

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Wang, H.-J. Osaka J. Math. **44** (2007), 817–827

COHEN-MACAULAY LOCAL RINGS OF EMBEDDING DIMENSION $e + d - k$

HSIN-JU WANG

(Received July 11, 2006, revised November 13, 2006)

Abstract

In this paper, we prove the following. Let (R, m) be a *d*-dimensional Cohen-Macaulay local ring with multiplicity *e* and embedding dimension $v = e + d - k$, where $k \geq 3$ and $e - k > 1$. If $\lambda(\mathfrak{m}^3 / J \mathfrak{m}^2) = 1$ and $\mathfrak{m}^3 \subseteq J \mathfrak{m}$, where *J* is a minimal reduction of m, then $3 \leq s \leq \tau + k - 1$, where *s* is the degree of the *h*-polynomial of *R* and τ is the Cohen-Macaulay type of *R*.

1. Introduction

Let (*R*, m) be a *d*-dimensional Noetherian local ring of multiplicity *e*. The Hilbert function of *R* is by definition the Hilbert function of the associated graded ring of *R*:

$$
G:=\bigoplus_{n\geq 0}\mathfrak{m}^n/\mathfrak{m}^{n+1},
$$

i.e.,

$$
H_R(n) = \dim_{R/\mathfrak{m}} \mathfrak{m}^n / \mathfrak{m}^{n+1}.
$$

The Hilbert series of *R* is the power eries

$$
P_R(z) = \sum_{n \geq 0} H_R(n) z^n.
$$

It is known that there is a polynomial $h(z) \in \mathbb{Z}[z]$ such that $P_R(z) = h(z)/(1 - z)^d$ and $h(1) = e$. This polynomial $h(z) = h_0 + h_1 z + \cdots + h_s z^s$ is called the *h*-polynomial of *R*.

Let (*R*, m) be a *d*-dimensional Cohen-Macaulay local ring with embedding dimension $v = e + d - k$, where $k \geq 3$. Let *J* be a minimal reduction of m. Let τ be the Cohen-Macaulay type of *R*, $h = v - d$ and $v_i = \lambda(\mathfrak{m}^{i+1}/J\mathfrak{m}^i)$ for every *i*; then there are at least two possible Hilbert series of R/J : $P_{R/J}(z) = 1 + hz + z^2 + \cdots + z^k$ and $P_{R/J}(z) = 1 + hz + (k-1)z^2$. In the first case, *R* is stretched (cf. definition below) and we have $\mathfrak{m}^k \nsubseteq J\mathfrak{m}$; in the second case, following [3], we say that *R* is short and we have $\mathfrak{m}^3 \subseteq J\mathfrak{m}$ and $v_1 = k - 1$.

²⁰⁰⁰ Mathematics Subject Classification. 13D40, 13H10.

Let (*R*, m) be a *d*-dimensional local Cohen-Macaulay ring of multiplicity *e* and embedding dimension v. If $d = 0$, then *R* is called *stretched* if $e - v$ is the least integer *i* such that $m^{i+1} = 0$. If $d > 0$, then *R* is *stretched* if there is a minimal reduction *J* of m such that R/J is stretched (cf. [6]), or equivalently, $(m^2 + J)/J$ is principal. Regular local rings are not stretched since fields are not stretched. However, for any *d*-dimensional local Cohen-Macaulay ring (R, m) having infinite residue field, if $v =$ $e + d - 1$ with $e > 1$ or $v = e + d - 2$ with $e > 2$, then *R* is stretched. Moreover, if $v = e + d - 3$ and *R* is Gorenstein, then *R* is stretched. These stretched rings have been studied in [6], [7] and [8]. In [4], Rossi and Valla extended the notion *stretched*. There they defined, for each m-primary ideal *I*, *I* is *stretched* if there is a minimal reduction *J* of *I* such that $I^2 \cap J = IJ$ and $\lambda(I^2/(JI + I^3)) = 1$.

In [6], Sally studied the structure of stretched local Gorenstein rings, and use it to show in [8] that if (R, m) is a *d*-dimensional Gorenstein local ring with embedding dimension $v = e + d - 3$, then the associated graded ring of *R* is Cohen-Macaulay. This result has been generalized by Rossi and Valla in [3] as follows.

Theorem 1.1 ([3, Theorem 2.6]). *If* (*R*, m) *is a d-dimensional Cohen-Macaulay local ring of multiplicity* $e = h + 3$ *and* $\lambda(m^3/Jm^2) = 1$, *then* $s \leq \tau + 2$, *where s is the degree of the h-polynomial of R*.

In [4], Rossi and Valla generalized Theorem 1.1 to stretched m-primary ideals. In this note, we are able to generalize Theorem 1.1 in a different manner in Section 4 as follows. In which, we do not assume R is stretched. In stead, we assume that R is short and $v_2 = 1$.

Theorem 1.2. *Let* (*R*, m) *be a d-dimensional Cohen-Macaulay local ring of multiplicity e* = *h* + *k*, *where* $k \ge 3$ *and* $e - k > 1$. *If* $\lambda(\mathfrak{m}^3/J\mathfrak{m}^2) = 1$ *and* $\mathfrak{m}^3 \subseteq J\mathfrak{m}$, *where J* is a minimal reduction of m, then $3 \leq s \leq \tau + k - 1$, where *s* is the degree of the *h-polynomial of R*.

In the final section, we provide several examples to answer some questions raised by Rossi and Valla in [3].

2. One dimensional local Cohen-Macaulay ring

We state several facts of one dimensional local Cohen-Macaulay rings. These results can be derived easily from [1] and [5].

Lemma 2.1. *Let* (*R*, m) *be a one dimensional local Cohen-Macaulay ring*; *then* $\lambda(\mathfrak{m}^n/\mathfrak{m}^{n+1}) = e - \lambda(\mathfrak{m}^{n+1}/J\mathfrak{m}^n)$, where *J* is any minimal reduction of \mathfrak{m} .

Lemma 2.2. *Let* (*R*, m) *be a one dimensional Cohen-Macaulay local ring with embedding dimension* 2. *Then G*(*R*) *is Gorenstein*.

Corollary 2.3. *Let* (*R*, m) *be a d-dimensional Cohen-Macaulay local ring with embedding dimension* $d + 1$ *. Then* $G(R)$ *is Gorenstein.*

3. Cohen-Macaulay local rings of embedding dimension $e + d - k$

Let (R, \mathfrak{m}) be a *d*-dimensional Cohen-Macaulay local ring with embedding dimension $v = e + d - k$, where $k \ge 3$ and $e - k > 1$. Let τ be the Cohen-Macaulay type of *R*, $h = v - d$ and $v_i = \lambda(\mathfrak{m}^{i+1}/J\mathfrak{m}^i)$ for every *i*. Let *J* be a minimal reduction of m; then one of the possible Hilbert series of R/J is $1 + hz + (k - 1)z^2$. In this case, $\mathfrak{m}^3 \subseteq J\mathfrak{m}$ and $v_1 = k - 1$. If $k = 3$, it is shown in [3, Theorem 2.6] that if $v_2 = 1$ then $s \leq \tau + 2$, where *s* is the degree of the *h*-polynomial of *R*. We are able to generalize this result in this section.

Theorem 3.1. *Let* (*R*, m) *be a d-dimensional Cohen-Macaulay local ring of multiplicity e* = *h* + *k*, *where* $k \ge 3$ *and* $e - k > 1$. *If* $\lambda(\mathfrak{m}^3/J\mathfrak{m}^2) = 1$ *and* $\mathfrak{m}^3 \subseteq J\mathfrak{m}$, *where J* is a minimal reduction of m, then $3 \leq s \leq \tau + k - 1$, where s is the degree of the *h-polynomial of R*.

REMARK 3.2. (i) Notice that the assumption $v_2 = 1$ ensures that the depth of *G* is at leat $d-1$ (cf. [3]). Therefore to show Theorem 3.1, we need only to consider the case when $d = 1$.

(ii) If $d = 1$, then *s* is the least integer for which $\lambda(\mathfrak{m}^s/\mathfrak{m}^{s+1}) = e$. (iii) Notice that $\lambda(\mathfrak{m}^2/J\mathfrak{m}) = k - 1$. Moreover, if $\mathfrak{m}^2 = J\mathfrak{m} + (u_1, \ldots, u_{k-1})$, then $\{u_1, \ldots, u_{k-1}\}\$ is part of a generating set of the socle of *R*.

By Remark 3.2, we may assume from now on that $d = 1$ and $v_2 = 1$.

Lemma 3.3. Let r be the reduction number of m with respect to J. If $r \leq 3$, *then* Theorem 3.1 *holds*.

Proof. If $r \leq 3$, then $\mathfrak{m}^4 = J\mathfrak{m}^3$, so that $\lambda(\mathfrak{m}^3/\mathfrak{m}^4) = e$, it follows that $s \leq 3 \leq$ $\tau + k - 1$ by the choice of *s*. П

By Lemma 3.3, we may assume in the sequel that $r \geq 4$.

Lemma 3.4. *The following hold for R*: (i) If $\mathfrak{m}^3 = J\mathfrak{m}^2 + (ab)$ for some $b \in \mathfrak{m}$ at f *racm*² and $a \in \mathfrak{m}$, then $\mathfrak{m}^{i+1} = J\mathfrak{m}^i + (a^{i-1}b)$ *for every i* ≥ 2 *.* (ii) If $y \mathfrak{m}^2 \nsubseteq J \mathfrak{m}^2$ for some $y \in \mathfrak{m}$, then $y^3 \notin J \mathfrak{m}^2$. In particular, there is an element $y \in \mathfrak{m}$ *such that* $\mathfrak{m}^{i+1} = J\mathfrak{m}^i + (y^{i+1})$ *for every i* ≥ 2 *.*

Proof. (i) If $m^{i+1} = Jm^i + (a^{i-1}b)$ for some $i \ge 2$, then $m^{i+2} = Jm^{i+1} + a^{i-1}b m \subseteq$ $J\mathfrak{m}^{i+1} + a^{i-1}\mathfrak{m}^3 = J\mathfrak{m}^{i+1} + (a^i b) \subseteq \mathfrak{m}^{i+2}.$

(ii) Suppose that $y \text{m}^2 \nsubseteq J \text{m}^2$. Then there are $u, v \in \text{m}$ such that $uvy \notin J \text{m}^2$ and $m^3 = Jm^2 + (yuv)$. Therefore, $m^4 = Jm^3 + (y^2uv)$. It follows that $y^2u \notin Jm^2$ and $m^3 = Jm^2 + (y^2u)$. Thus, $m^4 = Jm^3 + (y^3u)$ and then $y^3 \notin Jm^2$. Now, choose $y \in m$ such that $y \mathfrak{m}^2 \nsubseteq J \mathfrak{m}^2$, then $\mathfrak{m}^{i+1} = J \mathfrak{m}^i + (y^{i+1})$ for every $i \geq 2$. П

Lemma 3.5. *Let* $J = (x)$ *be a minimal reduction of m. If there is an element* $y \in \mathfrak{m}$ *such that* $\mathfrak{m}^{i+1} = J\mathfrak{m}^i + (y^{i+1})$ *for every i* ≥ 2 *, then* $y^l x^t$ *is a generator of the module* $(J^tm^l + m^{l+t+1})/(J^{t+1}m^{l-1} + m^{l+t+1})$ *whenever* $2 \le l < r$ *, where* r is the reduction *number of* m *with respect to J* .

Proof. If not, $y^l x^t \in J^{t+1} \mathfrak{m}^{l-1} + \mathfrak{m}^{l+t+1}$, so that $y^r x^t \in x^{t+1} \mathfrak{m}^{r-1}$, it follows that $y^r \in J \mathfrak{m}^{r-1}$, a contradiction. Therefore, the conclusion holds. \Box

Theorem 3.6. *Let* (*R*, m) *be a one dimensional Cohen-Macaulay local ring of multiplicity e* = $h + k$, *where* $k \ge 3$ *and* $e - k > 1$. Assume that $\lambda(\mathfrak{m}^3/J\mathfrak{m}^2)$ = $\lambda(\mathfrak{m}^4 / J \mathfrak{m}^3) = 1$ *and* $\mathfrak{m}^3 \subseteq J \mathfrak{m}$, *where* $J = (x)$ *is a minimal reduction of* \mathfrak{m} . *Then there is a basis* $\{x, y_1, \ldots, y_{\tau}, z_1, \ldots, z_{e-\tau-k}\}$ of m, *elements* u_{t+1}, \ldots, u_{k-1} con*tained in* m *and elements* $\{c_{ij} | i = 1, \ldots, k-1, j = 1, \ldots, j_i\}$ contained in the ideal $(y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$ with $\sum_{i=1}^{k-1} j_i(k-i) = e-\tau - k$ such that $J = (x)$ and *the following hold*:

(i) $\mathfrak{m}^{i+1} = J\mathfrak{m}^i + (y_1^{i+1})$ *for every i* ≥ 2 .

(ii) $\mathfrak{m}^2 = J\mathfrak{m} + (y_1^2, y_1y_2, \dots, y_1y_t, y_{t+1}u_{t+1}, \dots, y_{k-1}u_{k-1}),$ where $t = \lambda((y_1\mathfrak{m} + J\mathfrak{m})/J\mathfrak{m})$. (iii) $\{y_1^2, y_1y_2, \ldots, y_1y_t, y_{t+1}u_{t+1}, \ldots, y_{k-1}u_{k-1}, y_k, \ldots, y_{\tau}\}\)$ is a generating set of the *socle of R*.

(iv) $y_1 y_i \in J \mathfrak{m}$ *for* $i \geq t+1$ *and* $y_1 z_i \in J \mathfrak{m}$ *for every i.*

(v) $y_i \mathfrak{m}^3 \subseteq J \mathfrak{m}^3$ *for every i* ≥ 2 *and* $z_i \mathfrak{m}^3 \subseteq J \mathfrak{m}^3$ *for every i* ≥ 1 . (vi) $\{z_1, \ldots, z_{e-\tau-k}\} = \bigcup_{i,j,k} \{z_{ij}^{(l)}\}, \lambda((c_{ij}\mathfrak{m}+J\mathfrak{m})/J\mathfrak{m}) = k-i \text{ and } \mathfrak{m}^2 = J\mathfrak{m} + \sum_{l=1}^{k-i} z_{ij}^{(l)} c_{ij}$ *for every i* = 1, \ldots , $k-1$ *and* $j = 1$, \ldots , j_i . (vii) $c_{ij}z_{i'j'}^{(l)} \in J \mathfrak{m}$ *if i* < *i' or i* = *i' but j* < *j'*. (viii) $y_1^3 \notin J(z_1, \ldots, z_{e-\tau-k}) + Jm^2$.

Proof. By Lemma 3.4, there is an element $y_1 \in \mathfrak{m}$ such that (i) hold. Let $t = \lambda((y_1m + Jm)/Jm)$; then there are $y_2, \ldots, y_{k-1}, u_{t+1}, \ldots, u_{k-1} \in \mathfrak{m}$ such that $\mathfrak{m}^2 = J\mathfrak{m} + (y_1^2, y_1y_2, \dots, y_1y_t, y_{t+1}u_{t+1}, \dots, y_{k-1}u_{k-1})$ and $y_1\mathfrak{m} + J\mathfrak{m} = (y_1^2, y_1y_2, \dots, y_{k-1}y_k)$ $y_1 y_t$ + *J*m. We may assume that $y_1^2 y_i \in J \mathfrak{m}^2$ for $2 \le i \le t$ by replacing y_i by $y_i + \lambda y_1$ if necessary, and assume that $y_1 y_j \in J \mathfrak{m}$ for $t + 1 \le j \le k - 1$ by replacing y_j by $y_j + \lambda_1 y_1 + \cdots + \lambda_t y_t$ if necessary. It follows that $y_i \mathfrak{m}^3 = (y_i y_1^3) + J \mathfrak{m}^3 = J \mathfrak{m}^3$ for every $i \leq k - 1$. Since the Cohen-Macaulay type of *R* is τ and $\{y_1^2, y_1y_2, \ldots, y_1y_t, \ldots\}$ $y_{t+1}u_{t+1}, \ldots, y_{k-1}u_{k-1}$ is part of a generating set of the socle of *R*, we may choose $y_k, \ldots, y_{\tau}, z_1, \ldots, z_{e-\tau-k} \in \mathfrak{m}$ such that $\{y_k, \ldots, y_{\tau}, z_1, \ldots, z_{e-\tau-k}\}$ is part of a generating set of m and $\{y_1^2, y_1y_2, \ldots, y_1y_t, y_{t+1}u_{t+1}, \ldots, y_{k-1}u_{k-1}, y_k, \ldots, y_t\}$ is a generating set of the socle of *R*. If $z_i y_1 \notin J \mathfrak{m}$ for some *i*, then we may replace z_i by

 $z_i + \alpha_1 y_1 + \cdots + \alpha_t y_t$ if necessary and assume that $z_i y_1 \in J$ for every *i*. Therefore $z_i \mathfrak{m}^3 \subseteq J \mathfrak{m}^3 + z_i y_1 \mathfrak{m}^2 \subseteq J \mathfrak{m}^3$. Hence, the basis $\{x, y_1, \ldots, y_{\tau}, z_1, \ldots, z_{e-\tau-k}\}\$ of \mathfrak{m} satisfies (i) to (v) so far.

Claim. For any integer $i = 1, \ldots, k-1$, there is an integer j_i , a basis $\{x, y_1, \ldots, x_k\}$ y_t , z_1 , \ldots , z_{e-t-k} of m *and elements* $\{c_{ij} \mid j = 1, \ldots, j_i\}$ *contained in the ideal* $(y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$ such that not only (*i*) to (*v*) but also the following hold: (a) $\lambda((c_{ij}m + Jm)/Jm) = k - i$, $m^2 = Jm + (z_{ij}^{(1)}c_{ij}, \cdots, z_{ij}^{(k-i)}c_{ij}).$

(b) $c_{ij}z_{ij'}^{(l)} \in J$ m *for every l if* $j < j'$ and $c_{ij}z \in J$ m *for every generator of the ideal* generated by S_i , where $S_i = \{z_1, \ldots, z_{e-\tau-k}\} - \{z_{i'j}^{(l)} \mid 1 \le i' \le i, 1 \le j \le j_i, 1 \le l \le n\}$ $k - i$.

Note that (vi) and (vii) follows from the Claim.

Proof of the Claim. We proceed by induction on *i*. Let *z* be any generator of the ideal (z_1, \ldots, z_{e-t-k}) . Since $y_1z, y_iz \in J$ m for every $i \geq k$, there is an element $c \in$ $(y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$ such that $cz \notin J$ m. If for any generating set $\{z'_1, \ldots, z'_{e-\tau-k}\}$ of the ideal $(z_1, \ldots, z_{e-\tau-k})$ there is no element $c \in (y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$ such that $m^2 = (cz'_1, \ldots, cz'_{k-1}) + Jm$, then the Claim holds for $i = 1$. If not, we may assume that $m^2 = (c_{11}z_1, \ldots, c_{11}z_{k-1}) + Jm$ for some $c_{11} \in (y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$. Set $z_{11}^{(l)} = z_l$. Let *z* be any generator of the ideal $(z_k, \ldots, z_{e-\tau-k})$. If $c_{11}z \notin Jm$, then there are elements α_i such that $c_{11}z - \left(\sum_{i=1}^{k-1} c_{11}z_{11}^{(i)}\right) \in J\mathfrak{m}$, so that we may replace *z* by $\sum_{i=1}^{k-1} z_{11}^{(i)}$ if necessary and assume that $c_{11}z \in J\mathfrak{m}$. If for any generating set $\{z'_k, \ldots, z'_{e-\tau-k}\}\$ of the ideal $(z_k, \ldots, z_{e-\tau-k})$ there is no element $c \in (y_2, \ldots, y_{k-1}, z_k)$ $z_1, \ldots, z_{e-\tau-k}$ such that $m^2 = (cz'_k, \ldots, cz'_{2k-2}) + Jm$, then again the Claim holds for $i = 1$. If not, we may use the same trick to find c_{12} , c_{13} , ... so that the Claim holds for $i = 1$.

Suppose now we have shown that the Claim holds for any integer $i' \leq i$ for some $i \geq 1$. Let $m = \sum_{i'=1}^{i} j_i(k - i')$ and $S_i = \{z_{m+1}, \ldots, z_{e-\tau-k}\}$. If for any generating set $\{z'_{m+1}, \ldots, z'_{e-\tau-k}\}\$ of the ideal generated by S_i there is no element $c \in (y_2, \ldots, y_{k-1},$ $z_1, \ldots, z_{e-\tau-k}$ such that $m^2 = (cz'_{m+1}, \ldots, cz'_{m+k-i-1}) + Jm$, then the Claim holds for *i* + 1. If not, we may assume that for some $c_{i+1,1} \in (y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$, $m^2 = (c_{i+1,1}z_{m+1}, \ldots, c_{i+1,1}z_{m+k-i-1}) + Jm$. Set $z_{i+1,1}^{(l)} = z_{m+l}$. As before, we may assume that $c_{i+1,1}z \in J$ m for every generator *z* of the ideal $(z_{m+k-i}, \ldots, z_{e-\tau-k})$. If for any generating set $\{z'_{m+k-i}, \ldots, z'_{e-\tau-k}\}$ of the ideal $(z_{m+k-i}, \ldots, z_{e-\tau-k})$ there is no element $c \in$ $(y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$ such that $m^2 = (cz'_{m+k-i}, \ldots, cz'_{m+2k-2i-2})+Jm$, then again the Claim holds for $i + 1$. If not, we may use the same trick to find $c_{i+1,2}$, $c_{i+1,3}$, ... so that the Claim hods for $i + 1$. The Claim is now fulfilled.

To finish the proof, assume that $y_1^3 \in J(z_1, \ldots, z_{e-\tau-k}) + J\mathfrak{m}^2$. Then there are $\delta_i \in R$ not all in m such that $y_1^3 - \sum_{i=1}^{e-\tau-k} \delta_i z_i x \in Jm^2$. Let *t* be the smallest integer

for which δ_t is a unit; then $y_1^3 - \sum_{i=t}^{e-t-k} \delta_i z_i x \in J \mathfrak{m}^2$. Let $z = c_{ij}$ if $z_t = z_{ij}^{(l)}$ for some *l*; then $z \cdot (\sum_{i=t}^{e-\tau-k} \delta_i z_i)x - zy_1^3 \in J\mathfrak{m}^3$, so that $z \cdot (\sum_{i=t}^{e-\tau-k} \delta_i z_i) \in \mathfrak{m}^3 \subseteq J\mathfrak{m}$ as $z \in (y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$. However, $z \cdot (\sum_{i=t}^{e-\tau-k} \delta_i z_i) \notin J \mathfrak{m}$ by the Claim, a contradiction. Therefore (viii) holds.

Now, we are ready for:

Proof of Theorem 3.1. From the above, we may assume that $d = 1$, $\tau \ge 2$ and $r \geq 4$, where *r* is the reduction number of some minimal reduction *J* of m. By Theorem 3.6, there is a basis $\{x, y_1, \ldots, y_{\tau}, z_1, \ldots, z_{e-\tau-k}\}\$ of m, elements u_{t+1}, \ldots, u_{k-1} contained in m and elements $\{c_{ij} | i = 1, \ldots, k-1, j = 1, \ldots, j_i\}$ contained in the ideal $(y_2, \ldots, y_{k-1}, z_1, \ldots, z_{e-\tau-k})$ with $\sum_{i=1}^{k-1} j_i(k-i) = e - \tau - k$ such that $J = (x)$ and the following hold: (i) $\mathfrak{m}^{i+1} = J\mathfrak{m}^i + (y_1^{i+1})$ for every $i \ge 2$. (ii) $\mathfrak{m}^2 = J\mathfrak{m} + (y_1^2, y_1y_2, \dots, y_1y_t, y_{t+1}u_{t+1}, \dots, y_{k-1}u_{k-1}),$ where $t = \lambda((y_1\mathfrak{m} + J\mathfrak{m})/J\mathfrak{m}).$ (iii) $\{y_1^2, y_1y_2, \ldots, y_1y_t, y_{t+1}u_{t+1}, \ldots, y_{k-1}u_{k-1}, y_k, \ldots, y_{\tau}\}\)$ is a generating set of the socle of *R*. (iv) $y_1 y_i \in J \mathfrak{m}$ for $i \ge t + 1$ and $y_1 z_i \in J \mathfrak{m}$ for every *i*. (v) $y_i \text{ m}^3 \subseteq J \text{ m}^3$ for every $i \ge 2$ and $z_i \text{ m}^3 \subseteq J \text{ m}^3$ for every $i \ge 1$. (vi) $\{z_1, \ldots, z_{e-\tau-k}\} = \bigcup_{i,j,k} \{z_{ij}^{(l)}\}, \lambda((c_{ij}\mathfrak{m}+J\mathfrak{m})/J\mathfrak{m}) = k-i \text{ and } \mathfrak{m}^2 = J\mathfrak{m} + \sum_{l=1}^{k-i} z_{ij}^{(l)} c_{ij}$ for every $i = 1, \ldots, k - 1$ and $j = 1, \ldots, j_i$. (vii) $c_{ij}z_{i'j'}^{(l)} \in J \mathfrak{m}$ if $i < i'$ or $i = i'$ but $j < j'$. (viii) $y_1^3 \notin J(z_1, \ldots, z_{e-\tau-k}) + Jm^2$. If $\tau \geq h$, then $s \leq e - 1 = h + k - 1 \leq \tau + k - 1$ by [2] and we are done. Therefore, we may assume that $\tau < h$. To show that $s \leq \tau + k - 1$, it is enough to show that $\lambda(\mathfrak{m}^{\tau+k-1}/\mathfrak{m}^{\tau+k}) = e$ by Remark 3.2 (ii). Moreover, by Lemma 3.5, $\{y_1^{\tau+k-1}, y_1^{\tau+k-2}x, \ldots,$ $y_1^2 x^{\tau+k-3}$ are generators of the module $\pi^{\tau+k-1}/(J^{\tau+k-2}\mathfrak{m}+\mathfrak{m}^{\tau+k})$, therefore to show that $\lambda(\mathfrak{m}^{\tau+k-1}/\mathfrak{m}^{\tau+k}) = e$ it is enough to show that

$$
\{y_1x^{\tau+k-2}, x^{\tau+k-1}, z_1x^{\tau+k-2}, \ldots, z_{e-\tau-k}x^{\tau+k-2}\}
$$

is a linearly independent set in $(x^{\tau+k-2}m + m^{\tau+k})/m^{\tau+k}$.

Suppose not, there are α , β , δ_i in *R* not all in m such that

$$
\alpha y_1 x^{\tau+k-2} + \beta x^{\tau+k-1} + \sum_{i=1}^{e-\tau-k} \delta_i z_i x^{\tau+k-2} \in \mathfrak{m}^{\tau+k}.
$$

Then

$$
\alpha y_1^r x^{\tau+k-2} + \beta y_1^{r-1} x^{\tau+k-1} + \sum_{i=1}^{e-\tau-k} \delta_i z_i x^{\tau+k-2} y_1^{r-1} \in \mathfrak{m}^{\tau+r+k-1},
$$

so that $\alpha y_1^r x^{r+k-2} \in x^{r+k-1} \mathfrak{m}^{r-1}$ as $y_1 z_i \in J\mathfrak{m}$, it follows that $\alpha \in \mathfrak{m}$ by the choice of *r*. Therefore $\beta x^{\tau+k-1} + \sum_{i=1}^{e-\tau-k} \delta_i z_i x^{\tau+k-2} \in \mathfrak{m}^{\tau+k}$. If $\delta_i \in \mathfrak{m}$ for every *i*, then $x^{\tau+k-1}$ m^{t+k} , which is impossible. So, there is an integer *i* such that δ_i is a unit. By replacing z_i by $z_i + \beta/\delta_i x$, we may assume that $\beta \in \mathfrak{m}$. Hence $\sum_{i=1}^{e-r-k} \delta_i z_i x^{r+k-2} \in \mathfrak{m}^{r+k}$. Let *t* be the smallest integer for which δ_t is a unit; then $\sum_{i=t}^{e-\tau-k} \delta_i z_i x^{\tau+k-2} \in \mathfrak{m}^{\tau+k}$.

Let $\alpha \le \tau + k$ be the integer such that $\sum_{i=t}^{e-\tau-k} \delta_i z_i x^{\tau+k-2} \in J^{\tau+k-\alpha} \mathfrak{m}^{\alpha} - J^{\tau+k+1-\alpha} \mathfrak{m}^{\alpha-1}$. If $\sum_{i=t}^{e-\tau-k} \delta_i z_i x^{\tau+k-2} \in J^{\tau+k-3} \mathfrak{m}^3$, then $\sum_{i=t}^{e-\tau-k} \delta_i z_i x \in \mathfrak{m}^3 = (y_1^3) + J \mathfrak{m}^2$, so that $\sum_{i=t}^{e-\tau-k} \delta_i z_i x \in Jm^2$ by (viii), it follows that $\sum_{i=t}^{e-\tau-k} \delta_i z_i \in m^2$, a contradiction. Therefore, $\alpha \geq 4$. Since $\mathfrak{m}^{\alpha} = (\mathfrak{y}^{\alpha}) + J \mathfrak{m}^{\alpha-1}$ and $\lambda(\mathfrak{m}^{\alpha}/J\mathfrak{m}^{\alpha-1}) = 1$, there is a *unit* λ_1 such that

(1)
$$
\sum_{i=t}^{e-\tau-k} \delta_i z_i x^{\alpha-2} - \lambda_1 y_1^{\alpha} \in J \mathfrak{m}^{\alpha-1}.
$$

Let $z = c_{ij}$ if $z_t = z_{ij}^{(l)}$; then $z \cdot (\sum_{i=t}^{e-\tau-k} \delta_i z_i) \notin J \mathfrak{m}$ by (vi) and (vii). Moreover,

$$
z\left(\sum_{i=t}^{e-\tau-k} \delta_i z_i x^{\alpha-2}\right) - \lambda_1 y_1^{\alpha} z \in J\mathfrak{m}^{\alpha}.
$$

Furthermore, $y_1^3 z \in J \mathfrak{m}^3$ by (v), we have $z \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i x^{\alpha-3} \right) \in \mathfrak{m}^{\alpha}$. Therefore, there is an element λ_2 of R such that

(2)
$$
z\left(\sum_{i=t}^{e-\tau-k} \delta_i z_i x^{\alpha-3}\right) - \lambda_2 y_1^{\alpha} \in J \mathfrak{m}^{\alpha-1}.
$$

From (1) and (2), we see that there is an element λ_3 of *R* such that

$$
(z - \lambda_3 x) \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i \right) x^{\alpha-4} \in \mathfrak{m}^{\alpha-1}.
$$

Let $\beta \leq \alpha - 4 \leq \tau + k - 4$ be the non-negative integer such that

$$
(z-\lambda_3x)\left(\sum_{i=t}^{e-\tau-k}\delta_iz_i\right)x^{\beta}\in \mathfrak{m}^{\beta+3}\setminus J\mathfrak{m}^{\beta+2}.
$$

Since $z \cdot (\sum_{i=t}^{e-\tau-k} \delta_i z_i) \notin J\mathfrak{m}$, $(z-\lambda_3x)(\sum_{i=t}^{e-\tau-k} \delta_i z_i) \notin J\mathfrak{m}^2$, β exists. Moreover, there is a *unit* λ_4 of *R* such that

(3)
$$
(z - \lambda_3 x) \left(\sum_{i=t}^{e-t-k} \delta_i z_i \right) x^{\beta} - \lambda_4 y_1^{\beta+3} \in J \mathfrak{m}^{\beta+2}.
$$

On the other hand, from (1), we have

$$
y_1^{r-\alpha+1}\left(\sum_{i=t}^{e-\tau-k}\delta_i z_i\right)x^{\alpha-2}-\lambda_1y_1^{r+1}\in J\mathfrak{m}^r,
$$

or equivalently,

$$
y_1^{r-\alpha+1} \Bigg(\sum_{i=t}^{e-\tau-k} \delta_i z_i \Bigg) x^{\alpha-3} \in \mathfrak{m}^r.
$$

Since $\mathfrak{m}^r = (y_1^r) + J \mathfrak{m}^{r-1}$, there is an element λ_5 of *R* such that

(4)
$$
y_1^{r-\alpha+1} \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i \right) x^{\alpha-3} - \lambda_5 y_1^r \in J \mathfrak{m}^{r-1}.
$$

However, from (1), we have

(5)
$$
y_1^{r-\alpha} \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i \right) x^{\alpha-2} - \lambda_1 y_1^r \in J \mathfrak{m}^{r-1}
$$

Thus, from (4) and (5), we obtain that

(6)
$$
y_1^{r-\alpha}(y_1-\lambda_6 x)\left(\sum_{i=t}^{e-\tau-k}\delta_i z_i\right)x^{\alpha-4}\in \mathfrak{m}^{r-1},
$$

for some element λ_6 of *R*. Now, if we can show that

(7)
$$
\widetilde{y_1^{r-\beta-3}} \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i \right) x^{\beta} \in \mathfrak{m}^{r-1}
$$

for some element $y_1^{r-\overline{\beta}-3} \in \mathfrak{m}^{r-\beta-3} \setminus J\mathfrak{m}^{r-\beta-4}$, then from (3) and (7), we see that

$$
(z - \lambda_3 x)\widetilde{y_1^{r-\beta-3}} \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i \right) x^{\beta} - \lambda_4 y_1^{\beta+3} \widetilde{y_1^{r-\beta-3}} \in J \mathfrak{m}^{r-1}
$$

and $(z - \lambda_3 x) y_1^{r-\beta-3} \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i \right) x^{\beta} \in z \mathfrak{m}^{r-1} + J \mathfrak{m}^{r-1} = J \mathfrak{m}^{r-1}$ by (v), therefore $\lambda_4 y_1^{\beta+3} y_1^{r-\overline{\beta}-3} \in J \mathfrak{m}^{r-1}$, which contradicts to the choice of *r*. Hence, we conclude that $\{y_1 x^{\tau+k-2}, x^{\tau+k-1}, z_1 x^{\tau+k-2}, \ldots, z_{e-\tau-k} x^{\tau+k-2}\}$ is a linearly independent set in $(x^{\tau+k-2} \mathfrak{m} + \tau)$ $(\mathfrak{m}^{\tau+k})/\mathfrak{m}^{\tau+k}.$

Finally, by (6), we may prove (7) by reverse induction. Suppose we have shown that for some δ , $\beta < \delta \le \alpha - 4$,

$$
\widetilde{y_1^{r-\delta-3}}\left(\sum_{i=t}^{e-\tau-k}\delta_i z_i\right)x^{\delta} \in \mathfrak{m}^{r-1}
$$

for some element $y_1^{r-\delta-3} \in \mathfrak{m}^{r-\delta-3} \setminus J\mathfrak{m}^{r-\delta-4}$. Then there is an element $\lambda_6 \in R$ such that

(8)
$$
y_1 \widetilde{y_1^{r-\delta-3}} \left(\sum_{i=t}^{e-\tau-k} \delta_i z_i \right) x^{\delta} - \lambda_6 y_1^r \in J \mathfrak{m}^{r-1}.
$$

From (5) and (8), we see that

$$
\widetilde{y_1^{r-\delta-2}}\left(\sum_{i=t}^{e-\tau-k}\delta_i z_i\right)x^{\delta} \in J\mathfrak{m}^{r-1}
$$

for some element $y_1^{r-\delta-2} \in \mathfrak{m}^{r-\delta-2} \setminus J\mathfrak{m}^{r-\delta-3}$, it follows that

$$
\widetilde{y_1^{r-\delta-2}}\left(\sum_{i=t}^{e-\tau-k}\delta_i z_i\right)x^{\delta-1}\in \mathfrak{m}^{r-1}.
$$

We end this section by providing the following example.

EXAMPLE 3.7. Let *K* be a field and $R = K[[x, y, z_1, \ldots, z_{k-1}]]/I$, where *I* is the ideal of *R* generated by the set

$$
\{z_1^3 - xy, y^2, yz_1, \ldots, yz_{k-1}, z_1z_2, \ldots, z_1z_{k-1}\} \cup \{z_iz_j \mid 2 \le i \le j \le k-1\}.
$$

The it is easy to see the following hold:

(i) *R* is a 1-dimensional Cohen-Macaulay local ring with maximal ideal $m =$ $(x, y, z_1, \ldots, z_{k-1})/I$. (ii) *x* is a regular element of *R* and xR is a minimal reduction of m. (iii) $v = k + 1$, $h = k$ and $e = 2k$. (iv) $\mathfrak{m}^3 \subseteq x \mathfrak{m}$, $\{z_1^3\}$ is a basis of $\mathfrak{m}^3 / x \mathfrak{m}^2$ and $\{z_1^2, z_1 z_2, \ldots, z_1 z_{k-1}\}$ is a basis of λ (m²/xm). (v) $H_R(z) = 1 + (k+1)z + (2k-1)z^2 + \sum_{i=3}^{\infty} 2kz^i = (1 + kz + (k-2)z^2 + z^3)/(1-z)$ and $H_{R/xR}(z) = 1 + kz + (k - 1)z^2$. (vi) $s = r = 3$. (vii) depth $G = 0$.

4. Examples

In [3], Rossi and Valla raised the following questions:

QUESTION 1. Let (*R*, m) be a *d*-dimensional Cohen-Macaulay local ring with embedding dimension $v = e + d - 3$. If $\tau \geq h$, then is depth $G \geq d - 1$?

QUESTION 2. If (*R*, m) is a *d*-dimensional Cohen-Macaulay local stretched domain with multiplicity $e = h + 3$ and $\tau = 2$, then is *G* Cohen-Macaulay?

We give counterexamples to these questions as follows.

EXAMPLE 4.1. Let *K* be a field and $R = K[[x, y, z, u, v]]/(u^3 - xz, v^3 - yz, u^4, v^4, v^5)$ uv, z^2, zu, zv ; then (R, m) is a 2-dimensional Cohen-Macaulay local ring and *x*, *y* is a regular sequence of m, where $m = (x, y, z, u, v)R$. Moreover, $h = 3$, $e = 6$ and $\tau = 3$ as $\{u^2, v^2, z\}$ generates the socle of *R*. However, $z \in (\mathfrak{m}^3 : (x, y))$ and $z \notin \mathfrak{m}^2$, therefore the depth of *G* is 0.

EXAMPLE 4.2. Let *K* be a field and $R = K[[t^5, t^6, t^{14}]]$; then (R, \mathfrak{m}) is a onedimensional Cohen-Maculay local domain, where $m = (t^5, t^6, t^{14})R$. Let $x = t^5$, $y = t^6$ and $z = t^{14}$; then $h = 2$, $e = 5 = h + 3$ and $\tau = 2$ as $\{z, y^3\}$ generates the socle of *R*. Moreover,

$$
P_{R/xR}(z) = 1 + 2z + z^2 + z^3
$$

and

$$
P_R(z) = \frac{1 + 2z + z^2 + z^4}{1 - z}.
$$

Hence *R* is stretched and *G* is not Cohen-Macaulay. In fact, $zx \in (\mathfrak{m}^4 : x)$ and $zx \notin \mathfrak{m}^3$.

ACKNOWLEDGMENT. I am grateful to the referee for a number of valuable suggestions that improved the paper a lot.

References

- [1] W. Heinzer, M.-K. Kim and B. Ulrich: *The Gorenstein and complete intersection properties of associated graded rings*, J. Pure Appl. Algebra **201** (2005), 264–283.
- [2] J. Herzog and R. Waldi: *A note on the Hilbert function of a one-dimensional Cohen-Macaulay ring*, Manuscripta Math. **16** (1975), 251–260.
- [3] M.E. Rossi and G. Valla: *Cohen-Macaulay local rings of embedding dimension* $e + d 3$, Proc. London Math. Soc. (3) **80** (2000), 107–126.

- [4] M.E. Rossi and G. Valla: *Stretched* m*-primary ideals*, Beiträge Algebra Geom. **42** (2001), 103–122.
- [5] J.D. Sally: *Super-regular sequences*, Pacific J. Math. **84** (1979), 465–481.
- [6] J.D. Sally: *Stretched Gorenstein rings*, J. London Math. Soc. (2) **20** (1979), 19–26
- [7] J.D. Sally: *Tangent cones at Gorenstein singularities*, Compositio Math. **40** (1980), 167–175.
- [8] J.D. Sally: *Good embedding dimensions for Gorenstein singularities*, Math. Ann. **249** (1980), 95–106.

Department of Mathematics National Chung Cheng University Chiayi 621 Taiwan e-mail: hjwang@math.ccu.edu.tw