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Abstract
This paper treats the initial-boundary value problem for a quasilinear parabolic system in a

two-dimensional region presented by Belić, Škarka, Deneubourg and Lax in order to describe
the construction process of parallel honeycombs in a beehive. After constructing the local strict
solutions by using the theory of abstract parabolic equations, we will define the maximal strict
solutions. Unfortunately, we cannot give any general sufficient conditions on the parameters
or initial functions for global existence, but we can investigate asymptotic behaviors of the
maximal solutions as t → Tmax. From numerical computations, we already have a number of
examples which suggest the blowup of maximal solutions (i.e., Tmax < ∞); at the end of the
paper, we shall present one such numerical example.

1. Introduction

1. Introduction
We consider the initial-boundary value problem for a quasilinear parabolic system

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = aΔu − μu ∂2ρ

∂x2 + cuv(u − v) + d − f u, Ω × (0,∞),
∂v
∂t = aΔv − μv∂2ρ

∂y2 + cuv(v − u) + d − f v, Ω × (0,∞),
∂ρ
∂t = b(u + v)Δρ + ν(u + v) − gρ, Ω × (0,∞),
∂u
∂n =

∂v
∂n =

∂ρ
∂n = 0, ∂Ω × (0,∞),

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), ρ(x, y, 0) = ρ0(x, y), Ω,

in a two-dimensional bounded domain Ω.
This system was presented by Belić-Deneubourg-Lax-Škarka in the papers [1, 6] in order

to describe the initial stage of the honeycomb construction of Apis mellifera. It is well
known that honeybees have a strong tendency to construct parallel and equidistant combs in a
beehive. In order to understand this remarkable phenomenon theoretically, the authors of [1,
6] introduced the parabolic system (1.1). Their modeling focuses on the “self-organization”
of the social insects (see [2, 4]). In their work, two principle mechanisms were assumed
to be active. The first one is cooperative interaction between bees and wax. The worker
bees are attracted to the already deposited wax. However, some deposits grow faster than
others, some are abandoned, and some fluctuations become amplified to form elongated oval
deposits. The second mechanism is competitive interaction among worker bees. The worker
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bees are divided into groups. Worker bees belonging to the same group orient themselves in
the same direction, and deposit or bore wax cooperatively. Contrarily, there is competition
between differently oriented groups of bees. For simplicity, it was supposed in [1, 6] that
the worker bees were divided into only two major groups, one being bees parallel to the
x0z-plane and the other being those parallel to the y0z-plane.

In the model (1.1), the domain Ω in the (x, y)-plane represents the base of a beehive
under which honeybees construct their combs. (In (1.1), the z-axis is pointing downward.)
The unknown functions u = u(x, y, t) and v = v(x, y, t) give the average density of bees
parallel to the x0z-plane and the average density of bees parallel to y0z-plane, respectively,
at (x, y, t) ∈ Ω × [0,∞); ρ = ρ(x, y, t) denotes the quantity of wax deposited by the “waxer”
bees at (x, y, t) ∈ Ω × [0,∞). The terms cuv(u − v) and cuv(v − u) represent the competition
between the two major groups of bees. The constant term d denotes the flux of differently
oriented bees which come into the considered group, and the terms f u and f v correspond
to the losses of bees due to leaving and changing orientation, respectively. The medium
interaction terms −μu ∂2ρ

∂x2 and −μv∂2ρ
∂y2 describe the attraction of bees to the wax and the term

ν(u + v) describes the deposition of wax by bees. The term −gρ describes the removal and
the fall of wax. Finally, the Laplacian terms aΔu and aΔv represent the “diffusive” imitation
of bees, capturing the bees’ tendency to take the same orientation as that of the bees nearby;
the Laplacian term b(u + v)Δρ represents the deposit of wax due to imitation.

For further details of the model and related experimental results, see the original two
papers [1, 6] and the references therein.

In this paper, we assume that Ω ⊂ R2 is either a rectangle (0, �x)× (0, �y) (0 < �x, �y < ∞)
or a bounded 

3 domain. All the parameters a, b, c, d, f , g, μ and ν in (1.1) are positive
constants. We impose on the unknown functions u, v and ρ the homogeneous Neumann
boundary conditions, i.e., ∂u

∂n =
∂v
∂n =

∂ρ
∂n = 0 on ∂Ω, n = n(x, y) being the outer normal vector

at boundary point (x, y) ∈ ∂Ω. For the initial functions, we assume the following conditions:

(1.2) u0, v0, ρ0 ∈ H1+σ(Ω) ⊂ (Ω),

where σ > 0 is any positive exponent. In what follows, we will fix σ such that 0 < σ < 1
2 .

In addition, u0, v0 and ρ0 satisfy the following positivity conditions:

(1.3) min
(x,y)∈Ω

u0(x, y) > 0, min
(x,y)∈Ω

v0(x, y) > 0 and min
(x,y)∈Ω

ρ0(x, y) ≥ 0.

The first objective of this paper is to construct the local strict solution to (1.1) for the
initial functions satisfying (1.2)-(1.3). As explained above, the diffusion coefficient for the
equation ρ is given by b(u + v), which means that the coefficient depends on the unknown
functions u and v. Meanwhile, the equations for u and v include the interaction terms −μu ∂2ρ

∂x2

and −μv∂2ρ
∂y2 , respectively, for the deposited wax, which means that these equations include

nonlinear terms that depend on the second-order partial derivatives with respect to the un-
known function ρ. Then, the equations of (1.1) represent a strongly coupled diffusion system
which is classified as a quasilinear parabolic system in the theory of nonlinear partial differ-
ential equations. Thus, even constructing the local solutions is not a so easy task. However,
we can appeal to the theory of abstract parabolic evolution equations (see [7, 8]). More
precisely, we shall use [8, Theorem 5.6], in which the existence and uniqueness results are
proved for abstract parabolic equations under a general framework. Under suitable settings,
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it is possible to verify that this theorem is actually applicable to the problem (1.1).
We are next interested in the question of when (1.1) possesses a global strict solution. Un-

fortunately, we do not yet know any general conditions on the parameters a, b, c, d, f , g, μ
and ν or the initial functions u0, v0 and ρ0 which can guarantee the global existence of so-
lutions. On the contrary, we have found many numerical examples which suggest the local
strict solutions blow up. One such example will be presented in the last section of this paper.

In view of (1.2)-(1.3), we know that, if the local strict solution blows up at some time
Tmax < ∞, then at least one of the following phenomena has occurred:

lim
t→Tmax

[‖u(t)‖H1+σ + ‖v(t)‖H1+σ + ‖ρ(t)‖H1+σ] = ∞,
lim

t→Tmax

min
(x,y)∈Ω

u(x, y, t) = 0 or lim
t→Tmax

min
(x,y)∈Ω

v(x, y, t) = 0.

Actually, we can give more precise information on the behavior of u(x, y, t), v(x, y, t) and
ρ(x, y, t) as t → Tmax. The second objective of this paper is then to investigate the asymptotic
behavior of the maximal strict solution of (1.1) as t → Tmax < ∞.

As explained, we cannot expect in general that (1.1) admits a global strict solution, but
this does not at all mean that the model (1.1) does not give a description of honeycomb
patterns. On the contrary, we have a number of numerical examples which re-create hon-
eycomb patterns during the time interval (0, Tmax). Some of these were already included
previously in [9], but a full paper on these examples will be published elsewhere.

2. Notion and Preliminaries

2. Notion and Preliminaries
Let Ω ⊂ R2 be a rectangle (0, �x) × (0, �y) or a bounded 

3 domain. This section is
devoted to listing the basic materials of Sobolev spaces in Ω and the basic properties of
sectorial operators in L2(Ω) which will be needed in this paper. For some of these which
may not be so familiar, proofs will be given.

Sobolev Spaces. For 1 ≤ p ≤ ∞, Lp(Ω) denotes the usual complex Lp-space equipped
with the Lp-norm ‖ · ‖Lp .

For 1 < p < ∞ and m = 0, 1, 2, . . ., Hm
p (Ω) denotes the space of functions u ∈ Lp(Ω)

whose partial derivatives ∂i+ ju
∂xi∂y j for all the orders 0 ≤ i+ j ≤ m belong to Lp(Ω), Hm

p (Ω) being
equipped with the norm

‖u‖Hm
p =

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
0≤i+ j≤m

∥∥∥∥∥∥ ∂
i+ ju

∂xi∂y j

∥∥∥∥∥∥
p

Lp

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

.

These definitions are extended for the fractional exponents s, namely, for 1 < p < ∞ and
0 ≤ s < ∞, Hs

p(Ω) is defined in a reasonable way; see [8, Section 1.11]. For each 1 < p < ∞,
the family Hs

p(Ω), (0 ≤ s < ∞) enjoys the interpolation property

(2.1) [Hs0
p (Ω),Hs1

p (Ω)]θ = Hs
p(Ω) (with norm equivalence)

for 0 ≤ s0 < s < s1 < ∞ and s = (1−θ)s0+θs1. When 1 < p < ∞, p � 2, Hs
p(Ω) are Banach

spaces. When p = 2, Hs
2(Ω) are Hilbert spaces. The spaces Hs

2(Ω) are simply denoted by
Hs(Ω).

Regarding embeddings of Hs
p(Ω) into Lq(Ω), the following properties are known. If 0 <
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s < 1, then Hs(Ω) ⊂ Lp(Ω) for p = 2
1−s with continuous embedding

(2.2) ‖u‖Lp ≤ Cs‖u‖Hs , u ∈ Hs(Ω).

When s = 1, it holds true that H1(Ω) ⊂ Lp(Ω) for any 2 ≤ p < ∞ with the inequality

(2.3) ‖u‖Lp ≤ Cp‖u‖1−2/p
H1 ‖u‖2/p

L2
, u ∈ H1(Ω).

If s > 1, then Hs(Ω) ⊂ (Ω) with continuous embedding

(2.4) ‖u‖ ≤ Cs‖u‖Hs , u ∈ Hs(Ω).

If 2 < p < ∞, then H1
p(Ω) ⊂ (Ω) with continuous embedding

(2.5) ‖u‖ ≤ Cp‖u‖H1
p
, u ∈ H1

p(Ω).

Furthermore, for s > 1 (resp. 2 < p < ∞), the space Hs(Ω) (resp. H1
p(Ω)) is verified to be

a Banach algebra. Namely, if s > 1, then u, v ∈ Hs(Ω) implies uv ∈ Hs(Ω) with the estimate

(2.6) ‖uv‖Hs ≤ Cs‖u‖Hs‖v‖Hs , u, v ∈ Hs(Ω).

Similarly, if 2 < p < ∞, then u, v ∈ H1
p(Ω) implies uv ∈ H1

p(Ω) with the estimate

(2.7) ‖uv‖H1
p
≤ Cp‖u‖H1

p
‖v‖H1

p
, u, v ∈ H1

p(Ω).

Let a ∈ Hs(Ω) with s > 1. Then, the multiplication u 	→ au is a bounded linear operator
from H1(Ω) into itself with the estimate

(2.8) ‖au‖H1 ≤ Cs‖a‖Hs‖u‖H1 , u ∈ H1(Ω).

Let χ :R→ R be a continuous piecewise smooth function with χ′ ∈ L∞(R) and χ(0) = 0.
Then, w 	→ χ(w) is an operator from H1(Ω; R) into itself with the property

(2.9) ∇χ(w) =

⎧⎪⎪⎨⎪⎪⎩χ
′(w)∇w if w(x, y) � χs,

0 if w(x, y) ∈ χs,

where χs denotes the set of singular points of χ.
Let χ :R → R be a smooth function. Then, for s > 1, w 	→ χ(w) is an operator from

Hs(Ω; R) into itself

(2.10) which is a bounded and locally Lipschitz continuous mapping.

Sectorial Operators. For the Laplace operator −Δu = −
(
∂2u
∂x2 +

∂2u
∂y2

)
inΩ, let us review how

to realize the operator as a linear operator of L2(Ω) by equipping it with the homogeneous
Neumann boundary conditions on ∂Ω. Consider a sesquilinear form

ã(u, v) =
�
Ω

∇u · ∇v dxdy, u, v ∈ H1(Ω),

on H1(Ω). Since for each u ∈ H1(Ω), the correspondence v 	→ ã(u, v) is a continuous anti-
linear functional on H1(Ω), there is an element Λ̃u ∈ H1(Ω)′ such that ã(u, v) = 〈Λ̃u, v〉H1′×H1

for all v ∈ H1(Ω), where H1(Ω)′ is the dual space of H1(Ω) and 〈·, ·〉H1′×H1 is the duality
product of H1(Ω)′ and H1(Ω). This relation then defines a bounded linear operator Λ̃ from
H1(Ω) into H1(Ω)′.
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Identifying L2(Ω) and its dual space L2(Ω)′, we here introduce the triplet

H1(Ω) ⊂ L2(Ω) ≈ L2(Ω)′ ⊂ H1(Ω)′

with dense and continuous embeddings. As is well known, the compatibility property
〈u, v〉H1′×H1 = (u, v)L2 holds for u ∈ L2(Ω) and v ∈ H1(Ω). In view of this property, con-
sider for any ε > 0 the sesquilinear form ãε(u, v) = ã(u, v) + ε(u, v)L2 on H1(Ω); then, it can
be shown that ãε(u, v) = 〈(Λ̃ + ε)u, v〉H1′×H1 for u, v ∈ H1(Ω). Since ãε(u, v) is continuous
and coercive on H1(Ω), the Lax-Milgram theorem can be applied to ãε(u, v) to conclude that
Λ̃ + ε is actually an isomorphism from H1(Ω) onto H1(Ω)′.

We now define the part Λ of Λ̃ in L2(Ω) by (Λ) = {u ∈ H1(Ω); Λ̃u ∈ L2(Ω)} (namely,
u ∈ (Λ) if and only if v 	→ ã(u, v) is continuous in v with respect to the L2-topology) and
Λu = Λ̃u, i.e., ã(u, v) = (Λu, v)L2 for u ∈ (Λ) and v ∈ H1(Ω). Then, this proves Λ is a
positive self-adjoint operator of L2(Ω). Furthermore, when Ω is convex or in the class 

2

(which is of course the case under our assumption on Ω), it is known that the domain (Λ)
can be characterized by

(2.11) (Λ) = H2
N(Ω) ≡

{
u ∈ H2(Ω);

∂u
∂n
= 0 on ∂Ω

}
.

(see [8, Theorems 2.6-2.7]). Clearly, for u ∈ H2
N(Ω), we have ã(u, v) = (−Δu, v)L2 and hence

Λu = −Δu for u ∈ (Λ).
In the above sense, the positive self-adjoint operator Λ is considered a realization of −Δ

in L2(Ω) under the boundary conditions ∂u
∂n = 0 on ∂Ω. Further, Λ̃ is considered a realization

of −Δ in H1(Ω)′ under the same boundary conditions on ∂Ω, but in the generalized sense.
Thereby, it is reasonable to write (∇u,∇v)L2 as

(∇u,∇v)L2 = (Λu, u)L2 = (−Δu, v)L2 , u ∈ H2
N(Ω), v ∈ H1(Ω),(2.12)

(∇u,∇v)L2 = 〈Λ̃u, v〉H1′×H1 = 〈−Δu, v〉H1′×H1 , u, v ∈ H1(Ω).(2.13)

Let a > 0 and f > 0 both be constants and consider the operator aΛ + f in L2(Ω). As
aΛ+ f is a positive definite self-adjoint operator having domain (aΛ+ f ) = (Λ) = H2

N(Ω),
we know that ([aΛ + f ]θ) = [L2(Ω),H2

N(Ω)]θ for all 0 ≤ θ ≤ 1. From this, the domains of
[aΛ + f ]θ are given by

(2.14) ([aΛ + f ]θ) =

⎧⎪⎪⎨⎪⎪⎩H2θ(Ω) when 0 ≤ θ < 3
4 ,

H2θ
N (Ω) when 3

4 < θ ≤ 1,

with norm equivalence, where H2θ
N (Ω) ≡ {u ∈ H2θ(Ω); ∂u

∂n = 0 on ∂Ω}. For the proof, see [8,
Theorems 16.7-16.9].

Consider next a Laplace operator of the form Bu = b̂(x, y)Λu+ gu in L2(Ω), where b̂(x, y)
is a positive function of Ω and g is a positive constant.

Proposition 2.1. Assume that b̂(x, y) ∈ L∞(Ω) satisfies b̂(x, y) ≥ δ inΩ for some constant
δ > 0. Then, B is a sectorial operator of L2(Ω) with domain (B) = (Λ) = H2

N(Ω) and
with angle ωB <

π
2 .

Proof. Let λ ∈ C be such that Re λ ≤ 0. Noting that B − λ = b̂[Λ + (g − λ)b̂−1], we will
first show that Λ + (g − λ)b̂−1 is an isomorphism from H2

N(Ω) onto L2(Ω).



416 T. Akiyama and A. Yagi

To this end, introduce the sesquilinear form

b̃(u, v) =
�
Ω

∇u · ∇v dxdy + (g − λ)
�
Ω

b̂(x, y)−1uv dxdy, u, v ∈ H1(Ω).

It is clear that this form is a continuous and coercive form on H1(Ω). As the associated linear
operator to this form is Λ̃+ (g−λ)b̂−1, we can conclude that Λ̃+ (g−λ)b̂−1 is an isomorphism
from H1(Ω) onto H1(Ω)′. Furthermore, by the regularity property of Λ, we know that its
part in L2(Ω), namely Λ + (g − λ)b̂−1 is an isomorphism from H2

N(Ω) onto L2(Ω).
As (B) = (Λ) = H2

N(Ω), it follows that the operator B − λ is an isomorphism from
(B) onto L2(Ω).

Second, we will estimate the operator norm of Λ + (g − λ)b̂−1. To begin with, notice the
following inequality holds: min{1, g‖b̂‖−1

L∞}‖u‖2H1 ≤ Re b̃(u, u). On the other hand, as

b̃(u, u) = ([−Δ + (g − λ)b̂−1]u, u)L2 , u ∈ H2
N(Ω),

it follows that Re b̃(u, u) ≤ ‖[−Δ + (g − λ)b̂−1]u‖L2‖u‖L2 . Therefore, we observe that

(2.15) ‖u‖2H1 ≤ [1/min{1, g‖b̂‖−1
L∞}] ‖[−Δ + (g − λ)b̂−1]u‖L2‖u‖L2 .

Next, we can write

(λb̂−1u, u)L2 = ([−Δ + gb̂−1]u, u)L2 − ([−Δ + (g − λ)b̂−1]u, u)L2

= (∇u,∇u)L2 + (gb̂−1u, u)L2 − ([−Δ + (g − λ)b̂−1]u, u)L2 .

Then, since |λ|‖b̂‖−1
L∞‖u‖2L2

≤ |(λb̂−1u, u)L2 |, it is seen by (2.15) that

|λ|‖b̂‖−1
L∞‖u‖2L2

≤ max{1, gδ−1}‖u‖2H1 + ‖[−Δ + (g − λ)b̂−1]u‖L2‖u‖L2

≤ [max{1, gδ−1}/min{1, g‖b̂‖−1
L∞} + 1] ‖[−Δ + (g − λ)b̂−1]u‖L2‖u‖L2 ,

which yields the estimate

|λ|‖b̂‖−1
L∞‖u‖L2 ≤ [max{1, gδ−1}/min{1, g‖b̂‖−1

L∞} + 1] ‖[−Δ + (g − λ)b̂−1]u‖L2

= [max{1, gδ−1}/min{1, g‖b̂‖−1
L∞} + 1] ‖[Λ + (g − λ)b̂−1]u‖L2 , u ∈ H2

N(Ω).

Consequently, as ‖[Λ + (g − λ)b̂−1]u‖L2 ≤ δ−1‖(B − λ)u‖L2 for u ∈ (B) = (Λ), we have
as follows:

|λ|‖u‖L2 ≤ ‖b̂‖L∞δ−1[max{1, gδ−1}/min{1, g‖b̂‖−1
L∞} + 1]‖(B − λ)u‖L2 , u ∈ (B),

which yields the norm estimate of the resolvent (B − λ)−1 on L2(Ω) for Re λ ≤ 0. �

Smoothness Properties. We shall use the following smoothness properties of the self-
adjoint L2(Ω) operator Λ.

Proposition 2.2. Let Ω = (0, �x) × (0, �y) and let 0 < θ < 3
4 . If u ∈ H2

N(Ω) satisfies Λu ∈
H2θ(Ω), then u ∈ H2(θ+1)(Ω) and its norm is estimated by ‖u‖H2(θ+1) ≤ Cθ(‖Λu‖H2θ + ‖u‖H2θ)
for some constant Cθ.

Proof. As Ω is a non-smooth domain, we cannot obtain this result from the general
smoothness properties of elliptic operators in smooth domains. Instead, we have to use the
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spectral resolution of self-adjoint operators (see [10, Chapter XI, Section 6]). However, ours
is a very special case (see [5, Chapitre IV, Section 2]).

Let us utilize the positive definite self-adjoint operator Λ+ 1. As is well known, Λ+ 1 has

the eigenvalues λmn =
(

mπ
�x

)2
+

(
nπ
�y

)2
+ 1 for m, n = 0, 1, 2, . . ., where the eigenfunctions are

cos mπ
�x

x·cos nπ
�y
y. Moreover, the family of these eigenfunctions composes an orthogonal basis

of the Fourier series in L2(Ω). Therefore, u ∈ L2(Ω) if and only if
∑

m,n |umn|2 < ∞, where
umn are the Fourier coefficients of u, and then u is expanded as u =

∑
m,n umn cos mπ

�x
x·cos nπ

�y
y.

In addition, u ∈ (Λ) if and only if
∑

m,n λ
2
mn|umn|2 < ∞, and then Λu =

∑
m,n λmnumn cos mπ

�x
x ·

cos nπ
�y
y.

Consider next the square (Λ + 1)2 in L2(Ω). By definition, u ∈ ((Λ + 1)2) if and only if
u ∈ (Λ+1) and (Λ+1)u ∈ (Λ+1). Then, by using the Fourier coefficients, u ∈ ((Λ+1)2)
can be characterized by

∑
m,n(λ2

mn + 1)2|umn|2 < ∞. Then, we observe that ((Λ + 1)2) ⊂
H4(Ω). Indeed, let u ∈ ((Λ + 1)2) and consider any integers 0 ≤ i, j ≤ 4, i + j = 4. When
i, j are even, we have

∂i+ ju
∂xi∂y j =

∑
m,n

(
mπ
�x

)i (nπ
�y

) j

umn cos
mπ
�x

x · cos
nπ
�y
y ∈ L2(Ω).

Similarly, when i, j are odd, we have

∂i+ ju
∂xi∂y j =

∑
m,n

(
mπ
�x

)i (nπ
�y

) j

umn sin
mπ
�x

x · sin
nπ
�y
y ∈ L2(Ω),

for the family sin mπ
�x

x · sin nπ
�y
y composing another orthogonal basis of L2(Ω). Therefore, it

holds true that u ∈ H4(Ω) and satisfies the estimate ‖u‖H4 ≤ C‖(Λ + 1)2u‖L2 .
As a consequence, for any 0 < θ < 1, the interpolation (2.1) provides the inclusion

((Λ + 1)2θ) = [L2(Ω),((Λ + 1)2)]θ ⊂ [L2(Ω),H4(Ω)]θ = H4θ(Ω)

with continuous embedding ‖u‖H4θ ≤ C‖(Λ + 1)2θu‖L2 .
We are now ready to verify the proposition. In view of (2.14), the assumption Λu ∈

H2θ(Ω) means that (Λ + 1)u lies in ((Λ + 1)θ), i.e., u ∈ ((Λ + 1)θ+1) ⊂ H2(θ+1)(Ω).
Furthermore, the previous inequality, together with (2.14), yields the desired estimate

‖u‖H2(θ+1) ≤ C‖(Λ + 1)θ+1u‖L2 ≤ Cθ‖(Λ + 1)u‖H2θ ≤ Cθ(‖Λu‖H2θ + ‖u‖H2θ). �

Proposition 2.3. Let Ω be a 
3 domain and 1 < p < ∞. If u ∈ H2

N(Ω) satisfies Λu ∈
H1

p(Ω), then u ∈ H3
p(Ω) and its norm is estimated by ‖u‖H3

p
≤ Cp(‖Λu‖H1

p
+ ‖u‖H1

p
) for some

constant Cp.

Proof. The result can be verified using the general smoothness properties of elliptic oper-
ators. For instance, see [3, Theorem 2.5.1.1 and Remark 2.5.1.2]. �

3. Local Solutions

3. Local Solutions
Let the initial functions u0, v0, ρ0 satisfy (1.2)-(1.3). We are now ready to construct a

local strict solution to (1.1) by choosing L2 space as the underlying space to work. We will
apply Theorem 5.6 of [8] after some set-up.
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First, in view of (1.3), take any small δ > 0 such that

(3.1) min
(x,y)∈Ω

[u0(x, y) + v0(x, y)] ≥ δ > 0.

Then, introduce a smooth cutoff function χ(w) (−∞ < w < ∞) such that

(3.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
χ(w) = w when δ

2 ≤ w < ∞,
δ
4 ≤ χ(w) < δ

2 when 0 ≤ w < δ,
χ(w) = δ

4 when −∞ < w < 0.

Using this χ(w), we rewrite (1.1) as

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = aΔu − μu ∂2ρ

∂x2 + cuv(u − v) + d − f u, Ω × (0,∞),
∂v
∂t = aΔv − μv∂2ρ

∂y2 + cuv(v − u) + d − f v, Ω × (0,∞),
∂ρ
∂t = bχ(Re[u + v])Δρ + ν(u + v) − gρ, Ω × (0,∞),
∂u
∂n =

∂v
∂n =

∂ρ
∂n = 0, ∂Ω × (0,∞),

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), ρ(x, y, 0) = ρ0(x, y), Ω.

Second, let us formulate (3.3) as an abstract quasilinear evolution equation

(3.4)

⎧⎪⎪⎨⎪⎪⎩
dU
dt + A(U)U = F(U), 0 < t < ∞,

U(0) = U0,

in the complex product L2-space

X ≡ L2(Ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u
v

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; u, v, ρ ∈ L2(Ω)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
Here, for any vector Ũ ∈ Z, A(Ũ) is a linear operator of X, where Z is the complex product
space defined by

Z ≡ Hs(Ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩Ũ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ũ
ṽ

ρ̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; ũ, ṽ, ρ̃ ∈ Hs(Ω)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
for s fixed such that 1 < s < 1 + σ. (Recall that σ is the exponent fixed in (1.2).) Actually,
A(Ũ) is defined in the ball K = {Ũ ∈ Z; ‖U‖Z < R} contained in Z, 0 < R < ∞ being a fixed
radius sufficiently large so that t(u0, v0, ρ0) ∈ K. For each Ũ ∈ K, A(Ũ) is given by

A(Ũ)U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
aΛ + f 0 μũ ∂2

∂x2

0 aΛ + f μ̃v ∂
2

∂y2

0 0 bχ(Re[̃u + ṽ])Λ + g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u
v

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ũ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ũ
ṽ

ρ̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ K, U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u
v

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
(Recall that Λ is a realization of −Δ in L2(Ω) under the homogeneous Neumann boundary
conditions on ∂Ω.) Meanwhile, F(U) is the nonlinear operator of X given by
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(3.5) F(U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cuv(u − v) + d
cuv(v − u) + d

ν(u + v)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u
v

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ (F) ⊂ L6(Ω).

The initial value U0 of (3.4) is of course taken as U0 =
t(u0, v0, ρ0) ∈ K.

Next, let us verify that A(Ũ) and F satisfy all the structural assumptions which were made
in [8, Theorem 5.6].

For A(Ũ), the first and second diagonal components are each a positive definite self-
adjoint L2(Ω) operator with the domain H2

N(Ω), based on (2.11). In addition, Proposition 2.1
shows that the third diagonal component is a sectorial L2(Ω) operator of angle < π

2 with the
same domain H2

N(Ω). The other non-zero components of A(Ũ) are bounded operators from
H2

N(Ω) into L2(Ω). It is then possible to utilize [8, Theorem 2.16] to conclude that A(Ũ), Ũ ∈
K, are sectorial operators of X of angle ωA(Ũ) ≤ ω < π

2 and with domain (A(Ũ)) = H2
N(Ω).

Thereby, the assumptions [8, (5.2)-(5.3)] are satisfied and, as the domains (A(Ũ)) are
independent of Ũ ∈ K, [8, (5.4)] is also satisfied for ν = 1. In view of the inequality

(3.6) ‖A(Ũ1)[A(Ũ1)−1 − A(Ũ2)−1]‖(X) = ‖[A(Ũ1) − A(Ũ2)]A(Ũ2)−1‖(X)

≤ C‖A(Ũ1) − A(Ũ2)‖(H2
N ,L2) ≤ C[‖̃u1 − ũ2‖L∞ + ‖̃v1 − ṽ2‖L∞], Ũ1, Ũ2 ∈ K,

we are led to set the space Y as Y = Z. Then, due to (2.4), [8, (5.5)] is also satisfied. For [8,
(5.6)], we observe the following facts.

Proposition 3.1. For any exponents 0 < θ′ < θ < θ′′ < 3
4 , we have

(3.7) H
2θ′′(Ω) ⊂ (A(Ũ)θ) ⊂ H2θ′(Ω), Ũ ∈ K,

with uniform embeddings.

Proof. We compare A(Ũ) with A(0). As A(0) = diag{aΛ+ f , aΛ+ f , bχ(0)Λ+g}, A(0) is a
positive definite self-adjoint operator of X with the same domain H2

N(Ω) as A(Ũ). Therefore,
[8, Theorem 2.25] can be applied to observe that (A(0)θ

′′
) ⊂ (A(Ũ)θ) ⊂ (A(0)θ

′
) with

uniformly continuous embeddings. Meanwhile, by (2.14), we know that (A(0)θ) = H2θ(Ω)
for all 0 < θ < 3

4 with norm equivalence. �

Now, fix any two exponents α and β such that s
2 < α < β < 1+σ

2 . Then, we can see
that (A(Ũ)β) ⊂ (A(Ũ)α) ⊂ Z = Y with uniformly continuous embeddings for Ũ ∈ K.
Thereby, both [8, (5.6)] and [8, (5.7)] are satisfied.

Furthermore, for the nonlinear operator F(U) given in (3.5), we set (F) = Z. Then, the
Lipschitz condition [8, (5.44)] is trivially valid with the space W = Z. In addition, fix any
exponent η such that β < η < 1 to clear [8, (5.46)-(5.47)].

Then, as an immediate consequence of [8, Theorem 5.6], we obtain the following exis-
tence and uniqueness results for (3.4).

Theorem 3.1. Take a third exponent γ such that s
2 < α < β < γ < 1+σ

2 . Then, for U0

satisfying (1.2)-(1.3), there exists a unique local solution to (3.4) in the space

(3.8) U ∈ γ−α([0, TU0 ];H
s(Ω)) ∩ 

1((0, TU0 ];L2(Ω)) ∩ ((0, TU0 ];H
2
N(Ω)),

where TU0 > 0 is determined by the magnitude of the norm ‖U0‖H1+σ . Furthermore, U
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satisfies the estimates

‖U(t) − U(s)‖Hs ≤ CU0 |t − s|γ−α, 0 ≤ s, t ≤ TU0 ,(3.9)

‖A(U(t))U(t)‖L2 ≤ CU0 t
γ−1, 0 < t ≤ TU0 ,(3.10)

where CU0 > 0 is a constant depending on ‖U0‖H1+σ .

Proof. We have already verified that the structural assumptions of [8, Theorem 5.6] are
satisfied by the spaces X and Y = Z = W with the exponents s

2 < α < β < η < 1.
As β < γ < 1+σ

2 , we see by Proposition 3.1 that U0 ∈ (A(U0)γ), namely, U0 satisfies the
assumption [8, (5.30)] made for the initial values. �

Finally, we should remark that the solution U(t) obtained above can be regarded as a local
solution to (1.1). In fact, as its complex conjugate U(t) is also a local solution to the same
problem (3.4), the uniqueness of the solution yields their coincidence U(t) = U(t) for every
0 < t ≤ TU0 , namely, U(t) is a real-valued function. Next, as Hs(Ω) ⊂ (Ω) due to (2.4), we
can see from (3.8) that U ∈ γ−α([0, TU0 ];(Ω)); in addition, from (3.9), we can see that

‖U(t) − U0‖ ≤ CU0 t
γ−α, 0 ≤ t ≤ TU0 .

Therefore, (1.3) implies that there exists a time T̃U0 , 0 < T̃U0 ≤ TU0 for which the following
holds:

(3.11) min
(x,y)∈Ω

[u(t) + v(t)] ≥ δ
2 , 0 ≤ t ≤ T̃U0 .

In view of (3.2), this means that U(t) = t(u(t), v(t), ρ(t)) satisfies the equations of (1.1). In
this sense, under constrains (1.2)-(1.3), we have constructed a unique local strict solution to
(1.1) in the space (3.8) on an interval [0, T̃U0 ]. As explained, T̃U0 > 0 is determined not only
by the norm ‖U0‖H1+σ but also by the lower bound δ > 0 in the estimate (3.1).

4. Regularity Properties of Local Solutions

4. Regularity Properties of Local Solutions
The next two sections are devoted to investigating some properties of the local solution

of (1.1) which we constructed above. These properties will be needed in the subsequent
arguments.

In this section, we want to prove some regularity properties. Let U(t) be the local solution
of (1.1) on [0, T̃U0 ] for initial functions U0 =

t(u0, v0, ρ0) satisfying (1.2)-(1.3).
Let us begin with showing the temporal regularity of U(t).

Proposition 4.1. For any 0 < θ < 1, the derivative dU
dt belongs to ((0, T̃U0 ]; H

2θ(Ω)).

Proof. Fix a time 0 < τ < T̃U0 arbitrarily and consider U(t) as a solution to the linear
evolution equation

(4.1)

⎧⎪⎪⎨⎪⎪⎩
dU
dt + A(t)U = F(t), τ ≤ t ≤ T̃U0 ,

U(τ) = Uτ,

where A(t) = A(U(t)) for τ ≤ t ≤ T̃U0 , F(t) = F(U(t)) for τ ≤ t ≤ T̃U0 , and Uτ = U(τ).
Concerning the problem (4.1), we already know from (3.8) that F ∈ ([τ, T̃U0 ];H

2
N(Ω))

and Uτ ∈ H2
N(Ω). Then, we are interested in the Hölder condition on A(t)[A(t)−1 − A(s)−1],
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which can be estimated as

‖A(t)[A(t)−1 − A(s)−1]‖(X) = ‖[A(t) − A(s)]A(s)−1‖(X)

≤ Cτ‖U(t) − U(s)‖L∞ ≤ Cτ‖U(t) − U(s)‖H1+σ , τ ≤ s, t ≤ T̃U0 ,

for some constants Cτ depending on τ. In addition, from (3.8), we have

‖U(t) − U(s)‖H1+σ ≤ C‖U(t) − U(s)‖ 1+σ
2

H2 ‖U(t) − U(s)‖ 1−σ
2
L2
≤ Cτ|t − s| 1−σ2 .

However, this estimate can be improved step by step to reach the optimal estimate.

Lemma 4.1. Assume that

(4.2) ‖U(t) − U(s)‖H1+σ ≤ Cτ|t − s|μ, τ ≤ s, t ≤ T̃U0 ,

has been obtained for some exponent μ such that 1−σ
2 ≤ μ < 1. If μ > 1+σ

2 , then the estimate
(4.2) holds with the optimal exponent μ̃ = 1 on an interval [̃τ, T̃U0 ] for any τ̃ > τ. If μ ≤ 1+σ

2 ,
then the estimate (4.2) can be improved to any exponent μ̃ such that μ < μ̃ < 1−σ

2(1−μ) on an

interval [̃τ, T̃U0 ] for any τ̃ > τ.

Proof of lemma. Let U(t, s), τ ≤ s ≤ t ≤ T̃U0 , be the evolution operator gener-
ated by A(t). Then, as a solution of (4.1), U(t) can be expressed by U(t) = U(t, τ)Uτ +∫ t
τ

U(t, s)F(s)ds. Therefore, its derivative can be written as

dU
dt

(t) = −A(t)U(t, τ)Uτ −
∫ t

τ

A(t)U(t, s)F(s)ds + F(t).

Furthermore, applying operator A(t)θ to this formula, we have

A(t)θ
dU
dt

(t) = −A(t)1+θU(t, τ)A(τ)−1A(τ)Uτ

−
∫ t

τ

A(t)1+θU(t, s)A(s)−1A(s)F(s)ds + A(t)θF(t).

As the operators A(t) satisfy the Hölder condition [8, (3.30)-(3.31)] with the μ in (4.2) and
ν = 1, it can be seen by [8, (3.83)] that for any exponent θ < μ, the following holds:

‖A(t)1+θU(t, s)A(s)−1‖(X) ≤ Cτ(t − s)−θ, τ ≤ s < t ≤ T̃U0 .

Therefore, we observe that ‖A(t)θ dU
dt (t)‖L2 ≤ Cτ(t − τ)−θ. As θ < μ is arbitrary, we can say in

view of (3.7) that for any θ < μ,

‖U(t) − U(s)‖H2θ ≤ Cτ̃|t − s|, τ̃ ≤ s, t ≤ T̃U0 ,

where τ̃ is any fixed time such that τ̃ > τ.
Thereby, when μ > 1+σ

2 , θ can be such that 2θ > 1 + σ, which means that (4.2) holds for
μ̃ = 1. Meanwhile, when μ ≤ 1+σ

2 , we obtain that

‖U(t) − U(s)‖H1+σ ≤ C‖U(t) − U(s)‖
1+σ−2θ
2(1−θ)
H2 ‖U(t) − U(s)‖

1−σ
2(1−θ)
H2θ

≤ Cτ̃|t − s| 1−σ
2(1−θ) , τ̃ ≤ s, t ≤ T̃U0 . �

By this lemma, we can say that, if μ < 1, then (4.2) holds for exponents which are
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determined by the recurrence μ0 =
1−σ

2 and μk ≤ 1+σ
2 , μk+1 =

1−σ
2(1−μk) (k = 0, 1, 2, . . .) on the

intervals [̃τk, T̃U0 ] such that τ = τ̃0 < τ̃1 < τ̃2 < · · · . However, because σ < 1
2 , we can verify

that the increasing sequence μ0 < μ1 < μ2 < · · · must exceed 1+σ
2 for some μk. Hence, we

conclude that (4.2) must hold for μ = 1 on the interval [̃τk+1, T̃U0 ].
As shown, the operators A(t) satisfy [8, (3.30)-(3.31)] for the optimal exponents μ = ν = 1

on [̃τk+1, T̃U0 ]. Then, for the same reasons as in the proof of lemma, it is concluded that
‖A(t)θ dU

dt (t)‖L2 ≤ Cτ̃k+1 (t − τ̃k+1)−θ, τ̃k+1 < t ≤ T̃U0 , for any θ < μ = 1. Since all of the terms
τ̃k+1 > τ̃k > · · · > τ can be taken arbitrarily close to τ > 0, which was fixed arbitrarily, we
obtain the desired result. �

As a direct consequence of Proposition 4.1, we obtain the following two regularity theo-
rems.

Theorem 4.1. Let U0 satisfy (1.2)-(1.3) and U(t) be the local solution of (1.1) on the in-
terval [0, T̃U0 ] in the space (3.8). Then, U(t) lies in 

1((0, T̃U0 ];H
1(Ω))∩((0, T̃U0 ];H

3(Ω)).

Proof. Clearly it suffices to prove that U ∈ ((0, T̃U0 ];H
3(Ω)). From the equation for ρ in

(1.1), we have

(4.3) bΔρ(t) =
{
∂ρ

∂t
(t) − ν[u(t) + v(t)] + gρ(t)

}
/[u(t) + v(t)].

In addition, Proposition 4.1 implies the regularity of ρ(t) such that ∂ρ
∂t ∈ ((0, T̃U0 ]; H2θ(Ω))

for any 0 < θ < 1. Then, by (2.10) and (3.8), we observe that all the functions in the
right-hand side of (4.3) belong to H1(Ω). Hence, using Proposition 2.2 (θ = 1

2 ) with Ω as a
rectangle and Proposition 2.3 (p = 2) with Ω belonging to 

3, we can verify that ρ(t) lies in
H3(Ω) for any 0 < t ≤ T̃U0 .

Furthermore, since

aΔu(t) =
∂u
∂t

(t) + μu(t)
∂2ρ

∂x2 (t) − cu(t)v(t)[u(t) − v(t)] − d + f u(t),(4.4)

aΔv(t) =
∂v

∂t
(t) + μv(t)

∂2ρ

∂y2 (t) − cu(t)v(t)[v(t) − u(t)] − d + f v(t),(4.5)

we can observe by (2.8), (3.8), Proposition 4.1, and Theorem 4.1 that Δu(t) and Δv(t) belong
to H1(Ω). Hence, for the same reasons as the case of ρ(t), we verify that u(t), v(t) ∈ H3(Ω)
for any 0 < t ≤ T̃U0 . �

Theorem 4.2. Let U0 satisfy (1.2)-(1.3) and U(t) be the local solution of (1.1) on the
interval [0, T̃U0 ] in the space (3.8). Then, U(t) is in 

1((0, T̃U0 ]; [(Ω)]3) ∩ ((0, T̃U0 ];
[2(Ω)]3).

Proof. We can utilize the results obtained by Proposition 4.1 with 1
2 < θ < 1.

First, by (2.4), we observe that U ∈ 1([0, T̃U0 ]; [(Ω)]3).
Next, we observe from (4.3) that Δρ(t) ∈ H2θ(Ω). Then, when Ω is a rectangle, Propo-

sition 2.2 provides the spatial regularity ρ(t) ∈ H2(θ+1)(Ω). Since 2(θ + 1) > 3, we can
verify using (2.4) that ρ(t) ∈ 

2(Ω) for any 0 < t ≤ T̃U0 . Furthermore, when Ω belongs to


3, as H2θ(Ω) ⊂ H1
p(Ω), from (2.2) with p = 1

1−θ , Proposition 2.3 provides the regularity
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ρ(t) ∈ H3
p(Ω). As p > 2, we can verify using (2.5) that ρ(t) ∈ 2(Ω) for any 0 < t ≤ T̃U0 .

Similarly, when Ω is a rectangle, since ∂2ρ
∂x2 (t) ∈ H2θ(Ω) and (2.6) imply in (4.4) that

Δu(t) ∈ H2θ(Ω), we can verify that u(t) ∈ H2(θ+1)(Ω) ⊂ 
2(Ω) for any 0 < t ≤ T̃U0 .

Furthermore, when Ω belongs to 
3, since ∂2ρ

∂x2 (t) ∈ H1
p(Ω) and (2.7) imply in (4.4) that

Δu(t) ∈ H1
p(Ω) for p > 2, we have verified that u(t) ∈ H3

p(Ω) ⊂ 
2(Ω) for any 0 < t ≤ T̃U0 .

The above argument also holds for v(t) if we instead use (4.5). �

Theorem 4.2 obviously means that the strict solution U(t) of (1.1) on [0, T̃U0 ] that we
obtained for U0 gives a classical solution to (1.1) for 0 < t ≤ T̃U0 .

5. Positivity of Local Solutions

5. Positivity of Local Solutions
In this section, we want to prove the positivity of local solutions. Let U(t) be the local

solution of (1.1) on [0, T̃U0 ] for initial functions U0 =
t(u0, v0, ρ0) satisfying (1.2)-(1.3). Our

goal is then to show that U(t) = t(u(t), v(t), ρ(t)) also satisfies the positivity conditions in
(1.3) for every 0 < t ≤ T̃U0 .

Theorem 5.1. It holds true that min(x,y)∈Ω u(x, y, t) > 0 and min(x,y)∈Ω v(x, y, t) > 0 for

any 0 < t ≤ T̃U0 .

Proof. By (1.3) and (3.8), there is a time 0 < τ < T̃U0 such that min(x,y)∈Ω u(x, y, t) > 0 for
every 0 ≤ t ≤ τ. Thus, it suffices to prove the assertion of theorem for τ < t ≤ T̃U0 .

First, let us prove that u(t) ≥ 0 for τ < t ≤ T̃U0 . For this purpose, we use the cutoff
function H(u) defined by H(u) = u2

2 for −∞ < u < 0 and H(u) = 0 for 0 ≤ u < ∞. Then,
consider the function

ϕ(t) =
�
Ω

H(u(x, y, t))dxdy, τ ≤ t ≤ T̃U0 .

Clearly, ϕ(t) is a nonnegative 
1 function with derivative

ϕ′(t) =
�
Ω

H′(u(t)) ∂u
∂t (t)dxdy = a

�
Ω

H′(u)Δu dxdy

+

�
Ω

H′(u)[−μρxx + cv(u − v)]u dxdy +
�
Ω

H′(u)[− f u + d]dxdy.

(Here, we denoted ∂2ρ
∂x2 by the symbol ρxx for simplicity.) Since H′(u) ∈ H1(Ω), we observe

by (2.9) and (2.12) that�
Ω

H′(u)Δu dxdy = −
�
Ω

∇H′(u) · ∇u dxdy = −
�
Ω

|∇H′(u)|2dxdy ≤ 0.

In addition, since H′(u)u = 2H(u) and H′(u) ≤ 0, it follows that

ϕ′(t) ≤ (D − f )
�
Ω

H′(u)u dxdy = 2(D − f )ϕ(t),

where D = maxτ≤t≤T̃U0
max(x,y)∈Ω | − μρxx + cv(u − v)| (recall Theorem 3.10). Therefore,

ϕ(t) ≤ e2(D− f )(t−τ)ϕ(τ), but since ϕ(τ) = 0, we conclude that ϕ(t) = 0 for any τ ≤ t ≤ T̃U0 ,
i.e., u(t) ≥ 0 for any τ ≤ t ≤ T̃U0 .



424 T. Akiyama and A. Yagi

Second, fix a constant δτ = min(x,y)∈Ω u(x, y, τ) > 0 and define the function

r(t) = δτe−(D+ f )(t−τ) + [d/(D + f )][1 − e−(D+ f )(t−τ)], τ ≤ t ≤ T̃U0 .

We will prove that u(t) ≥ r(t) for any τ ≤ t ≤ T̃U0 .
For this purpose, we consider as before the function

ψ(t) =
�
Ω

H(u(x, y, t) − r(t))dxdy, τ ≤ t ≤ T̃U0 ,

the derivative of which is given by

ψ′(t) =
�
Ω

H′ (u(t) − r(t)) [ ∂u
∂t (t) − r′(t)]dxdy.

Since r(t) is a solution of the ordinary differential equation r′(t) = −(D + f )r(t) + d and
u(t) satisfies the differential inequality ∂u

∂t (t) ≥ aΔu(t) − (D + f )u(t) + d, we can see that
∂u
∂t (t) − r′(t) ≥ aΔu(t) − (D + f )[(u(t) − r(t)]. Then, by the same arguments as before (recall
that H′(u − r) ≤ 0), it follows that ψ′(t) ≤ −2(D + f )ψ(t); namely, ψ(t) ≤ e−2(D+ f )(t−τ)ψ(τ);
therefore, ψ(τ) = 0 yields the desired vanishing ψ(t) = 0 for any τ ≤ t ≤ T̃U0 , i.e., u(t) ≥
r(t) > 0 for any τ ≤ t ≤ T̃U0 .

The same arguments as for u(t) prove the assertion of the theorem for v(t). �

Next, we verify the positivity of ρ(t).

Theorem 5.2. For the local solution U(t) = t(u(t), v(t), ρ(t)) on [0, T̃U0 ] it holds that
ρ(t) ≥ 0 for all 0 < t ≤ T̃U0 .

Proof. Using the same cutoff function H(ρ) as above for the variable −∞ < ρ < ∞,
consider the function

ϕ(t) =
�
Ω

H(ρ(x, y, t))dxdy, 0 ≤ t ≤ T̃U0 .

Clearly, ϕ(t) is a nonnegative 
1 function for 0 < t ≤ T̃U0 with derivative

ϕ′(t) =
�
Ω

H′(ρ(t)) ∂ρ
∂t (t)dxdy = b

�
Ω

H′(ρ)(u + v)Δρ dxdy

+

�
Ω

H′(ρ)[ν(u + v) − gρ]dxdy.

Since H′(ρ) ∈ H1(Ω), we can observe by (2.8) and (2.12) that
�
Ω

H′(ρ)(u + v)Δρ dxdy = −
�
Ω

∇[H′(ρ)(u + v)] · ∇ρ dxdy

= −
�
Ω

(u + v)∇H′(ρ) · ∇ρ dxdy −
�
Ω

H′(ρ)∇(u + v) · ∇ρ dxdy.

In view of ∇H′(ρ) · ∇ρ = |∇H′(ρ)|2 (from (2.9)) and (3.11), we have

−
�
Ω

(u + v)∇H′(ρ) · ∇ρ dxdy ≤ −(δ/2)
�
Ω

|∇H′(ρ)|2dxdy.

Meanwhile, as H′(ρ)∇ρ = H′(ρ)∇H′(ρ) from (2.9) again,
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−
�
Ω

H′(ρ)∇(u + v) · ∇ρ dxdy = −
�
Ω

H′(ρ)∇(u + v) · ∇H′(ρ)dxdy

≤ ‖H′(ρ)‖Lp‖∇(u + v)‖Lq‖∇H′(ρ)‖L2

for any 2 < p, q < ∞ satisfying 1
p +

1
q =

1
2 . Furthermore, applying (2.3) to ‖H′(ρ)‖Lp , we

have

‖H′(ρ)‖Lp‖∇(u + v)‖Lq‖∇H′(ρ)‖L2 ≤ Cp‖H′(ρ)‖2(1−1/p)
H1 ‖H′(u)‖2/p

L2
‖∇(u + v)‖Lq .

Therefore, by the Hölder inequality, we obtain the estimate

‖H′(ρ)‖Lp‖∇(u + v)‖Lq‖∇H′(ρ)‖L2 ≤ ε‖H′(ρ)‖2H1 +Cp,ε‖H′(ρ)‖2L2
‖∇(u + v)‖pLq

for any small ε > 0. In addition, it is clear that H′(ρ)(u+v) ≤ 0 and −H′(ρ)ρ ≤ 0. Therefore,
taking ε = δ

2 , we arrive at the differential inequality

ϕ′(t) ≤ Cp(‖∇[u(t) + v(t)]‖pLq
+ 1)‖H′(ρ(t))‖2L2

≤ Cp(‖∇[u(t) + v(t)]‖pLq
+ 1)ϕ(t).

This differential inequality then implies

ϕ(t) ≤ ϕ(0)eCp
∫ t

0 (‖∇[u(τ)+v(τ)‖pLq
+1)dτ

, 0 ≤ t ≤ T̃U0 .

However, the estimate (3.10) yields with the aid of (2.3) the inequality ‖∇[u(τ) + v(τ)]‖pLq
≤

Cqτ
p(γ−1) for any 2 < q < ∞. Thereby, if p is fixed such that 2 < p < 1

1−γ , i.e., p(γ−1) > −1,
then ‖∇[u(τ) + v(τ)]‖pLq

is integrable on [0, t]. Hence, ϕ(0) = 0 yields the vanishing ϕ(t) = 0

for any 0 < t ≤ T̃U0 , i.e., ρ(t) ≥ 0 for any 0 < t ≤ T̃U0 . �

6. Maximal Solutions

6. Maximal Solutions
For the initial functions U0 =

t(u0, v0, ρ0) satisfying assumptions (1.2)-(1.3), let us define
their maximal strict solution of (1.1) and investigate its asymptotic behavior as t → Tmax.

For U0, we say that U(t) = t(u(t), v(t), ρ(t)) is a local solution to (1.1) on an interval [0, TU]
if U(t) is a function lying in

U ∈ γ−α([0, TU];Hs(Ω)) ∩ 
1((0, TU];L2(Ω)) ∩ ((0, TU];H2

N(Ω)),

satisfies the positivity conditions in (1.3) for each 0 ≤ t ≤ T , and also satisfies all the
equalities, including the initial conditions, in (1.1).

By definition, if U(t) is a local solution on [0, TU], then there is a positive constant δU > 0
such that u(t) + v(t) ≥ δU for any 0 < t ≤ TU . This means that U(t) can always be extended
to a larger interval [0, TU + ΔT ] (ΔT > 0). If there exist two local solutions for U0, then
either they coincide or one is an extension of the other. These facts enable us to define the
maximal local solution of (1.1) on an open interval [0, Tmax) (which shall be called simply a
maximal solution of (1.1) for U0). Then, the maximal solution U(t) belongs to the function
space

(6.1) U ∈ γ−α([0, Tmax);Hs(Ω)) ∩ 
1((0, Tmax);L2(Ω)) ∩ ((0, Tmax);H2

N(Ω)),

and U(t) = t(u(t), v(t), ρ(t)) has positivity as follows:
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(6.2) min
(x,y)∈Ω

u(t) > 0, min
(x,y)∈Ω

v(t) > 0 and min
(x,y)∈Ω

ρ(t) ≥ 0 for any 0 ≤ t < Tmax.

Furthermore, by Theorems 4.1 and 4.2, U(t) belongs to

U ∈ 1((0, Tmax);H1(Ω)) ∩ ((0, Tmax);H3(Ω)),(6.3)

U ∈ 1((0, Tmax); [(Ω)]3) ∩ ((0, Tmax); [2(Ω)]3).(6.4)

When Tmax = ∞, the maximal solution is a global solution of (1.1). In contrast, when
Tmax < ∞, some blowup must take place in the maximal solution of (1.1). At this point, we
know that at least one of the following phenomena occurs:

lim
t→Tmax

min
(x,y)∈Ω

u(t) = 0, lim
t→Tmax

min
(x,y)∈Ω

v(t) = 0,

or lim
t→Tmax

‖U(t)‖H1+σ = ∞ (for any σ > 0).

However, we actually know the behavior of U(t) as t → Tmax in some more detail.

Theorem 6.1. Suppose Tmax < ∞. Then, at least one of the following holds:

lim
t→Tmax

min
(x,y)∈Ω

[u(t) + v(t)] = 0 or lim
t→Tmax

max
(x,y)∈Ω

[u(t) + v(t)] = ∞.

Proof. Let us prove the theorem by contradiction. Fixing a time 0 < τ < Tmax, suppose
that there would exist constants M > δ > 0 such that

(6.5) min
(x,y)∈Ω

[u(t) + v(t)] ≥ δ for every τ ≤ t < Tmax,

and

(6.6) max
(x,y)∈Ω

[u(t) + v(t)] ≤ M for every τ ≤ t < Tmax.

Under the constrains (6.5) and (6.6), we will establish step by step the uniform upper
norm estimate ‖U(t)‖H2 ≤ C for τ ≤ t < Tmax. Throughout the proof, C denotes a universal
positive constant determined by Ω, the initial constants a, b, c, d, f , g, μ, ν in (1.1), the
norm ‖U(τ)‖H2 , the time Tmax, and the constants δ, M in (6.5) and (6.6) in some specific
way, so C may change from occurrence to occurrence.

Step 1. Integrate the third equation of (1.1) over Ω. This gives

d
dt

�
Ω

ρ dxdy + g
�
Ω

ρ dxdy ≤ bM
�
Ω

|Δρ|dxdy + νM|Ω|.

Separately, multiply the third equation by Δρ(t) and integrate over Ω. This gives

1
2

d
dt

�
Ω

|∇ρ|2dxdy + b
�
Ω

(u + v)|Δρ|2dxdy + g
�
Ω

|∇ρ|2dxdy ≤ νM
�
Ω

|Δρ|dxdy,

where we used the formula 1
2

d
dt ‖∇ρ(t)‖2L2

=
(
∇ ∂ρ
∂t (t),∇ρ(t)

)
L2

and property (2.12). Now add

these two differential inequalities. Since
�
Ω
|Δρ|dxdy ≤ ε�

Ω
|Δρ|2dxdy + Cε for any small

ε > 0, we obtain, using (6.5), the differential inequality

d
dt

[
‖ρ(t)‖L1 +

1
2
‖∇ρ(t)‖2L2

]
+

bδ
2
‖Δρ(t)‖2L2

+ g
[
‖ρ(t)‖L1 + ‖∇ρ(t)‖2L2

]
≤ C, τ ≤ t < Tmax.
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Solving the above differential inequality, we conclude that

(6.7) ‖ρ(t)‖L1 + ‖∇ρ(t)‖2L2
≤ C, τ ≤ t < Tmax,

together with

(6.8)
∫ Tmax

τ

‖Δρ(t)‖2L2
dt < ∞.

Step 2. We use Poincaré’s inequality∥∥∥∥∥ρ − 1
|Ω|
�
Ω

ρ dxdy
∥∥∥∥∥

L2

≤ C‖∇ρ‖L2 , ρ ∈ H1(Ω),

which implies the inequality

‖ρ‖L2 ≤ C(‖∇ρ‖L2 + ‖ρ‖L1 ), ρ ∈ H1(Ω).

Then from (6.7), we obtain that

(6.9) ‖ρ(t)‖2H1 ≤ C, τ ≤ t < Tmax.

Meanwhile, (2.14) (θ = 1) yields the inequality ‖ρ‖2H2 ≤ C(‖Δρ‖2L2
+ ‖ρ‖2L2

) for ρ ∈ H2
N(Ω),

so (6.8) gives the estimate

(6.10)
∫ Tmax

τ

‖ρ(t)‖2H2dt < ∞.

Step 3. Multiply the first equation of (1.1) by Δu(t) and integrate over Ω. Then, in view
of (6.6), we have

1
2

d
dt

�
Ω

|∇u|2dxdy + a
�
Ω

|Δu|2dxdy + f
�
Ω

|∇u|2dxdy

≤
�
Ω

[
μM|ρxx| + (cM3 + d)

]
|Δu|dxdy.

(As before, ρxx denotes ∂2ρ
∂x2 .) After some calculations, we obtain the differential inequality

d
dt
‖∇u(t)‖2L2

+ a‖Δu(t)‖2L2
+ 2 f ‖∇u(t)‖2L2

≤ C[‖ρ(t)‖2H2 + 1], τ ≤ t < Tmax.

Using (6.10), we can solve this differential inequality to conclude that ‖∇u(t)‖2L2
≤ C, i.e.,

‖u(t)‖2H1 ≤ C for τ ≤ t < Tmax.
The corresponding result holds for v(t). Therefore,

(6.11) ‖u(t)‖2H1 + ‖v(t)‖2H1 ≤ C, τ ≤ t < Tmax.

At the same time, we can observe that

(6.12)
∫ Tmax

τ

[
‖u(t)‖2H2 + ‖v(t)‖2H2

]
dt < ∞.

Step 4. Let us note that, from Theorem 4.1 and property (2.8), all the terms in the third
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equation of (1.1) take their values in H1(Ω) for τ < t < Tmax, so since Δ is a bounded
operator from H1(Ω) into H1(Ω)′, we can apply Δ to the equation. After applying Δ, take
the duality product 〈·, ·〉H1′×H1 of the equation and the function Δρ(t) ∈ H1(Ω). Then, since
1
2

d
dt ‖Δρ(t)‖2L2

= 〈Δ∂ρ
∂t (t), Δρ(t)〉H1′×H1 and Δ has property (2.13), it follows that

1
2

d
dt

�
Ω

|Δρ|2dxdy + b
�
Ω

∇[(u + v)Δρ] · ∇Δρ dxdy + g
�
Ω

|Δρ|2dxdy

= −ν
�
Ω

∇(u + v) · ∇Δρ dxdy.

From (6.5), we see that

1
2

d
dt

�
Ω

|Δρ|2dxdy + bδ
�
Ω

|∇Δρ|2dxdy + g
�
Ω

|Δρ|2dxdy

≤ C
�
Ω

|∇(u + v)|(|Δρ| + 1)|∇Δρ|dxdy

and that

d
dt

�
Ω

|Δρ|2dxdy + bδ
�
Ω

|∇Δρ|2dxdy + 2g
�
Ω

|Δρ|2dxdy

≤ C
�
Ω

|∇(u + v)|2(|Δρ|2 + 1)dxdy.

Then using (2.3) and (6.11), we can estimate the integral in the right-hand side as
�
Ω

|∇(u + v)|2(|Δρ|2 + 1)dxdy ≤ ‖∇(u + v)‖2L4
‖Δρ‖2L4

+ ‖∇(u + v)‖2L2

≤ C[‖∇(u + v)‖L2‖∇(u + v)‖H1‖Δρ‖L2‖Δρ‖H1 + 1] ≤ C[‖u + v‖H2‖Δρ‖L2

× (‖∇Δρ‖L2 + ‖Δρ‖L2 ) + 1] ≤ ε‖∇Δρ‖2L2
+Cε[(‖u + v‖2H2 + 1)‖Δρ‖2L2

+ 1],

where ε > 0 is any small number. Therefore, we arrive at the differential inequality

d
dt
‖Δρ(t)‖2L2

+
bδ
2
‖∇Δρ(t)‖2L2

+ 2g‖Δρ(t)‖2L2

≤ C{[‖u(t) + v(t)‖2H2 + 1]‖Δρ(t)‖2L2
+ 1}, τ ≤ t < Tmax.

Now using (6.12), we can solve this differential inequality to conclude that ‖Δρ(t)‖2L2
≤ C

for τ ≤ t < Tmax, i.e.,

(6.13) ‖ρ(t)‖2H2 ≤ C, τ ≤ t < Tmax.

At the same time, by virtue of Propositions 2.2 and 2.3, we can observe that

(6.14)
∫ Tmax

τ

‖ρ(t)‖2H3dt < ∞.

Step 5. We now use the fact that all the terms in the first equation of (1.1) take their values
in H1(Ω). After applying Δ to the equation, take the duality products 〈·, ·〉H1′×H1 with Δu(t).
Then, for the same reasons as before, it follows that
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1
2

d
dt

�
Ω

|Δu|2dxdy + a
�
Ω

|∇Δu|2dxdy + f
�
Ω

|Δu|2dxdy

=

�
Ω

∇[μuρxx − cuv(u − v) − d] · ∇Δu dxdy,

and that

d
dt

�
Ω

|Δu|2dxdy + a
�
Ω

|∇Δu|2dxdy + 2 f
�
Ω

|Δu|2dxdy

≤ C
�
Ω

(
|∇[uρxx]|2 + |∇[uv(u − v)]|2

)
dxdy.

Here, using (6.11) and (6.13), the first integral in the right-hand side is estimated as
�
Ω

|∇[uρxx]|2dxdy ≤ C
� (

|∇u|2|ρxx|2 + |∇ρxx|2
)

dxdy

≤ C(‖∇u‖2L4
‖ρxx‖2L4

+ ‖ρ‖2H3 ) ≤ C(‖u‖H2‖ρ‖H3 + ‖ρ‖2H3 ) ≤ ε‖Δu‖2L2
+Cε‖ρ‖2H3 ,

ε > 0 being any small number. Meanwhile, using (6.6) and (6.11), the second integral is
estimated as �

Ω

|∇[uv(u − v)]|2dxdy ≤ C
�
Ω

(|∇u|2 + |∇v|2)dxdy ≤ C.

Therefore, we arrive at the differential inequality

d
dt
‖Δu(t)‖2L2

+ a‖∇Δu(t)‖2L2
+ f ‖Δu(t)‖2L2

≤ C(‖ρ(t)‖2H3 + 1), τ ≤ t < Tmax.

Using (6.14), this inequality together with (6.11) yields the estimate

(6.15) ‖u(t)‖2H2 ≤ C, τ ≤ t < Tmax.

At the same time, we have
∫ Tmax

τ
‖u(t)‖2H3dt < ∞.

Of course, the corresponding result holds for v(t), namely,

(6.16) ‖v(t)‖2H2 ≤ C, τ ≤ t < Tmax,

together with
∫ Tmax

τ
‖v(t)‖2H3dt < ∞.

Completion of the proof. Using the estimates (6.13), (6.15) and (6.16) established above,
we can now claim that the norm ‖U(t)‖H2 is bounded from above by some constant for any
τ ≤ t < Tmax. But combining this with assumption (6.5) immediately leads to a contradic-
tion. Indeed, take any time t0 ∈ [τ, Tmax) and consider the equation (1.1) at initial time t0
with initial value U(t0). As U(t0) satisfies (1.2)-(1.3), there exists a local solution in some
interval [t0, t0 + Δt]. Here, as remarked after the proof of Theorem 3.1, the existence time
interval Δt > 0 is determined by the lower bound δ > 0 in (3.1) and the norm ‖U(t0)‖H1+σ ,
which are both uniform for t0 ∈ [τ, Tmax). This means that Δt must also be uniform with
respect to the initial time t0. Since t0 can be arbitrarily close to Tmax, this clearly contradicts
the maximality of the solution U(t). �

On the behavior of ρ(t) as t → Tmax, we can state the following theorem.

Theorem 6.2. Suppose Tmax < ∞. Then limt→Tmax max(x,y)∈Ω [| ∂2ρ
∂x2 (t)| + | ∂2ρ

∂y2 (t)|] = ∞.
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Proof. We again apply proof by contradiction. Fixing a time 0 < τ < Tmax, suppose that
there exists N > 0 for which the following holds:

(6.17) max
(x,y)∈Ω

[∣∣∣∣∣∣∂
2ρ

∂x2 (t)

∣∣∣∣∣∣ +
∣∣∣∣∣∣∂

2ρ

∂y2 (t)

∣∣∣∣∣∣
]
≤ N for every τ ≤ t < Tmax.

Under the constrain (6.17), we will show that u(t) and v(t) satisfy the conditions (6.5)
and (6.6), which, as we already know, implies a contradiction. Throughout the proof,
as before C denotes a universal positive constant determined by Ω, the initial constants
a, b, c, d, f , g, μ, ν in (1.1), the norm ‖U(τ)‖H2 , the time Tmax, and the constant N in (6.17)
in some specific way.

In this proof, we use w = u + v rather than u and v separately, so we add the first and
second equations of (1.1) to get

(6.18)
∂w

∂t
= aΔw − μ

[
u
∂2ρ

∂x2 + v
∂2ρ

∂y2

]
+ 2d − fw.

Verification of (6.5). Put δτ = min(x,y)∈Ω w(τ) > 0 and define the function

r(t) = δτe−(μN+ f )(t−τ) + [2d/(μN + f )][1 − e−(μN+ f )(t−τ)], τ ≤ t < Tmax.

Then, under constrain (6.17), we can repeat the same arguments as in the proof of The-
orem 5.1 for w(t) − r(t) to derive from equation (6.18) for w(t) and the equation r′(t) =
−(μN + f )r + 2d for r(t) that

u(t) + v(t) = w(t) ≥ r(t) for any τ ≤ t < Tmax.

Verification of (6.6). Let 2 < p < ∞ and then multiply (6.18) by pwp−1 and integrate over
Ω:

d
dt

�
Ω

wpdxdy + [4a(p − 1)/p]
�
Ω

|∇w p
2 |2dxdy + f p

�
Ω

wpdxdy

= p
�
Ω

[μ(uρxx + vρyy) + 2d]wp−1dxdy.

Here, we used the formula wp−2|∇w|2 = (4/p2)|∇w p
2 |2. Then from (6.17), we see that

p
�
Ω

[μ(uρxx + vρyy) + 2d]wp−1dxdy

≤ Cp
�
Ω

(Nwp + wp−1)dxdy ≤ Cp
�
Ω

(wp + 1)dxdy.

Therefore, we obtain the differential inequality

d
dt
‖w(t)‖pLp

≤ Cp(‖w(t)‖pLp
+ 1), τ ≤ t < Tmax.

As this differential inequality yields the estimate ‖w(t)‖pLp
≤ CpeCp, it is finally verified

that

‖w(t)‖L∞ = lim
p→∞ ‖w(t)‖Lp ≤ lim

p→∞[Cp]
1
p eC = eC , τ ≤ t < Tmax. �
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7. Numerical Example

7. Numerical Example
In this last section, we will present a numerical example which suggests the blowup of

the maximal solution.
Set Ω = (0, 10) × (0, 5) and the parameters as a = b = c = f = g = 1, d = 1.6 and

μ = 5, ν = 1. Further, take the initial functions as u0(x, y) = v0(x, y) = 1.6 + ζ, ρ0(x, y) = 0,
where ζ is a random perturbation between −0.01 and 0.01. We used the explicit difference
method for choosing the time step and the spatial step as 5.0 × 10−5 and 0.04, respectively.

The graphs obtained for χ(t) = max(x,y)∈Ω [| ∂2ρ
∂x2 (t)| + | ∂2ρ

∂y2 (t)|] are shown in Figure. In both,
the horizontal axis denotes the time variable t and the vertical axis denotes χ(t).

Fig.1. Figure: Graphs of χ(t)

As we can observe in the two graphs in Figure, after t = 15.0, the value of χ(t) increases
very rapidly and our numerical computations quickly collapse, meaning the value of χ(t)
exceeds the numerical limit of the computer and the value of δ(t) = min(x,y)∈Ω [u(t) + v(t)]
changes from positive to negative discontinuously in a single time step.
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