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Abstract 
Context  Urban green spaces play a vital role in 
enhancing environmental quality and human well-
being. However, traditional assessment methods, such 
as the green view index, primarily quantify green 
coverage while neglecting vegetation diversity, color 
richness, and seasonal dynamics, which are critical 
for urban livability.
Objectives  This study develops a multi-temporal 
and multi-perspective analysis framework for urban 
green space visualization, introducing the Seasonal 
Species-Specific Plant View Index (S3PVI) to quan-
tify plant coverage at the species level, capturing sea-
sonal changes and visual diversity.
Methods  The framework integrates computer 
vision, deep learning, and 3D reconstruction tech-
nologies, including structure from motion and 3D 

Gaussian splatting. To validate the S3PVI, case stud-
ies were conducted in Suita City, Japan, analyzing 
real-world seasonal vegetation patterns and testing 
the framework in a virtual park environment to assess 
its applicability in urban design.
Results  The S3PVI effectively captured species-spe-
cific seasonal patterns, with cherry blossoms peaking 
at 45.61% visibility in spring and maples at 56.78% 
in autumn. Comparative analysis revealed distinctive 
vegetation strategies between streets, with Sanshiki-
saido showing higher seasonal amplitude but lower 
consistency than Nakayoshido. Virtual simulations 
confirmed that multi-species schemes optimally 
balanced seasonal impact with year-round visual 
stability.
Conclusions  The S3PVI framework advances urban 
vegetation assessment by providing species-specific 
and seasonally dynamic visual data, supporting evi-
dence-based urban planning for ecological sustain-
ability and livability. Potential applications include 
brownfield redevelopment, virtual park planning, and 
urban design simulations.

Keywords  Urban green space · Vegetation 
visualization · Street view imagery · Semantic 
segmentation · 3D reconstruction · Multi-temporal 
analysis
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Introduction

Urban green spaces are fundamental components of 
sustainable cities, providing essential ecosystem ser-
vices and enhancing urban environmental quality and 
human well-being (Pauleit et  al. 2011; Richards and 
Edwards 2017). The visual characteristics of vegeta-
tion in these spaces, particularly the seasonal changes 
of ornamental species such as cherry blossoms, 
maples, ginkgo, and magnolias, generate important 
economic benefits while positively impacting envi-
ronmental quality and human health (Asgarzadeh 
et  al. 2014; Guan et  al. 2017; Pratiwi et  al. 2019). 
Research has demonstrated that vegetation character-
istics, including color variation, species diversity, and 
seasonal dynamics, significantly enhance human psy-
chological and physiological responses through stress 
reduction, mood enhancement, and improved cogni-
tive function (Lindemann-Matthies and Brieger 2016; 
Hoyle et al. 2017). The aesthetic experience of urban 
vegetation is particularly influenced by visual diver-
sity, with studies showing that both species richness 
and flower color diversity are key determinants of 
public preferences in urban settings (Tomitaka et  al. 
2021).

Current assessment methods for urban green 
spaces face several key limitations. Conventional 
metrics like the green view index (GVI) primarily 
focus on quantifying overall green coverage (Aoki 
et  al. 1985), neglecting the nuanced visual charac-
teristics of different vegetation types and their sea-
sonal dynamics (Dutta et  al. 2022; Shiraishi and 
Terada 2024). This oversimplification fails to capture 
the diverse contributions of various plant species to 
the urban landscape and their distinct seasonal pat-
terns. Furthermore, traditional assessment meth-
ods often rely on single-perspective analyses, which 
may not adequately represent the comprehensive 
visual experience of urban green spaces (Zhou et al. 
2016). These methodological limitations significantly 
restrict the ability to understand and manage the com-
plex temporal and spatial dynamics of urban vegeta-
tion (Hoyle et al. 2017).

The growing complexity of urban environments 
and increasing demand for high-quality green spaces 
necessitate more sophisticated assessment tools 
(Wang et al. 2016; Xu et al. 2020). Studies highlight 
that visual diversity and seasonal variations signifi-
cantly shape human experiences of urban landscapes, 

with factors such as color contrast, species composi-
tion, and structural complexity influencing prefer-
ences and perceived restorative potential (Du et  al. 
2016). While traditional methods provide basic quan-
tification, urban designers need additional metrics to 
capture these nuanced aspects and temporal dynamics 
for better planning and management (Riechers et  al. 
2019).

To address these challenges, this study proposes 
a multi-temporal, multi-perspective framework 
for visualizing urban green space vegetation. The 
framework introduces a seasonal species-specific 
plant view index (S3PVI), which quantifies urban 
plant facade coverage while distinguishing species 
and seasonal variations. It integrates deep learning 
techniques, specifically DANet with an EfficientNet 
backbone (Fu et al. 2019; Tan and Le 2020), along-
side 3D Gaussian splatting and structure from motion 
(SfM) technology (Schonberger and Frahm 2016) to 
improve vegetation assessment and visualization.

A case study in Suita City, Osaka Prefecture, 
Japan, tested the framework, analyzing vegetation 
visual characteristics across street green spaces. The 
results revealed spatiotemporal variations in S3PVI 
values, highlighting seasonal changes in visual 
impact. The framework’s practical utility was demon-
strated through virtual park simulations, supporting 
vegetation configuration decisions.

The remainder of this paper is structured as fol-
lows: Sect.  “Literature review” reviews urban veg-
etation assessment and visualization techniques. 
Sect.  “Methodology” details the methodological 
framework and data processing. Sect.  “Experiments 
and results” presents empirical results. Sect. “Discus-
sion” discusses theoretical and practical implications. 
Sect.  “Conclusion” concludes with future research 
directions.

Literature review

Assessment methods of urban green spaces

Urban green spaces play a vital role in creating sus-
tainable cities, leading to specific targets and indica-
tors in master plans worldwide (Wolch et  al. 2014; 
Bellè and Deserti 2024). Assessment methods have 
evolved significantly to better understand greenery’s 
urban contributions. Traditional approaches ranged 
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from field-based inventories to normalized differ-
ence vegetation index (NDVI) remote sensing (Ma 
et  al. 2021; Aryal et  al. 2022), with a shift toward 
streetscape analysis for extracting GVI between 2010 
and 2022 (Lu et  al. 2023). Recent advances include 
panoramic view green view index and semantic 
segmentation techniques (Xia et  al. 2021; Hu et  al. 
2023).

However, these methods often treat urban veg-
etation as a homogeneous entity, overlooking crucial 
aspects of human perception and preference. Research 
has shown that visual diversity and specific character-
istics of vegetation significantly influence people’s 
experience of urban green spaces. For instance, Hoyle 
et  al. (2017) found that visual diversity and colorful 
vegetation positively affected people’s aesthetic pref-
erences and perceived restorative potential of urban 
planting. Such findings underscore the limitations of 
current assessment methodologies, which tend to fol-
low generalized frameworks that group multiple plant 
species into broad categories, overlooking their spe-
cific aesthetic and ecological contributions (Elsadek 
and Fujii 2014). Therefore, there is a pressing need 
to develop new assessment frameworks that can com-
prehensively evaluate both quantitative and qualita-
tive aspects of urban green spaces, including key 
vegetation characteristics such as color, texture, and 
seasonal variations (Ma et al. 2020).

Visual perception and aesthetic experience of urban 
vegetation

Recent research on urban planting has identified what 
Hoyle et al. (2017) termed the ‘wow factor’, revealing 
that while colorful flowering plants provided imme-
diate visual appeal, more subtle green planting con-
tributed significantly to restorative effects. This find-
ing suggests a complex relationship between aesthetic 
appreciation and ecological function, where different 
types of vegetation serve complementary roles in 
enhancing urban environments.

Studies have shown that aesthetic appreciation of 
urban vegetation is shaped by multiple visual charac-
teristics. Lindemann-Matthies et al. (2016) found that 
people’s perception and appreciation of species diver-
sity increased with true species richness, although 
this relationship was not linear. Similarly, Tomitaka 
et  al. (2021) revealed that both species richness and 

flower color diversity are key determinants of aes-
thetic preferences in urban park settings.

Through quantitative surveys and statistical analy-
sis, Du et  al. (2016) identified several key attributes 
affecting landscape visual aesthetic quality, including 
vegetation structure, plant density, height ratio, and 
color contrast. Their research demonstrated that both 
strong color contrast and the mixed use of evergreen 
and deciduous plants significantly enhanced visi-
tor preference. Moreover, visitor characteristics such 
as education level, place of residence, and profes-
sional background significantly influenced landscape 
preferences.

Recent studies have also emphasized the role of 
temporal dynamics in shaping aesthetic experiences. 
Seasonal changes not only affect the physical appear-
ance of green spaces but also influence people’s per-
ceptions and preferences (Półrolniczak et  al. 2019). 
This temporal dimension adds another layer of com-
plexity to vegetation assessment, suggesting the need 
for methods that can capture these seasonal variations 
effectively.

Seasonal dynamics in urban vegetation perception

The temporal dimension of urban vegetation, particu-
larly seasonal changes, significantly influences how 
people perceive and experience urban green spaces. 
Recent research has emphasized that successful urban 
vegetation assessment must consider these seasonal 
variations, as they affect both the physical appearance 
of vegetation and people’s psychological responses to 
urban environments (Palang et al. 2007; Junge et al. 
2015).

Studies have demonstrated that seasonal changes in 
vegetation structure have distinct impacts on human 
well-being. For example, research on college stu-
dents’ responses to different vegetation types revealed 
that seasonal variations significantly influenced envi-
ronmental perception scores, though physiological 
responses remained stable across seasons (Duan et al. 
2024). Their findings showed that while canopy-only 
woodlands and tree-shrub-grass composite structures 
enhanced environmental perception in summer, can-
opy-only woodlands maintained their positive effect 
in winter. These results highlight the importance of 
selecting appropriate vegetation structures for year-
round benefits in urban landscapes.



	 Landsc Ecol          (2025) 40:125   125   Page 4 of 25

Vol:. (1234567890)

Eroğlu et  al. (2012) investigated how seasonal 
changes in plant compositions affect visual percep-
tion and preferences in urban open-green areas. Their 
research employed the Delphi Method on photo-
graphs to identify visual effects of plant compositions 
across seasons. Their findings revealed that summer 
was the most influential season regarding design 
value and visual quality, while evergreen plants had 
a consistently positive effect on the design power and 
visual quality of compositions throughout the year. 
Importantly, they also found that perceptional differ-
ences toward seasonal plant changes were influenced 
by socio-economic factors, with form and texture 
playing significant roles in the overall perceptional 
effects. This research confirms that plant color varia-
tions can be recognized from considerable distances, 
providing different functional and aesthetic values 
in both short and long-term perspectives (Acar et al. 
2007).

Weather conditions within the same season can 
also affect people’s preferences for urban vegetation 
(Półrolniczak et al. 2019). A series of studies by Song 
et  al. (2013, 2014, 2015) demonstrated consistent 
positive physical and psychological restorative effects 
of urban parks across different seasons, including 
spring, autumn, and winter. Notably, even brief expo-
sure to natural environments during winter months 
enhanced positive emotions among participants (Biel-
inis et al. 2018).

The integration of seasonal considerations into 
vegetation assessment has practical implications 
for urban green space management. Stobbelaar and 
Hendriks (2007) argued that understanding seasonal 
variations in landscape appearance is essential for 
creating resilient urban green spaces. This tempo-
ral dimension suggests the need for more dynamic 
evaluation frameworks that can effectively capture 
seasonal nuances in vegetation characteristics. Such 
frameworks would be particularly valuable in regions 
with distinct seasonal changes, where urban vegeta-
tion undergoes significant visual and functional trans-
formations throughout the year.

Spatiotemporal analysis using street view images

Street view imagery analysis has emerged as a 
promising tool for capturing the spatiotemporal 
dynamics of urban vegetation. Han et  al. (2023) 
demonstrated that multi-temporal street view 

images can effectively track seasonal changes in 
urban greenery, providing insights from a pedes-
trian perspective that overcomes limitations of tra-
ditional remote sensing methods.

However, current applications face several criti-
cal challenges, including inconsistent perspec-
tives from vehicle-mounted equipment and poten-
tial biases in street view coverage (Biljecki and 
Ito 2021; Fan et  al. 2025). Recent technological 
developments have addressed some of these limita-
tions through perspective correction methods and 
advanced 3D reconstruction techniques (Liu et  al. 
2024; Xie et al. 2024), enabling more detailed and 
consistent visual assessments of urban vegetation.

The integration of these advanced technologies 
with traditional assessment methods presents an 
opportunity to develop more comprehensive frame-
works for evaluating urban vegetation. Such frame-
works can capture both the spatial and temporal 
dynamics of urban green spaces while maintaining 
sufficient refinement in vegetation type characteri-
zation, bridging the gap between current practices 
and modern urban environmental requirements.

Methodology

This section introduces the methodology for multi-
temporal urban green space vegetation visualiza-
tion analysis, including key steps such as data col-
lection, preprocessing, semantic segmentation, 
S3PVI calculation, and seasonal change analysis. 
Figure 1 shows the overall workflow of the method. 
The framework begins with high-resolution street 
view image collection, followed by SfM algorithm 
extraction of camera positions and 3D Gaussian 
splatting to create realistic scene reconstructions. 
Standardized views are then generated at fixed 
heights (1.6 m) and distances. These views are pro-
cessed through EfficientNet-based classification to 
identify tree species and DANet semantic segmen-
tation to determine plant locations. From segmen-
tation results, the S3PVI index is calculated as the 
ratio of visible vegetation area (Area_vi) to total 
image area (Area_ti), enabling statistical analy-
sis of seasonal vegetation changes. This approach 
integrates advanced image processing with 3D 
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reconstruction to achieve detailed multi-temporal 
analysis of urban vegetation.

Data collection and scene reconstruction

Street view image acquisition and processing

The temporal analysis utilizes street view imagery 
with historical coverage spanning multiple years. 
Since commercial street view platforms typically 
update imagery at irregular intervals (ranging from 
1-3 years depending on the urban area’s significance), 
the methodology accommodates this non-systematic 
temporal distribution. The framework is designed 
to integrate all available temporal data points within 
the study period, prioritizing imagery that captures 
key phenological events such as spring flowering 
and autumn coloration. This approach maximizes the 
capture of seasonal vegetation changes while work-
ing within the constraints of publicly available street 
view data resources. The multi-temporal urban green 
space vegetation visualization framework begins with 
spatial data integration and image acquisition. The 
process consists of three main stages: base map anal-
ysis, street view data evaluation, and view position 
optimization.

The first stage involves analyzing municipal base 
maps, which provide fundamental spatial informa-
tion about urban vegetation distribution. These maps, 

maintained by local government agencies, document 
the general location and distribution patterns of street 
trees and other vegetation elements within the urban 
environment. While these maps may not provide 
precise coordinates for individual plants, they offer 
essential reference data for identifying target areas 
and understanding overall vegetation layouts.

The second stage focuses on street view image 
evaluation. For areas identified in the base maps, 
available street view data is systematically assessed 
based on three key aspects: temporal coverage (avail-
ability of historical imagery), spatial continuity (con-
sistency of view positions), and image quality (reso-
lution and clarity). This evaluation process identifies 
areas where sufficient temporal data exists to support 
meaningful analysis of seasonal vegetation changes.

The third stage involves optimizing view posi-
tions through detailed spatial analysis. Using the base 
map as a reference, each vegetation cluster identi-
fied is matched with available street view positions. 
The process considers both the physical constraints 
of street view capture points (typically available at 
5–15 m intervals) and the optimal viewing conditions 
for vegetation documentation. Potential viewing posi-
tions are evaluated based on multiple factors includ-
ing clear sight lines to target vegetation, appropriate 
viewing distances for capturing full plant forms, and 
minimal interference from urban infrastructure or 
other obstacles.

Fig. 1   Workflow diagram of the multi-temporal urban green space vegetation visualization analysis framework
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3D scene reconstruction for complex environments

When direct street view imagery proves inadequate 
due to positioning limitations, incomplete cover-
age, or occlusion issues, the methodology employs 
3D Gaussian splatting technology to reconstruct the 
scene (Kerbl et al. 2023). This reconstruction process 
enables the generation of new standardized views 
that overcome the limitations of raw street view data, 
particularly in cases where optimal viewing positions 
are not available from existing panorama points. This 
process includes the following steps shown in Fig. 2:

The reconstruction begins with SfM algorithm 
generating a 3D point cloud by matching features 
across images to estimate camera positions. To 
address gaps in this point cloud, 3D Gaussian splat-
ting transforms discrete points into a continuous rep-
resentation using Gaussian kernels Eq. (1):

where G(p|pi,σ) represents the Gaussian kernel value 
with center at pi and standard deviation σ. This 
approach generates a (1) smoother, more realistic 3D 
scene from which new views can be generated, par-
ticularly valuable for areas where direct street view 
imagery is suboptimal.

(1)G
�
p��pi, �

�
= exp

�
−

‖p−pi‖2

2�2

�

Standardized view generation and quality assurance

The standardization of view generation implements 
a geometry-based optimization approach to ensure 
consistent and reproducible image capture across dif-
ferent urban environments. This method focuses on 
fundamental spatial relationships between camera, 
target plant, and surrounding environment to deter-
mine optimal viewing parameters. The parameters in 
Table 1 are used to generate standardized views.

The base viewing setup maintains established 
standards with the camera height at 1.6  m, repre-
senting average pedestrian eye level as illustrated 
in Fig.  3. The viewing distance calculation (D) is 
enhanced through a systematic positional optimiza-
tion process, which varies according to plant height, 
is defined by Eq. (2).

where D is the optimal shooting distance from cam-
era to plant base, H is plant height, and θ represents 
the elevation angle from camera to plant top. The 
optimal viewing zone is defined by the intersection 
of two geometric constraints: vertical viewing angle 
(θ) ranging from 20° to 40°, and horizontal angular 
span of the plant’s crown width. Within this viewing 

(2)D =
H

2 tan (�)

Fig. 2   Process of 3D scene reconstruction

Table 1   Virtual camera parameter settings for standardized view generation

Parameter Description

Camera height The virtual camera is located at a height of 1.6 m (Osaka Prefectural Government 2020), representing the aver-
age eye level of pedestrians

Camera distance The distance between the virtual camera and the target plant is calculated using Eq. (2) based on the plant height, 
ensuring full visibility of the plant

Image aspect ratio The aspect ratio of the generated views is 2:1, simulating the human field of view
Plant positioning The bottom edge of the plant trunk is aligned with the bottom of the image frame, and the top edge of the plant 

canopy touches the top of the image frame
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arc, positions are evaluated based on the ratios of 
plant height to frame height (Ph/Fh) and plant width 
to frame width (Pw/Fw). The ideal position maintains 
these ratios within predetermined ranges (typically 
0.8–0.9 for height ratio and 0.6–0.7 for width ratio) to 
ensure consistent framing while preserving surround-
ing context.

The standardization process includes an occlu-
sion check comparing visible plant outline against 
expected geometric profiles. All generated views 
maintain a 2:1 aspect ratio simulating human field of 
view, with the plant’s trunk base aligned to the bot-
tom of the image frame and canopy top approach-
ing the upper boundary. Quality assurance employs 
quantitative metrics including peak signal-to-noise 
ratio (PSNR) and structural similarity index (SSIM), 
with processed images showing average improve-
ments of 5.2 dB and 0.14 respectively (Hore and Ziou 
2010). Figure 4 demonstrates how processed images 
align more closely with pedestrian perspective, with 

significantly reduced distortion. This standardization 
approach ensures consistent, high-quality visual data 
suitable for urban vegetation analysis while remain-
ing practically implementable across different loca-
tions and time periods.

Virtual simulation environment for methodology 
validation

To validate the multi-temporal urban green space veg-
etation visualization framework in a controlled set-
ting, a virtual simulation approach was developed as a 
complementary methodology. This approach applies 
the same principles outlined in Sects.  “Street view 
image acquisition and processing”–“Standardized 
view generation and quality assurance” to a digitally 
constructed environment, maintaining methodologi-
cal consistency while enabling greater experimental 
control.

Fig. 3   Standardized imaging method for plant analysis

Fig. 4   Comparison of street view images before and after preprocessing
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The simulation environment employs identical 
standardized view generation parameters with camera 
heights fixed at 1.6 m and viewing distances calcu-
lated using Eq.  (2). Multiple strategic camera posi-
tions are established following the same geometric 
principles as real-world applications, defined by the 
intersection of vertical viewing angles (20–40°) and 
the horizontal angular span of plant crowns.

This virtual approach facilitates the systematic 
evaluation of multiple planting design schemes with 
different vegetation combinations. By implementing 
identical measurement protocols across all schemes, 
the simulation enables direct comparative analysis 
of different vegetation strategies’ effects on seasonal 
visual characteristics of urban green spaces.

Plant visual feature evaluation based on S3PVI

In the multi-temporal urban green space vegetation 
visualization framework, the combination of image 
classification and semantic segmentation is a key step 
to accurately identify and separate the pixels of each 
plant species in standardized views. A deep learning-
based image classification and semantic segmenta-
tion model is adopted, which is trained on a dataset 
containing 2,000 annotated images, covering 51 com-
mon plant species in urban environments, as shown 
in Table  2.  The training dataset of 2,000 annotated 
images was specifically curated to emphasize plants 
during their peak ornamental display periods. For 
deciduous flowering species like cherry blossoms, 
images primarily captured spring blooming phases, 
while for species valued for autumn coloration such 
as maples, fall color peak periods were prioritized. 
Images were collected under consistent lighting con-
ditions—clear, non-overcast days without direct back-
lighting—to minimize illumination variables while 
maintaining natural appearance. This intentional 
emphasis on optimal display conditions enhances 
the model’s ability to recognize species during their 
most visually distinctive and ecologically significant 
phases.

Dataset development and characteristics

The dataset was curated following the Cityscapes 
dataset approach (Cordts et  al. 2016), ensuring 
diverse representation of plant types and environmen-
tal conditions with emphasis on ornamental status. 

Each image underwent rigorous annotation by at least 
two individuals providing pixel-level labels, with the 
dataset divided into training, validation, and test sub-
sets at a 70:15:15 ratio (Gomes and Zheng 2020).

Model architecture and selection

For plant species classification, the EfficientNet 
architecture was employed, with the EfficientNet-
b4 variant achieving 97.9% accuracy on the dataset. 
For semantic segmentation, several models were 
evaluated using mean square error (MSE) as the cri-
terion. DANet outperformed alternatives with the 
lowest MSE of 148.74, compared to ISANet (235.66) 
(Huang et al. 2019) and PSPNet (337.09) (Zhao et al. 
2017), leading to the selection of EfficientNet-b4 for 
classification and DANet for segmentation tasks.

Training process and data augmentation

The model was trained using the Adam optimizer 
with an initial learning rate of 0.0001, a batch size of 
8, and a total of 100 epochs (Kingma and Ba 2017). 
Various data augmentation techniques, including 
random flipping, scaling, and cropping, were imple-
mented to enhance the model’s robustness and gen-
eralization ability (Shorten and Khoshgoftaar 2019).

Model performance and analysis

The final model achieved a mean Intersection over 
Union (mIoU) of 82.17% on the test set, demonstrat-
ing effective distinction between plant species. IoU 
scores for the 51 plant species ranged from 69.10% 
to 92.50% as shown in Table  2. Highest accuracy 
was observed for lemon geranium (92.50%), cancer 
tree (91.70%), and acephala group (91.82%). Notable 
lower accuracy was found in Japanese cheese wood 
(69.10%), cherry blossoms (69.61%), and Sawara 
cypress (69.48%). Figure  5 illustrates the segmen-
tation effectiveness, showing original photographs 
alongside corresponding segmented images where 
distinct colors represent different plant species. 
The relatively lower accuracy for cherry blossoms 
(69.61%) presents a limitation that must be consid-
ered when interpreting spring season analyses when 
these trees are visually dominant. Despite this limita-
tion, the segmentation successfully identifies and sep-
arates plant species from backgrounds across diverse 
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Table 2   Intersection 
over Union (IoU) scores 
for common urban plant 
species in semantic 
segmentation

NUM Botanical name Common name IOU (%)

1 Ternstroemia gymnanthera Japanese Ternstroemia 90.74
2 Camptotheca acuminata Cancer tree 91.70
3 Cupressus macrocarpa Monterey cypress 89.04
4 Cinnamomum camphora Camphor 81.38
5 Quercus acutissima Quercus acutissima 70.97
6 Ligustrum lucidum Glossy privet 78.38
7 Acer Maple 81.63
8 Gardenia jasminoides Cape jasmine 89.85
9 Hibiscus makinoi Makino’s mallow 88.29
10 Pinus thunbergii Japanese black pine 79.51
11 Cortaderia selloana Pampas grass 86.74
12 Paliurus ramosissimus Thorny wingnic 79.07
13 Camellia japonica Japanese camellia 77.34
14 Acacia baileyana Cootamundra wattle 88.23
15 Lithocarpus edulis Japanese stone oak 80.93
16 Castanopsis sieboldii Itajii 73.29
17 Torreya nucifera Japanese torreya 77.38
18 Quercus myrsinifolia Japanese white oak 87.37
19 Ginkgo biloba Ginkgo 74.79
20 Bassia scoparia Kochia 81.71
21 Rhaphiolepis indica var. umbellata Rhaphiolepis umbellata 81.64
22 Rosa spp. Rosa 86.41
23 Cordyline spp. Cordyline 79.72
24 Quercus glauca Ring-cupped oak 87.55
25 Ceratonia siliqua Arakashi 73.81
26 Jacaranda mimosifolia Blue Jacaranda 83.17
27 Washingtonia filifera California palm 80.21
28 Erythrina bidwillii Coral tree 86.92
29 Paeonia lactiflora Chinese peony 89.65
30 Styphnolobium japonicum var. pendulum Japanese pagoda 84.75
31 Lavandula angustifolia English lavender 73.21
32 Pelargonium crispum lemon geranium 92.50
33 Salvia rosmarinus Rosemary 90.48
34 Litsea japonica Hamabiwa 82.25
35 Chamaecyparis pisifera ‘Filifera’ Sawara cypress 69.48
36 Rhododendron spp. Azalea 79.39
37 Eurya emarginata Eurya emarginata 87.23
38 Juniperus rigida Temple juniper 75.00
39 Cycas revoluta Sago palm 83.68
40 Photinia fraseri Christmas berry 85.22
41 Muhlenbergia capillaris Muhly grass 90.78
42 Magnolia denudata Lily tree 76.77
43 Prunus serrulata Cherry blossoms 69.61
44 Picea abies Norway spruce 81.13
45 Helianthus annuus Common sunflower 75.49
46 Hedera canariensis Canary ivy 87.57
47 Brassica oleracea var. acephala Acephala group 91.82
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settings, enabling subsequent S3PVI calculation and 
temporal analysis of vegetation visual features.

S3PVI calculation for plant visual feature 
quantification

To ensure consistent and reliable data collection for 
S3PVI evaluation, standardized field photography 
procedures have been developed, drawing from best 
practices in urban vegetation assessment and visual 
quality analysis (Osaka Prefectural Government 
2020). After semantic segmentation, the S3PVI of 
each plant species in the segmented image is calcu-
lated using Eq. (3):

where n is the total number of photos taken in the 
test area, Areavi is the total number of pixels of the 

(3)S3PVI =

∑n

i=1
Areavi∑n

i=1
Areati

× 100(%)

target plant in the image i took along the horizontal 
direction, and Areati is the total number of pixels in 
the image i . This ratio reflects the percentage of pix-
els attributed to the plant relative to the entire image, 
providing a VIPI value from 0 to 100%. The average 
of these values for all images quantifies the plant’s 
visibility in the area.

The S3PVI is inspired by the GVI, which quantifies 
vegetation visibility in street-level images. While the 
GVI focuses on overall greenery visibility, the S3PVI 
extends this concept by quantifying the visibility of 
individual plant species across multiple seasons. This 
species-level, multi-temporal analysis provides a more 
detailed understanding of the visual characteristics and 
dynamics of urban green spaces. The average S3PVI 
values across all images quantify the visibility of each 
plant species in the study area. By evaluating multiple 
species in each image, the S3PVI enables a detailed 
assessment of their respective contributions to the aes-
thetics of urban green spaces.

Table 2   (continued) NUM Botanical name Common name IOU (%)

48 Forsythia suspensa Weeping forsythia 74.69
49 Osmanthus fragrans Sweet osmanthus 87.02
50 Pinus pinea Stone pine 86.05
51 Pittosporum tobira Japanese cheese wood 69.10

Fig. 5   Examples of original and segmented images
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To further quantify the differences in visual charac-
teristics of vegetation across different areas and their 
temporal dynamics, this study introduces three quanti-
tative indices based on the fundamental S3PVI metric: 
S3PVI seasonal amplitude (SA), S3PVI species diver-
sity index (SDI), and year-round consistency (YRC).

The S3PVI SA is defined as the difference between 
the highest and lowest S3PVI values within a specific 
area over a year, calculated using the following Eq. (4):

where S3PVIt represents the S3PVI value at a spe-
cific time point t. This index reflects the intensity of 
seasonal changes in vegetation visual characteristics 
within an area. Higher values indicate more signifi-
cant seasonal visual changes in vegetation.

The S3PVI species diversity index (SDI) employs 
Simpson’s diversity index to quantify the diversity 
level of vegetation visual contributions within an 
area, calculated as follows Eq. (5):

where pi represents the proportion of species i’s 
S3PVI value relative to the total S3PVI value in the 
area. This index ranges from 0 to 1, with values closer 
to 1 indicating more balanced and diverse visual con-
tributions from various species, while values closer to 
0 suggest visual effects dominated by a few species.

The year-round consistency (YRC) index measures 
the stability of visual character throughout the year, 
calculated as the ratio between the minimum and 
maximum total S3PVI values across all time periods, 
as given by Eq. (6):

where Total S3PVIt is the sum of all species’ S3PVI 
values at time point t. This index ranges from 0 to 1, 
with values closer to 1 indicating more consistent vis-
ual character throughout the year, while values closer 
to 0 suggest more dramatic fluctuations between peak 
and off-peak seasons. The YRC provides a comple-
mentary perspective to the seasonal amplitude, focus-
ing on the overall stability of visual greenery rather 
than its maximum variation.

(4)SA = max
(
S3PVIt

)
− min

(
S3PVIt

)

(5)SDI = 1 −
∑�

pi
2
�

(6)YCR =
min(Total S3PVIt)
max(Total S3PVIt)

Experiments and results

Visual feature analysis of real street vegetation

The implementation of the multi-temporal urban 
green space vegetation visualization framework 
began with analyzing Suita City’s municipal base 
maps, updated in 2020 (Suita City Official Website, 
n.d.). These maps provided comprehensive docu-
mentation of street tree distribution patterns through-
out the study area. Based on this initial spatial data, 
the street network was systematically evaluated for 
available street view imagery. The intersection of 
Sanshikisaido and Nakayoshido in the Kita-senri 
residential area emerged as an ideal study location 
due to its well-documented vegetation patterns and 
comprehensive street view coverage. As illustrated in 
Fig. 6, this area covers approximately 700 m of urban 
streetscape. It is particularly notable for its carefully 
planned landscape design, featuring strategic combi-
nations of deciduous and evergreen species that cre-
ate dynamic visual transitions throughout the year.

The study area was systematically divided into five 
distinct zones, as illustrated in Fig.  6, which details 
the spatial relationship between street vegetation and 
urban infrastructure. Camera positions were estab-
lished by carefully analyzing the base map vegetation 
patterns and available street view capture points. The 
selection process considered the spatial distribution 
of vegetation, viewing geometry constraints, and the 
need for comprehensive coverage of all documented 
plant specimens.

A total of 115 observation points were established 
across the five zones. Figure  7 demonstrates the 
application of 3D scene reconstruction techniques at 
position 1, where the reconstructed perspective pro-
vides enhanced visualization of otherwise difficult-
to-document vegetation characteristics. The figure 
presents two comparative viewpoints: Fig.  7a shows 
the standard street-level perspective from position 1 
captured in August 2022 via Street View mapping, 
where roadside vegetation is partially obscured by 
vehicles on the road. Due to the image being taken 
from the pedestrian walkway, the viewing distance is 
increased, making vegetation assessment challenging 
with frequent obstructions from passing vehicles. In 
response to these limitations, 3D Gaussian splatting 
technology was utilized to generate a reconstructed 
scene using 15 photographs from various angles. This 
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process resulted in Fig.  7b, which provides an opti-
mized viewing perspective that effectively reveals 
the spatial distribution and vertical stratification of 
tree canopies while minimizing obstructions. The 

enhanced perspective particularly highlights trees, 
allowing for a more accurate assessment of canopy 
dimensions, density, and species composition.

Fig. 6   Vegetation distribution along Sanshikisaido and Nakayoshido, Suita City

Fig. 7   Comparison between original Street View imagery and enhanced visualization at position 1 (August 2022)
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Zone 1, detailed in Fig.  8a, features seventeen 
viewing positions capturing the characteristic mix 
of maple trees, azaleas, and false cypress trees, with 

cherry blossoms at both ends. Zone 2 (Fig. 8b) con-
tinues with positions 17 through 42, while Zone 3 
(Fig. 8c) documents a curved section with positions 

Fig. 8   Detailed vegetation 
map and camera placement 
of Sanshikisaido
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40 to 58, 81 to 90. Zone 4 (Fig.  8d) encompasses 
positions 58 through 80 along a maple-lined curve, 
and Zone 5 (Fig.  8e) extends along Nakayoshido 
with positions 88 through 115.

Each observation point maintained standard-
ized documentation parameters, with camera height 
fixed at 1.6  m and viewing distances optimized 
according to vegetation height as specified in Fig. 3. 
In cases where physical constraints limited direct 
observation, 3D scene reconstruction techniques 
were employed to generate supplementary viewing 
angles, ensuring comprehensive documentation of 
all vegetation features.

The temporal analysis is extensively documented 
through a series of figures. This dataset represents 
all available Street View data for the region, ensur-
ing thorough temporal coverage. Each image strictly 
follows the standardized view generation protocol 
outlined in Sect.  “Standardized view generation and 
quality assurance”, maintaining consistent camera 
parameters across all temporal instances. The result-
ant data was systematically processed through a 
multi-temporal evaluation framework to derive cor-
responding S3PVI values. Figure  9 ‘s lower section 

displays both the original imagery and corresponding 
segmented visualizations, where cherry blossoms are 
distinctively highlighted in pink against a black back-
ground, facilitating clear temporal tracking of vegeta-
tion coverage patterns.

Similar detailed temporal analyses are pre-
sented for the remaining representative locations 
in Figs. 10, 11, and 12. Location 25 (Fig. 10) pro-
vides insights into azalea development patterns, 
with light blue segmentation highlighting tempo-
ral variations in presence and spatial distribution. 
Location 45 (Fig. 11) showcases maple tree evolu-
tion, with reddish-brown segmentation particularly 
emphasizing autumn foliage characteristics in the 
2018.11 imagery. Location 113 (Fig. 12) focuses on 
the temporal dynamics of false cypress trees, rep-
resented in yellow in the segmented images, with 
a notable maple presence detected in the 2018.11 
documentation.

The temporal analysis reveals distinct vegeta-
tion patterns across Sanshikisaido and Nakayoshido 
from 2010 to 2022 (Fig.  13). At Sanshikisaido, 
cherry blossoms peaked at 45.61% (April 2010) 
and 42.78% (April 2014) before disappearing until 

Fig. 9   Temporal analysis of vegetation presence at location 1 (2010–2022)
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Fig. 10   Temporal analysis of vegetation presence at location 25 (2010–2022)

Fig. 11   Temporal analysis of vegetation presence at location 45 (2010–2022)
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March 2022 (17.32%). Maple showed extreme sea-
sonality with a major spike of 56.78% in November 
2018, while false cypress maintained consistent pres-
ence (8.77–15.54%) throughout. Azalea gradually 
increased from 5.34% to 11.44%.

At Nakayoshido, cherry blossoms appeared only 
once (38.68%, April 2010), maple peaked at 23.57% 
in November 2018, and false cypress remained sta-
ble (10.38–16.54%). Japanese black pine showed 
an increasing trend from 12.16% to 21.74%. These 
measurements illustrate the contrast between ephem-
eral deciduous species and consistent evergreen spe-
cies throughout seasonal cycles.

To enhance the quantitative comparison of veg-
etation visual characteristics between different street 
environments, the S3PVI SA, SDI, and YRC were 
calculated for Sanshikisaido and Nakayoshido based 
on the temporal data collected from 2010 to 2022 
(Table 3).

The analysis revealed distinctive differences in 
vegetation visual characteristics between the two 
streets. Sanshikisaido exhibited a significantly higher 
seasonal amplitude (SA = 56.78) compared to Nakay-
oshido (SA = 38.68), indicating more pronounced 

seasonal variation in visual vegetation characteris-
tics. This higher amplitude primarily resulted from 
the dramatic peaks of maple trees in autumn (56.78% 
in November 2018) and cherry blossoms in spring 
(45.61% in April 2010), creating more dynamic sea-
sonal transformations in the visual landscape.

The S3PVI Species Diversity Index showed 
slightly higher diversity in Sanshikisaido 
(SDI = 0.530) than Nakayoshido (SDI = 0.514). This 
marginal difference suggests that both streets main-
tain relatively similar levels of diversity in species’ 
visual contributions, with multiple plant species 
playing significant roles in shaping the streetscape 
appearance.

However, the year-round consistency index 
revealed more substantial differences in temporal 
stability, with Nakayoshido demonstrating higher 
consistency (YRC = 0.29) than Sanshikisaido 
(YRC = 0.19). This indicates that while Sanshi-
kisaido offers more dramatic seasonal highlights, 
Nakayoshido maintains a more stable visual charac-
ter throughout the year. The higher YRC value for 
Nakayoshido can be attributed to the consistent pres-
ence of evergreen species, particularly Japanese black 

Fig. 12   Temporal analysis of vegetation presence at location 113 (2010–2022)
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pine and false cypress, which provide visual continu-
ity even during non-peak seasons.

Multi‑temporal visualization evaluation of virtual 
park vegetation design schemes

A 7,000 square meter virtual park was designed as a 
testbed for evaluating the multi-temporal vegetation 
visualization framework (Fig.  14), featuring water 

Fig. 13   Seasonal change curves of S3PVI values for major plant species

Table 3   S3PVI quantitative indices for Sanshikisaido and 
Nakayoshido (2010–2022)

Street SA SDI YRC​

Sanshikisaido 56.78 0.53 0.19
Nakayoshido 38.68 0.51 0.29
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features, structures, pathways, and strategic veg-
etation placement. The implementation included 14 
camera locations positioned to capture diverse visual 
perspectives while maintaining consistent measure-
ment conditions. Each location included directional 
indicators and precise vegetation viewing distances 
calculated according to Sect.  “Standardized view 
generation and quality assurance” methodology. The 
right side of Fig. 14 displays the corresponding veg-
etation views, demonstrating the range of plant per-
spectives analyzed.

Seven distinct planting design schemes with dif-
ferent combinations of cherry blossoms, maples, 
and Japanese pines were evaluated (Fig.  15). 
Schemes 1–3 tested single-species approaches, 
Schemes 4–6 explored dual-species combinations, 
and Scheme 7 incorporated all three species.

The S3PVI analysis (Fig. 16) showed that single-
species schemes delivered seasonal peaks but tem-
poral inconsistency: Scheme  1 (cherry blossoms) 
excelled in spring but declined elsewhere, Scheme 2 
(maple) peaked in autumn, while Scheme  3 (Japa-
nese pine) maintained the most consistent values 
(40–50%) year-round. Dual-species combinations 
achieved better seasonal balance, with Scheme  5 
(cherry blossoms and Japanese pine) providing both 
spring impact and year-round interest. Scheme  7, 

with all three species, delivered the most compre-
hensive visual appeal with both seasonal peaks and 
sustained interest throughout the year.

The three S3PVI-based indices were applied to 
evaluate the seven planting design schemes for the 
virtual park (Table 4).

Single-species deciduous approaches (Schemes 
1–2) showed high seasonal amplitude but minimum 
diversity and year-round consistency, indicating dra-
matic but ephemeral visual impact. The evergreen 
approach (Scheme 3) demonstrated high consistency 
but limited seasonal variation.

Multi-species approaches (Schemes 4–7) pro-
vided more balanced performance. Notably, 
Scheme 7 achieved the highest diversity (SDI = 0.67) 
while maintaining good year-round consistency 
(YRC = 0.74). Scheme  6 balanced high consist-
ency (YRC = 0.77) with good diversity (SDI = 0.51), 
while Scheme 5 offered moderate seasonal amplitude 
(SA = 35.12) with some diversity.

Discussion

The multi-temporal urban green space vegetation 
visualization analysis framework constructed in this 
study demonstrates its capability to assess current 

Fig. 14   Virtual park design layout with camera positions and corresponding vegetation views
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conditions through the analysis of the Sanshikisaido 
case study, particularly suitable for initial assessments 
of brownfield projects. Quantitative indicators such as 
the S3PVI index and visual contribution rate reveal 
the differential roles of various plant types in shap-
ing the visual effect of street landscapes. Based on 
the street view photo data of Sanshikisaido, this study 
analyzed the temporal changes of vegetation visual 
features with monthly precision. The virtual park 
project further validates the framework’s potential 

in planning and designing vegetation layouts on 3D 
ground surfaces, offering a new perspective for urban 
green space planning and design decision-making.

Advantages and limitations of the multi‑temporal 
urban green space vegetation visualization analysis 
framework

This research framework provides insights into the 
changes of urban vegetation visual characteristics 

Fig. 15   Seven planting design schemes for the virtual park
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by introducing a temporal dimension. Compared to 
traditional assessment methods such as GCR and 
GVI, S3PVI focuses on the plant type scale and 
can distinguish the visual contributions of differ-
ent plant species. This feature gives S3PVI a unique 
advantage in assessing the diversity and seasonal 
changes of plant landscapes, directly addressing 
the research gap identified by previous studies that 
suggest visual diversity and colorful vegetation 
substantially affect aesthetic preferences (Du et  al. 
2016; Wang et al. 2016).

The application of 3D Gaussian splatting for 
data processing and optimization in this framework 
addresses a critical issue in urban vegetation analysis: 
the inconsistency of street view images. Traditional 
methods often rely directly on street view images for 
calculations like GVI, which can lead to significant 
errors due to variations in camera angles, distances, 
and distortions. This framework’s approach of using 
3D Gaussian splatting to reconstruct 3D scenes from 
street view images, followed by the generation of 
standardized views, represents an advancement in 
data preprocessing for urban green space analysis.

The research framework also has some limitations. 
The current plant dataset is limited in scale, which 
may affect the accuracy of the model in identifying 
diverse vegetation types. Moreover, existing technol-
ogy still faces challenges in capturing plant features 
during periods of non-significant visual characteris-
tics, which may lead to biases in identifying certain 
plant species in some seasons.

The relatively low IoU score for cherry blossoms 
(69.61%) significantly impacts spring season analyses 
when these trees are visually dominant. This iden-
tification challenge stems from high variability in 
blooming density, diverse viewing angles, and sub-
tle differences among cultivars. The spring S3PVI 
measurements, particularly the peak values in Sanshi-
kisaido (45.61% in April 2010 and 42.78% in April 
2014), likely underestimate the actual visual con-
tribution of cherry blossoms due to their distinctive 
coloration and high visual contrast. Consequently, 
the calculated seasonal amplitude (SA) of 56.78 for 
Sanshikisaido may underrepresent the true magnitude 
of seasonal visual change, potentially understating 
the comparative difference with Nakayoshido. The 

temporal inconsistency in cherry blossom detection—
absent between 2014 and 2022, then reappearing 
(17.32%) in March 2022—combines actual pheno-
logical variations with detection limitations, requiring 
cautious interpretation of temporal trends for this spe-
cies. Similarly, in virtual simulations, Scheme 1‘s vis-
ual impact may be underestimated relative to schemes 
dominated by more accurately identified species. 
Future improvements should include season-specific 
models for flowering species, integration of pheno-
logical data, and expanded training datasets repre-
senting diverse blooming stages to enhance identifi-
cation accuracy for visually distinctive yet variable 
species like cherry blossoms.

The significance of the S3PVI for quantitative 
evaluation

In constructing the multi-temporal visualization anal-
ysis framework, this research created a dataset con-
taining 51 common urban environmental plants, pro-
viding a crucial data foundation for the development 
and validation of the S3PVI index. The construction 
of this dataset involved street view image collection, 
expert labeling, and multiple rounds of validation, 
ensuring the quality and representativeness of the 
data. These 51 plants cover common street trees, park 
plants, and seasonal ornamental plants, providing rich 
training and testing samples for the S3PVI index.

The introduction of complementary indices—SA, 
SDI, and YRC—enhances the analytical capabilities 
of the S3PVI framework, addressing previous limita-
tions in quantitative comparison. These metrics ena-
ble objective evaluation of key landscape characteris-
tics: seasonal variation intensity, species contribution 
diversity, and visual stability throughout the year. 
The application to both real-world streets and virtual 
design schemes demonstrates how these indices effec-
tively quantify the different strategies in urban veg-
etation planning. Sanshikisaido’s higher SA but lower 
YRC compared to Nakayoshido reveals its emphasis 
on seasonal highlights rather than year-round con-
sistency, while the comparative analysis of virtual 
schemes clearly identifies the trade-offs between sea-
sonal impact and continuous visual presence.

It should be noted that the S3PVI framework pro-
vides quantitative outcomes beyond the visual repre-
sentations. The SA, SDI, and YRC indices offer spe-
cific numerical values that enable direct comparison 

Fig. 16   Seasonal S3PVI values for seven planting design 
schemes in the virtual park

◂
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between different streets and vegetation configura-
tions. These quantitative measures allow for system-
atic evaluation of plant color diversity and seasonal 
changes across urban landscapes. Future research 
could further develop standardized scales for these 
indices to facilitate more intuitive interpretation and 
comparison.

Application of the multi‑temporal analysis framework 
in empirical case studies

The current focus of the multi-temporal visualization 
analysis framework is primarily on the visual aes-
thetic features of vegetation, with insufficient atten-
tion to other green space functions such as ecological 
functions and recreational activities. Future studies 
should aim to integrate the S3PVI index with other 
ecological and recreational assessment indicators to 
achieve a comprehensive assessment of the multi-
functional attributes of urban green spaces.

While this study focused on two streets as detailed 
case studies to demonstrate the methodology’s capa-
bilities, the framework is designed to be scalable and 
applicable to larger urban areas. Future studies will 
extend the application to multiple streets and entire 
built-up areas to validate the framework’s effective-
ness at different spatial scales. Additionally, while 
the dataset contains 51 plant species, the presentation 
focused on five representative types to clearly illus-
trate the methodology’s key capabilities. Comprehen-
sive analysis of all species would strengthen future 
research applications.

The camera locations used in this study were based 
on systematic criteria including uniform spatial dis-
tribution along the street, consistent distance from 
vegetation features, standard height (1.6 m) to simu-
late pedestrian perspective, and orientation toward 
key vegetation features. This approach aims to bal-
ance objective representation with relevant pedes-
trian viewpoints. Future studies could incorporate 
more sophisticated methods for determining optimal 
camera positions, including eye-tracking studies or 

pedestrian flow analysis to better reflect actual human 
visual experience.

Variations in topography, climate, and culture 
across different regions may influence people’s pref-
erences for plant landscapes (Hoyle et  al. 2017). As 
the samples in this study are mainly from Japanese 
cities, the generalizability of the assessment results 
needs to be validated across a broader range. Future 
research should enhance the diversity of vegetation 
types and urban environments considered and incor-
porate influences from more diverse cultural back-
grounds to improve the robustness and applicability 
of the assessment framework.

Multi‑temporal vegetation visualization analysis 
supporting 4D vegetation landscape modeling

Compared to traditional field surveys and manual 
interpretation methods, multi-temporal visualization 
analysis offers significant advantages in efficiency 
and cost-effectiveness for data acquisition and auto-
mated processing. However, the accuracy of image 
processing and semantic segmentation still needs fur-
ther improvement. Future research can explore inte-
grating street view images with other data sources, 
such as high-resolution satellite images and LiDAR 
point cloud data, to provide more comprehensive 
and multi-scale information on urban green space 
vegetation.

Future research could explore integrating genera-
tive technology systems to achieve more complex 4D 
seasonal change simulations, further enhancing deci-
sion support capabilities in planning and design pro-
cesses. This integration could allow for more accurate 
predictions of how vegetation will change over time, 
taking into account factors such as growth rates, sea-
sonal variations, and environmental influences. Such 
advancements would provide planners and designers 
with a more dynamic and realistic view of their pro-
posed green spaces over extended periods.

The accessibility of analytical tools significantly 
impacts their adoption rate in professional practice, 

Table 4   S3PVI quantitative 
indices for virtual park 
planting schemes

Planting scheme Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7

S3PVI SA 37.86 61.77 8.34 38.56 35.12 8.58 9.93
S3PVI SDI 0.00 0.00 0.00 0.44 0.49 0.51 0.67
YRC​ 0.00 0.00 0.83 0.00 0.19 0.77 0.74
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making this an important consideration for the future 
evolution of the S3PVI framework. While the S3PVI 
method offers valuable analytical capabilities, its cur-
rent implementation requires considerable computa-
tional expertise in deep learning, image processing, 
and 3D scene reconstruction. Future developments 
could focus on creating simplified interfaces, pre-
trained models for common urban vegetation, and 
automated processing pipelines that practitioners can 
deploy with minimal technical expertise. The devel-
opment of web-based applications and simplified 
mobile tools could allow on-site assessments, similar 
to existing GVI calculators. Reducing these techni-
cal barriers would transform S3PVI into a practi-
cal decision-support tool that complements existing 
vegetation indices in everyday planning and design 
practices.

Conclusion

This study proposes a multi-temporal urban green 
space vegetation visualization framework based on 
street view images, introducing the S3PVI to quantify 
visual characteristics of different plant species across 
seasons. The framework advances beyond green-
ness-focused assessment to characterize vegetation 
types, spatial distributions, and temporal dynamics. 
Through deep learning and 3D reconstruction inte-
gration, it enables automated analysis from multiple 
perspectives and temporal phases, enhancing urban 
green space assessment efficiency.

Empirical analysis of Sanshikisaido revealed sig-
nificant differences in vegetation visualization fea-
tures across time and space, accurately character-
izing the dynamics of cherry blossoms and maple 
trees through different phenological periods. Virtual 
scenario simulations verified the framework’s poten-
tial for evaluating different vegetation configuration 
schemes.

This research contributes to landscape ecology 
and urban management by expanding assessment 
dimensions to include species-specific and seasonal 
considerations while establishing methodological 
foundations for studying vegetation-human interac-
tions. Practically, it provides quantitative guidance 
for planning, species selection, and maintenance 
strategy development, while enhancing stakeholder 

communication through visualization of design 
outcomes.

The S3PVI index offers valuable planning refer-
ences by quantifying different species’ visual con-
tributions during seasonal periods, enabling design-
ers to optimize plant selection and spatial layouts 
for year-round visual richness. Despite challenges 
in sample diversity, species identification accuracy, 
and temporal resolution, integration with emerg-
ing technologies like digital twins and virtual real-
ity presents opportunities for immersive, interactive 
platforms supporting urban green space planning 
and management.
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