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Abstract
We prove that a variation of mixed Hodge structure is embedded in a logarithmic variation
of pure Hodge structure, and a generalized version of this result. These results suggest some
simple construction of the category of mixed motives by using log pure motives.

Introduction

0.1. In this paper, we develop our idea in [7] that a mixed object is embedded in a log pure
object. We improve the result in [7] on this idea (Theorem 1.2) and propose a simple con-
struction of the category of mixed motives over a field based on this idea without assuming
any conjecture (Appendix in this paper).

0.2. The following is a standard example concerning this idea.

Let A be the unit disc {g € C | |g| < 1}, and let X be a smooth complex manifold with
a projective flat morphism X — A which is smooth outside 0 € A and is of semistable
reduction at 0 € A. For ¢ € A, let X, C X be the fiber over t € A. Then we have the mixed
Hodge structure H'(Xy,Z). This mixed Hodge structure is embedded in the limit mixed
Hodge structure “limzo—0 H 1(%,,Z)” > H'(¥y,2Z), and this limit mixed Hodge structure
is associated with the log pure Hodge structure H = H'((X, with log)/(0 with log), Z) of
weight 1 on the standard log point O € A. Thus the mixed object H'(¥y,Z) is embedded in
the log pure object H.

0.3. In [7], we proved that a mixed Hodge structure is embedded in a log pure Hodge
structure, which is the case n = 0 of the following more general result proved in [7]: A
nilpotent orbit of mixed Hodge structures with n monodromy operators is embedded in a
nilpotent orbit of pure Hodge structures with one more monodromy operators. This general
result was successfully applied in [7] to deduce the SL(2)-orbit theorem for the degeneration
of mixed Hodge structure from the SL(2)-orbit theorem of Cattani—Kaplan—Schmid ([3]) for
degeneration of pure Hodge structure.

In this paper, we prove the following further generalization (Theorem 1.2 in Section 1) of
the result in [7]: A log mixed Hodge structure on an fs log analytic space X with polarizable
graded quotients for the weight filtration is, locally on X, embedded into a log pure Hodge
structure on X X S, where § is the standard log point. The text of this paper (Sections 2-6) is
devoted to the proof of this theorem.

2020 Mathematics Subject Classification. Primary 14A21; Secondary 14D07, 32G20.
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0.4. In the theory of mixed motives over a field &, a big question is how to define the set of
morphisms of mixed motives

ey hY)(r) = h(Z)(s)

for schemes Y, Z of finite type over k and for r,s € Z. Here h(Y) is the mixed motive
associated with Y whose ¢-adic realization for a prime number ¢ # char(k) is EBm H (Y &
k, Q) and (r) means the Tate twist. By the construction of the category (MM:x) of mixed
motives over k in A.20 in Appendix, we answer this question as follows. We define the
category (LMbsx) of limit mixed motives associated with log pure motives by using certain
K-groups as the sets of morphisms, and define the mixed motive 4(Y)(r) as a functor from
(LMb==) to the category of Q-vector spaces, by using certain K-groups. Thus a morphism
(1) is a morphism of functors.

We hope that this method is justified by its Hodge version (A.1): Our result on Hodge
theory tells in particular that we can regard a mixed Hodge structure as a functor on the
category of limit mixed Hodge structures associated with log pure Hodge structures.

The notion mixed motive is more difficult than the notion log pure motive (the latter is just
the logarithmic version of the pure motive of Grothendieck) and our hope is that the difficult
objects mixed motives are well-understood by using log pure motives which are simpler.

This Appendix (Section A), which discusses the motive theory, is independent of the text
and one can read it first.

1. The results

1.1. Asin [12], let .A(log) be the category of fs log analytic spaces (i.e., complex analytic
spaces with fs log structures) and let B(log) O .A(log) be the category of locally ringed
spaces over C with log structures which are locally subspaces of objects of .A(log) with the
strong topologies ([12] 3.2).

Fix a subring R of R.

Let X be an object of B(log) and let H be as in one of the following (1) and (2).

(1) H is an R-log mixed Hodge structure (R-LMH) on X.

(2) H is an R-log variation of mixed Hodge structure (R-LVMH) on X.

For the definitions of R-LMH and R-LVMH, for the definitions of R-polarized log Hodge
structure (R-PLH) and R-log variation of polarized Hodge structure (R-LVPH), and for the
pre-versions (pre-R-LMH, etc.), cf. [12] 2.6 and [9] 1.3, where the cases R = Z are treated.
The difference of R-LMH (resp. R-PLH) and R-LVMH (resp. R-LVPH) lies in that the lat-
ter must satisfy the big Griffiths transversality though the small Griffiths transversality is
satisfied by the former ([12] 2.4.9).

In both situations (1) and (2), we assume that H satisfies the following conditions (i) and
(i1).

(i) The local system Hy is locally free as a sheaf of R-modules on X'°2. Furthermore,
W,Hg := HRNn W, (Hr ®7 Q) C Hgr ®z Q and gr,‘LVHR := WyHg/W,_1Hg for all w are locally
free as sheaves of R-modules on X%,

(i) For each w, there is an R-perfect (—1)”-symmetric bilinear form gr!¥ Hg x grVHp —
R - (27i)™® which gives a polarization of gr)V H.
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If R is a field (as in the important cases R = Q, R = R), the condition (i) is empty and the
condition (ii) simply says that H has polarizable gr".

The aim of this paper is to prove

Theorem 1.2. Assume that we are in the situation (1) (resp. (2)) in 1.1. Let S be the
standard log point. Then locally on X, there are an R-PLH (resp. R-LVPH) H on X X §
and an injective homomorphism Hr — Hy, of the local systems of R-modules on (X X S)log
satisfying the following conditions (i), (ii), (a), and (b) below. If W,H = H, there is such an
H' of weight w.

(i) Hy, and Hy/Hg are locally free as sheaves of R-modules on (X X S)log,

(ii) The polarization of H' is given by an R-perfect (=1) -symmetric bilinear form H R X
H, - R- Qni)™™', where w' is the weight of H'.

(These conditions (1) and (i) are automatically satisfied if R is a field.)

(a) The Hodge filtration of H is the restriction of that of H'. More precisely, the Hodge fil-
tration of H on Ho = (Tx)*(O;?g ®rHg) = (TXXS)*(Ol)?iS ®g Hg) coincides with the restriction
of the Hodge filtration of H' on H, = (TXXS)*(OI)?fS ®r Hp).

(b) The weight filtration of H is the restriction of the relative monodromy filtration of H'.
More precisely, for every t € (X X §)'°8, the weight filtration of H on the stalk Hg,;®z Q is the
restriction of the relative monodromy filtration on H ,’?J ®z Q of the logarithm H}’?’t ®zQ —
Hp , ®z Q of the action of the standard generator of m (5'°2),

Remark 1.3. (1) By duality, we have a result in which we replace the injection Hy —
Hy, in Theorem 1.2 by a surjection H, — Hpg and change the conditions (i), (a), and (b)
accordingly.

(2) [7] Proposition 4.1 is a slightly weaker version of the case where X is an fs log point
of this theorem. The structure of the proof of the above theorem given below is similar to
that of the proof of [7] Proposition 4.1 given in Sections 6 and 7 of [7].

(3) On the other hand, the case of Theorem 1.2 where X = (Spec C, C* @ N") implies that
we can take all the aj; to be 0 unless j = k in [7] Proposition 4.1 (cf. the remark after ibid.
Proposition 4.1). As explained in ibid. 5.9, this gives a characterization of R-IMHM ([7]
5.2, [6]) without using relative monodromy filtrations. We state this below as Proposition
1.4.

(4) When X has the trivial log structure, this theorem implies the following. A variation
of mixed Hodge structure with polarizable graded quotients on a complex analytic manifold
X is, locally on X, embedded in a log variation of polarized Hodge structure.

Proposition 1.4. Let (V,W,Ny,...,N,, F) be a pre-R-IMHM ([7] 5.2). It is an R-IMHM
if and only if there is a pure nilpotent orbit (V',w, N, ...,N,,F’) and a surjective homo-
morphism (V' W(N(’))[—w], Ni,....,N,F') > (V,W,Ny,...,Ny, F) of pre-R-IMHMs.

1.5. Inspired by Remark 1.3 (4), we expect that a motive theoretic version of the above
theorem exists, that is, that a mixed motive can be embedded into a log pure motive. Based
on this idea, we construct the category of mixed motives over a field in Appendix (Section
A) by using log pure motives.



448 K. Karo, C. Nakavyama anD S. Usur

2. Preparation on log Hodge theory

We prove two propositions on log Hodge theory together. Proposition 2.1 will be used in
the last part of the proof of Theorem 3.2. Proposition 2.2 will be used in the proof of Lemma
5.2.

Proposition 2.1. Let X be an object of B(log), let R be a subfield of R, and let H be a
pre-R-LMH on X satisfying the small Griffiths transversality. Assume that for each w € Z,
we are given a (—1)“-symmetric pairing {-,), : gri' H® gri H — R(—w) which induces an
isomorphism gruv}’H 5 (gru"f’ H)*(—w) of pre-R-LMH, where (-)* denotes the dual. Let U be
the set of all x € X such that the pullback of H to the fs log point x is an R-LMH and such
that {-, ), is a polarization for every w € Z. Then U is an open set of X.

Proposition 2.2. Let X be an object of B(log), let R be a subring of R, and let H be an
R-LMH on X with polarized gr"' satisfying the condition 1.1 (i). Then locally on X, there
are a log manifold Z (for a log manifold, see [12] Definition 3.5.7) and a morphism X — Z
of B(log) such that H is the pullback of an R-LMH on Z with polarized gr"V' satisfying the
condition 1.1 (i).

Remark 2.3. In the case of R = Z or Q, under the assumption that the local monodromy
of H at each point of X is contained in a sharp cone, Proposition 2.2 is a consequence of the
existence of the moduli space of LMH with polarized gr'¥ and of the fact that this moduli
space is a log manifold as treated in [12] and [9]. Here we treat an R-LMH without such an
assumption on local monodromy. The proof of Proposition 2.2 uses arguments in [12] 2.3.7
and [12] Section 8, and the space E (resp. E) which appears in 2.10 below is a variant of the
space E, (resp. EVU) in [12] and [9].

2.4. Let X be an object of B(log). Assume that we are given a pre-R-LMH H on X. For the
proof of Proposition 2.1 (resp. 2.2), we assume that we are given (-, -}, on gr!" H for each w
which is as in the hypothesis of Proposition 2.1 (resp. which is a polarization).

2.5. Let s € X and let ¢ be a point of X' lying over s. We work around s. Let (¢))1<j<n

be a finite family of local sections of My around s which forms a Z-base of (M)g(p / (9;)5. For
1 < j < n,lety; be the element of 71(s'°%) = Hom ((M‘)g(p/(9§)s, Z) which sends g, to 1 and
qr to 0 for all k # j (see [12] 2.2.9 for this identification). Then the action of y; on Hp; is
unipotent ([12] Proposition 2.3.3 (ii)). Let N; = log(y;) : Hg; ®2 Q — Hp,; ®z Q. Let z; be
a branch of (27i)~! log(g ;) around 7. Then on an open neighborhood of # in X'°2 concerning
Hp = T*((D;?g ®g Hg), we have

n
Ho = exp() | 2jN;)(Ox @ Hg).
i=1

2.6. By replacing X by an open neighborhood of s in X if necessary, we may assume
that there is a chart S — My with an fs monoid S such that S 5 (Mx/0%)s. Let T =
Spec(C[S])* and let X — T be the morphism induced by the composition S — My — Oy.
This induces an isomorphism from s to the “origin” of 7. Since the induced map s'°¢ — 772
is a homotopy equivalence, the restriction of Hy to s'° extends uniquely to a local system
Hg 7 on 792 which also has a weight filtration W and the family ((:, -),),, of pairings. By the
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properness of X'°¢ — X, for some open neighborhood V of s in X, we have an isomorphism
between the pullbacks of (Hg, W, ({:, -)y)w) and (Hg 7, W, ({:, -)y)») tO ylog,

2.7. Let Hy := Hg,. We identify H, with the stalk of Hg 7 at the image of ¢ in T2, Let
I := 7(5'°%) = 71(7'°¢) = Hom (S#, Z). Then I acts on Hy, and the local system Hy 7 has a
canonical I'-level structure with respect to the constant sheaf Hy (that is, we have a canonical
global section of the quotient sheaf Z/T" on 7'°¢, where I is the sheaf of isomorphisms from
Hpg 7 to Hp). Hence we have a canonical I'-level structure on Hg with respect to Hy on ylog
for some open neighborhood V of s in X. We may assume that X = V.

2.8. The following happens on 7'°¢ ([12] 2.3.7). We can regard Hy as a constant subsheaf
of Olﬁg ®r Hy.r as follows.

Since I' = 7;(7°¢) is commutative, I acts on Hpr.

Define a local system H|) on 702 as follows. Taking (g )1<j<n Which is a Z-base of S#P,
let

Hj = €Hgr € OFf @ Hrr  with & = exp() | 2N)).
=1
Here & depends on the choices of the branches z; of (2ni)~'log(g ) (I < j<n),but Hjis
independent of the choice. Furthermore, & mod I is independent of the choice of the Z-base
(qj)j of S¢eP,
Then by 2.5, H|, descends to a local system on 7 . Since 7 is contractible, H is a constant
sheaf. We have an isomorphism

Hj > H,

by using a ring homomorphism (91;“;’ — C which extends the evaluation Oy, — Cby z; — 0.
We identify H{ and Hy via this isomorphism.
We regard H) as a constant sheaf on 7 via the above identification. We regard Hj also as
a constant sheaf on X. We have

1 1 1 1
O;g ®7z HR,T = OTog ®r Hy, (9;()g ®r Hg = @;g ®r Hy,

1.(OF @ Hrr) = Or ®p Hy,  7.(O% g Hy) = Ox @ Ho.

Thus on X, Hp = T*(Ol;;g ®g Hpg) is identified with Ox ®g H,.
Note that in the formula (1) in [12] 2.3.7, “with v =" should be replaced by “with & =".

2.9. Let hY) be the C-dimension of the gIJ; of gruv}/ of H at s. Note that we have W and (-, -),,
on grl¥ Ho g.

Let D be the space of all descending filtrations F on Hoc such that the rank of gr?. of grlV
is the given /; and such that the annihilator of F”gr) in gr)) . under (-, ), is F**'"Pgr) ..
Then D is a complex analytic manifold. See [19] for basic properties of D.

The Hodge filtration on Hy = Ox ®g Hy on X gives a morphism X — D, and the Hodge
filtration on H is the pullback of the universal Hodge filtration on O ®g Hy. Thus we have
amorphism X — E := 7 x D.
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2.10. On E, we have the local system, the pullback Hy z of Hg 7 with W and (-, -),,, and we

have the Hodge filtration on O ®g Hy which is the pullback of the universal Hodge filtration
of Op ®r Hy. We have also an isomorphism Oi;g ®r Hpp = (DE’g ®g Hy. We denote this
object by H;. The H on X is the pullback of this Hj under the canonical morphism (period
map) X — E.

2.11. Let E (resp. E) be the set of all points z of E such that the pullback of Hj to z satisfies
the Griffiths transversality (resp. is an R-LMH with polarized gr"), and endow E (resp. E)
with the strong topology in £ in the sense of [12] Section 3.1 and with the inverse images of
Oj and the log structure of E. Then E is an open set of £, and E and E are log manifolds.
This is seen by the arguments in [12] Section 7, [10] Appendix A.1, and [11] 4.5.

Let Hg (resp. Hg) be the pullback of Hy to E (resp. E).

2.12. Since X — E is strict, for x € X with the image z in E, the pullback of H to the fs log
point x satisfies the Griffiths transversality (resp. is an R-LMH with polarized gr") if and
only if the pullback of H to z has the same property.

2.13. We prove Proposition 2.1. Let X — E be as above. Assume that H satisfies the small
Griffiths transversality. Then the morphism X — E factors through X — E, and U is the
inverse image of E. Since E is open in E, U is open in X.

2.14. We prove Proposition 2.2. Let X — E be as above. Assume that H is an R-LMH with
polarized gr'". Then the morphism X — E factors through E c E and H is the pullback of
Hg.

3. Polarized log mixed Hodge structure and PLH

3.1. Let X be an object of B(log), let S be the standard log point with a fixed generator
q € Mg, letw € Z, and let R be a subfield of R. Let C; and C, be the following categories.

Let C, be the category of pre-R-PLH (resp. pre-R-LVPH) P on X xS of weight w satisfying
the following condition (a).

(a) Locally on X, for some morphism X X § — X X § over X, the pullback of P is an
R-PLH on the left X x §.

Let C, be the category of R-LMH (resp. R-LVMH) H on X endowed with the following
structures (i) and (ii) and satisfying the conditions (1) and (2).

(i) A homomorphism H ® H — R(—w) in the category of R-LMH such that the induced
pairing (:,-) : Hg X Hp — R - (2mi)™" is non-degenerate and (—1)"-symmetric.

(i) A homomorphism N : H — H(—1) such that N* : H — H(—n) is zero for some n > 1
and such that (Nu, v) + (u, Nv) = 0.

(1) The weight filtration on Hg coincides with W(N)[—-w], where W(N) is the monodromy
filtration of N.

(2) Let k > w and let Prim; be the primitive part of gr,Hr for N. Then the pairing
Prim; X Prim; — R(—k) ; (u,v) — (u, N*"“v) is a polarization of the pure PLH Prim; of
weight k.

Morphisms in C; and C, are defined to be isomorphisms in the evident sense.

Note that for an object H of C, and for k € Z, ngVH is endowed with the polarization
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defined by the decomposition of gr,‘?’H as the direct sum of various primitive parts which are
endowed with the polarizations in the condition (2).

Theorem 3.2. We have an equivalence C; ~ C,.

Ci — Cy; P+ H is as follows. Let B be the canonical map (X x S)'°¢ = X'°¢ x §log
X' Then Hg = B.(exp(log(q)N)Pg), where N = (2ri)~'log(y) for the action y of the
canonical generator of m1(5'°%). Hy = Po with the same Hodge filtration. The isomorphism
(91;()‘g ®r Hp = O;?g ®o, Ho is induced from the corresponding isomorphism for P.

Cy — Ci ; H — Pisas follows. Px = HY := exp(~log(q)N)Hr C O, ®g Hg.
Po = Hp with the same Hodge filtration. The isomorphism (9;?56 ®r Pr = (9;?5(5 ®o, Po is
induced from the corresponding isomorphism for H.

3.3. Here, in the argument of P + H, the inverse image of Hi on (X x )2 is
exp(log(qg)N)Pg. In fact, y does not change exp(log(g)N)a for an element a of the stalk
of P because y = (y*)~! (y* is the pullback by ) sends log(q) to log(g) — 2ni and hence
y(exp(log(g)N)a) = exp((log(q) — 2ni)N) exp(2niN)a = exp(log(¢)N)a.

3.4. We first prove Theorem 3.2 in the case where X is an fs log point and R = R. In this
case, Theorem 3.2 is equivalent to the following Proposition 3.5. See 3.6. The case n = 0
of Proposition 3.5 is the well-known relation between nilpotent orbits and polarized mixed
Hodge structures in [18] Theorem (6.16) and in [3] (3.13).

Proposition 3.5. Let V be a finite dimensional R-vector space. Let w € Z and let -, ) :
VXV — R be a non-degenerate (—1)"-symmetric R-bilinear form. Let Ny, Ny,...,N, : V —
V be mutually commuting nilpotent linear operators such that (N ju,v) + {u, N;jv) = 0 for all
u,vinVand0 < j < n. Let W = W(Ny)[—w], where W(Ny) is the monodromy filtration of
No. Let F be a descending filtration on V¢ such that the annihilator of F? for {-,-) is F**1=P
for every p.

Then, (V,(:,-), Ng,aNg + Ny, ...,aNy + N, F) generates a pure nilpotent orbit of weight
w for some, hence for any a > 0 if and only if the following two conditions (i) and (ii) are
satisfied.

1) (V,W,Ny,...,N,, F) generates a mixed nilpotent orbit, where the polarizaitions on the
graded pieces are determined by the following (ii).

(i1) Let k > w, let Py C ngV be the primitive part for Ny, and let {-,-); : Py X Py — R be the
bilinear form (u,v) — (u, Ng_wv). Then (Pi,{:, Y, N1, ..., Ny, F(gr,fv)lpk) is a pure nilpotent
orbit of weight k.

3.6. The relation between Theorem 3.2 and Proposition 3.5 is that X in Theorem 3.2 pro-
vides Ny, ..., N, of Proposition 3.5 and S in Theorem 3.2 provides N, of Proposition 3.5.
For the equivalence of pure (resp. mixed) nilpotent orbits and PLH (resp. LMH), see [12]
Section 2.5 (resp. [9] 2.2.2).

3.7. We prove the if part of Proposition 3.5. The argument below is similar to that in the
proof of [7] Proposition 6.6. See also [8] Theorem 2.4.2 (ii).

nilpotent orbit H = (V, W, Ny, ..., N,, F) with polarized gr" given by (i) and (ii) such that 7
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splits W and 7 for each 1 < j < n splits the relative monodromy filtration of Ny +--- + N;
with respect to W. For y = (yo,...,ys), y; € Ry, let 1(y) = ?:o Tj((yjﬂ/yj)”z), where
Yn+1 denotes 1.

Fix b : {0,...,n} x{0,...,n} — [0, 0] such that b;;bys = bj, unless the set {b, by ¢}
coincides with the set {0, oo}, such that b;; = 1 for 0 < j < n, and such that by ; = co and
bjo = 0for 1 < j < n. Then by the SL(2)-orbit theorem for mixed nilpotent orbit ([7]
Theorem 0.5 and Section 10), we have the associated Fand N Lyeens Nn such that when y; —
oo (0 < j < n) and (y;/yx) jx converges to b, then #(y)™! exp(Z?zo iyiN)F € D converges to
exp(Z;f:O iN j)F € D, where D is the classifying space of PH and D is its compact dual (see
[7]1 0.1 for the precise definitions). Since D is open in D, we have t(y)~! exp(Z?ZO iyiN)F €
D and hence exp(Z?zO iy;iN;j)F € Dif (y;/yi) i 1s sufficiently near to b.

This proves that (V, (-, -), Ng,aNy + Ny, ...,aNy + N,, F) generates a pure nilpotent orbit
of weight w for any a > 0.

3.8. We prove the only if part of Proposition 3.5. There is ¢ € R such that if y; > ¢
for 0 < j < n, (V,{-,-),F,) with F, := exp(iyoNo + Z’}zl iyj(aNo + N;)F = exp(i(yo +
a1 ypNo + X'y iy;NF is a polarized Hodge structure of weight w. Hence if b; > ¢
for1 < j < n, (V,(,-), Ny, exp(Z;?zl ib;N;)F') generates a pure nilpotent orbit of weight w.
Hence by the classical result of Schmid [18] Theorem (6.16) to which we referred to in 3.4,
iftb;>cforl <j<n, (V,W, exp(Z’}zl ib;N;)F) is a mixed Hodge structure and for k > w,
(P, (-, -)k,exp(z‘,?zl iijj)F(gr]‘:V)lpk) is a polarized Hodge structure. This proves that the
conditions (i) and (ii) are satisfied.

3.9. Theorem 3.2 for general R is reduced to the case R = R because the conditions (a),
(1), and (2) can be checked after tensoring R. Theorem 3.2 for a general X is reduced to
the case where X is an fs log point by Proposition 2.1. (Note that, by construction, the
correspondence in Theorem 3.2 preserves the big Griffiths transversality.)

4. Study of Ext groups

4.1. Let X be an object of B(log). We will consider the following six categories H D
H(x) D H(*xx), Ly, L D L(*). Fix a subring R of R.

Let H (resp. H(x), resp. H(xx*)) be the category of pre-R-LMH (resp. R-LMH, resp. R-
LVMH) on X satisfying the condition (i) in 1.1.

Let L, be the category of locally constant sheaves of finite dimensional R-vector spaces
on X'°¢ whose local monodromies are unipotent. Let £ be the category of pairs (L, W),
where L is an object of Ly and W is an increasing filtration (called weight filtration) on L
such that each filter W;, is locally constant and that W, = L for some k and W, = 0 for
some k. Let L(x) be the full subcategory of £ consisting of objects L such that the local
monodromies of L are admissible (see [9] 1.2.4).

These categories are exact categories (in the sense of Quillen). For a contemporary treat-
ment of exact categories, see [2]. A short exact sequence in H, in H(x), or in H(sx*) is a
sequence 0 —» H; — Hy, — H3 — Osuchthat0 — W H, g — Wi Hyr — Wi Hs g — 0 for
allkand 0 — FPH, 9 — FPHy 9 — FPH3 9 — 0 for all p are exact. A short exact sequence
in L is an evident one, and that in £ or in £(x) is a sequence 0 — L; — L, — L3 — O such
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that the sequences 0 — Wi L; — WL, — W;L; — 0 are exact for all k.

We have Yoneda’s higher Ext group Ext” for any exact category ([16] Appendix Proposi-
tion A.13). For example, Ext ! is the set of isomorphism classes of extensions endowed with
the group law given by Baer sums. A short exact sequence gives a long exact sequence of
Ext".

4.2. If C is one of the above categories H, H(x), H(xx), Lo, L, and L(x), and if A, B are
objects of C, we have a sheaf £xt/.(A, B) of abelian groups on X which is the sheafification
of the presheaf U +— Ext7,(A’, B’), where U is an open set of X and C’,A’, B’ are the
restrictions of C, A, B over U, respectively.

The goal of this Section 4 is to prove the following proposition.

Proposition 4.3. Let C be either H(*) or H(xx). Let 0 — R(1) » P - Q — 0 be an
exact sequence in C and assume that the weights of Q < —1. Then the map & xt é(R, P) —
Ext IC(R, Q) is surjective.

Lemma 4.4. Let L be an object of L(x) such that the local monodromy actions on L are
trivial and such that W_,,L = 0.

Then the canonical map é'xtz(*)(R, L) — 8thO(R, L) = R"'t.L is the zero map. Here
WoR =R, W_1R =0, and 7 is the canonical projection X2 — X. In other words (assume
n>1)if

O0-L—>L, - —>LL—>L -R-0
is an exact sequence in L(x), the induced section of R"7.L is 0.

Proof. The case n = 0 is evident. Assume n > 1 and consider an exact sequence 0 — L —
L,— =L, > L — R — 0in L(x). Let t € X'°¢ and let x € X be the image of ¢. Then
(R"t.L) is isomorphic to (A% (M)g(p /O%)x) ®z L; and is isomorphic to the Lie cohomology
H"(g, L), where g is the commutative Lie algebra Hom ((M)g(p/O)X()X, Q) which acts on L,
trivially. Let o~ be the monodromy cone Hom ((Mx/O%)x, R;%d) of x. In the rest, we omit 7 in
(+);- By the admissibility, we have a relative monodromy filtration W(c) on L, L; (1 < j < n),
R and the sequence 0 —» W(o )L — W(o)L, — --- = W(o)L, — W(o)R — 0 is exact
for every k. For 0 < j < n, let I; be the image of L;;; — L;, where Ly denotes R and

L, denotes L. Hence I is identified with R and I, is identified with L. We compute the n-
cocycle f, : \j ¢ = L corresponding to the element of H"(g, L) in problem, by the standard
method: By induction on j, we get a j-cocycle f; : /\é g — I; starting from fo = 1 € R = I
To get fj;1 from f;, we lift f; to a j-cochain f] : /\ég — Lj;1 and obtain fj,; from f]
By induction on j, we get f; whose image is in W(o)_»;/; and lift it to fj whose image is
in W(0)-2;Lj.1, and get fj,; whose image is contained in (3} e NW(0)_2;Ljs1) N 1jyy C
W(o)-2¢j+1)lj+1. Thus we get f, whose image is in W(o)_2,L = W_,L = 0. m]

Lemma4.5. Let0 - L — P — Q — 0 be an exact sequence in L(x). Assume that the
local monodromy actions on L are trivial and WyL = L. Fora € £ xt}(R, P) and the image
bofain Sth(R, 0), a belongs to Exté(*)(R, P) if and only if b belongs to Exté(*)(R, 0).
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Proof. It is enough to prove the if part. We may assume that a is the class of an exact
sequence 0 —» P — P — R — 0in £ and b is the class of the exact sequence 0 — Q —
0 — R — 0in L(%), where Q = P/L. Let o be as in the proof of Lemma 4.4. For each
face o’ of o, we have the relative monodromy filtration W(o”’) on P defined as follows. If
k <=1, W(o' WP = W(o"' ) P. If k > 0, W(c/ )P is the inverse image of W(c”'),Q. Hence P
belongs to L(x). m]

4.6. Note that for a topological space T and for a complex of sheaves of R-modules on
T of the form C = [C° — C'] (that is, a complex of sheaves of R-modules whose degree
d-parts are zero unless d = 0, 1), the hyper-cohomology H'(T, C) is identified with the set
of isomorphism classes of pairs of an exact sequence of the form 0 — C® - E - R — 0
and a splitting E — C'.

4.7. For an object H of H satisfying the condition (i) in 1.1 on X, let
C(H) = [Hy = (Hg ® Oy*)/F°],
where Hp is of degree 0. Then we have identifications

Hom (R, H) = H*(X'°¢, C(H)) if the weights of H < 0,

Ext} (R, H) = H'(X'°¢, C(H)) if the weights of H < —1.
H g

This is shown by using 4.6.

Lemma 4.8. Let 0 —» R(1) - P — Q — 0 be an exact sequence in H such that the
weights of Q < —1. Then we have an exact sequence

Exty, (R, P) — Ext) (R, Q) — R*T.R(1).

Proof. By 8xt71{(R, P) = R't.C(P) (4.7) and by the corresponding isomorphism for Q,
we have an exact sequence £xt;{(R, P) — é'xt,l{(R, Q) — R*t.C(R(1)). Since C(R(1)) =
[R(1) — (91;;g], we have an exact sequence 0 = Rl‘r*(9§?g — R?1,C(R(1)) » R*t,R(1). O

Lemma 4.9. Let C and O — R(1) — P — Q — 0 be as in the hypothesis of Proposition
4.3. Then the map Ext; (R, Q) — R*7.R(1) in Lemma 4.8 kills Ext.(R, Q).

Proof. Since R*7.R(1) = R ®; A2 (MY /0O%), the map R*7,R(1) — R*7.R(1) is in-
jective. The map Ext.(R,Q) — R*1.R(1) factors as Extj.(R, Q) — é’xtz(*)(R, Or) —
Exty, (R,R(1) — Extg (R,R(1)) = R*7.R(1). This is 0 by the case n = 2 and L = R(1) of
Lemma 4.4. O

By Lemmas 4.8 and 4.9, for the proof of Proposition 4.3, it is sufficient to prove the
following.

Lemma 4.10. Let C and 0 — R(1) —» P — Q — 0 be as in the hypothesis of Proposition
4.3. Then for a € Sxt}i(R, P) and the image b of a in é'xt,l{(R, 0), a belongs to 8xté(R, P) if
and only if b belongs to € xté(R, 0).
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Proof. It is sufficient to prove the if part. We may assume that a is the class of an
exact sequence 0 — P — P — R — 0 in H and b is the class of the exact sequence
0— Q— QO — R — 0in H(x), where O = P/R(1).

Then (the associated R-local system of) P satisfies the admissibility of local monodromy
by Lemma 4.5.

If C = H(x) (resp. C = H(xx)), P satisfies the small (resp. big) Griffiths transversality
because

(Pror O/ F ) ®c wl = (Or @ OF)/F ) @c wl  forx € X.

(resp. (Pr ®r O%%)/F™") @0, wk — (O ®k OL8)/F~) @0, wl.)

Finally, we prove that for t € X!°¢ lying over x € X and for s € sp(r) ([12] 2.4.6), if
exp(s(log(+))) : Mif’x — C* is sufficiently near to the structure homomorphism ay ., then the
associated specialization P(s) is a mixed Hodge structure. If k # 0, gr,‘:‘/f’ = gr}:VP and hence
gr,g"f’(s) is a Hodge structure of weight k. We consider gr(v)v P(s). We have exact sequences
0 — gr)/Pc — grfPc > C — 0,0 - FPgry P(s)c — Frgr) P(s)c > C — 0forp <0
and F? grgv P(s)c gy gr(‘))v P(s)c for p > 1. Hence we have the Hodge decomposition of
W
gry P(s). m|

5. Construction of an extension with three graded quotients

In this section, we prove Theorem 1.2 in the special case where W_1H = H, W_3H = 0,
and ngVZH = R(1). Let Q := ngVIH. Thus we have an exact sequence 0 — R(1) - H —
0—-0.

5.1. Let O = H*(1), where (-)* denotes the dual. The intersection form (-,-)_; : @ X Q —
R(1) of a polarization gives an isomorphism Q it o(1l) ; uv (v +— {(uv)). Hence
WoQ=0.grV O =R, " 0 =0, and W,0 = 0.

Let C be H(*) or H(xx*), and assume that H belongs to C. By the surjectivity of £ xté(R, H)

— Ext}(R, Q) (Proposition 4.3), locally on X, the class of Q in Ext (R, Q) lifts to the class
in Ext (R, H) of an exact sequence 0 » H — H — R — 0 such that H/R(1) = Q.

Lemma 5.2. There is a unique isomorphism H = (H)*(1) whose gerl coincides with Q =
0*(1), whose gr(‘)” is the identity homomorphism of R, and whose grf‘/2 is the multiplication
by —1 on R(1).

Proof. If we have two such isomorphisms f,g : H = (H)*(1), f —g : H — (H)*(1) sends
W to Wy_, and hence is zero. This proves the uniqueness.

We prove the existence.

First we consider the case Q = 0. We have an exact sequence 0 — R(1) — Hr > R— 0.
We have the wedge product (-, -) : Hp x Hy — /\12e Hg = R(1), where the last isomorphism
is such that the induced map grgv ® gr_W2 — R(1) is the canonical map R® R(1) — R(1). This
pairing induces a perfect pairing Ho X Ho — Ox of Ox-modules. The Hodge filtration F of
Hp satisfies F~! = Hp, F is a line bundle, F! = 0, and the annihilator of F° under (-, -) is
F° Hence (-,-) induces H = (H)*(1) ; u+— (v (u,0)).
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We consider the general case. A proof may be given by writing explicitly the involved
Hodge filtrations, but we give a proof by some abstract argument. We may assume C = H(x).

We have two sections a, a*(1) of Sxt;{(*)(R, H) given by H and (H)*(1), respectively.
Here to define a*(1), we identify W_;((H)*(1)) with H via W_1((H)*(1)) = (Q)*(1) =
(H*(1))"(1) = H.

For the proof of Lemma 5.2, it is sufficient to prove

(D a+a'(1)=0.

In fact, then, there is a natural isomorphism from H to the pushout of (H)*(1) by —1 :
W_ 1 ((H)*(1)) = W_((H)*(1)), whose gr(‘)V is the identity homomorphism of R such that the
induced H = W_;(H) — W_;((H)*(1)) = H is the multiplication by —1. This is the desired
isomorphism because Q = Q*(1) = (Q*(1))*(1) = Q is the multiplication by —1 on Q.

Note that we have already proved (1) in the case Q = 0, by the above consideration on
the case Q = 0.

Concerning (1), we have the following (2) and (3).

(2) This element a + a*(1) belongs to £ xt;i(*)(R, R(1)), since its image in £ xt}i(*)(R, Q) is
Zero.

(3) This sum a + a*(1) is determined by the image of a in Ext,lﬂ*)(R, Q). In fact, if the
image of b € £ xt}_l(*)(R, H)in & xt;l(*)(R, Q) coincides with that of a, we have b = a + u for
some u € Sxt}{(*)(R, R(1)). By the case Q = 0 considered above, u + u*(1) = 0, and hence
b+b () =@+uw+@+w)=>@+a 1)+ w@+u(l)=a+a(1).

By (2) and (3), we obtain a homomorphism & xt}{(*)(R, 0) — Sxt}{(*)(R, R(1)). Note that
Ext;{(*)(R, R(1)) C Ext, (R, R(1)) = T*(Ol;g /R(1)). We prove that this homomorphism is the
zero map. By Proposition 2.2, this is reduced to the case where X is a log manifold. Let
Xuiv be the open set of X consisting of all points at which the log structure of X is trivial,
which is a complex analytic manifold. In this case, for the inclusion map jlog Xy — X8,
O;?g — jiog(OXm.V) is injective and R(1) — j}fg(R(l)) is an isomorphism, and hence the map
O;?g /R(1) — jiog(@xu.iv /R(1)) is injective. By this, replacing X by Xy, we are reduced to
the case where X is a complex analytic manifold with the trivial log structure. In this case,
H(x)=H.

We first consider the case X = Spec(C) with the trivial log structure and R = R. In this
case, Ext ;{(R, 0) = Or \ Oc/F° (cf. 4.7) vanishes because Q is of weight —1, and hence the
map Ext %(R, Q) — Ext %(R, R(1)) is the zero map.

This proves that in the case where X is a complex analytic manifold with the trivial log
structure, the composite map Ext;,(R, Q) — Ext;,(R,R(1)) = Ox/R(1) — Ox/R(1) is the
zero map. Hence in this case, the map Ext},(R, Q) = O \(Qr®rOx)/F® — Ext;,(R,R(1)) =
Ox/R(1) has the image in R(1)/R(1). Since there is no non-zero homomorphism from Oy
to the constant sheaf R(1)/R(1) which is functorial in X, we see that this map is zero. m]

5.3. We return to the proof of Theorem 1.2. Let N : H — H(-1) be the homomorphism
H — gr(‘)”I:I =R = (grYVQI:I)(—l) c H(-1). Then the desired PLH (resp. LVPH) on X x S
of weight —1 is the pullback H’ of H™ by X x S — X x S over X, g on the right hand
side is sent to ¢ f on the left-hand-side, where f is some global section of My. Here, (-)")
is as in Theorem 3.2. (Although R is a field there, the construction is the same. Note that
since 2niNHy c Hg and N> = 0 here, we have exp(2niN)Hi = Hy and hence AV has
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an R-structure.) We prove that this H’ is a PLH (resp. LVPH). The small or big Griffiths
transversality is easy to see. We have the isomorphism H’ = (H’)*(1) in Lemma 5.2 and it
gives a polarization (-,-) : H X H' — R(1) for which the isomorphism is u + (v > (u, v)).
To prove that (-, -) is actually a polarization, we may assume that the base X is an fs log point
and hence we reduce to the case of Theorem 3.2 where X is an fs log point and R = R.

6. Proof of Theorem 1.2

We prove the general case of Theorem 1.2. We use the induction on n for the integer
n > 2 such that there is w € Z satisfying W,H = H and W,_,H = 0.

6.1. First assume n = 2. Let A = gr,‘;VH, B = grl‘;V_lH = W,_1H. We consider B*(1) ® H
and use B*(1) ® B — R(1) to get P as the pushout. We have W_,P = P, W_3P = 0,
gr?’lP =B (1)®A, grEVzP = R(1). We get P as in the previous section. Let H = B(—1) ® P.
Since P is regarded as a PLH (resp. LVPH) of weight —1 by the previous section (after taking
()™, A is regarded as a PLH (resp. LVPH) of weight w. This H regarded as a PLH (resp.
LVPH) is the desired H’.

Here N is the evident isomorphism grL‘g’Jr1 - gruvf’_l(— 1) induced by the identity map of B.

We embed H into H by
H—-> BB ®H - B(-1)®P - B(-1)®@ P =H.

The map Hg — Hp is injective (with locally free cokernel) because its grl¥  is Bg —
Br ® By ® Br — Bg, where the first arrow isb — }je; ® ej ® b for a local base (e;); of Bg
and for the dual base e; of By and the second arrow is the map u ® v ® b — uv(b), and the
composite map Bg — By is the identity map because it gives e, > 3 ¢; ® e e e

6.2. Assumen > 3, W,H = H, W,,_,H = 0. Then by the hypothesis of induction applied
to W,_1H, we find a PLH (resp. an LVPH) I > W,_1H on X X § of weight w — 1. Let J
be the pushout of H « W,_1H — I. Then we have W,,J = J, W,, »J = 0, grt’V'J = gtV H,
gru‘})V_IJ = I. Hence we find a PLH (resp. an LVPH) K > J on X X § X § of weight w. We
get the desired PLH (resp. LVPH) H’ > H on X X S of weight w as the pullback of K by the
diagonal § — S x S.

It is clear that the condition (a) in Theorem 1.2 is satisfied. In 6.3 below, we show that
the condition (b) in Theorem 1.2 is satisfied.

This will complete the proof of Theorem 1.2.

6.3. We prove that the condition (b) is satisfied. We may assume that X is an fs log point.
We can use the following.

If (W,Ni,...,N,, F)is a mixed nilpotent orbit with polarizable gr", we have:

(1) We have a relative monodromy filtration W of (W, N;) and (WY, N,, ... N,,F)isa
mixed nilpotent orbit.

(2) The relative monodromy filtration W® of (W), N,) coincides with the relative mon-
odromy filtration of (W, N| + N).

3) (W,Ny + Ny, N3, ...,N,, F) is a mixed nilpotent orbit.

In 6.2, we apply these to the pure weight filtration W of weight w and to the mixed
nilpotent orbit K = (W, N_1, Ny, Ny, ...,N,, F), where Ny, ..., N, comes from X, Ny comes
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from S of X x S, and N_; comes from the second S of X x § X S. Then by (1) and (2),
we have a mixed nilpotent orbit (WP Ny,...,N,, F), where W®? is the relative monodromy
filtration of (W, N_; + Np). I (resp. J) is a sub mixed nilpotent orbit which is the weight w— 1
(resp. < w) part of the mixed nilpotent orbit (WY, Ny, ..., N,, F) (consider (1)), where W)
is the relative monodromy filtration of (W, N_;). We have a mixed nilpotent orbit I’ (resp.
J) =W Ny, ..., N, F) whose underlying space is the same as / (resp. J).

The original W,,_1H is a sub mixed nilpotent orbit of I’. Hence the weight filtration of
W,,_1H is the restriction of W®. The original H satisfies that H/W,_1H is of weight w.
J'/I' also has weight w. Hence the weight filtration of H is the restriction of W®. Thus we
complete the proof of that the condition (b) is satisfied.

Appendix A Mixed motives and log pure motives

In this section, we will give some simple construction of the category of mixed motives
over a field based on the idea that mixed motives should be embedded into log pure motives.

A.1. We present the Hodge analogue of our story on motives.

Here, Hodge or log Hodge structure means Q-Hodge or Q-log Hodge structure.

Let S be the standard log point over C. Let (LH) be the category of polarizable log Hodge
structures on S. For H € (LH), let H” be the associated mixed Hodge structure endowed
with the monodromy operator N : H> — H’(~1).

Let (LHD) be the category of pairs of a mixed Hodge structure and N of the form H® with
H <(LH).

Let (MH) be the category of contra-variant functors from (LHD) to the category of Q-
vector spaces defined by a pair (H, V) as in (1) below, where H € (LHb) and V is a Q-
subspace of Hy satisfying the following conditions (i) and (ii).

(i) For some H’ € (LHb) and for some morphism H” — H in (LHb), V is the image of
H@ — Hp.

(ii) N of H kills V.

(1) H + {h € Morqm,)(H',H) | h(H@) c V§

Then (MH) is equivalent to the category of mixed Hodge structures with polarizable gr"
by the case X = Spec(C) with the trivial log structure of Theorem 1.2 and Remark 1.3 (1).

A.2. Let k be a field, and let S be the standard log point over k.
We have the log absolute Galois group ﬂllog(S). It is the automorphism group of the log
separable closure (cf. [13] (2.5)) S of S over S. We have an exact sequence

0 — Z(1) — 7°4(S) — Gal(k/k) — 1,

where Z(1)Y is the product of Z,(1) for all prime numbers ¢ which are not equal to the
characteristic of k and £ is the separable closure of k.

A.3. We fix a prime number £ which is different from the characteristic of k. Let P be
the category of projective vertical log smooth saturated fs log schemes over S which have
charts of the log structure Zariski locally. (The condition “saturated” here is not essential
but we impose it because we would like to find the reason why our definitions are right in
the analogy with the Hodge context presented in A.1. See 0.4.)
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Let X € P. Form € Z, let
H"(X); = Hjpge (X Xs S, Qp).

It is a finite dimensional Q-vector space endowed with a continuous action of ﬂllog(S).
We make symbols H”(X)(r) and H"(X)(r)" for X € P and for m, r € Z such that m > 0.

A4. Let K = K, or K = KH,,, where K, is Quillen’s K-theory and KH, is the homotopy
K-theory of Weibel [21]. Following the method in [4] 2.4.6, for an fs log scheme X having
charts Zariski locally, we define

Kiim(X) = h_r)n K(X"),

where X’ ranges over all log modifications of X in the sense of [4] 2.3.6 and K(X’) means K
of the underlying scheme of X’. The K-group Ky jin, is used in [4] and also in the first half of
this Appendix, and the K-group K H,, i, is used in the latter half of this Appendix.

AS. LetX,Y e P.
By a morphism H"(X)(r)* — H'(Y)(s)’, we mean a Q-linear map H"(X)(r) —
H"(Y)(s) which is obtained as below from an element of

gr'Koim(X xs ¥ X Gj,) ® Q,

where t = (n —2s) —(m —2r) and u = d + n — m + r — s with d being the dimension of X
(the dimension is defined as a locally constant function on X), and gr* is the graded quotient
for the y-filtration. (If X is not equi-dimensional, this K-group is defined as the direct sum
of the K-group of connected components of X by using the dimension of each connected
component.)

If m —2r > n — 2s, there is no non-zero morphism. We assume m — 2r < n — 2s. We have
homomorphisms

2" Kojim(X Xs Y X G' )@ Q — H*(X x5 Y x G )e(u)

— HX"(X), ® H'(Y)(d + 5 = 1) ® H'(Gl) (1) — Hom (H"(X)(r), H'(Y)(5)).

Here to have the first homomorphism, we use the fact that the log blowing-up along the
log structure does not change the log étale cohomology. The second homomorphism is
by Kiinneth formula, and the third one is by Poincaré duality and by the canonical map
H'(G!)(2) 3 Qy induced by H'(G,,); = Qy(-1). (For basic properties of log étale coho-
mology, see [14].)

As is easily seen, a linear map H"(X),(r) — H"(Y),(s) commutes with the action of
nllog(S) if it is a morphism H™(X)(r)" — H"(Y)(s)".

By a morphism H"(X)(r) — H"(Y)(s), we mean a morphism H"(X)(r)* — H"Y)(s)
such that we can take t = 0 in the above.

If m — 2r # n — 2s, there is no morphism H"(X)(r) — H"(Y)(s).

Proposition A.6. (1) The identity map of H"(X)(r) is a morphism H™(X)(r) — H™(X)(r)
and hence a morphism H"(X)(r)" = H"(X)(r)".
(2) For morphisms H"V(X))(r(1))" — H"?(X2)(r(2))" and H"®(X)(r(2))" —
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H"3(X3)(r(3))°, the composition is a morphism H"D(X)(r(1)" —» H™(X3)(r(3)). The
non-b version is also true.

Proof. The proof for the non-b version is given in [4] Propositions 3.1.4 and 3.1.6. The b
version is proved in the same way. O

Thus we have the category (LMb) of H’"(X)(r)" and the category (LM) of H"(X)(r). A
variant of the latter was considered in [4].

A.7. We define the category (MM) as the category of contra-variant functors from (LMb) to
the category of Q-vector spaces which are obtained as in (1) below, from an object H" (Y )(s)
of (LMb) and a Q,-subspace V of H"(Y)(s) satisfying the following conditions (i) and (ii).

(i) There is a morphism H™(X)(r)’ = H"(Y)(s)" for some X, m, r such that V is the image
of H"(X)¢(r) = H"(Y)¢(s).

(ii) The action of 7r11°g (S) on V factors through Gal(k/k).

(1) H"(X)(r)" + the set of all morphisms H"(X)(r)* — H"(Y)(s)" such that the image of
H"™(X)¢(r) > H"(Y)(s) is contained in V.

A.8. We expect that this category (MM) is the category of mixed motives over k.

A.9. The above may be one of the simplest constructions of the category of mixed motives,
and by the comparison with the Hodge version in A.1, we expect that the obtained category
is the right one.

However, it is not clear whether the above (MM) contains the “usual” mixed motives
H™(T)(r) associated with schemes 7 of finite type over k. We give below another construc-
tion of the category of mixed motives over k containing these “usual” objects, again by using
log pure motives, and will conjecture that these two constructions give the same category.

A.10. For this, we use the homotopy K-theory KH,, (n € Z, it is important for us that n can
be negative here) defined by Weibel [21]. There is a canonical homomorphism K, — KH,
from Quillen’s K-theory K,, which is an isomorphism for regular Noetherian schemes. The
reason why we use KH,, not Quillen’s K-theory, is that we use the Riemann—Roch theorem
for KH,, proved in [15].

A.11. For a scheme T of finite type over k, let H"(T), = Hj(T ® k, Q).

Let X € P. Let Y be an object of P (resp. a scheme of finite type over k). By a morphism
ho: H™X)(r)"* — HMY)(s)"* (resp. H™(X)(r)"* — H™(Y)(s)) of symbols, we mean a Q-
homomorphism H"(X).(r) — H"(Y)(s) obtained from some element of

grd_’”KH(m_Zr)_(n_zs),hm(Z) ®Q, where Z=XxXgY (resp. Z=XxY).

Here d is the dimension of X. Note that an element of this K-group goes by the Chern class
map to H**"*"(Z),(d — r + s), and by Kiinneth formula and by Poincaré duality of X, to
Hom g, (H"(X)¢(r), H"(Y)(5)).

For such a morphism /4 and for a morphism g : H"M(X,)(r(1))** — H™(X)(r)"* with X; €
P, the composition 2o g : H™V(X))(r(1)) — H"(Y)(s) is a morphism H"V(X,)(r(1))"* —
H'(Y)(s)”* (resp. H™W(X)(r(1)"* — H"(Y)(s)). The identity map H"(X)(r)* —
H™(X)(r)"* is a morphism. These are proved in the same way as the non-b case in Propo-
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sition A.6, by replacing the Riemann—Roch theorem for K by the Riemann—Roch theorem
for KH,, in [15] which works for projective morphisms locally of complete intersection.

Thus we have a category (LMbx), and for a scheme Y of finite type over k, we have a
contra-variant functor

H™(Y)(s) : H™(X)(r)"* +~ {morphisms H"(X)(r)"* — H"(Y)(s)}

from (LMbx) to the category of Q-vector spaces.

Let (MM3x) be the smallest full subcategory C of the category of contra-variant functors
from (LMb=) to the category of Q-vector spaces satisfying the following conditions (i) and
(i1).

(i) C contains the functors H"(T)(s) for schemes T of finite type over k and for n, s € Z.

(i1) The kernel of every morphism of C belongs to C.

That is, if Cy denotes the category of the functors H"(T')(s) for schemes 7" of finite type
over k and for n,s € Z and if C;; is the category of functors which are kernels of some
morphisms of C;, then (MMx#)= ;59 C:.

Thus (MM3x) is an additive category with kernels of morphisms. The authors expect that
it is an abelian category, but have not yet proved it. The authors have not yet proved that the
category (MM) is stable under taking kernels.

A.12. For any scheme 7" and for an integer t > 0, we have a canonical homomorphism
Ko(T x G!)) - KH_,(T), and the Chern class map on the former K-group factors through
the Chern class map on the latter K-group. Hence we have a functor

(LMb) — (LMb=)

(the objects are the same but the set of morphisms might be enlarged in the latter category).

Conjecture A.13. (LMb) = (LMbx) and (MM) = (MM3x).

To check that our definitions of the category of mixed motives are reasonable, we show
an example A.18 with our definitions for which the problems on Tate conjecture and Hodge
conjecture (A.14) and the monodromy conjecture (Conjecture A.17) on mixed motives have
affirmative answers (Proposition A.19).

A.14. Let Y and Z be schemes of finite type over k (resp. objects of P) and let m, n,r, s € Z.
We ask whether the following (1) and (2) are true.
(1) (Tate conjecture.) Assume that k is finitely generated over the prime field. Then

Qr ®g Morqus)(H"(Y)(r), H'(Z)(s)) = Hom Gal@ " e(r), H(Z)e(s))

I3

(resp. Q; ®q Morn, (H"(V)(1)', H'(Z)(s)’) = Hom s g (H"(Y)(r), H'(Z)(s).
(2) (Hodge conjecture.) Assume that k = C. Then
Morme (H™ (Y)(r), H'(Z)(s)) > Hom oy (H" (V) HY(Z)($)n)

(resp. Mot (H™(Y)(r)', H'(Z)(5)") = Hom ) (H™(Y)(r)s, H'(Z)(5)3)))-
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Here (-)y is the associated mixed Hodge structure (resp. mixed Hodge structure with N).

A.15. The conjectures in A.14 for the first isomorphisms in (1), (2) (i.e., for (MMzx)) are in

general false. The example in Appendix of [5] written by S. Bloch is a counter-example for
the first isomorphism in (2) in which ¥ = Spec(C), m = 0, r = 0, Z is the W there which is
three dimensional and singular, n = 4, s = 2. A counter-example for the first isomorphism
in (1) is obtained from by defining this W over a number field.

We expect that the conjectures for the second isomorphisms in (1), (2) (i.e., for (LMb))
are true in general. We expect that the above conjectures for the first isomorphisms in (1),
(2) are true for smooth Y, Z, and more generally, for the underlying schemes of log smooth
saturated fs log schemes over the standard log point.

Remark A.16. (1) For singular varieties, the Hodge conjecture [a Hodge class in homol-
ogy = an algebraic cycle class] and the Tate conjecture [a Tate class (a Galois invariant
element) in homology = an algebraic cycle class] are formulated in Part II of Jannsen [5]
and are shown to be equivalent to the classical Hodge conjecture and Tate conjecture for
projective smooth varieties (and hence are believed to be true), but the Hodge conjecture [a
Hodge class in cohomology = an algebraic cycle class] and the Tate conjecture [a Tate class
in cohomology = an algebraic cycle class] are false by Appendix of [5] written by Bloch.
The counter-examples in A.15 appear because our theory considers cohomology H"(X)(r),
not homology H,,(X)(r).

(2) In Part II of [5], for smooth varieties, conjectures [Hodge classes in cohomology come
from Quillen’s K-theory] and [Tate classes in cohomology come from Quillen’s K-theory]
(for various Tate twists of the cohomology) are formulated. These are essentially the first
isomorphisms in (1), (2) of A.14 for Y = Spec(k) and m = 0, r = 0, and Z smooth, though
we use the homotopy K-theory KH, not Quillen’s K-theory.

Conjecture A.17. (Monodromy conjecture which tells that the monodromy operator
comes from geometry, not only from Galois theory.)

For X € P, the monodromy operator N : H"(X); — H™(X)/(—1) is a morphism H"(X)"
— H™(X)(=1)", and hence is a morphism H™(X)"™ — H™(X)(-1)".

A.18. Example. Let A be a discrete valuation ring with residue field &, and let X be a
projective regular flat scheme over A of relative dimension one with smooth generic fiber
and with semistable reduction. We assume that the special fiber of X is a simple normal
crossing divisor. Endow Spec(A) and X with the canonical log structures. We regard S as
the closed point of Spec(A) with the induced log structure. Let X be the fs log scheme
X Xspec(n) S over S. Then X € P. Let T be the underlying scheme X ®, k over k of X. We
have a canonical injective homomorphism H'(T), — H'(X),.

Remark. H'(X)" (or H'(X)") is regarded as the limit mixed motive, an analogue of limit
mixed Hodge structure.

Proposition A.19. Let the notation be as in A.18.
(1) The Tate conjecture and the Hodge conjecture A.14 for (MM=x) are true in the case
Y=Speck), Z=T,m=0,n=1,r=s5s=0.
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(2) The Tate conjecture and the Hodge conjecture A.14 for (LMb) are true in the case
Y=85Z=Xm=0n=1,r=s=0,andalsointhecaseY =X, Z=85S m=1,n=0,
r=0 s=-1.

(3) The monodromy operator N : H'(X); — H'(X)/(~=1) is a morphism of (LMb) (and
hence a morphism of (LMbx)).

Proof. In (1) and (2), we only discuss the Tate conjecture. The proof for the Hodge
conjecture is similar.

In the discussion about (MMx) (resp. (LMb)), we denote H°(Spec(k)) (resp. HO(S)") by
Q. With this notation, the Tate conjecture in (1) is written as

Q¢ ® Moraum(Q, H'(T)) > Hom Galeo Qe H "(T)e),

and the statements on the Tate conjecture in (2) are written as

Qr ®g Morqumy(Q. H'(X)") > Hom x5y Qe H X0,

Qe @ Moram (H' (X)', Q(=1)) = Hom g (H' (X)e, Qe(=1).

By Galois descent, we may and do assume that all singular points of 7" are k-rational. Let
A be the set of all singular points of 7" and let B be the set of all generic points of 7. The
following (i) and (ii) are well-known. (See, for example, [17].)

(i) We have a canonical isomorphism Q S H ét(T’ Z), where Q is the cokernel of a natural
homomorphism Z? — 74, and it induces an isomorphism from Q,; ®z Q to the G-invariant
part of H'(X),, where G = ﬂllog(S). Hence by the Poincaré duality, we have an isomorphism
from the G-coinvariant of H'(X).(1) to Q; ®; P, where P = Hom (Q, Z).

(ii) The monodromy logarithm N : H'(X), — H'(X),(-1) is the composition

(%) H'(X)r = Qe(-1)®z P - Qu(-1)* - Qu(-1) ®z Q — H'(X)e(-1).

By Theorems 3.3 and 5.1 of [21] and by Lemma 2.3 of [22], we have an isomorphism
KH_(T) = H} (T, Z) and the Chern class map KH_{(T)®Q — gi’KH_(T)®Q — H'(T),
corresponds to the canonical map H}(T,Z) — H'(T),. By definition, Morgm.(Q, H'(T))
is the image of KH_(T) ® Q — H'(T), and hence we have (1).

Next we consider (2). We prove first the version of the Tate conjecture in (2) in which we
replace (LMb) by (LMb=). By definition, Mor mp:(Q, H 1(X)") is the image of KH_(T) ®
Q — H'(X), and Mor(LMb*)(Hl(X)b*, Q(=1)) is the image of KH_(T) ® Q — H'(X), =
Hom (H'(X)¢, Q¢(—1)) and hence we have the (LMbx) version of (2).

Now we consider (LMb). By definition, Mormy(Q, H' (X)) is the image of gr' Ko(T x
Gn) ® Q — H'(X), and Morq ) (H'(X), Q(=1)) is the image of gr'Ko(T X G,,) ® Q —
H'(X), = Hom (H'(X);, Q/(—1)). These Chern class maps factor through the above Chern
class maps on gr' KH_{(T) ® Q. Since the map gr' Ko(T x G,,) ® Q — gr' KH_((T) ® Q =
Hét(T, 7Z)® Q has a right inverse defined by Hét(T, Z) — He]t(T X Gy, Gy) = Pic (T X Gy,) —
gr! Ko(T x G,,) in which the first arrow is the product with the coordinate function of G,,, we
have (2).

(3) follows from the above (ii) because every arrow in (x) in (ii) is a morphism in (MM).

O
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A.20. We have considered the category of mixed motives modulo homological equivalence.

The above method of the construction of (MM=) works without homological equivalence as
follows, by using the K-groups as the sets of morphisms. We define the modified version
(LMbsx) of (LMbx) as the category of symbols A(X)(r)"**, where X € P and r € Z. We define
the set of morphisms from A(X)(r)"** to h(Y)(s)"** to be ), _, gr¥ " KH, im(X X5 ¥) ® Q,
where d is the dimension of X. We define the modified version (MM:xx) of (MM=x) as
the category (J;»o C; of contra-variant functors from (LMbs=x) to the category of Q-vector
spaces, where C is the category of the functors

(TY(s) : hOOG)™ - @D g™ KHyjim(X X T) © Q
nez
for schemes T of finite type over k and for s € Z, and Cj, is the category of functors which
are kernels of some morphisms of C;.
Thus (MM3=x) is an additive category with kernels of morphisms. We expect that it is an
abelian category.

A.21. In the case where the characteristic of k is 0, a definition of the category of mixed
motives is given in Part I of Jannsen [5] by considering smooth (not necessarily proper)
schemes. In his definition, a morphism of mixed motives is a compatible family of homo-
morphisms of various realizations (including the Q-Betti realization; K-theory is not used
in this definition). His definition and our definition are connected by the Tate conjecture for
the first isomorphism in (1) of A.14 for smooth schemes.

Our definition works also in positive characteristic in which we do not have the Betti
realization.

The authors do not see how our definition is related to the work [20] on mixed motives
and [1] on log motives.
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