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 A B S T R A C T

Using low-temperature growth techniques and an intermediate Ge layer with Sn doping, we experimentally 
demonstrate an epitaxial Co2Fe(Al,Si)/Ge/Co2FeSi heterostructure on a Si platform, where Co2Fe(Al,Si) and 
Co2FeSi are Heusler compounds that exhibit half-metallic properties. The Sn doping only at the initial growth 
stage of Ge effectively affects the suppression of surface segregation of Sn and the atomic interdiffusion at the 
Ge/Co2FeSi heterointerface. By fabricating current-perpendicular-to-the-plane spin-valve devices, we observe 
a magnetoresistance (MR) effect with an MR ratio of ∼0.11 % at room temperature, showing evidence of a 
nonvolatile memory effect at room temperature, even in a vertical semiconductor spintronic device structure 
with Co-based Heusler compounds. This study presents crucial findings for high-performance Ge-based vertical 
spin-valve devices on a Si platform.
. Introduction

As emerging technologies for low-power semiconductor devices, 
pin-based transistors [1–15] and spin-based light-emitting diodes (spin 
EDs) [16–20] have been extensively explored. Thus far, channel ma-
erials, such as GaAs [7,9,10], Si [8,12], Ge [11,13,15], and GaN [14] 
or the semiconductor spin devices have been considered, but group-IV 
emiconductors such as Si and Ge are promising for clear spin transport 
roperties above room temperature because of the small spin–orbit 
nteraction derived from the space inversion symmetry in the crystal 
tructure [21,22]. We also demonstrated highly efficient spin injection, 
ransport, and detection in the group-IV semiconductor Ge using lateral 
nd vertically stacked spin-valve device structures [23–27]. Ge not only 
as higher electron and hole mobilities than Si, but Ge-based tech-
ologies are also more promising than Si [28] for future applications 
uch as CMOS [29] and photonic devices [30,31]. In addition, the 
se of Ge(111) has enabled to grow high-performance ferromagnetic 
aterials, leading to the integration of Ge-based spin devices on a Si 
latform [11,32].
In general, demonstrating electrical spin injection from ferromag-

etic metals (FM) into semiconductors (SC) is difficult because of the 
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large differences in spin resistance [2,33,34]. One solution for over-
coming the spin-resistance mismatch is to use half-metallic materials 
as spin injectors [34]. In particular, Co-based Heusler compounds have 
been experimentally shown to enable highly efficient spin injection/de-
tection at room temperature [13,25], facilitating the observation of the 
two-terminal magnetoresistance (MR) effect at room temperature [26]. 
Additionally, vertically stacked FM/SC/FM structures are advantageous 
from the perspective of short-channel implementation and high inte-
gration [11,24,35,36]. To date, growth methods for vertically stacked 
spin-valve (VSV) devices with Ge and the optimization of FM electrodes 
have been explored [24,27,37–48].

In an early experiment, Fe3Si with a spin polarization of 0.2 [49] 
was used as the FM layer, and a high-quality intermediate Ge layer 
was fabricated using only the temperature gradient molecular beam 
epitaxy (MBE) method [37]. Subsequently, by combining the SPE and 
MBE methods, it was possible to obtain sufficient surface flatness with a 
root-mean-square roughness (𝑅rms) of less than 1 nm [38]. If one of the 
Co-based Heusler compounds, Co2FeSi (CFS), with a spin polarization 
of 0.8 [49] was utilized as the bottom FM layer in the VSV de-
vice structure, we experimentally obtained the magnetoresistance (MR) 
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Fig. 1. Schematic of an actual Co2FeSi (CFS)/Ge/CFS on Ge in Ref. [40] [(a)] and an 
ideal structure of Co2Fe(Al,Si) (CFAS)/Ge/CFS on Si in this study [(b)].

effect at room temperature [27]. In the field of spintronics, current-
perpendicular-to-the-plane giant magnetoresistive [50–52] and tunnel 
magnetoresistive devices [53,54] with both top- and bottom Co-based 
Heusler compound electrodes have been already studied. However, it 
is difficult to simultaneously demonstrate the top Co-based Heusler 
compound layer on the intermediate Ge in a VSV device structure [Fig. 
1(a)] and observe the MR effect at room temperature [40,48].

In this study, we examine a low-temperature-grown Co-based
Heusler compound layer, Co2Fe(Al,Si) (CFAS) [23,50,55], as a top FM 
layer on the intermediate Ge layer. Prior to the CFAS growth, because 
the intermediate Ge layer obtained by Sn addition was utilized [46,47], 
the growth conditions of the Sn-doped Ge layer were carefully explored. 
Consequently, we experimentally demonstrate an ideal structure: an 
epitaxial CFAS/Ge/CFS heterostructure on Si [Fig.  1(b)]. We also ob-
serve the magnetoresistance effect at room temperature by fabricating 
current-perpendicular-to-the-plane spin-valve devices. This indicates 
the simultaneous demonstration of epitaxial CFAS/Ge/CFS VSV device 
structures and the room-temperature MR effect. This study presents 
important findings for high-performance Ge-based vertical spin-valve 
devices on a Si platform.

2. Growth of a vertically stacked Co2Fe(Al,Si)/Sn-doped Ge/
Co2FeSi on Si

In our previous study [40], the growth temperature of the interme-
diate Ge layer was determined to be 250 ◦C by utilizing the surfactant 
effect of Sn, and the only growth method was MBE. As a result, some 
issues were encountered, including the interfacial reaction between the 
Co-based Heusler compound and Ge layers, as shown in Fig.  1(a). To 
improve these features, the growth temperature was further reduced 
to 110–180 ◦C by adding 5% Sn during the Ge growth [47]. In this 
study, we explore a method for Sn doping only at the initial stage of 
Ge growth and use CFAS as the top FM layer on intermediate Ge, where 
the lattice mismatch between Ge (∼0.564 nm) and CFAS (∼0.568 nm) 
is very small. In the following section, we explain the detailed methods 
for obtaining the vertically stacked structure shown in Fig.  2(a).

First, as a substrate for the Heusler compounds, a Ge buffer layer 
was grown in two steps on a Si(111) substrate [32]. Using this substrate 
for the bottom CFS layer, a 40 nm-thick Fe3Si layer was grown as 
a buffer layer on Ge/Si(111) at below 80 ◦C by low-temperature 
MBE [27]. The bottom CFS layer was then grown to ∼10 nm below 
80 ◦C with low-temperature MBE. The disordered CFS(111) surface was 
terminated with two atomic layers of Si to form the atomic arrangement 
of the CFS(111) surface [37]. After confirming the two-dimensional 
epitaxial surface of the CFS, 5% Sn-doped Ge was deposited using 
the SPE method (1 nm) to ensure surface flatness [38], followed by 
2 
Fig. 2. (a) Schematic of the grown CoFe/CFAS/Sn-doped Ge/CFS/Fe3Si/Ge on Si(111). 
[(b)–(g)] RHEED images of the surface for CFS, Sn doped Ge, MBE-Ge, Fe-terminated 
Ge, CFAS, and CoFe, corresponding to the arrows in Fig.  2(a). (h) AFM image of the 
surface of the top CoFe layer in the heterostructure.

annealing at 180 ◦C for approximately 10 min until the amorphous 
phase disappeared. Subsequently, 5% Sn-doped Ge with a thickness 
2 nm was grown at ∼180 ◦C using the MBE method to promote the 
diffusion of Sn into Ge. Only Ge (without Sn) with a thickness of 17 nm 
was grown at ∼180 ◦C using the MBE method, and attempts were made 
to prevent the segregation of Sn. After improving the surface flatness 
with Fe termination below ∼80 ◦C, the top CFAS layer was grown on 
top of the Fe-terminated Ge layer below ∼80 ◦C. Finally, we used a 
CoFe layer as the cap layer to control the coercivity between the top 
and bottom Co-based Heusler compounds [56].

The crystallinity during growth was examined by observing 𝑖𝑛-𝑠𝑖𝑡𝑢
reflection high-energy electron diffraction (RHEED) images.
Fig.  2(b)–2(g) show the RHEED patterns corresponding to the growth 
steps indicated by the arrows in Fig.  2(a). Fig.  2(b) shows that the 
surface of the bottom CFS layer was smooth, even after Si termination. 
In addition, two-dimensional epitaxial growth of a 3-nm-thick Sn-doped 
Ge layer with 5% Sn doping was achieved [Fig.  2(c)]. After the growth 
of a 17-nm-thick Ge layer with MBE, the surface maintained a smooth 
Ge(111) pattern, similar to two-dimensional epitaxial growth [Fig. 
2(d)]. The 𝑅rms value of the surface of the Ge layer was estimated to 
be ∼1.6 nm from an atomic force microscopy (AFM) image in 1 μm
×1 μm (not shown here). Because of the sufficiently smooth surface, 
four atomic layers of Fe are epitaxially deposited on top of Ge(111), 
as shown in Fig.  2(e). The epitaxial growth of the top CFAS layer is 
shown in Fig.  2(f), followed by the epitaxial CoFe layer with partial 
spottiness in the RHEED image in Fig.  2(g). Fig.  2(h) shows an AFM 
image in 1 μm ×1 μm for the surface of the top CoFe layer. The 𝑅rms
value is estimated to be ∼1.7 nm. These results indicate that even with 
Sn doping, the intermediate Ge layer grown on CFS is of higher quality 
than that in previous reports [40,47].

3. Structural and magnetic characterizations

High-angle annular dark field (HAADF) scanning transmission elec-
tron microscopy (STEM) and energy-dispersive X-ray spectroscopy 
(EDX) were performed to investigate the structural properties of Sn 
segregation and interdiffusion at the heterointerface. Fig.  3(a) and (b) 
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Fig. 3. (a) Cross-sectional high-magnification HAADF-STEM images near the CFAS/Ge and Ge/CFS hererointerfaces. (b) Cross-sectional HAADF-STEM image and EDX elemental 
maps (Ge, Co, Fe, Si, and Sn) in the same area for a CoFe/CFAS/Sn-doped Ge/CFS/Fe3Si/Ge on Si(111).
show cross-sectional high-resolution HAADF-STEM images and EDX 
elemental maps of the vertically stacked CoFe/CFAS/Ge/CFS/Fe3Si 
structure on Ge/Si(111), respectively. The left HAADF-STEM image 
in Fig.  3(b) is the measured area of the EDX elemental maps. From 
the HAADF-STEM images in Fig.  3(a), we can see that the Ge layer 
is epitaxially grown on CFS, and the top CoFe/CFAS layer is also 
epitaxially grown on Ge. These are consistent with the RHEED images 
shown in Fig.  2. The EDX elemental maps show that CoFe, CFAS, Ge, 
CFS, and Fe3Si layers are separately grown. Notably, the doped Sn was 
observed majorly in the intermediate Ge layer. This indicates that the 
method of Sn doping only at the initial stage of Ge growth is effective. 
At the bottom interface between CFS and Ge, atomic interdiffusion 
between Co and Ge with a several nanometer region is observed. 
However, at the top interface between CFAS and Ge, the presence of 
the Fe termination layer at the CFAS/Ge interface can suppress the 
diffusion of Co into the Ge layer, and the diffusion of Ge into the 
CFAS layer cannot be fully suppressed at present. Although we need 
to improve the bottom interface between CFS and Ge and suppress the 
diffusion of Ge into the CFAS layer, a vertically stacked CFAS/Sn-doped 
Ge/CFS pseudo-spin-valve structure is experimentally obtained even on 
Ge/Si(111).

Fig.  4 shows a field-dependent magnetization curve (𝑀–𝐻 curve) 
for an all-epitaxial CoFe/CFAS/Ge/CFS/Fe3Si structure on Ge/Si(111) 
measured at room temperature. Clear staircase-like (spin-valve-like) 
magnetization processes are observed, indicating that the top
CoFe/CFAS and bottom CFS/Fe3Si layers are magnetically decoupled 
through the intermediate Ge layer. The value of the saturation mag-
netization is estimated to be ∼905 emu/cm3, which is slightly smaller 
than an ideal value (∼985 emu/cm3) obtained from the estimation of 
the sum of the values from each FM layer [23,56–58]. This is attributed 
to the formation of nonmagnetic compounds at the bottom interface of 
Ge and CFS, in addition to the formation of disordered CFAS(Ge) at 
the top FM layer. The low-temperature growth in this study enables 
us to obtain spin-valve-like magnetization reversal processes for an 
all-epitaxial CoFe/CFAS/Ge/CFS/Fe3Si structure.

4. MR effect in spin-valve devices

CPP-type spin-valve devices were fabricated to observe spin-depe-
ndent transport properties in the all-epitaxial CoFe/CFAS/Ge/CFS/
Fe3Si structure. Fig.  5(a) shows a schematic of the fabricated CPP de-
vice and the measurement setup. To fabricate the device, an Au(10 nm)/
Ti(3 nm) protective layer was deposited on the top CoFe layer. The 
bottom FM electrode was patterned using an electron beam lithography 
system, followed by Ar ion milling to etch the Ge layer on the Si(111) 
substrate. Next, SiO  was deposited via 𝑟𝑓 sputtering to cover the Ge 
2

3 
Fig. 4. 𝑀–𝐻 curve measured at 300 K for a CoFe/CFAS/Sn-doped 
Ge/CFS/Fe3Si/Ge/Si(111).

layer. After lift-off, the top FM electrode was patterned using electron-
beam lithography and Ar ion milling, where etching was performed 
down to the Fe3Si intermediate layer, as shown in Fig.  5(a). To electri-
cally isolate the top and bottom FM electrodes, the entire structure was 
covered with SiO2. To electrically connect the top FM layer with the 
bottom Fe3Si electrode, we fabricated contact-hole patterns, followed 
by Ar ion milling to etch the bottom Fe3Si layer. Finally, the wire-
bonded electrode pads were patterned, and ∼100 nm of Au/Ti was 
deposited. As shown in Fig.  5(a), the top FM electrode has a hexagonal 
elongated shape, which introduces shape-induced magnetic anisotropy. 
The junction size (𝑆) of CoFe/CFAS/Ge/CFS/Fe3Si in this device is 
∼ 5.3 μm2.

After connecting the terminals as shown in Fig.  5(a), we mea-
sured the two-terminal resistance changes as a function of the external 
magnetic field (𝐻). Fig.  5(b) and (c) show the representative mag-
netoresistance as a function of 𝐻 at 10 and 300 K, respectively. In 
this study, the two-terminal MR ratio is defined as (𝛥𝑅S/𝑅p) × 100, 
where 𝛥𝑅S and 𝑅p are the spin accumulation signal (𝛥𝑉S/𝐼) and the 
resistance between the FM electrodes through the Ge layer in the 
parallel magnetization state, respectively. In our devices, 𝑅p ∼ 6.02 Ω
at 10 K and ∼ 6.29 Ω at 300 K are close to the values obtained in our 
previous study [27]. Consequently, at both 10 and 300 K, we clearly 
observed hysteretic spin signals depending on the parallel and an-
tiparallel magnetization states between the top CoFe/CFAS and bottom 
CFS/Fe Si electrodes, as illustrated in the insets. These features provide 
3
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Fig. 5. (a) Schematic of a fabricated VSV device and a measurement terminal 
configuration. [(b), (c)] Magnetoresistance major hysteresis (gray) and minor (red and 
blue) loops at 10 and 300 K for a representative VSV device.

evidence of the successful integration of the nonvolatile memory effect 
into the semiconductor device structures. The values of the spin signal 
are ∼18 mΩ at 10 K and ∼6.0 mΩ at 300 K, corresponding to the MR 
values of ∼0.30 % at 10 K and ∼0.11 % at 300 K, respectively. The 
room-temperature MR curves were well reproduced in some devices 
(not shown here). Therefore, we demonstrated epitaxial CFAS/Ge/CFS 
VSV device structures and observed the room-temperature MR effects.

Finally, we discuss the MR value of ∼0.11 % at room temperature. 
Although we utilized Co-based Heusler compound electrodes in the VSV 
devices, the value was relatively small compared to that in our previous 
work (∼1.4 % [27]). One possible cause is the atomic interdiffusion 
between Co and Ge in the bottom electrode, as discussed in Section 3. 
The spin polarization of the interface region at the bottom interface 
was probably lowered, as expected. In addition, we consider that the 
formation of the disordered CFAS(Ge) affects the degradation of the 
spin polarization of the top FM layer. To enhance the MR ratio at 
room temperature, we should further explore methods for suppress-
ing atomic interdiffusion at the top and bottom Co-based Heusler 
compound electrodes.
4 
5. Conclusion

Using low-temperature growth techniques and an intermediate Ge 
layer doped with Sn, we experimentally demonstrated an epitaxial 
Co2Fe(Al,Si)/Ge/Co2FeSi heterostructure on a Si platform. By fabri-
cating CPP spin-valve devices, we observed the MR effect with an 
MR ratio of ∼0.11 % at room temperature, providing evidence of the 
nonvolatile memory effect at room temperature, even in a vertical 
semiconductor spintronic device structure with Co-based Heusler com-
pounds. This study presents important findings for high-performance 
Ge-based vertical spin-valve devices on a Si platform.
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