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Abstract

In Part I a new cluster approximation is proposed. The
present approximation bases upon a cluster expansion of the
expression of the magnetization and an approximate reduction of
the density matrix. Thé density matrix of a clustef is obtained
by introducing stochastic variablés and the fluctuation of the
effective field is taken into account. The agproximation can
be improved systematically by expanding the size of clusters
to be considered and it gives satisfactory results for the whole
range of the concentration of magnetic atoms.

The 1-, 2- and 3- site approximations are applied to the
dilute Ising and Heisenberg spin systems with the nearest-
neighbor interaction. The critical concentration, Curie
temperature, susceptibility and spontaneous magnetization are
calculated. The 2- site and 3- site approximations give the
results reflecting more details of the geometry of the lattice
than the coordination number. With decreasing concentration
of magnetic atoms the Curie temperature for the Heisenberg
model decreases more rapidly than that for the Ising model.

The value of the critical éoncentration for the Helisenberg
model is, however, quite close to that for the Ising model.
The value for the three-dimensional lattices 1s in agreement
with the value obtained in the slte percolation problem.

In Part I the Ising spin system with the first- and

second-neighbor interactions is 1nvéstigated in thé 1- site

( 111 )



and 2- site approximations. For the pure ferrqmagnetic
systems the Curie temperaturé is calculatéd. The dependence

of the Cufie temperature on thé ratio of the intéractions

(R= J2/J1) agrees well with the series expansion results of
Dalton and Wood. TFor the square lattice the Curie temperature
decreases with decreasing R to vanish at the boundary where

the ferromagnetic ground state disappears. When R is negative,

the specific heat has a peak below Tc in addition to the peak
at T= Tc.

In the diluted case the critical concentration, Curie
temperature, susceptibility, spontaneous magnetization, pair
correlation function and specific heat are calculated. The
critical concentration depends only on the range of the
interactions when R 1is positive. The interesting phenomena
are found when the second-neighbor interaction is small and
ferromagnetic. The Curie temperature has a trail near the
critical concentration. 1In the low temperature region near
kBT% J2 the spontaneous magnetization shows apparant decrease

and the specific has a peak corresponding to the rapid decrease

of the pair-correlation of the second-neighboring spins,

(iv)
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Part I

A New Cluster Approximation to the Ising and Heisenberg

Magnets



§ 1. Introduction

The problem of the dilute magnet, i.e. a mixture of magnetic
and non-magnetic atoms on a given lattice, has received consider-
rable attention in magnetism. Such a system is usually treated
in two ideal limits; one is the quenched limit in which atoms
are frozen randomly in their positions, and the other is the
annealed limit in which the distribution of atoms is determined
as to minimize the free energy of the system. The distinction

1)

between these two limits was discussed by Brout. In this paper
we will consider the ferromagnetic Ising and Helsenberg models
of S= 1/2 in the quenched limit.

As the concentration of the magnetic atoms p decreases,
the Curie temperature lowers and finally vanishes at the critical
concentration P, It is almost self-evident that a system does
nct show ferromagnetic behéviors for p less than the critical

2)

concentration Pg for the site percolation problem,’ since there
is no infinite network of adjacent magnetic atoms. It is,
however, not evident whether a system éﬁaffs fo exhibit fefro-
magnetic behaviors or not as soon as p exceeds Pg - Various
approximate methods have been applied to the problem and the
value of P, and the dependence of the Curie temperature on p

3)6) have concluded on the

have been calculated. Many authors
basls of series expansion in powers of p that Do for the Ising
model is equal to Pg- On the other hand, whether Pe for the

Heisenberg model coincides with P, for the Ising model or not



seems to be an unsettled problem. The results obtained by the
3)v6)

series expansion in powers of p

7),8)

and in inverse powers of
the temperature show the concentration dependence of the
Curie temperature for the Helsenberg model is strikingly differ-
ent from that for the Ising model. Elliott, Heap, Morgan and

9)
Rushbrooke 'argued that pc was a geometrical property of the
lattice, being independent of the models. Some doubt, however,
has been cast on this argument. For example, Morgan and

4)

Rushbrooke pointed out that in the proof given by Elliott et.
al. a uniform convergence of the series expansion of the sus-
ceptibility in powers of p was tacitly assumed near T= 0.

Also Murraylo)

obtained a significantly higher value OfIJC
than the correspoding value for the Ising model, applying the
spin wave theory to the dilute Heisenberg model.

The problem has been discussed also by use of the cluster

approximations of various types by Sato, Arrott and Kikuchi}l)

12) and Matsudairal3)

Mamada and Takano for the Ising model and
by Oguchi and Obokatalu) for the Ising and Heisenberg models.
The results obtalined by these methods, except Matsudaira's
methoé?) depend on the coordination number z only, independent
of the further details of the geometry of the lattice, and the
values of pc for the Ising model are considerably small compared
with the percolation probabilities. We think that these results
should be meaningful in the case of the Bethe lattice.

It is the purpose of this paper to present a new cluster

approximation which reflects the geometry of the lattice in

(r - 2)



more detail and is applicable to the Heisenberg model as well
as the Ising model; moreover we can improve the approximation
systematically by expanding the size of the cluster from 1
site to 2, 3, *-+ sites. The idea of the effective field has
been used in the various small cluster type approximations,

for example, in the molecular field, Bethe or constant-coupling
approximation. In these methods; the effective field 1is always
assumed to be a constant. As was discussed by Mamada and
Takanol22 it is necessary to take into account the fluetuation
of the effective fleld. Mamada and Takéno considered a single
spin cluster and gave the probability distribution of the
effective field acting on the spin as the direct products

of one-spin density matrices. They obtained satisfactory
results 1n spite of the fact that the approximation is a
single site one, 1.e. the size of the cluster was the same as
in the molecular field approximation. We Introduce pseudo-
spins which are stochastic variables taking the values 1/2

and -1/2 with self-consistently determined probabilities to
represent the fluctuation of the effective field. When we
reduce the density matrix of the total system to that of the
cluster of a given size, we replace spins not included in the
cluster by the pseudo-spins. The probability distribution of
the pseudo-spin is determined by the condition that its average
value is equal to the average value of the magnetization per
spin (divided by guB), In order to derive the self—coﬁsistent
equation, we expand the expression of the magnetization in

cluster series and terminate it at the n-th term which consists

(I - 3)



of n and less than n site cluster contributions; n, which is
taken to be 1, 2, 3 -+, defines the degree of the approxi-
mation. Our l-site approximation coincides with the Mamada-
Takano approximation. There is, however, no obvious way of
extending their approximation to many site clusters, whereas
the present discussion will yield a systematic way of deriving
many site approximation. When p= 1, our cluster expansion

15)

resembles Strieb, Callen and Horwitz's cluster expansion.

We give the formalism in §2. In §3 we present the results
of the calculation for the Curie temperature, the critical
concentration, the spontaneous magnetization and the suscep-
tibility for the Ising and Helsenberg models together with
discussions. Calculations are carried out up to the 3-site
approximation for the typical lattices; linear chain, square

(sq.), planer triangular (p.t.), simple cubic (s.c.), body

centered cubic (b.c.c.) and face centered curic (f.c.c.) lattices.

§ 2 PFormalism

In the present paper we consider the Heisenberg‘and Ising
models of S= 1/2 in which only the nearest neighbor ferro-
magnetic interaction J> 0 exists, although there is no limi-
taion for the range of the interaction in applying our method.
We denote the spacial distribution of atoms in the quenched
dilute system composed of magnetic and non-magnetic atoms by

a set of the occupation numbers {al= {dl, dz, cee, dN}, where

(I - k)



the occupation number oy is 1 if a magnetic atom occupies the
i-th site and 0 if a non-magnetic atom occupies the site; N
is the total number of the sites in the system. We assume the
perfect randomness when we take average over the configuration
of atoms.

The Hamiltonian of the system for a spacial configuration

denoted by {al} is given by

C “2‘1723“10‘381;55 - HJas? (1)
4
M{uh _2g j(;iajsg SJ? - H J 0,8, (2)

in the Heisenberg and Ising models, respectively. In both
cases the first summation is taken over all palrs of nearest
neighboring sites and the second over all sites. H is the
external magnetic field which is assumed to be in the negative
z-direction and measured in the unit of gip= 1. Though we
describe our formalism mainly in terms of the Heisenberg

spins in the following, the equations derived in this sectidn
can easily be adapted to the Ising model.

(1) Approximate reduction of density matrix
In principle all the properties of the system can be

calculated by use of the density matrix
p{a}’-' exp[-Bk(_{u}] / Tr eXp[-BA[.[a}] » B = 1/kBT (3)

which, for example, determines the magnetization (divided by

guB) to be

(I - 5)



- {al} _
miod. Tr[(J,a.82) =0 ] (»

i7i71

Expanding the r.h.s. of Eq.(4) in a cluster series, we develop
a systematic self-consistent approximation in the follbwing
subsections. To that purpose we discuss here our method of

an approximate reduction of the density matrix given by Eq.(3)
to the density matrix of a cluster of sites. In the conven-
tional small cluster approximation so far proposed one obtains
the density matrix for a glven cluster by replacing in the

Hamiltonian those spin operators which do not belong to the

cluster by constant vectors such that
X oY = 2 . 3
S;= 8§ = 0 and S§ = § (5)

The constant S plays the role of an effective field acting
on the spins in a given cluster and is determined in a self-
consistent way. As was discussed by Mamada and Takano}g)
however, it is more reasonable.to assume that the effective
field will take various values instead of being a constant
even in the thermal equilibrium. Thus we propose the following
approximation in the present paper. We replace the spin
operator Sg not belonging to a given cluster by a stochastic
variable gi (we call it 'pseudo-spin') which takes values 1/2
and -1/2 with self-consistently determined probabilities.

In this approximation the fluctuation of the spin operators

S% and Sz are not considered, so that the approximation is
better for the Ising model than for the Heisenberg model.

{o}

We define the approximate density matrix %gjv of a cluster

(1 - 6)



of % sites under consideration in the following way. Replacing
the spins not belonging to the cluster by the pseudo-spins in
the Hamiltonian, we obtain the éffective Hamiltonian}i%%% in which
the spins'{gi}2= {gl’ RN gm} existing in the cluster appear as
operators, where m 1s less than or equal to &. Defining Tr{g}
as the trace over the spin operators {gi}l’ e express pf%% as,
{a} .2 {a} - ’

P{e} ({Si}£)= < p{ms.é.({si}z) > (6)

where

{a} > ‘
proiel{S )= exp [—Bké:i]/ Tr{l}eXp['%u{a}] ¢

{2}

-3

)

and where <"'>§ is the average over the stochastic variables

Si in the effective Hamiltonian}lfgg. Noting that the variables

§£ which are not the nearest neighbors of the cluster drop

out in Eq.(7), <-++>= 1s written as
PP f o PUSY ) afsd (8)

where {gi}nn represents the set of the pseudo-spins in the n.n.
sites of the cluster and ‘P({§£}nn) is the probability for a
given set of values of {gi}nn' |

In the present approximation we treat §i's as variables

independent of one another to obtain
P({5;},)= LB (5)) (5)

with the probability distribution function of a single pseudo-

spin Pl(ga). Then the average value of a pseudo-spin should be

(T - 7)



equal to the average of the z-component of a spin operator

z

<S >0 where <°*+> means the average over atomic config-

c
urations {al} as well as the thermal average. With this as-
sumption and the fact that the pseudo-spin takes the discrete
values 1/2 and -1/2 we determine the probability distribution
P, (5&) as |

Pl(Ei) - a(Ei -y e /e 5(51 + '_'%_):il - X)/2  (10)

where X= 2<SZ>C.
(11) Cluster expansion of the magnetization

In order to derive a self-consistent equation for <SZ>c

{a}

in the next subsection, we expand M defined by Eq.(4) in a

series of cluster averages by use of the approximate density

matrix pfg; defined above. We can prove that
{a} N {a}
Moo= ] M (11)
=1
with
{a} % -k {a}

M, =Y Y (-1)

T [( .S.z). (12)
{3} k=1 "{x} "{k} z_*Le{k}‘l‘ll o{k}]

where the first sum over {2} is taken over all possible clusters
of % sites and the third sum i1s taken over all subclusters of

k sites belonging to a given {2} with gé:f representing
the approximate density matrix for a subcluster {k}. Eq.(11l)
is exact as far as the sum is taken up to £ =N. We will give

a brief proof in the Appendix A.

(I - 8)



For Méa} defined by Eq.(12), the following theorems are
easily proved.
(a) If a cluster {2} is unlinked, i.e. composed of at least
two subclusters {2;} and‘{lé} which are not connected by the

interaction to each other, it makes no contribution to ia}.

of the site

(b) 1If a; of any one,._belonging to {2}is equal to zero, i.e.
the site 1s not occupied by a spin, the cluster { 2} makes
no contribution to Mga }?

The theorem (a) can be proved by noting that the traces
on spin operators in the sites belonging to subclusters {21}
and {22} can be taken separately in our approximate density
matrices appearing in the r.h.s. of Eq.(12), and the theorem
(b) by noting that if a subcluster {k} appearing in Eq.(12)
contains the i-th site, then p{a} is equal to b{a}. Details
of the proofs will be given in{ﬁie Appendix B. tk-1}.

By use of these theorems we conclude that only linked
clusters of % spins are to be taken into account in the sum

over { £} in M{za}. Thus M{a}

L
the concentration of magnetic atoms p, resulting in a rapid

is of order pz in powers of

convergence in the cluster expansion when p is small. As

will be discussed in §3, the convergence of the expansion is
also good for P near 1. When p=1, i.e. all di's are equal to
1, our expansion coincides formally with the expression for
the magnetization given by Strieb, Callen and Horwitz%S)though

their definition of density matrices for clusters is different.

(I-9)



(iii) Self-consistent approximation

With a given concentration of magnetic atoms p, we carry
out the configurational average under the assumption that ai's
are independent of each other, In other words, we assume the
perfect randomness of atomic distribution. Then the prob-
abilities of a= 1 and a= 0 are given by P énd q= 1-P, respec-
tively. The cénfigurational average of the total spins,

MCE < M{a}>C is related to the average value of each spin by

< SZ>C= M® / DN = X/2 (13)

On the other hand, we can calculate < M{OL}>C approximately with
a given value of X if we terminate thé cluster expansion given
by Eq.(11) at a certain value of %= lc' Thus Eq.(13) can be
regarded as the self-consistent equation to determine X. We
shall show in the following that this procedure yields succes-
sively improved approximations if we increase 20.
(1iii-1) One-site approximation

Keeping only the first term Mia} in the r.h.s. of Eq.(11)

and taking the configurational average, we get the lowest

order approximation as

Z

X/2= <8” >, = <M {o}

1 > /pN

z {o} A
< TIrylsy ey (8701 >4,

it

{a}

l,s

<< qufsi 0 (S:?i)b? (14)

C1

(I - 10)



where <--»>cl represents the configurational average on condition

that a,= 1. The density matrix which appears in Eq.(14) has
the form

p{“‘s}-(s ) =expl- 8 %3/ 1, expl - B);iid}] (15)
with

}11{a}= - (23] ,0,5, +H ) s? | (16)

where the sum over v is taken over all the n.n. sites of the
site 1. (cf. Fig.1l(a-1) and (b-1)).After a short calculation

we get the equation

Tp, [S2 pia}(s )1 = —— tanh[-5—(23] o 5, + H )] (17)

We derive now explicitly the self-consistent equation to
determine X. Suppose we have n magnetic atoms at the z nearest
neighbors of the site 1. The probability of such a config-

uration is given by

Q) = (@) p"a® ™ (18)

Since we neglect the correlation among the pseudo-spins §;, the
probability of the pseudo-spin configurations where k out of
n pseudo-spins take the value -1/2 and the rest have the value

1/2 is

n_ ( ) (1+X) n-k (l—X)k

D= (19)

For this pseudo-spin configuration zvavsv takes the value

(I - 11)



I8, = - -21- k4> +(n-k) = (n-2K)/2 (20)

The average over the atomic and pseudo-spin configurations,

< <eeen >, in Eq.(14) can be written by use of Egs.(18),(19)

and (20). together with Eq.(17 ) as

. R
=37 @237 D? tan [ B{i(n-2x) + H 1} 3 (21)
- n k .2
n=o k=0
Note that DE depends on X. In the present l-site

approximation there is no difference between the Heisenberg and
Ising models. This equation 1s identical with that given by
Mamada and Takano. Thus we conclude that our l-site approxi-
mation corresponds to the approximation proposed by them.
(11i-2) Two-site approximation

Terminating the expansion given by Eq.(11) at M{a} we
obtain the self-consistent equation in the 2-site approximation
There are % p2ZN n.n. pairs of magnetic atoms, so that the

equation is

X/2

{a} {a}
My + M >0 / PN

o [sZ plets%)1 5>

]

Pz z VA {a > ' z {a}, .2z
+ 2 o < Trlz[ (Sl + 82) O12zsl,sz)- $r1[81'01 (Sl)]

{a} (22)
- TP2[S2 02 (S )] >
where the sites 1 and 2 are a pair of the nearest neighbors

and <--->012 represents the configurational average on condition

that 0=0y = 1; pig} is the approximate density matrix of the

(I - 12)



cluster consisting of thé sites 1 and 2. The terms containing
the l-site dénsity matrix can be calculated in the same way

as in thé subéection (iii-1), giving a little care to the
configurational average <~-->C12. The term containing the 2-site

density matrix can be expressed as

< Trl2[(S + S )p{u} 1 > crs = << Trl2[(s + S ) {u} '] >5>

12 Ciz2

(23)

It is convenient for the calculation to use the equation

Trlz[(S + S )p{g}_ 1= BBBH. [1n{Tr,, exp(- spig})n )
2
with
)E{O(.} = _2J.{§ 'S + z o S + 2 a S Z }
112 1 v(1)%v (1) vfl) v(2)% (2)8v(2)" "

- H- (5% + %) | | (25)

where the sums over v(1l) and v(2) are taken over the nearest

neighbours of the sites 1 and 2, respectively, the sites 1 and

2 being excluded. (ef. Fig. 1(a-2) and (b-2)) the eigen-
\/{Cﬂ}

values of the effective Hamiltonian,;l12

g
\{ = - =~ (1 +hy +h,) -8
A, = = =L (1 -h, -n)+H
2 > 1™ B
3,4 2 = "(hy - h,y) "+ b _
H — - ! : —
where hy= 2 Ly (1)%y(1)Sucn)s Po” 2L o %v(2)Su(2) (27)

(T - 13)



using these eigen values, we obtain

o ' y
Trle[(si + Sg)pigzg 1={exp(-BX;) -exp(-B1,)}/] exp(-BXy)
i=1
= my[hy, hy; H ] (28)

In the case of the close packed lattices (for example the
triangular and fcc lattices), the site 1 and 2 have common
nearest neighbors ; 2zc, the number of these sites, is 2 for
the triangular lattice and 4 for the fcc lattice, whereas

for the loose packed lattices (for example the square, sc

and bece lattices) zc is equal to zero. This fact makes the
average over the atomic and pseudo-spin configurations

somewhat complicated, since we have to distinguish the

nearest neighbors shared by the sites 1 and 2 from the nearest
neighbor's not shared by them. After some manipulation we

get the self-consistent equation as

z n
x= ] Q7 % D] tanh[ —g— {(J(n - 2k) + H }]
n=o =0
2-2C~1 g _yc-lg-zc-1 . z-zc-1 2° ze
+pz-(2 Q ) Q ) Q
nl=o nl nz2=o n2 nlz2=o nl2
nl nl n? a2 nl? 12
) Dy Dyo Drio
kl=0o k2=o0 kl2=0

x m2[ n1+n12—2(k1+k12), n2+n12—2(k1+k12); H ]

z-1 n+l .
-1 Qﬁ‘l ) Dﬁ+1 tanh[ ——(J(n+1-2k) + H }] ]
n=o k=0

(29)

(I - 14



12 and n2+n12 are equal to the numbers of magnetic

where n1+n
atoms which are at the nearest néighbors of the site 1 and
2, respectively, and Ny, is the number of magnetic atomé which
are at the nearest neighbors shared by the site 1 and 2.
For the Ising model, replacing the term El'gz in Eq.(25) by
Sl 82; we can obtain a similar equation to Eq.(29). We note
that the geometry of the lattice is reflected in the self-
consistent equation through the number zc as well as z, whereas
in the 2-spin cluster approximation so far proposed only the
number z enters in the equation. Thus we obtain different
results in the present approximation for the sc¢ and triangular
lattices which have the same z (=6).
(iii-3) Three-site approximation

The next approximation is obtained by including the term
Mga} which corresponds to the contribution of the 3-site clusters.
There are several types of distinct clusters consisting of
three linked sites; they are the triangle, V-linked and straight-

line clusters. The triangle clusters (as shown in Fig.1/(b-5))

appear in the case of the closed packed lattices and their

contributions to Méa} is
{a} {a}
Z Z qZ
(gjk§ T?ijk[(aisi +aij +oy )lek ] - [(a S +a J)piJ]-

- Trjk[(djs§ +o )p;;}] - Trki[(aksk +o, S )pka} ]

{a} ] + TI" [a {G}] ]_

+ Tr [alslpl{u}] + Tr [o

Jjjp kkp

(30)

(T -~ 15)



where the sites 1, J and k are the nearest neighbors of one
another, and the sum is taken over all the triangle clusters;
pi?i is the approximate density matrlx of the cluster consisting
of the sites 1, j and k. The contribution of the V-linked
clusteres (as shown in Fig.l{a-4) and (b-4)) and the straight-

line clusters (as shown in Fig.l(a-3) and (b-3)) to M;“} is

z {a} o2 {a}
¢ ‘1jk[(uisi +0LJ.SJ +ay, )lek 1 - Trij[(aiSi +aj J)D ]
{a} {a}

- Try [(ayST + o 82)05" ] + Trylaysfoi®’] ) (31)

where the sites i and k are the nearest neighbors of the site
J but not of each other; and the sum is taken over all the V-
linked and straight-line clusters. In the case of the becc and
fce lattices there are two types of the V-linked clusters which
have the different angles between two links. Since the method
of obtaining the self-consistent equation is the same as in
the cases of the 1~ and 2- site approximations, we omit further
discussions.
(iv) Magnetic susceptibility, Curie temperature and critical
concentration
The magnetic susceptibility x can be obtained by differ-
entiating X= 2<SZ>c with respect to the external magnetic

field as

o
b

X /Xg = —%— re'e (32)

joh)
s

(I - 16)



where Xo= —%— (guB)2 B + pN. In order to investigate the

derivative in Eq.(32) we note that the self-consistent equation

which determines X is of the form as
X= f(p, B, X, H ) | (33)

Differentiating both sides of Eg.(33) with respect to H , we

get the magnetic susceptibility as

= 3 ax - 1 . _of of
X/Xo= - TaHT T B - /G- (34)

The paramagnetic susceptibility at zero external field obtained
by putting X=0 and H=0 in Eq.(34).

The Curile temperature 1

k = - d il

BTC Bc is defined as the
temperature at which the paramagnetic susceptibility diverges.
Since the derivative 3f/3H in the r.h.s. of Eq.(34) does not
diverge at any temperature, 'I'c for a given concentration p is

determined by the equation

of

0 =1 - -—B—X—’B= Bc’ X=O, H=0 (35)

The critical concentration Po is defined as the concentration
at which the Curie temperature becomes zero, putting Bc= o

in Eq.(35), the equation which determines P, is given by

_ 4 _ _of '
0= 1 oX | P=Pa,> Bc= ® , X=0, H=0 (36)
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§ 3 Results and Discussions

We calculate the Curie Temperature , eritical concentration
spontaneous magnetization and paramagnetic susceptibilit
for the Ising and Heisenberg models, using the equations
obtained in § 2. The numerical calculations are carried out
for the linear chain, square, traﬁgular, s.c., b.c.c. and f.c.c.
lattices in the l-site, 2-site and 3-site approximations.

(i) Dense 1limit (p=1)

We first consider the system in which there are no non-
magnetic atoms in order to investigate the accuracy of our
succesive approximations in the dense 1limit. In this 1limit the
system corresponds to the usual pure ferromagnet.

The numerical values of the Curie Temperature kBTc/J for
the Ising and Heisenberg models are listed in Table 1 and 2,
respectively, together with the values calculated by other methods.
For the linear chain (z=2), our successive approximations yield
always the results Tc=0' In the l-site approximation, which is
identical with the Mamada—Takano approximation and gives no
difference between the Ising and Heisenberg models, the values
of Tc are already better than those obtained in the molecular
field approximation, but they depend on the coordination number
z only as in the Bethe and constant coupling approximations.

It is known that the critical properties depend on more
details of the geometry of the lattice than the coordination
number; in particular, the closed loops consisting of links of

interacting pairs which appear in the non-Bethe lattices play
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an important role in determing the critical properties. The
primitive closed loop is a triangular loop for the closed packed
lattices and is a square loop for the loose packed lattices.
In a general cluster approximation it appears that we need to
consider at least 3-site or l-site clusters in order to take
the effects of the triangular or squar loops into account. In
our approximation, however, we can consider these effects by
smaller clusters, since spins outside a given cluster are not
replaced by constants but by the pseudo-spins. For example,
consider a cluster of two sites which are the nearest neighbors
of each other. 1In the case of the closed packed lattices there
appears the closed loop which connects two spins in the cluster
and one pseudo-spin at the common nearest neighbor that
these spins have. This loop approximately represents the
triangular loop since the value of the pseudo-spin, which 1is
1/2 or -1/2, affects simultaneously both of spins. For the
loose packed lattices the closedlloop which connects three spins
and one pseudo-spin is considered in the calculation of the 3-sifte
density matrix and it approximately represents the square loop.
Consequently our 2-site and 3-site approximations exhibit reasonablc¢
dependence on the geometry of the lattice. For example, the
value of Tc for the triangular lattice becomes smaller than that
for the s.c. lattice which has the same coordination number
z (=6).

For the Ising model, the ratio of the value of TC in the

3-site approximation to the value obtained exactly or by the
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high temperature expansion methodl6)

is about 1.07 for the
three dimensional s.c., b.c.c. and f.c.c. lattices and about
1.21 for the two dimensional square and triangular lattices.
The ratios depend only on the dimension of the lattice. Thus
we may conclude that our 3-site approximation has almost the
same accuracy for the closed packed lattices as for the loose
packed lattices. We also carried out the calculation for the
Bethe lattices which have no closed loops and obtalned the -
values of Tc quite close to Bethe's values in the 3-site
approximation.

For the Heisenberg model, the quantum effect of the spin
operatoré plays an important role in determining the critical |
properties as well as the effect of the closed loops. The
quantum effect is considered for the spin operators in the
clusters of two and three sites. Going from the l-site to the
2- and 3-site approximations, the values of Tc decrease rapidly
and they are less than the values for the corresponding Ising
model. We find only one value for the Curie temperature. The
ratio of the value in the 3-site approximation to the value
obtained by the high temperature expansion method17) is about
1.22 for the s.c. lattice and about 1.20 for the b.c.c. and
f.c.c. lattices. The fact that these ratios are larger than
those for the Ising model is attributed to the assumption of the
Ising spin like behavior of the pseudo-spins. The result of
our 3-site approximation is close to that of Strieb, Callen

and Horwitz's 3-spin cluster approximation.
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The spontaneous magnetization reaches its absolute saturation
value, that is, X= 2<3%> reaches 1, as T decreases to zero for
the Helisenberg model as well as the Ising model, contrasting with
the constant coupling and Strieb, Callen and Horwitz's 3-spin
cluster approximations where the magnetization is less than the
absolute saturation value at T= 0., 1In Fig.2 we show the temperatur:
depeﬁdence of X= 2<S%> of the Ising and Heisenberg models for the

18)

square lattice together with the exact solution by Yang and
molecular field result. Comparing our results for the Ising
model with Yang's, we can see that our approximatiohs are getting
better successively from the l-site to the 3-site one.

The high temperature susceptibility can be expressed in the
form as |

x = ——C(eug)® BN ] A (87)" (37)

n=0
Comparing the coefficents An with the exact values, the results
of the 1~-, 2- and 3-site approximations are correct to order
62, 63 and Ba, respectively for the Heisenberg model. In the
case of the Ising model, all the 1-, 2- and 3- site results are
correct to order Bu for the loosepacked lattices. For the_
close ©packed lattices the 3-site results 1s also correct to

Bu but the 1- and 2- site ones are to 63;

(1i) Dilution effects

In this subsection we consider the diluted cagse. Since the
presence of non-magnetic atoms cuts off the interactions, the
Curie temperaﬁure and the spontaneous magnetization decrease.

The closed loops discussed in the former subsection also play
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an important role in the dilution problem. For example,consider
a cluster of two sites which are a pair of the nearest neighbors.
When there is a non-magnetic atom in the nearest neighbor of
the cluster, the number of the interactions that are cut off by
this atom is two if it is at one of the common nearest neigh-
bors of the two sites whereas it i1s only one for other cases.
Thus our 2- and 3-site approximations show actually that the
effect of dilution depends on more details of the geometry
of the lattice than the coordination number. In the following
we first consider the Ising model and then consider the
Heisenberg model. We have not carried out the calculation of
the 3-site approximation for the f.c.c. lattice yet, since we
cannot afford to spend the required computer time.
(a) Results for the Ising model

We show the concentration dependence of the Curie
temperature, T _(p) in Figs.3 and 4. Fig.3 shows the results of
the 1-, 2- and 3-site approximations for the triangular and s.c.
lattices which have the same coordination number. Fig.l4 shows
the 3-site results for the square, triangular, s.c. and bcc
lattices and the 2-site result for the f.c.c. lattice. As can
be seen from the figures, the curves are close to straight lines
for p near 1. The values of d[T (p)/T (p=1)1/dp at p=1 are
greater than 1 and change little between the 2-site and 3-site
approximation, about 1.33, 1.27, 1.14 and 1.10 for the square,
triangular, s.c. and b.c.c. lattices, respectively, in the

3-site approximation and about 1.09 for the f.c.c. lattice
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in the 2-site approximation. The linear dependence persists

down to prv0.8 and then dTC(p)/dp starts to increase monotonically

and becomes infinite as p reaches p_ . The shape of the curve
.appreciabl ¢ :

does not change v except for the terminal values; P, and

Tc(p), when the approximation is elevated successively from

the l-site to 3-site one.

The numerical wvalues of p, are listed in Table 3 with the
values estimated by other methods. In the 3-site:approximation
the values for the s.c. and b.c.c. lattices are in agreement
with the critical concentration ps estimated in the percolation
problem, though the values for the two dimensional lattices are
smaller than those of the percolation problem. From the

behaviors of P, (a5 can be séen from the Table 3) > 1t 1s

reasonable to expect that the value of p_ for the f.c.c. lattice
would ¢

“ -""be in agreement with or at least close to the value of Py
if the calculation for the 3-site approximation is carried out.
At present the only case where the exact solution is
available in the quenched dilute system is the linear chain of
the Ising spins%g) Comparing the 3-site result for the
paramagnetic susceptibility with the exact one, the diéference
is quite small. In the dilute limit (p n 0), the susceptibility
obeys the Curie law. ‘
In the dilute system there appear isolated spins and
clusters, so that the value of X= 2<SZ>c is less than 1 even

at T= 0, when there is no external field. In our approximation

the effect of the isolated clusters is considered in a self-
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consistent way. When p<l, X=1 is no longer the solution of the
self-consistent equation which determines X even at T=o, since
the clusters which have no magnetic atoms in their nearest
neighbours appear with finite probabilities. Then the ferro-
magnetic order of the spins which interact with the pseudospins
is affected, since the probability with which the pseudospin takes
the value -1/2 becomes finite for X<l. The concentration depen-
dence of X at T=0 is shown in PFig.5. As the temperature
increases, X decrease monotonically from the value at T=0.

If we investigate the thermal average of a spin, it takes
various values depending on its environment. It 1s interesting

z_(n),

to calculate the value <S%> 5 the averaged value of a spin on
condition that the spin has n magnetic atoms in 1ts nearest
neighbors. The cluster expansion formula given by Eq.(11)

can be transformed into the form as

fa} X , {a}
Moo= ] 0,<85> (38)
i=1
with <s§>{“}—Tri[s§ pi{“}] + Zj{Trij[ : 1§“}] - Tri[sf pi{“}]}

+ e (39)

where the sum over J in the second term is taken over the
nearest neighbors of the site i. Eq.(39) represents the cluster

expansion for the thermal average of the spin operator Si. Taking

Hal}

the configurational average of <Si> on condition that n magnetic

atoms exist in the nearest neighbors of the spin, we obtain the

(
value <SZ>‘n? Terminating the expansion given by Eq.(39) at the

{o}

term which corresponds to the term M of Eq.(11), we can calcu-

late the value <8 >(n) by use of the self-consistently
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determined value X in the f-site approximation. It is obvious

that XMz 2<8% (1) Soticries the following equation.
Z
X=] o x(n) (40)
n

where Qg is given by Eq.(18), This procedure is rather trivial
for the l-site approximation.

(n)

We show the température dependence of X and X obtained

in the 3-site approximation for the square lattice in Fig.6.

Of course, X(O)

is always zero, since it means the value for
an isolated spin. As can be seen from the figure, the shape
of the X(n)— T curve depends on the number n. Especially the

(1)

behavior of X 1s of interest. X(l)/2 i1s the averaged value

of a spin which has only one magnetic atom in its nearest

(1)

neighbors. For p near 1, the behavior of X is approximately

expressed as
= x « tann (3/2) (41)

(1)

As p decreases, however, the value of X becomes smaller than
that given by the r.h.s. of Eq.(41).even at T= 0.
b) Results for the Heisenberg model

First we consider the critical concentration. The numerical
values of p, are listed in Table 3. In the 3-site approximation
the values are much the same as the corresponding values for the
Ising model, though there is some difference in the case of the

triangular lattice. This result seems to support the prediction

by Elliott et.al.g) that P, is a geometrical property of the
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lattice and is the same in the Ising and Heisenberg models.
However, the behavior of Tc(p) for the Helsenberg model is
quite different from that for the Ising model. We show the
concentration dependence of Tc(p) in Figs.l4 and 7. Fig.l

shows the results obtained by thé 3-site approximation (for the
f.c.c. lattice we show the résults of the 2-site approximation)
together with those for the Ising model. Fig.7 shows the results
of the 1-, 2~ and 3-site approximations for the triangular and
s.c. lattices. For p near 1, Tc(p) decreases linearly and the
values of d[Tc(p)/Tc(p=l)]/dp at p=1 are about 1.90, 1.69, 1.35
and 1.24 for the square, triangular, s.c. and b.c.c. lattices,
respectively, in the 3-site approximation. If we compare the
results for the Heisenberg and Ising models, the following

inequality relation is realized for p near 1.

T, (p) T,(p)
a c a c
@ Ty Yl 7 e [T oeEny i

(42)

This indicates that the ferromagnetic state of the Helsenberg
model is more readily destroyed by non-magnetic atoms than that
of the Ising model.

As p decreases from 1, ch(p)/dp increases monotonically
in the high concentration region as in the Ising model., If
this behavior persists down to the low concentration region,
Tc(p) should become zero at the concentration which is appreci-
ably greater than the value of P, we obtained. In the 3-site
approximation, however, there appears a region of p where

d2Tc(p)/dp2 becomes positive and the Tc(p) curve has a "trail"
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6) and E1liott>) obtained the similar

for p near P, Heap
behavior of Tc(p) based on the concentration expansion of the
susceptibility. However, wé cannot conclude definitely that
this is what happens actually in the Heisenbérg model, because
the shape of the Tc(p) curve changes considerably as we go froﬁ
the 2-site to the 3-site approximation; we cannot deny the
possibility that the "trail" of the Tc(p) cﬁrve disappears if
we go beyond the 3-site approximation. It is noted that in

ce— and 3-site

ourapproximations there appears the anti-Curie temperature for
P very near pé, although we cannot show it in the figures
because the region of p where the anti-Curie temperature appears
is quite narrow.

The value of X at T= 0 decréases monotonically as p
decreases. In the 3-site approximation the X-p curves are
nearly identical with those for the Ising model except for the
case of the triangular lattice. As the temperature increases
from zero, X decreases mohotonically in the case of the high
concentration. In the case of smaller p, however, there
appears a region of p and T where X undergoes a small but
finite increase as T increases. Such a increase of X= 2<8%>
with increasing T appears also in the case of the constant
coupling and Strieb, Callen and Horwitz's 3-spin approximations.
This region becomes narrower with respect to both p and T in

the 3-site approximation than in the 2-site one. This behavior

of X corresponds to the appearance of the anti-Curie temperature.
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§ 4 Summary

We have presented a new approximation to treat the dilute
Ising and Heisenberg ferromagnets. In this approximation the
value of X= 2<SZ>C is self-consistently determined. In order
to derive the seif—consistent equation for X, we use the
cluster expansion formula given by Eq.{(11) and the approximately
reduced density matrix for a given cluster. The reduced
density matrix is obtained by replacing the spin operators
not included in the cluster by stochastic variables (the pseudo-
spins) whose probability distributién is given as a function X.

The approximation can be improved systematically by expandig
the size of the clusters to be considered. In the 2-site and
3-site approximations we have obtained satisfactory results
for the Curie temperature, critical concentration, spontaneous
magnetization and magnetic susceptibility, compared with those
obtained by other methods. The results exhibit good dependence
on more details of the geometry of the lattice than the coordi-
nation number. For the three dimensional lattices the values
of P, obtained in the 3-site approximation are in agreement
with those of the site percolation problem and are nearly same
for the Ising and Heisenberg models. The behavior of Tc(p) for
the Heisenberg model, however, is quite different from that for
the Ising model; Tc(p) for the Helsenberg model decreases more
rapidly than for the Ising model as p decreases, and the Tc(p)
curve has a "trail" for p near Pye It is noted that the

averaged value of a spin with a specified environment can be
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calculated withour difficulties in our approximation.

Although we do not show the results, the two spin correlation
function and the specific heat can be calculated by use of the
2-site and 3-site density matricés obtained in § 2.

It is interesting to investigate the system in which the
next nearest neighbor interaction exists as well as the nearest
neighbor interaction, or the qﬁasi one and two dimensional
systems with the weak interactions between chains or planes.

Our approximation can be applied without difficulties to these

systems. We will report the results in part II .
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Appendix A. Proof of the cluster expansion formula of Egs.(1l1l)

and (12)

First we substitute Eq.(12) in the r.h.s. of Eq.(11). The

r.h.s. of Eq.(11) is written as

3 3 v 2k
M = (‘1) - ¢ m (A _1)
=1 * 221 zmkzl 2{k} {x}
with .
My = T llienag @ 810 0 P ] (A =2)

where we omit the symbol {d} for brevity. The double sum

N 9 N N
) ) ( ) 1s equivalent to ) Yy ( ), so that
221 k=1 k=1 2=k
) ) I oent ™y (A -3)
M, = m . -1 A -3
221 ¥ k=1 “{x} {k} 25k . {2}

It must be noted that the last sum over {&} is taken over the
clusters of % sites which contain the cluster {k} (k < &) as
a subcluster; the cluster {2} is composed of the k-sites
belonging to the cluster {k} and (f-k) sites which are chosen
from (N-k) sites not belonging to {k}. Thus the last two
summations in Eq.(A-2)with a given {k} is calculated

N-k 2

) D) (k) (A -1)

3 oen Ty % (1) (-ky
-1 = - - =
L=k {2} 25k =k

N-k
Eq.(A -4) is the binomial expansion of (1-x) with x=1; that

1s, it is equal to zero except for the case k= N, in which case

it is unity. Thus
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N
m - 8 = m
1 Y k= z{k} fy KN

i~
=
1]

3

N 4

This equation is equal to the exact expression given by Eqg. (l4)

20) 15)

It is noted that Kubo and Strieb, Callen and Horwitz

proved
the expansion theorem of the density matrix or of the free energy

in the similar fashion as ours.
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Appendix B Proof of the theorem (a)

The contribution of a cluster {2} to M, given by Eq.(12)

is written as

) -1)*¥on (B -1)
1 {x} {x}

il o1

M
y

where {k} is the subcluster bélonging to {2} and ™l is defined
by Eq.(A-2). The symbol {a} is omitted. If the cluster {2} is
composed of two subclusters {m} and {n} which are not linked to
each other, the traces on the spin operators in the sites
belonging {m} and {n} can be taken separately in our approximate

density matrices; that is,

Trrn} Pia} = Pim} > Tm) P{2}" Pin} (B -2)

If {k} 1is divided into two subclusters, one is
{kn}l, the sites of which belong to {n} and the other is {km},

the sites of which belong to {m}, Ml is divided into two parts

Mgy = M) + Mgem) (B -3)

when we define m ( {0} is the cluster which contains no sites)
{o} also those

as to be zero, Eq.(B-3),6 holds for(*w/’Eiusters,all the sites

of which belong to {m} or {n}; that is, kn=0 or km=0. By use of

Eq.(B-3), M{z} is written as

% gk & 8-k
Migy= 12 o (D) ‘m{kn}’LkZ1 NGRS

em (B =-4)
k=1 {k} {k} {kem}
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We first prove that the first term of the r.h.s. of Eq.(B -4)
is equal to zero. Dividing the sum over {k} into the sums
over {kn} and {km},

-k £-n

% n
] ) 1 em = 7T (DA Y (cnTm Ly
k=1 {k} {kn}  kn=1 {kn} {kn} km=0 {km}
(B -5)
o) is the number of ways of choosing km sites out of (f-n)
km

sites, so that

2=n -km L-n
(-1) = (-1)km (A-ny
km=0 Z{km} km=0 km
=0 (since m= %-n ; 1) (B -6)

In the same way we can prove that the second term of the r.h.s.

of Eq.(B -4) is equal to zero, since n > 1.
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Proof of the theorem (b)

When a site i belongs to the cluster {2}, the summation

over {k} in the r.h.s. of Eq.(B-~1) can be written as

-1 )
2=k! ) L-kt-1
M = [(-1) o m + (~1) om ,
(e} kz=l z{1«:'} (x'} kt+id

v (-1 L | (B -7)
{1}
where the sum over {k'l} is taken over all subclusters which do
not contain the site i. {k'+i} means the cluster of (k'+1)
sites made of the site i and the cluster {k'} and {i} means
the cluster which contains the site i only. If the occupation
number oy of the site i1 is equal to zero, mesy= 0 and Mipreq}™

Meypry » Since the density matrix Pikr+i} 1S equal to Pryrye
Thus

) [(—l)g—k'=m + (—1)z_k'_1-m
=1 {k'} {k'} {k'}

)

-1
1

L
M =
{2} K

= 0 (B -8)

(I - 34)



1)

2)

3)
h)
5)
6)
7)

8)

9)

10)
11)

12)
13)

154)
15)

References of Part I

R. Brout: Phys. Rev. 115 (1959) 824

J. W. Essam: 'Phase Transitions and Critical Phenomena Vol.2!
ed. by Domb and Green (Academic press, London, New York,
1972) p.197

S. Rushbrooke and D. J. Morgan: Mol. Phys. 4 (1961) 1
Morgan and G. J. Rushbrooke: Mol. Phys. 6 (1963) 477
Elliott and B. R. Heap: Proc. Roy. Soc. A265 (1962) 264
Heap: Proc. Phys. Soc.'gg (1963) 252

Morgan and G. S. Rushbrooke : Mol. Phys. 4 (1961) 291

I B B

G
D
R
R.
D
G Rushbrooke, R. A. Muse, R. L. Stephenson and K. Pirnie:
J. Phys. C5 (1972) 3371

R. J. Elliott, B. R. Heap, D. J. Morgan and G. S. Rushbrooke:
Phys. Rev. Letters 5 (1960) 366

G. A. Murray: Proc. Phys. Soc. 89 (1966) 111

H. Sato, A. Arrott and R. Kikuchi: J. Phys. Chem. Solids 10
(1959) 19

H. Mamada and F. Takano: J. Phys. Soc. Japan: 25 (1968) 675
N. Matsudaira: J. Phys. Soc. Japan 35 (1973) 1593

He has obtained almost the same results as ours for the Ising
model by use of the approximation based on the identity

<8y> =< tanh(BJESj) > which is proved for the Ising spin.

T. Oguchi and T. Obokata: J. Phys. Soc. Japan gz (1969) 1111
B, Strieb, H. B. Callen and G. Horwitz: Phys. Rev. 130 (1963)

1798

(T - 35)



16) M. F. Sykes, D. S. Gaunt, P. D. Roberts and J. A. Wyles:
J. Phys. A5 (1972) 640

17) G. S. Rushbrooke, G. A, Baker, Jr. and P. J. Wood: 'Phase
Transition and Critical Phenomena Vol.3' ed. by Domb and
Green (Academic Proess, London, New York, 1974) P.245

18) C. N. Yang: Phys. Rev. gi (1952) 808

19) S. Katsura and B, Tsujiyama: Critical Phenomena NBS Misc.
Publ. 273 (1965) 219

20) R. Kubo : J. Chem. Phys. 20 (1952) 770

(I - 36)



Table 1 Numerical values of kgT, / J at p= 1 for the Ising model

(LE - I)

sq. p.t. sc bee fee
Bethe 1.443 2.466 2.466 3.476 5.485
Matsudaira 1.311 2.136 2.366 3.332

High temperatug? 1.135 1.820 2.255 3.177 4,897

expansion
Our l-site 1.545 2.537 2.537 3.530 5.522
(Mamada-Takano) ‘
" Qur 2-site 1.466 2.307 2.479 3.484 5.327
Our 3-site 1.367 2.203 2.410 3.382 5.228

¥) For the sq. and pt. lattices the values are exact.



(gt - I)

Table 2 Numerical values of kgT, / J at p= 1 for the Heisenberg model

S= 1/2

sq. p.t. sc bce fece
Constant coupling none 1.821 1.821 2.884 4,932
SCH's 3~-spin cluster 1.144 1.596 2.082 3.048 L, 650
Hith temperature 1.68 2.53 L,o2
expansion +0,01 +0,015 +0.02
Our 2-site 1.177 1.979 2.197 3.211 5.044
OQur 3-site 1.001 1.735 2.062 3;026

4.811




(6€ - I)

Table 3 Numerical values of P, for the Ising [I] and Heisenberg [H] models

sq. p.t sc bee fece
Matsudaira [I] 0.484 0.338 0.310 0.234
Spin Wave*) [H] >0. 44 > 0.39 >0.345
EHMR ) 0.48 0.36 0.28 0.22 0.18
Site percolation 0.59 0.5 0.307 0.243 0.199
+0.01 (exact) +0.010 +0.010 +0.008
Our 1-site 0.428 0.293 0.293 0.223 0.150
(Mamada-Takano)
Our 2-site [I] 0,431 0.377 0.283 0.211 0.180
[H] 0.h472 0.401 0.312 0.233 0.194
Our 3-site [I] 0.488 0.410  0.301 0.235
[H] 0.485 0.440 0.306 0.233
% 10) 9)
) Murray ¥%¥) Elliott, Heap, Morgan and Rushbrooke



Fig.

Fig.

Fig.

Figure Captions

Figures of the distinct clusters which contains one,

two and three sites. White circlés represent the sites
in the clusters and black circles represent the nearest
neighbouring sites. (a), (b), the clusters which appear
in the square and triangular lattices, respectively.
Temperature dependence of X= 2<3%> at p= 1 for the
square lattice., Temperature is normalized by the Curie
temperature. Full lines: the 1-, 2- and 3-site approxi-
mation for the Ising model. Dot dashed line: the 3-site
approximation for the Heisenberg model. Dashed line:
Exactlsolution by Yang. Dotted line: the molecular
field approximation.

Concentration dependence of the normalized Curie temper-
ature Tc(p)/Tc(p=l) for the s.c. and triangular lattices
reoults of the Ising model. Dotted line: the l-site
approximations. Full lines: the 2- and 3-site approxi-
mation for the s.c. lattice. Dashed lines: the 2- and
3-site approximations for the triangular lattice.
Concentration dependence of the Curie temperature for the
square (sq.), triangular (pt), s.c. and b.c.c. lattices
(results of the 3-site approximation) and for the f.c.c.
lattice (results of the 2-site appréximation). Full lines:
the Ising model. Dashed lines: the Heisenberg model.
Concentration dependence of X= 2<SZ>c at T= 0 for the

square, s.c. and b.c.c. lattices. The curves are obtained

in the 3-site approximation for the Ising model.
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Fig. 6 Temperature dependence of X= 2 <SZ>c and X(N) for
p= 1, 0.9, 0.7, 0.55 and 0.5 for the square lattice.
The curves are obtained in the 3-site approximation
for the Ising model. Full lines, dotted lines,
dashed lines, dowble dot dahsed lines and dot dashed
lines represent X, X(l>, X(Z), X(3) and X(u), respec-
tively. For p= 0.5, the curve for X(3> is not shown
since it is almost the same as that for X(Z).

Fig. 7 Concentration dependence of thé normalized Curie
temperature Tc(p)/Tc(p=1) for the s.c. and triangular
lattices ,results of the Heisenberg model. Dotted line:
the l—sife approximation. Full lines: the 2- and 3-site

approximations for the sc lattice. Dashed lines: the

2- and 3-site approximations for the triangular lattice.
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Part IT

Application of a Cluster Approximation to Ferromagnets

with the First- and Second-Neighbor Interactions



§ 1 Introduction

In the preceeding part (hereafter referred to as [I]),
we proposed a new cluster approximation which can be improved
systematically. This approximation is applicablé to the dilute
magnetic system (a random miXtﬁré of magnetic and hon-magnétic
atoms) as well as to the pure'systém. In [I] we have investi-
gated the dilute Ising and Heisénberg magnets with the nearest-
neighbor interaction in this approximation. In the present
part we shall invéstigaté the pure and dilute Ising ferro-
magnets including the second-neighbor intéraction by extending
the cluster approximation to this casé.

Our approximation is based on a cluster expansion of
the magnetization and an approximate reduction of the density
matrix. We introduce a "pseudo-spin" which is a stochastic
variable taking the values 1/2 and -1/2 with self-consistently
determined probabilities. When we reduce the density matrix
of the total system to that of a small cluster, we replace
spins not included in the cluster by the pseudo-spins. The
density matrix of the cluster is obtained by averaging over all
pessible configurations of pseudo~spins. The probability
distributlon of a pseudo-spin is approximately determined by
the condition that its average value is equal to thé magneti-
zation per spin (divided by guB). On the other hand we expand
the expression of the magnetization into a cluétér serles and
obtain thé'self-consistént éqﬁation which detérmines thé

magnétization per spin. The'l-sité approximation is identical

(- 1)



with that given by Mamada and Takano.l)

The approximation

is improved systematically by expanding the size of clusters

to be considered. The 2-site"approkimation already reflects

the geometry of the lattice in more detail than the coordination
number,

In 8 2 we shall dérivé thé sélf-consistént équation in
the l-site and 2-site approximation. The équations for the
susceptibility, Curié températuré;-critical concentration,
pair correlation function and specific heat is also given.

Investigation of the Ising model with the first- and
second-neighbor interactions is of intérést not only theoré-
tically but also for a better déscription of real magnetic
systems. In the present paper, wé study the case whére the
first-neighbor interaction J1 is positive, i.e. ferromagnetic
and the second-neighbor interaction takes various values.

If J2 is positive, the ferromagnetic long range order is
reinforced and the Curie temperature increases. On the other
hand, if J2 is negative, the Curie temperature decreases, and
below some critical value of R=J2/J1 the model does not show
ferromagnetic ordering. The model, however, is not solved
exactly even for the two-dimensional lattices since the inter-
actions’ cross each other (so-called "crossed-bond" problem).
In recent years several works have been done on this problem.

2)

Dalton and Wood studied the two- and'threé—dimensional Ising
models by the method of power series expansion for the partition

function and thermodynamic functions. They determined critical
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indices and calculated the dependence of the Curie temperature

on the value of R for R>0. Kawakani and Osawa§ 4)

5)

) Gibberd
and Fan and Wu calculated the Curie temperature for the

square lattice. They write the partition function as thé
vécuum—to-vacuum expectation valué of férmion opérators. Then
using the anticommutation relation of the férmion operators,

the partition function is written as thé expectation value of
the time ordered exponéntials in which a quartic term of fermion
operators appears in addition to the quadratic terms. They
ignére the quartic term and calculate thé Curié temperature
approximately. If J2=0, their result is exact. For R>0 their
result agrees well with the résult of Dalton and Wood. Fan

and Wu obtained the result that the Curle temperature decreases
smoothly as R decreases and becomes éero at R=-1/2.

Takase6) also studied the Ising model of the square lattice
in the approximation which is identical with our l-site approxi-
mation. His approximation, however, is based on a different
principle from ours. He has calculated the Curie temperature
and spontaneous magnetization. On the basis of a free energy
expression, he concluded that the first-order phase transition
from ferromagnetic to paramagnetic phase occurs for range
-0.238>R3-0.5. As will be discussed in § 3, this conclusion
which contradicts with that of the present theory is hard to
believe.

In § 3 we shall investigate the thermodynamic properties

of the Ising model with the first- and sédond-néighbor inter-
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aétions. The depgndence of the Curie temperature on R=J2/J1 is
calculated for the square, triangular; s.c., b.c.c. and f.c.c.
lattices. For the square”lattice the'spontanéous magnetization,
pair correlation function'and spécific heat are calculated;

which show reasonable dependences on températﬁré and thé ratio

of the interaction constants, R. Thé Curie temperature decreases
smoothly with decreasing R to vanish at R=-1/2 in agreement

with Faw and Wu's result.

In § 4 we shall investigate thé random mixture of magnetic
and non-magnetic atoms. Wé assume thé perféct randomness of
the atomic distribution. Thé presence of non-magnetic atoms
results in the decrease of the Curié température. Below the
critical concentration of magnetic atoms the system does not
show any phase transition. As was discussed in [I], the critical
concentration would correspond to the formation of a infinite
network of adjacent spins. The value of the critical concen-
tration and concentration dependence of fhe Curie temperature
have been calculated by many authors for the case where only
the nearest-neighbor interaction exists. The relevant refer-
ences are found in [I].

The role of the farther neighbor interaction has been
qualitatively discussed by Brout?) The second-neighbor inter-
action, even if it is small, is expected to play an important
role at least at low témperatures. Especially it has been

discusséd by Elliott, Heap, Mogan and Rushhrook 8) that the

critical concentration dépendS'on thé range of interactions
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9)

and not on the strength. Idogaki and Uryu”’ have calculated
the concentration depeﬁdence'of thé Curie temperature for
various valués of R=J2/J1> 0 by the method of concentration
expansion. They obtained thelréSult that thé'critical concen-
tration does not depend on thé'strength’of J, and the Curie
temperature vs. concentration curve has a "trail" in the région
of concentration near the critical one when R is small.

We shall calculaté the critical concéntration; Curie
temperature, paramagnetic suscéptibility, spontaneous magnet-
ization, pair correlation function and specific heat in our
2-site approximation. The calculation is carried out for the
squaré lattice including thé sécond—néighbor interaction. We
shall find the remarkable rolé of the weak second-neighbor
interaction in the low temperature region. The calculation
for the s.c., b.c.c. and f.c.c. lattices are carried out in

our l-site approximation.
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§ 2 Formallism

§ 2-1 The cluster approximation

In this section we extend the cluster approximation
proposed in [I] to the case where the second-neighbor inter-
action also exists. VWe considér thé Ising model of S= 1/2 with

the ferromagnetic first-neighbor interaction J.> 0 and the

1
second-neighbor interaction J,; the sign and magnitude of J2
is assumed to be such that the long range order, if it appear,
ferromagnetic. The spacial configuration of magnetic and non-
magnetic atoms is denoted by a set of océupation numbers, {al=

{al, Ons "' aN}, where the occupation number di is equal to

1 if a magnetic atom occupies the site 1 and 0 if a non-magnetic

atom occupies the site. For a given atomic configuration {al},

the Hamiltonian of the system is written as

Z

{al_ (1) Zal (2) Z ’ Z
)Q( = -2J, ) mimjsis‘j - 23, ) ay0, SIS - gupH Z a8y

(2 - 1)

where H is the external magnetic field and the sums 2(1) and
2(2) are taken over all the first- and second-neighbors,
respectively, and the last sum is over all sites.

In our cluster approximation, the average value »f a spin,
X= 2<SZ>C, where <+e+>, means the average over the atomlc
configuration as well as the thermal average, is determined
self-consistently. The procedure to derive the self-consistent

equation is the same as that discussed in [I]. We briefly

summarize, without proof, the procedure in thé following.
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First we define the approximate density matrix p{z} of
a cluster {2}, consisting of £ sites. (We will omit the symbol
{a} hereafter Wheﬁ there is no confusion.) We replace the
spins Si not belonging to the cluster by stochastic variables
§i (pseudo-spins) which take the values 1/2 and -1/2 with
the probabilities (1+X)/2 and (1-X)/2, réspéctivély; In this
approximation we assume that the pseudo-spins are independent
of one another and the average valué of a pséudo—spin is equal
to the average value of a spin, <SZ>C= X/2. For a given con-
figuration of the pseudo-spins, thé density matrix p{l},grof
the cluster {2} 1s expressed in terms of the effective Hamil-

tonian ki{z},§ thus derived as

oay,5 = @@L -8 Klgyy 51 7 Trpyeml -8Rl gy 57
(2 - 2)
where B= l/kBT and Tr{z} means the trace taken over the spins
which belong to the cluster. Takling the average over all
possible configuration of the pseudo~spins, the density matrix

Pig} is calculated as

Pie} = <P},5” 8 (2 - 3)

Noting that the pseudo-spins that are not at the first- and
second-neighbors of the cluster {2} drop out, we only consider
the pseudo-spins that are at thé first- or second-neighbors . of

the cluster when we take the average <trtcw o
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Next we expand the magnetization of the system (dividegd
by guB) which is given by

M{a}

e Z * -

= Tr [(} a;85) * py] (2 - b)
into the cluster series, Whéré PN is thé dénsity matrix of the
total system. The following cluster expansion formula is

proved,
. N '
plods leéa} (2 - 5)
L=

with

2 -k :

Mia}= 2{z}k§1(’1’£ 2{k}'Tr{k}[(zi.é{k}aisg)'p{k}] (2 -6)
where the sum over {2} is taken over all possible clusters
of % sites and the sum over {k} is taken over all subclusters
of k sites belonging to a given {&}. By use of the theorems
proved in the appendix of [I], the clusters {2} which give
non zero contribution to Mg are the linked clusters of & spins,
that is, all occupation numbers ai’s of the sites belonging to
{2} are equal to 1 and all the spins are connected by the inter-
actions.

When the concentration of magnetic atoms is equal to p,

there are pN spins in the system and the probabilities of d= 1
and a= 0 are givén by p and g= 1l-p, réspéctively. (We assume

the perfect randomness of atomic configuration ). Then taking
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the configurational average of Eq.(2-5), the value of X is

given by
X/2= <SZ>c = < M{a}>c/ pN (2 - 17)
< M{a}

>, can be calculated approximately with a given value of
X if we terminate the clustér expansion at a certain value of
2, so that Eqg.(2-7) is the'sélfconsistent equation .which
determines X. Succesive approximations are madé by taking
progressively larger valué of 2 at which thé cluster expansion

is terminated.
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§ 2 -2 1 - site approximation

Keeping only the first term in the cluster expansion given
by Eq.(2-5) and taking the configurational avérage with a given

concentration p, we get the 10Wést order approximation as

X/2= < Mi“} >/ PN

— Z L]

= < Trl[sl pl] >01 (2 - 8)
&a\t}%gu

where the Py is the approximate densityYol the site 1 occupied

by the spin Si and <:*-> réprésents the configurational

Ca
average on condition that 0q= 1. After a short calculation,

the r.h.s. of Eq.(2-8) can be written as

<Tr1[S:ZL C el = << % tanh[K; - 22(1)%5“\) + K, ¢ 22(2)au§u+L]>.S.:
(2 - 9)

where K,= BJ1/2, K= BJ2/2 and L= BguBH/Q, and where Z(l) and
2(2) mean the sums over the first- and second- neighbors of
the site 1, respectively. The average over the atomic and
pseudo-spin configurations, <<--->§->Cl can be carried out in
the similar way as was discussed in [I] by use of the followihg
definitions.

Z _ ;Zy.N _Z-n
Q, = (n)p a (2 - 10)

and

(T - 10)



P = (n) (l Z X)n—k (1 - X)k

K > (2 - 11)

Let Zq and Z5 be the numbers of the first- and second-neighbours,

the self-consistent equation which determines X is given by

X= Z QZ‘ Z *qz2 Z DY % D“ - tanh[K. (v—2kv)+K., (u-2ku)+L]
v=0 n=0 U Ky=0 kv k=0 ku 1 2

(2 - 12)
where v and u are the numbers of magnetic atoms which occupy
the first- and second-neighbors , respectively; and where kv
7and ku are the numbers of pseudo—spins which take the value

-1/2 out of v and u pseudo—spins, respectively When K,=0,

2
that is, J,=0, Eq.(2-12) becomes identical with Eq.(21)

obtained in [I].
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§ 2 - 3 2 - site approximation

The 2-site approximation is obtained by terminating the
cluster expansion at Méa}. There are pzle/2 first—néighboring
spins and p222N/2 second-neighboring spins, so that thé self-

consistent equation is given by

X/2= <M£a} + Méa}>c/pN

14
1" P17,

<Tr1[S

PZ1 Z | oZ _ A _ z
5w <Trypl(8] + 85004, TrilSyeyl - TrplSyenl >g

+ Bgi <Trl3[(S§ + Sg)plsj —Trl[Sipl] - Tr3[8503] >013

(2 - 13)

where Pqip and 013 are the approximate density matrices of the
first-neighboring spins Si and Sg and that of the second-

neighboring spins S% and Sé, respectively, and where <--"->c12
represents the configurational average on condition that
0 =a,= 1 and similarly for <--->Cls. The terms containing
the l-site density matrix, Pys> Py, OT p3, can be calculated in
the same way as in the subsection (2-2).

For a given values of pseudo-spins, the density matrix
pl2,§ of the first-neighboring spins is expressed byvuse of

Eq.(2-2) :with the effective Hamiltonian givén by
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- @nd + o nl®y s o ogum (5T 4 8D (2 - 1)

where

(1) _ ! ' = (2)_ e
hy ™= 2L, (y%(n)Sv() M7= 2 %S

hg = 200 By PET = 2y e
(2 - 15)
where.the sums over v(1l) and v(2) are‘taken over the first-
neighbors of the sites1 and 2; respectively, the sites 1 and
2 being excluded, and where the sums over u(l) and u(2) are
over the second-néighbors of the sites 1 and 2, respectively.
Then the term which contains Py is written as

z Z _ z Z ’
<Tr12[(S1 + S2)p12] >012- <<Trl2[(sl + 82)912,§] >3 >012

(1) (2)

(1) (2)
g1(h17% hy™7, b7, h

2 5 gl'IBH) >-S— >012

(2 - 16)

my, defined by Eq.(2-16) can be calculated without difficulty

by use of the eigenvalues of the effective Hamiltonian Hlé g
. . 2

When we take the averages, <<ev >clz, we have to classify

the neighboring sités of the sites 1 and 2 according to the

lattice geometry into séveral types. 1In the casé off the square
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lattice (see Fig.1(1l)), for example, the sites 4, 7 and 10 are
the first-neighboring sites of the site 1, and the sites U and
10 are also the second—neighboring sites of the site 2 whereas
the site 7 is not. Then the number and values of pseudo-spins
at the sites 4 and 7 affect thé valués of hil) and h§2) simul-
taneously, but those of the pséﬁdo-spin at site 7 affects only
the value of h&l). Such a situation always appéars in the case
of the non-Bethe lattice, since thére exist triangular closéd
loops of the first- and sécond—néighbor interactions. If we
abbreviate the configurational average of magnetic atoms by

ZQ(JI) and that of pseudo-spins by ED(Jl),

zZ b4
<Try, [0Sy + S3)pqp1 >0,

D LICA) TGRS LRI CURY SO Y COIP SRR CIET )

Using the similar notation for the term which contains p13,

we can write down the self-consistent equation as

Z1 Z2

X= Q%! Q%% - D.(v,u)
vZO v UZO U 1

-

Y

+ F ) . N fz Q%2 . D.(v+1l,n)
P2y |\[QWIIPEY) - mpy = L0 QT L9y 1{vFLu
L = = »

7
r : A
+ 3Q(J,)ID(J,) = mo, - fl Q21 fzﬂr Q%271 D (v, ptl)

PZ3 2 2 g2 7 by v kg e 177 B

Vv

(2 - 18)
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where

Vv

V ) .
D, (v,u)= ) D>} DI tanh[K.(v-2kv)+K, (u-2ku)+L]
1T Lo kv b Tk 1 2

(2 - 19)
The explicit expressions of }Q(J,), )D(J{), JQ(J,) and ID(J,)
and values of hil), hiz)

, ete. are givén in the appéndix for
the square lattice. Whén J2=0, the térms corresponding the
second~neighboring pair cancel out, and Eq.(2-19) becomes

identical with Eq. (29) - obtained in [T].

(L - 15)



§ 2 - 4 Susceptibility, Curie temperature and critical

concentration

The self-consistent equations dérived in thé prévious
subsections are of the form as
K

13 2: L) (2 - 20)

X= f(X, p, K
Since the equations for thé susceptibility x, the Curie
temperature Tc and thé critical concentration p, are derived
in the same way as in[I];wé Show the results without discussions.
The magnetic susceptibility is givén by

X/xy = =/ (1 - 3% (2 - 21)

Q

where x, = f(gug)“B * PN. The equation which determines T, 1s

of
w7l = _ o (2 - 22)
= K,=K,,, X=L=0

o
1
-
|

where K01=J1/ 2kBTC and Kc2= J2/ 2kBTc. The equation which

determines P, is

=1 - 2f
0=1 3X|p=pc, K= [K, ==, X=L=0 (2 - 23)
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§ 2 - 5 Spin pair correlation function and specific heat

The correlation functions of the first-neighboring spins

Si and Sg and of the second-neighboring spins Si and Sé are

defined as

- . Z «Z. _ Z 7 {a}
Eyq= 4 <Sy 82>c— b< Tr[S1 S5 PN ]>012‘ (2 - 24)

- . Z oZ _ 7 o2 '{d}
= I <83 83>c = 4 <Tr[S1 S3 PN ]>cla (2 - 25)

where péa}

is the exact density matrix of the system with a
given atomic configuration {a}. In this subsection we give

the equations which determine the correlation functions by

use of the approximate l-site and 2-site density matrices
obtained in the previous subsections. Before we show the
calculation, itvis noted that there are various ways to calculate
ng and £J2 and we cannot determine the equations for ng and
£J2 uniquely in the framework of our cluster approximation.
This is because the correlation functions are not considered
explicitly in the derivation of the self-consistent equation
which determines X and there 1s no evident principle for the
calculation of ng and £J2. In the following, we calculate
them by use of the l-site density matrix in the l-~slte approxi-
mation and by use of the 2-site density matrices in the 2-site
approximation. It is however, possible to calculate EJl and

£y, by expanding Egs.(2-24) and (2-25) into a cluster series

like Eq.(2-5) and terminating it at the corrésponding size of
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clusters to that of the self-consistent equation fqr X.

We do not go into more details of such a method here, since

the following method seems to yield the most réasonable resulﬁ.
In the l-site approximation we approximate EJl as thé

correlation between the spin Si and the pséudo-spin §2; that is,

= U -<<Tr1[s§ g (2 - 26)

31 2 1,5 5§ ¢,

whre the density matrix P15 also contains the pseudo-spin §2.
]

After a short calculation, Eq.(2-27) is written as

E .= 21_1 Qzl*lfz sz f M g Dﬁ
J1 v=0 v u=0 H kv=0 kv ku=0 Ky
J1+x _
o tanh[KliKl(v-2kv) + K2(u- 2ku) ]
1-X '
- == + tenh[-K +K,(v-2kv) + K, (u-2ku)] (2 = 27)

This approximation is satisfactory is spite of the fact that
is a single site one, since ng thus obtalned does not vanish
even if T>‘I‘C (where X=0). Moreover it becomes tanhKl in the
dilute limit (p-0). £y, is calculated in the similar way.
If J2=O, §J2 is equal to X2 which is the same result as that

of the molecular field approximation.
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In the 2-site approximation, EJl is given by

— Z Z v
E31= B <Try,08] 85 e3> o,

= JaIIDE) « ey, nl2) | p!

1) . (2)
577, n3?)) (2 - 28)

where

Gl(hgl)’ h§2)’ hél)’ hgz)); 4 Try, 87 83 "12-,'3‘] (2 - 29)

and where the same symbols are used as those employed in
§ 2-3. The wvalue of ng is calcqlated with the self-consistently
determined value of X. In the dilute limit Eq.(2-28) becomes
£J1= tanhKl.gJ2 is calculated in the.similar way by use of
the density matrix p13 which is that of the second-neighboring
spins Si and Sg. It is noted that, even if J2=0, £J2 is not
equal to X2 since there exist the common first-neighbors which
the spins 1 and 3 share (for example, the sites 7 and 10 in
Fig.1(2)).

Finally the magnetic contribution to the specific heat

per spin 1is given by

Cp= = & (2 3y 37 E51 + 2275 —g7 E50) (2 - 30)
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§ 3 Pure ferromagnet

In this section we shall consider pure ferromagnets with
the first- and second-néighbor interactions; all the sites of
the system are occupied by magnétic atoms. The equations for
the system are given by putting P=1 in thé equations obtained
in § 2, and they are solved numerically. It is noted that
our l-site approximation is identical with that of Mamada and
Takano when d 5= 0. When the second-néighbor interaction is
included there appear interactions crossing oné another. Thus
the problem is not solved exactly evén for the two-dimensional
Ising model (so-called "crossed bond " problem).

Before discussing the results we shall investigate some
exactly soluble cases with anisotropic interactions in order
to examine the accuracy of our approximation in § 3-1. In § 3-2
the results of our approximation for the square lattice are
presented and discussed in detail. In § 3-3 the results for

the triangular, s.c., b.c.c. and f.c.c. lattices are discussed.

(I - 20)



§ 3 ~ 1 The accuracy of the agpproximation

The two-dimensional Ising model with énisotropic interactions
can be solved exactly if there are no crossed bonds. In order
to investigate the accuracy of our approximation wé apply our
approximation to such a systém and comparé thé résults with
the exact solution. We considér the following two lattices.

One is the well-known rectangular 1atticé with thé interactions
Jl and J2 along the vertlcal and horizontal linés, respectively.
The other is the anisotropic triéngular lattice with the inter-
action J1 along two directions and J2 along the other (see Fig.2).

First we consider the rectangular lattice; By varying J2
while leaving Jl(>0) constant we go continuously from the square
lattice (J2=J1) to the linear chain (J2=O). The Curile temper-
ature TC(R) depends on the value of R= J2/J1. The values of
Tc(l) (the square lattice) obtained in the 1~ and 2-site approxi-
mation are shown in Table 1 with the exact value. The value of
the 2-site approximation is better than that of the l-site one,
but it is still higher than the exact value. The dependence of
the Curie temperature on R, however, is quite good. Whgn
1>R>0.1, the value of TC(R)/Tc(l) is in agreement with the exact
one to within 1% in the 2-site apprdximation and to within 5% in
the l-site approximation. The agreement becomes worse as R
decreases from 0.1, but the value of TC(O) is equal to zero as
it is for the exact case.

The exact solution for the anisotropic triangular lattice
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was recently discussed by Eggarter%o)This system is interesting.
When J,=J, >0, we get the trianguler lattice. When J,= 0, we
get the square lattice. When J2= -Jl, the system is équivalent
with the triangular antiférromagnetic Ising modél and it does
not show any phase transition. The values of Tc(l) are shown
in Table 1. We show in Fig; 2 the dépéndéncé of Té(R)/TC(O)
on R obtained in the 1- and 2-site approximations with the exact
result. As can be seen from thé figure; the 2-site approximation
gives good dependence of TC(R) on R for 1>R %_0,6, The l-site
approximation is good for R> 0; In both approximations Tc(-1)= 0
and there is no Curie témperaturé for R< —1;

From the above discussions wé can conclude that the 2-site
approximation shows thé good dependence on R= J2/J1 except the
neighborhood where the Curie temperature becomes zero. The l-site

approximation is also good for the positive R.
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§ 3 -~ 2 Results for the square lattice

In this section we shall investigate the square Ising ferro-
magnet with the first- and second-neighbor interactions. As was
discussed in Introduction thiS'systém has been studiéd by many

11)

authors. Some exact results aré obtained., Kanamori has
determined the ground state of thé system rigorously. His
conclusion is as follows. For R >-1/2 i.é. J

>0, J,> =3,/2,

1 2
the system is in thé férromagnétic state; For R<-1/2 i.e.
J,>0, J2<—Jl/2; the system 1s in the antiferromagnetic state.
Its structure is that all spins in a row havé the same signs
and the spins in the adjacent rows havé thé opposite signs.

On the boundary R= -1/2 the ground state of the system is
degenerate with a macroscopic degree of dégeneracy and there
would be no preferred state at low temperatures. Fan and Wu5 )
concluded that the transition temperature vanishes at R=-1/2.
This phenomenon is quite alike with the vanishing of the
transition temperature for the antiferromagnetic triangular
Ising model.

We first consider the Curie temperature. In Fig. 3 the
dependence of Tc(R)/Tc(O) on R=J,/J, obtained in the 1- and
2-site approximations is shown with the results of the series
expansion by Dalton and Wood.2 ) The absolute values of-Tc(O)
and Tc(l) are listed in Table 1. For positive R the Curie
temperature vs. R curve of the 2-site approximation is very near

to the stright line although it shows a slight curvature. The

curve of the l-site approximation shows a larger curvature than
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that of the 2-site one. As Dalton and Wood discussed, the
variation of the Curie temperature is represented to a good

approximation by
TC(R)= TC(O)'{l + YR} for O<R<1 (3 - 1)

The value of y= 1.35 reproducés the'résult of Dalton and Wood
to within 2%. In the 2-site approximation the value of y= 1.30
reproduces the result in thé same accuracy. As the value of R
decreases from 0, the Curie témpérature bbtained in the 2-site
approximation . smoothly decreases and vanishes at the exact

value of R= -1/2. Fan and Wu 5)

obtained the similar behavior
of the Curie temperature in the free-fermon approximation.
This result is reasonable since the eiact Curie temperature

for the anisotropic triangular lattice discussed in § 3-1
decreases continuously for negative R and vanishes at R=-~1
where the system becomes equivalent with the antiferromagnetic
triangular lattice. On the other hand, in the l-site approxi-
mation we have two solutions for 0>R>-0.31 and no solutibn for
R <~0.31. The similar behavior was obtained in the Bethe
approximation and the free-fermion approximation derived by

Kawakami and Osawa 3) and Gibherd 4).

B Y

In order to investigate the properties of the system for
T< Tc we calculated the spontaneous magnetization, pair corre-
lation functions and spécific heat in the 2-site approximation
For R>0 the behavior of the spontaneous magnetization and

specific heat is similar to that for R= 0. X= 2<SZ> decreases
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monotonically as the temperature increases and the value of
d2X/dT2 is always negative; The specific heat increases
monotonically’as the temperaturc increases and has the gap
at T=Tc. The shape of the Cm'vs; T curvé is similar to that
obtained in the Bethe approximation. For R< 0; howevér; the
behavior of the system 1s rather complicatéd; We show the
temperature depéndence'of X, pair corrélation function ng~and
€J2 and the specific heat for various valués of negative R in
Fig. U4, 5 and 6; respectivély.

As the value of R décréasés; the shape of the X vs. T
curve changes continuously. There appears below Tc the region
of T where the X decréase qulte rapidly; For R<~0.38 we have
three non-trivial solutions for X. If a system shows the
first-order phase transition, we often encounter such a behavior
of the order parameter. So it is interesting to investigate the
behavior of the free energy. In general the free energy minimum
determines the value of the order parameter. Thus it is

reasonable to assume that the free energy G(X) satisfies the

following equation if there is no external field.

'%‘%l=x-f<x> (3 - 2)

where f(X) is given by Eq.(2-20). Then integrating this

equation, we can obtain the free energy by

(X
G(X) - G(0)= [ [X - £(X)lax (3 - 3)
0
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The function G(0) is a function of temperature and we cannot
determine its‘absolute'value in this discussion. The free
énérgy thus obtained givés one minimum togéthér with one
maximum at ¥= O when Rz-0.38 and T<T,. For -0 .5<Rg -0.4

there appears the region of T Whéré'two minima and oné maximum
together with the maximum at X=0. From the behavior of the
free energy calculatéd for various temperatures we expect the
first-order phase transition. The temperature where the first-
order phase transition occurs are always 1owér than the Curie
temperature obtained by Eq;(2—22) and aré dénoted by the dashed
line in Fig. 4. Then thé Curie temperature vs. R curve shown
in Fig. 3 has its meaning as thé second-order phase transition
even when the first-order phase transition also occurs. When
R=-0.5, the solution of X=0 has always the 1owést energy.

The results of the pair correlation function for the first-
neighboring spins, EJl and for the second-neighboring spins,
£J2 are shown in Fig. 5. As can be seen from the figure, ng
decreases more rapidly than EJl for small positive R and

R

lia

o . The value of £J2 is positive near the Curie temper-
ature even if R is negative. As the temperature increases from

T

c? 552 for negative R decreases and becomes negative. Such

behavior is reasonable since there remains the ferromagnetic
short range order near the Curie température. The specific
heat Cm exhibits the interesting behavior for negative R as can
be seen from Fig.'6; The C, ves. T curve for R=-0.2 has a

slight shoulder below the peak corrésponding to the phase tran-

(X - 26)



sition. As the value of R decreases from -0.2, this shoulder
grows up to a peek which is much more conspicuous than that
at T=Tc.

The rather curious behavior of the square lattice is
gualitatively accounted for as follows. For R>-0.5 the ground
state is ferromagnetic and all spins have positive (or negative)
signs. We shall consider the energy required to flip some
positive spins. It requires the energy, MJl - 4|J2[, to flip
a single spin. The energies required to flip one more spin

are 2J, - 4]|J,| and 43, - 2]|J,| at one df first-neighboring

1
sites and a second-neighboring sites, respectively. Thus it

is preferable to flip the first-neighbtoring spin. Consider

the case where a pair of spins at the sites 1 and 2 in Fig. 1(1)
have negative signs and they forms an isolated island in the

sea of positive spins. In Fig.1(1l) the energies required to
flip one more spin at the sites 5, 6 and 8 are Eg=2J, - 23,1,
E6=llJ1 ~ 2 J, and Eg=2J; - 4]J2|, respectively. The energy

Eg 1s the smallest if |7,] is finite. When |R| is small, the
difference between E5 and E8 is small and the excitation
spectrum is similar to that for R=0. Thus for small |R| the
thermodynamic behavior is similar to that for R=0. On the

other hand, when [R| becomes large, the difference between E5
and E8 increases and E8 becomes small. At R=-0.5, E8 is

equal to zero. In this ease it is quité preferable to flip

the spin at the site 8 and the negative spin cluster tend to
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spread out into a chain. Crudely speaking, as temperature
reaches the value kBT% &'E8, the negative spin clusters
rapidly spread out into a chain. This fact results in thé
rapid decrease of the spontanéous magnétization and a peak
of the specific heat around this témpérature. As can bé

_ . |
seen from figures, a crude estimate kgT /J;v 2 - L|R| gives

B
a reasonable value for R<-0.3.
Finally we shall give some comments on the l-site approxi-

6)

mation. Takase has studied the square lattice in the
approximation which is idéntical with our l-site one. His
derivation of the approximation is based upon the different
principle from ours; He calculated thé spontaneous magnetization
and the free energy which is defined in the same way as ours.

He concluded that for the range -0.238> R %’0'5 the first-order
phase transition occurs instead of the second-order phase
transition. This conclusion contradicts our results. We

think it is not appropriate to apply the l-site approximation

to the case for negative R . The reasons are (1) the closed
loops consisting of the 1links of the interacting spins are not
considered and (2) the short range correlation are not considered
appropriately. When we calculate €J2 by the method discussed

in § 2-5, the value of ng becomes negative at 'I‘='I‘c even for

the very small |R|. For R >0, however, the l-site approxi-

mation gives reasonable results.
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§ 3 -~ 3 Results for other lattices

We calculate the Curie,température for various value of
R and various lattice in the 2-site approximation. The calcu-
lation is carried out for théitriangular; S.C., b.c;c. and‘f.c.c.
lattices. The values of TC(O) and Tc(l) are listed in Table 1.
As was discussed in [I]; our approximation is more accurate
for the three-dimensional lattices than for the two-dimensional
lattices. The dependencé of TC(R)/TC(O) on R is shown in Fig.7.
For positive R every curve is very néar to thé straight lines
although it shows a slight curvaturé; For this region of R
the l-site approximation gives thé similar results.

The ground states of these lattices have been determined

11)

rigorously by Kanamori and Kaburagi and Kanamorilz). The
condition that the system is ih the ferromagnetic state 1s as
follows; R >-1/2 for the triangular lattice; R->-1/4 for the

s.c. lattice; R >-2/3 for the b.c.c. lattice; R>-1 for the

f.c.c. lattice. The boundaries R* where the ferromagnetic ground
state disappear are denoted in Fig. 7 by the vertical dashed
lines. The Curie temperature for the triangular lattice vanishes
at the exact boundary i.e. R*=-1/2. For the three dimensional
lattices, however, the Curie temperature remains finite below- the
exact boundaries. The Curie temperatures for the b.c.c. and
f.c.c. lattices exhibit complicated behavior for R<R*. As was
discussed in § 3-1 our two-site approximation has poor reliance

for R near the boundary whére'the férromagnéltic ground state

disappear. Thus in order to investigate the region of R near R
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more correctly we have to take into consideration three-site

clusters or much larger clusters than three sites.
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§ 4 Dilute ferromagnet

In the present section we investigate the effects of non-
magnetic atoms on the thérmodynamic properties of thé Ising
model. As.is well known the présence of non—magnétic atoms
results in the decrease of the'Curié temperature and below a
critical concentration P, of magnetic atoms thé systém does not
show any phase transition. Wé calculate the critical concen-
tration, Curie temperature, paramagnétic susceptibility, spon-
taneous magnetization, pair correlation functions and specific
heat. The calculation is carried out for various values of
R= J2/J1. |

In § 4-1 we investigate the thérmodynamic properties in
our 2-site approximation. As was discussed in the previous
paper [1] the geometry of the lattice is taken into consider-
ation in more detail than the coordination nﬁmber. The calcu-
lation is carried out for the square lattice. For other lattices
we have not carried out the calculations in the 2-site approxi-
mation except the critical concentrations for R=0 and 1, since
it requires enormous computer time. In §4-2 we show that our
l-site approximation gives qualitatively similar results to those
of the 2-site approximation. For the s.c., b.c.c. and f.c.c.
lattices the calculation is carried out in the l-site approxi-

mation.
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§ 4L - 1 Results for the square lattice— 2-site approximation

(a) Critical concentration

Numerical value of the critical concentration Po is calcu-~
lated by Eq.(2-23). We first investigate the dependence of p
on the strength of the second-néighbor interaétion{ In Table 2
we show the numerical values of P, obtained for wvarious values
of R= J2/J1. For R> 0 the value of P, decreases from that for
R=0., This decrease occurs discontinuously as R increases from
zero. The value of P, is équal to 0.3108 and independent of the
value of R for 0<R<0.2. For 0.2<R<1l the value shows a slight
dependence on R. The changes of p, occur discontinuously when
the values of R reach some rational numbers. We think, however,
such a dependence of p, on R (> Q) is due to the approximation
and the wvalue of P, should be independent of the value of R for
R >0. The reason is as follows. It is self-evident that the
system does not show any phase transition 1f there exist only
spin clusters of finite sizes. As was discussed in [1], the
critical concentration of the ferromagnetic Ising model should be
correspond to the appearance of the infinite network of adjacent
spins. To fprm the network of adjacent spins it does matter
Whether the interaction exists or not and the strength of the
interaction does not have any concern. Namely the critical concen-
tration is a geometrical property of the lattice and its value
depends on the range of interactions and not on the strength.
This fact has been discussed by Elliott; Heap; Morgan and

8
Rushbrook ) based on the concentration expansion of the suscep-
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tibility. Idogaki and Uryd»also obtained the results that the
value of P, is independent of the value of R by the concen-
tration expansion method.

The numerical values of the-critical concentration at R=0
and 1 are also calculated for the triangular, s;c., b.c.c. and
f.c.c. lattices in the 2—site'approximation; They are 1listed
in Table 3 with the results obtained by Idogaki and Uryu and
the critical concentrations obtained in the site-percolation

problem.l3)

For the sake of comporison ..the values of 2/zl and
2/(Zl+22) are also listed. Comparing our results with those of
the percolation, the values show good dependence on the geometly
of the lattices although they aré soméwhat smaller than those of
the percolation. For the three-dimensional lattices the differ-
ence is about 10% for both R=0 and R=1. The simplest estimation
of the critical concentration, 2/z1 gives satisfactory results
for R=0, but the estimation 2/(zl+z2) for the case of R=1 is not
good. For R<0 we obtained the critical concentration which

increases as R decreases for the square lattice. As will be

discussed in the following, these values have little reliance.

(x - 33)



(b) Curie temperature and paramagnetic susceptibility

The Curie temperature is calculated by Eq.(2-22). It
depends on values of p and R. We calculate thé Curie temperature
for the square lattice in the 2-site approximation; Thé concen-—
tration dependence of the normalized Curie témpérature for
various values of R is shown in Fig.8(a). In Fig.8(b) we show
the magnification of a low temperature part. For p near 1, the
Curie temperature decreases linéarly as p decreases. The slope
of the TC(R, p) Vs. p curvé monotonicaly incréases as the value
of R decreases. The numerical values of d[Tc(R,p)/Tc(R,l)]/dp
at p=1 are 1.167, 1.203, 1.259 and 1.285 for R=1.0, 0.5, 0.1
and 0.0, respecti&ely. They are 1.330, 1.429, 1.664 and 2.513
for R=-0.1, -0.2, —0;3 and -0.4, respectively. This result shows
us that the positive second-neighbor interaction relieves the
influence of non-magnetic atoms.

As the concentration decreases, the Curie temperature
decreases monotonically. For R=0 and R> 1/2, the value of
dTC(R,p)/dp increases monotonically and the Curie temperature
drops abruptly at P=p,- For the small value of R (>0), the
Curie temperature vs. p curve shows a considerable decrease
near the critical concentration for R=0 and then the curve has
a "trail". The region of temperature where the curve shows the
trail becomes lower as the value of R decreases. The second-
neighbor interaction is indispensable for occurrence of the
phase transition in the region of concentration where the Curie

temperature has the trail. This behavior of the Curie temperature
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has been predicted by Brout. Idogaki and Uryu obtained the
same results.

For negative R, the Curie temperature shows complicated
behavior in the low temperature region. For R=-0.05 and
0.462p>0.456 for example there are three transition points.

As temperature decreases, the system shows a phase transition

at the highest Curie temperature and becomes ferromagnetic.

Then it becomes paramagnetic at the next Curie temperature.

At the lowest Curie temperature the system begomes ferromagnetic
again. For 0.456>p>0.U451, the system shows two phase transition.
The phenomenon like this 1is obtained exactly by Kasai and '‘Syozi
for the annealed Ising model of a mixture of ferromagnetic and
antiferromagnetic bonds. In the present problem, however, we
cannot conclude that this is what happens actually. The reason

is as follows. In our approximation we assume that the ordered
state, if it appears, is the ferromagnetic one. In other words

we assume that the system 1s described by only one order parameter
X. On the other hand; when p is less than 1, there exist clusters
of spins which are connected to their neighboring clusters only
by the second-neighbor interactions. If J2 is negative, the

spins in such clusters take opposite signs from the signs

of their neighboring clusters at low temperatures. Thus the
ground state should not be the simple ferromagnetic one and our
approximation becomes worse in the low temperature region.

In the high temperature region, however, our approximation is

reasonable since the strong ferromagnetic interaction J. is

1
dominant in this region.
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The paramagnetic susceptibility are calculated for various
values of R and p. In Figs. 9 and 10 we show the inverse
susceptibility per spin for R=0.0 and —O.l; For R>0 the
behavior of the susceptibility is similar to that for R=0.0.

In the high temperature région; thé hnérsé suscéptibility curve
becomes a straight line and obéys the Curie-Weiss law. In the
dilute limit (p+0), it obeys thé Curié law; As temperature
approaches the Curie temperature the inversé susceptibility
curve deviates from the straight line. This deviation becomes
large as p approachés.pc. The curve for p=0.4 in Fig. 9 shows
appreciable deviation from the straight line in the low temper-

. n Fig.10) co 1 .
ature region. Ythe curve for p=0.4 shows little temperature

< 0,3

dependence for kBT/Jlm

(c) Spontaneous magnetization and specific heat

In this section we investigate the effect of the weak
second-neighbor interaction J2>O on the spontaneous magnetiztion,
pair correlation function and specific heat.

The spontaneous magnetization at T=0 decreases slowly as p
decreases from 1 and it falls to zero rapidly at pP=p,- We calcu-
late. the temperature dependence of X= 2<SZ>c for various values
of p. In the case of R=0.0; as the temperature increases, X
decreases quite slowly in the low température region and the
decrease becomes rapid for T near Tc‘ In the case of small

R(>0), the X vs. temperature curve shows an appreciable decrease
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in the low temperature region for some values Qf p. The result
for R=0.05 is shown in Fig.ll. The decrease of X in the low
temperature region occurs néar kBT ®J2 and is conspicuous for
0.6gp>0.u and for small values of R. This béhavior of X is
explained as follows. When p 1is less than 1; theré appéars a
spin cluster which is connected to its neighboring spins only
by the seond-neighbor interaction. Thé magnhetization of this
cluster starts to decrease rapidly as thé value of kBT épproaches
J2. The probability of finding such clusters increases as p
decreases. Thus the behavior of X undér consideration becomes
conspicuous for pL 0.6. On the other hand if p is near the
critical concentration; the'sécond—neigbor interaction plays an
essential role on the formation of the long range order. Then
as the temperature approaches to kBT &Jz, X decreases directly

to zero. This fact is easily examined in our approximation by

(n,m) (n,m)

calculating the value of X s where X is defined as the
averaged value of a spin on condition that the spin has n and m
magnetic atoms in its first- and second-neighbors, respectively.
The équation for X(n,m) is obtained withoud difficulties. (ef.
Eq.(38), (39) and (40) in [I]).

The specific heat of the system is calculated by Eqg.(2-30).
We first consider the paramagnetic state which appears for T>Tc.
When P<P,> the value of Tc is equal to zero. The paramagnetic
state gives the specfic heat due to spin orientation which is

of the Schotlky type. For R=0.0, thé curve has one maximum.

For R=0.05 and 0.1, the curvé has two maxima , one of which

(L - 37)



corresponds to the second-neighbor interactiqn. The position of

the maximum corresponding to J1 is kBT/J1 n 0.5 and shows little

dependence on R aﬁd p. Thé position of thé makimum corresponding
J, shows dependence on R and it is about 1<’BT/J1&0'.025 for R=0.05

and 0.05 for R=0.1.

The temperaturé depéndéncé of thé’spécific heat for R=0.0
is shown in Fig.l2. The spécific héat has a péak at T=Tc for
every concentration. In the region of températuré 0<T<TC(R,p),
the specific heat incréasés monotonically as the temperature
increases. The appearance of thé-Schottky—type maximum in the
curve depends on whether the Curie température lies above or
below the maximum. For kBTc/Jl§ 0.5; wé can see the Schottky-
type maximum. The curve has one or two peaks depending on
whether the Curie temperature lies above or below the Schottky-
type maximum,

For R=0.05 and 0.1, the specific heat curves are more
complicated. They are shown in Figs. 13 and 14. When p is
near 1, the curve is in the similar shape as the case of R=0.0.
As p approaches to 0.6, the specific heat in the low temperature
region increases. ' In the case of R=0.05 the specific heat has
one more peak in the low temperature region for O.4<p§O.5
together with the peak at T=T,. For pz0.4 the specific heat
has only one peak below Tc' The new peak is also seen in the
case of R=0.1 but it is less notable than that for R=0.05. This
new peak has its maximum value about at T5&'R;22J2/zlJl. The

position of the maximum shows a slight concentration dependence
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and it lowers as p decreases. . The peak of the specific heat
curve in the low temperature région corresponds to a rapid -
decreasé of the spin pairkcorrelation of the second-neighboring
spins. This fact is ascertained by calculating the pair

correlation function EJ and %é . Thé result

1
shows §J2 start to decrease rapidly near the temperature
corresponding the peak of the specific heat curve, whereas &7,

shows only a slight decrease.
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§ 4 -~ 2 Results for three-dimensional lattices— l-site approxi-

mation

In this subsection we investigate the propertiés of the
s.c., b.c.c. and f.c.c; lattices in our 1l-site approximation.

As was discussed in [I], the 1-site approximation gives quali-
tatively good results for thé Ising model with the nearest-
neighbor interaction only. In this casé the approximation is
identical with that given by Mamada and Takano. In order to
examine the accuracy of thé l-site approximation for the case
including the second-neighbor intéraction; we compare the results
for the square lattice with thosé obtained in the 2-site approxi-
mation.

The l1l-site approximation reproduces characteristic proper-
ties of the system for R>0. The Curie temperature shows a trail
in the low temperature region when R is small. The deviation
of the inverse susceptibility from the Curie-Weiss law near the
Curie temperature hecomes large, as p approaches P.- The specific
heat shows one more maximum in the low temperature region
together with the peak at T=Tc' The specific heat of the para-
magnetic state has two Schottky-type maximum for R>0. The
numerical values of the critical concentration for various values
of R is shown in Table 2. For O<R<1/3, the value p=0.2452 is
independent of the value of R. The decrease of p, occurs dis-
continuously at R=1/3, 1/2 and 2/3, although is is quite small.
We think that this decrease does not have any méaning actually.

It is due to the approximation. For R<0, the l-site approxi-
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mation does not give reasonable results even if p=1; it is
discussed in 82. From thé results discussed abové we conclude
that our l-site approximation gives fairly good description of

the dilute Ising model for R;OL It is noted that Matsudaira et. al?u)
has calculated thé critical conééntration and Curié temperature

for the square lattice in thé'approximation idéntical with

our l-site approximation; HiS'approximation; however, is based

on the different principle from ours.

We have calculated thé critical concentration; Curie
temperature, paramagnétic sﬁscéptibility; spontaneous magnet-
ization and specific heat for thé s;c;; b.c.c. and f.c.c. lattices.
Numerical values of P, for R=0 and 1 are listed in Table 3.

They are considerably small in the cases of R=1 and of the f.c.c.
lattice. They do not show the dependence on the geometry of
lattices in more detail than the coordination number Z4 and.zz.
The reason 1s that the effect of the closed loop consisting of
links of the interactiong spin pairs is not taken into consid-
eration at all in the l-site approximation. The behavior of
the Curie temperature is, however, reasonable. The "trail of
the Curie temperature for p near critical concentration appeérs
for every lattice when R is small. As an example, we show the
results for the s.c. lattice in Fig. 15. 1In these lattices we
obtain the results, which are similar to those for the square
lattice, for the susceptibility; temperature dependencé of

the spontaneous magnetization and specific heat; The rapid

decreasé‘of X= 2<SZ>c and a péak of the specific heat corrés—
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ponding to the rapid decrease of the correlation between second-
neighboring spin pairs are remarkablé when the value of R is
small. For a fixed value of R, théSé behavior is more remarkable
for the f.c.cf lattice (z2/zl=‘6/12) than the b.c;c.(zz/%l=6/8)

and s.c. (z2/zl=12/6) lattices.
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§ 5 Concluding Remarks

We have investigatéd the thermodynamic properties of the
pure and dilute Ising spin system including the second-neighbor
interaction in our cluster approximation.

In § 3 the pure system (including no non—magnétic atoms)
has investigated. Thé Curie'témpérature calculated in the
2-site approximation shows reasonablebdepéndence on R= J2/J1.
For R>0 the dependence of thé normalized Curie temperature,
TC(R)/TC(R=O) on R agrees well with the series-expansion
résult of Dalton and Wood; For R<0 the Curie temperature
decreases smoothly with decréasing R; It vanishes at the
boundary where the ground staté ceasés to be ferromagnetic in
the cases of the square and triangular lattices, whereas it
remains finite at the boundary for the three-dimensional
iattices. We have discussed the thermodynamic properties
of the square lattice in detail. For —O.3gR&—O.38, there
appears the region of temperature near kBT ~ 2J1 - H|J2[ where
the spontaneous magnetization shows a rapid decrease and the
specific heat has a peak or a shoulder in addition to a peak
at T=T,. For -O.5<R§-O.M, the system shows the first-order
phase transition at the lower temperature than Tc.

In § 4 we have investigated the role of the second-neighbor
interaction in the dilute case. Main results are as follows.
The critical concentration depends only on the range of the
interactions if J2>O.A,slight depéndénce pf Pc on R obtained

in our theory may be due to the approximation. Whén R is
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positive and small, the second-neighbor interaction plays an
essential role in the low temperature region and we find inter-
esting phenomena. The Curie temperature vs. concentration curve
has a trail near the critical concentration. In the region of
temperature near kBT-m J2, the spontaneous magnetization and
pair-correlation function of the second-neighboring spins show
an apparant decrease and correspondingly the specific heat has
a peak. These phenomena are remarkable when the concentration
is around the critical concentration for the case of R=0.

Our approximation can be applicable to the Heisenberg spin
system with the second-neighbor interaction without difficulties.
If we carry out the calculation, we would obtain results that
are different from those for the Ising spin system in some re-
spects. We expect, however, a trail of the Curie temperature
and a peak of the specific heat due to the weak second-neighbor
interaction will be found in the Heisenberg spin system. The
reason is that these phenomena are the results of the appearence
of the spin clusters which interact to the neighboring spins

mainly with the second-nelghbor interactions.
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Appendix Explicit expressions of XQ(Jl)XD(Jl) - m,, and

Jl
1Q(35)]D(3,) - my,

We first give the expression of }Q(J{)]D(J;) * my, for
the square lattice. The clﬁster of the first—néighboring spins
Si and Sg is shown in Fig.1(1) and it has ten neighbors to be
considered. When we take the configurational averages of
magnetic atoms and pseudo-spins, it is convenient to classify the

ten neighbors into six sets of sites, a,b,c,d,é and f in the

following way

a={ 71} b={3, 9} e={4, 10}
d={5, 11} e={ 6, 12} ={8} (A - 1)

where the numberals represent the neighboring sites of the
cluster shown in Fig.1(1).

Letting a number v, (i=a, +++, f) be the number of magnetic
atoms which occupy the set of sites i, each configuration of
magnetic atoms can be denoted by a set, {v}={va,vb, Vs Vg5 Ve vf}.
The number vy takes the values 0 and 1 if i=a or f and it takes
the values 0, 1 and 2 if i=b, ¢, d or e. The probability of

the configuration {vi} is written as

_ A1 2 2 2 2 1
Q{v}— QWa Vvb Tve Vva Yve Yur (A - 2)

where we use the notation defined by Eq.(2-10).

With a glven configuration of atoms {v}, each configuration

of the pseudo-spins can be denoted by a set,'{k}={ka,kb,kc,kd,ke,kf}

(T- 45 )



The number k. (i=a, ++*, f) is the number of pseudo-spins which
take the value -1/2 out of vy pseudo-spins. The probability of

the configuration {k} is written as

- nva vb ve vd ve vf _
Div1,1x}™ Pxa Pkb Pke Pka Pxe Dkr (A - 3)

where we use the notation defined by Eq.(2-11).

For each configuration denoted by {v} and {k}, the values of

(1) (2) (1) (2)
hy™’, b/, hy hy

1 1 given by Eq.(2-15) are as follows.

and

(1) ¢
By ™= 215 (1) %u(1) Su(1)

= 2{ag S+ (ay Sy + a5 5,5 )}
= (va - 2ka) + (vc - 2kc) (A - L)
similarly
h§2)= (v - 2k) + (vg - 2k,) (A - 5)
h§1)= (vg = 2kg) + (v = 2k.) (A - 6)
ni?= (v - 2k) + (v, - 2k) (A - T)

Thus summing over all the possible configurations {v} and {k}.

we obtain the following expression.
1Q(IIIDI) * myy

=I, .9 I D
v} v} k) (v}, k)

X mJl[vawc - 2(ka+kc), vtV —2(kb+kd),
vd+vf -2(kd+kf),vc+ve-2(kc+ke); guBH] (A - 8)

( Ir - 46 )



In the similar way we can obtain the expression of
ZQ(Jz)ZD(J2)‘ my, for the cluster of the sécond—neighboring

spins S and sg shown in Fig.1(2).

( IT- 47)
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Table 1. Numerical values of kBTC/J1

for R=0 (J2=O) and R=1 (J1=J2)

l-site 2-site Dalton & Wood Bethe
[For R=0]
square 1.545 1.466 1.132 1.443
triangle 2.537 2.307 1.823 2.466
s.cC. 2.537 2.479 2.267 2.166
b.c.c. 3.530 3.484 3.179 3.476
f.c.c. 5.522 5.327 4. 897 5.485
[For R=1]
square 3.530 3.299 2.629 3.476
triangle 5.522 5.285 4,386 5.485
S.c. 8.516 8.312 7.750 8.490
b.c.c. 6.520 6.312 5.815 6.487
f.c.c. 8.516 8.312 7.748 8.490

(T -149)



Table 2 Numerical values of p, for the square lattice

with various values of R= J2/J1

é'JZ/JIf 2-site l-site.
1.0 0.285# 0.2225
0.9 0.3058 . 0.2225
0.8 0.3058 0.2225
0.7 0.3064 0.2225
0.6 0.3100 0.2228
0.5 0.3152 0.2310
0.4 0.3155 0.2406
0.3 0.3114 0.2452
0.2 0.3108 0.2452
0.1 0.3108 0.2452
0.0 0.4309 0.4284

(I - 50)



Table 3 Numerical values of P, for Rﬁo_(J2=0)

and R=1 (J1=J2)

l-site 2-site Idogaki and 2/z percolation
“Uryu”
[For R=0]
square 0.428 0;“31 0.49 0.5 0.59
triangle 0.293 0.377 70;333 0.5
(exact)
s.c. 0.293 ' 0.283 0.26 - 0.333 0.307
b.c.c 0.223 1 0.211 0.22 1 0.25 0.243
f.c.c 0.150 0.180C 0.167 0.199
{For R=1]
square 0.223 0.285 0.25 0.25 0.410
triangle 0.150 0.193 0.167 0.295
s.c. 0.101 0.122 0.10 0.111 0.137
b.c.c 0.129 0.151 0.13 0.143 0.175
f.c.c 0.101 0.122 0.111 0.136
(I - 51)



Figure Captions

Fig. 1 Figures of the 2-site clusters for the square lattice.
(1) is for the first-neighboring pair and (2) is for
the second-neighboring pair; White circles represent
the sites in:clusters and black circles représént the
neighboring sites. The first- and second-neighbor
interactions are repreSéntéd by the straight and

dashed 1lines, respectively.

Fig. 2 Dependence of the normalizéd Curie temperature TC(R)/TC(O)
on R for the anisotropic triangular lattice. TFull lines
denotéd by 1 and 2 are obtained in the 1- and 2-site
approximations. Dashed line is the exact solution.

The lattice structure 1s also shown.

Fig. 3 Dependence of the normalized Curie temperature
TC(R)/TC(O) on R for the square lattice obtained in

the 1- and 2-site approximations.

Fig. 4 Temperature dependence of X= 2<S%> for several values
of negative R. Result of the 2-site approximation
for the square lattice. Dashed line shows the position
where the first-order phase transition occurs for each

R.
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Fig. 5
Fig. 6
Fig. 7

Temperature dependence of spin pair correlation
functions, EJl and £J2 for several values of R.
Result of the 2-site approximation for thé squaré

lattice.

Temperature dependence of spécific héat for several
values of R obtained in the 2-site approximation.

Result for the square lattice.

Dependence of the normalized Curie témperature TC(R)/TC(O)
on R for the triangular, s.c; b.c.c. and f.c.c. lattices
obtained in the 2—sité approximation. Each dased line
shows the rigoroﬁsly determinéd boundary where the

ferromagnetic ground state disappears.

Fig. 8(a) Dependence of the normalized Curie temperature

TC(R,p)/Tc(R,l) on the concentration p for varous
values of R. Results of the 2-site approximation for

the sgquare lattice.

Fig. 8(b) Magnification of a part of the low temperature region.

Fig. 9

Fig.10

Inverse paramagnetic susceptibility for several values
of p in the case of R=0. Result of the 2-site approxi-

mation for the square lattice.

Inverse paramagnetic susceptibility for several values
of p in the case of R=-0.1. . Result of the 2-site approxi-

mation for thé square lattice.
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Fig.

Fig.

Fig.

Fig.

11

12

13

14

15

Temperature dependence of X= 2<SZ>c for several values
of p. Result of the 2-site approximation for the square

lattice. The value of R is fixed to 0.05.

Temperature dependence of spécific heat for séveral
values of p in the case of R=0. Result of the 2-site

approximation flor the square latticé.

Temperature dependence of specific heat for several
values of p in the case of R=0.05. Result of the

2-site approximation for the sqﬁare lattice.

Temperature dependence of specific heat for several
values of p in the case of R=0.1. Result of the 2-site

approximation for the square lattice.

Dependence of the normalized Curie temperature
TC(R,p)/Tc(R,l) on the concentration p for several
values of R. Result of the l-site approximation for the

s.c. lattice.

(m - 54)
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