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BACKGROUND: Circulating tumor DNA (ctDNA) is a promising tool for diagnosing and predicting cancer prognosis. However, its
clinical utility in metastatic renal cell carcinoma (mRCC) remains unclear, particularly in terms of clinical prognosis.
METHODS: We enrolled 124 patients with mRCC in the MONSTAR-SCREEN study (UMIN 000036749) between August 2019 and
February 2022, a national observational ctDNA-based screening study, and performed ctDNA sequencing before and at the time of
resistance to systemic therapy.
RESULTS: ctDNA were assessed in 178 samples containing 432 mutations. The most frequently altered genes at baseline were VHL
(25.0%), PBRM1 (10.9%), TERT2 (8.7%), BAP1 (8.7%), and MTOR (7.6%). Patients receiving first-line therapy with tumor fraction
(TF) < 1.2% showed significantly better progression-free survival than those with TF ≥ 1.2% (Hazard ratio (HR)= 0.467; 95% CI
0.229–0.979; p= 0.0425). BAP1mutational status of ctDNA at baseline led to poor OS (HR= 0.4867; 95% CI 0.322–0.736; p= 0.0003).
Serial ctDNA analysis showed that 46.8% of patients developed new ctDNA mutations at disease progression, which was linked to
shorter time to progression (p= 0.046).
CONCLUSIONS: Our findings demonstrated that ctDNA profiling is feasible in mRCC and can predict disease progression after
treatment.

British Journal of Cancer; https://doi.org/10.1038/s41416-025-02985-8

INTRODUCTION
Vascular endothelial growth factor (VEGF)-targeted therapies and
the emergence of immune checkpoint inhibitors (ICIs) have
substantially improved the clinical outcomes of patients with
metastatic renal cell carcinoma (mRCC) [1, 2], specifically
transforming it from a rapidly progressing fatal disease through
several subsequent therapies.
However, a reliable marker for predicting response or resistance

to these treatments is lacking, posing challenges to precision
oncology. We initiated MONSTAR-SCREEN, a nationwide solid
cancer biomarker screening project within the SCRUM-Japan
network, to assess chronological tumor evolution and intratumoral
genomic heterogeneity for accurate treatment selection with the

aim to accelerate innovation in therapies [3–6]. In particular, we
focused on circulating tumor DNAs (ctDNAs) as an alternative to
tissue genotyping owing to their ability to detect genomic
alterations with high accuracy across solid tumors [7]. In this
project, we attempted to characterize the DNA genomic profile of
cancers presenting with lower ctDNA levels, including RCC, head
and neck cancer, gynecological cancer, and malignant melanoma,
in a large cohort [3, 5].
In the present study, we analyzed a national cohort of patients

with mRCC who underwent serial liquid biopsies, using a clinical
ctDNA assay to characterize ctDNA changes over time. We linked
the mutational profiles to clinical data, including prognosis and
treatment, for the overall cohort.
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MATERIALS AND METHODS
Patient enrollment
SCRUM-Japan MONSTAR-SCREEN was a nationwide cancer genome
screening project that prospectively evaluated ctDNA in patients with
advanced solid tumors, except lung cancer, across 31 Japanese institutions
(UMIN 000036749). The analysis was conducted on patients who had been
registered with MONSTAR-SCREEN between August 2019 and February
2022 with a median follow-up of 20.2 months (range 3.5–36.5). The primary
eligibility criteria were the presence of histologically proven solid tumors,
unresectable lesions, and an Eastern Cooperative Oncology Group
performance status of 0–1. The study protocol was approved by the
Institutional Review Board of each participating institution; all patients
provided written informed consent.
Tissue samples were collected before treatment initiation, whereas blood

samples were collected before treatment initiation and during disease
progression. Blood samples were profiled using FoundationOne®Liquid CDx
(F1LCDx®, Foundation Medicine, Cambridge, MA, USA). Tissue samples were
profiled using FoundationOne®CDx (F1CDx®, Foundation Medicine).

Comprehensive genomic profiling of ctDNA
All comprehensive genomic profiling assays were conducted in a
laboratory certified under the Clinical Laboratory Improvement Amend-
ments (CLIA), accredited by the College of American Pathologists (CAP)
and approved by the New York State (Foundation Medicine, Inc.,
Cambridge, MA, USA). Circulating cell-free DNA (cfDNA) was extracted
from whole-blood samples and analyzed using F1LCDx, a validated in vitro
diagnostic device targeting 324 cancer-related genes. This assay employs
hybrid-capture technology and deep sequencing coverage to detect
single-nucleotide variants, indels, genomic rearrangements, copy number
amplifications and losses, as well as genomic signatures such as bTMB, MSI,
and tumor fraction (TF), which estimate the proportion of ctDNA in the
cfDNA extracted from plasma. The Foundation Medicine’s ctDNA TF on
F1LCDx® uses a composite algorithm that prioritizes aneuploidy at higher
levels to minimize germline signals and prioritizes variant allele
frequencies of canonical alterations at lower levels to maximize the
dynamic range, merging two methods for ctDNA TF estimation. When the
absence of detectable tumor aneuploidy restricts the estimation of TF, a
variant-based approach is employed. This involves identifying the
nongermline variant, excluding specific clonal hematopoiesis (CH)-
associated alterations, as described previously [8, 9].
To examine changes in ctDNA over time, alterations were classified as

emergent (not detectable at baseline but detectable at any variant allele
frequency (VAF) during progression), increasing (detectable at baseline
with increase in VAF by 20% or greater during progression), stable
(detectable at baseline with less than 20% increase or decrease in VAF
during progression), decreasing (detectable at baseline with decline in VAF
by 20% or greater during progression), or lost (detectable at baseline at
any VAF but not detectable at progression) phases.

Clinical data
Response assessment eligibility was based on at least one scan following
treatment initiation or clinical progression after treatment initiation. Tumor
assessments were performed using the Response Evaluation Criteria in
Solid Tumors, version 1.1, at screening and every 2–3 months from the
start of treatment. Time to progression was defined as the time from the
start of treatment to clinical and/or radiographic progression or death from
any cause.

Statistical analysis
Differences between the two groups andmaximal VAF at baseline in patients
with emergent and other types of mutations were compared using Fisher’s
exact tests for categorical variables. Comparisons of mean time to
progression were performed using Mann–Whitney test. Progression-free
survival (PFS) and overall survival (OS) were estimated using the
Kaplan–Meier method and compared using log-rank tests. Differences were
considered statistically significant at p < 0.05. All statistical analyses were
conducted using JMP (version 15.0; SAS Institute, Cary, NC, USA).

RESULTS
Patient characteristics
In total, 124 patients with mRCC were enrolled in the MONSTAR-
Urology group; 110 patients were analyzed after excluding those

whose clinical data were unavailable (n= 3) and those with
undetected ctDNA (n= 11) (Table 1, Supplementary Fig. S1,
Supplementary Table S1). The median patient age was 66 years
(range, 21–83). The most prevalent histological type was clear cell
carcinoma, present in 110 (91.0%) patients. The number of
metastatic sites ranged from one to five; 66 (54.5%) patients
had multiple metastases at baseline. The most common sites of
distant metastasis were the lungs (68.6%), followed by the lymph
nodes (38.8%) and bones (25.6%). Specifically, 61.2% and 21.5% of
patients were classified as intermediate and poor risk, respectively,
according to the IMDC risk classification. Nephrectomies and
tissue biopsy had previously been conducted in 74 (61.2%) and 33
(27.3%) patients, respectively.
During the observational period, 90 patients (74.4%) were

enrolled for first-line treatment, whereas 31 patients (25.6%)
received more than one treatment as prior therapy Supplemen-
tary Table S1). Notably, 90% of patients who received first-line
therapy received ICI combination therapy, reflecting the current
trends in mRCC treatment (Fig. 1a).

Table 1. Characteristics of the entire cohort.

Characteristics

Median age, years (range) 66 (21–83)

Sex, n (%)

Male 92 (76.0)

Female 29 (24.0)

Histopathology, n (%)

Clear cell RCC 110 (91.0)

Non-clear cell RCC 11 (9.0)

IMDC risk, n (%)

Favorable 21 (17.4)

Intermediate 74 (61.2)

Poor 26 (21.5)

Number of metastatic organs, n (%)

Single 55 (45.5)

Multiple 66 (54.5)

Metastatic site

Bone 31 (25.6)

Lung 83 (68.6)

Liver 17 (14.0)

Lymph nodes 47 (38.8)

Brain 4 (3.3)

Confirmation of tissue type, n (%)

Nephrectomy 74 (61.2)

Biopsy 33 (27.3)

Unknown 4 (3.3)

Treatment line, n (%)

1st 90 (74.4)

2nd 15 (12.4)

3rd 6 (6.7)

≥4th 10 (11.1)

CRP, n (%)

Low (<1.0) 71 (58.7)

High (≥1.0) 43 (35.5)

Unknown 7 (5.8)

CRP C-reactive protein, IMDC International Metastatic RCC Database
Consortium, RCC renal cell carcinoma.
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ctDNA assessment at treatment baseline
Of all samples at baseline, ctDNA genomic landscape with a
mutation rate of more than 2% were demonstrated according to
maximal VAF and TF (Fig. 1b). Overall, at least one ctDNA
pathogenic genomic alteration (GA) was identified in 91 samples
(82.7%), with a median of three GA per patient (interquartile
range, 2–4 GAs; Supplementary Fig. S2). The most common
pathogenic GAs were DNMT3A (28%), TP53 (22%), VHL (16%), TET2
(14%), and ASXL1 (9%) (Fig. 1b, Supplementary Fig. S2). The
median value of maximal VAF was 4.88% (interquartile range,
0.73–47.18%). After exclusion of genes univocally associated with
clonal hematopoiesis of indeterminate potential (CHIP; ATM,
ASXL1, CBL, CHEK2, DNMT3A, JAK2, IDH2, KMT2D (MLL2), MPL,
MYD88, SF3B1, TET2, TP53, and U2AF1), the five most frequent
cancer-related alterations identified through ctDNA sequencing
were VHL (25.0%), PBRM1 (10.9%), TERT2 (8.7%), BAP1 (8.7%), and
MTOR (7.6%) mutations (Fig. 1c).
Next, we explored the concordance of mutational profiles

between ctDNA and tumor DNA (Fig. 1d). Of the total 173
mutations, 29 mutations (16.8%) were consistent with somatic
mutations detected in tumor DNA, whereas 62 mutations were
identified only in ctDNA. The concordance rate between cfDNA
and tumor DNA was 16.5% (21 of 127 mutations) after excluding
genes associated with CHIP (Fig. 1e), suggesting that cfDNA
identifies possible relevant GAs that are not captured by single-
lesion tumor biopsy.

Clinical prognosis depending on baseline ctDNA status
We investigated the TF in ctDNA in all patients at baseline to
evaluate whether ctDNA information could facilitate clinical
benefit prediction. The median TF was 1.15% (interquartile range,
0.62–2.85%) in this cohort (Supplementary Fig. S3). We analyzed
the concordance between bTMB and TMB in our cohort. Contrary
to expectations, there was no significant correlation between the
two parameters, even in samples with TF > 1% (Supplementary
Fig. S4).
Following the stratification of patients of first-line treatment

into two groups, patients with TF < 1.2% showed significantly
better PFS than those with TF ≥ 1.2% (median PFS [mPFS], 24.30
versus 19.03 months, hazard ratio [HR]= 0.467, 95% CI;
0.229–0.979, p= 0.0425, Fig. 2a). Patients with TF < 1.2% showed
a tendency of better OS that those of TF ≥ 1.2% (12-month OS,
91.3% versus 82.4%, HR= 0.469, 95% CI: 0.160–1.379, p= 0.168;
Fig. 2a). Among patients who received ICI combination therapy,
accounting for 92.7% of first-line treatment, patients with
TF < 1.2% showed better PFS (mPFS, 24.63 versus 19.03 months,
HR= 0.140, 95% CI: 0.632–0.926, p= 0.0320, Fig. 2b). Moreover.
patients with TF < 1.2% also showed a tendency of better OS that
those of TF ≥ 1.2% (12-month OS, 89.5% versus 84.1%, HR= 0.422,
95% CI: 0.139–1.280, p= 0.128; Fig. 2b). Notably, in multivariate
analysis, TF ≥ 1.2% was significantly associated with reduced PFS
in patients with first-line treatment (HR= 1.699, 95% CI:
1.818–3.680, p= 0.043, Table 2), whereas IMDC intermediate/poor
risk groups (77.7% of all patients) showed a tendency of reduced
OS (HR= 1.389, 95% CI: 0.893–3.911, p= 0.114). These results
suggest that ctDNA fraction status may influence the probability
of responses to systemic therapies.
Moreover, when we examined OS depending on the mutational

status of several genes associated with unfavorable prognosis by
tissue-based information [10, 11], alterations in BAP1 in ctDNA
appeared to be associated with poor prognosis in patients with
mRCC　(mOS, 15.0 versus not reached, HR = 18.88, 95% CI,
3.787–94.13, p= 0.0003, Fig. 2c), implying that ctDNA mutational
profiling as an alternative of tissue-based genotyping could
predict clinical prognosis in patients with mRCC. On the other
hand, we found that BAP1, PIK3CA, SETD2, and PBRM1 alterations
did not affect OS in this cohort (Supplementary Fig. S5).

Treatment-resistant gene alterations inferred from ctDNA
dynamics
A proportion of patients showed ctDNA alterations determined
through liquid biopsies at baseline and during progression,
including 46 patients in our cohort. Among the mutations
identified in ctDNA before and after treatment, 54.6% were
identified in both, whereas 25.2% were identified only in post-
treatment samples (Fig. 3a).
The dynamics of ctDNA can be used to deduce changes linked

to treatment resistance, as changes in the detection and VAF of
mutations can serve as indicators of pharmacodynamic responses.
To delineate the changes in ctDNA alterations during progression,
ctDNA alterations were categorized according to their dynamics as
emergent, increasing, stable, decreasing, or lost. Among all
patients, 49 and 25 unique GAs, including missense, in-frame,
truncating, splice site, and copy number alterations in 27 patients,
appeared as emergent and increasing GAs in post-treatment
ctDNA samples, respectively (Fig. 3b, Supplementary Table S2).
Gene-level analysis revealed that mutations in VHL, TERT, and
PBRM1 were the most common emergent and increasing GAs in
our cohort (Fig. 3b).
We subsequently stratified patients into ICI and TKI regimens.

To clearly compare the ICI and TKI regimens, we defined patients
with nivolumab or nivolumab plus ipilimumab as ICI regimen
group, and those with TKI monotherapy as TKI regimen group. The
most prevalent emergent and increasing GAs were VHL and BAP1
in the ICI regimen group and PBRM1 in the TKI regimen group
(Fig. 3c).

Emergent ctDNA alterations affect clinical prognosis
We characterized the clinical features of emergent ctDNA
alterations in a national cohort because these mutations may
define new therapeutic targets for individual patients. All
emergent alterations had a maximal VAF of >0.1%, with a limit
of detection of VAF at 0.1% in the liquid biopsy assay (Fig. 4a).
There was no significant difference in maximal VAF at baseline
between the emergent and other types of GAs (Fig. 4b),
suggesting that the baseline maximal VAF was not predictive of
emergent alterations in mRCC.
Contrastingly, patients with multiple emergent alterations, likely

denoting polyclonal resistance mechanisms, had a shorter time to
progression (median 11.5 weeks, range, 3.6–39.2 weeks) than
patients with a single emergent alteration (median 39.7 weeks,
range, 8.7–116.7 weeks) (p= 0.032; Fig. 4c). The mean duration
until progression was 14.1 and 44.8 weeks among cases with and
without emergent ctDNA alterations, respectively, differing
significantly (p= 0.046; Fig. 4d). These findings indicate that a
high prevalence of emergent ctDNA alterations impairs clinical
outcomes during treatment.
Finally, emergent alterations were categorized according to

their potential for actionability based on the classification schemes
in OncoKB database. Seven emergent alterations (35.0%) were
classified as level 1. They were considered clinically actionable
using approved or investigational drugs (Supplementary Fig. S6).
Level 2 and 3 alterations accounted for 10.0% of patients with
emergent alterations. These results indicate that patients with
emergent alterations can achieve eligibility criteria for clinical
trials.

DISCUSSION
This study evaluated the prognostic significance of ctDNA
alterations in advanced RCC using data from the SCRUM-Japan
MONSTAR-SCREEN study. We found that ctDNA mutations were
significantly associated with poorer progression-free and overall
survival, confirming the study’s aim to establish ctDNA as a
valuable prognostic biomarker. Our findings highlight the novelty
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of ctDNA as a less invasive alternative for monitoring advanced
RCC and underscore its potential to enhance personalized
treatment strategies.
ctDNA detection, or liquid biopsy, is a non-invasive method of

detecting tumor-associated molecular alterations in various
cancers [12–14]. However, in a subset of cancers including RCC,
pancreatic cancer, and glioma, the effectiveness of ctDNA analysis
remains unclear because of the low rate of ctDNA shedding, not
allowing for universal usage for cancer screening and prognos-
tication [15–17]. However, recent progress in next-generation

sequencing has improved the precision of ctDNA analysis,
underscoring its potential value for RCC treatment in clinical
practice [18–21]. In this study, we analyzed a large national cohort
of patients with mRCC who underwent serial liquid biopsies using
a clinical ctDNA assay to elucidate the relationship with
prognostication and characterize ctDNA changes over time
leading to resistance to systemic therapies.
We demonstrated several novel findings indicating the clinical

utility of ctDNA in mRCC. ctDNA analysis revealed a high detection
rate of ctDNA in 84.5% of patients with “metastatic” RCC. Our
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findings partially aligned with those of Pal et al., who described
the presence of genomic alterations in 78.6% of patients with
mRCC using different cancer gene panels [18]. Several previous
studies reported ctDNA detection rates of 17–54% in all RCCs
[22–24], which may be due to differences in tumor stages
(including localized tumor or not), number of target genes, and
sequence depth [25]. There are different predominant

mechanisms of cell death in RCC metastases compared with
those in prostate or bladder metastases (i.e., ferroptosis, necrosis,
or autophagy vs. apoptosis), implying that less fragmented DNA
from tumor cells can leak into the blood [26]. Whole-genome
sequencing approach with tumor-specific variants (tumor-
informed ctDNA analysis) has increased the sensitivity of detection
limit of 0.007–0.034% VAF in patients with ICIs and may increase
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the chance to predict drug responsiveness or resistance in
patients with mRCC receiving systemic therapy [27–29]. These
methods may further enhance the ctDNA detection and identify
clinically relevant GAs. Notably, even with the high detection rate
of ctDNA in our cohort, the concordance between ctDNA and
tissue-based profiling was limited to 16.8% of all detected variants,
suggesting that many baseline ctDNA alterations were not
detected by tissue-based DNA sequencing and ctDNA may better
capture the heterogeneity of multiple metastases [7].
The high amount of TF at baseline led to poor prognosis in

patients with RCC in “metastatic” settings (Fig. 2a). Plasma ctDNA TF
is an independent prognostic biomarker in four major advanced
tumors [9]. Our results partially aligned with previous data showing
that ctDNA-positive patients with mRCC had worse PFS and OS
than those without ctDNA [30–32]. Even in the subgroup analysis of
patients who received first-line ICI combination therapy, PFS and OS
were shorter in patients with high TF levels (Fig. 2b). BAP1
mutational status of ctDNA at baseline led to poor prognosis
(Fig. 2c). These findings suggest that the evaluation of ctDNA before
treatment is emerging as a potential alternative to tissue DNA for
predicting disease progression with low ctDNA shedding.

Dynamic ctDNA analysis revealed the critical association of
emergent alterations with disease progression, affecting patient
prognoses. Emergent ctDNA alterations likely originate from
subclonal populations that survive treatment-mediated selection
and undergo sufficient expansion until ctDNA can be detected.
Some specific alterations in TP53, CCNE1, GNAS, and PIK3CA are
associated with chemotherapy resistance in hepatic cholangio-
carcinoma, pancreatic cancer, and esophageal cancer [33].
Another important finding is that a subset of patients with
emergent ctDNA alterations may show therapeutic relevance for
matched therapies. Hsiehchen et al. reported that 14–27% of
patients across histology are eligible for additional clinical trials in
the same state of residence [33]. Thus, serial liquid biopsies may
be clinically meaningful in a substantial subset of patients even
with mRCC, and their value could increase with the growth of
biomarker-directed therapies. These results indicate that the
abundance of pathogenic emergent ctDNA alterations deter-
mined using a validated liquid biopsy assay suggests that prior
genomic profiles derived from single time points are inadequate
portrayals of the molecular alterations and clonal structures
in mRCC.
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This study has some limitations. First, we employed clinically
available gene panel tests with selected cancer-associated genes;
concurrent tissue analyses frommultisite biopsies in our patients were
not possible, given the nature of our real-world dataset. Second, we
could not exclude the contribution of CHIP alterations in this cohort.
Indeed, we conducted MONSTAR-SCREEN-2 with ctDNA molecular
profiling by analyzing genomic DNA to exclude CHIP-related
mutations, thus reducing the false-positive rate in ctDNA analysis [34].
In summary, this was the largest study conducted showing that

ctDNA information reflects drug resistance and affects the clinical
prognosis of mRCC, heralding the possibility of non-invasive
detection of the mutational profile of mRCC during tumor
progression. Clinical incorporation of post-progression liquid biopsy
may be valuable in assessing and overcoming acquired resistance.
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