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Abstract
It is well-known that a knot is Fox n-colorable for a prime 7 if and only if the knot group admits
a surjective homomorphism to the dihedral group of degree n. However, this is not the case for
links with two or more components. In this paper, we introduce a two-tone coloring on a link
diagram, and give a condition for links so that the link groups admit surjective representations
to the dihedral groups. In particular, it is shown that the link group of any link with at least 3
components admits a surjective homomorphism to the dihedral group of arbitrary degree.

1. Introduction

One of the most well-known invariants of knots in 3-space must be the Fox’s 3-colorablity.
(See Remark 1 for the definition of the Fox n-coloring.) In general, it is known that a knot
is Fox n-colorable for a prime n > 3 if and only if the knot group admits a surjective homo-
morphism to the dihedral group D, of degree n. For instance, it is stated in [3, Chap. VI,
Exercises, 6, pp.92-93]. However, this is not the case for links with two or more compo-
nents. In fact, some examples are given in [6] for D3-coloring, which is the coloring by the
symmetric group of degree three. For example, by the results in [6, Theorem 1.2], the link
group of the torus link 7'(2, g) admits a surjective homomorphism to D3 if ¢ = 0 (mod 4).
On the other hand, T'(2, g) is Fox 3-colorable if and only if ¢ = 0 (mod 3).

We remark that, although there are numerous papers studying the Fox colorings (cf. [10,
2]), it seems that the relationship between the Fox colorings on links with two or more
components and the surjective homomorphisms of the link groups to the dihedral groups
has not been discussed, as far as the authors know.

In this paper, we introduce a two-tone coloring on a link diagram, and give a condition for
links which guarantees that the link groups admit surjective homomorphisms to the dihedral
groups. In particular, we show that the link group of any link with at least 3 components
admits a surjective homomorphism to the dihedral group of arbitrary degree.

Remark 1. Recall that a Fox n-coloring on a link diagram D is defined as a map I : {arcs
of D} — {0,1,...,n — 1}, satisfying 2I'(x) = I'(y) + I'(z) (mod n) at each crossing of D
with the over arc x and the under arcs y and z. It is well-known that, for n > 3, a link is
Fox n-colorable, i.e., a diagram of the link admits a non-trivial Fox n-coloring (a coloring
with at least two colors), if and only if det(L) = 0 or (n, det(L)) # 1, where det(L) denotes
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the determinant of the link. See [7, Proposition 2.1] for example. Also a condition for knot
groups to admit a surjective homomorphism to the dihedral groups in terms of the homology
of the double branched covering is known. See [1, 14.8] for example.

To state our results, we prepare some notations. Let D,, be the dihedral group of degree
n. It is well-known that D,, has the following presentation with e the identity element:

D,,=<a,b|a2 = b" = (ab)? :e>.

Note that any element in D, is represented as a*b? (x = 0,1 and 0 < y < n — 1). Thus,
by setting @; := ab' (0 < i < n—1)and b; := b/ (1 < j < n— 1), we see that
D, = {e,ap,ay,...,a,-1,b1,...,b,_1} as a set. In geometric viewpoint, the a;’s represent
reflections and b;’s represent rotations as the symmetries of a regular polygon (n-gon).

In the following, let L be an oriented link in the 3-sphere S* with a link diagram D. We
call amap I' : {arcson D} — D, a D,-coloring on D if it satisfies I'(x)['(z) = T'(y)['(x)
(respectively, I'(2)['(x) = I'(x)['(y)) in D, at each positive (resp. negative) crossing on D,
where x denotes the over arc, y and z the under arcs at the crossing supposing y is the under
arc before passing through the crossing and z is the other. (See Figure 1.)

z X i Z
/\2 ;/\
Fig.1. Positive and negative crossings

Remark 2. The D,-colorings and the Fox n-colorings are related in terms of representa-
tions of link groups to D, as follows. For a link diagram D with ¢ crossings of a link L, set
Ji,--.,g. the Wirtinger generators of the link group G, i.e., G, = 71(S® — L). Then a D,,-
coloring on D corresponds to a map {g1, .. .,g.} = D, which extends to a homomorphism of
G to D,,. When a D,,-coloring sends g;’s to a;’s (reflections, 0 < i < n— 1) in D,,, it induces
a map f{arcs of D} — {0, 1,...,n— 1}, which gives a Fox n-coloring. Note that even if a link
admits a nontrivial Fox n-coloring, it may not induce a surjective homomorphism from G,
to D,. See the example illustrated in Figure 2. In this case, the image of the Wirtinger gen-
erators by the homomorphism induced by the Fox 4-coloring is the set {ag, @y} C D, but the
elements ay and a; do not generate D4. Thus the induced homomorphism is not surjective.

The following is our key definition.

Dermnttion 1. Let I' be a D,-coloring on a link diagram D of an oriented link L. We
say that I' is two-tone if Im(I') does not contain the trivial element, i.e. e¢ ¢ Im(I'), and
Im(I) N {ag, . ..,a,-1} # 0 and Im() N {by,...,b,—1} # O, that is, the coloring uses colors
from both {a;} and {b;}. We say that a link is two-tone D,-colorable if, with some orientation,
it has a diagram D admitting a two-tone D,,-coloring.

Note that two-tone D,,-colorability is independent of the choice of orientations for links.
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i

Fig.2. Fox 4-colorable link

An example of a two-tone D,-colorable link is the pretzel link P(6, 6,6) which admits a
two-tone D,,-coloring if m > 4. See Figure 3 for the case where m > 8.
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Fig.3. A two-tone D,,-coloring on P(6,6,6) for m > 8

Now the following are our main results. Here D, denotes the group presented by
<a, b|a* = (ab)* = e>, and a two-tone D.-coloring for a link is defined in the same way
as above.

Theorem 1.1. For a 2-component link L = €, U {,, the following are equivalent.
(1) lk(€y, ) is even.
@i1) L is two-tone D,-colorable for some odd n > 3.

(iii) L is two-tone Dy,-colorable.

@iv) The link group G admits a surjective homomorphism to D, for every n > 3.
(v) The link group G admits a surjective homomorphism to D.,.

RemARK 3. By considering the natural embedding of D,, into D»,, we see that the condi-
tion (ii) in Theorem 1.1 is equivalent to that L admits a two-tone D,-coloring for some even
n > 3 that assigns b; with i # n/2 to some arcs. We also remark that (iii) in Theorem 1.1
does not imply that L is two-tone D,-colorable for every odd n > 3. Actually even if there
is a two-tone D,-coloring on a diagram of a link L, the coloring may not give a two-tone
D,-coloring for some n, but a Fox n-coloring on a sub-diagram of L. For example, pretzel
links of type (m,2,m,2) with odd m admit a two-tone D-coloring on a diagram, but no
two-tone D,,-colorings.
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On the other hand, for 2-component links with odd linking numbers, we have the follow-
ing.

Theorem 1.2. Let L = ¢ U {, be a 2-component link with lk(,,{;) odd. Then the
following hold.

(1) The link L admits no two-tone D,-colorings for any odd n > 3.

(i) If the link group G admits a surjective homomorphism to D, for n > 3, then the
homomorphism is induced from a Fox n-coloring on €y, €, or L, i.e., the homomor-
phism sends a meridional element in Gy, to the trivial element or a reflection in D,,.

For the links with at least 3 components, interestingly, the following holds.

Theorem 1.3. Let L be a link with at least 3 components. Then the link group G admits
a surjective homomorphism to D,, for every n > 3.

We remark that even if the link group G;, admits a surjective homomorphism to D, for
every n > 3, the link L may not be two-tone D,-colorable for every n > 3. For example,
pretzel links of type (2m, 2m, 2m) with odd m admit no two-tone D,,-colorings.

As a corollary of the theorems, we have the following.

Corollary 1.4. If a link L is two-tone D,,-colorable for some odd m, then G admits a
surjective homomorphism to D,, for every n > 3. If Gi admits a surjective homomorphism
to D, for some n, then L contains a two-tone D,-colorable sub-link or a Fox n-colorable
sub-link.

On the other hand, even if a link L is known to be two-tone D,,-colorable for some 7, find-
ing a two-tone D,-coloring on a given diagram of L, or, finding a surjective homomorphism
of G, to Dy, is a tedious task in general. The next proposition and its proof give a simple
way to find a two-tone D,,-coloring on some link diagrams for any n > 3.

Proposition 1.5. Suppose that there exists a trivial component £y of a link L and that
lk(£y, L) is even for every component £ C L — {y. Then any diagram of L admits a two-tone
D,-coloring for every odd n > 3 which assigns the arcs on £y to a;’s and the other arcs to
bj ’S.

2. Properties of D,-coloring

In this section, we study some properties of D,-colorings, and give lemmas which will be
used in the remaining sections. In the following, we set A, := {a;} and B, := {b;} for D,,.

Lemma 2.1. Let I be a D,-coloring on a diagram D of an oriented link L in S°. At a
crossing on D, x denotes the over arc, and y and z the under arcs at the crossing supposing
that y (resp. z) is the under arc before (resp. after) passing through the crossing. Then the
following hold.

(1) T'(y) and T'(z) are both in A,, or both in B,,.

(2) IfT'(x) € B, andI'(y) € B, thenI'(2) = I'(y).

3) IfT'(x) = a; andI'(y) = ay, thenI'(z) = ay and k = 2’ — i (mod n).

4) IfT'(x) = a; and I'(y) = bj, thenI'(z) = by and k = n — j (mod n).

(5) IfT'(x) =bjandT'(y) = aj, thenI'(z) = ax and k = i+2j (resp. k =i—-2j) (mod n)
if the crossing is a positive (resp. negative) crossing.



Two-ToNE COLORINGS AND DIHEDRAL REPRESENTATIONS 385

Proof. By definition of a D,-coloring, I'(y) and I'(z) are conjugate in D,,, and from this,
(1) holds. We give a proof of the case (4) when the crossing is a positive crossing. The
others (2), (3), (5) are proved in the same way. Suppose that I'(x) = a; and I'(y) = b;. By
definition of a D,-coloring, we have the following.

['(z) = (@) 'bja; = b"'a” ' Dab' = ab™"ab’ = b"" = b = b,_;
Thus I'(z) = by and k = n — j (mod n) holds. m]

Remark 4. Note that (1) in the lemma implies that all the strands on a diagram of a
particular component must be colored by a;’s or by b;’s for a given D,-coloring. Also note
that the tone of the colors for a particular component is independent of the choice of a
diagram: If all the strands on a diagram for a particular component are colored by b;’s by a
D,-coloring, then all the strands for the component are also colored by b;’s on any diagram
by the D,-coloring obtained by performing Reidemeister moves. We will use these facts in
the rest of the paper repeatedly.

Lemma 2.2. Let T be a D,-coloring on a diagram D of an oriented link L in S°. Let
X, Yy, Z, w be either the arcs depicted in Figure 4 (left), or the arcs depicted in Figure 4 (right).
IfT'(x) = a;and ' (y) = b, thenI'(z) = ay withk =i-2j (mod n) andI'(w) = by withl = n—j

(mod n).
z'\(w z\w/,w

Fig.4. A positive full twist (left). A negative full twist (right)

Proof. We only give a proof for the positive full twist case. A proof for the other case is
similar. In that case, by Lemma 2.1(4), ['(w) = b; with [ = n— j (mod n) since I['(x) = a; and
I'(y) = b;. Then, by Lemma 2.1(5), I'(z) = ay and k =i + 2(n — j) = i — 2j (mod n) since
I'(w) = by withl =n — j (mod n) and I'(x) = a;. |

3. Two-tone colorings and surjective homomorphisms to D,

In this section, we give a key proposition to prove the theorems.

In the following, let lk(L, L") denote the (total) linking number of oriented links L, L', i.e.,
Ik(L,L") = X pcr.pcr tk(€, 7). The linking number is calculated for the link with arbitrarily
chosen orientations. Note that the parity of such a linking number is independent of the
choice of orientations.

Proposition 3.1. Suppose that a link L contains a component €y with lk(€y, L") even and
det(L’) # 0, where L' = L — {y. Then L admits a two-tone Dy-coloring that induces a
surjective homomorphism from G, to D.
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Proof. Let p : X — S — L’ be the double covering on the total linking number with L’,
and p : M — S3 the double branched covering. Let K = K| U K, denote the inverse image
p~'(£y) C X; because Ik(£y, L') is even, K is a 2-component link in X (or in M). We shall
construct a surjective group homomorphism 7;(M — K) — Z and extend the composition
7 (X = K) = n(M = K) — Z to obtain a D,-coloring.

Taking a regular neighborhood N of K, we consider the Mayer-Vietoris exact sequence
forM = NU (M - K):

H,(M) — H{(N - K) - Hi(N)® H(M - K) - H(M) - Hy(N — K)

is exact. The rightmost map is zero as usual and the leftmost one is also zero because
det(L’) # 0 (hence |H,(M)| = |det(L")| < ); by the Poincaré duality H,(M) = H'(M;Z) =
0. Thus, we obtain a short exact sequence

0—- H(N-K)— H(N)®H (M -K)— H((M)— 0.

Take a meridional disc D; ¢ M of K; and let D, denote ¢(D;), where ¢ : M — M is
the nontrivial covering transformation of the branched covering p : M — S*; the covering
transformation group is Z, = {idy,¢}. We denote D; U D, by D. Because the kernel
of the surjective homomorphism H{(N — K) — H;(N) is the image of the injective map
H,(0D) — H,(N - K), the short exact sequence above shows that

(1) 0 — H;(0D) » Hi(M - K) - H|(M) - 0

is also exact. We should remark that the involution ¢ induces automorphisms ¢, on the
homology groups in (1). Since the homomorphisms in (1) are induced by the inclusions, (1)
is compatible with ¢,; i.e., the maps are Z,-equivariant.

Let x € H{(0D,) be a generator and set y = ¢.(x) € H{(0D,). We use the same symbols
x, y for their images in H,(0D) or H;(M — K). We take the quotient of (1) by the ¢, -invariant
part of H,(0D) to obtain an exact sequence

0— Hi(0D)/(x +y) = Hi(M - K)/(x +y) = H,(M) — 0.

Since H,(0D)/(x + y) = Z and |H;(M)| < oo, the rank of H;(M — K)/(x + y) equals 1,
ie., (Hi(M - K)/(x + y))/Tor(H(M — K)/(x + y)) = Z. Hence there exists a surjective
homomorphism f : H(M-K)/(x+y) — Z, which satisfies fop, = —f. Let f : m(X—K) —
Z denote the composition

mX-K)->mM-K)—- HM-K)— HM-K)/(x+y) — Z.

Let m € G, be a meridian of a component of L’. Identifying (b) C D, with Z, we define
f:GL — Dy by

f@ (g € m(X - K)),
af(m™g) (g¢m(X-K)).

Since a® = e, f is well-defined as a map. Furthermore, we have f(mgm™") = f o ¢.(g) =
f@™ = fg" € Dy for g € m(X — K). By this equality, we can easily check that
f is a group homomorphism. Because f is surjective and f(m) = a, the homomorphism
f: G — D, is surjective. m|

f(g) ={

2
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The following is an immediate corollary of the proposition above, since any knot has an
odd determinant.

Corollary 3.2. Let L = €; U &, be a 2-component link. If lk((y, () is even, then L admits
a two-tone Dy-coloring that induces a surjective homomorphism from G to D. m|

4. Proof of theorems

In this section, we give proofs of the theorems stated in Introduction. To prove the theo-
rems, we prepare the following two lemmas.

Lemma 4.1. If a 2-component link L = £ U €, is two-tone D,-colorable for some odd
n > 3, then lk(ty, ) is even.

Proof. Take a two-tone D,-coloring y on a diagram of L for some n > 3. Since 7y is two-
tone, one component of L is colored by a;’s, and the other by b;’s. Let ¢;, be the component
of L such that each arc in a diagram of ¢, is colored by b;’s by I'. This ¢}, is well-defined for
I" independent of the choice of a diagram. See Remark 4.

We can easily see that L admits a diagram as depicted in Figure 5, where D}, is a sub-
diagram corresponding to €, D, is the remaining sub-diagram, and each box between D,
and Dy, contains a vertical full twist (Figure 5 (right)). For this D, U D, we consider the arcs
B and B’ which are connected in Dj, as in Figure 5 (left).

Da i 3 Db
) or
X ]
/57 ........ H

Fig.5. The diagram of L

Since B and B’ are connected in Dp, we see ['(8) = I'(8’) by Lemma 2.1(1). On the
other hand, letting N be the number of the boxes (full twists) which ¢, runs through, if
I'(B) = I'(8’), then N has to be even. This is shown by applying Lemma 2.2 repeatedly for
each box (full twist) together with n is odd. The number N is congruent to lk({,, {;) modulo
2, and so the lemma holds. O

ReMARk 5. The lemma above can be extended as follows. If L is two-tone D,-colorable
for some odd n > 3, then the sublink L, of L consisting of those components which are
colored by b;’s satisfies that, for every component £ C L;, [k({, L — Ly,) is even.
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Lemma 4.2. Let L = {1 U {, be a 2-component link. If det(L) = 0, then lk({y,{,) is even.

Proof. Let D be a diagram of L. Since det(L) = 0, there exists a Fox 4-coloring I" on D
which induces a surjective group homomorphism to D4. By definition of Fox colorings, if
I'(x) equals ag or a, (resp. a; or a3) for an arc x belonging to ¢; (i = 1,2), it holds for any
arc x of ¢;. Then, we may assume

I'({arcs of ¢1}) C {a;,a3} and T'({arcs of £,}) C {ag, a»}.

For a crossing point of D, let x be the over arc and y, z the under arcs. Again, by definition
of Fox colorings, we find that ['(y) = I'(z) holds if and only if x and y belong to the same
component. In particular, the colors of the under arcs at the crossing are changed if x belongs
to £; and y to {,. This implies that D has an even number of such crossings, and hence the
linking number lk(¢, £5) is even. m]

Proof of Theorem 1.1. Let L = £;U{; a 2-component link. We show that all the following
are equivalent.
(1) lk(£y, ) is even.
(i) L is two-tone D,-colorable for some odd n > 3.
(ii1) L is two-tone D, -colorable.
(iv) The link group G, admits a surjective homomorphism to D, for every n > 3.
(v) The link group G admits a surjective homomorphism to D..

We see that (1)=(iii) follows from Corollary 3.2 and (i1))=(i) follows from Lemma 4.1.
(iii)=(ii): Suppose that L is two-tone D-colorable, that is, a diagram of L admits a two-
tone D-coloring. Since there is a surjection from D, to D, for every n > 3 defined by
a€ Dy —aeD,andb € D, — b € D,, this implies that the diagram of L admits a
D,-coloring for every n. By taking odd n sufficiently large, the D,-coloring uses at least two
colors from g;’s. Furthermore, by retaking n to satisfy (n,det(L)) = 1, (n, det(£1)) = 1, and
(n,det(£,)) = 1 if necessary, the coloring cannot come from Fox n-colorings on L, ¢}, or
{>. Thus the coloring has to be two-tone, and so, L is two-tone D,-colorable for some odd
n>3.

We also see that (i)=(v) follows from Corollary 3.2.

(v)=(iv): By the surjection from D, to D,, for every n > 3 defined as above, if the link group
G admits a surjective homomorphism to D, then the link group G; admits a surjective
homomorphism to D, for every n > 3.

(iv)=(1) or (ii): Suppose that the link group G, admits a surjective homomorphism to D,, for
every n > 3. Such a surjective homomorphism induces a D,-coloring on a diagram of L for
n > 3 by considering the Wirtinger generators for the diagram. If det(L) = 0, then lk(¢, {)
is even by Lemma 4.2, and so (i) holds. If det(L) # 0, then for some odd n which is coprime
to det(L), det(¢;), det(£,), the D,-coloring does not come from a Fox n-coloring, and so, it
has to be two-tone. This implies (ii). ]

Proof of Theorem 1.2. Let L = £; U ¢, be a 2-component link with lk(¢, £;) is odd.
(i) Then L admits no two-tone D,-colorings for any n > 3 by Theorem 1.1 (by the contrapo-
sition of (i1)=(1)).
(i1) By (i), if the link group G, admits a surjective homomorphism to D, for n > 3, then it is
not induced from two-tone D,-colorings. That is, the homomorphism must send Wirtinger
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generators to either the trivial element and reflections in D, or the trivial element and ro-
tations in D,. However, the latter cannot be surjective, and so, it is impossible. Therefore
the homomorphism sends Wirtinger generators to either the trivial element and reflections
in D,. Such a homomorphism is induced from a Fox n-coloring on ¢, ¢, or L. O

Proof of Theorem 1.3. Let L be a link with at least 3 components. We show that G,
admits a surjective homomorphism to D,,.

Consider sub-links of 2 components in L. If some of them, say L’ = €] U {’,, satisfies that
lk(¢},€}) is even, then by Theorem 1.2, G- admits a surjective homomorphism to D, and L’
is two-tone D,-colorable for n. It follows that G; admits a surjective homomorphism to D,
via a surjection Gy — Gy, and L is two-tone D,-colorable.

Suppose that for all the 2 component sub-links of L, the linking numbers of the two
components are odd. Then, by Lemma 4.2, no such links have the determinant 0. Since L
has at least 3 components, we can consider a sub-link of L with 3 components, say L' = {; U
€, U¢3. For this link, lk(¢,, £, Uf3) is even and det(£,U¢3) # 0 holds. Then, by Proposition 3.1,
G admits a surjective homomorphism to D, and so a surjective homomorphism to D,, for
every n > 3. This implies that G, admits a surjective homomorphism to D, for every n > 3.

O

Proof of Corollary 1.4. Suppose that L is two-tone D,,-colorable for some odd m > 3. If
L is a link with 2 components, then G;, admits a homomorphism to D, for every n > 3 by
Theorem 1.2 ((ii)=(iv)). If L has at least 3 components, then G, admits a homomorphism
to D,, for every n > 3 by Theorem 1.3.

Suppose that G, admits a surjective homomorphism to D, for n > 3. Then there is
a D,-coloring on a diagram of L. See Remark 2. If the coloring uses two-tone colors,
then L contains a two-tone D,-colorable sub-link. Otherwise, since the homomorphism is
surjective, the coloring comes from a nontrivial Fox n-coloring on a diagram of a sub-link

of L as in the proof of Theorem 1.2. m|

REmARK 6. For the proof of Lemma 4.2, it is pointed out by the anonymous referee that
the lemma is a direct consequence of the following two well-known formulas for Alexander
polynomial Ay :

o Ar(1,1) = xlk(€y,6p) foralink L = €, U &, ([11])

e det(L) = 2|Ar(—1,-1)| ([5, Theorem 1]).
(The second formula is a generalization of the Fox formula and a special case of the
Mayberry-Murasugi formula [8], whose simple proof is given by Porti [9].) Moreover,
the two formulas imply the stronger conclusion that /k({;,{,) = 0 (mod 2) if and only if
det(L) = 0 (mod 4).

5. Finding two-tone colorings

Proof of Proposition 1.5. Suppose that there exists a trivial component ¢, of a link L and,
for every component £ C L — £y, lk({y, ) is even. If a diagram of a link L admits a two-tone
D,-coloring for every odd n > 3 which assigns the arcs on ¢y to a;’s and the other arcs to
b;’s, then so does any diagram of L. Thus, to prove the proposition, it suffices to show that
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a particular diagram of L admits such a D,,-coloring.

Now we take a diagram D of L depicted in Figure 6. In the figure, Dy is a sub-diagram
corresponding to €y, which is a trivial knot diagram, and each box between Dy and the
remaining sub-diagram D, contains a vertical full twist (see Figure 5 (right)).

t

p——
>
=
——

+

AY £Y

Fig.6. The diagram D. Each box in the center contains a full twist

Consider the arc « in the figure, take an arc ; from each component of L — £y, and assign
ap to @ and b to B;’s. Let us show that this assignment induces a two-tone D,,-coloring.

For the arc g;, let £ be the component of L — £, containing ;. Since [k({y, {) is even for
every component £ C L —{, due to Lemma 2.2, the assigning ; to b, induces a D,,-coloring
on {. In the same way, we can find a D,-coloring on L — ¢j.

Note that, on the sub-diagram corresponding to each component of L — £y, an arc in the
lower right of a box in the center is colored by b, or b,_;. In particular, when the arc in the
lower right is colored by by, then the arc in the upper right is colored in b,_1, and vice versa.

Thus, by Lemma 2.2, for each component of L — £, the number of the boxes in the center
with the arc in the lower right colored by b is equal to the number of those with the arc
colored in b,,_;.

Let m be the half of the linking number k({y, L — £y). (Note that [k({y, L — {y) must be
even, since lk({y, £) is even for each component £ of L — €;.) Then the number of the boxes
in the center with the arc in the lower right colored by b; is m and the number of those with
the arc colored in b,_; is also m.

Again by Lemma 2.2, assigning « to ap induces assigning the arc in the upper left of
the top box in center to @g—2(m-1+m-(~1)) = do. This implies that the assignment induces a
D,-coloring on the whole diagram. By construction, the D,-coloring is obviously two-tone.

Thus any diagram of L admits a two-tone D,,-coloring for every odd n > 3 which assigns
the arcs on £ to a;’s and the other arcs to b;’s. m]

Appendix

The following was given by the anonymous referee for unifying and generalizing some of
the arguments and results. The basic idea behind the approach is essentially identical with
that of the proof of the key Proposition 3.1. However, it is quite different from the approach
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in the other parts.

Recognized as before, a D,-coloring (n € Zs, U {oo}) of a link diagram D representing a
link L is nothing other than a homomorphism, y, from the link group G; := m;(S® — L) to
the dihedral group

D, =(a,b|a’b",(ab)*) = (b | b,)>(al|a®),

that maps every meridian to a nontrivial element. Let v : D, — (a | a*) be the natural
epimorphism. Then the coloring y corresponds to a Fox coloring or a two-tone coloring
according to whether (i) vy maps every meridian to the generator a or (ii) vy maps some
meridian to a and some meridian to the trivial element.

Study of dihedral representations, more generally metableian representations, of link

groups has a long history. In particular, a natural and useful viewpoint can be found in
Hartley’s article ([4]). The proof of the key Proposition 3.1 fits this viewpoint. On the
other hand, for Lemma 4.1 and Proposition 1.5, which are intimately related with Proposi-
tion 3.1, the author give diagrammatic proofs, which have almost no relation with the proof
of Proposition 3.1. Here, the following present unified proofs and generalizations of these
results.
Homological proof of a generalization of Lemma 4.1 given in Remark 5. By the assumption
of the lemma, G, admits a two-tone D,-representation y : G, — D,. Let L, and L, be
the sublink of L consisting of the components whose meridians are mapped by vy to a or
1, respectively. Since y maps the meridians of L, to order 2 elements, it descends to a
homomorphism, which we continue to denote by 7y, from the quotient of G, by the normal
closure of the squares of meridians of L,. The latter group is the orbifold fundamental group
of the orbifold, ©, with underlying space S* — L, with singular set L, of index 2. The double
covering of O associated with the homomorphism vy : ﬂi”b(O) — {(a | @*) is the manifold
M — L, where M is the double branched covering of S3 branched over L, and L, is the
inverse image of L, in M. The fundamental group 7;(M — L,) is identified with the index
2 subgroup ker(vy) of n‘l”b(@), and the homomorphism 7y : n?rb((ﬂ) — D, restricts to an
abelian representation ¥ : (M — L) — (b | b") < D,.

Now suppose to the contrary that there is a component ¢ of L, with lk(¢, L,) odd. Then
the inverse image £ of £ in M — L, is connected. Thus any two meridians of £, regarded as
elements of (M — L), are conjugate in (M — L), and so their images by y, which are
equal to the images by the abelian homomorphism ¥, are identical in (b | ") < D,,. However,
this is impossible, because for a meridian u, of € and for a meridian p, of a component of
L, we have y(uapeu,") = y(ue)™ # y(ue), though ;' is also a meridian of . (Here the
inequality follows from the assumption that n > 3 is odd.) O

Though the above proof is lengthy, it ties up with the proof of Proposition 3.1 and it leads
to a simple proof of the following generalization of Proposition 1.5.

Proposition A.1. Let L = Ly U L, be a link in S* satisfying the following conditions.
(1) det(Ly) = 1.
(2) L is non-empty, and every component of Ly has an even linking number with L.

Then there is a two-tone epimorphism from G to Do, for which L, = Ly and L, = Ly, where
L, and Ly, are the sublinks of L as in the “homological proof”.
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Proof. Let M be the double branched covering of S* branched along Ly and L, the inverse
image of L, in M. The assumptions imply that H,(M — L,) is a free abelian group with
basis {u;, 1) | 1 < i < r} such that the homomorphism 7 induced by the covering translation
switches y; with y for each i. (Here r is the number of components of L, u; and u; are
meridians of the components of L; that are mapped to the i-th component of L,.) Let Q
be the semi-direct product of H;(M — L) with the order 2 cyclic group (a | a?), where the
action of the latter group on the first group is given by 7. Then Q is a quotient of the link
group Gy. (In fact it is a quotient of the orbifold fundamental group of the orbifold @ with
underlying space S* — L; with singular set L of index 2, as defined in the homological proof
of Lemma 4.1.) The proposition now follows from the fact that there is an epimorphism
from Q to D, defined by a - a, ; — b and pt = 7(w;) = aqwa™ - b7". |

The above proof and that of Lemma 4.1 work for links in a Z-homology 3-sphere. More-
over, the same argument also imply the following further generalization.

Proposition A.2. Let L = Ly U L be a link in a Z/2Z-homology 3-sphere S, and n > 2
an integer, satisfying the following conditions.
(1) The double branched covering M of S branched over Ly is a Z/nZ-homology 3-
sphere.
(2) Ly is non-empty, and every component of Ly has the trivial mod 2 linking number
with L.
Then there is a two-tone epimorphism from G to D,, for which L, = Ly and L, = Ly, where
L, and Ly, are the sublinks of L as in the “homological proof ™.

In fact, the assumption that L is a link in a Z/2Z-homology 3-sphere implies that there
is a unique double branched covering branched along L, and the two conditions imply that
H\(M - L,;Z/nZ) is the free Z/nZ-module that has a base consisting of meridians {1;, M|
1 < i < r}, such that the homomorphism 7 induced by the covering translation switches y;
with p for each i.

There are possible future problems (also given by the anonymous referee): It would be
nice if one could give a unified diagrammatic proof to all of the results in the paper, including
the key Proposition 3.1 and the results in the appendix. If successful, then it might bring our
mathematical community a new deep insight into the link diagrams.

Also the results in this paper might give a hint to the following natural question:
Question. For n = 1 or 2, the " greatest common quotient~ of the n-component link groups
is the free abelian group Z,. For n > 3, is there a non-abelian group G bigger than Z, (i.e.,
a non-commutative group with abelianization Z,), for which every n-component link group
admits a (canonical) epimorphism onto G?

If such a group G exists, then by considering the G-coverings of link complements, one
may be able to construct a link invariant stronger than the Alexander invariants, which are
defined by using Z,-coverings.

AckNOWLEDGEMENTS. The authors would like to thank the anonymous referee for many
useful comments and suggestions.



Two-ToNE COLORINGS AND DIHEDRAL REPRESENTATIONS 393

References

[1] G. Burde, H. Zieschang and M. Heusener: Knots, extended edition, De Gruyter Studies in Mathematics 5,
De Gruyter, Berlin, 2014.

[2] J.S. Carter, D.S. Silver and S.G. Williams: Three dimensions of knot coloring, Amer. Math. Monthly 121
(2014), 506-514.

[3] R.H. Crowell and R.H. Fox: Introduction to knot theory, Graduate Texts in Mathematics 57, Springer-
Verlag, New York-Heidelberg, 1977, Reprint of the 1963 original.

[4] R. Hartley: Metabelian representations of knot groups, Pacific J. Math. 82 (1979), 93-104.

[5] F. Hosokawa and S. Kinoshita: On the homology group of branched cyclic covering spaces of links, Osaka
Math. J. 12 (1960), 331-355.

[6] K. Ichihara and E. Matsudo: Coloring links by the symmetric group of degree three, Commun. Korean
Math. Soc. 38 (2023), 913-924.

[7] P. Lopes and J.a. Matias: Minimum number of Fox colors for small primes, J. Knot Theory Ramifications
21 (2012), 1250025, 12pp.

[8] J.P. Mayberry and K. Murasugi: Torsion-groups of abelian coverings of links, Trans. Amer. Math. Soc. 271
(1982), 143-173.

[9] J. Porti: Mayberry-Murasugi’s formula for links in homology 3-spheres, Proc. Amer. Math. Soc. 132
(2004), 3423-3431.

[10] J.H. Przytycki: 3-coloring and other elementary invariants of knots; in Knot Theory (Warsaw, 1995),
Banach Center Publ. 42, Polish Acad. Sci. Inst. Math., 1998, 275-295.
[11] G. Torres: On the Alexander polynomial, Ann. of Math. 57 (1953), 57-89.

Kazuhiro Ichihara

Department of Mathematics, College of Humanities and Sciences
Nihon University

3-25-40 Sakurajosui, Setagaya-ku

Tokyo 156-8550

Japan

e-mail: ichihara.kazuhiro@nihon-u.ac.jp

Katsumi Ishikawa

Research Institute for Mathematical Sciences, Kyoto University
Kyoto 606-8502

Japan

e-mail: katsumi@kurims.kyoto-u.ac.jp

Eri Matsudo

The Institute of Natural Sciences, Nihon University
3-25-40 Sakurajosui, Setagaya-ku

Tokyo 156-8550

Japan

e-mail: matsudo.eri@nihon-u.ac.jp

Masaaki Suzuki

Department of Frontier Media Science, Meiji University
4-21-1 Nakano, Nakano-ku

Tokyo, 1648525

Japan

e-mail: mackysuzuki@meiji.ac.jp




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.53333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 150
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


