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ON NILPOTENT-FREE MULTIPLICATIVE SYSTEMS
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BY

KENTARO MURATA

In his study of multiplicative systems, the author [8], [9] has defined
the accessible join-generator system, and utilized it for decompositions
of elements of multiplicative lattices (w-lattices) and of ideals of mul-
tiplicative systems. The concept05 of accessible join-generator systems
seems to be important to develop the algebraic theory of many sorts of
lattices, ideal lattices and other multiplicative systems having no usual
finite conditions.

The purpose of the present paper is to study the nilpotent-free
multiplicative systems. The fundamental concept in our investigation is
some restricted accessible join-generator systems of multiplicative systems.

In §1, we shall consider a complete m-lattice (not necessarily com-
mutative nor associative), and obtain a condition to be nilpotent-free.
The subject is largely based on the results of the rings having no
nilpotent ideals, which are studied by McCoy [6], Levitzki [5] and
Nagata [11]. §2 is concerned with some annihilators of elements in a
commutative but not necessarily associative nilpotent-free m-lattice. The
results of this section are useful in the next one. § 3 treats a group
having no solvable normal subgroup. Some properties of such a group
which have already studied by the author [10] will be used under a
suitable restriction. In §§4 and 5, we shall show the analogous results
of §§ 1 and 2 in the case of an associative but not necessarily commutative
multiplicative system. The results in these two sections are applicable
to the family of ideals of general ring-systems, and which will be shown
in the last section.

Throughout this paper, the symbols v and Λ will denote respec-
tively the set-theoretic union and the intersection. By [a a has property
P} we mean the set of all elements a having property P.

0) From purely lattice-theoretical stand point of view, R. P. Dilworth and Peter Crawley
have recently emphasized the importance of such concept. Cf. [3] and [4].



54 K. MURATA

§ 1. Nilpotent-free m-Lattices

Let K be a complete (upper and lower) m-latticeυ with the greatest
element e and the least element 0, and suppose that ab<ia and ab<^b
for any two elements a and b of K. It is then clear that 0 is the zero
element. We do not assume the greatest element to be multiplicative
unity, and the multiplication to be associative or commutative.

An element p of K is said to be prime if whenever ab<^p for two
elements a, b of K, then a<^p or b<,p. If K has the join- generator
system20 2, then an element p of K is prime if (and only if) xy<p
implies x<ip or y<^p for any two elements x, y of 2. For, let ab<,p
and b^p for two elements a, b of K> and let <z = sup [X], & = sup[Y]
be the sup- expressions of a, b by subsets X, Y of 2. Then there exists
an element y of Y such that y^=p. Since p~>ay>xy, p>x for every
# of X, we obtain p<^a.

Throughout this and the next sections, we assume that K has an
accessible join-generator system 2 with the condition:^ (*) the product xy
of any two elements xy y of 2 is expressible as a join of a finite number
of elements of 2.

By the symbol 2* we shall mean the closed system of 2 under the
join-operation. Then, by the condition (*), it follows that 2* is closed
under multiplication. Now it is easy to see that an element p is prime
if (and only if) mm'<ip implies m<^p or m'<^p for m, m/ of 2*.

DEFINITION 1. A subset M of 2* is called a μ- system if it is closed
under multiplication. The void set is to be considered as a /^-system.

Let p be a prime element of K. Then the set M(p) of the elements
m of 2* such that m^p forms a ^-system.

Lemma 1. Let M be a μ-system such that M f\J(ά) = 0^ for an element
a of K. Then there exists^ an element p such that (1) #<C/>, (2) Mf\J(p)
=0> (3) p<^c implies MΛ/(c)Φ0 and (4) p is prime.

Proof. Let <2<C ••• <#v < ••• be any ascending chain such that
M Λj(av) = 0 for every y, and let <z*=sup [X~], where X= {x #e2, #<#v

1) This means that K is a lower-complete cm-lattice. It is easy to see that K forms an
integral and residuated lattice. Cf. [2 pp. 200-201].

2) A subset Σ of K is called a join-generator system, if every element of K is expressible
as the supremum of a subset of Σ. Cf. £8 p. 105]. Evidently K is one of its own join-
generator system.

3) This condition is strictly weaker than the ascending chain condition for the elements of K.
4) 0 denotes the void set. /(#) denotes the principal lattice-ideal generated by a.
5) See the footnote 16) of this paper.
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for some v}. Then it is easily verified that sup [#v]=#*. We now prove
V

that M/\J(a*} is void. If MΛ /(#*) is not void, we can take an element
m of M such that m<^a*. By the condition (#), there exists a finite
number of elements xf of 2 such that m = x1\J \JXt. Hence we can
find ugί, — ,«,.,,«> of X such that Xi<i\Jγΐl u{j. Then m< VΛ =ιU5=ί xu

<C#p for a sufficiently large ordinal number p. Hence MΛ/(#P) is not
void. This is a contradiction. Zorn's Lemma assures therefore the
existence of an element p satisfying the conditions (1), (2) and (3). It is
only necessary to prove the conditions (4). Suppose that a-^Lp and b^p.
Then, by the maximality of p, there exist two elements m and m' such
that m<^p\ja and mf<ip\jb. This implies that mm'<i(p\jά)(p\jb)<^
p\jab. Now if we suppose that ab<^p, then mm'<ip. This is a con-
tradiction. We have therefore

DEFINITION 2. A non-zero element a of K is said to be nil potent if

βcp) = Q6) for a suitable whole number p. A subset of K is said to be
nilpotent-free if it has no nilpotent element.

Lemma 2. Let x be any element of 2. Then the set Mx = {*, x2, x(x2)y

(x2)xy x(x(x2)}y x((x2)x), •••} of all powers of x is a μ-system. An element
x is nilpotent if (and only if) Mx contains the zero.

Proof. The first part is easy to see. Suppose now that Mx contains
0. Then by using the properties (2), (5) and (6) in [7], we obtain #CP) = 0
for a sufficiently large whole number p.

DEFINITION 3. The infimum of the prime elements containing a is
called a radical of a, and denoted by Rad(ά). In particular, the radical
of 0 is the infimum of all prime elements of K, and denoted by Rad(K).

Lemma 3. Let X(ά) be the set of the elements x of 2 such that every
μ-system containing x contains an element of ](a). Then X(a) contains
every element x of 2 such that x<^Rad (a).

Proof. Let x be any element of 2 such that x<^Rad (ά), and letM
be any μ-system containing x. If Mf\J(ά) is void, then, by Lemma 1,
there exists prime element p such that α<ip and Mf\J(p) = 0. Since
x<p, x is not contained in M, which is a contradiction. Hence MΛ/(<Z)
is not void. Therefore x is contained in X(α).

Theorem 1. The following three conditions are equivalent :

6) The power «CP) of a is similarly defined as in the case of commutative residuated lattices.
Cf. [7; p. 31]. Then the properties (2), (5) and (6) in [7] hold for the elements of K.
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(1) Rad(K) = Q,
(2) K is nilpotent -free,
(3) It is nilpotent-free.

Proof. (1)=*(2): Let a be a nilpotent element of K Then
for every prime element p of K. This implies α<Rad (K). Therefore
Rad (K) φ 0. (2) => (3) is evident. (3) => (1) : Suppose now that Rad (K) φ 0.
Then we can take an element x of 2 such that #<Rad (/£) and #ΦO.
By Lemma 3, x is contained in X"(0). This implies that Mx contains 0.
Hence by Lemma 2 x is nilpotent. This completes the proof.

REMARK 1. A prime element p is said to be a minimal prime of a
if a<ip and there exists no prime element p' such as a<p'<^p. Then
in order that an element p is a minimal prime of an element a, it is
necessary and sufficieht that M(p) is maximal in the inclusion ordered
family Ήft of /^-systems M with Mf\J(ά) = 0. For, let M(p) be maximal
in ςJJί and take a maximal element p* such that p<ip* and M(p} f\ /(/>*)
-0. Since M(£)CM(>*) and Af(ί*) Λ/(β)CΛf(/>*) Λ /(/>*) = #, we have
M(p)=M(p*) by the maximality of M(/>) in 3Jί. Then it is easily verified
that p=p*. Hence ^ is a prime element which contains <z. Next we
suppose that there exists a prime element />' such that a<^p'<^p. Then
M(p') Λ /(#) is void and M(/>) is contained in M(p') strictly. This con-
tradicts the maximality of M(p) in ςJJί. Conversely, let p be a minimal
prime of a. Then it is easy to see that M(p) Λ J(a) is void. Take now
a maximal /^-system M* such that M(^)CM* and M*Λj(ά) = 0. (The
existence of M* is assured by Zorn's Lemma.) Again take a maximal
element p* satisfying a<ip* and M*Λ /(/>*) = j2f. Since M(p*)^M* and
M(p*) Λ /(/>) = j2Γ, M(/>*) would coincide witn M*. Hence by the first part
of this proof, />* is a minimal prime of #. Since p<p*> consequently
p=p*, and therefore M(p}=M*, say, MQί>) is maxtimal in 3K.

It is then proved, as in the case of rings [6], that Rad (a) is the
infimum of the minimal primes of a, and in particular Rad (K) is the
infimum of all minimal primes of K.

REMARK 2. Rad(#) = sup [X(#)], where X(ά) is similar as in Lemma
3. For, by Lemma 3, we have Rad (#)<sup {_X(ά)~\. Conversely, let x
be an element of X(ά) and let p be a prime element such that p>a.
If x-^py x is contained in M(p). Hence M(p)f\J(ά) is not void. On the
other hand, a<p implies M(p) Λ/(0)CΛf(/>) Λj(p) = 0. This is a con-
tradiction. Therefore x<p, consequently sup [X(tf)]<Rad (a).

REMARK 3. As is well known, any relatively complemented pseudo-
lattice is distributive. Hence it forms an m-lattice when the multiplica-
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tion is defined as its meet-operation. Now let T be any relatively
(dually)7) complemented pseudo-lattice with the greatest element e and
the least element 0, and suppose that T is the accessible join-generator
system. Then the condition (*) is satisfied trivially. Hence by Theorem
1 we obtain Rad(T) = 0. Let pλ be the /-prime elements of T. It is
then easily verified that the mapping #-»(••• , a\jpx, •••) from T into the
direct union of sub-lattices [e, />λ] gives a lattice-isomorphism. A lattice
with the least element 0 is said to be prime if 0 is prime. Since [e, pχ]
is prime, we obtain that T is isomorphic to a subdirect union of a finite
or infinite number of prime lattices. In particular, so is a topological
lattice with the greatest element and the least element which satisfies
the condition P2 in [8, §9]. Moreover, by Theorem 49 in [14], any
Boolean algebra with the condition P2 in [8, §9] is isomorphic to the
direct union of two-element Boolean algebras and which is a special
case of the well known Ston's theorem.

§ 2. Commutative Nilpotent-f ree /w-Lattices

In this section we shall suppose that K is commutative. The as-
sociative law is not assumed.

Lemma 4. Let P(aly - , an) be any product of a finite number of
elements alf ••• , an of K. Then P(aιy ••• , an) = Q if and only if a^r\ ~ r\an

= 0. In particular ab = 0 if and only if ar\b = Q.

Proof. We obtain that (a,r\ ... r\an)^<P(a^ ••• , au) for a sufficiently
large whole number p8\ Hence P(aί9 ••• ,an) = Q implies (alr\ .. n<zw)CP) = 0,
and implies alr\ r\an = Q. Since P(a19 ••• , #„)<#! A ->r\an, the converse
is immediate, q.e.d.

By N(ά) we mean the set of the elements x of 2 which satisfies
ax = Q, and by Q(ά) the set of the elements t of K which satisfies at = 0.
Then by the accessibility of 2, we can easily verify that N(ά) coincides
with the set of the elements y of 2 such that jy<£ for some t of Q(#).
Hence we have that sup [ΊV(<z)] = sup [Q(ά)~]. In the following
will be denoted by #*, and #** by φ(a). Then we have

2) φφ(d)=φ(a\
3) a<J) implies φ(ά)<Lφ(b}.

DEFINITION 4. An element a is said to be φ closed if φ(ά) =

7) Cf. [2 p. 147].
8) This is immediate by induction on the whole number n.
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Theorem 2. Any φ-closed element of K is decomposed as a meet of
a finite or infinite number of prime elements', and so is φ(ά) for every
element a of K.

Proof. Let a be a ^-closed element. Suppose that it is not de-
composed as a meet of a finite or of an infinite number of prime elements..
Then applying Theorem 1 to the interval \e, α], we can find an element
t such that t^>α and t2<α. Now since (t r\α*)2<^t2r\α*<αr\α* = 0 by
Lemma 4, we have that tr\α* = Q. Hence tα*=Q, hence t<^α**=φ(ά),
and hence α=^φ(α). This is a contradiction.

Lemma 5. Suppose that a<^b. If b<^φ(a\ then at = 0 for every
element t with bt = Q, and vice versa.

Proof. This is immediate.

Theorem 3. φ(ab)=φ(d)r\φ(b) for any two elements a and b of K.

Proof. Take an element t such that s=[<p(ά)r\φ(b)~] t=^0. Then
since φ(ά)t=^Q, we have that aΐφQ by Lemma 5. If (afytφQ, then of
course φ(ab)t=$=Q. Since φ(ab)<Lφ(ά)r\φ(b), we have φ(ά)r\φ(b)<^φφ(ab)
=φ(ab) by Lemma 5. Hence φ(ά)r\φ(b)=φ(ab). Therefore it suffices to
prove that (<z£XΦO. Now we assume that (ab)t = Q. Then since abr\t = Q
by Lemma 4, we have (ar\br\s)2<iabr\s<iabr\t = ΰ. Hence ar\br\s = Q,
hence a(bs) = Q> and hence bs<^a*. On the other hand, since bs<,s<^φ(a\
we obtain (bs}2<^a*φ(ά) = Q. This implies bs = Q, and implies φ(b)s = Q
by Lemma 5. Hence φ(b}r\s = 0 by Lemma 4. Therefore we have that
s = \^(a}r\φ(b)^t=φ(b)r\\j^(a)r\φ(b)']t=φ(b')r\s = 0, a contradiction. This
completes the proof.

Corollary. Let P(a19 ••• , an) be any product of a finite number of
elements a19 ••• , an of K. Then φ(P(aί9 ••• , a1^)=φ(a^r\ ••• r\φ(an). In
particular, any product of a finite number of φ-closed elements aly ••• , an

is equal to alr\" r\an.

Lemma 6. φ(a\ja*) = e for any element a of K.

Proof. Since (a\ja*}*<^a* r\φ(ά) = Q, we obtain (a\ja*)* = Q. Hence

Theorem 4. The set Kφ of all φ-closed elements of K forms a Boolean
algebra under the join φ(a\jb) and the meet φ(ά)r\φ(b)=φ(ab).

Proof. By Theorem 3 and Lemma 6, Kφ forms a complemented
lattice under the join φ(a\jb) and the meet φ(ά)r\φ(b) = φ(ab). Then by
Theorems 5 in [2 Chap. XIII] and 3, Kφ is relatively pseudo-comple-
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mented. Now it is easy to see that Kφ is pseudo-complemented. Hence
by using Glivenko's theorem (see [14]), we complete the proof.

§ 3. Strongly Non-solvable Groups

Let G be a group, and let & be the set of all normal subgroups of
G. It is then easily verified that $ forms a lower-complete commutative
cm-lattice under the set-inclusion relation and the commutator-multipli-
cation9^ Evidently G is the greatest element of $, the unit subgroup is
the least element of ίΐ and the commutator group [Λ^, 7V2] of two normal
subgroups Nj_ and N2 is of course contained in Λ^ Λ N2.

DEFINITION 5. A group is said to be strongly non-solvable if and only
if it has no solvable normal subgroup except the unit subgroup.

A normal subgroup P of a group G is said to be prime if the
commutator group [Λ^, N2~] of two normal subgroups Λ7! and N2 of G is
in P, then at least one of the N£ is in P. It is then easily proved that
in order that a normal subgroup P of G is prime, it is necessary and
sufficient that G/P has the unique minimal non-abelian normal subgrouρ10).
Let N be any non-unit normal subgroup of a prime group G. Then the
centralizer C(N) of N is evidently the unit subgroup of G. Hence the
centralizer C\N) of C(N) is of course the whole group G.

We now consider a family $ of normal subgroups of G with the
following three conditions :

(1°) If a normal subgroup N in $ is contained in a subgroup
generated by {NΛ} CS> Λ7" is contained in a subgroup generated by a
finite number of normal subgroups in {Na}.

(2°) Any normal subgroup of G is generated by a finite or infinite
number of normal subgroups in f?.

(3°) The commutator group of any two normal subgroups in f$ is
generated by a finite number of normal subgroups in S

If the ascending chain condition holds for the normal subgroups of
G, the whole m-lattice $ satisfies these three conditions. Throughout
this section, we suppose that there exists the family g of normal sub-
groups of G which satisfies the three conditions (1°), (2°) and (3°).

Theorem 5. The following conditions are equivalent :
1) G is strongly non-solvable.
2) The intersection of all prime normal subgroups of G is the unit

subgroup.

9) Cf. [8 p. 104].
10) Cf. [13 p. 377].



60 K. MURATA

3) 3 has no solvable normal subgroup except the unit subgroup.

Theorem 6. The centralizer of any normal subgroup of G is represent-
ed as an intersection of a finite or infinite number of prime normal sub-
groups of G, and so is the normal subgroup N with C2(N) = N.

Theorem 7. For any two normal subgroups Λ^ and N2 of G,

In particular, if C\Ni) = Ni (/ = !, 2), then [N19

Theorem 8. The set of C\N) of all normal subgroups N of G forms
a Boolean algebra under the join C2(Nl\jN2} and the meet C\[N19 ΛζJ).

Above four theorems are immediate by Theorems 1, 2, 3 and 4,
respectively.

Theorem 9. Let © be a strongly non-solvable group such that the
commutator group of any two normal subgroups with single generators is
generated by the set-union of a finite number of normal subgroups with
single generators^. Then the centralizers of all normal subgroups of G
form a Boolean algebra under C(Nl)\jC(N2) and the intersection, which is
isomorphic to the lattice of the subsets of a direct union of a finite or
infinite number of two-element Boolean algebras.

Proof. Let g' be the family of all normal subgroups with single
generators. Then it is easily proved that the conditions (1°) and (2°)
hold for % ', and by the assumption of Theorem the condition (3°) holds
for $'. Hence by Theorem 1, the intersection of all prime normal sub-
groups of @ is the unit subgroup. Then it is proved that © is isomorphic
to a subdirect product12) of a finite or infinite number of prime groups Gλ :

@ = Π?Gλ. Now let Nbe any normal subgroup of ®. Then C(N) = C(N),
where N denotes the "Hϋlle" of N. For, let x be an arbitrary element
of C(N), and y an arbitrary element of N. Then y = z1 ••• zκ, where
Zf^Gf. Since there exists an element z of N such that z = zΊ Zt-ιZiz'i+ι
— z'κ (z'tZGJy we obtain z = x~1zx = (x~1z{x) ••• (x~1z/

ί-ιx)(x~lzix}(x~lz/

ί+lx)
-••(x^z'tX). This implies x~1zix = zi (/ = !,••-, /e), and implies x~1yx=y.

11) This assumption is of course strictly weaker than the ascending chain condition for
normal subgroups of @.

12) A group G is called here a subdirect product of group G\, if (1) G is a subgroup of
the (restricted) direct product Πf G\ and (2) the λ-component of G is G\ or the unit group of
GΛ for every index λ. Cf. [10]. The theorem in [10] and its proof are incomplete. Combining
Theorem 1 and the results of § 2 in [10], we complete the proof of the theorem under the
restriction in Theorem 9.
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Therefore C(N) is contained in C(N). It is evident that C(N) is con-
tained in C(N). Next let K(G£) be the set of all centralizers of normal
subgroups of G, . Then K(G,-) is a two-element Boolean algebra, say,
®(G, ) = {G, , 0} . For, if Nέ is any non-unit subgroup of Gf , then by the
primeness of Gt , we have C(N{) = e. Therefore we obtain that the set
of the centralizers of the normal subgroups of @ coincides with the set

.<?
of all subdirect products of Πf Gλ. Now let Λ^ and N2 be any two normal
subgroups of ®. Then, by the above argument, C(Λ^ ) are represented as

where Δ Λ Γ = J2f. It is then easy to see that

Hence by Theorem 8 we complete the proof.

§ 4. Nilpotent-free Lattice-ordered *Sy terns

In this and the next sections, S is a partly ordered set with the
greatest element e and the least element 0. Let further S has the mul-
tiplication, binary operation denoted by (•). We now suppose that

P1 : e and a are composable with respect to the multiplication, and

ea^>a and ae^>_a for every a of S.
P2 : 0 and a are composable with repect to the multiplication, and

Oa = aO = 0 for every a of S.
P3 : S is the set-union of L={a\ ea = a, a^S} and R={a\ ae=-ay

aeS}.
P4 : L forms a complete (upper and lower) associative multiplicative

lattice ((lower complete) c/-semigroup13)) under (•) and (<C).
P5 : R forms a lower complete ^/-semigroup under (•) and (<).

It is then easy to see that (1) e is an idempotent : e2 = e, (2) <zδ<δ
for every two elements a, b of L and (3) ab<^a for every two elements
a, b of R. By T we shall mean the intersection of L and R. Then T
is a lower complete c/-subsemigroup of both L and R. Hence the results

in §1 are, of course, applicable to T, if it has an accessible join- genera tor
system.

Lemma 7. Let 1<L be any accessible join- generator system of L such
that Σz, contains ΣL ey the set of the elements xe (x£ΣL). Then ΣL e

13) Cf. [2 p. 200].
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forms an accessible join- generator system of T. If ΣL satisfies the condition
(*) of § 1, then so is ΣL e.

Proof. Let c = sup[X] be the sup- expression of any element c of
T by the subset X of Σ/> Then c = ce = sup[_Xe'] is a sup-expression of
c by the subset Xe of Σz. 0. The accessibility of Έ,L e and the last part
of Lemma are immediate.

Lemma 8. Let ΣZ, and 2# be two accessible join- generator systems of
L and R respectively, and suppose that

[*] 2£,^Σz, £, 2L 0C2#, Σtf^^ Σ/? and ^-Σ/eCΣ^.

Proof. This is immediate.
Throughout this and the next sections we suppose that there exist

two accessible join- generator systems ΣX, and 2# of L and R respectively,
which satisfy the conditions (#) in § 1 and [#] in Lemma 8. We put
ΣT=Ξ'ΣL/\ΣR and 2=

Lemma 914). The following conditions are equivalent to one another.

( 1 ) // a, b are elements of T such that ab<^py then a<^p or b<^p.
(2) If z, zf are elements of 2T such that zz'<^p, then z<^p or z'<^p.
(3) // x, y are elements of 2 such that exeye<ip, then x<^p or y<^fi.
( 4 ) If x, y are elements of 2 such that xey<^p, then x<p or
(5) // /, lf are elements of L such that lΓ<^p, then l<^p or l'
( 6 ) // r, rf are elements of R such that rrf<ip, then r<^p or
( 7 ) If I is an element of L and r of R such that ler<ip, then l<,p or

( 8 ) If I is an element of L an r of R such that rl<Lp, then l<,p or
r<p.
( 9 ) // u, u' are elements of 2^ such that uu'<,p, then u<^p or u'<ip.
(10) // v, vf are elements of 2# such that vv'<^py then v<^p or υ'<^p.
(11) // u is an element of 2χ, and v of Σ# such that uev<ip, then u<^p
or v<,p.
(12) // u is an element of ΣL and v of 2# such that vu<^p, then u<^p
or

Proof. This is immediate by the following implications : (1)=>(2)
9) and 4)=>7

14) Cf. [1 p. 39], [6 p. 825].
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DEFINITION 6. An element p of T which has any one (and therefore
all) of the properties stated in Lemma 9 is said to be a prime element
of T or of S.

DEFINITION 7. Let c be an element of T. The infimum of the primes
containing c is said to be a radical of c. In particular, the radical of 0
is said to be a radical of S. The radical of c is denoted by Rad(c), and
the radical of S by Rad(S).

Lemma 10. Rad(c) is contained in T for every element c of T. In
particular Rad(S) is contained in T.

Proof. Since T is lower-complete, this is immediate.
A non-zero element a of S is said to be nilpotent if an = 0 for a

whole number n. A subset of S is said to be nilpotent-free, if it has no
nilpotent element.

Theorem 10. The following conditions are equivalent to one another :

(1) Rad(S) = Q.
(2) 2T is nilpotent-free.
(3) T is nilpotent-free.
(4) ΣZ, is nilpotent-free.
(5) L is nilpotent-free.
(6) Σj. is nilpotent-free.
(7) R is nilpotent-free.

Proof. Let c be an element of T, and let U(c) be the set of the
elements of Στ such that every /^-system, defined by Στ, containing x
contains an element of the lattice-ideal of T, which is generated by c.
Then, by using Lemma 10, we can prove similarly to the proof of
Lemma 3 that Rad(c) is contained in sup[f/(c)]. Hence the proof of
equivalency of the conditions (1), (2) and (3) is obtained similarly to that
of Theorem 1. Let a be an element of L such that #ΦO and 0P = 0 for
a whole number p. Then we can take an element x such that #<χ
#ΦO and x€%L. Since (xe)p = Q, xaφO and #062Γ, we obtain that
(2)=>(5). (5)=>(2) is evident. Hence of course (4) is equivalent to (2).
Similarly for (6) and (7).

§5. ^-Closed Elements

In this section we suppose that Rad(S) = 0. Σ/,, Σ#, ΣΓ, etc. are
similar as in §4. We are now going to define <p-closed elements of S,
and consider a meet decomposition of <τ>-closed elements.

Let Sx be a subset of 2^, and a an element of L, We denote by
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/(#;ΣO the elements x of Σ' such that xa = 0. r(a 20 is defined sym-
metrically for an element a of R and a subset Σ' of Σ/?.

Lemma 11. Let a be an element of L, and let F be the elements of
L such as fa = 0. Then l(a\ ΣJ coincides with the set of the elements x
of ΣL such that x<f for some f of F.

Proof. This is immediate.

Lemma 12. Let a be any element of L. Then sup [l(a ΣL)] is equal
to sup[l(a\ΣΊ)~\, and contained in T.

Proof. Take an element x of ΣL such that #<Csup[/(<z ΣL)]. Then
there exists a finite number of elements uιy ••• , un of l(a Σ/,) such that
#<CwιV ww n . Hence (xe)a = x(ea) = xa^\J'ΐ=luia = Q. Since #06ΣT and
x<^xe, we obtain sup \J(a ΣL)]<sup \J(a Στ)]. The converse inclusion
is evident, q.e.d.

Sup [l(a ΣL)] is denoted by l*(ά), and sup [r(a Σ#)] is denoted by
r*(a\

Lemma 13. If c is an element of T, then l*(c) = r*(c) and cc* = c*c = ΰ,
where c* = l*(c)( = r*(c)).

Proof. Take an element x of Σ/, such that x<l*(c). Since there
exist a finite number of elements x19 ••• , xr of l(c Σj such as x<^x^\j
~\jχr, we have xc<Zt\Jr

isslxic = Q9 xc = Q. Hence /*(c)-c = sup[/(c Σj c]
-0, and hence (c l*(c)Y = c(l*(c) c)l*(c) = Q. Since c /*(c) is contained in
L and L is nilpotent-free, we obtain o/*(c) = 0. Symmetrically r*(c) c = 0.
Next, we let Λ: be an element of ΣΓ such as #</*(c). Then, by the
above argument, we have cx = 0. Hence x is contained in r(c Στ). We
obtain therefore /*(c) = sup [_x x£ϊτ, x<^(c)'] <sup [r(c Στ)] = r*(c).
Symmetrically r*(c)^./*(c), and

Lemma 14. Let c be an element of T, and a an element of L. Then
the following conditions are equivalent :

(1) ca = Q.
(2) cr\a = Q.

Proof. This is immediate by (cr\a)2<ica<cr\a.

Lemma 15. // a is an element of L, then l*(ά)r\a = Q.

Proof. Since l*(a) a = Q and l*(ά) e T, this is immediate by Lemma
11.

Lemma 16. Let c be any fixed element of T. If cr\g=0 for an
element g of T, then g<Cc*,
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Proof. Take an element x of 2T such that x<g. Then χr\c = Q.
Hence xc = Q, hence x is contained in l(c 2Γ) and hence #<c*. We have
therefore

DEFINITION 8. The mapping a^φ(a) = r*(l*(a)) = (l*(a)Y from L into
T is called φ-mapping of L. An element a of L is said to be φ-closed
if φ(ά) = a. <7>'-mapping of R is defined symmetrically.

It is easy to see that the <7>~mapping of L has the following pro-
perties :

1) a<φ(a\
2) φφ(ά)=φ(ά)y

3) a<J) implies φ(d)<φ(b).

Symmetrically for ^'-mapping of R.

Lemma 17. φ(c)=φ'(c)=c** for every element c of T. c is ^-closed
if and only if it is <p'-closed.

Proof. This is immediate by Lemma 13.

Theorem 11. If c is a φ-closed element of T, then c is decomposed
as a meet of a finite or infinite number of prime elements of T and so
is φ(d) for every element a of L.

Proof. Let [<?, c] be the interval {t £>ί>c, te S}. If we suppose
that c is not represented as a meet of prime elements of T, then, apply-
ing Theorem 10 to the /-semigroup [#, c], we can find an element g of
[e,c~\f\T such that g^>c and c>g2. Since (gr\c*Y<^cr\c* = Q, we have
gr\c* = Q. Hence g<^c**=φ(c] by Lemma 16. This implies cφ<p(c),
which is a contradiction.

Lemma 18. If cr\a = 0 for elements c of T and a of L, then
φ(c) r\ a = c r\ φ(ά) = 0.

Proof. Since ca = 0 by Lemma 14, we have #<r*(£) = £*. Hence
ar\φ(c)<,c*r\φ(c) = Q, ar\φ(c) = 0. Next we have c </*(#), since ca = Q.
Hence cr\φ(a}<l*(a)r\φ(a) = l*(a)r\(l*(a))* = Q by Lemma 15. We have
therefore cr\φ(ά) = Q.

Lemma 19. Let a be an element of L. If c£ \_e, a\ r\ T, then ga = 0
for every element g with gc = Q, g£ T. Conversely, if (1) # <c (c G T) and
(2) gc = 0 for every element g with ga = Q, g£T, then c<^φ(a).

Proof. The first part is easy to see. We now suppose that /*(#)• c
Φθ. Then by Lemma 14 we have g =cA/*(0)Φθ, Now it is evident
that g is contained in T and cr\g=gφQ. Hence we have that gcΦQ,
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On the other hand, we have ga = (cr\l*(ά))a<,l*(ά)a = ΰy ga = Q. This is
a contradiction. Hence we have l*(a)c = Q, c<,(l*(a))*=φ(a).

Lemma 20. φ(ae)=-φ(ά) for any element a of L.

Proof. Suppose that xa = Q for an element x of 2L.. Then of course
x ae = Q. Hence /(# 2J is contained in l(ae Σ/,). Conversely, let x be
any element of l(ae;%L). Then x ae = Q. This implies xa<^xae = Q,
xa = Q. Hence x is contained in l(a ΣZ,). Hence l(a ΣL) = l(ae Σ^). We
have therefore /*(Λ) = sup [/(α;ΣIί)]= sup [/(αβ ΣJ] = /*(««), φ(a) = (l*(a))*
= (l*(ae)}*=φ(ae).

Theorem 12. φ(ab)=φ(ά)r\φ(b) for any two elements a and b of L.

Proof. First we suppose that a is an element of T. Then, since
ab<,ar\b, we have φ(ab)<^φ(ar\b)<,φ(ά)r\φ(b). Take now an element
g of T such that

(1) h = φ(a)

Then, since φ(ά)r\g^=Q, we have ar\g=$=0 by Lemma 18. It suffices to
prove that abr\g=^Q. Because, if so, we have φ(ά)r\φ(b)<iφφ(ab)=φ(ab)
by Lemma 19. Assume now that abr\g=Q. Then (ar\br\K)2<^abr\h<
abr\g=Q, ar\br\h = 0. Hence a(br\fi) = Q. Therefore we have

(2) br\h<r*(ά) = a* .

By using (1) we have

(3) br\h<h<φ(d).

Since φ(ά) a* = ΰ, φ(ά)r\a* = Q, we obtain br\h = 0 by (2) and (3). Hence
by Lemma 18 we have Q=φ(b)r\h = h=$=Q, a contradiction.

Next we suppose that a is an element of L. Then by using Lemma
20, we obtain φ(ab) =φ(a eb] =φ(ae b) =φ(ae)r\φ(b) =φ(ά)r\φ(b'). This
completes the proof.

Corollary. φ(ab)=φ(ar\b) for any element a of T and b of L. If
both a and b are φ-closed, then ab = ar\b.

DEFINITION 9. An element q of L is said to be left <τ>-prime if
a,b£L, φ(ά) = e imply b<,q.

Lemma 21. An element q of L is left φ-prime if (and only if}
a^Ty φ(ά) = e, b^L imply b<^q.

Proof. Suppose that άb<jq, a,b£Ly φ(d) = e. Since q>ab ̂ a eb^ae b,
T, we obtain φ(ae)=φ(ά) = e by Lemma 20. Hence δ<#.
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Lemma 22. Let q be a left φ-prime element. Then ab<q,
φ(ά)l>_φ(b) imply b<^q.

Proof. Since l*(a)b<φ(l*(a))φ(b) <φ(l*(a))φ(a) =φ(l*(d) d)=φ((S) = 0,
l*(ά)b = Q, we have (a\jl*(ά)b = ab<q. Now since P(a\jP(a)<l*(d)r\
(/*(*))* = 0, we have /*(*w /*(*)) = 0. Hence φ(l*(avl*(a)) = e. We get
therefore #<#, as desired.

Theorem 13. Let q be any left φ-prime element of L. Then the
supremum q of the elements c such that c<#, c G T, is also a left φ-prime
and φ-closed element] and q is decomposed as a meet of a finite or infinite
number of prime elements.

Proof. Suppose that aq<^q, where a,b£L and φ(a} = e. Then a -be
<<ϊe = <ϊ<q Hence be<q, hence be<qy and hence b<q. This proves
that q is left <p-prime. Next, we prove that q is <7>-closed. Since qφ(q[)<q
and φ(q}=φφ(q), we have φ(q}<q by Lemma 22. Hence φ(q) = q. The
last part of this theorem is an immediate consequence of Corollary to
Theorem 12.

§ 6. Nilpotent-free Ring Systems

An associative multiplicative semigroup o is called here a ring
system, if it has the' following two conditions : (1) o is an algebra155

with a void or non-void set Γ= {φ} of finitary operations which does not
contain the 'multiplication and (2) the left and the right distributive laws
hold for o, say, xφ(x19 •••, xn)=φ(xXι, —, xxj, φ(x*> — » #«)*=<P(#ι#» —>XnX)
for all x, xf 6 o and all φ G Γ. Usual semigroups, associative rings, some
near-rings and distributive lattices are included as very special cases.

Now we assume that o has the zero element 0. A non-void subset
α of o is called a left ideal of o, when (1) α is closed under all operations
in Γ and (2) if a G α, then ra e α, for all r 6 o. A right ideal of o is
defined analogousely. A left and right ideal is called a two-sided ideal
or shortly an ideal of o. Let X be a non-void subset of o. By [X~}L

we mean the closed subsystem of X under all operations in Γ. Any
element of [X]Γ is denoted by fφltΎtφm (xί9 ••• , xn) or losely by f(x19 ••• , Λrn).
Let X and Y be any two non-void subsets of o. By XY we mean the
set of the elements xyy χζ.X, y G Y. The product X Y is defined as
the elements of the form φ(xlyl, ••• , xny^), where x{ G X, yι G Y and φ G Γ.
By (X)ι we mean the left ideal generated by X. Then it is easily
verified that (X), = [pXv [X]Γ]Γ = [>XvX]Γ. For any element x of o, (*),

15) In the sense of G, Birkhoff, Cf. [2 Foreword on algebraJ.
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is called a principal left ideal of o. Symmetrically for right ideals (X)r>
(x)r of o. The (two-sided) ideal generated by X is denoted by (X), which
is equal to [0X0 v o X v X o vX]Γ. Then we have (#) = [(*)/ o v(^)/]Γ for
any xev. For, since [OΛ:O VJCO]Γ = [(OΛ: VΛ:)O]Γ=-[[OΛ: VΛ:]ΓO]Γ = [OΛ: VΛ:]Γ O
= (x)ι o, we obtain (x) = [_oxo v xo v ox v #]Γ = [[OΛ O v #o]Γ v [ox v #]r]r =
[_(#)/ o v(#)/]Γ, as desired.

Now let 8 be the left ideals of o, 5R the right ideals of o, Θ the
set-union of 8 and 3ΐ, and 2! the intersection of 8 and 9ΐ. Then @ is, of
course, a partly ordered set under the set-inclusion relation. Evidently
o is the greatest element of @, and the zero element 0 is the least
element of @. Evidently 0 α = α 0 = 0 for all α of @. If o has the unit
element, then o cOα, α rOα for all α of @ and if αe8(Sft), then
o α = α (α o = α). It is now easy to see that both 8 and Sft form lower-
complete ^/-semigroups under the operation (•) and the set-inclusion
relation. Hence, if o has the unit element, the conditions P19 P2, P3, P4

and P5 hold for @.
An ideal p of o is said to be prime if whenever p contains a product

of two ideals of o, then p contains at least one of the factors. A radical
of o (or of @) is defined as the intersection of all prime ideals of o.
A non-zero ideal is called nilpotent when some power of it is the zero
ideal.

In the following we suppose that o has the unit element.
Let Σs and ΣSR be any two accessible join-generator systems of 8

and 9ΐ respectively, which satisfy the conditions (*) in § 1 and [*] of
Lemma 8 in § 4. Now we consider a family 2Jί (non-void or void) of
ideals such that 2ft is closed under the multiplication (•). If α is an ideal
such that α'C!α implies α 7 ^ 2ft, then by Lemma 1 there exists16) an ideal
t> satisfying the following conditions; (1) αCp, (2) bCp implies b^Jft,
(3) if an ideal c contains £ strictly, there exists an ideal in 2ft which is
contained in c and (4) p is prime. Then, by Theorem 10, the following
conditions are equivalent: (1) o has the zero radical, (2) Σs Λ ΣSΪ is
nilpotent-free, (3) Z is nilpotent-free, (4) 8 is nilpotent-free, (5) Σs is
nilpotent-free, (6) 3Ϊ is nilpotent-free and (7) Σs? is nilpotent-free.

Lemma 23. The set of all principal left ideals of o forms an acces-
sible join-generator system of 8.

Proof. Suppose that (#), is contained in VΛ(#λ)/ Then there exists

16) If we define 90? as a family of ideals such that there exists an ideal c contained in α fc
for any two ideals α, b 6 Wl, then, whether there exists p with (1), (2) and (3) or not, is un-

known to the author. Cf. [12; Theorem 14-11J.
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a finite number of elements x19 ••• , xn such that a=f(xί, ••• , xn)9 .rx G

Vλfaλ)/ for some /. Hence #, G (tfλα ))/> ί = 1, — , w. Hence xj e V/?=ι(0λcί))/
We obtain therefore (ά)l = (f(xίy " > #«))/^ W?=ι(αλco)/ The other condi-
tion is easy to see. This completes the proof.

By Sβs (Sβm) we mean the system of the principal left (right) ideals
of o. Then it is easy to verify that these two systems satisfy the
condition [*] in Lemma 8. Hence, by using Theorem 10, we obtain the
following

Theorem 14. Let o be a ring system with the unit element and the
zero. Suppose that (#) the product of any two principal left ideals is
finitely generated11^, and symmetrically for right ideals. Then the following
conditions are equivalent: (1) o has the zero radical, (2) o has no nilpotent
principal ideal, (3) £ is nilpotent-free, (4) Sβs is nilpotent-free, (5) 8 is
nilpotent-free, (6) *$m is nilpotent-free and (7) 9t is nilpotent-free.

Throughout the rest of this section, we suppose that o has the zero
radical.

Let α be any left ideal of o. Then, by Lemma 12, the left ideal
/*(α) generated by the set-union of the left ideals j with E α = 0 (jc eΣs)
is equal to the (two-sided) ideal generated by the set-union of the ideals
i) with ty α = 0 (ty 6 2s Λ Σsft). Hence /*(α) is a two-sided ideal of o. The
same is true for r*(α), where α is a right ideal of o. If c is an ideal
of o, we have l*(c)=r*(t) and c c* = c* c = 0, where c* = /*(c) = r*(c). Let
α be any left ideal of o. Then the mapping α-»9>(α) = (/*(α))* from 8
into ί£ is said to be <p-mapping of 8. A left ideal α is said to be φ-
closed if φ(ά) = a. The ^-mapping satisfies φ(a b) = φ(ά)r\φ(b) for any
two left ideals α, b of o (Theorem 12). In particular, if α is an ideal,
<p(α.b) = <τ?(αAb). If α, b are ^-closed ideals, then α b = Q A b . ^-mapping
of 3ΐ and φ'-closed ideals are defined in a similar way. Then ίp(c) = ̂ >/(c)
= 0** for any ideal c of o, and c is <p-closed if and only if it is ^'-closed.
In such a case we shall say that c is closed. Then by Theosem 11 any
closed ideal of o is decomposed as an intersection of a finite or infinite
number of prime ideals of o and so is φ(ά) for all left ideals α of o.

If o satisfies the condition (#) in Theorem 14, we can argue similarly
as above, by using ^βs and ty$t instead of Σs and 29ϊ respectively. In this
case we use "φp(ά)" instead of "<?(&)"> and saY "principally ^-closed"
or shortly "p-φ-closeά" instead of 'V-closed". Then any ^-^-closed
ideal is decomposed as an intersection of a finite or infinite number of

17) This is essential in our argument. In fact, we can find an example which shows that
the conditions (2) and (3) are not equivalent, if this condition does not hold. This condition
is of course weaker than the ascending chain condition for the left (right) ideals of o.
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prime ideals of o and so is φp(ά) for all left ideals α of o. Therefore
we obtain the

Theorem 15. Let o be a ring system with the unit element and the
zero, and suppose that o has the zero radical. If the ascending chain
condition holds for ideals of o, then, for any left ideal α of o, φp(&) is
uniquely decomposed as an intersection of a finite number of prime ideals
of o. In particular, so is any p-φ-closed two-sided ideal of o.

A left ideal ς of o is said to be left φ-prime if whenever a product
of two left ideals α and b with <p(b) = o is in q, then, α is in q. Then,
by Theorem 13, the ideal q generated by the two-sided ideals contained
in q is closed and left <p-prime and q is decomposed into an inter-
section of a finite or infinite number of prime ideals of o.
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