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Abstract
We prove that a variation of mixed Hodge structure is embedded in a logarithmic variation

of pure Hodge structure, and a generalized version of this result. These results suggest some
simple construction of the category of mixed motives by using log pure motives.

Introduction

0.1. In this paper, we develop our idea in [7] that a mixed object is embedded in a log pure
object. We improve the result in [7] on this idea (Theorem 1.2) and propose a simple con-
struction of the category of mixed motives over a field based on this idea without assuming
any conjecture (Appendix in this paper).

0.2. The following is a standard example concerning this idea.
Let Δ be the unit disc {q ∈ C | |q| < 1}, and let X be a smooth complex manifold with

a projective flat morphism X → Δ which is smooth outside 0 ∈ Δ and is of semistable
reduction at 0 ∈ Δ. For t ∈ Δ, let Xt ⊂ X be the fiber over t ∈ Δ. Then we have the mixed
Hodge structure H1(X0,Z). This mixed Hodge structure is embedded in the limit mixed
Hodge structure “ limt�0,t→0 H1(Xt,Z)” ⊃ H1(X0,Z), and this limit mixed Hodge structure
is associated with the log pure Hodge structure H = H1((X0 with log)/(0 with log),Z) of
weight 1 on the standard log point 0 ∈ Δ. Thus the mixed object H1(X0,Z) is embedded in
the log pure object H.

0.3. In [7], we proved that a mixed Hodge structure is embedded in a log pure Hodge
structure, which is the case n = 0 of the following more general result proved in [7]: A
nilpotent orbit of mixed Hodge structures with n monodromy operators is embedded in a
nilpotent orbit of pure Hodge structures with one more monodromy operators. This general
result was successfully applied in [7] to deduce the SL(2)-orbit theorem for the degeneration
of mixed Hodge structure from the SL(2)-orbit theorem of Cattani–Kaplan–Schmid ([3]) for
degeneration of pure Hodge structure.

In this paper, we prove the following further generalization (Theorem 1.2 in Section 1) of
the result in [7]: A log mixed Hodge structure on an fs log analytic space X with polarizable
graded quotients for the weight filtration is, locally on X, embedded into a log pure Hodge
structure on X × S, where S is the standard log point. The text of this paper (Sections 2–6) is
devoted to the proof of this theorem.

2020 Mathematics Subject Classification. Primary 14A21; Secondary 14D07, 32G20.
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0.4. In the theory of mixed motives over a field k, a big question is how to define the set of
morphisms of mixed motives

h(Y)(r)→ h(Z)(s)(1)

for schemes Y, Z of finite type over k and for r, s ∈ Z. Here h(Y) is the mixed motive
associated with Y whose �-adic realization for a prime number � � char(k) is

⊕
m Hm

ét (Y ⊗k

k,Q�) and (r) means the Tate twist. By the construction of the category (MM∗∗) of mixed
motives over k in A.20 in Appendix, we answer this question as follows. We define the
category (LM�∗∗) of limit mixed motives associated with log pure motives by using certain
K-groups as the sets of morphisms, and define the mixed motive h(Y)(r) as a functor from
(LM�∗∗) to the category of Q-vector spaces, by using certain K-groups. Thus a morphism
(1) is a morphism of functors.

We hope that this method is justified by its Hodge version (A.1): Our result on Hodge
theory tells in particular that we can regard a mixed Hodge structure as a functor on the
category of limit mixed Hodge structures associated with log pure Hodge structures.

The notion mixed motive is more difficult than the notion log pure motive (the latter is just
the logarithmic version of the pure motive of Grothendieck) and our hope is that the difficult
objects mixed motives are well-understood by using log pure motives which are simpler.

This Appendix (Section A), which discusses the motive theory, is independent of the text
and one can read it first.

1. The results

1. The results1.1. As in [12], let (log) be the category of fs log analytic spaces (i.e., complex analytic
spaces with fs log structures) and let (log) ⊃ (log) be the category of locally ringed
spaces over C with log structures which are locally subspaces of objects of (log) with the
strong topologies ([12] 3.2).

Fix a subring R of R.
Let X be an object of (log) and let H be as in one of the following (1) and (2).
(1) H is an R-log mixed Hodge structure (R-LMH) on X.
(2) H is an R-log variation of mixed Hodge structure (R-LVMH) on X.
For the definitions of R-LMH and R-LVMH, for the definitions of R-polarized log Hodge

structure (R-PLH) and R-log variation of polarized Hodge structure (R-LVPH), and for the
pre-versions (pre-R-LMH, etc.), cf. [12] 2.6 and [9] 1.3, where the cases R = Z are treated.
The difference of R-LMH (resp. R-PLH) and R-LVMH (resp. R-LVPH) lies in that the lat-
ter must satisfy the big Griffiths transversality though the small Griffiths transversality is
satisfied by the former ([12] 2.4.9).

In both situations (1) and (2), we assume that H satisfies the following conditions (i) and
(ii).

(i) The local system HR is locally free as a sheaf of R-modules on Xlog. Furthermore,
WwHR := HR ∩Ww(HR ⊗Z Q) ⊂ HR ⊗Z Q and grW

w HR := WwHR/Ww−1HR for all w are locally
free as sheaves of R-modules on Xlog.

(ii) For each w, there is an R-perfect (−1)w-symmetric bilinear form grW
w HR × grW

w HR →
R · (2πi)−w which gives a polarization of grW

w H.
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If R is a field (as in the important cases R = Q, R = R), the condition (i) is empty and the
condition (ii) simply says that H has polarizable grW .

The aim of this paper is to prove

Theorem 1.2. Assume that we are in the situation (1) (resp. (2)) in 1.1. Let S be the
standard log point. Then locally on X, there are an R-PLH (resp. R-LVPH) H′ on X × S
and an injective homomorphism HR → H′R of the local systems of R-modules on (X × S)log

satisfying the following conditions (i), (ii), (a), and (b) below. If WwH = H, there is such an
H′ of weight w.

(i) H′R and H′R/HR are locally free as sheaves of R-modules on (X × S)log.
(ii) The polarization of H′ is given by an R-perfect (−1)w

′
-symmetric bilinear form H′R ×

H′R → R · (2πi)−w′ , where w′ is the weight of H′.
(These conditions (i) and (ii) are automatically satisfied if R is a field.)
(a) The Hodge filtration of H is the restriction of that of H′. More precisely, the Hodge fil-

tration of H on H = (τX)∗(
log
X ⊗R HR) = (τX×S)∗(

log
X×S⊗R HR) coincides with the restriction

of the Hodge filtration of H′ on H′

= (τX×S)∗(

log
X×S ⊗R H′R).

(b) The weight filtration of H is the restriction of the relative monodromy filtration of H′.
More precisely, for every t ∈ (X×S)log, the weight filtration of H on the stalk HR,t⊗Z Q is the
restriction of the relative monodromy filtration on H′R,t ⊗Z Q of the logarithm H′R,t ⊗Z Q →
H′R,t ⊗Z Q of the action of the standard generator of π1(Slog).

Remark 1.3. (1) By duality, we have a result in which we replace the injection HR →
H′R in Theorem 1.2 by a surjection H′R → HR and change the conditions (i), (a), and (b)
accordingly.

(2) [7] Proposition 4.1 is a slightly weaker version of the case where X is an fs log point
of this theorem. The structure of the proof of the above theorem given below is similar to
that of the proof of [7] Proposition 4.1 given in Sections 6 and 7 of [7].

(3) On the other hand, the case of Theorem 1.2 where X = (SpecC,C× ⊕Nn) implies that
we can take all the a jk to be 0 unless j = k in [7] Proposition 4.1 (cf. the remark after ibid.
Proposition 4.1). As explained in ibid. 5.9, this gives a characterization of R-IMHM ([7]
5.2, [6]) without using relative monodromy filtrations. We state this below as Proposition
1.4.

(4) When X has the trivial log structure, this theorem implies the following. A variation
of mixed Hodge structure with polarizable graded quotients on a complex analytic manifold
X is, locally on X, embedded in a log variation of polarized Hodge structure.

Proposition 1.4. Let (V,W,N1, . . . ,Nn, F) be a pre-R-IMHM ([7] 5.2). It is an R-IMHM
if and only if there is a pure nilpotent orbit (V ′, w,N′0, . . . ,N

′
n, F

′) and a surjective homo-
morphism (V ′,W(N′0)[−w],N′1, . . . ,N

′
n, F

′)→ (V,W,N1, . . . ,Nn, F) of pre-R-IMHMs.

1.5. Inspired by Remark 1.3 (4), we expect that a motive theoretic version of the above
theorem exists, that is, that a mixed motive can be embedded into a log pure motive. Based
on this idea, we construct the category of mixed motives over a field in Appendix (Section
A) by using log pure motives.
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2. Preparation on log Hodge theory

2. Preparation on log Hodge theory
We prove two propositions on log Hodge theory together. Proposition 2.1 will be used in

the last part of the proof of Theorem 3.2. Proposition 2.2 will be used in the proof of Lemma
5.2.

Proposition 2.1. Let X be an object of (log), let R be a subfield of R, and let H be a
pre-R-LMH on X satisfying the small Griffiths transversality. Assume that for each w ∈ Z,
we are given a (−1)w-symmetric pairing 〈·, ·〉w : grW

w H ⊗ grW
w H → R(−w) which induces an

isomorphism grW
w H

�→ (grW
w H)∗(−w) of pre-R-LMH, where (·)∗ denotes the dual. Let U be

the set of all x ∈ X such that the pullback of H to the fs log point x is an R-LMH and such
that 〈·, ·〉w is a polarization for every w ∈ Z. Then U is an open set of X.

Proposition 2.2. Let X be an object of (log), let R be a subring of R, and let H be an
R-LMH on X with polarized grW satisfying the condition 1.1 (i). Then locally on X, there
are a log manifold Z (for a log manifold, see [12] Definition 3.5.7) and a morphism X → Z
of (log) such that H is the pullback of an R-LMH on Z with polarized grW satisfying the
condition 1.1 (i).

Remark 2.3. In the case of R = Z or Q, under the assumption that the local monodromy
of H at each point of X is contained in a sharp cone, Proposition 2.2 is a consequence of the
existence of the moduli space of LMH with polarized grW and of the fact that this moduli
space is a log manifold as treated in [12] and [9]. Here we treat an R-LMH without such an
assumption on local monodromy. The proof of Proposition 2.2 uses arguments in [12] 2.3.7
and [12] Section 8, and the space E (resp. Ě) which appears in 2.10 below is a variant of the
space Eσ (resp. Ěσ) in [12] and [9].

2.4. Let X be an object of (log). Assume that we are given a pre-R-LMH H on X. For the
proof of Proposition 2.1 (resp. 2.2), we assume that we are given 〈·, ·〉w on grW

w H for each w
which is as in the hypothesis of Proposition 2.1 (resp. which is a polarization).

2.5. Let s ∈ X and let t be a point of Xlog lying over s. We work around s. Let (q j)1≤ j≤n

be a finite family of local sections of MX around s which forms a Z-base of (Mgp
X /

×
X)s. For

1 ≤ j ≤ n, let γ j be the element of π1(slog) = Hom ((Mgp
X /

×
X)s,Z) which sends q j to 1 and

qk to 0 for all k � j (see [12] 2.2.9 for this identification). Then the action of γ j on HR,t is
unipotent ([12] Proposition 2.3.3 (ii)). Let Nj = log(γ j) : HR,t ⊗Z Q → HR,t ⊗Z Q. Let z j be
a branch of (2πi)−1 log(q j) around t. Then on an open neighborhood of t in Xlog, concerning
H = τ∗(

log
X ⊗R HR), we have

H = exp
( n∑

j=1

z jN j
)
(X ⊗R HR).

2.6. By replacing X by an open neighborhood of s in X if necessary, we may assume
that there is a chart  → MX with an fs monoid  such that 

�→ (MX/
×
X)s. Let  =

Spec(C[])an and let X →  be the morphism induced by the composition  → MX → X .
This induces an isomorphism from s to the “origin” of  . Since the induced map slog →  log

is a homotopy equivalence, the restriction of HR to slog extends uniquely to a local system
HR, on  log which also has a weight filtration W and the family (〈·, ·〉w)w of pairings. By the
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properness of Xlog → X, for some open neighborhood V of s in X, we have an isomorphism
between the pullbacks of (HR,W, (〈·, ·〉w)w) and (HR, ,W, (〈·, ·〉w)w) to V log.

2.7. Let H0 := HR,t. We identify H0 with the stalk of HR, at the image of t in  log. Let
Γ := π1(slog) = π1( log) = Hom (gp,Z). Then Γ acts on H0, and the local system HR, has a
canonical Γ-level structure with respect to the constant sheaf H0 (that is, we have a canonical
global section of the quotient sheaf /Γ on  log, where  is the sheaf of isomorphisms from
HR, to H0). Hence we have a canonical Γ-level structure on HR with respect to H0 on V log

for some open neighborhood V of s in X. We may assume that X = V .

2.8. The following happens on  log ([12] 2.3.7). We can regard H0 as a constant subsheaf
of log


⊗R HR, as follows.

Since Γ = π1( log) is commutative, Γ acts on HR, .
Define a local system H′0 on  log as follows. Taking (q j)1≤ j≤n which is a Z-base of gp,

let

H′0 := ξHR, ⊂ 
log

⊗R HR, with ξ = exp

( n∑

j=1

z jN j
)
.

Here ξ depends on the choices of the branches z j of (2πi)−1 log(q j) (1 ≤ j ≤ n), but H′0 is
independent of the choice. Furthermore, ξ mod Γ is independent of the choice of the Z-base
(q j) j of gp.

Then by 2.5, H′0 descends to a local system on  . Since  is contractible, H′0 is a constant
sheaf. We have an isomorphism

H′0
�→ H0

by using a ring homomorphism 
log
X,t → Cwhich extends the evaluation X,s → C by z j �→ 0.

We identify H′0 and H0 via this isomorphism.
We regard H0 as a constant sheaf on  via the above identification. We regard H0 also as

a constant sheaf on X. We have


log

⊗Z HR, = 

log

⊗R H0, 

log
X ⊗R HR = 

log
X ⊗R H0,

τ∗(
log

⊗Z HR, ) =  ⊗R H0, τ∗(

log
X ⊗R HR) = X ⊗R H0.

Thus on X, H = τ∗(
log
X ⊗R HR) is identified with X ⊗R H0.

Note that in the formula (1) in [12] 2.3.7, “with ν =” should be replaced by “with ξ =”.

2.9. Let hp
w be the C-dimension of the grp

F of grW
w of H at s. Note that we have W and 〈·, ·〉w

on grW
w H0,Q.

Let Ď be the space of all descending filtrations F on H0,C such that the rank of grp
F of grW

w

is the given hp
w and such that the annihilator of F pgrW

w,C
in grW

w,C
under 〈·, ·〉w is Fw+1−pgrW

w,C
.

Then Ď is a complex analytic manifold. See [19] for basic properties of Ď.
The Hodge filtration on H = X ⊗R H0 on X gives a morphism X → Ď, and the Hodge

filtration on H is the pullback of the universal Hodge filtration on Ď ⊗R H0. Thus we have
a morphism X → Ě :=  × Ď.
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2.10. On Ě, we have the local system, the pullback HR,Ě of HR, with W and 〈·, ·〉w, and we
have the Hodge filtration on Ě⊗R H0 which is the pullback of the universal Hodge filtration
of Ď ⊗R H0. We have also an isomorphism 

log
Ě
⊗R HR,Ě � 

log
Ě
⊗R H0. We denote this

object by HĚ . The H on X is the pullback of this HĚ under the canonical morphism (period
map) X → Ě.

2.11. Let Ẽ (resp. E) be the set of all points z of Ě such that the pullback of HĚ to z satisfies
the Griffiths transversality (resp. is an R-LMH with polarized grW), and endow Ẽ (resp. E)
with the strong topology in Ě in the sense of [12] Section 3.1 and with the inverse images of
Ě and the log structure of Ě. Then E is an open set of Ẽ, and E and Ẽ are log manifolds.
This is seen by the arguments in [12] Section 7, [10] Appendix A.1, and [11] 4.5.

Let HẼ (resp. HE) be the pullback of HĚ to Ẽ (resp. E).

2.12. Since X → Ě is strict, for x ∈ X with the image z in Ě, the pullback of H to the fs log
point x satisfies the Griffiths transversality (resp. is an R-LMH with polarized grW) if and
only if the pullback of HĚ to z has the same property.

2.13. We prove Proposition 2.1. Let X → Ě be as above. Assume that H satisfies the small
Griffiths transversality. Then the morphism X → Ě factors through X → Ẽ, and U is the
inverse image of E. Since E is open in Ẽ, U is open in X.

2.14. We prove Proposition 2.2. Let X → Ě be as above. Assume that H is an R-LMH with
polarized grW . Then the morphism X → Ě factors through E ⊂ Ě and H is the pullback of
HE .

3. Polarized log mixed Hodge structure and PLH

3. Polarized log mixed Hodge structure and PLH3.1. Let X be an object of (log), let S be the standard log point with a fixed generator
q ∈ MS, let w ∈ Z, and let R be a subfield of R. Let 1 and 2 be the following categories.

Let 1 be the category of pre-R-PLH (resp. pre-R-LVPH) P on X×S of weight w satisfying
the following condition (a).

(a) Locally on X, for some morphism X × S → X × S over X, the pullback of P is an
R-PLH on the left X × S.

Let 2 be the category of R-LMH (resp. R-LVMH) H on X endowed with the following
structures (i) and (ii) and satisfying the conditions (1) and (2).

(i) A homomorphism H ⊗ H → R(−w) in the category of R-LMH such that the induced
pairing 〈·, ·〉 : HR × HR → R · (2πi)−w is non-degenerate and (−1)w-symmetric.

(ii) A homomorphism N : H → H(−1) such that Nn : H → H(−n) is zero for some n ≥ 1
and such that 〈Nu, v〉 + 〈u,Nv〉 = 0.

(1) The weight filtration on HR coincides with W(N)[−w], where W(N) is the monodromy
filtration of N.

(2) Let k ≥ w and let Primk be the primitive part of grkHR for N. Then the pairing
Primk × Primk → R(−k) ; (u, v) �→ 〈u,Nk−wv〉 is a polarization of the pure PLH Primk of
weight k.

Morphisms in 1 and 2 are defined to be isomorphisms in the evident sense.
Note that for an object H of 2 and for k ∈ Z, grW

k H is endowed with the polarization
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defined by the decomposition of grW
k H as the direct sum of various primitive parts which are

endowed with the polarizations in the condition (2).

Theorem 3.2. We have an equivalence 1 � 2.
1 → 2 ; P �→ H is as follows. Let β be the canonical map (X × S)log = Xlog × Slog →

Xlog. Then HR = β∗(exp(log(q)N)PR), where N = (2πi)−1 log(γ) for the action γ of the
canonical generator of π1(Slog). H = P with the same Hodge filtration. The isomorphism


log
X ⊗R HR � 

log
X ⊗X H is induced from the corresponding isomorphism for P.

2 → 1 ; H �→ P is as follows. PR = H(N)
R := exp(− log(q)N)HR ⊂ 

log
X×S ⊗R HR.

P = H with the same Hodge filtration. The isomorphism 
log
X×S ⊗R PR � 

log
X×S ⊗X P is

induced from the corresponding isomorphism for H.

3.3. Here, in the argument of P �→ H, the inverse image of HR on (X × S)log is
exp(log(q)N)PR. In fact, γ does not change exp(log(q)N)a for an element a of the stalk
of PR because γ = (γ∗)−1 (γ∗ is the pullback by γ) sends log(q) to log(q) − 2πi and hence
γ(exp(log(q)N)a) = exp((log(q) − 2πi)N) exp(2πiN)a = exp(log(q)N)a.

3.4. We first prove Theorem 3.2 in the case where X is an fs log point and R = R. In this
case, Theorem 3.2 is equivalent to the following Proposition 3.5. See 3.6. The case n = 0
of Proposition 3.5 is the well-known relation between nilpotent orbits and polarized mixed
Hodge structures in [18] Theorem (6.16) and in [3] (3.13).

Proposition 3.5. Let V be a finite dimensional R-vector space. Let w ∈ Z and let 〈·, ·〉 :
V×V → R be a non-degenerate (−1)w-symmetric R-bilinear form. Let N0,N1, . . . ,Nn : V →
V be mutually commuting nilpotent linear operators such that 〈Nju, v〉 + 〈u,Njv〉 = 0 for all
u, v in V and 0 ≤ j ≤ n. Let W = W(N0)[−w], where W(N0) is the monodromy filtration of
N0. Let F be a descending filtration on VC such that the annihilator of F p for 〈·, ·〉 is Fw+1−p

for every p.
Then, (V, 〈·, ·〉,N0, aN0 + N1, . . . , aN0 + Nn, F) generates a pure nilpotent orbit of weight

w for some, hence for any a � 0 if and only if the following two conditions (i) and (ii) are
satisfied.

(i) (V,W,N1, . . . ,Nn, F) generates a mixed nilpotent orbit, where the polarizaitions on the
graded pieces are determined by the following (ii).

(ii) Let k ≥ w, let Pk ⊂ grW
k be the primitive part for N0, and let 〈·, ·〉k : Pk×Pk → R be the

bilinear form (u, v) �→ 〈u,Nk−w
0 v〉. Then (Pk, 〈·, ·〉k,N1, . . . ,Nn, F(grW

k )|Pk ) is a pure nilpotent
orbit of weight k.

3.6. The relation between Theorem 3.2 and Proposition 3.5 is that X in Theorem 3.2 pro-
vides N1, . . . ,Nn of Proposition 3.5 and S in Theorem 3.2 provides N0 of Proposition 3.5.
For the equivalence of pure (resp. mixed) nilpotent orbits and PLH (resp. LMH), see [12]
Section 2.5 (resp. [9] 2.2.2).

3.7. We prove the if part of Proposition 3.5. The argument below is similar to that in the
proof of [7] Proposition 6.6. See also [8] Theorem 2.4.2 (ii).

By [7] 10.2, we have an action τ = (τ j)0≤ j≤n of G{0,...,n}m on V associated with the mixed
nilpotent orbit H = (V,W,N1, . . . ,Nn, F) with polarized grW given by (i) and (ii) such that τ0
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splits W and τ j for each 1 ≤ j ≤ n splits the relative monodromy filtration of N1 + · · · + Nj

with respect to W. For y = (y0, . . . , yn), y j ∈ R>0, let t(y) =
∏n

j=0 τ j((y j+1/y j)1/2), where
yn+1 denotes 1.

Fix b : {0, . . . , n} × {0, . . . , n} → [0,∞] such that b j,kbk,� = b j,� unless the set {b j,k, bk,�}
coincides with the set {0,∞}, such that b j, j = 1 for 0 ≤ j ≤ n, and such that b0, j = ∞ and
b j,0 = 0 for 1 ≤ j ≤ n. Then by the SL(2)-orbit theorem for mixed nilpotent orbit ([7]
Theorem 0.5 and Section 10), we have the associated F̂ and N̂1, . . . , N̂n such that when y j →
∞ (0 ≤ j ≤ n) and (y j/yk) j,k converges to b, then t(y)−1 exp(

∑n
j=0 iy jN j)F ∈ Ď converges to

exp(
∑n

j=0 iN̂ j)F̂ ∈ D, where D is the classifying space of PH and Ď is its compact dual (see
[7] 0.1 for the precise definitions). Since D is open in Ď, we have t(y)−1 exp(

∑n
j=0 iy jN j)F ∈

D and hence exp(
∑n

j=0 iy jN j)F ∈ D if (y j/yk) j,k is sufficiently near to b.
This proves that (V, 〈·, ·〉,N0, aN0 + N1, . . . , aN0 + Nn, F) generates a pure nilpotent orbit

of weight w for any a � 0.

3.8. We prove the only if part of Proposition 3.5. There is c ∈ R such that if y j ≥ c
for 0 ≤ j ≤ n, (V, 〈·, ·〉, Fy) with Fy := exp(iy0N0 +

∑n
j=1 iy j(aN0 + Nj))F = exp(i(y0 +

a
∑n

j=1 y j)N0 +
∑n

j=1 iy jN j)F is a polarized Hodge structure of weight w. Hence if b j ≥ c
for 1 ≤ j ≤ n, (V, 〈·, ·〉,N0, exp(

∑n
j=1 ib jN j)F) generates a pure nilpotent orbit of weight w.

Hence by the classical result of Schmid [18] Theorem (6.16) to which we referred to in 3.4,
if b j ≥ c for 1 ≤ j ≤ n, (V,W, exp(

∑n
j=1 ib jN j)F) is a mixed Hodge structure and for k ≥ w,

(Pk, 〈·, ·〉k, exp(
∑n

j=1 ib jN j)F(grW
k )|Pk ) is a polarized Hodge structure. This proves that the

conditions (i) and (ii) are satisfied.

3.9. Theorem 3.2 for general R is reduced to the case R = R because the conditions (a),
(1), and (2) can be checked after tensoring R. Theorem 3.2 for a general X is reduced to
the case where X is an fs log point by Proposition 2.1. (Note that, by construction, the
correspondence in Theorem 3.2 preserves the big Griffiths transversality.)

4. Study of Ext groups

4. Study of Ext groups4.1. Let X be an object of (log). We will consider the following six categories  ⊃
(∗) ⊃ (∗∗), 0,  ⊃ (∗). Fix a subring R of R.

Let  (resp. (∗), resp. (∗∗)) be the category of pre-R-LMH (resp. R-LMH, resp. R-
LVMH) on X satisfying the condition (i) in 1.1.

Let 0 be the category of locally constant sheaves of finite dimensional R-vector spaces
on Xlog whose local monodromies are unipotent. Let  be the category of pairs (L,W),
where L is an object of 0 and W is an increasing filtration (called weight filtration) on L
such that each filter Wk is locally constant and that Wk = L for some k and Wk = 0 for
some k. Let (∗) be the full subcategory of  consisting of objects L such that the local
monodromies of L are admissible (see [9] 1.2.4).

These categories are exact categories (in the sense of Quillen). For a contemporary treat-
ment of exact categories, see [2]. A short exact sequence in , in (∗), or in (∗∗) is a
sequence 0 → H1 → H2 → H3 → 0 such that 0 → WkH1,R → WkH2,R → WkH3,R → 0 for
all k and 0→ F pH1, → F pH2, → F pH3, → 0 for all p are exact. A short exact sequence
in 0 is an evident one, and that in  or in (∗) is a sequence 0→ L1 → L2 → L3 → 0 such
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that the sequences 0→ WkL1 → WkL2 → WkL3 → 0 are exact for all k.
We have Yoneda’s higher Ext group Ext n for any exact category ([16] Appendix Proposi-

tion A.13). For example, Ext 1 is the set of isomorphism classes of extensions endowed with
the group law given by Baer sums. A short exact sequence gives a long exact sequence of
Ext n.

4.2. If  is one of the above categories , (∗), (∗∗), 0, , and (∗), and if A, B are
objects of , we have a sheaf  xtn


(A, B) of abelian groups on X which is the sheafification

of the presheaf U �→ Ext n
′(A

′, B′), where U is an open set of X and ′, A′, B′ are the
restrictions of , A, B over U, respectively.

The goal of this Section 4 is to prove the following proposition.

Proposition 4.3. Let  be either (∗) or (∗∗). Let 0 → R(1) → P → Q → 0 be an
exact sequence in  and assume that the weights of Q ≤ −1. Then the map  xt 1


(R, P) →

 xt 1

(R,Q) is surjective.

Lemma 4.4. Let L be an object of (∗) such that the local monodromy actions on L are
trivial and such that W−2nL = 0.

Then the canonical map  xtn
(∗)(R, L) →  xtn

0
(R, L) = Rnτ∗L is the zero map. Here

W0R = R, W−1R = 0, and τ is the canonical projection Xlog → X. In other words (assume
n ≥ 1), if

0→ L→ Ln → · · · → L2 → L1 → R→ 0

is an exact sequence in (∗), the induced section of Rnτ∗L is 0.

Proof. The case n = 0 is evident. Assume n ≥ 1 and consider an exact sequence 0→ L→
Ln → · · · → L2 → L1 → R → 0 in (∗). Let t ∈ Xlog and let x ∈ X be the image of t. Then
(Rnτ∗L)x is isomorphic to (

∧n
Z (Mgp

X /
×
X)x) ⊗Z Lt and is isomorphic to the Lie cohomology

Hn(g, Lt), where g is the commutative Lie algebra Hom ((Mgp
X /

×
X)x,Q) which acts on Lt

trivially. Let σ be the monodromy cone Hom ((MX/
×
X)x,R

add
≥0 ) of x. In the rest, we omit t in

(·)t. By the admissibility, we have a relative monodromy filtration W(σ) on L, Lj (1 ≤ j ≤ n),
R and the sequence 0 → W(σ)kL → W(σ)kLn → · · · → W(σ)kL1 → W(σ)kR → 0 is exact
for every k. For 0 ≤ j ≤ n, let I j be the image of Lj+1 → Lj, where L0 denotes R and
Ln+1 denotes L. Hence I0 is identified with R and In is identified with L. We compute the n-
cocycle fn :

∧n
Q g→ L corresponding to the element of Hn(g, L) in problem, by the standard

method: By induction on j, we get a j-cocycle f j :
∧ j
Q
g→ I j starting from f0 = 1 ∈ R = I0.

To get f j+1 from f j, we lift f j to a j-cochain f̃ j :
∧ j
Q
g → Lj+1 and obtain f j+1 from f̃ j.

By induction on j, we get f j whose image is in W(σ)−2 jI j and lift it to f̃ j whose image is
in W(σ)−2 jL j+1, and get f j+1 whose image is contained in (

∑
N∈g NW(σ)−2 jL j+1) ∩ I j+1 ⊂

W(σ)−2( j+1)I j+1. Thus we get fn whose image is in W(σ)−2nL = W−2nL = 0. �

Lemma 4.5. Let 0 → L → P → Q → 0 be an exact sequence in (∗). Assume that the
local monodromy actions on L are trivial and W0L = L. For a ∈  xt1


(R, P) and the image

b of a in  xt1


(R,Q), a belongs to  xt1
(∗)(R, P) if and only if b belongs to  xt1

(∗)(R,Q).
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Proof. It is enough to prove the if part. We may assume that a is the class of an exact
sequence 0 → P → P̃ → R → 0 in  and b is the class of the exact sequence 0 → Q →
Q̃ → R → 0 in (∗), where Q̃ = P̃/L. Let σ be as in the proof of Lemma 4.4. For each
face σ′ of σ, we have the relative monodromy filtration W(σ′) on P̃ defined as follows. If
k ≤ −1, W(σ′)kP̃ = W(σ′)kP. If k ≥ 0, W(σ′)kP̃ is the inverse image of W(σ′)kQ̃. Hence P̃
belongs to (∗). �

4.6. Note that for a topological space T and for a complex of sheaves of R-modules on
T of the form C = [C0 → C1] (that is, a complex of sheaves of R-modules whose degree
d-parts are zero unless d = 0, 1), the hyper-cohomology H1(T,C) is identified with the set
of isomorphism classes of pairs of an exact sequence of the form 0 → C0 → E → R → 0
and a splitting E → C1.

4.7. For an object H of  satisfying the condition (i) in 1.1 on X, let

C(H) = [HR → (HR ⊗ log
X )/F0],

where HR is of degree 0. Then we have identifications

Hom (R,H) = H0(Xlog,C(H)) if the weights of H ≤ 0,

Ext 1


(R,H) = H1(Xlog,C(H)) if the weights of H ≤ −1.

This is shown by using 4.6.

Lemma 4.8. Let 0 → R(1) → P → Q → 0 be an exact sequence in  such that the
weights of Q ≤ −1. Then we have an exact sequence

 xt1


(R, P)→  xt1


(R,Q)→ R2τ∗R(1).

Proof. By  xt1


(R, P) � R1τ∗C(P) (4.7) and by the corresponding isomorphism for Q,
we have an exact sequence  xt1


(R, P) →  xt1


(R,Q) → R2τ∗C(R(1)). Since C(R(1)) =

[R(1)→ 
log
X ], we have an exact sequence 0 = R1τ∗

log
X → R2τ∗C(R(1))→ R2τ∗R(1). �

Lemma 4.9. Let  and 0 → R(1) → P → Q → 0 be as in the hypothesis of Proposition
4.3. Then the map  xt1


(R,Q)→ R2τ∗R(1) in Lemma 4.8 kills  xt1


(R,Q).

Proof. Since R2τ∗R(1) � R ⊗Z ∧2
Z (Mgp

X /
×
X), the map R2τ∗R(1) → R2τ∗R(1) is in-

jective. The map  xt1

(R,Q) → R2τ∗R(1) factors as  xt1


(R,Q) →  xt1

(∗)(R,QR) →
 xt2

(∗)(R,R(1)) →  xt2
0

(R,R(1)) = R2τ∗R(1). This is 0 by the case n = 2 and L = R(1) of
Lemma 4.4. �

By Lemmas 4.8 and 4.9, for the proof of Proposition 4.3, it is sufficient to prove the
following.

Lemma 4.10. Let  and 0→ R(1)→ P→ Q→ 0 be as in the hypothesis of Proposition
4.3. Then for a ∈  xt1


(R, P) and the image b of a in  xt1


(R,Q), a belongs to  xt1


(R, P) if

and only if b belongs to  xt1

(R,Q).
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Proof. It is sufficient to prove the if part. We may assume that a is the class of an
exact sequence 0 → P → P̃ → R → 0 in  and b is the class of the exact sequence
0→ Q→ Q̃→ R→ 0 in (∗), where Q̃ = P̃/R(1).

Then (the associated R-local system of) P̃ satisfies the admissibility of local monodromy
by Lemma 4.5.

If  = (∗) (resp.  = (∗∗)), P̃ satisfies the small (resp. big) Griffiths transversality
because

((P̃R ⊗R 
log
x )/F−1) ⊗C ω1

x
�→ ((Q̃R ⊗R 

log
x )/F−1) ⊗C ω1

x for x ∈ X.

(resp. ((P̃R ⊗R 
log
X )/F−1) ⊗X ω

1
X
�→ ((Q̃R ⊗R 

log
X )/F−1) ⊗X ω

1
X .)

Finally, we prove that for t ∈ Xlog lying over x ∈ X and for s ∈ sp(t) ([12] 2.4.6), if
exp(s(log(·))) : Mgp

X,x → C× is sufficiently near to the structure homomorphism αX,x, then the
associated specialization P̃(s) is a mixed Hodge structure. If k � 0, grW

k P̃ = grW
k P and hence

grW
k P̃(s) is a Hodge structure of weight k. We consider grW

0 P̃(s). We have exact sequences
0 → grW

0 PC → grW
0 P̃C → C → 0, 0 → F pgrW

0 P(s)C → F pgrW
0 P̃(s)C → C → 0 for p ≤ 0

and F pgrW
0 P(s)C

�→ F pgrW
0 P̃(s)C for p ≥ 1. Hence we have the Hodge decomposition of

grW
0 P̃(s). �

5. Construction of an extension with three graded quotients

5. Construction of an extension with three graded quotients
In this section, we prove Theorem 1.2 in the special case where W−1H = H, W−3H = 0,

and grW
−2H = R(1). Let Q := grW

−1H. Thus we have an exact sequence 0 → R(1) → H →
Q→ 0.

5.1. Let Q̃ = H∗(1), where (·)∗ denotes the dual. The intersection form 〈·, ·〉−1 : Q × Q →
R(1) of a polarization gives an isomorphism Q

�→ Q∗(1) ; u �→ (v �→ 〈u, v〉). Hence
W0Q̃ = Q̃, grW

0 Q̃ = R, grW
−1Q̃ = Q, and W−2Q̃ = 0.

Let  be (∗) or (∗∗), and assume that H belongs to . By the surjectivity of  xt1

(R,H)

→  xt1

(R,Q) (Proposition 4.3), locally on X, the class of Q̃ in Ext 1


(R,Q) lifts to the class

in Ext 1

(R,H) of an exact sequence 0→ H → H̃ → R→ 0 such that H̃/R(1) = Q̃.

Lemma 5.2. There is a unique isomorphism H̃ � (H̃)∗(1) whose grW
−1 coincides with Q �

Q∗(1), whose grW
0 is the identity homomorphism of R, and whose grW

−2 is the multiplication
by −1 on R(1).

Proof. If we have two such isomorphisms f , g : H̃ � (H̃)∗(1), f − g : H̃ → (H̃)∗(1) sends
Wk to Wk−1 and hence is zero. This proves the uniqueness.

We prove the existence.
First we consider the case Q = 0. We have an exact sequence 0→ R(1)→ H̃R → R→ 0.

We have the wedge product 〈·, ·〉 : H̃R × H̃R → ∧2
R H̃R � R(1), where the last isomorphism

is such that the induced map grW
0 ⊗ grW

−2 → R(1) is the canonical map R⊗R(1)→ R(1). This
pairing induces a perfect pairing H̃ × H̃ → X of X-modules. The Hodge filtration F of
H satisfies F−1 = H, F0 is a line bundle, F1 = 0, and the annihilator of F0 under 〈·, ·〉 is
F0. Hence 〈·, ·〉 induces H̃ � (H̃)∗(1) ; u �→ (v �→ 〈u, v〉).
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We consider the general case. A proof may be given by writing explicitly the involved
Hodge filtrations, but we give a proof by some abstract argument. We may assume  = (∗).

We have two sections a, a∗(1) of  xt1
(∗)(R,H) given by H̃ and (H̃)∗(1), respectively.

Here to define a∗(1), we identify W−1((H̃)∗(1)) with H via W−1((H̃)∗(1)) = (Q̃)∗(1) =
(H∗(1))∗(1) = H.

For the proof of Lemma 5.2, it is sufficient to prove
(1) a + a∗(1) = 0.
In fact, then, there is a natural isomorphism from H̃ to the pushout of (H̃)∗(1) by −1 :

W−1((H̃)∗(1))→ W−1((H̃)∗(1)), whose grW
0 is the identity homomorphism of R such that the

induced H = W−1(H̃) → W−1((H̃)∗(1)) = H is the multiplication by −1. This is the desired
isomorphism because Q � Q∗(1) � (Q∗(1))∗(1) = Q is the multiplication by −1 on Q.

Note that we have already proved (1) in the case Q = 0, by the above consideration on
the case Q = 0.

Concerning (1), we have the following (2) and (3).
(2) This element a + a∗(1) belongs to  xt1

(∗)(R,R(1)), since its image in  xt1
(∗)(R,Q) is

zero.
(3) This sum a + a∗(1) is determined by the image of a in  xt1

(∗)(R,Q). In fact, if the
image of b ∈  xt1

(∗)(R,H) in  xt1
(∗)(R,Q) coincides with that of a, we have b = a + u for

some u ∈  xt1
(∗)(R,R(1)). By the case Q = 0 considered above, u + u∗(1) = 0, and hence

b + b∗(1) = (a + u) + (a + u)∗(1) = (a + a∗(1)) + (u + u∗(1)) = a + a∗(1).
By (2) and (3), we obtain a homomorphism  xt1

(∗)(R,Q) →  xt1
(∗)(R,R(1)). Note that

 xt1
(∗)(R,R(1)) ⊂  xt1


(R,R(1)) = τ∗(

log
X /R(1)). We prove that this homomorphism is the

zero map. By Proposition 2.2, this is reduced to the case where X is a log manifold. Let
Xtriv be the open set of X consisting of all points at which the log structure of X is trivial,
which is a complex analytic manifold. In this case, for the inclusion map jlog : Xtriv → Xlog,


log
X → jlog

∗ (Xtriv ) is injective and R(1) → jlog
∗ (R(1)) is an isomorphism, and hence the map


log
X /R(1) → jlog

∗ (Xtriv/R(1)) is injective. By this, replacing X by Xtriv, we are reduced to
the case where X is a complex analytic manifold with the trivial log structure. In this case,
(∗) = .

We first consider the case X = Spec(C) with the trivial log structure and R = R. In this
case, Ext 1


(R,Q) = QR \QC/F0 (cf. 4.7) vanishes because Q is of weight −1, and hence the

map Ext 1


(R,Q)→ Ext 1


(R,R(1)) is the zero map.
This proves that in the case where X is a complex analytic manifold with the trivial log

structure, the composite map  xt1


(R,Q) →  xt1


(R,R(1)) = X/R(1) → X/R(1) is the
zero map. Hence in this case, the map  xt1


(R,Q) = QR \(QR⊗RX)/F0 →  xt1


(R,R(1)) =

X/R(1) has the image in R(1)/R(1). Since there is no non-zero homomorphism from X

to the constant sheaf R(1)/R(1) which is functorial in X, we see that this map is zero. �

5.3. We return to the proof of Theorem 1.2. Let N : H̃ → H̃(−1) be the homomorphism
H̃ → grW

0 H̃ � R � (grW
−2H̃)(−1) ⊂ H̃(−1). Then the desired PLH (resp. LVPH) on X × S

of weight −1 is the pullback H′ of H̃(N) by X × S → X × S over X, q on the right hand
side is sent to q f on the left-hand-side, where f is some global section of MX . Here, (·)(N)

is as in Theorem 3.2. (Although R is a field there, the construction is the same. Note that
since 2πiNH̃R ⊂ H̃R and N2 = 0 here, we have exp(2πiN)H̃R = H̃R and hence H̃(N) has
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an R-structure.) We prove that this H′ is a PLH (resp. LVPH). The small or big Griffiths
transversality is easy to see. We have the isomorphism H′ � (H′)∗(1) in Lemma 5.2 and it
gives a polarization 〈·, ·〉 : H′ × H′ → R(1) for which the isomorphism is u �→ (v �→ 〈u, v〉).
To prove that 〈·, ·〉 is actually a polarization, we may assume that the base X is an fs log point
and hence we reduce to the case of Theorem 3.2 where X is an fs log point and R = R.

6. Proof of Theorem 1.2

6. Proof of Theorem 1.2
We prove the general case of Theorem 1.2. We use the induction on n for the integer

n ≥ 2 such that there is w ∈ Z satisfying WwH = H and Ww−nH = 0.

6.1. First assume n = 2. Let A = grW
w H, B = grW

w−1H = Ww−1H. We consider B∗(1) ⊗ H
and use B∗(1) ⊗ B → R(1) to get P as the pushout. We have W−1P = P, W−3P = 0,
grW
−1P = B∗(1) ⊗ A, grW

−2P = R(1). We get P̃ as in the previous section. Let H̃ = B(−1) ⊗ P̃.
Since P̃ is regarded as a PLH (resp. LVPH) of weight −1 by the previous section (after taking
(·)(N)), H̃ is regarded as a PLH (resp. LVPH) of weight w. This H̃ regarded as a PLH (resp.
LVPH) is the desired H′.

Here N is the evident isomorphism grW
w+1 → grW

w−1(−1) induced by the identity map of B.
We embed H into H̃ by

H → B ⊗ B∗ ⊗ H → B(−1) ⊗ P→ B(−1) ⊗ P̃ = H̃.

The map HR → H̃R is injective (with locally free cokernel) because its grW
w−1 is BR →

BR ⊗ B∗R ⊗ BR → BR, where the first arrow is b �→ ∑ j e j ⊗ e∗j ⊗ b for a local base (e j) j of BR

and for the dual base e∗j of B∗R and the second arrow is the map u ⊗ v ⊗ b �→ uv(b), and the
composite map BR → BR is the identity map because it gives ek �→ ∑ j e j ⊗ e∗j ⊗ ek �→ ek.

6.2. Assume n ≥ 3, WwH = H, Ww−nH = 0. Then by the hypothesis of induction applied
to Ww−1H, we find a PLH (resp. an LVPH) I ⊃ Ww−1H on X × S of weight w − 1. Let J
be the pushout of H ← Ww−1H → I. Then we have WwJ = J, Ww−2J = 0, grW

w J = grW
w H,

grW
w−1J = I. Hence we find a PLH (resp. an LVPH) K ⊃ J on X × S × S of weight w. We

get the desired PLH (resp. LVPH) H′ ⊃ H on X × S of weight w as the pullback of K by the
diagonal S→ S × S.

It is clear that the condition (a) in Theorem 1.2 is satisfied. In 6.3 below, we show that
the condition (b) in Theorem 1.2 is satisfied.

This will complete the proof of Theorem 1.2.

6.3. We prove that the condition (b) is satisfied. We may assume that X is an fs log point.
We can use the following.

If (W,N1, . . . ,Nn, F) is a mixed nilpotent orbit with polarizable grW , we have:
(1) We have a relative monodromy filtration W (1) of (W,N1) and (W (1),N2, . . . ,Nn, F) is a

mixed nilpotent orbit.
(2) The relative monodromy filtration W (2) of (W (1),N2) coincides with the relative mon-

odromy filtration of (W,N1 + N2).
(3) (W,N1 + N2,N3, . . . ,Nn, F) is a mixed nilpotent orbit.
In 6.2, we apply these to the pure weight filtration W of weight w and to the mixed

nilpotent orbit K = (W,N−1,N0,N1, . . . ,Nn, F), where N1, . . . ,Nn comes from X, N0 comes
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from S of X × S, and N−1 comes from the second S of X × S × S. Then by (1) and (2),
we have a mixed nilpotent orbit (W (2),N1, . . . ,Nn, F), where W (2) is the relative monodromy
filtration of (W,N−1+N0). I (resp. J) is a sub mixed nilpotent orbit which is the weight w−1
(resp. ≤ w) part of the mixed nilpotent orbit (W (1),N0, . . . ,Nn, F) (consider (1)), where W (1)

is the relative monodromy filtration of (W,N−1). We have a mixed nilpotent orbit I′ (resp.
J′) = (W (2),N1, . . . ,Nn, F) whose underlying space is the same as I (resp. J).

The original Ww−1H is a sub mixed nilpotent orbit of I′. Hence the weight filtration of
Ww−1H is the restriction of W (2). The original H satisfies that H/Ww−1H is of weight w.
J′/I′ also has weight w. Hence the weight filtration of H is the restriction of W (2). Thus we
complete the proof of that the condition (b) is satisfied.

Appendix A Mixed motives and log pure motives

Appendix A. Mixed motives and log pure motives
In this section, we will give some simple construction of the category of mixed motives

over a field based on the idea that mixed motives should be embedded into log pure motives.

A.1. We present the Hodge analogue of our story on motives.
Here, Hodge or log Hodge structure means Q-Hodge or Q-log Hodge structure.
Let S be the standard log point over C. Let (LH) be the category of polarizable log Hodge

structures on S. For H ∈ (LH), let H� be the associated mixed Hodge structure endowed
with the monodromy operator N : H� → H�(−1).

Let (LH�) be the category of pairs of a mixed Hodge structure and N of the form H� with
H ∈(LH).

Let (MH) be the category of contra-variant functors from (LH�) to the category of Q-
vector spaces defined by a pair (H,V) as in (1) below, where H ∈ (LH�) and V is a Q-
subspace of HQ satisfying the following conditions (i) and (ii).

(i) For some H′ ∈ (LH�) and for some morphism H′ → H in (LH�), V is the image of
H′
Q
→ HQ.

(ii) N of H kills V .
(1) H′ �→ {h ∈ Mor(LH�)(H′,H) | h(H′

Q
) ⊂ V}.

Then (MH) is equivalent to the category of mixed Hodge structures with polarizable grW

by the case X = Spec(C) with the trivial log structure of Theorem 1.2 and Remark 1.3 (1).

A.2. Let k be a field, and let S be the standard log point over k.
We have the log absolute Galois group πlog

1 (S). It is the automorphism group of the log
separable closure (cf. [13] (2.5)) S of S over S. We have an exact sequence

0→ Ẑ(1)′ → πlog
1 (S)→ Gal(k/k)→ 1,

where Ẑ(1)′ is the product of Z�(1) for all prime numbers � which are not equal to the
characteristic of k and k is the separable closure of k.

A.3. We fix a prime number � which is different from the characteristic of k. Let  be
the category of projective vertical log smooth saturated fs log schemes over S which have
charts of the log structure Zariski locally. (The condition “saturated” here is not essential
but we impose it because we would like to find the reason why our definitions are right in
the analogy with the Hodge context presented in A.1. See 0.4.)
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Let X ∈  . For m ∈ Z, let

Hm(X)� = Hm
logét(X ×S S,Q�).

It is a finite dimensional Q�-vector space endowed with a continuous action of πlog
1 (S).

We make symbols Hm(X)(r) and Hm(X)(r)� for X ∈  and for m, r ∈ Z such that m ≥ 0.

A.4. Let K = Kn or K = KHn, where Kn is Quillen’s K-theory and KHn is the homotopy
K-theory of Weibel [21]. Following the method in [4] 2.4.6, for an fs log scheme X having
charts Zariski locally, we define

Klim(X) = lim−−→K(X′),

where X′ ranges over all log modifications of X in the sense of [4] 2.3.6 and K(X′) means K
of the underlying scheme of X′. The K-group K0,lim is used in [4] and also in the first half of
this Appendix, and the K-group KHn,lim is used in the latter half of this Appendix.

A.5. Let X, Y ∈  .
By a morphism Hm(X)(r)� → Hn(Y)(s)�, we mean a Q�-linear map Hm(X)�(r) →

Hn(Y)�(s) which is obtained as below from an element of

gruK0,lim(X ×S Y × Gt
m) ⊗ Q,

where t = (n − 2s) − (m − 2r) and u = d + n − m + r − s with d being the dimension of X
(the dimension is defined as a locally constant function on X), and gru is the graded quotient
for the γ-filtration. (If X is not equi-dimensional, this K-group is defined as the direct sum
of the K-group of connected components of X by using the dimension of each connected
component.)

If m− 2r > n− 2s, there is no non-zero morphism. We assume m− 2r ≤ n− 2s. We have
homomorphisms

gruK0,lim(X ×S Y × Gt
m) ⊗ Q→ H2u(X ×S Y × Gt

m)�(u)

→ H2d−m(X)� ⊗ Hn(Y)�(d + s − r) ⊗ Ht(Gt
m)�(t)→ Hom (Hm(X)�(r),Hn(Y)�(s)).

Here to have the first homomorphism, we use the fact that the log blowing-up along the
log structure does not change the log étale cohomology. The second homomorphism is
by Künneth formula, and the third one is by Poincaré duality and by the canonical map
Ht(Gt

m)�(t)
�→ Q� induced by H1(Gm)� � Q�(−1). (For basic properties of log étale coho-

mology, see [14].)
As is easily seen, a linear map Hm(X)�(r) → Hn(Y)�(s) commutes with the action of

π
log
1 (S) if it is a morphism Hm(X)(r)� → Hn(Y)(s)�.

By a morphism Hm(X)(r) → Hn(Y)(s), we mean a morphism Hm(X)(r)� → Hn(Y)(s)�

such that we can take t = 0 in the above.
If m − 2r � n − 2s, there is no morphism Hm(X)(r)→ Hn(Y)(s).

Proposition A.6. (1) The identity map of Hm(X)�(r) is a morphism Hm(X)(r)→ Hm(X)(r)
and hence a morphism Hm(X)(r)� → Hm(X)(r)�.

(2) For morphisms Hm(1)(X1)(r(1))� → Hm(2)(X2)(r(2))� and Hm(2)(X2)(r(2))� →
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Hm(3)(X3)(r(3))�, the composition is a morphism Hm(1)(X1)(r(1))� → Hm(3)(X3)(r(3))�. The
non-� version is also true.

Proof. The proof for the non-� version is given in [4] Propositions 3.1.4 and 3.1.6. The �
version is proved in the same way. �

Thus we have the category (LM�) of Hm(X)(r)� and the category (LM) of Hm(X)(r). A
variant of the latter was considered in [4].

A.7. We define the category (MM) as the category of contra-variant functors from (LM�) to
the category ofQ-vector spaces which are obtained as in (1) below, from an object Hn(Y)(s)�

of (LM�) and a Q�-subspace V of Hn(Y)�(s) satisfying the following conditions (i) and (ii).
(i) There is a morphism Hm(X)(r)� → Hn(Y)(s)� for some X,m, r such that V is the image

of Hm(X)�(r)→ Hn(Y)�(s).
(ii) The action of πlog

1 (S) on V factors through Gal(k/k).
(1) Hm(X)(r)� �→ the set of all morphisms Hm(X)(r)� → Hn(Y)(s)� such that the image of

Hm(X)�(r)→ Hn(Y)�(s) is contained in V .

A.8. We expect that this category (MM) is the category of mixed motives over k.

A.9. The above may be one of the simplest constructions of the category of mixed motives,
and by the comparison with the Hodge version in A.1, we expect that the obtained category
is the right one.

However, it is not clear whether the above (MM) contains the “usual” mixed motives
Hm(T )(r) associated with schemes T of finite type over k. We give below another construc-
tion of the category of mixed motives over k containing these “usual” objects, again by using
log pure motives, and will conjecture that these two constructions give the same category.

A.10. For this, we use the homotopy K-theory KHn (n ∈ Z, it is important for us that n can
be negative here) defined by Weibel [21]. There is a canonical homomorphism Kn → KHn

from Quillen’s K-theory Kn which is an isomorphism for regular Noetherian schemes. The
reason why we use KHn, not Quillen’s K-theory, is that we use the Riemann–Roch theorem
for KHn proved in [15].

A.11. For a scheme T of finite type over k, let Hm(T )� = Hm
ét (T ⊗k k,Q�).

Let X ∈  . Let Y be an object of  (resp. a scheme of finite type over k). By a morphism
h : Hm(X)(r)�∗ → Hn(Y)(s)�∗ (resp. Hm(X)(r)�∗ → Hn(Y)(s)) of symbols, we mean a Q�-
homomorphism Hm(X)�(r)→ Hn(Y)�(s) obtained from some element of

grd−r+sKH(m−2r)−(n−2s),lim(Z) ⊗ Q, where Z = X ×S Y (resp. Z = X × Y).

Here d is the dimension of X. Note that an element of this K-group goes by the Chern class
map to H2d−m+n(Z)�(d − r + s), and by Künneth formula and by Poincaré duality of X, to
Hom Q�(H

m(X)�(r),Hn(Y)�(s)).
For such a morphism h and for a morphism g : Hm(1)(X1)(r(1))�∗ → Hm(X)(r)�∗ with X1 ∈

 , the composition h ◦ g : Hm(1)(X1)�(r(1))→ Hn(Y)�(s) is a morphism Hm(1)(X1)(r(1))�∗ →
Hn(Y)(s)�∗ (resp. Hm(1)(X1)(r(1))�∗ → Hn(Y)(s)). The identity map Hm(X)(r)�∗ →
Hm(X)(r)�∗ is a morphism. These are proved in the same way as the non-� case in Propo-
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sition A.6, by replacing the Riemann–Roch theorem for K0 by the Riemann–Roch theorem
for KHn in [15] which works for projective morphisms locally of complete intersection.

Thus we have a category (LM�∗), and for a scheme Y of finite type over k, we have a
contra-variant functor

Hn(Y)(s) : Hm(X)(r)�∗ �→ {morphisms Hm(X)(r)�∗ → Hn(Y)(s)}
from (LM�∗) to the category of Q-vector spaces.

Let (MM∗) be the smallest full subcategory  of the category of contra-variant functors
from (LM�∗) to the category of Q-vector spaces satisfying the following conditions (i) and
(ii).

(i)  contains the functors Hn(T )(s) for schemes T of finite type over k and for n, s ∈ Z.
(ii) The kernel of every morphism of  belongs to .

That is, if 0 denotes the category of the functors Hn(T )(s) for schemes T of finite type
over k and for n, s ∈ Z and if i+1 is the category of functors which are kernels of some
morphisms of i, then (MM∗)= ⋃i≥0 i.

Thus (MM∗) is an additive category with kernels of morphisms. The authors expect that
it is an abelian category, but have not yet proved it. The authors have not yet proved that the
category (MM) is stable under taking kernels.

A.12. For any scheme T and for an integer t ≥ 0, we have a canonical homomorphism
K0(T × Gt

m) → KH−t(T ), and the Chern class map on the former K-group factors through
the Chern class map on the latter K-group. Hence we have a functor

(LM�)→ (LM�∗)
(the objects are the same but the set of morphisms might be enlarged in the latter category).

Conjecture A.13. (LM�) = (LM�∗) and (MM) = (MM∗).
To check that our definitions of the category of mixed motives are reasonable, we show

an example A.18 with our definitions for which the problems on Tate conjecture and Hodge
conjecture (A.14) and the monodromy conjecture (Conjecture A.17) on mixed motives have
affirmative answers (Proposition A.19).

A.14. Let Y and Z be schemes of finite type over k (resp. objects of ) and let m, n, r, s ∈ Z.
We ask whether the following (1) and (2) are true.

(1) (Tate conjecture.) Assume that k is finitely generated over the prime field. Then

Q� ⊗Q Mor(MM∗)(Hm(Y)(r),Hn(Z)(s))
�→ Hom Gal(k/k)(H

m(Y)�(r),Hn(Z)�(s))

(resp. Q� ⊗Q Mor(LM�)(Hm(Y)(r)�,Hn(Z)(s)�)
�→ Hom

π
log
1 (S)(H

m(Y)�(r),Hn(Z)�(s))).

(2) (Hodge conjecture.) Assume that k = C. Then

Mor(MM∗)(Hm(Y)(r),Hn(Z)(s))
�→ Hom (MH)(Hm(Y)(r)H ,Hn(Z)(s)H)

(resp. Mor(LM�)(Hm(Y)(r)�,Hn(Z)(s)�)
�→ Hom (LH�)(Hm(Y)(r)�H ,H

n(Z)(s)�H))).
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Here (·)H is the associated mixed Hodge structure (resp. mixed Hodge structure with N).

A.15. The conjectures in A.14 for the first isomorphisms in (1), (2) (i.e., for (MM∗)) are in
general false. The example in Appendix of [5] written by S. Bloch is a counter-example for
the first isomorphism in (2) in which Y = Spec(C), m = 0, r = 0, Z is the W there which is
three dimensional and singular, n = 4, s = 2. A counter-example for the first isomorphism
in (1) is obtained from by defining this W over a number field.

We expect that the conjectures for the second isomorphisms in (1), (2) (i.e., for (LM�))
are true in general. We expect that the above conjectures for the first isomorphisms in (1),
(2) are true for smooth Y , Z, and more generally, for the underlying schemes of log smooth
saturated fs log schemes over the standard log point.

Remark A.16. (1) For singular varieties, the Hodge conjecture [a Hodge class in homol-
ogy = an algebraic cycle class] and the Tate conjecture [a Tate class (a Galois invariant
element) in homology = an algebraic cycle class] are formulated in Part II of Jannsen [5]
and are shown to be equivalent to the classical Hodge conjecture and Tate conjecture for
projective smooth varieties (and hence are believed to be true), but the Hodge conjecture [a
Hodge class in cohomology = an algebraic cycle class] and the Tate conjecture [a Tate class
in cohomology = an algebraic cycle class] are false by Appendix of [5] written by Bloch.
The counter-examples in A.15 appear because our theory considers cohomology Hm(X)(r),
not homology Hm(X)(r).

(2) In Part II of [5], for smooth varieties, conjectures [Hodge classes in cohomology come
from Quillen’s K-theory] and [Tate classes in cohomology come from Quillen’s K-theory]
(for various Tate twists of the cohomology) are formulated. These are essentially the first
isomorphisms in (1), (2) of A.14 for Y = Spec(k) and m = 0, r = 0, and Z smooth, though
we use the homotopy K-theory KH, not Quillen’s K-theory.

Conjecture A.17. (Monodromy conjecture which tells that the monodromy operator
comes from geometry, not only from Galois theory.)

For X ∈  , the monodromy operator N : Hm(X)� → Hm(X)�(−1) is a morphism Hm(X)�

→ Hm(X)(−1)�, and hence is a morphism Hm(X)�∗ → Hm(X)(−1)�∗.

A.18. Example. Let Λ be a discrete valuation ring with residue field k, and let X be a
projective regular flat scheme over Λ of relative dimension one with smooth generic fiber
and with semistable reduction. We assume that the special fiber of X is a simple normal
crossing divisor. Endow Spec(Λ) and X with the canonical log structures. We regard S as
the closed point of Spec(Λ) with the induced log structure. Let X be the fs log scheme
X ×Spec(Λ) S over S. Then X ∈  . Let T be the underlying scheme X ⊗Λ k over k of X. We
have a canonical injective homomorphism H1(T )� → H1(X)�.

Remark. H1(X)� (or H1(X)�∗) is regarded as the limit mixed motive, an analogue of limit
mixed Hodge structure.

Proposition A.19. Let the notation be as in A.18.
(1) The Tate conjecture and the Hodge conjecture A.14 for (MM∗) are true in the case

Y = Spec(k), Z = T, m = 0, n = 1, r = s = 0.
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(2) The Tate conjecture and the Hodge conjecture A.14 for (LM�) are true in the case
Y = S, Z = X, m = 0, n = 1, r = s = 0, and also in the case Y = X, Z = S, m = 1, n = 0,
r = 0, s = −1.

(3) The monodromy operator N : H1(X)� → H1(X)�(−1) is a morphism of (LM�) (and
hence a morphism of (LM�∗)).

Proof. In (1) and (2), we only discuss the Tate conjecture. The proof for the Hodge
conjecture is similar.

In the discussion about (MM∗) (resp. (LM�)), we denote H0(Spec(k)) (resp. H0(S)�) by
Q. With this notation, the Tate conjecture in (1) is written as

Q� ⊗Q Mor(MM∗)(Q,H1(T ))
�→ Hom Gal(k/k)(Q�,H

1(T )�),

and the statements on the Tate conjecture in (2) are written as

Q� ⊗Q Mor(LM�)(Q,H1(X)�)
�→ Hom

π
log
1 (S)(Q�,H

1(X)�),

Q� ⊗Q Mor(LM�)(H1(X)�,Q(−1))
�→ Hom

π
log
1 (S)(H

1(X)�,Q�(−1)).

By Galois descent, we may and do assume that all singular points of T are k-rational. Let
A be the set of all singular points of T and let B be the set of all generic points of T . The
following (i) and (ii) are well-known. (See, for example, [17].)

(i) We have a canonical isomorphism Q
�→ H1

ét(T,Z), where Q is the cokernel of a natural
homomorphism ZB → ZA, and it induces an isomorphism from Q� ⊗Z Q to the G-invariant
part of H1(X)�, where G = πlog

1 (S). Hence by the Poincaré duality, we have an isomorphism
from the G-coinvariant of H1(X)�(1) to Q� ⊗Z P, where P = Hom (Q,Z).

(ii) The monodromy logarithm N : H1(X)� → H1(X)�(−1) is the composition

H1(X)� → Q�(−1) ⊗Z P→ Q�(−1)A → Q�(−1) ⊗Z Q→ H1(X)�(−1).(∗)
By Theorems 3.3 and 5.1 of [21] and by Lemma 2.3 of [22], we have an isomorphism

KH−1(T ) � H1
ét(T,Z) and the Chern class map KH−1(T )⊗Q→ gr0KH−1(T )⊗Q→ H1(T )�

corresponds to the canonical map H1
ét(T,Z) → H1(T )�. By definition, Mor(MM∗)(Q,H1(T ))

is the image of KH−1(T ) ⊗ Q→ H1(T )� and hence we have (1).
Next we consider (2). We prove first the version of the Tate conjecture in (2) in which we

replace (LM�) by (LM�∗). By definition, Mor(LM�∗)(Q,H1(X)�∗) is the image of KH−1(T ) ⊗
Q → H1(X)� and Mor(LM�∗)(H1(X)�∗,Q(−1)) is the image of KH−1(T ) ⊗ Q → H1(X)� �
Hom (H1(X)�,Q�(−1)) and hence we have the (LM�∗) version of (2).

Now we consider (LM�). By definition, Mor(LM�)(Q,H1(X)�) is the image of gr1K0(T ×
Gm) ⊗ Q → H1(X)� and Mor(LM�)(H1(X),Q(−1)) is the image of gr1K0(T × Gm) ⊗ Q →
H1(X)� � Hom (H1(X)�,Q�(−1)). These Chern class maps factor through the above Chern
class maps on gr1KH−1(T ) ⊗ Q. Since the map gr1K0(T × Gm) ⊗ Q → gr1KH−1(T ) ⊗ Q �
H1

ét(T,Z)⊗Q has a right inverse defined by H1
ét(T,Z)→ H1

ét(T ×Gm,Gm) = Pic (T ×Gm)→
gr1K0(T ×Gm) in which the first arrow is the product with the coordinate function of Gm, we
have (2).

(3) follows from the above (ii) because every arrow in (∗) in (ii) is a morphism in (MM).
�
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A.20. We have considered the category of mixed motives modulo homological equivalence.
The above method of the construction of (MM∗) works without homological equivalence as
follows, by using the K-groups as the sets of morphisms. We define the modified version
(LM�∗∗) of (LM�∗) as the category of symbols h(X)(r)�∗∗, where X ∈  and r ∈ Z. We define
the set of morphisms from h(X)(r)�∗∗ to h(Y)(s)�∗∗ to be

⊕
n∈Z grd−r+sKHn,lim(X ×S Y) ⊗ Q,

where d is the dimension of X. We define the modified version (MM∗∗) of (MM∗) as
the category

⋃
i≥0 i of contra-variant functors from (LM�∗∗) to the category of Q-vector

spaces, where 0 is the category of the functors

h(T )(s) : h(X)(r)�∗∗ �→
⊕

n∈Z
grd−r+sKHn,lim(X × T ) ⊗ Q

for schemes T of finite type over k and for s ∈ Z, and i+1 is the category of functors which
are kernels of some morphisms of i.

Thus (MM∗∗) is an additive category with kernels of morphisms. We expect that it is an
abelian category.

A.21. In the case where the characteristic of k is 0, a definition of the category of mixed
motives is given in Part I of Jannsen [5] by considering smooth (not necessarily proper)
schemes. In his definition, a morphism of mixed motives is a compatible family of homo-
morphisms of various realizations (including the Q-Betti realization; K-theory is not used
in this definition). His definition and our definition are connected by the Tate conjecture for
the first isomorphism in (1) of A.14 for smooth schemes.

Our definition works also in positive characteristic in which we do not have the Betti
realization.

The authors do not see how our definition is related to the work [20] on mixed motives
and [1] on log motives.
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