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Abstract
Stress softening, known as the Mullins effect, has a significant effect on the durability and performance of filler-reinforced
rubber, making it a critical issue in designing products for practical applications. While empirical equations are widely used,
they fail to capture the intricate and nonlinear behaviors that are characteristic of filler-reinforced rubber. To address this
limitation, this study developed a simplified equation to predict the Mullins effect. The model is based on the assumption
that the Mullins effect originates from the destruction of particle aggregation structures, and the relationship between the
degree of destruction and the stretch ratio is expressed using extreme value statistics. Validation against experimental data
revealed that the equation accurately predicts the behavior of rubber reinforced with carbon black (CB) or silica.
Additionally, in systems with CB-filled rubber, the equation demonstrated good agreement with the experimental results,
even when the CB content was varied. These findings suggest that the proposed model is versatile and effective for
predicting the Mullins effect under different conditions, providing a useful tool for understanding and optimizing the
performance of filler-reinforced rubber in practical applications.

Introduction

Over the past few decades, rubber has contributed sig-
nificantly to society as a foundational material. Specifically, it
has been widely utilized in various industrial sectors as
consumables and consumer goods, such as tires [1], gaskets
and sealing materials [2], antivibration rubber products [3],
medical rubber products [4], and soles of shoes and sports
equipment [5]. The type of rubber used in these products is
selected on the basis of their intended applications. For
example, natural rubber (NR) or styrene-butadiene rubber
(SBR) is employed when high durability and elongation are
needed, whereas nitrile-butadiene rubber (NBR) or ethylene
propylene diene monomer (EPDM) is used for applications
requiring flexibility and adhesion. Similarly, NR or butadiene
rubber (BR) is used for impact resistance, and silicone rubber
(VMQ) or fluorocarbon rubber (FKM) is chosen for chemical

resistance and biocompatibility [6]. Additionally, most rub-
ber products incorporate various fillers to improve their
functionality [7]. For example, carbon black (CB) is added to
increase strength and impart electrical conductivity [8, 9],
silica is used to increase weather resistance and reduce rolling
resistance [10, 11], nanoclays contribute to better gas barrier
properties [12], titanium dioxide is used to increase heat
resistance and provide antibacterial properties [13, 14], and
zinc oxide is utilized as a vulcanization accelerator [15].

In general, rubber materials are subjected to repeated
loading, necessitating a material design that accounts for
such conditions to maintain performance over extended
periods. In particular, stress softening in filled rubber
materials, known as the Mullins effect, directly impacts the
lifespan and performance of rubber, making it a critical
issue in product design that considers actual usage envir-
onments. The Mullins effect refers to a characteristic phe-
nomenon observed in filled rubber materials, where stress
decreases after the first deformation under repeated tension
or compression [16]. To elucidate this phenomenon, several
hypotheses have been proposed. These include the bond
rupture hypothesis [17], which suggests that molecular
chains bonded to fillers detach and no longer contribute to
elasticity; the molecule slipping hypothesis [18], where
molecular chains adhering to fillers slip and cease
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contributing to elasticity; the filler rupture hypothesis [19],
which attributes the phenomenon to changes in the aggre-
gate structure of fillers; and the disentanglement hypothesis
[20], which posits that the stretching process causes disen-
tanglement of molecular chains, leading to reduced elasti-
city. Despite extensive investigations aimed at
understanding the Mullins effect, its physical origins at the
molecular scale and the interfacial behavior between the
fillers and the matrix remain unclear.

In this context, the prediction of the elastic modulus of
filler-reinforced rubber materials often relies on empirical
models developed on the basis of experimental data. Models
commonly used to predict rubber elasticity include the neo-
Hookean model and the Mooney‒Rivlin model [21]. These
models are widely applied because of their simplicity, as they
require relatively few parameters, enabling straightforward
analysis of material properties [22]. To account for the
Mullins effect, predictive models such as the Ogden‒Rox-
burgh model have been developed [23]. This model is based
on the Ogden model but incorporates a damage function to
replicate the Mullins effect. However, these predictive
models are limited in their ability to address the complex
phenomena unique to filler-reinforced rubber materials. To
achieve more accurate predictions, models such as the
Bergström‒Boyce model, which can consider not only elastic
behavior but also nonlinear viscoelastic behaviors such as
molecular slipping, have been utilized [24]. Nevertheless, this
approach is limited by the need for numerous parameters and
the complexity of the fitting process, resulting in low versa-
tility and applicability as a general method.

In this study, we address this challenge by developing a
simplified predictive model that considers cyclic loading
processes. Furthermore, the applicability of the proposed
model was evaluated using commonly used materials,
specifically CB and silica-filled SBR.

Theory

Overview of reinforcement effects

Before discussing the theoretical aspects, an overview of the
experimental data is presented. Here, we focus on the case
of uniaxial extension, which is widely used as a method to
evaluate the large deformation behavior of rubber. Figure 1
shows the engineering stress‒strain curves of rubber with
added reinforcing fillers, while the literature was used as a
reference for creating Fig. 1 [25]. The nominal strain, ε, is
defined as the stretch ratio, λ, expressed by ε ¼ λ� 1. Here,
Type A represents unfilled rubber, whereas Type B corre-
sponds to rubber reinforced with CB, which exhibits strong
interparticle bonding. The addition of reinforcing fillers
results in an improved elastic modulus and increased tensile

strength. These reinforcement effects are significantly
influenced by the properties of CB. Type C represents the
case where large particles with weak cohesive forces, such
as calcium carbonate, are added. Compared with unfilled
rubber, the engineering stress increases by approximately
twofold. Type D represents the case where partially gra-
phitized, small CB with low interparticle cohesive forces is
added. This analysis highlights the influence of filler
properties on the mechanical behavior of rubber, providing
a basis for understanding reinforcement mechanisms.

Stretching properties of vulcanized systems

In unfilled rubber, the relationship between stress and strain is
described using the neo-Hookean model. Assuming incom-
pressible deformation, the relationship among the engineer-
ing stress, σe, and the stretch ratio, λ, is expressed by Eq. 1.

σMe λð Þ ¼ G λ� 1

λ2

� �
ð1Þ

Here, G is the shear modulus, and the superscript M
represents the matrix. Furthermore, the Mooney‒Rivlin
model, shown as Eq. 2, is widely recognized as a universal
formula for large deformations.

σMe λð Þ ¼ G α λ� 1

λ2

� �
þ 1� αð Þ 1� 1

λ3

� �� �
ð2Þ

Fig. 1 Stress‒strain curves of unfilled rubber (Type A), rubber rein-
forced with CB (Type B), rubber with large particles exhibiting weak
cohesive forces (Type C), and rubber containing partially graphitized
CB (Type D). The experimental data were reproduced from Ref. 25
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The value of α is considered to be approximately 0.8 to
0.9. However, in real systems, such as Type A systems, as
shown in Fig. 1, the value of α is approximately 0.2. The
Mooney‒Rivlin model represents the nonlinearity arising
from the three-dimensional nature of deformation but does
not account for the nonlinearity inherent to the material
properties. In such cases, one approach is to introduce the
stretch ratio dependency of G and α in Eq. 2. Such
approaches are called hyperelastic models, in which the
stress–strain relationship is derived from a strain energy
density function. In this study, a modified equation, as
shown in Eq. 3, was used instead of Eq. 2 to obtain better
agreement between the experimental data and equation.

σMe λð Þ ¼ G λ� 1

λ2

� �
þ G1εH exp � εH

E

� �
ð3Þ

Here, G1 and E are fitting parameters, and εH ¼ lnλ
represents the Hencky strain. Eq. 3 is empirical, and we
do not assume the concrete strain energy density function.
In this context, Eq. 3 is not a true hyperelastic model.

For reference, the stress‒strain curves obtained from each
equation are shown in Fig. 2. Here, Finger stands for λ� 1

λ2
,

and Cauchy stands for 1� 1
λ3
, which appears in Eq. 2. The

Mooney‒Rivlin model with α ¼ 0:2 closely matches the data
for the unfilled system (Type A) shown in Fig. 1. Addition-
ally, the second term of Eq. 3 is similar to the Cauchy term at
low stretch ratios, but at high stretch ratios, the second term of
Eq. 3 yields smaller values than the Cauchy term does. The
use of Eq. 3 can be interpreted as a correction to theMooney‒
Rivlin model, which tends to overestimate stress in the high
stretch ratio region, as shown in Fig. 2. By using Eq. 3, subtle
undulations can be reproduced.

Stretching properties of filler-reinforced systems

In filler-reinforced systems, the stretching behavior can be
expressed by Eq. 4 on the basis of micromechanics theory,
such as the Eshelby/Mori–Tanaka theory [26].

σe ¼ ð1� ϕþ aσϕÞσMe aλλð Þ ð4Þ

Here, aσ and aλ represent the stress amplification factor and
strain amplification factor, respectively, which are given by
Eqs. 5 and 6. The stress, σMe λð Þ, represents the stretching
characteristics of the matrix rubber and may be described by
Eq. 3.

aσ ¼ 2:5 ð5Þ

aλ ¼ 1
1� ϕ

ð6Þ

Thus, if the stretching characteristics of the matrix rubber
are given, they can be calculated. However, the

Mori–Tanaka theory does not account for interactions
between particles [27]. As a result, it tends to underestimate
values compared with commonly accepted viscosity equa-
tions for particle dispersion systems. To ensure consistency
with these viscosity equations for particle-dispersed sys-
tems, it is appropriate to consider Eq. 7.

aσ ¼ 2:5
1� ϕ

ð7Þ

The effectiveness could be easily checked by numeri-
cally comparing the resulting equation (comparing Eq. 4
with Eqs. 6 and 7: σe=σMe � η=η0 ¼ 1þ 2:5ϕ 1� ϕð Þ�2)
and the Brinkman or Krieger–Dougherty equation, which
are the most reliable viscosity equations for ideal hard-
sphere dispersions. However, for the volume fraction, ϕ, it
is preferable to use an effective volume fraction, ϕeff , which
accounts for the vitrified layer of rubber on the particle
surface. The value of ϕeff can be determined through DSC
measurements [28]. Eq. 3 closely represents the behavior of
the matrix rubber, σMe λð Þ.

Nonideal stretching properties of aggregating filler
systems

In the case of rubber containing cohesive reinforcing par-
ticles, the tensile stress may steeply increase in the high-
stretch region, leading to strain hardening, as observed in
Types B and D in Fig. 1. This strong λ dependence cannot
be described by the Finger term ðλ� 1

λ2
Þ in Eq. 1, nor can it

be represented by the Mooney‒Rivlin model. This con-
siderable hardening indicates that strain hardening origi-
nates from the nonlinearity of the material itself. The
cause of strain hardening is considered to be structural
formation due to the association of reinforcing particles. To
represent this behavior, it is phenomenologically expressed

Fig. 2 Stress‒strain curves for each equation
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by Eq. 8.

σe ¼ 1þ Bð ÞσMe aλλð Þ þ CεHð Þβ ð8Þ

Here, the first term simplifies the volumetric effect of filler
addition, as expressed in Eq. (4), where B is a constant
determined by the volume fraction. The second term
originates from the aggregated structure of reinforcing
particles and expresses the nonlinear increase in stress with
changes in strain. The characteristic behavior of the second
term is shown in Fig. 2. The stress σe from the second term
is approximately proportional to λ, but instead of it starting
to increase from λ ¼ 1, it begins to increase after a certain
amount of elongation, as shown in Fig. 2. C is a parameter
that determines the stretch ratio at which stress begins to
increase, whereas β represents the sharpness of the increase,
with β ¼ 3. This delay in stress onset suggests that it
originates from the stretching of chains bridging the
reinforcing particles. Considering a model in which
reinforcing particles are connected by bridging chains, as
shown in Fig. 3, the serial model implies the additivity of
strain. As a result, the stress does not increase until the
longest chain is fully stretched.

A comment may be needed regarding the functional form
of the second term in Eq. 8. This form was chosen purely on
the basis of a comparison with experimental results. Various
functional forms were tested to achieve the best fit with the
data. In this study, Eq. 8 accurately describes the experi-
mental results; however, we would not be surprised if dif-
ferent functional forms work well for other systems.

Mullins effect

In stress‒strain curves, when rapid strain hardening is
observed, the stress‒strain curve during unloading does not
coincide with that during loading, and hysteresis may be
observed (see Fig. 4). This nonlinear effect is known as the

Mullins effect. To describe this phenomenon, we assume
that the aggregated structure is disrupted during stretching,
leading to the loss of CεHð Þ3 in the second term of Eq. 8.
This can be expressed as shown in Eq. 9.

σ ¼ 1þ Bð ÞσMe aλλð Þ þ CεHð Þ3
h i

Θ λ; λMð Þ ð9Þ

Here, Θ λ; λMð Þ represents the fraction of aggregated
structures that are disrupted when they are stretched to
λM. A step function for Θ λ; λMaxð Þ can be expressed as
shown in Eq. 10.

Θ λ; λMð Þ ¼ 0; λ< λM

Θ λ; λMð Þ ¼ 1; λ> λM

�
ð10Þ

When the distribution of the fraction of destruction is
considered, Θ λ; λMð Þ can be expressed as shown in Eq. 11.

Θ λ; λMð Þ ¼ 1� exp �D
εH
εMax
H

� �F
" #( )

ð11Þ

Here, D and F are fitting parameters, and εMax
H ¼ lnλMax

represents the maximum strain in each cycle of the test. Eq.
10 represents the Weibull distribution, which is a type of
extreme value distribution [29, 30]. It describes the
cumulative destruction rate of aggregates under a strain of
λMax. The Weibull distribution is also known as the
distribution of the weakest-link model and is utilized to
describe the Mullins effect in multiple networks [31–33].

The above discussion is quite a phenomenological one.
For a molecular description of the Mullins effect, various
models have been proposed [34]. Most of these models
assume the elastic energy function W Jið Þ of the invariants
of strain tensors Ji and consider energy dissipation due to
large deformation with various mechanisms. However, the
Mullins effect is highly anisotropic, as shown by Urayama

Fig. 3 a Section of the network consisting of particles and bridging
chains. b Stretching of the bridging chains with finite extensibility and
their plastic response. The plastic response arises because the anchor
points are located in the vitrified (glassy) layer on the surface of the

reinforcing particles. c Stress‒strain curves for individual particles and
bridging chains, along with their sum (green line). The sum corre-
sponds to the second term in Eq. 8

H. Nobuoka et al.



et al. [35]. Therefore, W Jið Þ is not an adequate tool for
describing anisotropically damaged samples because it
should be used for isotropic materials. Thus, a molecular
description of the Mullins effect is still highly challenging.

To capture the molecular origin of the Weibull dis-
tribution, let us consider a double network of the rubber
network and the glassy network composed of fillers and
vitrified rubber. The stress is described as the sum of the
contributions of two networks via Eq. 9. A schematic
illustration of a strand of the glassy network consisting of
particles and bridging chains is shown in Fig. 3a. Upon
elongation, the anchor points of the weakest bridging chains
detach from the particles, leading to the destruction of the
network. The tensile properties of the weakest bridging
chain are depicted in Fig. 3b. The second term in Eq. 8
reflects the breaking of the bridging chains in this model.
The strong nonlinearity of the second term can be attributed
to the stretching of the bridging chains with finite extensi-
bility and the plastic behavior of the vitrified (glassy) layer
on the particle surfaces. During elongation, the weakest
bridge chains are broken one after another. The function
Θ λ; λMð Þ corresponds to the survival probability of the

bridging chains when they are stretched to λM, resulting in
the weakest-link model being applicable. We anticipate that
a more sophisticated modeling method considering chain
statistics would provide a quantitative description, but we
need a smart method to address anisotropic materials for
further progress.

Comparison with experiments

The applicability of Eq. 9 to different types of fillers was
evaluated, and the results are shown in Fig. 4. The experi-
mental data were obtained from the literature and used as a
reference to create Fig. 4 [35]. In this study, data were
utilized where the Mullins effect was observed in SBR with
the addition of 21 vol% CB or silica (equivalent to 50 phr
for 100 g of SBR). In this experiment, the samples were first
subjected to a predefined amount of uniaxial constrained
elongation. After unloading, strip-shaped samples were
subsequently cut from the samples parallel and perpendi-
cular to the elongation direction, and uniaxial tensile tests
were conducted for each sample. For samples parallel to the

Fig. 4 Comparison of experimental and theoretical values for SBR
composites. a SBR/CB and b SBR/silica: materials exhibiting the
Mullins effect (parallel stretching). c SBR/CB and d SBR/silica:

materials not exhibiting the Mullins effect (perpendicular stretching).
The experimental data were reproduced from Ref. 35
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elongation direction, the initial stress during elongation was
lower than that of samples without prior uniaxial con-
strained elongation, indicating the occurrence of the Mullins
effect. In contrast, the uniaxial constrained elongation had
minimal influence on the samples perpendicular to the
elongation direction. Notably, the uniaxial tensile data for
unpreloaded samples were consistent with those for Type B
samples in Fig. 1, indicating that these data are repre-
sentative data for the filled rubber samples.

The experimental values agreed well with the predictions
(Fig. 4a, b). The parameters used to construct the predictive
equations are listed in Table 1. On the other hand, in cases
where the Mullins effect does not occur, the behavior can
similarly be described using Eq. 9 with Θ λ; λMð Þ ¼ 1 by
setting λM ¼ 1, corresponding to an unpreloaded sample.
Here, the maximum strain of the vertical direction in the
strain history is λM ¼ 1 in the preloading state rather than
λ�1
M <1 in the loading state. The results are shown in
Fig. 4c, d. Eq. 9 with λM ¼ 1 agreed well with the experi-
mental data (Fig. 4c, d) in the perpendicular direction,
which correspond to undamaged samples. These findings
demonstrate that the developed predictive equations can
effectively estimate the reinforcing effects of CB and silica
on rubber, both in the presence and absence of the Mullins
effect. The parameter F, referred to as the shape factor in the
Weibull distribution, indicates that larger values of F result
in sharper distributions. Notably, the silica-based systems
presented smaller F values, suggesting a broader strength
distribution of the aggregates. The parameter D represents
the susceptibility to strain-induced destruction, with smaller
D values for silica-based systems implying greater

resistance to destruction. Establishing a correlation between
structural characteristics and these parameters remains a
challenge for future studies.

Furthermore, the applicability of Eq. 9 to cases with
different filler contents was evaluated. As in the previous
section, the verification was performed using CB-filled
SBR. However, due to differences in the amounts of vul-
canizing agent and other additives, direct comparison using
the fitting parameters from Fig. 4 is not feasible. The
experimental data shown in Fig. 5 were obtained from the
literature and used as a reference for creating the figure.
These include samples with 10 vol% CB added [36], as well
as samples with 40 phr ( ~ 16.8 vol%) CB added to 100 g of
SBR [34]. The parameters used to construct the predictive
equations are also listed in Table 2. The results confirm that
the predicted values agree well with the experimental data,
even when the CB content varies.

Our model may be simplified as a 3D jungle gym
structure on the basis of the weakest link model and con-
siders complete independence with respect to stress breaks
in the chains. In contrast, many existing models attempt to
describe the anisotropy of the Mullins effect using a single
set of model-specific parameters, although they often fail to
do so accurately. Therefore, using separate maximum
stretch ratios for each direction, rather than a unified for-
mulation, is crucial for accurately describing the Mullins
effect. The Mullins effect can potentially be formulated with
a very simple approach that requires fewer parameters. We
believe that the simplicity of our model is essential to the
effect and an advantage over existing models.

A further comment may be needed concerning the
breaking of networks in the previous approaches. A theo-
retical approach to the Mullins effect was proposed by
Ogouari et al. [37]. The key difference between our model
and theirs is the treatment of chain breaks. Their model
employs the average probability of breakage, whereas ours
incorporates extreme value statistics. The significance of

Table 1 Fitting parameters for Eq. 9 in Fig. 4

Filler Content G G1 E B C D F

CB 21 vol% 0.65 4 0.23 0.30 1.43 3.0 13

Silica 21 vol% 0.65 4 0.23 0.43 1.00 1.5 6

Fig. 5 Comparison of experimental and theoretical values for SBR composites. a SBR with 10 vol% CB and b SBR with 40 phr ( ~ 16.8 vol%) CB.
The experimental data were reproduced from Ref. 34 and Ref. 36
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extreme value statistics is that they are not governed by
values near the mean but by rare events, such as minimum
and maximum values. In polymer systems, chain behavior
around the mean can often be approximated by a Gaussian
distribution; however, under near-extended conditions,
deviations from Gaussian behavior become significant,
requiring alternative formulations such as the Langevin
function. Similarly, in fracture mechanics, the weakest link
model is not determined by “the average strength of the links”
but rather by the probability distribution of the weakest link
itself. The statistical properties of the weakest link differ from
those of the mean, making extreme value statistics a crucial
tool in modeling fracture behavior. Even in their model,
incorporating extreme value statistics for the fracture process
may lead to improved results. Additionally, their treatment of
reinforcement effects could be refined, as it currently relies on
an outdated strain concentration equation.

Finally, the anisotropy of the Mullins effect is discussed.
As observed, the destruction of bridging chains is expected
to occur under elongation but is less sensitive to compres-
sion. This characteristic is often observed in sintered
materials, such as ceramics. Under uniaxial constraint and
uniaxial elongation deformation, D is large in the elongation
direction, and D � 0 in the constraint direction, which
aligns well with the experimental results.

Conclusions

In this study, the Mullins effect was attributed to the
destruction of the aggregated structures of reinforcing par-
ticles, and the relationship between the degree of destruc-
tion and the stretch ratio was expressed via an extreme
value distribution. On the basis of this approach, a simpli-
fied equation for predicting the Mullins effect was devel-
oped. The utility of this equation was validated against
experimental data, confirming good agreement for SBR
filled with either CB or silica. Furthermore, for CB-filled
SBR, the equation was tested in systems with varying CB
contents, and similarly, good agreement with the experi-
mental data was observed. These findings verify the effec-
tiveness of the proposed simplified predictive equation for
describing the Mullins effect.

Extreme value statistics are commonly used for predicting
material failure, and the results of this study strongly suggest
that the origin of the Mullins effect lies in the destruction of

the aggregated structures of reinforcing particles. The data
used for validation were also used to examine the anisotropy
of stretching characteristics after uniaxial high elongation,
further indicating that the destruction of aggregated structures
progresses anisotropically.
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