGA database reported that
patients with ALKBHS5 CNV have a worse prognosis and that
increased expression of ALKBHS5 is positively correlated with
activation of AKT pathways [55]. The expression of f-box and
leucine-rich repeat protein 5 (FBXL5), a ubiquitin ligase, is reg-
ulated by m®A modification of mRNA and is upregulated by
mSA removal of ALKBHS5. FBXL5 suppresses cancer progres-
sion by decreasing intracellular iron pools through ubiquiti-
nation of iron-responsive element binding protein 2 (IRP2), an
iron-regulatory protein [56]. ALKBHS5 expression is downreg-
ulated by gemcitabine treatment, but overexpression increases
gemcitabine sensitivity. ALKBHS upregulates Wnt inhibitory
factor 1 (WIF-1) expression by removing m°A of WIF-1 mRNA
and inhibits pancreatic cancer progression by suppressing the
Wnt pathway [57]. ALKBHS5 is downregulated in pancreatic
cancer. KCNK15-AS1 is modified with m°A and destabilized,
but KCNK15-AS1 is upregulated when mC®A is removed by
ALKBHS5 and suppresses migration and invasion [58]. In ad-
dition, KCNK15-AS1 upregulation recruits MDM2 to activate
phosphatase and tensin homolog (PTEN) transcription by pro-
moting the ubiquitination of RE1 silencing transcription factor
(REST), and PTEN expression suppresses the AKT pathway
and inhibits cancer progression [59]. DDIT4-AS1 is significantly
upregulated in pancreatic cancer, and its elevated expression is
correlated with poor prognosis. DDIT4-AS is modified with m®A
and stabilized by binding of elav-like RNA-binding protein 1
(HuR), which inhibits the binding of SMG5 nonsense-mediated
mRNA decay factor (SMG5) and protein phosphatase 2a (PP2A)
to UPF1 RNA helicase and ATPase (UPF1), thereby promoting
UPF1 phosphorylation, which has the ability to degrade mRNA,
and DNA damage-inducible transcript 4 (DDIT4) mRNA degra-
dation. mTOR pathway is then activated, increasing stemness
and gemcitabine resistance. ALKBHS removes DDIT4-AS m°A
and suppresses DDIT4-AS expression [60]. ALKBHS is upregu-
lated in pancreatic neuroendocrine neoplasms (pNENs). Fatty
acid binding protein 5 (FABP5) mRNA is m°A-modified, but up-
regulation of ALKBHS increases FABP5 expression by decreas-
ing m°A modification, inducing fatty acid synthesis via PI3K/
AKT/mTOR signaling pathway and promoting cancer growth
[61]. Thus, although many reports indicate that ALKBHS func-
tions in a cancer-suppressive manner, it has also been reported
to be cancer-promoting in some cancer types. There may be
some special factor that causes the cancer to grow despite the
elevated expression of ALKBHS.

42 | FTO

This section presents five recent reports on FTO. FTO is highly
expressed in pancreatic cancer and is associated with poor prog-
nosis. Knockdown of FTO suppressed cancer growth in a mouse
xenograft model by increasing the m°A level of platelet-derived
growth factor C (PDGFC) mRNA, promoting PDGFC mRNA
degradation by binding to YTHDF?2, decreasing PDGFC secre-
tion, and inhibiting the AKT signaling pathway [62]. Tissue
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FIGURE

factor pathway inhibitor 2 (TFPI-2) mRNA is m®A-modified and
stabilized by binding to YTHDF1, which upregulates TFPI-2 ex-
pression and suppresses tumor growth, migration, and invasion,
but removal of m®A-modification by FTO reduces TFPI-2 ex-
pression and promotes cancer progression [63]. NEDD4 E3 ubiq-
uitin protein ligase (NEDD4) mRNA is stabilized by YTHDF2
in a low m®A-modified state, and NEDD4 enhances gemcitabine
resistance by activating the PI3K/AKT pathway. Knockdown of
FTO increases gemcitabine sensitivity by suppressing NEDD4
expression and increasing PTEN expression [64]. ADAM metal-
lopeptidase with thrombospondin type 1 motif 2 (ADAMTS2),
collagen type xii alpha 1 chain (COL12A1), and thrombospon-
din 2 (THBS2), which contribute to extracellular matrix (ECM)
formation, are regulated by m°A modification of mRNA, and
knockdown of FTO reduces their mRNA levels and m®A mod-
ification levels, suppressing migration and invasion of pancre-
atic cancer cells [65]. LINC01134 is upregulated in pancreatic
cancer and enhances gemcitabine resistance by promoting stem
cell features and regulating the cell cycle. LINC01134 sponges
the tumor suppressor gene miR-497-5p and upregulates Wnt
family member 5A (WNTS5A) expression. Binding of YTHDF2
to m®A-modified LINC01134 suppresses LINC01134 expres-
sion, which is upregulated when m°A is removed by FTO [66].
Thus, FTO has been reported to be an eraser that functions in a
cancer-promoting manner. As described above, erasers regulate

IGF2BP2 IGF2BP3 YTHDF1 YTHDF2 YTHDF3
& G G G G
=
e GBE1 1 FBXO31 1 ID2 1 DICER1-AS1 |
TGFBZ 1 SMS DDX23 1 CELF2
e APLP2 | SMS 1 PHF10 1 HDAC4 1
o PD-L1 1 PER1 |
bt MYO1C 1 YAP |
o CENPF 1
o WNT7B 1
8 g;gﬁ}gT Immune escape? | AKT signaling 1 | | Glycolysis 1 | | ERAD signaling? |
c PLK1 1
LINC00941
8 IncRNA-PAéERRT KHSRP GEMIN5 HNRNPC
MET 1
ITGAV 1
S ITGB1 1 m6é FZR1 1 m& TAF8S 1
()
=
g IGF2BP1 YTHDF1 YTHDF3 @ Claspin |
9
S —7@?@ —» . ;
S ms . . Bcl-2 |
m
(7)) miR-383-5p 1 LINC00901 ! é&‘
| -
()
@)
c
®
(@)
3

| Regulation of gene expression by readers. Binding of readers increases or decreases gene expression.

the expression of various genes but may tend to be bifurcated
into cancer-promoting and cancer-suppressing (Figure 4 and
Table 3).

5 | mSA MeRIP-Seq of Pancreatic Cancer Tissues

We recently published our findings on m6A markers with
potential diagnostic utility for pancreatic cancer [67]. The
top 20 genes with elevated m®A modification in tumors com-
pared to normal tissue ducts and acinars were insulin (INS),
trefoil factor 1 (TFF1), zinc finger c2hc-type containing 1b
(ZC2HC1B), claudin 2 (CLDN2), RMDN2 antisense RNA 1
(RMDN2-AS), proteasome 20s subunit alpha 6 (PSMAG6),
LINC00396, hemopexin (HPX), LOC101928324, MIR 4791,
LOC100288842, insulin-like 4 (INSL4), CD14, neuropeptide s
receptor 1 (NPSR1), transcription elongation factor a Like 8
(TCEALS), lipocalin 2 (LCN2), amylase alpha 2a (AMY2A),
spanx family member n2 (SPANXN2), thrombospondin type
1 domain containing 1 (THSD1), and APCDD1L-AS1. Gene
set enrichment analysis (GSEA) revealed that genes with
elevated m®A modifications in the tumors were involved in
glycan biosynthesis, complement and coagulation cascades,
systemic lupus erythematosus, TGF beta signaling pathway,
ECM receptor interaction, and leukocyte transendothelial
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TABLE 2 | Targets of readers and their functions in pancreatic cancer.

Binding effect

Readers Targets Expression on tumor Experiments References

IGF2BP2 TGFB2 Up Promotive Cell lines and mouse [28]

IGF2BP2 STRA6 Up Promotive Cell lines, mouse, and [29]
human PC tissues

IGF2BP2 APLP2 Up Promotive Cell lines and mouse [30]

IGF2BP2 PD-L1 Up Promotive Cell lines and mouse [31]

IGF2BP2 MYO1C Up Promotive Cell lines and mouse [32]

IGF2BP2 CENPF, WNT7B, Up Promotive Cell lines and mouse [33]

and NTSR1

IGF2BP2 B3GNT6 Up Promotive Cell lines and mouse [34]

IGF2BP2 PLK1 Up Promotive Cell lines, mouse, and [35]
human PC tissues

IGF2BP2 LINC00941 Up Promotive Cell lines, mouse, and [36]
human PC tissues

IGF2BP2 IncRNA-PACERR Up Promotive Cell lines, mouse, and [37]
human PC tissues

IGF2BP1 miR-383-5p Up Suppressive Cell lines [38]

IGF2BP3 GBE1 Up Promotive Cell lines and mouse [39]

IGF2BP3 SMS Up Promotive Cell lines, mouse, and [40]
human PC tissues

YTHDF1 FBX031 Up Promotive Cell lines, mouse, and [41]
human PC tissues

YTHDF1 DDX23 Up Promotive Cell lines, mouse, and [42]
human PC tissues

YTHDF1 PHF10 Up Promotive Cell lines [43]

YTHDF1 LINC00901 Down Suppressive Cell lines and mouse [44]

YTHDF2 1D2 Up Promotive Cell lines, mouse, and [45]
human PC tissues

YTHDEF2 HDAC4 Up Promotive Cell lines [46]

YTHDEF2 CELF2 Down Promotive Cell lines and mouse [47]

YTHDF2 PER1 Down Promotive Cell lines, mouse, and [48]
human PC tissues

YTHDF2 YAP Down Promotive Cell lines [49]

YTHDF3 DICER1-AS1 Down Promotive Cell lines and mouse [50]

YTHDF3 Claspin and Bcl-2 Down Suppressive Cell lines and mouse [51]

KHSRP MET, ITGAV, and ITGB1 Up Promotive Cell lines and mouse [52]

GEMINS5 FZR1 Up Promotive Cell lines and mouse [53]

HNRNPC TAF8 Up (TAFSS) Promotive Cell lines, mouse, and [54]

human PC tissues

Abbreviation: PC, pancreatic cancer.

TFF1, CLDN2, PSMA6, CD14, TCEAL8, LCN2, and AMY2A.
Although the function of TCEALS in cancer was unknown,
we found that TCEALS8 expression activated oxidative phos-
phorylation, protein export, ubiquitin mediated proteolysis,

migration. The top 20 genes with elevated m®A modification
in tumors were confirmed in the pancreatic cancer single-cell
RNA-sequencing (scRNA-seq) database we previously con-
structed, and expression was confirmed in eight genes: INS,
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FIGURE4 | Regulation of gene expression by erasers. Removal of RNA modifications by erasers increases or decreases gene expression.

fatty acid metabolism, and antigen presentation through vi-
sium analysis of cancer tissues. Therefore, further functional
analysis is expected in the future.

6 | Other RNA Modifications

In addition to m®A, other RNA modifications that affect gene
expression have been reported. Methyltransferase 8 (METTLS)
methylates the C32 site of mitochondrial proteins mt-tRNASer
(UCN) and mt-tRNAThr, resulting in m3C. METTLS is up-
regulated in pancreatic cancer and is associated with poor
prognosis. Knockdown of METTL8 decreases respiratory
chain activity, suggesting that m3C modification of mt-tRNA
activates respiratory chain activity [68]. Nuclear cap binding
protein subunit 2 (NCBP2), an m’G-binding protein, is upregu-
lated in pancreatic cancer and is associated with poor progno-
sis. Knockdown of NCBP2 suppressed the growth of pancreatic
cancer, while overexpression of NCBP2 promoted the growth
of pancreatic cancer. NCBP2 binds to m’G-modified c-JUN
mRNA and enhances MEK/ERK signaling by upregulating

c-JUN translation, thereby promoting pancreatic cancer
growth [69]. m!'A has been detected in tRNA, ribosomal RNA,
and mRNA and has been reported to be involved in stabiliz-
ing RNA structure and regulating gene expression, but the
details of the function of m'A modification in each gene are
still unclear [70]. Interesting reports on the functions of 5mC
and ac4C have been published, although not in pancreatic
cancer. Aly/REF export factor (ALYREF) is upregulated in
hepatocellular carcinoma and is associated with poor progno-
sis. ALYREF binds to m°C-modified epidermal growth factor
receptor (EGFR) mRNA and promotes cancer growth by sta-
bilizing EGFR mRNA, upregulating EGFR expression and en-
hancing the STAT3 signaling pathway [71]. N-acetyltransferase
10 (NAT10) is upregulated in hepatocellular carcinoma and
is associated with poor prognosis. High mobility group box 2
(HMGB2) mRNA is ac*C-modified by NAT10, and binding of
eukaryotic translation elongation factor 2 (EEF2) to NAT10 in-
creases HMGB2 expression and promotes cancer proliferation
[72]. Thus, most of the functions of RNA modifications other
than m°A are still unknown in pancreatic cancer. Therefore,
more and more research is needed in the future.
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TABLE 3 | Targets of erasers and their functions in pancreatic cancer.

Erasing effect

Erasers Targets Expression on tumor Experiments References
ALKBHS5 FBXL5 Up Suppressive Cell lines and human PC tissues [56]
ALKBHS5 WIF-1 Up Suppressive Cell lines and human PC tissues [57]
ALKBHS5 KCNK15-AS1 Up Suppressive Cell lines [58, 59]
ALKBHS5 DDIT4-AS1 Down Suppressive Cell lines and mouse [60]
ALKBHS5 FABP5 Up Promotive Cell lines and mouse [61]
FTO PDGFC Up Promotive Cell lines and human PC tissues [62]
FTO TFPI-2 Down Promotive Cell lines and human PC tissues [63]
FTO NEDD4 Up Promotive Cell lines and mouse [64]
FTO ADAMTS2, COL12A1 Up Promotive Cell lines [65]
and THBS2

FTO LINCO01134 Up Promotive Cell lines and human PC tissues [66]

Abbreviation: PC, pancreatic cancer.

7 | Conclusions Ethics Statement

As described above, m°A regulates the expression of genes involved
in important signals for cancer growth in pancreatic cancer. The
development of inhibitors targeting writers and erasers is currently
underway. However, since writers and erasers target many genes,
such inhibitors may have a broad impact on gene expression. The
functions of m°®A in individual genes have been elucidated one by
one. Based on this information, we hope that controlling individ-
ual m®A modifications will facilitate the treatment of pancreatic
cancer. As the technology to detect modifications at specific sites
of RNA becomes more advanced, m®A-modified RNAs may serve
as potential biomarkers to support the early detection of pancre-
atic cancer. Although this review describes the functions of RNA
modifications in pancreatic cancer, these functions may not be
universally applicable to other cancer types. For instance, while
ALKBHS5 exhibits tumor-suppressive activity in pancreatic cancer,
it plays a tumor-promoting role in glioblastoma [73]. Therefore,
further functional investigations specific to each cancer type are
warranted to fully understand the context-dependent roles of
RNA modifications in tumorigenesis. With that in mind, further
research is still needed for the social implementation of cancer di-
agnosis and therapeutics using m°A modification data.
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