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Abstract
It is well-known that a knot is Fox n-colorable for a prime n if and only if the knot group admits

a surjective homomorphism to the dihedral group of degree n. However, this is not the case for
links with two or more components. In this paper, we introduce a two-tone coloring on a link
diagram, and give a condition for links so that the link groups admit surjective representations
to the dihedral groups. In particular, it is shown that the link group of any link with at least 3
components admits a surjective homomorphism to the dihedral group of arbitrary degree.

1. Introduction

1. Introduction
One of the most well-known invariants of knots in 3-space must be the Fox’s 3-colorablity.

(See Remark 1 for the definition of the Fox n-coloring.) In general, it is known that a knot
is Fox n-colorable for a prime n ≥ 3 if and only if the knot group admits a surjective homo-
morphism to the dihedral group Dn of degree n. For instance, it is stated in [3, Chap. VI,
Exercises, 6, pp.92–93]. However, this is not the case for links with two or more compo-
nents. In fact, some examples are given in [6] for D3-coloring, which is the coloring by the
symmetric group of degree three. For example, by the results in [6, Theorem 1.2], the link
group of the torus link T (2, q) admits a surjective homomorphism to D3 if q ≡ 0 (mod 4).
On the other hand, T (2, q) is Fox 3-colorable if and only if q ≡ 0 (mod 3).

We remark that, although there are numerous papers studying the Fox colorings (cf. [10,
2]), it seems that the relationship between the Fox colorings on links with two or more
components and the surjective homomorphisms of the link groups to the dihedral groups
has not been discussed, as far as the authors know.

In this paper, we introduce a two-tone coloring on a link diagram, and give a condition for
links which guarantees that the link groups admit surjective homomorphisms to the dihedral
groups. In particular, we show that the link group of any link with at least 3 components
admits a surjective homomorphism to the dihedral group of arbitrary degree.

Remark 1. Recall that a Fox n-coloring on a link diagram D is defined as a map Γ : {arcs
of D} → {0, 1, . . . , n − 1}, satisfying 2Γ(x) ≡ Γ(y) + Γ(z) (mod n) at each crossing of D
with the over arc x and the under arcs y and z. It is well-known that, for n ≥ 3, a link is
Fox n-colorable, i.e., a diagram of the link admits a non-trivial Fox n-coloring (a coloring
with at least two colors), if and only if det(L) = 0 or (n, det(L)) � 1, where det(L) denotes
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the determinant of the link. See [7, Proposition 2.1] for example. Also a condition for knot
groups to admit a surjective homomorphism to the dihedral groups in terms of the homology
of the double branched covering is known. See [1, 14.8] for example.

To state our results, we prepare some notations. Let Dn be the dihedral group of degree
n. It is well-known that Dn has the following presentation with e the identity element:

Dn =
〈
a, b | a2 = bn = (ab)2 = e

〉
.

Note that any element in Dn is represented as axby (x = 0, 1 and 0 ≤ y ≤ n − 1). Thus,
by setting ai := abi (0 ≤ i ≤ n − 1) and b j := b j (1 ≤ j ≤ n − 1), we see that
Dn = {e, a0, a1, . . . , an−1, b1, . . . , bn−1} as a set. In geometric viewpoint, the ai’s represent
reflections and b j’s represent rotations as the symmetries of a regular polygon (n-gon).

In the following, let L be an oriented link in the 3-sphere S3 with a link diagram D. We
call a map Γ : {arcs on D} → Dn a Dn-coloring on D if it satisfies Γ(x)Γ(z) = Γ(y)Γ(x)
(respectively, Γ(z)Γ(x) = Γ(x)Γ(y)) in Dn at each positive (resp. negative) crossing on D,
where x denotes the over arc, y and z the under arcs at the crossing supposing y is the under
arc before passing through the crossing and z is the other. (See Figure 1.)

Fig.1. Positive and negative crossings

Remark 2. The Dn-colorings and the Fox n-colorings are related in terms of representa-
tions of link groups to Dn as follows. For a link diagram D with c crossings of a link L, set
g1, . . . , gc the Wirtinger generators of the link group GL, i.e., GL = π1(S3 − L). Then a Dn-
coloring on D corresponds to a map {g1, . . . , gc} → Dn which extends to a homomorphism of
GL to Dn. When a Dn-coloring sends gk’s to ai’s (reflections, 0 ≤ i ≤ n− 1) in Dn, it induces
a map {arcs of D} → {0, 1, . . . , n − 1}, which gives a Fox n-coloring. Note that even if a link
admits a nontrivial Fox n-coloring, it may not induce a surjective homomorphism from GL

to Dn. See the example illustrated in Figure 2. In this case, the image of the Wirtinger gen-
erators by the homomorphism induced by the Fox 4-coloring is the set {a0, a2} ⊂ D4, but the
elements a0 and a2 do not generate D4. Thus the induced homomorphism is not surjective.

The following is our key definition.

Definition 1. Let Γ be a Dn-coloring on a link diagram D of an oriented link L. We
say that Γ is two-tone if Im(Γ) does not contain the trivial element, i.e. e � Im(Γ), and
Im(Γ) ∩ {a0, . . . , an−1} � ∅ and Im(Γ) ∩ {b1, . . . , bn−1} � ∅, that is, the coloring uses colors
from both {ai} and {b j}. We say that a link is two-tone Dn-colorable if, with some orientation,
it has a diagram D admitting a two-tone Dn-coloring.

Note that two-tone Dn-colorability is independent of the choice of orientations for links.
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Fig.2. Fox 4-colorable link

An example of a two-tone Dn-colorable link is the pretzel link P(6, 6, 6) which admits a
two-tone Dm-coloring if m ≥ 4. See Figure 3 for the case where m ≥ 8.

Fig.3. A two-tone Dm-coloring on P(6, 6, 6) for m ≥ 8

Now the following are our main results. Here D∞ denotes the group presented by〈
a, b | a2 = (ab)2 = e

〉
, and a two-tone D∞-coloring for a link is defined in the same way

as above.

Theorem 1.1. For a 2-component link L = �1 ∪ �2, the following are equivalent.

(i) lk(�1, �2) is even.
(ii) L is two-tone Dn-colorable for some odd n ≥ 3.

(iii) L is two-tone D∞-colorable.
(iv) The link group GL admits a surjective homomorphism to Dn for every n ≥ 3.
(v) The link group GL admits a surjective homomorphism to D∞.

Remark 3. By considering the natural embedding of Dn into D2n, we see that the condi-
tion (ii) in Theorem 1.1 is equivalent to that L admits a two-tone Dn-coloring for some even
n ≥ 3 that assigns bi with i � n/2 to some arcs. We also remark that (iii) in Theorem 1.1
does not imply that L is two-tone Dn-colorable for every odd n ≥ 3. Actually even if there
is a two-tone D∞-coloring on a diagram of a link L, the coloring may not give a two-tone
Dn-coloring for some n, but a Fox n-coloring on a sub-diagram of L. For example, pretzel
links of type (m, 2,m, 2) with odd m admit a two-tone D∞-coloring on a diagram, but no
two-tone Dm-colorings.
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On the other hand, for 2-component links with odd linking numbers, we have the follow-
ing.

Theorem 1.2. Let L = �1 ∪ �2 be a 2-component link with lk(�1, �2) odd. Then the
following hold.

(i) The link L admits no two-tone Dn-colorings for any odd n ≥ 3.
(ii) If the link group GL admits a surjective homomorphism to Dn for n ≥ 3, then the

homomorphism is induced from a Fox n-coloring on �1, �2 or L, i.e., the homomor-
phism sends a meridional element in GL to the trivial element or a reflection in Dn.

For the links with at least 3 components, interestingly, the following holds.

Theorem 1.3. Let L be a link with at least 3 components. Then the link group GL admits
a surjective homomorphism to Dn for every n ≥ 3.

We remark that even if the link group GL admits a surjective homomorphism to Dn for
every n ≥ 3, the link L may not be two-tone Dn-colorable for every n ≥ 3. For example,
pretzel links of type (2m, 2m, 2m) with odd m admit no two-tone Dm-colorings.

As a corollary of the theorems, we have the following.

Corollary 1.4. If a link L is two-tone Dm-colorable for some odd m, then GL admits a
surjective homomorphism to Dn for every n ≥ 3. If GL admits a surjective homomorphism
to Dn for some n, then L contains a two-tone Dn-colorable sub-link or a Fox n-colorable
sub-link.

On the other hand, even if a link L is known to be two-tone Dn-colorable for some n, find-
ing a two-tone Dn-coloring on a given diagram of L, or, finding a surjective homomorphism
of GL to Dn, is a tedious task in general. The next proposition and its proof give a simple
way to find a two-tone Dn-coloring on some link diagrams for any n ≥ 3.

Proposition 1.5. Suppose that there exists a trivial component �0 of a link L and that
lk(�0, �) is even for every component � ⊂ L − �0. Then any diagram of L admits a two-tone
Dn-coloring for every odd n ≥ 3 which assigns the arcs on �0 to ai’s and the other arcs to
b j’s.

2. Properties of Dn-coloring

2. Properties of Dn-coloring
In this section, we study some properties of Dn-colorings, and give lemmas which will be

used in the remaining sections. In the following, we set An := {ai} and Bn := {b j} for Dn.

Lemma 2.1. Let Γ be a Dn-coloring on a diagram D of an oriented link L in S3. At a
crossing on D, x denotes the over arc, and y and z the under arcs at the crossing supposing
that y (resp. z) is the under arc before (resp. after) passing through the crossing. Then the
following hold.

(1) Γ(y) and Γ(z) are both in An or both in Bn.
(2) If Γ(x) ∈ Bn and Γ(y) ∈ Bn, then Γ(z) = Γ(y).
(3) If Γ(x) = ai and Γ(y) = ai′ , then Γ(z) = ak and k ≡ 2i′ − i (mod n).
(4) If Γ(x) = ai and Γ(y) = b j, then Γ(z) = bk and k ≡ n − j (mod n).
(5) If Γ(x) = b j and Γ(y) = a j, then Γ(z) = ak and k ≡ i+ 2 j (resp. k ≡ i− 2 j ) (mod n)

if the crossing is a positive (resp. negative) crossing.
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Proof. By definition of a Dn-coloring, Γ(y) and Γ(z) are conjugate in Dn, and from this,
(1) holds. We give a proof of the case (4) when the crossing is a positive crossing. The
others (2), (3), (5) are proved in the same way. Suppose that Γ(x) = ai and Γ(y) = b j. By
definition of a Dn-coloring, we have the following.

Γ(z) = (ai)−1b jai = bn−ia−1b jabi = abi+ j−nabi = bn−i− j+i = bn− j = bn− j

Thus Γ(z) = bk and k ≡ n − j (mod n) holds. �

Remark 4. Note that (1) in the lemma implies that all the strands on a diagram of a
particular component must be colored by ai’s or by b j’s for a given Dn-coloring. Also note
that the tone of the colors for a particular component is independent of the choice of a
diagram: If all the strands on a diagram for a particular component are colored by b j’s by a
Dn-coloring, then all the strands for the component are also colored by b j’s on any diagram
by the Dn-coloring obtained by performing Reidemeister moves. We will use these facts in
the rest of the paper repeatedly.

Lemma 2.2. Let Γ be a Dn-coloring on a diagram D of an oriented link L in S3. Let
x, y, z, w be either the arcs depicted in Figure 4 (left), or the arcs depicted in Figure 4 (right).
If Γ(x) = ai and Γ(y) = b j, then Γ(z) = ak with k ≡ i−2 j (mod n) and Γ(w) = bl with l ≡ n− j
(mod n).

Fig.4. A positive full twist (left). A negative full twist (right)

Proof. We only give a proof for the positive full twist case. A proof for the other case is
similar. In that case, by Lemma 2.1(4), Γ(w) = bl with l ≡ n− j (mod n) since Γ(x) = ai and
Γ(y) = b j. Then, by Lemma 2.1(5), Γ(z) = ak and k ≡ i + 2(n − j) ≡ i − 2 j (mod n) since
Γ(w) = bl with l ≡ n − j (mod n) and Γ(x) = ai. �

3. Two-tone colorings and surjective homomorphisms to D∞

3. Two-tone colorings and surjective homomorphisms to D∞
In this section, we give a key proposition to prove the theorems.
In the following, let lk(L, L′) denote the (total) linking number of oriented links L, L′, i.e.,

lk(L, L′) =
∑
�⊂L,�′⊂L′ lk(�, �′). The linking number is calculated for the link with arbitrarily

chosen orientations. Note that the parity of such a linking number is independent of the
choice of orientations.

Proposition 3.1. Suppose that a link L contains a component �0 with lk(�0, L′) even and
det(L′) � 0, where L′ = L − �0. Then L admits a two-tone D∞-coloring that induces a
surjective homomorphism from GL to D∞.
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Proof. Let p : X → S3 − L′ be the double covering on the total linking number with L′,
and p̄ : M → S3 the double branched covering. Let K̃ = K1 ∪ K2 denote the inverse image
p−1(�0) ⊂ X; because lk(�0, L′) is even, K̃ is a 2-component link in X (or in M). We shall
construct a surjective group homomorphism π1(M − K̃) → Z and extend the composition
π1(X − K̃)→ π1(M − K̃)→ Z to obtain a D∞-coloring.

Taking a regular neighborhood N of K̃, we consider the Mayer-Vietoris exact sequence
for M = N ∪ (M − K̃):

H2(M)→ H1(N − K̃)→ H1(N) ⊕ H1(M − K̃)→ H1(M)→ H0(N − K̃)

is exact. The rightmost map is zero as usual and the leftmost one is also zero because
det(L′) � 0 (hence |H1(M)| = | det(L′)| < ∞); by the Poincaré duality H2(M) � H1(M;Z) =
0. Thus, we obtain a short exact sequence

0→ H1(N − K̃)→ H1(N) ⊕ H1(M − K̃)→ H1(M)→ 0.

Take a meridional disc D1 ⊂ M of K1 and let D2 denote ϕ(D1), where ϕ : M → M is
the nontrivial covering transformation of the branched covering p̄ : M → S3; the covering
transformation group is Z2 = {idM, ϕ}. We denote D1 ∪ D2 by D̃. Because the kernel
of the surjective homomorphism H1(N − K̃) → H1(N) is the image of the injective map
H1(∂D̃)→ H1(N − K̃), the short exact sequence above shows that

(1) 0→ H1(∂D̃)→ H1(M − K̃)→ H1(M)→ 0

is also exact. We should remark that the involution ϕ induces automorphisms ϕ∗ on the
homology groups in (1). Since the homomorphisms in (1) are induced by the inclusions, (1)
is compatible with ϕ∗; i.e., the maps are Z2-equivariant.

Let x ∈ H1(∂D1) be a generator and set y = ϕ∗(x) ∈ H1(∂D2). We use the same symbols
x, y for their images in H1(∂D) or H1(M− K̃). We take the quotient of (1) by the ϕ∗-invariant
part of H1(∂D̃) to obtain an exact sequence

0→ H1(∂D̃)/(x + y)→ H1(M − K̃)/(x + y)→ H1(M)→ 0.

Since H1(∂D̃)/(x + y) � Z and |H1(M)| < ∞, the rank of H1(M − K̃)/(x + y) equals 1,
i.e., (H1(M − K̃)/(x + y))/Tor(H1(M − K̃)/(x + y)) � Z. Hence there exists a surjective
homomorphism f : H1(M−K̃)/(x+y)→ Z, which satisfies f ◦ϕ∗ = − f . Let f̄ : π1(X−K̃)→
Z denote the composition

π1(X − K̃)→ π1(M − K̃)→ H1(M − K̃)→ H1(M − K̃)/(x + y)→ Z.
Let m ∈ GL be a meridian of a component of L′. Identifying 〈b〉 ⊂ D∞ with Z, we define

f̃ : GL → D∞ by

f̃ (g) =
{

f̄ (g) (g ∈ π1(X − K̃)),
a f̄ (m−1g) (g � π1(X − K̃)).

Since a2 = e, f̃ is well-defined as a map. Furthermore, we have f̄ (mgm−1) = f ◦ ϕ∗(g) =
f (g)−1 = f̄ (g)−1 ∈ D∞ for g ∈ π1(X − K̃). By this equality, we can easily check that
f̃ is a group homomorphism. Because f̄ is surjective and f̃ (m) = a, the homomorphism
f̃ : GL → D∞ is surjective. �
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The following is an immediate corollary of the proposition above, since any knot has an
odd determinant.

Corollary 3.2. Let L = �1 ∪ �2 be a 2-component link. If lk(�1, �2) is even, then L admits
a two-tone D∞-coloring that induces a surjective homomorphism from GL to D∞. �

4. Proof of theorems

4. Proof of theorems
In this section, we give proofs of the theorems stated in Introduction. To prove the theo-

rems, we prepare the following two lemmas.

Lemma 4.1. If a 2-component link L = �1 ∪ �2 is two-tone Dn-colorable for some odd
n ≥ 3, then lk(�1, �2) is even.

Proof. Take a two-tone Dn-coloring γ on a diagram of L for some n ≥ 3. Since γ is two-
tone, one component of L is colored by ai’s, and the other by b j’s. Let �b be the component
of L such that each arc in a diagram of �b is colored by b j’s by Γ. This �b is well-defined for
Γ independent of the choice of a diagram. See Remark 4.

We can easily see that L admits a diagram as depicted in Figure 5, where Db is a sub-
diagram corresponding to �b, Da is the remaining sub-diagram, and each box between Da

and Db contains a vertical full twist (Figure 5 (right)). For this Da∪Db, we consider the arcs
β and β′ which are connected in Db as in Figure 5 (left).

Fig.5. The diagram of L

Since β and β′ are connected in Db, we see Γ(β) = Γ(β′) by Lemma 2.1(1). On the
other hand, letting N be the number of the boxes (full twists) which �b runs through, if
Γ(β) = Γ(β′), then N has to be even. This is shown by applying Lemma 2.2 repeatedly for
each box (full twist) together with n is odd. The number N is congruent to lk(�a, �b) modulo
2, and so the lemma holds. �

Remark 5. The lemma above can be extended as follows. If L is two-tone Dn-colorable
for some odd n ≥ 3, then the sublink Lb of L consisting of those components which are
colored by b j’s satisfies that, for every component � ⊂ Lb, lk(�, L − Lb) is even.
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Lemma 4.2. Let L = �1 ∪ �2 be a 2-component link. If det(L) = 0, then lk(�1, �2) is even.

Proof. Let D be a diagram of L. Since det(L) = 0, there exists a Fox 4-coloring Γ on D
which induces a surjective group homomorphism to D4. By definition of Fox colorings, if
Γ(x) equals a0 or a2 (resp. a1 or a3) for an arc x belonging to �i (i = 1, 2), it holds for any
arc x of �i. Then, we may assume

Γ({arcs of �1}) ⊂ {a1, a3} and Γ({arcs of �2}) ⊂ {a0, a2}.
For a crossing point of D, let x be the over arc and y, z the under arcs. Again, by definition
of Fox colorings, we find that Γ(y) = Γ(z) holds if and only if x and y belong to the same
component. In particular, the colors of the under arcs at the crossing are changed if x belongs
to �1 and y to �2. This implies that D has an even number of such crossings, and hence the
linking number lk(�1, �2) is even. �

Proof of Theorem 1.1. Let L = �1∪�2 a 2-component link. We show that all the following
are equivalent.

(i) lk(�1, �2) is even.
(ii) L is two-tone Dn-colorable for some odd n ≥ 3.

(iii) L is two-tone D∞-colorable.
(iv) The link group GL admits a surjective homomorphism to Dn for every n ≥ 3.
(v) The link group GL admits a surjective homomorphism to D∞.

We see that (i)⇒(iii) follows from Corollary 3.2 and (ii)⇒(i) follows from Lemma 4.1.
(iii)⇒(ii): Suppose that L is two-tone D∞-colorable, that is, a diagram of L admits a two-
tone D∞-coloring. Since there is a surjection from D∞ to Dn for every n ≥ 3 defined by
a ∈ D∞ �→ a ∈ Dn and b ∈ D∞ �→ b ∈ Dn, this implies that the diagram of L admits a
Dn-coloring for every n. By taking odd n sufficiently large, the Dn-coloring uses at least two
colors from ai’s. Furthermore, by retaking n to satisfy (n, det(L)) = 1, (n, det(�1)) = 1, and
(n, det(�2)) = 1 if necessary, the coloring cannot come from Fox n-colorings on L, �1, or
�2. Thus the coloring has to be two-tone, and so, L is two-tone Dn-colorable for some odd
n ≥ 3.

We also see that (i)⇒(v) follows from Corollary 3.2.
(v)⇒(iv): By the surjection from D∞ to Dn for every n ≥ 3 defined as above, if the link group
GL admits a surjective homomorphism to D∞, then the link group GL admits a surjective
homomorphism to Dn for every n ≥ 3.
(iv)⇒(i) or (ii): Suppose that the link group GL admits a surjective homomorphism to Dn for
every n ≥ 3. Such a surjective homomorphism induces a Dn-coloring on a diagram of L for
n ≥ 3 by considering the Wirtinger generators for the diagram. If det(L) = 0, then lk(�1, �2)
is even by Lemma 4.2, and so (i) holds. If det(L) � 0, then for some odd n which is coprime
to det(L), det(�1), det(�2), the Dn-coloring does not come from a Fox n-coloring, and so, it
has to be two-tone. This implies (ii). �

Proof of Theorem 1.2. Let L = �1 ∪ �2 be a 2-component link with lk(�1, �2) is odd.
(i) Then L admits no two-tone Dn-colorings for any n ≥ 3 by Theorem 1.1 (by the contrapo-
sition of (ii)⇒(i)).
(ii) By (i), if the link group GL admits a surjective homomorphism to Dn for n ≥ 3, then it is
not induced from two-tone Dn-colorings. That is, the homomorphism must send Wirtinger
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generators to either the trivial element and reflections in Dn or the trivial element and ro-
tations in Dn. However, the latter cannot be surjective, and so, it is impossible. Therefore
the homomorphism sends Wirtinger generators to either the trivial element and reflections
in Dn. Such a homomorphism is induced from a Fox n-coloring on �1, �2 or L. �

Proof of Theorem 1.3. Let L be a link with at least 3 components. We show that GL

admits a surjective homomorphism to Dn.
Consider sub-links of 2 components in L. If some of them, say L′ = �′1 ∪ �′2, satisfies that

lk(�′1, �
′
2) is even, then by Theorem 1.2, GL′ admits a surjective homomorphism to Dn and L′

is two-tone Dn-colorable for n. It follows that GL admits a surjective homomorphism to Dn

via a surjection GL → GL′ and L is two-tone Dn-colorable.
Suppose that for all the 2 component sub-links of L, the linking numbers of the two

components are odd. Then, by Lemma 4.2, no such links have the determinant 0. Since L
has at least 3 components, we can consider a sub-link of L with 3 components, say L′ = �1∪
�2∪�3. For this link, lk(�1, �2∪�3) is even and det(�2∪�3) � 0 holds. Then, by Proposition 3.1,
GL′ admits a surjective homomorphism to D∞ and so a surjective homomorphism to Dn for
every n ≥ 3. This implies that GL admits a surjective homomorphism to Dn for every n ≥ 3.

�

Proof of Corollary 1.4. Suppose that L is two-tone Dm-colorable for some odd m ≥ 3. If
L is a link with 2 components, then GL admits a homomorphism to Dn for every n ≥ 3 by
Theorem 1.2 ((ii)⇒(iv)). If L has at least 3 components, then GL admits a homomorphism
to Dn for every n ≥ 3 by Theorem 1.3.

Suppose that GL admits a surjective homomorphism to Dn for n ≥ 3. Then there is
a Dn-coloring on a diagram of L. See Remark 2. If the coloring uses two-tone colors,
then L contains a two-tone Dn-colorable sub-link. Otherwise, since the homomorphism is
surjective, the coloring comes from a nontrivial Fox n-coloring on a diagram of a sub-link
of L as in the proof of Theorem 1.2. �

Remark 6. For the proof of Lemma 4.2, it is pointed out by the anonymous referee that
the lemma is a direct consequence of the following two well-known formulas for Alexander
polynomial ΔL:

• ΔL(1, 1) = ±lk(�1, �2) for a link L = �1 ∪ �2 ([11])
• det(L) = 2|ΔL(−1,−1)| ([5, Theorem 1]).

(The second formula is a generalization of the Fox formula and a special case of the
Mayberry-Murasugi formula [8], whose simple proof is given by Porti [9].) Moreover,
the two formulas imply the stronger conclusion that lk(�1, �2) ≡ 0 (mod 2) if and only if
det(L) ≡ 0 (mod 4).

5. Finding two-tone colorings

5. Finding two-tone colorings
Proof of Proposition 1.5. Suppose that there exists a trivial component �0 of a link L and,

for every component � ⊂ L − �0, lk(�0, �) is even. If a diagram of a link L admits a two-tone
Dn-coloring for every odd n ≥ 3 which assigns the arcs on �0 to ai’s and the other arcs to
b j’s, then so does any diagram of L. Thus, to prove the proposition, it suffices to show that
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a particular diagram of L admits such a Dn-coloring.
Now we take a diagram D of L depicted in Figure 6. In the figure, D0 is a sub-diagram

corresponding to �0, which is a trivial knot diagram, and each box between D0 and the
remaining sub-diagram Db contains a vertical full twist (see Figure 5 (right)).

Fig.6. The diagram D. Each box in the center contains a full twist

Consider the arc α in the figure, take an arc βi from each component of L− �0, and assign
a0 to α and b1 to βi’s. Let us show that this assignment induces a two-tone Dn-coloring.

For the arc βi, let � be the component of L − �0 containing βi. Since lk(�0, �) is even for
every component � ⊂ L− �0, due to Lemma 2.2, the assigning βi to b1 induces a Dn-coloring
on �. In the same way, we can find a Dn-coloring on L − �0.

Note that, on the sub-diagram corresponding to each component of L − �0, an arc in the
lower right of a box in the center is colored by b1 or bn−1. In particular, when the arc in the
lower right is colored by b1, then the arc in the upper right is colored in bn−1, and vice versa.

Thus, by Lemma 2.2, for each component of L− �0, the number of the boxes in the center
with the arc in the lower right colored by b1 is equal to the number of those with the arc
colored in bn−1.

Let m be the half of the linking number lk(�0, L − �0). (Note that lk(�0, L − �0) must be
even, since lk(�0, �) is even for each component � of L − �0.) Then the number of the boxes
in the center with the arc in the lower right colored by b1 is m and the number of those with
the arc colored in bn−1 is also m.

Again by Lemma 2.2, assigning α to a0 induces assigning the arc in the upper left of
the top box in center to a0−2(m·1+m·(−1)) = a0. This implies that the assignment induces a
Dn-coloring on the whole diagram. By construction, the Dn-coloring is obviously two-tone.

Thus any diagram of L admits a two-tone Dn-coloring for every odd n ≥ 3 which assigns
the arcs on �0 to ai’s and the other arcs to b j’s. �

Appendix

Appendix A. Appendix
The following was given by the anonymous referee for unifying and generalizing some of

the arguments and results. The basic idea behind the approach is essentially identical with
that of the proof of the key Proposition 3.1. However, it is quite different from the approach
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in the other parts.
Recognized as before, a Dn-coloring (n ∈ Z≥2 ∪ {∞}) of a link diagram D representing a

link L is nothing other than a homomorphism, γ, from the link group GL := π1(S3 − L) to
the dihedral group

Dn = 〈a, b | a2, bn, (ab)2〉 � 〈b | bn〉 � 〈a | a2〉,
that maps every meridian to a nontrivial element. Let ν : Dn → 〈a | a2〉 be the natural
epimorphism. Then the coloring γ corresponds to a Fox coloring or a two-tone coloring
according to whether (i) νγ maps every meridian to the generator a or (ii) νγ maps some
meridian to a and some meridian to the trivial element.

Study of dihedral representations, more generally metableian representations, of link
groups has a long history. In particular, a natural and useful viewpoint can be found in
Hartley’s article ([4]). The proof of the key Proposition 3.1 fits this viewpoint. On the
other hand, for Lemma 4.1 and Proposition 1.5, which are intimately related with Proposi-
tion 3.1, the author give diagrammatic proofs, which have almost no relation with the proof
of Proposition 3.1. Here, the following present unified proofs and generalizations of these
results.
Homological proof of a generalization of Lemma 4.1 given in Remark 5. By the assumption
of the lemma, GL admits a two-tone Dn-representation γ : GL → Dn. Let La and Lb be
the sublink of L consisting of the components whose meridians are mapped by νγ to a or
1, respectively. Since γ maps the meridians of La to order 2 elements, it descends to a
homomorphism, which we continue to denote by γ, from the quotient of GL by the normal
closure of the squares of meridians of La. The latter group is the orbifold fundamental group
of the orbifold, , with underlying space S3 − Lb with singular set La of index 2. The double
covering of  associated with the homomorphism νγ : πorb

1 () → 〈a | a2〉 is the manifold
M − L̃b where M is the double branched covering of S3 branched over La and L̃b is the
inverse image of Lb in M. The fundamental group π1(M − L̃b) is identified with the index
2 subgroup ker(νγ) of πorb

1 (), and the homomorphism γ : πorb
1 () → Dn restricts to an

abelian representation γ̃ : π1(M − L̃b)→ 〈b | bn〉 < Dn.
Now suppose to the contrary that there is a component � of Lb with lk(�, La) odd. Then

the inverse image �̃ of � in M − L̃b is connected. Thus any two meridians of �, regarded as
elements of π1(M − L̃b), are conjugate in π1(M − L̃b), and so their images by γ, which are
equal to the images by the abelian homomorphism γ̃, are identical in 〈b | bn〉 < Dn. However,
this is impossible, because for a meridian μ� of � and for a meridian μa of a component of
La, we have γ(μaμ�μ

−1
a ) = γ(μ�)−1 � γ(μ�), though μaμ�μ

−1
a is also a meridian of �. (Here the

inequality follows from the assumption that n ≥ 3 is odd.) �
Though the above proof is lengthy, it ties up with the proof of Proposition 3.1 and it leads

to a simple proof of the following generalization of Proposition 1.5.

Proposition A.1. Let L = L0 ∪ L1 be a link in S3 satisfying the following conditions.

(1) det(L0) = 1.
(2) L1 is non-empty, and every component of L1 has an even linking number with L0.

Then there is a two-tone epimorphism from GL to D∞ for which La = L0 and Lb = L1, where
La and Lb are the sublinks of L as in the “homological proof”.
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Proof. Let M be the double branched covering of S3 branched along L0 and L̃1 the inverse
image of L1 in M. The assumptions imply that H1(M − L̃1) is a free abelian group with
basis {μi, μ

′
i | 1 ≤ i ≤ r} such that the homomorphism τ induced by the covering translation

switches μi with μ′i for each i. (Here r is the number of components of L2, μi and μ′i are
meridians of the components of L̃1 that are mapped to the i-th component of L2.) Let Q
be the semi-direct product of H1(M − L̃1) with the order 2 cyclic group 〈a | a2〉, where the
action of the latter group on the first group is given by τ. Then Q is a quotient of the link
group GL. (In fact it is a quotient of the orbifold fundamental group of the orbifold  with
underlying space S3−L1 with singular set L0 of index 2, as defined in the homological proof
of Lemma 4.1.) The proposition now follows from the fact that there is an epimorphism
from Q to D∞ defined by a �→ a, μi �→ b and μ′i = τ(μi) = aμia−1 �→ b−1. �

The above proof and that of Lemma 4.1 work for links in a Z-homology 3-sphere. More-
over, the same argument also imply the following further generalization.

Proposition A.2. Let L = L0 ∪ L1 be a link in a Z/2Z-homology 3-sphere S, and n ≥ 2
an integer, satisfying the following conditions.

(1) The double branched covering M of S branched over L0 is a Z/nZ-homology 3-
sphere.

(2) L1 is non-empty, and every component of L1 has the trivial mod 2 linking number
with L0.

Then there is a two-tone epimorphism from GL to Dn for which La = L0 and Lb = L1, where
La and Lb are the sublinks of L as in the “homological proof”.

In fact, the assumption that L is a link in a Z/2Z-homology 3-sphere implies that there
is a unique double branched covering branched along L, and the two conditions imply that
H1(M − L̃1;Z/nZ) is the free Z/nZ-module that has a base consisting of meridians {μi, μ

′
i |

1 ≤ i ≤ r}, such that the homomorphism τ induced by the covering translation switches μi

with μ′i for each i.
There are possible future problems (also given by the anonymous referee): It would be

nice if one could give a unified diagrammatic proof to all of the results in the paper, including
the key Proposition 3.1 and the results in the appendix. If successful, then it might bring our
mathematical community a new deep insight into the link diagrams.

Also the results in this paper might give a hint to the following natural question:
Question. For n = 1 or 2, the“ greatest common quotient”of the n-component link groups
is the free abelian group Zn. For n ≥ 3, is there a non-abelian group G bigger than Zn (i.e.,
a non-commutative group with abelianization Zn), for which every n-component link group
admits a (canonical) epimorphism onto G?

If such a group G exists, then by considering the G-coverings of link complements, one
may be able to construct a link invariant stronger than the Alexander invariants, which are
defined by using Zn-coverings.
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