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Abstract
We investigate the efficiencies and the relations of quandle invariants for knots. For example,

we see that for any finitely generated connected quandle X, there exists a knot diagram which
admits a surjective X-coloring. Also, we show the equivalence of shadow cocycle invariants
and 3-cocycle invariants and the independence of homotopy invariants and non-abelian cocycle
invariants.

1. Introduction

1. Introduction
Since quandles were introduced in [11] and [12], various knot invariants have been de-

fined and used to investigate knots and links, e.g., quandle cocycle invariants [1] and quandle
homotopy invariants [13]. Invariants from quandles can be calculated from diagrams and are
so powerful that the fundamental invariant, knot quandles, distinguishes the oriented knots
(in a weak sense).

However, one has rarely cared about the efficiencies of such invariants. For example,
it is well known that a surjective coloring of a knot by a quandle X exists only if X is
connected, but is the converse true? Also, the quandle homotopy invariant can take any
value of π2(BQX), but does this hold also when restricted to colorings of knots? In the
case of a group G, a condition for a pair (m, �) ∈ G2 to admit a G-representation sending a
meridian-longitude pair to (m, �) was given in [10], but a similar result for quandles is not
known.

In this paper, we show the efficiency of quandle invariants for knots and study the rela-
tionships between them. In particular, Theorem 4.1 shows that the shadow homology in-
variant on (X, X) of a quandle X is equivalent to the third homology invariant. Furthermore,
we prove the independence of homotopy invariants and non-abelian invariants under some
obvious restrictions (Theorem 5.8). We should remark that homology invariants have the
universalities over cocycle invariants and hence we can easily rewrite results on homology
invariants in terms of cocycle invariants.

2. Quandles and knot invariants

2. Quandles and knot invariants
A quandle is a set X equipped with a binary operation ∗ satisfying
(Q1) we have x ∗ x = x for any x ∈ X;
(Q2) the map sx : X � a �→ a ∗ x ∈ X is bijective for any x ∈ X; and
(Q3) we have (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for any x, y, z ∈ X.
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In this paper, we denote s−1
y (x) by x ∗ y. For a subset S of X, the quandle generated by S is

the minimum subquandle containing S.
The associated group As(X) of a quandle X is defined by

As(X) = 〈X | exey = eyex∗y for x, y ∈ X〉,
where ex denotes the generator corresponds to x ∈ X. We call a set with a right action of
As(X) an X-set. For example, we can regard X itself as an X-set by setting a · ex = a ∗ x for
a, x ∈ X. An orbit of this action on X is called a connected component, and the quandle X is
said to be connected if the action is transitive.

Let us review homology theory on quandles briefly; see, e.g., [1, 14] for details. Let X
be a quandle and Y an X-set. Let CR

n (X, Y) be the free abelian group generated by Y × Xn.
Boundary operators ∂ : CR

n (X, Y) → CR
n−1(X, Y) are defined to make (CR• (X, Y), ∂) a chain

complex, and subgroups CD
n (X, Y) of CR

n (X, Y) defined by CD
0 (X, Y) = CD

1 (X, Y) = 0 and

CD
n (X, Y) = spanZ{(y, x1, . . . , xn) ∈ CR

n (X, Y) | xi = xi+1 for some i}
for n ≥ 2 form a subcomplex. Denote the quotient CR

n (X, Y)/CD
n (X, Y) by CQ

n (X, Y) and de-
fine quandle homology groups HQ

• (X, Y) of (X, Y) to be the homology groups of the quotient
complex (CQ

• (X, Y), ∂). In this paper, we omit the coefficient groups of homology groups
when they are Z. If the X-set Y is a single point with the trivial action, we omit the symbol
Y; i.e., we denote HQ

• (X, {pt.}) by HQ
• (X), simply.

3. Surjective colorings

3. Surjective colorings
In this paper, knots and links are considered in S3 and always oriented.
Let X be a quandle. An X-coloring of a link diagram D is a map  which assigns an

element (x) ∈ X to each arc x of D satisfying

(x) ∗ (y) = (z) at any crossing of D.

In fact, the fundamental quandle QL of the link L represented by D is defined and there
exists a one-to-one correspondence between the set of the X-colorings of D and the set of
the quandle homomorphisms from QL to X; see, e.g., [4, 14] for details. We shall say that
an X-coloring  is surjective if it is surjective as the quandle homomorphism, i.e., if X is
generated by the colors (x) of the arcs x.

Proposition 3.1. Let X be a quandle. There exist a link (resp. knot) diagram D and a
surjective X-coloring on D if and only if X is finitely generated (resp. finitely generated and
connected).

Proof. The “only-if” part immediately follows from the fact that the fundamental quandle
is finitely generated and if the link is a knot it is connected.

To see the “if” part, let S = {x1, . . . , xn} be a finite generating set of X. We take a trivial
n-component link diagram D0 and let 0 be the X-coloring which assigns xi to the i-th
component. By the definition, 0 is surjective.

Further, we assume X to be connected. For i = 2, . . . , n, we take a ribbon ri connecting
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the first and the i-th components as follows. We first take g ∈ As(X) so that x1 · g = xi.
Since X is generated by S, we can express g as eε1x j1

· · · eεkx jk
, where ε1, . . . , εk = ±1.We define

ri by starting at the first component, passing through the j1-, . . . , jk-th components in the
directions of ε1, . . . , εk in this order, and ending at the i-th component. We assume r2, . . . , rn

to be disjoint. Define a knot K by taking the ribbon-sum. By the definition of the ribbons,
the corresponding diagram D of K admits a coloring  extending 0. Since the image of 
contains S,  is surjective. �

4. 3-cocycle invariants vs. shadow 2-cocycle invariants

4. 3-cocycle invariants vs. shadow 2-cocycle invariants
Let X be a quandle and Y an X-set. Let us consider an X-coloring  on a link diagram D

and a map  : {regions of D} → Y . If  satisfies a condition

(r) · e(x) = (s) for any arc ,

then the pair (,) is called a shadow (X, Y)-coloring of D. We should remark that the
whole region coloring  is uniquely determined by the coloring  of arcs and the color
(r) of a single region r. Regarding X itself as an X-set, we simply call a shadow (X, X)-
coloring a shadow X-coloring.

Let  = (,) be a shadow (X, Y)-coloring. For each crossing point p, we define a
weight ΦX,Y( , p) ∈ CQ

2 (X, Y) by

ΦX,Y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 ,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ΦX,Y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 ,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ((r),(x),(y)), = −((r),(x),(y)).

Then, the sum of the weights over all crossings can be checked to be a cycle and we denote
the homology class by ΦX,Y(), i.e.,

ΦX,Y() =

⎡⎢⎢⎢⎢⎢⎢⎣
∑

p

ΦX,Y( , p)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ HQ
2 (X, Y).

In particular, denote ΦX,{pt.}() by Φ2() ∈ HQ
2 (X) and ΦX,X() by ΦX() ∈ HQ

2 (X, X).
Furthermore, we should remark that the quotient map CQ

2 (X, X) → CQ
3 (X) induces a homo-

morphism p∗ : HQ
2 (X, X)→ HQ

3 (X); let us denote p∗ΦX() by Φ3() ∈ HQ
3 (X).

The homomorphism HQ
2 (X, X) → HQ

2 (X) induced by forgetting the first coordinate takes
ΦX() to Φ2(), and [6] defines a shifting chain homomorphism HQ

3 (X) → HQ
2 (X) which

sends Φ3() to Φ2(): Both ΦX and Φ3 have the universalities over Φ2. By the definition p∗
takes ΦX to Φ3, and here we show that this preserves the information of the invariant:

Theorem 4.1. Let X be a quandle. Then, there exists a homomorphism q : HQ
3 (X) →

HQ
2 (X, X) such that q(Φ3()) = ΦX() holds for any shadow X-coloring  of any link

diagram.

In order to prove Theorem 4.1, let us recall quandle spaces. For a qundle X and an X-set Y ,
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the rack space [5] BY X is defined as the quotient of
⊔∞

n=0[0, 1]n×Y ×Xn by a certain relation
∼R, where the sets X and Y are equipped with the discrete topologies; see the original paper
[5] for details. We consider the equivalence relation ∼Q on BY X generated by

(t1, . . . , ti−1, ti, ti+1, ti+2, . . . , tn; y; x1, . . . , xi−1, xi, xi, xi+2, . . . , xn)

∼Q (t1, . . . , ti−1, t′i , t
′
i+1, ti+2, . . . , tn; y; x1, . . . , xi−1, xi, xi, xi+2, . . . , xn)

for y ∈ Y, x j ∈ X, and t j, t′i , t
′
i+1 ∈ [0, 1] such that ti + ti+1 = t′i + t′i+1, and let BQ

Y X denote the
quotient space BY X/ ∼Q, which is called the quandle space. We denote B{pt.}X by BX and
BQ
{pt.}X by BQX; we should remark that for general Y , BQ

Y X is a covering space of BQX. In

the case where Y = X, we can define a continuous free action of R/Z on BQ
X X by

t · (t1, . . . , tn; x; x1, . . . , xn) = (t, t1, . . . , tn; x; x, x1, . . . , xn).

Let us denote the quotient space by B̂X and call it the extended quandle space. Quandle
spaces BQX and B̂X were originally introduced in [13] and [15], and the definitions here
follows [9] and [8].

For an X-coloring  of a link diagram D, a map ξ : S2 → BQX is defined and the
homotopy class Ξ() ∈ π2(BQX) of ξ is called the quandle homotopy invariant, which is
invariant under Reidemeister moves of the diagram. For a shadow (X, Y)-coloring  =

(,), let Ξ() ∈ π2(BQ
Y X, r), where r ∈ Y is the color of the unbounded region and also

denotes the corresponding vertex of BQ
Y X, be the homotopy class of the lift ξ̃ : S2 → BQ

Y X
of ξ. Similarly, the shadow homotopy invariant Ξ̂() ∈ π2(B̂X, r) is defined for a shadow
X-coloring  with r ∈ X being the color of the unbounded region. We refer the original
papers [13] and [15] for details.

We regard Z × X as an X-set by setting (a, x) · ey = (a + 1, x ∗ y). In [8], we showed a
commutative diagram

BQ
Z×XX

s̃×(p◦pQ)

�
��

��

R × B̂X

��
BQ

X X
s×p

�
�� S1 × B̂X

with homeomorphic rows, where s̃ : BQ
Z×XX → R and s : BQ

X X → S1 = R/Z are continuous
functions, p : BQ

X X → B̂X is the quotient map, and pQ : BQ
Z×XX → BQ

X X is the covering map.
As in [2], we can introduce a structure of a topological monoid on the quandle space

BQX and hence the action of the fundamental group on the homotopy groups is trivial. As
seen above, the extended quandle space B̂X is homotopy equivalent to a covering space of
BQX. Thus, each connected component of B̂X has the higher homotopy groups isomorphic
to πn(BQX) and the action of fundamental group on them is trivial.

Proposition 4.2. Let  = (,) be a shadow X-coloring on any link diagram and let
r ∈ X be the color of the unbounded region. Then, identifying π2(B̂X, r) and π2(BQX) as
above, we have Ξ̂() = Ξ().

Proof. We take a continuous map ξ : S2 → BQX representing Ξ() and the lift ξ̃ : S2 →
BQ

X X as in the definitions of Ξ() and Ξ(). By definition, we have [p◦ξ̃] = Ξ̂() ∈ π2(B̂X, r)
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and this concludes the proposition since the identification π2(B̂X, r) � π2(BQX) is given by
the homomorphisms induced by p : BQ

X X → B̂X and the covering map BQ
X X → BQX. �

Quandle spaces BQ
Y X and B̂X are equipped with structures of CW-complexes and have

(shifted) quandle homologies. In fact, their cellular complexes satisfy

(Cn(BQ
Y X), ∂)n � (CQ

n (X, Y), ∂)n, (Cn(B̂X), ∂)n � (CQ
n+1(X),−∂)n,

and hence Hn(BQ
Y X) � HQ

n (X, Y), Hn(B̂X) � HQ
n+1(X). Furthermore, the Hurewicz homo-

morphisms hY : π2(BQ
Y X) → HQ

2 (X, Y), ĥ : π2(B̂X) → HQ
3 (X) take the homotopy invariants

Ξ(), Ξ̂() to the homology invariants ΦX,Y(),Φ3().
Proof of Theorem 4.1. Let q0 : B̂X → BQ

Z×XX be the composite

B̂X
{0}×id−−−−→ R × B̂X

(s̃×(p◦pQ))−1

−−−−−−−−−→ BQ
Z×XX,

which is homotopy equivalent as recalled above, and define

q = (pQ ◦ q0)∗ : HQ
3 (X) � H2(B̂X)→ H2(BQ

X X) � HQ
2 (X, X).

Since p ◦ pQ ◦ q0 = idB̂X , the induced homomorphism (q0)∗ : π2(B̂X) → π2(BQ
Z×XX) �

π2(BQX) is isomorphic and gives the identification of Proposition 4.2. Then, the proposition
shows that (q0)∗Ξ̂() = Ξ() for any shadow X-coloring  . The universalities of homotopy
invariants over homology invariants recalled above and the naturality of Hurewicz homo-
morphisms prove that

q(Φ3()) = (pQ ◦ q0)∗ĥ(Ξ̂()) = hX((pQ ◦ q0)∗Ξ̂()) = hX(Ξ()) = ΦX(),

as required. �

Remark 4.3. By using the cellular approximation of q0 given in [8], we obtain a concrete
description of q : HQ

3 (X)→ HQ
2 (X, X) as follows:

q(x, y, z) = (x, y, z) − (x, x, z) + (x, x, y).

Then, for a shadow 2-cocycle φ : X3 → A valued on an abelian group A, the map φ′ :
X3 → A defined by φ′(x, y, z) = φ(x, y, z) − φ(x, x, z) + φ(x, x, y) is a quandle 3-cocycle and
φ(ΦX()) = φ′(Φ3()) holds for any shadow X-coloring  .

5. Efficiency of invariants

5. Efficiency of invariants
In this section, we see that invariants from a finitely generated connected quandles are

efficient for knots. The efficiency of homotopy invariants and 3-(co)cycle invariants are
shown in Section 5.1, and non-abelian cycle invariants are recalled and investigated in Sec-
tion 5.2. Finally, Section 5.3 shows the independence of them, i.e., the efficiency of the
product invariants.

5.1. Efficiency of homotopy/3-cocycle invariants.
5.1. Efficiency of homotopy/3-cocycle invariants. First, let us show the efficiency of

homotopy invariants:
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Proposition 5.1. Let X be a quandle. Then, for any ξ ∈ π2(BQX), there exists an X-
coloring  on a link diagram D such that Ξ() = ξ. If X is finitely generated and connected,
we may assume D to be a knot diagram and  surjective. Furthermore, the same claims
hold for Ξ̂.

Proof. The general case is well known: We take a continuous map f : S2 → BQX
representing ξ ∈ π2(BQX) and, by a cellular approximation of f , find a link diagram D0 with
an X-coloring 0 which represents ξ, i.e., Ξ(0) = ξ.

Let us assume X to be finitely generated and connected. We take a knot diagram D1 with
a surjective X-coloring 1 as in the proof of Proposition 3.1, and then we can easily check
that Ξ(1) = 0. Let D2 be a disjoint union D0 � D1, where an X-coloring 2 is defined
from 0 and 1. As in the proof of Proposition 3.1, we can take ribbons from D1 to the
components of D0 so that the ribbon-sum D is a knot diagram which admits an X-coloring
 which extends 2. Since a concordance with an X-coloring such as this ribbon-sum does
not change the representing homotopy class, we have Ξ() = ξ as required.

The version of Ξ̂ is now just a corollary of Proposition 4.2. �

Remark 5.2. The assumption of finite generation is necessary. For example, let X be
the connected quandle (Q, ∗) defined by x ∗ y = 2y − x. Since a link diagram admits a
nontrivial X-coloring if and only if the determinant of the link equals zero (e.g., see [7]),
every knot coloring is trivial and the homotopy invariant is zero. These are also true for
X2, but the homotopy group π2(BQX2) is nontrivial: A map φ : X2 × X2 → Q defined by
φ((x1, x2), (y1, y2)) = x1y2 − x2y1 is a quandle cocycle and we can easily find an X2-coloring
 of the (4, 4)-torus link such that φ(Φ2()) � 0.

Let X be a quandle. Let r denote the shadow X-coloring determined by an X-coloring
 of a diagram and the color r ∈ X of the unbounded region. Since the action of π1(B̂X)
on π2(B̂X) is trivial and Ξ̂ is universal over Φ3, the homology invariants Φ3(r) and Φ3( s)
have the same value if r and s belong to the same connected component. In particular, if X
is connected Φ3(r) does not depend on r ∈ X and then we can denote it by Φ3().

We shall assume X to be connected for the simplicity. Since H2(B̂X) � HQ
3 (X), there

exists a classifying homomorphism c∗ : HQ
3 (X)→ H2(π1(B̂X)), where H2(π1(B̂X)) expresses

the group homology with integer coefficient. A homology class φ ∈ HQ
3 (X) is said to be

realizable if c∗φ = 0 ∈ H2(π1(B̂X)).

Proposition 5.3. Let X be a finitely generated connected quandle and φ ∈ HQ
3 (X) a

homology class. Then, there exists a pair (D,) of a knot diagram D and an X-coloring 

of D such that Φ3() = φ if and only if φ is realizable.

Proof. By the five-term exact sequence of the Cartan-Leray spectral sequence for the
universal covering of B̂X, we find that

π2(B̂X)
h∗−→ HQ

3 (X)
c∗−→ H2(π1(B̂X))

is exact, where h∗ is the Hurewicz homomorphism. Since Φ3() = h∗Ξ̂(), we have
c∗Φ3() = 0, i.e., Φ3() is realizable.

Conversely, if a homology class φ ∈ HQ
3 (X) is realizable, the exact sequence above shows
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Fig.1. Definition of Λ

that there exists ξ ∈ π2(B̂X) such that h∗ξ = φ. By Proposition 5.1 there exists an X-coloring
 on a knot diagram such that Ξ̂() = ξ, which implies that Φ3() = h∗Ξ̂() = h∗ξ = φ, as
required. �

5.2. Non-abelian cocycle invariants.
5.2. Non-abelian cocycle invariants. Let X be a quandle and take a base point x0 ∈ X.

Following [3], we define the fundamental group π1(X, x0) of (X, x0) by

π1(X, x0) = {g ∈ As(X) | x0 · g = x0, ε(g) = 0},
where ε : As(X)→ Z is the group homomorphism which maps the generators ex to 1 ∈ Z.

It is known in [3] that the abelianization π1(X, x0)ab is isomorphic to HQ
2 (X) if the quandle

X is connected. We can show this by checking π1(X, x0) � π1(B̂X, x0). In the following, we
denote the image of λ ∈ π1(X, x0) under the abelianization by λab ∈ HQ

2 (X).
An X-coloring  on a diagram D of a knot K defines a group homomorphism from the

knot group πK to As(X) and then the image of a preferred longitude is contained in the
fundamental group of X. Explicitly, we take a base point p0 in an arc γ0 of D and let x0 ∈ X
be the color of γ0. Starting at p0, we go along K to come back to p0; in this process, let yi

denote the color of the over-arc at the i-th crossing under which we pass, as illustrated in
Fig. 1. Then, we set

Λ() = e−
∑n

i=1 εi
x0 eε1y1

· · · eεnyn
∈ As(X),

where n is the number of the crossings and εi = ±1 is the sign of the i-th crossing. We can
easily check that Λ() belongs to the fundamental group π1(X, x0) and call Λ() the non-
abelian cycle invariant. By the definitions, we can easily find Λ()ab = Φ2() ∈ HQ

2 (X).

Remark 5.4. Since Λ() depends on the choice of the arc γ0 of D, we should consider
its conjugacy class in As(X) when we regard Λ as an invariant. However, for any x0 ∈ X
belonging to the same connected component as (γ0), we can take g ∈ As(X) such that
(γ0) ·g = x0 to find g−1Λ()g ∈ π1(X, x0). Furthermore, the conjugacy class of g−1Λ()g in
π1(X, x0), as well as in As(X), does not depend on the choice of g. Thus, if X is connected,
we may consider Λ() as in π1(X, x0) for an arbitrarily fixed x0 ∈ X and identify it up to
conjugation in π1(X, x0) if necessary.

Since HQ
2 (X) � H2(BQX) and π1(BQX) � As(X), there exists a classifying homomor-

phism c∗ : HQ
2 (X) → H2(As(X)). In the following, a homology class φ ∈ HQ

2 (X) is said to
be realizable if c∗φ = 0.
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Fig.2. A diagram D0 with an X-coloring 0

Proposition 5.5. Let X be a finitely generated connected quandle and fix x0 ∈ X. For
λ ∈ π1(X, x0), there exists a knot diagram D with an X-coloring  such that Λ() = λ if and
only if λab ∈ HQ

2 (X) is realizable.

Proof. By the five-term exact sequence of the Cartan-Leray spectral sequence for the
universal covering of BQX, we have an exact sequence

π2(BQX)
h∗−→ HQ

2 (X)
c∗−→ H2(As(X)).

Since h∗Ξ() = Φ2(), this sequence shows that Λ()ab = Φ2() is realizable.
Assume λab ∈ HQ

2 (X) to be realizable. As seen above, λab comes from π2(BQX) and then
Proposition 5.1 finds a surjective X-coloring 0 on a knot diagram D0 such that Φ2(0) =
h∗Ξ(0) = λab. Since X is connected, we may assume the color of an arc equal to x0. By the
universality of Λ over Φ2, we find that Λ(0)−1λ is contained in the commutator subgroup
[π1(X), π1(X)], and then Lemma 5.6 below finds an X-coloring 1 on a knot diagram D1 such
that Λ(1) = Λ(0)−1λ. A connected sum D of D0 and D1 admits an X-coloring  obtained
from 0 and 1, which satisfies the required condition Λ() = λ. �

Lemma 5.6. Let G denote the fundamental group π1(X, x0). For any λ ∈ [G,G], there
exists an X-coloring  on a knot diagram such that Λ() = λ and Ξ() = 0.

We do not need the property Ξ() = 0 in the proof of Proposition 5.5; this is used in the
proof of Theorem 5.8.

Proof of Lemma 5.6. It is sufficient to consider the case where λ is a commutator [g, h] of
g, h ∈ G. In fact, any element of [G,G] can be expressed as a product of commutators, and
then we take a connected sum of colored knot diagrams corresponding to the commutators
to obtain a required one.

Let D0 be the link diagram with an X-coloring 0 described in Fig. 2. Here, the compo-
nent with label g represents a paralleled link whose colors express g ∈ π1(X, x0) ⊂ As(X):
If g = eε1y1 · · · eεkyk , then we take a k-parallelization of that component and give colors and
orientations according to yi and εi; the component labeled h is similar. Then, we read the
colors of over-arcs along the component labeled x0 to find it equal to [g, h].

In order to modify D0 to be a knot diagram, we take a knot diagram D1 with a surjective
X-coloring 1 as in the proof of Proposition 3.1. We should remark that the proof gives a
colored diagram with trivial non-abelian cycle invariant. We consider a disjoint union of D0

and D1, and connect D1 and the components of D0 with ribbons so that the colors of the
arcs connected by each ribbon are same. Taking the ribbon-sum, we obtain a knot diagram
D with an X-coloring  satisfying Λ() = [g, h].

Finally, we shall check that Ξ() = 0. Since the ribbon-sum operation does not change the
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Fig.3. (D0,0) is null-cobordant

homotopy invariant, it is sufficient to show Ξ(0) = Ξ(1) = 0.We can easily find Ξ(1) = 0
from the definition of 1 (the proof of Proposition 3.1). The other equation Ξ() = 0 can be
seen as illustrated in Fig. 3. �

Remark 5.7. For a diagram D of a knot K and an arc m, there is a one-to-one corre-
spondence between the set of X-colorings  such that (m) = x0 and Λ() = λ and the set
of group homomorphisms πK → As(X) which send the meridian-longitude pair to (ex0 , λ).
Then, we can use [10] to obtain an alternative proof of Proposition 5.5; for example, we can
check the vanishing of the Pontryagin product 〈ex0 , λ〉 ∈ H2(As(X)) by showing a formula
〈ex0 , λ〉 = c∗(λab). We omit the details, for this proof does not deduce Theorem 5.8 in the
next section.

5.3. Non-abelian invariants vs. 3-cocycle invariants.
5.3. Non-abelian invariants vs. 3-cocycle invariants. As seen above, homotopy invari-

ants and non-abelian invariants are efficient under some conditions. As the goal of this paper,
we see the independence of these invariants:

Theorem 5.8. Let X be a finitely generated connected quandle and take x0 ∈ X. For
ξ ∈ π2(BQX) and λ ∈ π1(X, x0), there exists a pair (D,) of a knot diagram D and an X-
coloring  of D such that Ξ() = ξ and Λ() = λ if and only if h∗ξ = λab ∈ HQ

2 (X), where
h∗ : π2(BQX)→ HQ

2 (X) is the Hurewicz homomorphism.

Proof. For an X-coloring  on a knot diagram, the universalities of Ξ and Λ over Φ2

shows that h∗Ξ() = Φ2() = Λ()ab. Conversely, if ξ ∈ π2(BQX) and λ ∈ π1(X, x0)
satisfy h∗ξ = λab, we can construct a required pair (D,) just as in the proof of Proposition
5.5: We take a pair (D0,0) with Ξ(0) = ξ by Proposition 5.1 and then correct Λ by
taking a connected sum with a pair (D1,1) obtained by Lemma 5.6; we should note that the
connected-sum operation does not change the homotopy invariant because of the property
Ξ(1) = 0 in Lemma 5.6. �

Corollary 5.9. For φ ∈ HQ
3 (X) and λ ∈ π1(X, x0), there exists a pair (D,) of a knot

diagram D and an X-coloring  of D such that Φ3() = φ and Λ() = λ if and only if φ is
realizable and p∗ ◦ q(φ) = λab ∈ HQ

2 (X), where p : BQ
X X → BQX is the covering map.

Remark 5.10. In Corollary 5.9, p∗ ◦ q : HQ
3 (X) → HQ

2 (X) is equal to the shifting homo-
morphism introduced in [6].
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