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Abstract
This paper treats the initial-boundary value problem for a quasilinear parabolic system in a
two-dimensional region presented by Beli¢, Skarka, Deneubourg and Lax in order to describe
the construction process of parallel honeycombs in a beehive. After constructing the local strict
solutions by using the theory of abstract parabolic equations, we will define the maximal strict
solutions. Unfortunately, we cannot give any general sufficient conditions on the parameters
or initial functions for global existence, but we can investigate asymptotic behaviors of the
maximal solutions as ¢t — Tyx. From numerical computations, we already have a number of
examples which suggest the blowup of maximal solutions (i.e., Tx < ©0); at the end of the

paper, we shall present one such numerical example.

1. Introduction

We consider the initial-boundary value problem for a quasilinear parabolic system

%:azlu—,uu%+cuv(u—v)+d—fu, Q x (0, c0),
%:adv—uu%’i+cuv(v—u)+d—f”’ Q% (0, 00),
(1.1) % = b(u + v)4p + v(u + v) — gp, Q% (0, 00),
TR TR Y 9Q % (0, ),
u(x,y,0) = uo(x,y), v(x,y,0) =vo(x,y), p(x,y,0) = po(x,y), Q,

in a two-dimensional bounded domain €.

This system was presented by Beli¢-Deneubourg-Lax-Skarka in the papers [1, 6] in order
to describe the initial stage of the honeycomb construction of Apis mellifera. It is well
known that honeybees have a strong tendency to construct parallel and equidistant combs in a
beehive. In order to understand this remarkable phenomenon theoretically, the authors of [1,
6] introduced the parabolic system (1.1). Their modeling focuses on the “self-organization”
of the social insects (see [2, 4]). In their work, two principle mechanisms were assumed
to be active. The first one is cooperative interaction between bees and wax. The worker
bees are attracted to the already deposited wax. However, some deposits grow faster than
others, some are abandoned, and some fluctuations become amplified to form elongated oval
deposits. The second mechanism is competitive interaction among worker bees. The worker
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412 T. AkryaAMA AND A. YAGI

bees are divided into groups. Worker bees belonging to the same group orient themselves in
the same direction, and deposit or bore wax cooperatively. Contrarily, there is competition
between differently oriented groups of bees. For simplicity, it was supposed in [1, 6] that
the worker bees were divided into only two major groups, one being bees parallel to the
x0z-plane and the other being those parallel to the yOz-plane.

In the model (1.1), the domain Q in the (x,y)-plane represents the base of a beehive
under which honeybees construct their combs. (In (1.1), the z-axis is pointing downward.)
The unknown functions u = u(x,y,t) and v = v(x,y,t) give the average density of bees
parallel to the xOz-plane and the average density of bees parallel to yOz-plane, respectively,
at (x,y,1) € Q x [0,0); p = p(x,y,t) denotes the quantity of wax deposited by the “waxer”
bees at (x,y,t) € Q X [0, o). The terms cuv(u — v) and cuv(v — u) represent the competition
between the two major groups of bees. The constant term d denotes the flux of differently
oriented bees which come into the considered group, and the terms fu and fv correspond
to the losses of bees due to leaving and changing orientation, respectively. The medium
interaction terms —uug%’ and —,uvgiy'g describe the attraction of bees to the wax and the term
v(u + v) describes the deposition of wax by bees. The term —gp describes the removal and
the fall of wax. Finally, the Laplacian terms a4u and a4v represent the “diffusive” imitation
of bees, capturing the bees’ tendency to take the same orientation as that of the bees nearby;
the Laplacian term b(u + v)4p represents the deposit of wax due to imitation.

For further details of the model and related experimental results, see the original two
papers [1, 6] and the references therein.

In this paper, we assume that Q c R? is either a rectangle (0, £,) X (0, )0 <, {, <o)
or a bounded C? domain. All the parameters a, b, c, d, f, g, 1 and v in (1.1) are positive
constants. We impose on the unkn%wn functions u, v and p the homogeneous Neumann
ou _ ov _ Op _

boundary conditions, i.e., 5 = 5~ = 7 = 00n dQ, n = n(x, y) being the outer normal vector

at boundary point (x, y) € Q. For the initial functions, we assume the following conditions:
(1.2) o, vo. po € H'*7(Q) € C(Q),

where o > 0 is any positive exponent. In what follows, we will fix o such that 0 < o < %
In addition, ug, vy and py satisfy the following positivity conditions:
(1.3) min up(x,y) >0, min vo(x,y) >0 and min po(x,y) > 0.
(x.y)eQ (x.y)eQ (x.y)eQ

The first objective of this paper is to construct the local strict solution to (1.1) for the
initial functions satisfying (1.2)-(1.3). As explained above, the diffusion coefficient for the
equation p is given by b(u + v), which means that the coefficient depends on the unknown
functions u# and v. Meanwhile, the equations for # and v include the interaction terms —uu%
and —,uvziy’;, respectively, for the deposited wax, which means that these equations include
nonlinear terms that depend on the second-order partial derivatives with respect to the un-
known function p. Then, the equations of (1.1) represent a strongly coupled diffusion system
which is classified as a quasilinear parabolic system in the theory of nonlinear partial differ-
ential equations. Thus, even constructing the local solutions is not a so easy task. However,
we can appeal to the theory of abstract parabolic evolution equations (see [7, 8]). More
precisely, we shall use [8, Theorem 5.6], in which the existence and uniqueness results are
proved for abstract parabolic equations under a general framework. Under suitable settings,
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it is possible to verify that this theorem is actually applicable to the problem (1.1).

We are next interested in the question of when (1.1) possesses a global strict solution. Un-
fortunately, we do not yet know any general conditions on the parameters a, b, c, d, f, g, u
and v or the initial functions ug, vy and py which can guarantee the global existence of so-
lutions. On the contrary, we have found many numerical examples which suggest the local
strict solutions blow up. One such example will be presented in the last section of this paper.

In view of (1.2)-(1.3), we know that, if the local strict solution blows up at some time
Tmax < o0, then at least one of the following phenomena has occurred:

Jim [lu@llge + HoOllzper + loOllgec] = o,

lim min u(x,y,t)=0 or lim min v(x,y,t) =0.
1= Timax (6Y)EQ 1= Tinax (XY)EQ
Actually, we can give more precise information on the behavior of u(x, y, 1), v(x, y,t) and
p(x,y, 1) ast = Thax. The second objective of this paper is then to investigate the asymptotic
behavior of the maximal strict solution of (1.1) as t = T < 0.

As explained, we cannot expect in general that (1.1) admits a global strict solution, but
this does not at all mean that the model (1.1) does not give a description of honeycomb
patterns. On the contrary, we have a number of numerical examples which re-create hon-
eycomb patterns during the time interval (0, T.x). Some of these were already included
previously in [9], but a full paper on these examples will be published elsewhere.

2. Notion and Preliminaries

Let Q c R? be a rectangle (0,¢,) x (0, ,) or a bounded C? domain. This section is
devoted to listing the basic materials of Sobolev spaces in € and the basic properties of
sectorial operators in L,(Q) which will be needed in this paper. For some of these which
may not be so familiar, proofs will be given.

Sobolev Spaces. For 1 < p < oo, L,(Q) denotes the usual complex L,-space equipped
with the L,-norm || - ||,

Forl < p<oandm =0,1,2,..., H})(€) denotes the space of functions u € L,(Q)

whose partial derivatives ai+j”j for all the orders 0 < i+ j < m belong to L,(£2), H}'(€2) being

0x' 0y
1
P \r
L,

equipped with the norm

These definitions are extended for the fractional exponents s, namely, for 1 < p < co and
0<s<oo, H;(Q) is defined in a reasonable way; see [8, Section 1.11]. Foreach 1 < p < oo,
the family H}(€2), (0 < s < o) enjoys the interpolation property

O u
0x' oyl

el = [ >

0<i+j<m

2.1) [H(Q), H,! ()]s = H,(2) (with norm equivalence)

forO0<sp<s<sy<ooands=(1-6)sp+0s;. When1 < p < oo, p#2, H;(Q) are Banach
spaces. When p = 2, H3(Q) are Hilbert spaces. The spaces H3(Q) are simply denoted by
H*(Q).

Regarding embeddings of H(€2) into L,(€2), the following properties are known. If 0 <
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s <1, then H*(Q) C L,(Q) for p = % with continuous embedding

(2.2) llutllz, < Cilleallpas, u € H*(Q).

When s = 1, it holds true that H'(Q) L,() for any 2 < p < co with the inequality
(2.3) lllz, < Cplluly > Pldly?, we H'(Q).

If s> 1, then H(Q) c C (ﬁ) with continuous embedding

(2.4) llulle < Csllullgs, u € H'(Q).

If 2 < p < o0, then H},(Q) C C(ﬁ) with continuous embedding

(2.5) lalle < Collullyy, — u € Hy(€Q).

Furthermore, for s > 1 (resp. 2 < p < 00), the space H*(Q) (resp. HII,(Q)) is verified to be
a Banach algebra. Namely, if s > 1, then u,v € H*(Q) implies uv € H*(Q2) with the estimate

(2.6) vl < Cillull s ol s, u, v € H*(Q).
Similarly, if 2 < p < oo, then u,v € H ;,(Q) implies uv € Hlly(Q) with the estimate
2.7) ol < Collullgpllollyyy, w0 € Hy(€Q).

Let a € H°(Q2) with s > 1. Then, the multiplication u + au is a bounded linear operator
from H'(Q) into itself with the estimate

(2.8) llaullm < Cillallgsllul |1, ueH(Q).

Let y : R — R be a continuous piecewise smooth function with y’ € L.,(R) and y(0) = 0.
Then, w — y(w) is an operator from H'(Q; R) into itself with the property

"(w)Vw if  w(x, ,
09 Ty < Y@ () € X
0 it wx,y) € x4,
where y; denotes the set of singular points of y.
Let y:R — R be a smooth function. Then, for s > 1, w = y(w) is an operator from

H*(Q; R) into itself
(2.10) which is a bounded and locally Lipschitz continuous mapping.

Sectorial Operators. For the Laplace operator —Au = — (% + giy’;) in Q, let us review how
to realize the operator as a linear operator of L,(2) by equipping it with the homogeneous
Neumann boundary conditions on 0. Consider a sesquilinear form

a(u,v) = f f Vu - Vidxdy, u, ve H(Q),
Q

on H'(Q). Since for each u € H'(Q), the correspondence v — a(u, v) is a continuous anti-
linear functional on H'(Q), there is an element Au € H! (Q)’ such that a(u, v) = (Xu, U) g el
for all v € H'(Q), where H'(Q)’ is the dual space of H'(Q) and (-, )z is the duality
product of H'(Q)" and H'(Q). This relation then defines a bounded linear operator A from
H'(Q) into H'(Q)'.
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Identifying L,(Q) and its dual space L,(€2)’, we here introduce the triplet
H'(Q) € L) ~ Ly(Q) € H'(Q)'

with dense and continuous embeddings. As is well known, the compatibility property
(U, VY = (1, 0)r, holds for u € L,(2) and v € H'(Q). In view of this property, con-
sider for any & > 0 the sesquilinear form a.(u, v) = a(u,v) + &(u,v);, on H 1(Q); then, it can
be shown that @.(u,v) = (A + &)u, Vs for u, v € H'(Q). Since az(u,v) is continuous
and coercive on H'(Q), the Lax-Milgram theorem can be applied to a,(u, v) to conclude that
A+eis actually an isomorphism from H'(Q) onto H'(Q)'.

We now define the part A of A in Ly(Q) by D(A) = {u € H'(Q); Au € L,(Q)} (namely,
u € D(A) if and only if v — a(u, v) is continuous in v with respect to the L,-topology) and
Au = /~1u, i.e., a(u,v) = (Au,v)r, for u € D(A) and v € H'(Q). Then, this proves A is a
positive self-adjoint operator of L,(Q). Furthermore, when Q is convex or in the class C?
(which is of course the case under our assumption on ), it is known that the domain D(A)
can be characterized by

2.11) D(A) = HY(Q) = {u € H*(Q); Z—Z =0 on asz}.

(see [8, Theorems 2.6-2.7]). Clearly, for u € H}%,(Q), we have a(u,v) = (—4u,v);, and hence
Au = —Au for u € D(A).

In the above sense, the positive self-adjoint operator A is considered a realization of —4
in L,(€2) under the boundary conditions g—Z = 0 on dQ. Further, A is considered a realization
of —4 in H'(Q)’ under the same boundary conditions on dQ, but in the generalized sense.

Thereby, it is reasonable to write (Vu, Vv), as
(2.12) (Vu, Vo), = (Au,u)r, = (=Au,v)y,, ue Hy(Q), ve H'(Q),
(2.13) (Vu, Vo), = (A, Vg = (=Aut, 0 g1t u, ve H(Q).
Leta > 0 and f > 0 both be constants and consider the operator aA + f in L(€2). As
aA+ f is a positive definite self-adjoint operator having domain D(aA+ f) = D(A) = szv(Q)’

we know that D([aA + f1%) = [L,(Q), H]%[(Q)]g for all 0 < 6 < 1. From this, the domains of
[aA + f1° are given by

H*(Q) when 0<6< 3,

2.14 D(laA + f1) =
(2.14) ([aA + fT) {szve(g) when 3 <0 <1,

with norm equivalence, where Hy () = {u € H*(Q); g—Z = 0 on AQ}. For the proof, see [8,
Theorems 16.7-16.9].

Consider next a Laplace operator of the form Bu = Ig(x, yY)Au + gu in L(Q), where E(x, Y)
is a positive function of Q and ¢ is a positive constant.

Proposition 2.1. Assume that IA)(x, Y) € L(Q) satisfies IA)(x, y) > 6 in Q for some constant
0 > 0. Then, B is a sectorial operator of L,(Q2) with domain D(B) = D(A) = H]%,(Q) and

with angle wp < 7.
Proof. Let A € C be such that Re 4 < 0. Noting that B— 1 = blA + (g — /l)le‘]], we will
first show that A + (g — Db7!is an isomorphism from HIZV(Q) onto L,(€2).
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To this end, introduce the sesquilinear form

b(u,v) = f f Vu - Vodxdy + (g — 1) f f b(x,y) " uv dxdy, u, ve H'(Q).
Q Q

It is clear that this form is a continuous and coercive form on H'(Q). As the associated linear
operator to this form is A+(g—)b™', we can conclude that A +(g— )b is an isomorphism
from H'(Q) onto H'(Q)'. Furthermore, by the regularity property of A, we know that its
part in L,(Q2), namely A + (g — /l)lAa‘1 is an isomorphism from HIQV(Q) onto L, ().

As D(B) = D(A) = HIZV(Q), it follows that the operator B — A is an isomorphism from
D(B) onto L,(Q).

Second, we will estimate the operator norm of A + (g — /1)13‘1. To begin with, notice the
following inequality holds: min{l, gllBIlZi }||u||fi, < ReZ(u, u). On the other hand, as

buu) = ([-4 + (g = Db Nu,u)r,,  u € HA(Q),

it follows that Rez(u, u) <[4+ (g - Db ul| 1, llullz,. Therefore, we observe that

(2.15) llull?, < [1/ min{1, gllBll;, N II=4 + (g = Db Tullp, llullz,.

H!
Next, we can write
Wb w,u)r, = ([=4 + gh™ " u,u)r, — ([=4 + (g — Vb Nu, u)y,
= (Vu, V), + (gb™ u, u), — ([=4 + (g — Db u, u)y,.
Then, since |A[[1B]I;" |lul?| < [(Ab~"u, u),,]. it is seen by (2.15) that
\AUBII 7, < max{1, g6 Yull7, +I=4 + (g = Db Tul, lull,
< [max{1,g6™"}/ min{1, glibll;"} + 11I[=4 + (g — Db Tullp, llullz,,
which yields the estimate
JANIBIE ez, < [max{1,g6~"}/ min{1,gllbll;"} + 111I[-4 + (g — Db~ 1ull,
= [max{1,g6"}/ min{1, gllll;' } + L1I[A + (g — Db Nullr,,  u € Hy(Q).

Consequently, as [|[[A + (g — )b~ Tull,, < 6 "|(B — ullz, for u € D(B) = D(A), we have
as follows:

|Nullz, < N1Bll;.6~" [max{1,g5~"}/ min{1, gllBll;"} + 11I(B - Dully,, u € D(B),

which yields the norm estimate of the resolvent (B — 1)~! on L,(Q) for Re 1 < 0. m]

Smoothness Properties. We shall use the following smoothness properties of the self-
adjoint L,(€2) operator A.

Proposition 2.2. Let Q = (0,¢,) x (0,¢,) and let 0 < 6 < %. Ifue HI%,(Q) satisfies Au €
H?(Q), then u € H**Y(Q) and its norm is estimated by ||ul|gpe-n < Co(llAullpe + ||uellp20)
for some constant Cy.

Proof. As Q is a non-smooth domain, we cannot obtain this result from the general
smoothness properties of elliptic operators in smooth domains. Instead, we have to use the
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spectral resolution of self-adjoint operators (see [10, Chapter XI, Section 6]). However, ours
is a very special case (see [5, Chapitre IV, Section 2]).
Let us utilize the positive definite self-adjoint operator A + 1. As is well known, A + 1 has

2 2
the eigenvalues A,,, = (?) + (’é—”) + 1 form,n =0,1,2,..., where the eigenfunctions are
X Y

cos - x-cos 'y Moreover, the family of these eigenfunctions composes an orthogonal basis
x y

of the Fourier series in L,(2). Therefore, u € L,(Q) if and only if },, , [upnl?> < oo, where

Uy are the Fourier coefficients of u, and then u is expanded as u = 3, ,, ttyn COS 7= x-c0s 7 y.
. N )

In addition, u € D(A) if and only if ¥, , A2, |tm|* < 00, and then Au = 3., ,, Apnittyn €OS P
cos % y.

Consider next the square (A + 1)? in Ly (Q). By definition, u € D((A + 1)?) if and only if
u € D(A+1) and (A+1)u € D(A+1). Then, by using the Fourier coefficients, u € D((A+1)?)
can be characterized by Zm’n(/lﬁm + D?|unl> < co. Then, we observe that D((A + 1)*) c
H*(Q). Indeed, let u € D((A + 1)?) and consider any integers 0 < i, j < 4, i + j = 4. When
i, j are even, we have

0"y mr\ (nr)’ mn nmw
XDy = Z (Z) (f_y) Uy COS Zx - COS Tyy € L,(Q).

Similarly, when i, j are odd, we have

Oty mr\' (nr)’ .omm . nm
o3y = Zr; (TX) (?y) Uy SIN Zx- sin Tyy € [,(Q),

mm
A
holds true that u € H*(Q) and satisfies the estimate |ul|;: < C||(A + 1)2u||L2.

As a consequence, for any 0 < 6 < 1, the interpolation (2.1) provides the inclusion

for the family sin 7% x - sin 'y composing another orthogonal basis of L,(€2). Therefore, it

D((A + 1)*) = [Ly(Q), DA + 1))y € [La(Q), H* ()] = H*(Q)

with continuous embedding ||ul|+ < Cl|(A + 1)*%ul|,.
We are now ready to verify the proposition. In view of (2.14), the assumption Au €
H?(Q) means that (A + 1)u lies in D((A + 1)%), i.e.,, u € DA + 1)’*") ¢ H**D(Q).

Furthermore, the previous inequality, together with (2.14), yields the desired estimate

[zl g2y < ClI(A + 1)9+114||L2 < Coll(A + Dullgze < Co(llAull 2o + ||uel| gr20)- m|

Proposition 2.3. Let Q be a C* domain and 1 < p < . If u € H%(Q) satisfies Au €
H})(Q), then u € H;,(Q) and its norm is estimated by ||u||H% < Cp(llAullH[:’ + ||u||H11))f0r some
constant Cp,.

Proof. The result can be verified using the general smoothness properties of elliptic oper-
ators. For instance, see [3, Theorem 2.5.1.1 and Remark 2.5.1.2]. m]

3. Local Solutions

Let the initial functions uy, vy, po satisfy (1.2)-(1.3). We are now ready to construct a
local strict solution to (1.1) by choosing L, space as the underlying space to work. We will
apply Theorem 5.6 of [8] after some set-up.
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First, in view of (1.3), take any small 6 > O such that

3.1 min_ [up(x,y) + vo(x,y)] =6 > 0.
(x.y)eQ

Then, introduce a smooth cutoff function y(w) (—co < w < c0) such that

g

xw)=w when 5 <w<oo,
(3.2) $<yw)<$ when 0<w<y,
X(w)=§ when —oo<w<0.
Using this y(w), we rewrite (1.1) as
%:azlu—,uu%+cuv(u—v)+d—fu, Q% (0, 0),
%:azlv—ﬂvg%’+cuv(v—u)+d—fv, Q% (0, 00),
(3.3) % = by(Re[u + v])dp +v(u +v) - gp, Q x (0, c0),
2%, 0Q x (0, 00),
u(x,y,0) = uo(x,y), v(x,y,0) =vo(x,y), p(x,y,0) = po(x,y), Q.

Second, let us formulate (3.3) as an abstract quasilinear evolution equation

U _ .
(3.4) {dt+A(U)U F(U), 0<t<oo,

U(0) = U,
in the complex product L,-space
u
v

X=L(@={U=|v|; u,v,peLr(Q);.

Here, for any vector U € Z, A(U) is a linear operator of X, where Z is the complex product
space defined by

(S

Z=H(Q) ={U=|7|; &7 pcHEQ)
for s fixed such that 1 < s < 1 + 0. (Recall that o is the exponent fixed in (1.2).) Actually,

A(U) is defined in the ball K = {U € Z; |U|lz < R} contained in Z, 0 < R < oo being a fixed
radius sufficiently large so that “(ug, vo, po) € K. For each U € K, A(U) is given by

alA + f 0 uﬁa‘% u u u
ADU= 0 aA+f g = v|, U=|7|ek, U=|v|.
0 0  by(Re[u+1)A+g P,

(Recall that A is a realization of —4 in L,(Q) under the homogeneous Neumann boundary
conditions on 9€2.) Meanwhile, F(U) is the nonlinear operator of X given by
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cuv(u —v) +d u
3.5) FWU) =|cuv(v—u)+d|, U=|v|eD(F)cLsQ).
v(u + v)

The initial value Uy of (3.4) is of course taken as Uy = (ug, vy, po) € K.

Next, let us verify that A(U)and F satisfy all the structural assumptions which were made
in [8, Theorem 5.6].

For A(U), the first and second diagonal components are each a positive definite self-
adjoint L,(€) operator with the domain H%,(Q), based on (2.11). In addition, Proposition 2.1
shows that the third diagonal component is a sectorial L,(£2) operator of angle < 5 with the
same domain H12\/(Q)- The other non-zero components of A(l7 ) are bounded operators from
H]%,(Q) into L,(€2). It is then possible to utilize [8, Theorem 2.16] to conclude that A(fj ), Ue
K, are sectorial operators of X of angle w i) Sw < 5 and with domain D(A(ﬁ ) = HZZV(Q).
Thereby, the assumptions [8, (5.2)-(5.3)] are satisfied and, as the domains D(A(ﬁ)) are
independent of U € K, [8, (5.4)] is also satisfied for v = 1. In view of the inequality

(3.6) AWUDIAWU) ™" = AWU) ey = AU — AUDIAU) e
< CIAUY) = AUl 1 < CUIG =Tl + 10y = D2ll), Uh, Us €K,

we are led to set the space Y as ¥ = Z. Then, due to (2.4), [8, (5.5)] is also satisfied. For [8,
(5.6)], we observe the following facts.

Proposition 3.1. For any exponents 0 < ¢’ <6 < 6" < %, we have

(3.7) H*"(Q) ¢ DAU)’) c H (Q), UE€eK,
with uniform embeddings.

Proof. We compare A(ﬁ) with A(0). As A(0) = diag{laA + f, aA + f, by(0)A + g}, A(0) is a
positive definite self-adjoint operator of X with the same domain I[-I[Izv(Q) as A(U). Therefore,
[8, Theorem 2.25] can be applied to observe that D(A(0)?") ¢ D(A(U)?) c D(A(0)?) with
uniformly continuous embeddings. Meanwhile, by (2.14), we know that D(A(0)?) = H*(Q)
forall0 < 6 < % with norm equivalence. O

Now, fix any two exponents a and § such that § < @ < 8 < “T‘T Then, we can see
that D(A(ﬁ)ﬁ) C D(A(ﬁ)") C Z = Y with uniformly continuous embeddings for Ue€K.
Thereby, both [8, (5.6)] and [8, (5.7)] are satisfied.

Furthermore, for the nonlinear operator F(U) given in (3.5), we set D(F) = Z. Then, the
Lipschitz condition [8, (5.44)] is trivially valid with the space W = Z. In addition, fix any
exponent 1 such that 8 < i < 1 to clear [8, (5.46)-(5.47)].

Then, as an immediate consequence of [8, Theorem 5.6], we obtain the following exis-
tence and uniqueness results for (3.4).

Theorem 3.1. Take a third exponent y such that 5 < @ <8 <y < “T‘T Then, for U,

satisfying (1.2)-(1.3), there exists a unique local solution to (3.4) in the space
(3:8) U eC(0,Ty,l;H () N C'(0, Ty, ; La(@)) N C((0, Ty, |; Hy(Q),

where Ty, > 0 is determined by the magnitude of the norm ||Ug||g+r. Furthermore, U
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satisfies the estimates

(3.9) NU@) = Ul < Cyplt = s, 0<s,1< Ty,
(3.10) IAUOU DI, < Cuy, ™, 0<1<Ty,

where Cy, > 0 is a constant depending on ||Ug||g1+o.

Proof. We have already verified that the structural assumptions of [8, Theorem 5.6] are
satisfied by the spaces X and Y = Z = W with the exponents 5 <a < <n < 1.

AsB<y< ”T" we see by Proposition 3.1 that Uy € D(A(Uy)?), namely, U satisfies the
assumption [8, (5.30)] made for the initial values. m]

Finally, we should remark that the solution U (¢) obtained above can be regarded as a local
solution to (1.1). In fact, as its complex conjugate U(r) is also a local solution to the same
problem (3.4), the uniqueness of the solution yields their coincidence U(r) = U(r) for every
0 <t < Ty,, namely, U(?) is a real-valued function. Next, as H*(Q) c C (ﬁ) due to (2.4), we
can see from (3.8) that U € C"7*([0, Ty, ]; C (ﬁ)); in addition, from (3.9), we can see that

lU®) = Upllc < Cy,t"™, 0<1t<Ty,.

Therefore, (1.3) implies that there exists a time TUO, 0< TUO < Ty, for which the following
holds:
(3.11) min [u(H) + 0] > %,  0<1< Ty,

(xy)EQ
In view of (3.2), this means that U(¢) = (u(r), v(1), p(t)) satisfies the equations of (1.1). In
this sense, under constrains (1.2)-(1.3), we have constructed a unique local strict solution to
(1.1) in the space (3.8) on an interval [0, Ty, ]. As explained, Ty, > 0 is determined not only
by the norm ||Up||g1+- but also by the lower bound § > 0 in the estimate (3.1).

4. Regularity Properties of Local Solutions

The next two sections are devoted to investigating some properties of the local solution
of (1.1) which we constructed above. These properties will be needed in the subsequent
arguments.

In this section, we want to prove some regularity properties. Let U(¢) be the local solution
of (1.1) on [0, TUO] for initial functions Uy = "(uo, vo, po) satisfying (1.2)-(1.3).

Let us begin with showing the temporal regularity of U(%).

Proposition 4.1. For any 0 < 6 < 1, the derivative ‘2—? belongs to C((0, TUO]; H>(Q)).

Proof. Fix atime 0 < 7 < TUO arbitrarily and consider U(f) as a solution to the linear
evolution equation

@ {‘2—7 +AOU = F(), t<t<Ty,

U(T) = UT’
where A(t) = A(U@®)) fort <t < TUO, Ft)y=FWU@)fort<t< TUO, and U, = U(7).

Concerning the problem (4.1), we already know from (3.8) that F € C([r, Ty,l; IHI]Z\,(Q))
and U; € HIZV(Q). Then, we are interested in the Holder condition on A(H)[A(t)™' — A(s)™!],
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which can be estimated as

IADIA®) ™ = AG) il = IA@) — ASIAGS)  lewo
< CAU@) = UL, < CAU®@ = Ulgws T <5, 1< Ty,

for some constants C depending on 7. In addition, from (3.8), we have
=z -0
NU(0) = U(s)llgr+e < CNU() - U(S)II U - U(S)IIL < Crlr =5[>
However, this estimate can be improved step by step to reach the optimal estimate.

Lemma 4.1. Assume that

4.2) WU @) — U(s)|lg+e < Celt — sl T<s§,t< TUO,
has been obtained for some exponent p such that 52 < u < 1. If u> ”—‘T then the estimate

(4.2) holds with the optimal exponent u = 1 on an lnterval [T, TUO] foranyT > 1. If u < 1”’

then the estimate (4.2) can be improved to any exponent u such that u < g < 2(11_‘2)

on an

interval [T, TUO] foranyT > 1.

Proof of lemma. Let U(t,s),7 < 5 <t < TUO, be the evolution operator gener-

ated by A(¢). Then, as a solution of (4.1), U(t) can be expressed by U(t) = U(t,7)U; +
fT 'U (¢, s)F(s)ds. Therefore, its derivative can be written as

Cii—l:(t) =-AU @, U, - f AUt )F(s)ds + F(1).

Furthermore, applying operator A(#)? to this formula, we have
0dU 1 -1
AWy —- (1) = —AQ) U@ DA AMUx

- f AU, $)A(s) T A(S)F(s)ds + AR F (7).

T

As the operators A(f) satisfy the Holder condition [8, (3.30)-(3.31)] with the x in (4.2) and
vy = 1, it can be seen by [8, (3.83)] that for any exponent 6 < u, the following holds:

1A U HAS) e < Colt =9, 1<s<t<Ty,

Therefore, we observe that IIA(I)" ~(Dll, < C-(t—71)" ~. As 6 < u is arbitrary, we can say in
view of (3.7) that for any 0 < u,

U@ — Ul < Clt = s, T<s, 1< Ty,

where 7 is any fixed time such that7 > 7.
Thereby, when u > “‘T , 8 can be such that 26 > 1 + o, which means that (4.2) holds for
u = 1. Meanwhile, When 1 < 37, we obtain that
1+0-20
1U@#) = US)ll+r < CNU@ = Ul ™" IU@ = U(s )II&QQ‘”

< CHt - s|2<1*9>, T<s, 1< TUO m]

By this lemma, we can say that, if © < 1, then (4.2) holds for exponents which are
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determined by the recurrence yy = I‘T‘T and py < “—‘T, M1 = 2(11;‘;” (k=0,1,2,...) on the

intervals [y, TUO] such that 7 =79 <71 <7, < ---. However, because o < 3, we can verify
that the increasing sequence uy < u; < pp < --- must exceed ”T" for some y;. Hence, we
conclude that (4.2) must hold for u = 1 on the interval [T, TUO].

As shown, the operators A(%) satisfy [8, (3.30)-(3.31)] for the optimal exponents u = v = 1
on Tk+1, TUO] Then, for the same reasons as in the proof of lemma, it is concluded that
||A(t)9 (t)ll]L2 <G, (1= Tie) 0 The <t < TUO, for any 6 < u = 1. Since all of the terms
Tre1 > Tr > -++ > 7 can be taken arbitrarily close to 7 > 0, which was fixed arbitrarily, we

obtain the desired result. O

As a direct consequence of Proposition 4.1, we obtain the following two regularity theo-
rems.

Theorgn 4.1. Let Uy satisfy (1.2)-(1.3) and U(t) be thilocal solution of(l;l) on the in-
terval [0, Ty, ] in the space (3.8). Then, U(t) lies in C'((0, Ty,]; H'(Q)) N C((0, Ty, ]; H*(Q)).

Proof. Clearly it suffices to prove that U € C((0, TUO]; H3(€)). From the equation for p in
(1.1), we have

0,
(4.3) bAp(t) = {a—f(t) — v{u(®) + v(®)] + gp(t)} [[u(@) + v(®)].

In addition, Proposition 4.1 implies the regularity of p(f) such that % € C((0, TU()]; HY(Q))
for any O < € < 1. Then, by (2.10) and (3.8), we observe that all the functions in the
right-hand side of (4.3) belong to H 1(Q). Hence, using Proposition 2.2 (8 = %) with Q as a
rectangle and Proposition 2.3 (p = 2) with Q belonging to C*, we can verify that p(¢) lies in
H3(Q) forany 0 < ¢ < TUO.

Furthermore, since

4.4) adu(t) = —(t) + ;m(t) (t) — cu(v(O)[u(t) —v(t)] —d + fu(?),

4.5) adv(t) = —(t) + ;w(t)(9 () — cu(®v®)[v(t) — u(®)] —d + fo(z),

we can observe by (2.8), (3.8), Proposition 4.1, and Theorem 4.1 that Au(t) and Av(z) belong
to H'(Q). Hence, for the same reasons as the case of p(f), we verify that u(z), v(t) € H>(Q)
forany 0 <t < Ty,. O

Theorem 4.2. Let Uy satisfy (1.2)-(1.3) and U(t) be the local solution of (1.1) on the
interval [0, TUO] in the space (3.8). Then, U(t) is in C'((0, TU0 C(Q) 3 N C((O, TUO]
[CHQT).

Proof. We can utilize the results obtained by Proposition 4.1 with % <0<l

First, by (2.4), we observe that U € c'(o, TUO]; [C(ﬁ)]3).

Next, we observe from (4.3) that 4p(f) € H*(Q). Then, when Q is a rectangle, Propo-
sition 2.2 provides the spatial regularity p(f) € Hw“)(Q) Since 2(6 + 1) > 3, we can
verify using (2.4) that p(¢) € Cz(Q) for any 0 < t < TU0 Furthermore, when Q belongs to

C?, as H(Q) ¢ H)(Q), from (2.2) with p = 5 L, Proposition 2.3 provides the regularity
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p(t) € Hy(Q). As p > 2, we can verify using (2.5) that p(r) € C*(Q) forany 0 < ¢ < Tu,-
Similarly, when Q is a rectangle, since %(t) e H*(Q) and (2.6) imply in (4.4) that
Au(t) € H®(Q), we can verify that u(r) € H***D(Q) c C*(Q) for any 0 < t < Ty,.
Furthermore, when ( belongs to C3, since %(z‘) € HII,(Q) and (2.7) imply in (4.4) that
Au(t) € H},(Q) for p > 2, we have verified that u(r) € H;(Q) C Cz(ﬁ) forany 0 < 7 < TUO.
The above argument also holds for v(?) if we instead use (4.5). m|

Theorem 4.2 obviously means that the strict solution U(f) of (1.1) on [0, TUO] that we
obtained for Uy gives a classical solution to (1.1) for 0 < < T7y,.

5. Positivity of Local Solutions

In this section, we want to prove the positivity of local solutions. Let U(¢) be the local
solution of (1.1) on [0, TUO] for initial functions Uy = "(uo, vo, po) satisfying (1.2)-(1.3). Our
goal is then to show that U(r) = "(u(2), v(z), p(r)) also satisfies the positivity conditions in
(1.3) for every 0 < t < Ty,.

Theorem ~5.1. It holds true that min( vy u(x,y,t) > 0 and min( e v(x,y,t) > 0 for
any 0 <t < Ty,.

Proof. By (1.3) and (3.8), there isa time 0 < 7 < TUO such that min(w)eﬁ u(x,y,t) > 0 for
every 0 <t < 7. Thus, it suffices to prove the assertion of theorem for 7 < ¢ < TUO.

First, let us prove that u(f) > O forv < t < TUO. For this purpose, we use the cutoff
function H(u) defined by H(u) = % for —co < u < 0 and H(u) = 0 for 0 < u < co. Then,
consider the function

o(f) = f f H(u(x,y,0)dxdy, 1<t<Ty,.
Q

Clearly, ¢(f) is a nonnegative C! function with derivative

o) = ff H' (u(t) %(r)dxdy = aff H' (u)Au dxdy
Q Q

+ ff H' (u)[—pp .y + co(u — v)]udxdy + ff H' (u)[—-fu + dldxdy.
Q Q

(Here, we denoted % by the symbol p,, for simplicity.) Since H'(u) € H'(), we observe
by (2.9) and (2.12) that

ff H' (u)Audxdy = —ff VH' (1) - Vudxdy = —ff \VH' (u)*dxdy < 0.
Q Q Q

In addition, since H'(u)u = 2H(u) and H' (1) < 0, it follows that

S0 < (D) f fg H' (wyudxdy = 2D — (o),

where D = max max — Upxx + co(u — v)| (recall Theorem 3.10). Therefore,

(x,y)eﬁ |
o(f) < PN (1), but since ¢(7) = 0, we conclude that ¢(f) = 0 for any 7 <t < Ty,
ie,u(®)>0forany v <t < Ty,.

r<i<Ty,
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Second, fix a constant 0, = min(x e u(x,y,7) > 0 and define the function
1(1) = 6;e PN L [d)(D + HI[1 — e PHIED) 1< < Ty,

We will prove that u(f) > r(¢) forany 7 <t < TUO.
For this purpose, we consider as before the function

Y(t) = f f H(u(x,y, 1) — r(1))dxdy, r<t< Ty,
Q
the derivative of which is given by
W = f f HY (ut) = r(1) [240) —  (6)dxdy.
Q

Since r(#) is a solution of the ordinary differential equation '(#) = —(D + f)r(¢) + d and
u(t) satisfies the differential inequality %(t) > adu(t) — (D + fu(t) + d, we can see that
%(t) —r'(t) = adu(t) — (D + H[(u(t) — r(t)]. Then, by the same arguments as before (recall
that H'(u — r) < 0), it follows that ¢/ (f) < —=2(D + f)Y(t); namely, ¥ (r) < e 2PNy (1),
therefore, ¥(7) = O yields the desired vanishing ¥(t) = O forany 7 < ¢ < TUO, ie., u(t) >
r(t)>0forany 7 <t < TUO.

The same arguments as for u(#) prove the assertion of the theorem for v(z). m|

Next, we verify the positivity of p().

Theorem 5.2. For tﬁe local solution U(t) = "(u(r),v(t), p(t)) on [0, TUO] it holds that
p(t) 2 0forall0 <t < Ty,

Proof. Using the same cutoff function H(p) as above for the variable —co < p < oo,
consider the function

o(f) = f fg H(p(x,y, 0)dxdy,  0<1<Ty,
Clearly, ¢(f) is a nonnegative C' function for 0 < ¢ < TU(, with derivative
¢(1) = f fg H'(p(0) £ (t)dxdy = b f fg H' (p)(u + v)Ap dxdy
+ fL H' (p)[v(u + v) — gpldxdy.
Since H'(p) € H'(Q), we can observe by (2.8) and (2.12) that
ffg H' (o)(u + v)dp dxdy = — ffg; VIH (0)(u + v)] - Vo dxdy
=- fL(u +v)VH' (p) - Vp dxdy — ffg H' (0)V(u + v) - Vo dxdy.
In view of VH'(p) - Vp = [VH’(p)*> (from (2.9)) and (3.11), we have

- f f (u + 0)VH (p) - Vo dxdy < —(5/2) f f IVH' (p)2dxdy.
Q Q

Meanwhile, as H'(p)Vp = H'(p)VH’(p) from (2.9) again,
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- ff H' (p)V(u+v) - Vodxdy = —ff H'(0)V(u+ v) - VH' (p)dxdy
Q Q
< IH @I, IV (@ + o)l IVH ()L,

for any 2 < p, g < oo satisfying % + é = 3. Furthermore, applying (2.3) to [|H'(p)ll,. we
have

IH @, IV + )l IVH (0, < ColH Ol IH @Il PV + vl
Therefore, by the Holder inequality, we obtain the estimate

IH Il IV (@ + 0)lIL, IVH ()2, < &llH (o)l + CpallH (0)IIF, 1V (e + ollz,

for any small € > 0. In addition, it is clear that H'(p)(«+v) < 0 and —H’(p)p < 0. Therefore,

taking € = %, we arrive at the differential inequality

¢'(1) < Cp(IIVLu() + v, + DIH (p)Il7, < Cp(lIVIu(r) + oOIII7, + De(®).
This differential inequality then implies

Cp [ VL@@l +Ddr

@(t) < p(0)e 0<t<Ty,

However, the estimate (3.10) yields with the aid of (2.3) the inequality ||V[u(7) + v(‘r)]lliq <
C,"7"V forany 2 < g < oo. Thereby, if p is fixed such that 2 < p < ﬁ, ie., p(y—1)> -1,
then ||V[u(t) + v(r)]||€q is integrable on [0, f]. Hence, ¢(0) = 0 yields the vanishing ¢(¢) = 0
forany 0 <t < Ty,,i.e., p(t) > 0forany 0 <t < Ty,. ]

6. Maximal Solutions

For the initial functions Uy = "(ug, vo, po) satisfying assumptions (1.2)-(1.3), let us define
their maximal strict solution of (1.1) and investigate its asymptotic behavior as t — Tipax.-

For Uy, we say that U(¢) = "(u(t), v(1), p(¢)) is a local solution to (1.1) on an interval [0, 7]
if U(¢) is a function lying in

U € ([0, Tyl H'(Q)) N C'(0, Ty La(Q)) N C((0, Tyl Hy (),

satisfies the positivity conditions in (1.3) for each 0 < ¢ < T, and also satisfies all the
equalities, including the initial conditions, in (1.1).

By definition, if U(¢) is a local solution on [0, T/], then there is a positive constant 6y > 0
such that u(t) + v(¢) > 6y for any 0 < ¢ < Ty. This means that U(f) can always be extended
to a larger interval [0, Ty + AT] (AT > 0). If there exist two local solutions for Uy, then
either they coincide or one is an extension of the other. These facts enable us to define the
maximal local solution of (1.1) on an open interval [0, Ty,.x) (Which shall be called simply a
maximal solution of (1.1) for Up). Then, the maximal solution U(¢) belongs to the function
space

(6.1) U € C7([0, Timax); H'(Q)) N €' (0, Tmax); La(€)) N C((0, Trma); HY (),

and U(r) = "(u(1), v(2), p(2)) has positivity as follows:



426 T. Axryama aND A. YAGI
(6.2) min u(f) >0, min v(r) >0 and min p(f) >0 forany O <7< Tiax.
(x.y)EQ (x,y)eQ (x.y)eQ
Furthermore, by Theorems 4.1 and 4.2, U(¢) belongs to
(6.3) U € C((0, Tinan); H'(€)) N C((O, Trnax); H (Q)),
(6.4) U € CY((0, Trnan): [CEQT) N C((O, Trna): [CP(QT).
When Ty,x = oo, the maximal solution is a global solution of (1.1). In contrast, when

Tmax < oo, some blowup must take place in the maximal solution of (1.1). At this point, we
know that at least one of the following phenomena occurs:

lim min u(*) =0, lim min o) =0,
1= T oy (X)EQ 1= Tax (LY)EQ

or lim [|U@®)||g1+r = 0o (for any o > 0).

1= 1 max

However, we actually know the behavior of U(¢) as t — T in some more detail.
Theorem 6.1. Suppose T.x < oo. Then, at least one of the following holds:

lim min [u() +v()] =0 or lim max [u(r)+ v()] = co.
Ty (H)EQ 1=Tmax (x,4)eQ

Proof. Let us prove the theorem by contradiction. Fixing a time 0 < 7 < Tpax, SUPpOse
that there would exist constants M > ¢ > 0 such that

(6.5) min [u(f) +v(®)] > 6 forevery 7 <1t < Thax,
(x,y)eQ

and

(6.6) max [u(t) +v()] <M forevery 7 <1t < Thax-
(x,y)eQ

Under the constrains (6.5) and (6.6), we will establish step by step the uniform upper
norm estimate ||U(?)||lgz < C for T < t < Thax. Throughout the proof, C denotes a universal
positive constant determined by €, the initial constants a, b, ¢, d, f, g, u, v in (1.1), the
norm ||U(7)|lg2, the time Ty,.x, and the constants §, M in (6.5) and (6.6) in some specific
way, so C may change from occurrence to occurrence.

Step 1. Integrate the third equation of (1.1) over Q. This gives

d
— ffpdxdy+gffpdxdy < bef |[4pldxdy + vM|Q)|.
dr JJa Q Q

Separately, multiply the third equation by 4p(#) and integrate over €. This gives

1d
—— f f \Vol*dxdy + b f f (u+ v)AplPdxdy + g f f IVol*dxdy < vM f f \Upldxdy,
2dt JJo Q Q Q

where we used the formula %%Ile(t)lli2 = (V%(r), Vp(z‘))L2 and property (2.12). Now add

these two differential inequalities. Since f fQ |[4pldxdy < € f fg l4p>dxdy + C, for any small
& > 0, we obtain, using (6.5), the differential inequality

bo
+ S MpI, +9 [lo@llL, + VeI, ] S €. T <1< Ty

d 1
= v 2
7 [Hp(t)”Ll + S IVPOIL,
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Solving the above differential inequality, we conclude that

(6.7) lo®llz, + VeI, < C, 7 <1< Tinax,
together with

Tmax
(6.8) f l4p()II7, dt < eo.

Step 2. We use Poincaré’s inequality

5 ),
- — pdxdy
H 1Ql JJa

which implies the inequality
liollz, < CAIVAllL, + llollz,), p € H'(Q).

Then from (6.7), we obtain that

<ClVoll,,  peH (),

L,

(6.9) eIz <C, T <t < Tax.

Meanwhile, (2.14) (6 = 1) yields the inequality ||p||?_[2 < C(||A,o||i2 + ||p||]24) forp € HI%,(Q),
so (6.8) gives the estimate

Tmax
(6.10) f lo()l[}dt < oo.

Step 3. Multiply the first equation of (1.1) by Au(¢) and integrate over . Then, in view
of (6.6), we have

1d
—— f f \Vul*dxdy + a f f lAu*dxdy + f f f \Vul>dxdy
2 dt Q Q Q

< f f |[uMlpsd + (M + d) | | Auldxdy.
o)
(As before, p,, denotes %.) After some calculations, we obtain the differential inequality
d
VU@L, + alduIE, + 2fIVu®Iz, < Clle@le + 10, 7 <1< T,

Using (6.10), we can solve this differential inequality to conclude that ||Vu(t)||22 <C,ie.,

||u(t)||?{, < Cfort <t < Thax.

The corresponding result holds for v(¢). Therefore,
(6.11) @Il + @l <Co T <1< T

At the same time, we can observe that

Tmax
(6.12) f (@I + oI, | dt < oo.

Step 4. Let us note that, from Theorem 4.1 and property (2.8), all the terms in the third
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equation of (1.1) take their values in H'(Q) for 7 < t < Tpa. S0 since 4 is a bounded
operator from H'(Q) into H'(Q)’, we can apply 4 to the equation. After applying 4, take
the duality product (-, -}/, of the equation and the function 4p(¢) € H 1(Q). Then, since

%%HZ’P(DH%Z = <A%—f(z),Ap(t)>H1fo1 and 4 has property (2.13), it follows that

1
1d f f lUpPPdxdy + b f f V(u + v)dp] - VApdxdy + g f f \4p|*dxdy
2 dt Q Q Q

=—v ff V(u +v) - VAp dxdy.
Q
From (6.5), we see that

1d
—— f f lUp*dxdy + bé f f \VAp[2dxdy + g f f l4p|*dxdy
2 dt Q Q Q

<C f f IV(u + v)|(4p| + DIVApldxdy
Q

and that

d
— f f l4p*dxdy + bé f f \VAp[*dxdy + 2g f f l4p|*dxdy
dr JJo Q Q
<C f f IV(u + v)*(14p* + 1)dxdy.
Q

Then using (2.3) and (6.11), we can estimate the integral in the right-hand side as

f f IV + 0P4pP + Dexdy < VG + IR, I4plE, + IV + o),
Q
< ClIV(@ + LIV + o)l 1ol 14l g + 11 < Clllu + vllg2ll4pllz,
x (IVApliz, + pllL,) + 11 < &llVApllz, + Cel(llu + oll7, + Dilpllz, + 11,

where € > 0 is any small number. Therefore, we arrive at the differential inequality

d bé
ZMpOI, + ZIVAPDIL, + 2914p I,
< C{lllu(®) + vl + eI, + 1}, 7 <1< Tiax.

Now using (6.12), we can solve this differential inequality to conclude that IIAp(t)IIZ2 <C
fort <t < Thax, 1.€.,

(6.13) lo@lz, <Co T <1 < Truay.

At the same time, by virtue of Propositions 2.2 and 2.3, we can observe that

Tlnax
(6.14) [ oot <o

Step 5. We now use the fact that all the terms in the first equation of (1.1) take their values
in H'(Q). After applying 4 to the equation, take the duality products (-, -}y, With Au(z).
Then, for the same reasons as before, it follows that
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1d
_= ff UuPdxdy + a ff \VAuPdxdy + f f f uPdxdy
2dt JJa Q Q

= ff Vipup, — cuv(u — v) — d] - VAu dxdy,
Q

and that

d
— f f lAu*dxdy + a f f \VAul*dxdy + 2.f f f |Au|*dxdy
dt JJa Q o)
< ¢ [[ (WtupuIP + ¥iuoa - o)) ddy
Q

Here, using (6.11) and (6.13), the first integral in the right-hand side is estimated as

[ wtupsaiasdy < ¢ ([ (9uPlow + 90 dxdy
Q
2

< CUIVUIIZ, lloxsllz, + llollz) < Cllullgellolls + lloll7:) < elldullz, + Cellolls.

& > 0 being any small number. Meanwhile, using (6.6) and (6.11), the second integral is

estimated as
f f IV [uv(u — v)]*dxdy < C f f (IVul® + |VoP)dxdy < C.
Q Q

Therefore, we arrive at the differential inequality
d
EnAu(r)niz +a|VAu@llg, + flldu@liy, < CAo@lzs + 1), T <1< Trax.
Using (6.14), this inequality together with (6.11) yields the estimate
(6.15) lu@ll, <C, T<t< Toax.

. Tmax
At the same time, we have fT ||u(t)||12q3dt < 00,
Of course, the corresponding result holds for v(z), namely,

(6.16) l@IF, <C, T<t< Tonaxs

together with "™ [[o(D)|[2,,di < co.

Completion of the proof. Using the estimates (6.13), (6.15) and (6.16) established above,
we can now claim that the norm ||U(?)||z2 is bounded from above by some constant for any
T <t < Tiax- But combining this with assumption (6.5) immediately leads to a contradic-
tion. Indeed, take any time #y € [7, Tmax) and consider the equation (1.1) at initial time ¢,
with initial value U(ty). As U(tp) satisfies (1.2)-(1.3), there exists a local solution in some
interval [#o, ty + At]. Here, as remarked after the proof of Theorem 3.1, the existence time
interval A¢ > 0 is determined by the lower bound ¢ > 0 in (3.1) and the norm [|U(ty)||g1+e,
which are both uniform for #y € [, Tmax). This means that A¢ must also be uniform with
respect to the initial time #,. Since ¢y can be arbitrarily close to Ty, this clearly contradicts
the maximality of the solution U(%). m]

On the behavior of p(f) as t — Ty, we can state the following theorem.

JR— 2 2
Theorem 6.2. Suppose Tiax < oo. Then lim, 7, max,, 5 [I55(0)] + |§7§(z)|] = 0.
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Proof. We again apply proof by contradiction. Fixing a time 0 < 7 < Ty, suppose that
there exists N > O for which the following holds:

82
280

0x? "

(6.17) max_ [
(x,y)eQ

0%p
— || <N forevery 7 <t < Thax.
oy ]

Under the constrain (6.17), we will show that u(¢) and v(¢) satisfy the conditions (6.5)
and (6.6), which, as we already know, implies a contradiction. Throughout the proof,
as before C denotes a universal positive constant determined by €, the initial constants
a, b, c,d, f, g, u, vin (1.1), the norm [|U(7)||p2, the time Tpn.x, and the constant N in (6.17)
in some specific way.

In this proof, we use w = u + v rather than u and v separately, so we add the first and
second equations of (1.1) to get

ow p  0%p
(6.18) E:aAw—,u[uﬁ+va—yz +2d - fw.
Verification of (6.5). Put 6, = min(x’y)eﬁ w(t) > 0 and define the function

r(t) = 6. N0 L )N + O[T — e WD 7 <1 < Ty

Then, under constrain (6.17), we can repeat the same arguments as in the proof of The-
orem 5.1 for w(t) — r(¢) to derive from equation (6.18) for w(¢) and the equation r'(t) =
—(uN + f)r + 2d for r(t) that

u(t) + v(t) = w) > r(t) forany 7 <t < Tpax-

Verification of (6.6). Let 2 < p < oo and then multiply (6.18) by pw”~! and integrate over

Q:
d P 2
— wPdxdy + [4a(p — 1)/ p] Vw2 |“dxdy + fp wPdxdy
dr JJa Q Q

= p ff [u(upxx + Upyy) + 2d]wp_ldxdy
Q

Here, we used the formula w” 2|Vw|? = (4/p?)|Vw?[%. Then from (6.17), we see that

P f fg [1(up.x + vpyy) + 2d1w’™ dxdy
<Cp fo(Nw” +w’ Hdxdy < Cp ffg(wl’ + Ddxdy.
Therefore, we obtain the differential inequality
LI, < CpwI}, + 1, 7 <1< T

As this differential inequality yields the estimate ||w(t)||ip < Cpe®P, it is finally verified
that

. . 1
lo(@lle., = lim [w@lle, < lim[Cpl7e® = e, 71 < T O
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7. Numerical Example

In this last section, we will present a numerical example which suggests the blowup of
the maximal solution.

Set Q = (0,10) x (0,5) and the parametersasa = b =c = f =g =1,d = 1.6 and
u =5, v = 1. Further, take the initial functions as uy(x, y) = vo(x,y) = 1.6 + £, po(x,y) = 0,
where ¢ is a random perturbation between —0.01 and 0.01. We used the explicit difference
method for choosing the time step and the spatial step as 5.0 x 107> and 0.04, respectively.

The graphs obtained for y(¢) = max .o [|%(t)| + Ig%’j(t)l] are shown in Figure. In both,
the horizontal axis denotes the time variable ¢ and the vertical axis denotes y(?).

8 T T T T T T T 400000

350000 |
300000 - ‘
250000 ‘
200000 “
150000 - |

100000 /
/

50000 - ﬁ/
. :

L L L
15.2294 15.2296 15.2298 15.23 15.2302

Fig.1. Figure: Graphs of y(7)

As we can observe in the two graphs in Figure, after = 15.0, the value of y(¢) increases
very rapidly and our numerical computations quickly collapse, meaning the value of ()
exceeds the numerical limit of the computer and the value of 6(¢) = min(x,y)eﬁ [u(t) + v()]
changes from positive to negative discontinuously in a single time step.
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