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1. Introduction

Our purpose in this paper is to investigate the stability of traveling wave so-
lutions with shock profile for one-dimensional equations of barotropic viscous gas
with non-convex nonlinearity in the form

(1.1) vy — ugy =0,

(1.2) wrp)s = (52) | zeR, t2o,

T

with the initial data
(1.3) (v, u)|t=0 = (vo, uw0)(z), z € R,

which tend toward the given constant states (vy,uy). Here, z € R, t > 0, and
0 < v_ < vy, v is the specific volume, u the velocity, u(> 0) the viscous constant,
p(v) the smooth nonlinear pressure function satisfying

(1.4) p'(v) <0,

(1.5) p’'(v) S0 for v 2w,

so that p(v) is neither convex nor concave, and has a point of inflection at v = v,,
where v, is a point in the interval (v_,v,). We can easily see that the system (1.1),
(1.2) with g = 0 is strictly hyperbolic, and both characteristic fields are neither
genuinely nonlinear nor linearly degenerate in the neighborhood of v = v, due to

(1.5).
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The traveling wave solutions with shock profile are defined as the solutions of
the form

(1.6) (v»u)(t» z) =V, U)(E), &=z-st,

which must satisfy

—sV' —U' =0
(1.7) U 4 p(VY = <y‘7)
and
(1.8) V,U)(§) — (ve,us), & — oo,

where s is the shock speed and (v4,u.) are constant states at £ = +oo. Correspond-
ing to [6], we can easily see that there exists a traveling wave solution with shock
profile for (1.1) and (1.2) under both of the Rankine-Hugoniot condition

{ —s(vy —v-)—(uy —u_)=0

(1.9)
=s(uy —u_) + (p(v4) —p(v-)) =0

and the generalized shock condition

1 1
(1.10) ;h(v)v = —;[sz(v —vi)+p(v) —plvs)jo >0, for v_ <v<wy,
which implies two kinds of shock conditions

(1.11) non-degenerate shock: —p/(vy) < % < —p/(v-),

(1.12) degenerate shock: — p'(vy) = s < —p/(v_).

To study the stability of traveling wave solutions with shock profile for a single
equation or a system arising in dynamics of gas and fluid is one of hot spots in
mathematicial physics. The important progress and interesting results have recently
been made by many authors (see [1-15]). Among them, in the case of convex non-
linearity for the systems of viscoelastical models, Hoff and Liu [3], Kawashima and
Matsumura [5], Liu [7, 8], Matsumura and Nishihara [ 10] showed that the traveling
wave solutions with non-degenerate shock profiles are stable. In the case of non-
convex nonlinearity, the stability of traveling wave solutions with non-degenerate
shock profile has been otained by Kawashima and Matsumura [6] at the first time.
Moreover, another interesting question is to study the stability of traveling wave
solutions with the degenerate shock profile, or say, contact shock. For the scalar
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conservation law, the stability of the degenerate shock has been showed by the author
[12] at the first time. And then, much better results including the time decay rates
have been obtained by Matsumura and Nishihara [11]. For the system case, very
recently, Nishihara [ 14] showed the stability of the degenerate shock for a model of
viscoelatical system at the first time. Later then, Mei and Nishihara [13] succeeded
to improve the stability results in [6, 14] with weaker conditions on nonlinear stress
function, initial disturbance, and weight function. Concerning with our problem
(1.1), (1.2), when the nonlinear term is non-convex, the stability result with the non-
degenerate shock condition (1.11) can be known from Kawashima and Matsumura
[6], see also a good survey by Matsumura [9]. However, the stability of traveling
wave solutions with the degenerate shock condition (1.12) for system (1.1), (1.2), up
to now, is not treated yet as the author knows.

The main purpose of this paper is to show the stability of traveling wave solution
with the degenerate shock profile for (1.1), (1.2). Our scheme is due to an elementary
but technical weighted energy method. Here, the condition p”’(v) < 0 and the
smallness of both the shock strength and the initial disturbance are assumed.

This paper is organized as follows. After stating the notations and the stability
theorem, we will reformulate our problem into another new system and will prove
our stability theorem based on the a priori estimates in Section 2; The a priori
estimates will be proved in Section 3; Finally, in Section 4, we will apply our
stability theorem to the model of van der Waals fluid.

Notations. L2 denotes the space of measurable functions on R which satisfy
w(x)/2f € L?, where w(z) > 0 is a called weight function, with the norm

o = ( [w@lr@Pa) v

H! (I > 0) denotes the weighted Sobolev space of L2 -functions f on R whose
derivatives 8 f,5 = 1,---,1, are also L2 -functions, with the norm

1/2

f

1
= Y_18fI%
3=0

Denoting

Vvi+z2 if >0
()4 =

1, if =<0,

we will make use of the space L%I)+ and Hfz)+ (I =1,2). We also denote f(z) ~ g(z)
as * — a when C~!g < f < Cg in a neighborhood of a, here and after, C always
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denote some positive constants without confusion. When C~! < w(z) < C for
r€ R, wenotethat L2=H%=L2 =HO and ||- || = o~ |w=1"low-

Without loss of generality, throughout this paper, we restrict our problem to
this case s > 0. We note from (1.7)

(1.13) —8?Ve —p(V)e = us (YE—) .
v 13

Similarly to [6], integrating (1.13) over (+oo, £), noting (1.8) and Rankine-Hugoniot
condition (1.9), we find that vy >V >v_ > 0 and

usVe = =V (s*(V —vx) + p(V) — p(vt)) = VR(V) > 0,

ie., (V) >0 and

(1.14) V)~ |V =y 2~ (€72, as € — +oo,
(1.15) h(V) ~ |V —v_| ~ exp(—c-|§]), as €& — —oo,
which is due to the degenerate shock condition (1.12), where c_ = —v_ (p'(v-) +

s%)/us is a positive constant.
We also suppose that

(1.16) /00 (vo — Vyug — U)(z)dz =0

for some pair of traveling wave solutions, and define
T

(117) (G0, 0)(@) = [ (00— Voo V) )

—00

Our stability theorem is as follows.

Theorem 1.1. Suppose that (1.4), (1.5), (1.9), (1.12) hold. When (vo,up)(x)
and (V,U)(§) satisfy (1.16), assume that

(1.18) p"(v) <0 for ve v_,vy],

and (¢o,%0) € H* N L7,

¥
constant & such that if ||(¢o,%o)ll2+ |(d0,%0)|(z), +l(¢0,z,¢0,z)|<x)i/4 + vy —v_|
< 6, then (1.1)—(1.3) has a unique global solution (v,u)(t,x) satisfying

and (¢o,z,%0,z) € L?z)“‘ Then there exists a positive

v—V € C°0,00); H! anm)iﬂ) NL2([0,00); H' N L'z’mﬁﬂ),
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[ 6 -vu- sy e 0,005 B0 12, ),

u=U € Co(0,00) H N L2 10/) N EA(0, 001 HE N 12 ),

()Y
[ ()~ Uty - stydy € (0,0 H 1 L)
Furthermore, the solution verifies the following asymptotic stability

(1.19) sup |(v,u)(t,z) — (V,U)(z — st)] = 0 as t— oo.
z€ER

2. Reformulation of Problem

We seek the solution (v, u) of (1.1)—(1.3) in the form
(v,u)(t,z) = (V,U)(E) + (d¢, ¥e)(t,€), €=z —st,

where (¢, ¢) satisfies the following “integrated” system

bt — S¢£ —%e=0
B B _ Yee sVeoe

(¢,4)(0,€) = (¢o,%0)(£)

which can be rewitten as

G0 — sbe — e =0
22) W — st — a(V)e — u% _F

(#,9)(0,€) = (o, %0)(€)
with

@3) a(V) = —/(V) + B = —pf(v) + 20,

4 F=~{p(V + 89~ (V) = (V)oe} — (wbee + hV)00) (7 — 7 )

h(V)
Vv

It is well known that

(2.5) [F| < O1)(I¢pel? + | el voee])-
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We define the solution space of (2.2) as the following

X(0.1) = {(#,4) € OO0, TH H N Ly ), (be,tbe) € COU0 T HY 01 L2 1),

¢ € L*([0,T); H' 0 L2 3,4) e € L%([0,T); H? nL2 3,4)}
with 0 < T < oco. Let
N(t) = sup ([(¢,%)(7)ll2 + (&, %) (7)lce)s + (D, Pe)(T)] gy2/4)s
0<r<t ¥
No = |[(¢0, Yo)ll2 + [(do, Po)l ey, + |(¢0,5,¢0,5)|(§)1/4,

we have supgcpl(,¥)(t,§)] < CN(t) which will be used to prove the a priori
estimates in Section 3.

After stating the following Theorem 2.1, we shall easily know that Theorem
1.1 can be treated from Theorem 2.1. So, to prove Theorem 2.1 will be our main
purpose.

Theorem 2.1. In addition to the assumptions in Theorem 1.1. Then there exists
a positive constant &, such that if the initial disturbance and the shock strength
satisfy No + |(v4 — v_,uy —u_)| < 61, then (2.2) has a unique global solution
(p,%) € X(0,00) satisfying

26 I@VOE+1@ VO, + (e, ve) Dfys/e

t
[ U8B + 1067 s + (DB + () e
< CNO?

for any t > 0. Moreover, the asymptotic stability of traveling wave holds

2.7) sup |(d¢, e)(£,1)] = 0 as t— oo.
£€ER

Theorem 2.1 will be proved by the local existence result and the a priori estimates
as follows.

Proposition 2.2 (Local Existence). For any 6y > 0, there exists a positive con-
stant Ty depending on &y such that, if (¢o,10) € H2N L2€) , (Doe,oe) € L<£ a/4

and Ny < ég, then the problem (2.2) has a unique solution (¢,v) € X(0,Tp) satzs-
fying N(t) < 26y for 0 <t <Tp.
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Proposition 2.3 (A Priori Estimates). Let (¢,v) € X(0,T) be a solution for
a positive T. Then there exists a positive constant 8, such that if N(T) + |(v4+ —
v_,uyp —u_)| < b2, then (p,) satisfies the a priori estimate (2.6) for 0 <t < T.

We here omit the proof of Proposition 2.2 because it is easily showed in the
standard way. The proof of Proposition 2.3 is a key for Theorem 2.1 and will be

showed in the next section.

Proof of Theorem 2.1.  From Propositions 2.2 and 2.3, by the standard con-
tinuation argument, we can obtain a unique global solution (¢, ¥)(t, £) satisfying
(2.2) and (2.6) for all ¢ € [0, ).

To prove (2.7), we consider the function (®, ¥)(t) = ||(d¢, 1¢)(t)||>. By virtue
of the uniform estimate (2.6), and (¢); > C, using equations (2.2), we see that both
(®, T)(t) and (®'(t), U'(t)) are integrable over ¢t > 0. So, it means that (@, ¥)(t) —
0, ie., |[(¢e,%e)(t)| — 0 as t — oo. Furthermore, ||(dee,ee)(t)| is uniformly
bounded in ¢ > 0 due to (2.6) and (£), > C. By the Sobolev inequality, we then
obtain

2ggl(¢£y¢s)(§,t)l2 < 2{|Igel 1 peell + el 1peell} — O

as t — oo. This completes the proof of Theorem 2.1. O

3. A Priori Estimates

Denote w;(V) > 0 in C'(v_,v;) as a weight function which will be selected
below. Multiplying the first equation of (2.2) by a(V)w;(V)¢ and the second one
by w;(V)v, respectively, then taking the sum of them, we obtain

) H@a)(V)F +un (Vg2 — (e + 220y

2
= Fw, (V)¢’

where {---}¢ denots the terms which will disappear after intergral on ¢, and

(32) y(V) = (aw)'(V),
(3.3) 2(V) = (wih)"(V).

Now, we are going to choose our desired weight function such that y(V') > 0 and
z(V) <.
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Same to Nishihara [14], let us choose w; (v) as

(vy —v)(v— 4)
k" v € [vs,v4),
(34) NORE S
T(’U)_, v E (U_,'U*],

where v, is the point mentioned as in (1.5), and

Vs (Us — ) + v (v — Vs) S
Vy — V-

A=

0, v,> A,

k= (vy —v_)/(vy —vs)? >0.
Thus, wy (V) > 0, wi(V) € CH(v_,v), and w1(V(£)) ~ (£)4+, and satisfies the

following lemma.

Lemma 3.1. It holds
(3.5) y() >0, 2(2) <0
Jor v € [u_,vy].

Proof.  We are going to prove (3.5) on the two intervals of [v_, v.] and [v., v4],
respectively.

Case 1. On the interval [v,,vy], i.e., —=p”(v) > 0. Thanks to (3.4), we first
have z(v) = —2k < 0. In order to prove y(v) > 0, let us see the following facts.

Setting G(v) = —p”(v)v — p'(v) + ' (v), due to (1.5), (1.18) and v > 0, we
obtain G'(v) = —p”'(v)v — 3p”(v) > 0, ie, G(v) is increasing on [vy,v4]. So,
G(v) > G(vs) = —2p'(v4) — s2. Noting

—p'(va) = =p'(v4) = " (B)(ve —v3) = 8% — p" (D) (ve — v4)
for some ¥ € (v, v, ), then we have

(3.6) G(v) > G(v,) = 2 (1 - 2”:,5’7) (vy — v+)> >0

for vy —v_| <« 1. Similarly, noting for some ¢ € (v«,v4),

0= h(vs) = h(v) + K (@) (s —v) + L (0, ),

then we also have

_ h()v
Vy —V

3.7 — K (w)v=-p"(®)v(vy —v)/2 > 0.
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On the other hand, we can easily check that (h(v)v/(v—A))—h(v) = Ah(v)/(v—A) >
0 for v € [v,,v4] due to h(u) > 0 and v > A. Thus, by these facts, we have

(3.8) y(v) = (aw1)'(v)
_ k=)= A) (o
- h(v)2v2 (G( ) h( )

+a(v) <_M —h'(v)v + % - h(v)) )

Vy —V

20,

where a(v) > 0 is the above (2.3).
Case 2. On the interval [v_,v,], i.e., —p"(v) < 0. By (3.4), we have z(v) = 0.
For some v € (v_,v.), we also have

(3.9) 0=nh(v-)=h(v)+h (@) (v- —v) +
and h”(7) = —p"(v) < 0, which ensure that

(3.10) y(v) = (awr) (v)
a(v)(v —v-) (h(v) —h'(v)(v —v- ) (U)h( ))

h(v)? —v_ a('u)
e —v ) [0,
= T h)p { y w—v-)
SO [y P
+aw[mww O+ 20 _ﬂ}

due to the facts of a(v) > 0, p”’(v) > 0 and

(9)
2

3

(3.11) H(v) =

-0+ 22 (o) - + -0 20
(v) 2

About the proof of (3.11), since a/(v) = —p”(v) + (k' (v)v — h(v))/v?, substituting
(3.9) into (3.11), and setting

k' (v)v — h(v) " R (v)

02 (U - U—))

q(v) = p"(v) —

it is easily to see that g(v) and a(v) are bounded on [v_,v.], then we have
v=ﬂv—) 'v—sz—Mv——v
H() (1- 2P - = Z (o= 0
‘(v

2
) q(v) W (v)?v_
2 < 2a(0) Y~ ”‘)) t )

v2

p"(v) —p’

+

>0
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because of p”(v) > 0 on v € [v_,v.], p”'(v) <O0.
Combining Case 1 and Case 2, we have proved (3.5). OJ

Let &, be the unique number such that V' (£,) = v., this uniqueness is due to the
monotonity of V(£). Integrating (3.1) over R x [0,t], by Lemma 3.1, wy(V(§)) ~

(&4, L2, = L%§>+, and (2.5), we obtain a estimate as follows.

Lemma 3.2. It holds
t t “+o00
(312) (6 0) 0, + / e (7) ey, dr + / /}E Vel(r, £)2dedr

t
< C{l(¢0,%0)I7ey, + N(t)/o (l¢£("')|?€>i/4 + |¢55(T)1?£)i/4)d7'}-

The next step is to estimate [} ¢ (7) ?‘93/4 dr and [} |¢§§(T)]?E>3/4d7'.
+ +

Lemma 3.3. It holds

t
(13 (o) + (1 = ON) [ foc(r)ysedr

t
< C{|(¢0,¢0)|%§)+ + |¢0,£|f£>i/4 + N(t)/o |¢££(T)|f€)i/4d7}

for small vy —v_|.

Proof. From equations (2.2), we have
(3.14) pder — spdee +a(V)Ve + sVipe — Vipy = —FV.

Let us choose our another weight function as

(3.15) w2(§):{1+£—£*, as £ > &,

1, as £ <&,

It is not hard to see that wa(§) ~ w1(§) ~ ()4, L3, = L3, = L, and wz(§)
is in C°(R) but not in C'(R). We now restrict our problem in the weighted space
L
way *

Case (i). On the interval [¢,,+00) = Ry, ie, V(£) € [vi,v4], multiplying

(3.14) by wy(€)7 ¢ (here wa(€) = 1+ £ — &), we get

(316)  S{wa(©iedh - F{wa(©) e + ?’%“wz(g g2
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+wy(€)a(VIVGE + sVwa ()% b — wa () Vb
= —FVuwy(€)ig,.

By the first equation in (2.2), we note that

BAT)  ~Vuwa(&)ivede = —{Vwa(6) Tvde}e + Vwa () Tvde
= —{Vwa(&) e ks + Vwa(€) T (spe + e )
= —{Vwa () T vde}e + {Vwa (&) T(sde +ve) }e
— sVuwn(€) Tpede — Vwa ()92
(

— s |Vewa© + vune -t voe

- {é [Vfwz(f)% + §Vw2<s)-%] w?}g

+ [ + Vewnlo) - Zvunlo 7t

2
and
018 |s [Veute)? + (@ | < ga0Vua(©et + e
where
(3.19) b(€) = s [Vewn(§)% + §Vws(§) 3] oo

a(V)sz(ﬁ)%

Substituting (3.17), (3.18) into (3.16), and integrating it over R, = [{,.,+00),
we have

(3.20)

IR

d 3 d 3
i [, @1 (e~ G [ Veu©gevas

3us 1
+ 2 [ (o) deke +
R

8 Jn,

l/ w2 (€)2a(V)V ¢2de
1 s 1
T2 /1;+ r1(€)Y*dé — /R+ Vws () Tgde + §r2(§*)¢(t,§*)2

<- /R ! wa(€) eV Fd,

where {- - -} denotes the term which is produced from the integral by parts and does
not contain any derivative of wy(§), r;(£)(¢ = 1,2) denote as follows:

(3:21) ral€) = (Van(€))e = Vews(€)} + 3Vun(€)

(322 r1(€) = b(€) — r5(§),
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with b(€) in (3.19). However, by Cauchy’s inequality, we have
t> 9 )
FraE (607 = —gVelemn(er) [ Sewa©) hute,e))dg
3 1 [t 8 3 9
(323 ~ gV m(e)h [ ) bt 6)7)de
teo /1 5 1
= - %[Ve(g‘*)/& <—Zw2(£)"w2 + 2w2(£)‘wwg) d¢

+o0o
+2v(e) /E * (—éwz(e)-%wz + 2w2(£)-%¢¢5) ds]

Y

2 vece >/+°° (1w (€)1 — wy(6) F? — w (ow?) dt
2 | Vel&s 5 22 2 2(8) Ve

+oo 9 4
+vie) [ (Fu© b - mo b

where wy(€,) = 1.
Substituting (3.23) into (3.20), we have

pd [+ 22 oo 3

(3.24) 5 : wa(§)3dedé + {- - He=e. — =5 . wa(§) 3V eypdg

3su +o0 1 1 +oo % 5 1 +o0 9
# B[ w et g [ @ avetde [ elevtas
+o0 +oo

<CON(Y /6 wn(©F 6 + v +C [ ua(@ule

where

(325 ol) = {Vel€ua(€)F ~ Vel yun(e)
SV(EJwa(O)E ~ SV(EJwa(©)F ~b(E) +75(6).

Since V(€) > 0, V¢(§) > 0, a(V) and V(£) are bounded, and |V¢| = O(|¢|~ 2)
[Veel = O(IE[2), w3(€) = O(IE]), as € — oo, we then claim that b(€) = O(¢|~).
Ir,(€)] = O(|€|~%) as € — 4-00. Therefore, there is a larger number &,, € (£, +00)
such that, when £ > £,., it holds

(3.26) () > S V(Ewa(€)4{1 - O(lE]~¥) — 0(le)~#)} > 0,

- 32
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for £ € [£4x,+00). On the other hand, according to the boundness of V, V¢, Vg,
and wy(€) on [&,, &), we obtain

(3.27) @)l < C, on [&, &l
According to above mentioned facts, then we can rewrite (3.24) as follows

d [+ 3 d [t 3
G O (Yo — g [ wa©Vaevas

3 +o00 1 1 +o00
% 5 wz(§) “¢§+§/£* w2 (§)

(3.28)

RS

Bl

a(V)Vgde

1 / * €wide + ON () / " (@) (62 + e
2 . Ex

+o00
+c /E wa ()3
Case (ii). On the another interval (—oo,&,], namely, V(§) € [v_,v.]. Mu-
tilplying (3.14) by ¢¢, and integrating it over (—o0,&,] (here we(€) = 1), we have
Ex

d [ d
(3.29) %% /_Oo ¢2de — {-+ He=e, — i) V derpd€ + /_Oo a(V)Veide

3

6* £*
<on [ stag+c [ e

By the continuity of wy(§), adding (3.28) and (3.29), and integrating it over
[0, ], noting

+oo
| v©ua©enide < Blocl s + COIWE e,

— 00

where C(u) is a positive constant dependent on y, we have proved (3.13) by making
use of the boundness of ¢(£) in [€., &), Lemma 3.2, and (£)4 ~ w2(§). O

Multiplying the second equation of (2.2) by ({)id)g, and integrating it over
R x [0, t], by the Cauchy’s inequality and Lemmas 3.2 and 3.3, we obtain

Lemma 34. It holds

t
(3300 ez + (1= ONW) [ Weelr)legaudr

< C(|(fo,%0)7ey, + |(¢0,§,¢0,5)|?5>1/4) for small  |vy —v_|.
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When we differentiate (3.14) in £ and multiply it by ¢¢ and integrate the
resultant equality over [0,t] x R due to Lemmas 3.2-3.4, then we obtain

Lemma 3.5. It holds

t
(331) e (DI + / e (7) |2
< C(lldoeell® + 1(do,%o)l7ey, + [(bo.e,%0,6) |2, 5/4)

©¥*

Sor stuitably small N(t) and |vy —v_|.

Now we differentiate the second equation of (2.2) in £ and multiply it by —teee,
and integrat the resultant equality over [0,t] X R. Then, using Lemmas 3.2-3.5, we
obtain

Lemma 3.6. It holds

t
63 WP+ [ IveeelPar
0
< C(|I(¢o.ee: Yoeell® + (o, Po)l7ey, + |(¢o,s,¢o,s)|f§)i/4)
for stuitably small N(t) and |vy —v_|.

Proof of Proposition 2.3. Combining Lemma 3.3—Lemma 3.6, we have com-
pleted the proof of Proposition 2.3 for the smallness of N(t) + |vy — v_|, say,
N(t) + vy —v_]| < 8. O

4. Application to van der Waals Fluid

In this section, we will give an application of our stability theorem to van der
Waals fluid in the form of (1.1), (1.2). The pressure p(v) is given explicitly as

RO a
(41) p(’l))—'{}—_—g—‘v—i, for ’U>b,

where R > 0 is the gas constant, § > 0 the absolute temperature (assumed to be
constant), and a and b are positive constants.
When the constants a, b, R and 6 satisfy

4.2) mia < bRO < maa,
where m; = (2/3)® and m, = (3/4)%, then we have

(4.3) p'(v) <0 for v>b,
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i.e., system (1.1), (1.2) with u = 0 is strict hyperbolic. Moreover, there are constants
v and T with 3b < v < 4b < T such that p”(v) = p” (@) = 0, p"(v) < 0 on (v,7),
and p”(v) > 0 otherwise. Therefore, p(v) is strictly decreasing and has two points
of inflection at v = v and . Furthermore, there are v; and vy with v < v; < T < vy
and with vo > 5b such that p"'(vy) = p"'(v2) = 0, p"’(v) > 0 on (vy,v2), and
p"(v) < 0 otherwise. Consequently, we have that

44) p'(v)sS0 for v2wy, and p”(v)<0 forall ve (bv),
45) p'(v)=z0 for v2v, and p”(v) >0 forall ve€ (v1,vq).

In the region b < v < v;, under some conditions mentioned as in Sections 1
and 2, according to the stability theory developed in previous sections, the traveling
wave solution with degenerate shock can be proved to be stable as t — oo, provided
that the initial disturbances and the shock strength are small.

For another region v; < v < vg, some result on the stability of traveling wave
will appear in future.
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