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Abstract
By specializing regular polynomial with Galois group PGL(2, 7) and using Newton polygon

technique, we construct PGL(2, 7)-extensions over Q unramified over their unique quadratic
subfields. The Galois group over the quadratic field is a simple group PSL(2, 7).

1. Introduction

1. Introduction
Unramified abelian extensions over a number field are well described by class field theory.

However, no unified description is known for unramified nonabelian extensions. Despite this
situation, many examples of unramified nonabelian extensions are known, especially over
quadratic fields. Among these examples, Yamamoto’s classical result [14] shows that infin-
itely many real quadratic fields have unramified An-extensions for n ≥ 3, and its extension
by Yamamura [15] is worth mentioning as well. Recently, a systematic method to generate
such extensions was found in [1] based on the idea of [5], and applied to the construction
of an easily describable infinite family from certain regular polynomials. Another technique
for such construction can be found in [4].

The aim of this paper is to construct PGL(2, 7)-extensions over Q providing unramified
PSL(2, 7)-extensions over the unique quadratic subfields. There are several literature on un-
ramified PSL(2, 7)-extensions over quadratic fields and the above-mentioned [4] is one of
them. In that paper, the authors construct unramified PSL(2, 7)-extensions over quadratic
fields with the Galois group isomorphic to C2 × PSL(2, 7). Our approach is quite different:
starting from a regular realization of PGL(2, 7)-extension, we deduce ramification informa-
tion using Newton polygon to construct such unramified extensions.

There are several researches on PGL(2, 7)-extension recently. We mention two of them.
In the paper [3], they study PGL(2, 7)-extensions defined by a similar polynomial as ours
imposing local conditions. Our study is different in purpose and we need wider range of
parameter variation. On the other hand, in the paper [10], the authors construct PGL(2, 7)-
extensions ramified only at one prime using non-liftable modular forms of positive charac-
teristic.

The outline of this paper is as follows. In Section 2, we give some preliminaries on
regular PGL(2, 7)-polynomials and on the Newton polygon method to deduce ramification
properties of these polynomials. In Section 3, based on the above-developed technique,
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we analyze prime decomposition in PGL(2, 7)-extension, and in particular, we compute the
decomposition groups and the inertia groups of at most tamely ramified primes. In Section 4,
we construct PGL(2, 7)-extensions with only one ramified prime and unramified PSL(2, 7)-
extensions over quadratic fields by using the results in Section 3.

Throughout this paper, we mean by a number field a finite extension of the field of rational
numbers Q. For a number field K, we denote by DK the discriminant of K, byOK the ring of
integers of K, and by K̃ the Galois closure of K over Q. For a rational prime p, we denote by
vp the p-adic (exponential) valuation. For a prime ideal p of a number filed K lying above p,
we denote the ramification index and the inertia degree by e(p/p) and f (p/p), respectively.

All computation in this paper has been done by Magma [2].

2. Preliminaries

2. Preliminaries
Our study on arithmetic of PGL(2, 7)-extensions is based on the polynomial

(2.1) F(T, X) = X8 + X7 + 7X6 − T X − T ∈ Q(T )[X]

given in [8, Table 6 in Appendix]. Here, we consider PGL(2, 7) as a transitive subgroup of
S8:

PGL(2, 7) � 〈(3 4 6 5 7 8), (1 8 2)(4 5 6)〉 ⊂ S8.

In the below, we identify these two groups. The above regular polynomial is computed by
the rigidity method described as [8, Chapter I]. We shall explain the method briefly.

Definition 2.1 ([12]). Let G be a finite group and r (≥ 3) an integer. An r-point Hurwitz
parameter is a triple h = (G,C, ν) consisting of

• C = (Γ1, . . . , Γk) is a k-tuple of distinct conjugacy classes of G,
• ν = (ν1, . . . , νk) is a partition of r

satisfying the two conditions
• Γ1, . . . , Γk generate G,
• ∏[Γi]νi = 1 holds in the abelianization Gab.

When G is clear from the context, we write h = (C, ν) for simplicity.

If a Hurwitz parameter satisfies so-called the rigidity, rationality, and genus-zero condi-
tions, then we can obtain the polynomial over Q(T ) of the form

f0(X) − T · f∞(X) ( f0, f∞ ∈ Q[X])

defining a G-extension (see [8, Chapter I]).
The conjugacy classes of PGL(2, 7) are listed in Table 1.
The PGL(2, 7)-polynomial (2.1) is computed from the three-point Hurwitz parameter

(C, ν) = ((c3, c6, c7), (1, 1, 1)). There are 3 other three-point Hurwitz parameters giving rise
to PGL(2, 7)-polynomials. They are

(C, ν) = ((c6, c4), (2, 1)), ((c6, c2), (2, 1)), ((c3, c5, c6), (1, 1, 1)).

Each parameter respectively leads to
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Table 1. Conjugacy classes of PGL(2, 7)

Class order length representative
c1 1 1 id
c2 2 21 (1 6)(2 4)(3 7)(5 8)
c3 2 28 (1 7)(2 4)(3 8)
c4 3 56 (1 8 2)(4 5 6)
c5 4 42 (1 5 6 8)(2 7 4 3)
c6 6 56 (1 3 4 7 8 2)
c7 7 48 (1 5 3 7 6 8 2)
c8 8 42 (1 7 5 4 6 3 8 2)
c9 8 42 (1 4 8 7 6 2 5 3)

X6(X2 + 9X + 21) − T (7X2 − 9X + 3),

X6(X2 + 6X + 21) + T (7X2 − 12X + 12),

(X2 + 63)4 − T (7X2 + 18X + 567).

As our main task in this paper is to study the decomposition of rational primes in
PGL(2, 7)-extensions obtained by specializations of (2.1) by the aid of Newton polygons,
we recall the definition of a Newton polygon. Let p ∈ Z be a fixed rational prime and
f (X) =

∑
aiXi ∈ Qp[X]. The lower convex envelope Γ of the set of points {(i, vp(ai))} in R2

is called the Newton polygon of f with respect to p. Let S1, . . . , Sg be the segments of Γ.
To state a theorem of Ore, which is a key tool of our study, we need additional definitions.

We further assume that f (X) ∈ Z[X] is a monic polynomial. In this case, the Newton polygon
decreases monotonically to the horizontal axis. For a segment Si of Γ starting from (s, vp(as))
ending at (t, vp(at)) (s < t), we set Ei = t − s and Hi = vp(as) − vp(at). Let di = gcd(Ei,Hi),
ei = Ei/di, and hi = Hi/di. We define the integer sequence (b j)0≤ j≤di by

b j =

⎧⎪⎪⎨⎪⎪⎩as+ jei/p
vp(as+ jei ) if vp(as+ jei) = vp(as) − jhi,

0 otherwise.

Then the polynomial

fSi(Y) =
di∑

j=0

bdi− jY j

is called the associated polynomial of the segment Si (see [6, p.32]). If the discriminant of
fSi is not divisible by p, then f is called Si-regular. If f is Si-regular for all segments Si of
Γ, then f is called Γ-regular.

Remark 2.2. We add some comments on the above definitions.
We adopt the definition of Newton polygon in [9, p.144], in which the points are taken

in the reverse order of [6]. By adopting this definition, our polygon is symmetric about a
vertical line with one in [6].

The associated polynomial is defined also in the reverse order from [6]. They relate
by fi′(Y) = Ydi fSi(1/Y), where fi′ on the left hand side is the polynomial defined in [6]
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and Si and Si′ are the corresponding segments. In the following theorem, we only need
the factorization type of fSi (mod p) and therefore, this definition does not affect the result
below.

In the original paper [11] by Ore, the Newton polygon and the associated polynomial are
defined using a factor ϕ(X) of f (X) (mod p). By translating f (X) linearly, we may assume
ϕ(X) = X and recover the mordern definition of them as in [6].

Theorem 2.3 (Ore [6, Theorem 6]). Keep all the above notation. Then, the decomposition
of p in Q[X]/( f (X)) is

(p) = Ae1
1 · · ·Aeg

g .

Moreover, for each Si, if f is Si-regular and the factorization of fSi over Fp is

φi,1(Y) · · · φi,ki(Y),

then the prime decomposition of Ai is

Ai = pi,1 · · · pi,ki , f (pi, j/p) = deg(φi, j).

Remark 2.4. Theorem 2.3 also holds for a monic polynomial in Q[X]. Let f (X) =∑d
i=0 aiXi ∈ Q[X] be a monic polynomial. If we define m = max{−vp(ai) | i = 0, . . . , d},

then g(X) = pmd f (X/pm) is a monic polynomial over Zp. The polynomials f (X) and g(X)
have the same number of segments in their Newton polygons with respect to p. The differ-
ences between the slopes of the corresponding segments equal m and therefore, they share
the same associated polynomial.

3. Decomposition of primes in PGL(2, 7)-extensions

3. Decomposition of primes in PGL(2, 7)-extensions
Let F(T, X) be the polynomial defined in (2.1) with the discriminant

(3.1) −77T 5(T + 108)3.

We denote by Kt the number field defined by the polynomial F(t, X) specialized by t ∈ Q.
We assume that the Galois group Gal(K̃t/Q) is isomorphic to PGL(2, 7). In this section, we
only consider the case t ∈ Z. The possible ramifying primes in Kt/Q divide −77t5(t + 108)3.
In this section, we study the decomposition a rational prime p dividing t in Kt. The other
cases will be treated in Section 4. We fix the notation used in this section. If the prime
factorization of an ideal A of OKt is

A = pe1
1 · · · peg

g , fi = f (pi/p),

then we say that A has the decomposition type

( f e1
1 , . . . , f eg

g )

and we write A = ( f e1
1 , . . . , f eg

g ). Moreover, if ei = 1, then we simply write fi instead of f 1
i .

We denote by N(A) the absolute norm of A and by
( ·

p

)
the Legendre symbol. When p ≡ 1

(mod 3), we define cubp = {x3 | x ∈ F×p}.
We compute the decompositions of primes in two steps. The following two propositions

give the first step.
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Proposition 3.1. Let p ≥ 5 be a prime not equal to 7. If vp(t) > 0, then the prime p
decomposes in Kt as

(3.2) pOKt = AB, N(A) = p6,N(B) = p2.

Here the ideal B has the factorization

B =

⎧⎪⎪⎨⎪⎪⎩
(1, 1) if

(−3
p

)
= 1,

(2) if
(−3

p

)
= −1.

Proposition 3.2. The prime 7 decomposes in Kt as follows:

(i) if 0 < v7(t) < 7, then 7OKt = (1, 17).
(ii) if v7(t) = 7, then

7OKt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 7) if n ≡ 1 mod 7,

(1, 1, 3, 3) if n ≡ 2, 4 mod 7,

(1, 1, 6) if n ≡ 3, 5 mod 7,

(1, 1, 2, 2, 2) if n ≡ 6 mod 7.

(iii) if v7(t) > 7, then 7OKt = AB with N(A) = 76 and B = (1, 1).

As a second step, we decompose the ideal A which remains in the first step.

Proposition 3.3. Let p ≥ 5 be a rational prime and write t = pvp(t)n ∈ Z. Let A be the
ideal in Propositions 3.1 and 3.2.

(i) The case p � 7:
(1) if gcd(vp(t), 6) = 1, then A = (16).
(2) if gcd(vp(t), 6) = 2, then

A =

⎧⎪⎪⎨⎪⎪⎩
(13, 13) if

(
7n−1

p

)
= 1,

(23) if
(

7n−1

p

)
= −1.

(3) if gcd(vp(t), 6) = 3, then

A =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(12, 22) if 3 � p − 1,

(12, 12, 12) if 3 | p − 1 and 7n−1 ∈ cubp,

(32) if 3 | p − 1 and 7n−1 � cubp.

(4) if gcd(vp(t), 6) = 6, then

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 1, 1, 1, 1) if 3 | p − 1, 7n−1 ∈ cubp and
(

7n−1

p

)
= 1,

(2, 2, 2) if 3 | p − 1, 7n−1 ∈ cubp and
(

7n−1

p

)
= −1,

(3, 3) if 3 | p − 1, 7n−1 � cubp and
(

7n−1

p

)
= 1,

(6) if 3 | p − 1, 7n−1 � cubp and
(

7n−1

p

)
= −1,

(1, 1, 2, 2) if 3 � p − 1 and
(

7n−1

p

)
= 1,

(2, 2, 2) if 3 � p − 1 and
(

7n−1

p

)
= −1.

(ii) The case p = 7 and v7(t) > 7:
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(1) if gcd(v7(t) − 1, 6) = 1, then A = (6).
(2) if gcd(v7(t) − 1, 6) = 2, then

A =

⎧⎪⎪⎨⎪⎪⎩(1
3, 13) if n ≡ 1, 2, 4 mod 7,

(23) if n ≡ 3, 5, 6 mod 7.

(3) if gcd(v7(t) − 1, 6) = 3, then

A =

⎧⎪⎪⎨⎪⎪⎩(1
2, 12, 12) if n ≡ ±1 mod 7,

(32) if n � ±1 mod 7.

(4) if gcd(v7(t) − 1, 6) = 6, then

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 1, 1, 1, 1) if n ≡ 1 mod 7,

(3, 3) if n ≡ 2, 4 mod 7,

(6) if n ≡ 3, 5 mod 7,

(2, 2, 2) if n ≡ 6 mod 7.

We shall prove these propositions at the same time.

Proof of Propositions. Let p be a prime � 7. For t ∈ Z with vp(t) > 0, the Newton
polygon of F(t, X) with respect to p is as follows.

Let us denote the segments of the Newton polygon with the horizontal length 6 and 2 by S1

and S2, respectively. Then S1 corresponds to A and S2 corresponds to B in the notation of
Proposition 3.1. To decompose B by using Ore’s theorem (Theorem 2.3), we consider the
factorization of the associated polynomial

FS2 (Y) = 7Y2 + Y + 1

of S2 in Fp with Disc(FS2 ) = −33. Since 2 � 0 in Fp, we have

7 · 22FS2 (Y) = (7 · 2Y + 1)2 + 27.

This implies that FS2 is reducible in Fp if and only if
(−27

p

)
=
(−3

p

)
= 1. This proves

Proposition 3.1.
On the other hand, the possible Newton polygon with respect to p = 7 is one of the

following forms.
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If v7(t) > 7, then the Newton polygon has a segment with the horizontal lengths of 6 and
two segments with the horizontal length of 1. This proves Proposition 3.2 (iii) for the case
v7(t) > 7. If v7(t) ≤ 7, then the Newton polygon has segments of the horizontal length 1 and
7. This shows that 7 decomposes as

7OK = Aq, N(A) = 77

where q is a prime of Kt. This completes the proof of (i) in Proposition 3.2.
It remains to decompose the ideal A. For our purpose, we use Theorem 2.3. We demon-

strate the computation only for the cases:
(i) The case when p � 7 and gcd(vp(t), 6) = 3;

(ii) the case when p � 7, 3 � (p − 1) and
(

7n−1

p

)
= −1.

While the case (i) covers the generic cases, the case (ii) needs more careful arguments.
We begin with case (i). In this case, the associated polynomial of S1 is

FS1 (Y) = −nY3 + 7

with n = t · p−vp(t). The discriminant of the above polynomial is −3372n2. Thus we can apply
Theorem 2.3 to the polynomial. If 3 � p − 1, then Fp has no primitive third roots of unity.
This implies that FS1 has only one root in Fp for all n. On the other hand, if 3 | p − 1, then
Fp has a primitive third root of unity. This implies that FS1 has a root in Fp if and only if FS1

has 3 roots in Fp. Thus we have obtained

FS1 (Y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(degree1) × (degree2) if 3 � p − 1,

(degree1) × (degree1) × (degree1) if 3 | p − 1, 7n−1 ∈ cubp,

(degree3) if 3 | p − 1, 7n−1 � cubp.

This shows the decomposition of A.
For the case (ii), the decomposition type of A is given by the associated polynomial

−nY6 + 7. We have to consider the splitting field of the polynomial. A decomposition of the
polynomial to quadratic factors in an algebraic closure Fp is

Y6 − 7−1n = (Y2 − b)(Y2 − bω)(Y2 − bω2),

where b ∈ Fp and ω is a primitive third root of unity. This implies that the degree of the
splitting field of −nY6 + 7 is 2. On the other hand, −nY6 + 7 has no degree one factors,
because

(
7n−1

p

)
= −1. Hence, the irreducible decomposition of −nY6 + 7 consists of three
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Table 2. Subgroups of PGL2(7).

No. subgroups generators order length No. subgroups generators order length
1 C1 (1) 1 1 14 D4 (1 6 4 7)(2 5 3 8), 8 21
2 C2 (1 3)(2 4)(5 6)(7 8) 2 21 (1 8)(2 7)(3 6)(4 5)
3 C2 (1 7)(2 6)(3 5) 2 28 15 D4 (1 3 2 5)(4 7 6 8), 8 21
4 C3 (3 7 6)(4 8 5) 3 28 (1 5)(2 3)(7 8)
5 C7 (1 6 8 5 4 7 2) 7 8 16 C8 (1 6 5 7 2 4 3 8) 8 21
6 C2

2 (1 3)(2 4)(5 6)(7 8), 4 14 17 A4 (3 7 6)(4 8 5), 12 14
(1 4)(2 3)(5 8)(6 7) (1 8)(2 7)(3 6)(4 5)

7 C4 (1 6 4 7)(2 5 3 8) 4 21 18 D6 (2 4 8 7 3 5), 12 28
8 C2

2 (1 5)(2 3)(7 8), 4 42 (1 6)(2 8)(5 7)
(1 2)(3 5)(4 6)(7 8) 19 F7 (1 6 3 7 2 5), 42 8

9 C6 (1 6 3 7 2 5) 6 28 (1 4 7 6 3 5 2)
10 S3 (1 6)(2 8)(5 7), 6 28 20 D8 (1 6 5 7 2 4 3 8), 16 21

(2 8 3)(4 7 5) (1 5)(2 3)(7 8)
11 S3 (1 3)(2 4)(5 6)(7 8), 6 28 21 S4 (1 6 4 7)(2 5 3 8), 24 14

(1 4 5)(2 3 6) (3 7 6)(4 8 5)
12 D7 (1 7)(2 6)(3 5), 14 8 22 PSL2(7) (1 5)(2 8)(3 6)(4 7), 168 1

(1 4 7 6 3 5 2) (1 5 7 6)(2 4 8 3)
13 C7 �C3 (1 5 8)(2 6 7), 21 8 23 PGL2(7) (1 6)(2 4)(3 7)(5 8), 336 1

(1 6 8 5 4 7 2) (1 2 3 8 6 4)

degree 2 irreducible factors over Fp, and thus, the decomposition type of A is (2, 2, 2). �

If a prime divisor p of t ramifies tamely in Kt/Q, then we can calculate the decomposition
and inertia groups in Galois closure K̃t. Let K be a Galois extension over Q with Galois
group G. For a prime p and a prime ideal p in K lying over p, we denote the decomposition
group by Z(p/p) and the inertia group by T (p/p). We simply write Z and T if no confusion
can occur.

The decomposition and inertia groups have the following fundamental properties:
• The both groups are subgroups of the Galois group G;
• The group T (p/p) is normal in Z(p/p);
• The quotient Z/T is cyclic;
• If p ramifies tamely, then the group T is cyclic.

By using the following lemma, we can calculate ramification indices and inertia degrees
in Kt/Q from the pair (Z, T ).

Lemma 3.4 ([13]). Let K be a number field and G = Gal(K̃/Q). We denote by H the
subgroup of G fixing K. Let p be a prime. For a prime ideal P of K̃ lying above p, we
denote by Z and T the decomposition and the inertia groups of P, respectively. Then there
is a one-to-one correspondence between the double cosets Z\G/H and the distinct prime
ideals in K lying above p. For a prime ideal p of K corresponding to ZσH, the following
equalities hold:

e(p/p) f (p/p) = (σ−1Zσ : σ−1Zσ ∩ H);

e(p/p) = (σ−1Tσ : σ−1Tσ ∩ H).

By applying Lemma 3.4 to Kt and K̃t, we obtain the possible pairs (Z, T ) for the decom-
position types of the tamely ramified primes in Kt/Q.

We explain the notation in Table 2 and Table 3.
Table 2 contains the all subgroups of PGL(2, 7) up to conjugacy. In the table, the “length”
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Fig.1. The lattice of subgroups of PGL2(7).

column contains the conjugacy length of the group. Figure 1 shows the subgroup lattice of
PGL(2, 7), which is downloadable from
https://people.maths.bris.ac.uk/˜matyd/GroupNames/321/PGL(2,7).html.

In Table 3, to distinguish the isomorphic subgroups, we add the number from Table 2.
Since the ramification is tame, the p-order of DKt can be calculated by the formula

vp(DKt ) =
∑
p

f (p/p)(e(p/p) − 1).

The pairs of the decomposition and inertia groups for tamely ramified primes p ≥ 5 in
the PGL(2, 7)-extensions defined by (2.1) can be determined. For example, by Proposition
3.1 and Proposition 3.3 (i)(2), we obtain that, if p ≥ 5, p � 7, gcd(vp(t), 6) = 2, and(

7n−1

p

)
= −1, then the decomposition type of p is (1, 1, 23). Since (C6,C3) is the unique pair

having the decomposition type, p has (C6,C3) as the decomposition and the inertia groups
at K̃t/Q. Similarly, if p = 7, v7(t) > 7, gcd(v7(t) − 1, 6) = 2, and n ≡ 3, 5, 6 mod 7, then 7
has (C6,C3) as the pair.

4. Construction of PGL(2, 7)-extensions unramified over quadratic fields

4. Construction of PGL(2, 7)-extensions unramified over quadratic fields
The group PGL(2, 7) has a unique subgroup of index 2, that is PSL(2, 7). This implies

that a PGL(2, 7)-extension contains the unique quadratic subfield Q(
√

DKt ) and the Galois
group of K̃t/Q(

√
DKt ) is isomorphic to PSL(2, 7). For a rational prime p, Table 3 shows that

if vp(DKt ) = 3, then T � C2(No.3) � PSL(2, 7). Thus, we have the following lemma, which
will be used throughout this section.

Lemma 4.1. A tamely ramified prime ideal of Q(
√

DKt ) lying above p in Kt/Q is unram-
ified in K̃t/Q(

√
DKt ) if and only if vp(DKt ) = 0 or 3.
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Table 3. The decomposition and inertia groups.

Z T decomposition type vp(DKt )
C1 C1 (1, 1, 1, 1, 1, 1, 1, 1) 0

C2(No.3) C1 (1, 1, 2, 2, 2) 0
C3 C1 (1, 1, 3, 3) 0
C6 C1 (1, 1, 6) 0

C2(No.3) C2(No.3) (1, 1, 12, 12, 12) 3
C6 C2(No.3) (1, 1, 32) 3
C3 C3 (1, 1, 13, 13) 4
C6 C3 (1, 1, 23) 4
C6 C6 (1, 1, 16) 5
C7 C1 (1, 7) 0
C7 C7 (1, 17) 6

C7 �C3 C7 (1, 17) 6
D7 C7 (1, 17) 6
F7 C7 (1, 17) 6

C2(No.2) C1 (2, 2, 2, 2) 0
C2

2(No.8) C2(No.3) (2, 12, 22) 3
S3(No.10) C3 (2, 13, 13) 4
S3(No.11) C3 (2, 23) 4

D6 C6 (2, 16) 5
C4 C1 (4, 4) 0
C8 C1 (8) 0

C2(No.2) C2(No.2) (12, 12, 12, 12) 4
C2

2(No.8) C2(No.2) (12, 12, 22) 4
C2

2(No.6) C2(No.2) (22, 22) 4
C4 C2(No.2) (22, 22) 4
C8 C2(No.2) (42) 4
C4 C4 (14, 14) 6

D4(No.15) C4 (14, 14) 6
C8 C4 (24) 6

D4(No.14) C4 (24) 6
C8 C8 (18) 7
D8 C8 (18) 7

The aim of this section is to prove the following theorem.

Theorem 4.2. Let n be an integer coprime to 6 and m an integer coprime to 7. Assume
that n and m are relatively prime. Then, the following hold.

(i) If there exists a prime p such that (77n6 + 108m7)/p is square, then Kt/Q is unram-
ified outside p for t = 77n6/m7.

(ii) For a rational number t = 77n3/m7, the extension K̃t/Q is a PGL(2, 7)-extension
unramified over the unique quadratic subfield.

To prove Theorem 4.2, we have to study the decompositions of the prime divisors of
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t + 108 for the case t ∈ Z, and the denominators of t for the case t ∈ Q, because these
numbers appear in the discriminant (3.1).

As for the prime factors of t + 108, we have the following proposition.

Proposition 4.3. Let p be a prime � 2, 3, 7. If vp(t + 108) > 0, then

vp(DKt ) =

⎧⎪⎪⎨⎪⎪⎩0 if vp(t + 108) is even,

3 if vp(t + 108) is odd.

To prove Proposition 4.3, we use the following lemma by Dedekind.

Lemma 4.4 (Dedekind [7, Lemma 1]). Let ϕ(X) be an irreducible polynomial over Q,
K = Q[X]/(ϕ(X)), Dϕ the discriminant of ϕ, and i the integer satisfying Dϕ = i2DK. If a
prime p does not divide i and

ϕ(X) ≡ ϕ1(X)e1 · · ·ϕg(X)eg mod p

is the factorization into the irreducible factors modulo p, then p decomposes as

pO = pe1
1 · · · peg

g

in K where f (p j/p) = degϕ j for j = 1, . . . , g.

Proof of Proposition 4.3. Let DF(t) be the discriminant of the octic F(t, X) given in (2.1)
and i(t) the integer satisfying DF(t) = i(t)2DKt . By assumption,

F(t, X) ≡ X8 + X7 + 7X6 + 108(X + 1) mod p.

Note that the right hand side of the above congruence does not depend on t.
Assume vp(t + 108) = 1. Then vp(DF(t)) = 3, which implies vp(DKt ) = 1 or 3. However,

since vp(DKt ) � 1 by Table 3, we conclude vp(DKt ) = 3 and vp(i(t)) = 0. Hence, by applying
Lemma 4.4 to F(t, X), we have

F(t, X) ≡ F1(X)E1 · · · Fg(X)Eg mod p,

which corresponds to the decomposition of p in Kt/Q, i.e.,

pOK = p
e1
1 · · · peg

g , Ei = ei, fi = f (pi/p) = deg Fi(X).

Since vp(DKt ) = 3, and p is tamely ramified, we have

(4.1)
g∑

i=1

deg Fi · (Ei − 1) = 3.

Assume vp(t + 108) > 0. Since the factorization of F(t, X) mod p does not depend on t,
the equation (4.1) holds again. By Hensel’s lemma, we obtain

∑
fi · (ei − 1) ≤

g∑
i=1

deg Fi · (Ei − 1) = 3,

and hence, from Table 3, it follows vp(DKt ) = 0 or 3. Noting that vp(DKt ) is odd if and only
if vp(t + 108) is odd, we obtain the proposition. �

Next, we study the decomposition of p = 7.
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If 7 divides t, then the decomposition of 7 in Kt/Q is shown in Proposition 3.3. Hence,
we consider the two cases where 7 divides t + 108 and 7 does not divide t(t + 108).

We first consider the case where 7 | t + 108.

Proposition 4.5. If 0 < v7(t + 108) ≤ 2, then 7 ramifies wildly. If v7(t + 108) ≥ 3, then

v7(DKt ) =

⎧⎪⎪⎨⎪⎪⎩4 if v7(t + 108) is odd,

5 if v7(t + 108) is even.

Proof. If 7 divides t + 108, then we obtain t ≡ 4 mod 7. The Newton polygon of
F(t, X − 3) with respect to 7 is one of the following.

For the left polygon, the height of the left side is v7(t + 108). This implies that the decom-
position of 7 is (1, 17). For the right polygon, the height of the center side is 2 so that the
decomposition of 7 is (1, 1, 16), (1, 1, 13, 13) or (1, 1, 23). This implies vp(DKt ) = 4 or 5.
Since the discriminant of F is −77t5(t + 108)3, we see

v7(DKt ) =

⎧⎪⎪⎨⎪⎪⎩even if v7(t + 108) is odd,

odd if v7(t + 108) is even,

and hence, the proposition follows. �

When 7 � t(t + 108), we have t ≡ 1, 2, 3, 5, 6 mod 7. Similarly as in the previous case,
we consider the Newton polygons of F(t, X − 7 + t). As a result, we obtain

7OKt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(18) if t ≡ 6 mod 7,

(1, 1, 16) if t ≡ 12, 16, 29, 45 mod 49,

(1, 17) otherwise.

This also shows the tame part of the following proposition.

Proposition 4.6. Let t be an integer. If 7 � t(t + 108), then the following hold.

(i) If t ≡ 6 mod 7, then v7(DKt ) = 7.
(ii) If t ≡ 1, 2, 3, 5 mod 7, then

v7(DKt ) =

⎧⎪⎪⎨⎪⎪⎩5 if t ≡ 12, 16, 29, 45 mod 49,

7 otherwise.

Proof. It remains to prove that v7(DKt ) = 7 if 7OKt = (1, 17). In this case, 7 is wildly
ramified in Kt/Q. This implies that v7(DKt ) ≥ 7. On the other hand, since 7 � t(t + 108), we
have v7(DKt ) ≤ 7. �
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Lastly, we compute vp(DKt ) for t ∈ Q with p � 2, 3, 7. We write t = n/m with coprime
integers n and m. Since the discriminant of F(n/m, X) is

−77
( n
m

)5 ( n
m
+ 108

)3
= −77n5(n + 108m)3

m8 ,

the ramified prime p in Kt/Q is 7 or a divisor of nm(n + 108m). From Remark 2.4, we can
use the technique of the Newton polygon for F(n/m, X). The decomposition of divisors of
n prime to 6 are obtained by Proposition 3.3. For divisors of m(n + 108m), we have the
following propositions.

Proposition 4.7. Let n and m be coprime integers and p a prime divisor of n + 108m.
Then the factorization of F(n/m, X) mod p does not depend on n and m.

Proof. We can show this proposition similarly as Proposition 4.3. �

Proposition 4.8. We write t = n/m with coprime integers n and m, and we let p be a
prime divisor of m.

(i) If 7 � vp(m), then p ramifies wildly when p = 7, and vp(DKt ) = 6 when p � 7.
(ii) If p � 7 and 7 | vp(m), then p is unramified at Kt/Q.

Proof. The first statement is clear. Therefore, we assume p � 7 and 7 | vp(m). The
Newton polygon of F(n/m, X) has two segments S1 and S2 whose horizontal lengths are
1 and 7, respectively. It suffices to consider the associated polynomial FS2 of S2. Since
7 | vp(m), the degree of FS2 is 7 and

FS2 (Y) = − n
m′

Y7 + 1

with m′ = mp−vp(m). Since the discriminant of FS2 is −77( n
m′ )

6, this polynomial satisfies
Ore’s condition. This proves the proposition. �

Proof of Theorem 4.2. As noted in the above, we need to consider the numerators and
the denominators of t and the numerators of t + 108.

We start with the proof of (ii), and hence, assume t = 77n3/m7. By Propositions 3.1, 3.2,
and 3.3, we have vp(DKt ) = 0 or 3 for all p dividing 7n. The equation vp(DKt ) = 0 or 3
holds also for all p dividing 77n3 + 108m7 by Proposition 4.3. Therefore, the primes of the
quadratic subfield lying above such p are unramified by Lemma 4.1. The prime divisors of
the denominator m are unramified in K̃t/Q from Proposition 4.8. Consequently, we have
proved that K̃t is unramified over the unique quadratic subfield.

Similar argument for t = 77n6/m7 shows (i). �

We find 615 pairs of integers n and m with 1 ≤ n ≤ 100, −100 ≤ m ≤ 100 satisfying
conditions of Theorem 4.2 (i). For these pairs, the Galois group of K77n6/m7/Q is isomorphic
to PGL(2, 7) and there is only one prime dividing the discriminant of K77n6/m7 . Similarly, we
find 5252 pairs of n and m satisfying the conditions of Theorem 4.2 (ii) in the same range.
For these pairs n and m, Gal(K77n3/m7/Q) � PGL(2, 7) holds and the valuations of DK77n3/m7

for prime divisors of DK77n3/m7 are 3. Table 4 consists of some such pairs (n,m) with small
absolute values and the discriminants of the fields Kt.
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Table 4. Examples of Theorem 4.2

Examples of (i) Examples of (ii)
n m DK77n6/m7 n m DK77n3/m7

1 −5 450533 1 −4 9459293

1 −4 9459293 1 −3 −16273

1 −3 −16273 1 −2 −8097193

1 −2 −8097193 1 −1 −53 · 373 · 44513

1 1 −8236513 1 1 −8236513

1 2 −8373673 1 2 −8373673

5 3 −128680955713 1 3 −673 · 158173

5 6 −128980924633 1 4 −53 · 893 · 58273

5 8 −130943517913 5 −4 −53 · 3173 · 3191593

7 −6 −968587773193 5 −3 −53 · 3973 · 2587073

7 −2 −968889965833 5 −2 −53 · 733 · 1493 · 94633

7 3 −968892466033 5 −1 −53 · 793 · 13030733

7 4 −968907798793 5 1 −53 · 113 · 133 · 1393 · 51793

7 8 −971155028233 5 2 −53 · 293 · 413 · 1313 · 6613

5 3 −53 · 293 · 2933 · 121433

5 4 −53 · 1047123473
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