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Abstract
We study the closure of a complex subtorus in a toric manifold. If the closure of the com-

plex subtorus is a smooth complex submanifold in the toric manifold, then the subtorus action
on such submanifold is Hamiltonian. In this case, we may think of the embedding of the
submanifold as torus-equivariant. We show that the image of the moment map for the Hamil-
tonian subtorus action on our submanifold coincides with the image of the Delzant polytope of
the ambient toric manifold under the pullback of the inclusion of the tori. The submanifolds
constructed in the present paper are called torus-equivariantly embedded toric manifolds with
respect to the subtorus action.

1. Introduction

1. Introduction
Delzant [5] established a one-to-one correspondence between compact symplectic toric

manifolds and certain convex polytopes known as Delzant polytopes. Given a 2n-
dimensional compact symplectic toric manifold X, the image of a moment map for the
Hamiltonian T n-action on X is a Delzant polytope Δ in (tn)∗ � Rn. Conversely, given a
Delzant polytope Δ in (tn)∗, we can construct a compact symplectic toric manifold X whose
moment polytope is Δ. This construction is called the Delzant construction. From the
Delzant construction, symplectic toric manifolds are canonically equipped with a Kähler
structure [8, 3]. We can identify the complements of toric divisors in a symplectic toric
manifold X with a complex torus (C∗)n, whose description allows us to consider complex
coordinates in X.

1.1. Main Results.
1.1. Main Results. In this paper, we study complex submanifolds in compact toric man-

ifolds X. From a k-dimensional affine subspace V in tn � Rn, we first construct a k-
dimensional complex submanifold C(V) in the toric divisor complements M̌ � (C∗)n of
the toric manifold X. This construction is inspired by [11], and C(V) � (C∗)k as Yamamoto
noted there. In fact, C(V) � (C∗)k is a complex subtorus of M̌ � (C∗)n. We then consider the
conditions of V when the (Zariski) closure C(V) is a k-dimensional complex submanifold in
the toric manifold X (Section 4.1). While C(V) is a complex submanifold in M̌ � (C∗)n for
arbitrary affine subspace V as Yamamoto showed in [11, Lemma 6.1], C(V) may not be a
complex submanifold in X (see Example 4.5 and Section 5).

Suppose that C(V) is a smooth complex submanifold in X. We then discuss the nature
of the submanifolds C(V). Toric manifolds X are naturally equipped with a moment map
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μ : X → (tn)∗ for the T n-action on them. We can define the injective group homomorphism
iV : T k → T n by the data of V (see Equation 4.6). Because the T n-action on X and iV : T k →
T n induce the T k-action on C(V), we can determine the moment map μ : C(V) → (tk)∗ by
μ = i∗V ◦ μ ◦ i, where i : C(V) → X is the embedding (see Section 4.3 for detail). We obtain
the following diagram:

We compare the image of the moment map μ : C(V) → (tk)∗ for the T k-action on our
complex submanifold C(V) with the image of the moment map μ : X → (tn)∗ for the T n-
action on the ambient toric manifold.

Theorem 1.1 (Theorem 4.20). Let iV : T k → T n be an injective group homomorphism
determined by a given affine subspace V in tn � Rn. Assume that C(V) is a complex sub-
manifold in X. Then the image of μ is equal to the image of i∗V ◦μ, i.e., μ(C(V)) = (i∗V ◦μ)(X).

We call the complex submanifolds C(V) torus-equivariantly embedded toric manifolds.

1.2. Outline.
1.2. Outline. This paper is organized as follows. In Section 2, we construct a system

of complex coordinate charts on complex manifolds from matrices in SL(n;Z). This con-
struction helps us to consider a system of complex coordinate charts in toric manifolds. In
Section 3, we review Delzant construction and construct a system of the inhomogeneous
coordinate charts on compact toric manifolds using the construction established in Section
2. In Section 4, we give the conditions where the closure C(V) of a complex subtorus C(V)
is a complex submanifold in the ambient toric manifold. Moreover, we consider the moment
maps for the subtorus action on our complex submanifolds and compare them with the mo-
ment maps for the torus action on ambient toric manifolds. In Section 5, we demonstrate
some examples of torus-equivariantly embedded toric manifolds.

Throughout the paper, we express vectors as column vectors.

2. Construction of Coordinate Charts from Matrices in SL(n;Z)

2. Construction of Coordinate Charts from Matrices in SL(n;Z)
This section is about construction of a system of complex coordinate charts from matrices

in the special linear group SL(n;Z). Our idea is similar to the coordinate transformations
for compact toric manifolds by Duistermaat and Pelayo [6], but here we construct a system
of complex coordinate charts in a general situation.

Let Λ be a set and Qλ ∈ SL(n;Z) a matrix corresponding to each λ ∈ Λ and Cn
λ = {zλ =

(zλ1, . . . , z
λ
n) ∈ Cn} � Cn for each λ ∈ Λ. We define a matrix Dλμ = (Qλ)−1Qμ(= [dλμi j ]) for

any λ, μ ∈ Λ and a subset Uλμ ⊂ Cn
λ by

Uλμ = {zλ ∈ Cn
λ | zλj � 0 if dλμjl < 0 for some l = 1, . . . , n}.

We introduce an equivalence relation on {Uλμ}λ,μ∈Λ.
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Definition 2.1. For zλ ∈ Uλμ ⊂ Cn
λ and zμ ∈ Uμλ ⊂ Cn

μ, we define a binary relation zλ ∼ zμ

by

(zμ1, . . . , z
μ
n) =

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(
zλj

)dλμj1 , . . . ,

n∏
j=1

(
zλj

)dλμjn

⎞⎟⎟⎟⎟⎟⎟⎠ .

Proposition 2.2. The binary relation ∼ defined in Definition 2.1 is an equivalence rela-
tion.

Proof. We check that the binary relation ∼ satisfies the definition of equivalence relations.
Since we define Dλμ = (Qλ)−1Qμ for λ, μ ∈ Λ, we get Dλλ = (Qλ)−1Qλ = En, where En is

the identity matrix. Hence, zλ = zλ, which means that zλ ∼ zλ.
Since Dλμ = (Qλ)−1Qμ, we have Dμλ = (Qμ)−1Qλ = (Dλμ)−1. Suppose zλ ∼ zμ, then we

see zμi =
∏n

j=1(zλj )
dλμji for i = 1, . . . , n. For k = 1, . . . , n, we have

n∏
i=1

(
zμi

)dμλik
=

n∏
i=1

n∏
j=1

(
zλj

)dλμji dμλik
=

n∏
j=1

(
zλj

)δ jk
= zλk .

Hence we obtain zμ ∼ zλ.
For λ, μ, σ ∈ Λ, we have

Dλσ = (Qλ)−1Qσ = (Qλ)−1Qμ(Qμ)−1Qσ = DλμDμσ.

Suppose zλ ∼ zμ, zμ ∼ zσ, then for i = 1, . . . , n we have

zσi =
n∏

j=1

(
zμj

)dμσji
=

n∏
j=1

⎛⎜⎜⎜⎜⎜⎝
n∏

k=1

(
zλk

)dλμk j

⎞⎟⎟⎟⎟⎟⎠
dμσji

=

n∏
k=1

(
zλk

)dλσki .

Hence we obtain zλ ∼ zσ. �

Proposition 2.3. The quotient space X =
⊔
λ∈Λ Cn

λ/∼ is a Hausdorff space.

Proof. Define the projection pr :
⊔
λ∈Λ Cn

λ → X to the quotient space. Take two distinct
points [x] � [y] ∈ X. Let U[x] and U[y] be open subsets containing the points [x] and [y]
respectively. Then we can write pr−1(U[x]), pr−1(U[y]) as follows:

pr−1(U[x]) =
⊔
λ∈Λ

Uλ[x], pr−1(U[y]) =
⊔
λ∈Λ

Uλ[y],

where Uλ[x],U
λ
[y] ⊂ Cn

λ � C
n for λ ∈ Λ.

Let Bε(x) be an open ball of radius ε > 0. We define the map ϕλ : Cn
λ/∼ → Cn

λ by
ϕλ([zλ]) = zλ. If Cn

λ contains the points x and y, then there exist ε, ε′ > 0 such that Bε(x) ∩
Bε′(y) = ∅. Thus we have pr−1(pr(Bε(x))) ∩ pr−1(pr(Bε′(y))) = ∅.

If x ∈ Cn
λ, y ∈ Cn

μ (λ � μ), then there exists an element σ ∈ Λ such that ϕσ ◦ ϕ−1
λ (Bε(x) ∩

Uλσ) ⊂ Uσ[x], ϕσ ◦ ϕ−1
μ (Bε′(y) ∩ Uμσ) ⊂ Uσ[y]. Thus we can take sufficiently small ε, ε′ > 0

such that pr−1(pr(ϕσ ◦ ϕ−1
λ (Bε(x) ∩ Uσλ))) ∩ pr−1(pr(ϕσ ◦ ϕ−1

μ (Bε′(y) ∩ Uσμ))) = ∅.
Suppose that x ∈ Cn

λ \ Uλμ, y ∈ Cn
μ \ Uμλ (λ � μ). If there exist ε, ε′ > 0 such that

pr(Bε(x)) ∩ pr(Bε′(y)) � ∅, then there exist zx ∈ Bε(x) ∩ Uλμ and zy ∈ Bε′(y) ∩ Uμλ such that
pr(zx) = pr(zy). Since x � Uλμ, we obtain
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0 < |x − zx| < ε.
We can retake ε smaller than |x − zx| so that pr(Bε(x)) ∩ pr(Bε′(y)) = ∅. Thus we have
pr−1(pr(Bε(x))) ∩ pr−1(pr(Bε′(y))) = ∅.

Therefore, the quotient space X is a Hausdorff space. �

Let Uλ = {[zλ] ∈ X | zλ ∈ Cn
λ} ⊂ X. Then we see X =

⋃
λ∈ΛUλ from Proposition 2.2.

We define a map ϕλ : Uλ → Cn by ϕλ([zλ]) = zλ for each λ ∈ Λ. The following lemma is
obvious from the construction above.

Lemma 2.4. For all λ, μ ∈ Λ such that Uλ ∩ Uμ � ∅, we have

(2.1) ϕμ ◦ ϕ−1
λ (zλ) =

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(
zλj

)dλμj1 , . . . ,

n∏
j=1

(
zλj

)dλμjn

⎞⎟⎟⎟⎟⎟⎟⎠ .

Definition 2.5. The set {(Uλ, ϕλ)}λ∈Λ is a system of complex coordinate charts on X,
whose coordinate transformation is given by Equation 2.1.

3. Toric Manifolds

3. Toric Manifolds
In this section, we write the inhomogeneous coordinate charts on a toric manifold in

terms of the coordinate charts given in Section 2. We also discuss the complements of toric
divisors, which we call the toric divisor complements.

3.1. Convex Polytopes and Convex Cones.
3.1. Convex Polytopes and Convex Cones. We review the definitions and some of the

facts of convex polytopes and convex cones in Rn, which are used later.
We first deal with convex polytopes, which are defined as follows:

Definition 3.1. Let V = {x1, . . . , xs} � ∅ be a finite set of elements in Rn. The convex
hull Δ = conv(V) of V is a convex polytope in Rn. Concretely, Δ is written as

Δ = conv(V) =

⎧⎪⎪⎨⎪⎪⎩
s∑

i=1

rixi

∣∣∣∣∣∣∣ ri ≥ 0,
s∑

i=1

ri = 1, xi ∈ V

⎫⎪⎪⎬⎪⎪⎭ .
If a convex polytope Δ can be written as Equation 3.1, then we say that Δ is generated by
V = {x1, . . . , xs}.

The next lemma is obvious.

Lemma 3.2. Let f : Rn → R
m be a linear map. If Δ ⊂ Rn is a convex polytope

generated by V = {x1, . . . , xs}, then f (Δ) ⊂ Rm is also a convex polytope generated by
Vf = { f (x1), . . . , f (xs)}.

We deal with convex cones, which are defined as follows:

Definition 3.3. A subset  in Rn is a (convex polyhedral) cone if there exist elements
v1, . . . , vs ∈  such that

(3.1)  = R≥0v1 + · · · + R≥0vs.

If a cone  can be written as Equation 3.1, then we say that  is generated by {v1, . . . , vs}.
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The next lemma is obvious.

Lemma 3.4. Let f : Rn → Rm be a linear map. If  ⊂ Rn is a cone generated by
{v1, . . . , vs}, then f () ⊂ Rm is also a cone generated by { f (v1), . . . , f (vs)}.

Definition 3.5. Let  ⊂ Rn be a cone generated by {v1, . . . , vs}. The point 0 = (0, . . . , 0) ∈
 ⊂ Rn is a vertex of  if  does not contain a nontrivial subspace.

Lemma 3.6. Let  ⊂ Rn be a cone generated by {v1, . . . , vs}. The cone  does not contain
a nontrivial subspace if and only if the following is satisfied:

(3.2) r1v1 + · · · + rsvs = 0, ri ≥ 0⇒ r1 = · · · = rs = 0.

Proof. We first show that if  does not contain a nontrivial subspace, then Equation 3.2
holds. We give a proof by showing the contraposition.

Suppose that r1, . . . , rs ∈ R≥0 satisfy
∑s

i=1 rivi = 0. Suppose further that there exists some
i0 ∈ {1, . . . , s} such that ri0 > 0. Then since we can calculate

vi0 = −
1
ri0

∑
i�i0

rivi = −
∑
i�i0

ri

ri0
vi,

W := {rvi0 | r ∈ R} ⊂  holds. Indeed, if r ≥ 0, then rvi0 ∈  by the definition of ; if
otherwise, then since from the above calculation we see

rvi0 =
∑
i�i0

(−r)
ri

ri0
vi

and (−r) ri
ri0
≥ 0 for any i � i0, rvi0 ∈ . Since W is a nontrivial subspace in Rn, we obtain

the contraposition to the desired result.
We then show that if Equation 3.2 holds, then  does not contain a nontrivial subspace.
Let W � ∅ be a subspace contained in . Since W is a linear space, if w ∈ W then −w ∈ W

holds. Since W ⊂ , there exsit r1, . . . , rs, r′1, . . . , r
′
s ≥ 0 such that

w =

s∑
i=1

rivi, −w =
s∑

i=1

r′ivi.

Since w + (−w) = 0, we see that
s∑

i=1

(ri + r′i )vi = 0.

Since we assume that Equation 3.2 holds, ri+ r′i = 0 holds for any i = 1, . . . , s. Furthermore,
since r1, . . . , rs, r′1, . . . , r

′
s ≥ 0, ri = r′i = 0 holds for any i = 1, . . . , s. This implies that w = 0,

i.e., W = {0}. �

From the above lemma, we can use the following definition of a vertex in a cone.

Definition 3.7. Let  ⊂ Rn be a cone generated by {v1, . . . , vs}. The point 0 = (0, . . . , 0) ∈
 ⊂ Rn is a vertex of  if Equation 3.2 is satisfied.
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3.2. An Alternative Construction of Toric Manifolds.
3.2. An Alternative Construction of Toric Manifolds. We briefly review the Delzant

construction [5] in order to construct inhomogeneous coordinate charts on a toric manifold.
Delzant showed that there is a one-to-one correspondence between compact symplectic toric
manifolds and Delzant polytopes, which are moment polytopes for the Hamiltonian torus
action on toric manifolds (see [9, Chapter 1] for detailed explanations about the Delzant
construction). Delzant polytopes are defined as follows:

Definition 3.8. Delzant polytopes are convex polytopes Δ in (tn)∗ � Rn satisfying the
following three conditions:

• simple; each vertex has n edges,
• rational; the direction vectors vλ1, . . . , v

λ
n from any vertex λ ∈ Λ are integral vectors,

• smooth; the vectors vλ1, . . . , v
λ
n chosen as above form a basis of Zn,

where Λ is the set of the vertices in Δ.

We can define Delzant polytopes in terms of facets in Δ instead of edges (see [2, Theorem
4] for example).

Definition 3.9. Delzant polytopes are convex polytopes Δ in (tn)∗ � Rn satisfying the
following three conditions:

• simple; each vertex meets n facets,
• rational; the inward pointing normal vectors uλ1, . . . , u

λ
n for facets meeting a vertex

λ ∈ Λ are integral vectors,
• smooth; the vectors uλ1, . . . , u

λ
n chosen as above form a basis of Zn,

where Λ is the set of the vertices in Δ.

We can see that two ways to define Delzant polytopes are equivalent. Although we can
find a similar result in [4, Proposition 2.2], we give a proof because we shall use the state-
ment repeatedly.

Lemma 3.10. Let vλ1, . . . , v
λ
n be the direction vectors and uλ1, . . . , u

λ
n the inward pointing

normal vectors for λ ∈ Λ. Then,

[vλ1 · · · vλn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tuλ1
...

tuλn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = En,

where En denotes the identity matrix.

Proof. Let e1, . . . , en be the standard basis in Rn. Since the direction vectors vλ1, . . . , v
λ
n

form a basis of Zn, there exists a square matrix Bλn such that

(3.3) En = [e1 · · · en] = [vλ1 · · · vλn]Bλn.

Since the matrix Bλn is the inverse matrix for the matrix [vλ1 · · · vλn], we see Bλn[vλ1 · · · vλn] = En.
Moreover, the matrix Bλn is in GL(n;Z) from (3.3).

We define the vectors uλ1, . . . , u
λ
n ∈ Zn by
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Bλn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tuλ1
...

tuλn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

By calculating Bλn[vλ1 · · · vλn], we obtain

Bλn[vλ1 · · · vλn] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tuλ1
...

tuλn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [vλ1 · · · vλn]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tuλ1v

λ
1 · · · tuλ1v

λ
n

...
. . .

...
tuλnv

λ
1 · · · tuλnv

λ
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈uλ1, vλ1〉 · · · 〈uλ1, vλn〉
...

. . .
...

〈uλn, vλ1〉 · · · 〈uλ1, vλn〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Since Bλn[vλ1 · · · vλn] = En, we have 〈uλi , vλj 〉 = δi j (Kronecker’s delta). We say that

uλ1 ∈ span{vλ2, . . . , vλn}⊥, . . . , uλn ∈ span{vλ1, . . . , vλn−1}⊥,
which means that the vectors uλ1, . . . , u

λ
n are inward pointing normal vectors to facets meeting

the vertex λ. �

For λ ∈ Λ, we define an n × n matrix Qλ =
[
vλ1, . . . , v

λ
n

]
(=

[
Qλi j

]
). In general det Qλ = ±1

by the definition, but we assume det Qλ = 1 by changing the numbering of vλ1, . . . , v
λ
n. We

also define a matrix Dλμ by Dλμ = (Qλ)−1Qμ(= [dλμi j ]) for each λ, μ ∈ Λ as we defined in
Section 2.

From the construction in Section 2, we obtain a system of complex coordinate charts
{(Uλ, ϕλ)}λ∈Λ on a toric manifold X associated with a Delzant polytope Δ.

Remark 3.11. Azam, Cannizzo, and Lee explained the construction of symplectic toric
manifolds with a system of the inhomogeneous coordinate charts from a data of Delzant
polytopes [2]. In this case, the coordinate transformation of our system of complex co-
ordinate charts {(Uλ, ϕλ)}λ∈Λ coincides with the one constructed in [2]. Hereafter, we call
{(Uλ, ϕλ)}λ∈Λ a system of the inhomogeneous coordinate chart on a toric manifold.

From this section, we write X by a compact toric manifold of complex dimension n, Δ by
the Delzant polytope of X, Λ by the set of the vertices in the polytope Δ.

Remark 3.12. The coordinate transformation of the inhomogeneous coordinates also co-
incides with the one in algebraic geometry (see for example [7]). Note that we may have a
fan of toric manifolds X by taking integral vectors inward pointing normal to each facets of
Delzant polytopes of X.

3.3. Toric Divisor Complements.
3.3. Toric Divisor Complements. In this section, we construct a diffeomorphism be-

tween the complements of toric divisors in X and (C∗)n.
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We define Ǔλ = {[zλ] ∈ Uλ | zλ1zλ2 · · · zλn � 0} ⊂ X for each λ ∈ Λ, then we have M̌ =⋃
λ∈Λ Ǔλ. We call M̌ be the toric divisor complement. Furthermore, we see Ǔλ = Ǔσ = M̌

for λ, σ ∈ Λ.

Definition 3.13. We define a map φλ : ϕλ(Ǔλ)→ (C∗)n by

φλ(zλ1, . . . , z
λ
n) =

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zλj )
Q̂λj1 , . . . ,

n∏
j=1

(zλj )
Q̂λjn

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where (Qλ)−1 = [Q̂λi j].

Lemma 3.14. For any λ, σ ∈ Λ, φλ ◦ ϕλ = φσ ◦ ϕσ.

Proof. Since we define Dσλ = (Qσ)−1Qλ, we see Dσλ(Qλ)−1 = (Qσ)−1. For any [zλ] ∈ Ǔλ,
we have

φλ ◦ ϕλ([zλ]) =φλ ◦ ϕλ
⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝

n∏
j=1

(zσj )dσλj1 , . . . ,

n∏
j=1

(zσj )dσλjn

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠

=φλ

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zσj )dσλj1 , . . . ,

n∏
j=1

(zσj )dσλjn

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zσj )dσλji

⎞⎟⎟⎟⎟⎟⎟⎠
Q̂λi1

, . . . ,

n∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zσj )dσλji

⎞⎟⎟⎟⎟⎟⎟⎠
Q̂λin

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zσj )Q̂σj1 , . . . ,

n∏
j=1

(zσj )Q̂σjn

⎞⎟⎟⎟⎟⎟⎟⎠
=φσ ◦ ϕσ([zσ]). �

From Lemma 3.14, we can define the following map independent of the choice of λ ∈ Λ.

Definition 3.15. We define a map φ : M̌ → (C∗)n = {(z1, . . . , zn) | z1z2 · · · zn � 0} by
φ = φλ ◦ ϕλ.

Next we construct the inverse map φ̂ : (C∗)n → M̌, which is actually similar to the
construction of φ.

Definition 3.16. We define a map φ̂λ : (C∗)n → ϕλ(Ǔλ) by

φ̂λ(z1, . . . , zn) =

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(z j)
Qλj1 , . . . ,

n∏
j=1

(z j)Qλjn

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 3.17. For any λ, σ ∈ Λ, ϕ−1
λ ◦ φ̂λ = ϕ−1

σ ◦ φ̂σ.

Proof. Since we define Dλσ = (Qλ)−1Qσ, we see QλDλσ = Qσ. For any z = (z1, . . . , zn) ∈
(C∗)n, we have

ϕ−1
λ ◦ φ̂λ(z) =ϕ−1

λ

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(z j)
Qλj1 , . . . ,

n∏
j=1

(z j)Qλjn

⎞⎟⎟⎟⎟⎟⎟⎠
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=

⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝

n∏
j=1

(z j)
Qλj1 , . . . ,

n∏
j=1

(z j)Qλjn

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(z j)Qλji

⎞⎟⎟⎟⎟⎟⎟⎠
dλσi1

, . . . ,

n∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(z j)Qλji

⎞⎟⎟⎟⎟⎟⎟⎠
dλσin

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝

n∏
j=1

(z j)
Qσj1 , . . . ,

n∏
j=1

(z j)Qσjn

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

=ϕ−1
σ ◦ φ̂σ(z). �

From Lemma 3.17, we can define the following map independent of the choice of λ ∈ Λ.

Definition 3.18. We define a map φ̂ : (C∗)n → M̌ by φ̂ = ϕ−1
λ ◦ φ̂λ.

We check that the map φ̂ defined in Definition 3.18 is the inverse map of φ defined in
Definition 3.15.

Lemma 3.19. φ̂ ◦ φ = idM̌, φ ◦ φ̂ = id(C∗)n .

Proof. Since we define φ = φλ◦ϕλ and φ̂ = ϕ−1
λ ◦φ̂λ, we obtain φ̂◦φ = ϕ−1

λ ◦φ̂λ◦φλ◦ϕλ and
φ ◦ φ̂ = φλ ◦ϕλ ◦ϕ−1

λ ◦ φ̂λ = φλ ◦ φ̂λ. We say that it is sufficient to show that φ̂λ ◦φλ = idϕλ(Ǔλ)
and φλ ◦ φ̂λ = id(C∗)n .

For zλ ∈ ϕλ(Ǔλ), by similar calculation, we have

φ̂λ ◦ φλ(zλ1, . . . , zλn) =φ̂λ

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zλj )
Q̂λj1 , . . . ,

n∏
j=1

(zλj )
Q̂λjn

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zλj )
Q̂λji

⎞⎟⎟⎟⎟⎟⎟⎠
Qλi1

, . . . ,

n∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zλj )
Q̂λji

⎞⎟⎟⎟⎟⎟⎟⎠
Qλin

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zλj )
δ j1 , . . . ,

n∏
j=1

(zλj )
δ jn

⎞⎟⎟⎟⎟⎟⎟⎠
=(zλ1, . . . , z

λ
n).

Thus we obtain φ̂λ ◦ φλ = idϕλ(Ǔλ).
For z ∈ (C∗)n, by similar calculation, we have

φλ ◦ φ̂λ(z1, . . . , zn) =φλ

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(z j)
Qλj1 , . . . ,

n∏
j=1

(z j)Qλjn

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(z j)Qλji

⎞⎟⎟⎟⎟⎟⎟⎠
Q̂λi1

, . . . ,

n∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(z j)Qλji

⎞⎟⎟⎟⎟⎟⎟⎠
Q̂λin

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=(z1, . . . , zn).

Thus we obtain φλ ◦ φ̂λ = id(C∗)n . �
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4. Torus-equivariantly Embedded Toric Manifolds

4. Torus-equivariantly Embedded Toric Manifolds
We construct k-dimensional complex submanifolds C(V) in toric manifolds X associated

to affine subspaces V in Rn � tn and examine their fundamental properties.
In Section 4.1, we give the construction of C(V). In Section 4.2, we consider a Hamilton-

ian subtorus action on a toric manifold X. In Section 4.3, we consider the Hamiltonian torus
action on C(V).

4.1. Construction of Torus-equivariantly Embedded Toric Manifolds.
4.1. Construction of Torus-equivariantly Embedded Toric Manifolds. First, we will

concentrate on Yamamoto’s construction [11, Lemma 6.1] of complex submanifolds C(V) in
(C∗)n. Let e1, . . . , en be the standard basis inRn. We write 〈, 〉 for the inner product of vectors.
Fix k = 1, . . . , n. Let p1, . . . , pk ∈ Zn be primitive vectors which are linearly independent,
and a ∈ Rn. Then we consider an affine subspace V = Rp1+ · · ·+Rpk +a � Rk in Rn, which
may have rational slope. Yamamoto constructed k-dimensional complex manifolds C(V) in
(C∗)n. Although we do not give the same statement as the original one, the statement is like
as follows.

Proposition 4.1. Given an affine subspace V = Rp1+· · ·+Rpk+a in Rn, we can construct
a complex submanifold C(V) � (C∗)k in M̌ � (C∗)n by

C(V) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(ex1+

√−1y1 , . . . , exn+
√−1yn) ∈ (C∗)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi =

k∑
l=1

〈pl, ei〉ul + 〈a, ei〉,

yi =

k∑
l=1

〈pl, ei〉vl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where (eu1+
√−1v1 , . . . , euk+

√−1vk ) ∈ (C∗)k.

Note that if k = 0, then C(V) is a point (e〈a,e1〉, . . . , e〈a,en〉) in (C∗)n. We rewrite the expres-
sion of C(V) in Proposition 4.1 as follows:

Proposition 4.2. Let C(V) be a complex submanifold in M̌ given in Proposition 4.1. There
exists a primitive basis qk+1, . . . , qn ∈ Zn of the orthogonal subspace to V = Rp1+· · ·+Rpk+a
in Rn such that

C(V) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(ew1 , . . . , ewn) ∈ (C∗)n

∣∣∣∣∣∣∣∣∣∣
t[qk+1 · · · qn]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1
...

wn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

where w1 = x1 +
√−1y1, . . . , wn = xn +

√−1yn.

Proof. Hereafter, we calculate angle coordinates y = (y1, . . . , yn) and v = (v1, . . . , vk) up
to 2πZ.

From Proposition 4.1, we have⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[
p1 · · · pk

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

uk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + a,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1
...

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[
p1 · · · pk

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
v1
...

vk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

We obtain
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1
...

wn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1 +
√−1y1
...

xn +
√−1yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − a =
[
p1 · · · pk

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 +
√−1v1
...

uk +
√−1vk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

We can take a basis of primitive vectors qk+1, . . . , qn ∈ Zn of the orthogonal subspace to V .
Multiplying both sides by t[qk+1 · · · qn], we obtain

t[qk+1 · · · qn]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1
...

wn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tqk+1
...

tqn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
p1 · · · pk

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 +
√−1v1
...

uk +
√−1vk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈qk+1, p1〉 〈qk+1, p2〉 · · · 〈qk+1, pk〉
〈qk+2, p1〉 〈qk+2, p2〉 · · · 〈qk+2, pk〉
...

...
. . .

...

〈qn, p1〉 〈qn, p2〉 · · · 〈qn, pk〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1 +
√−1v1
...

uk +
√−1vk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=0. �

Note that this submanifold C(V) can be regarded as a complex subtorus (C∗)k in (C∗)n.
We will write C(V) explicitly as a submanifold in M̌. Recall that M̌ =

⋃
λ∈Λ Ǔλ. Using

the map φ̂λ : (C∗)n → ϕλ(Ǔλ), we obtain

φ̂λ(C(V)) = {zλ = ew
λ ∈ ϕλ(Ǔλ) | t[qk+1 · · · qn]((Qλ)−1wλ − a) = 0},

where zλ = ew
λ

means that (zλ1, . . . , z
λ
n) = (ew

λ
1 , . . . , ew

λ
n ).

Next we take the closure of φ̂λ(C(V))(⊂ ϕλ(Uλ) � Cn). Since Q̂λil = 〈uλi , el〉, we have
n∑

l=1

Q̂λil〈q j, el〉 = 〈uλi , q j〉

for i = 1, . . . , n and j = k + 1, . . . , n. Define three subsets +λ, j,
−
λ, j,

0
λ, j ⊂ {1, 2, . . . , n} by


+
λ, j =

{
i ∈ {1, 2, . . . , n} 〈uλi , q j〉 ≥ 0

}
,(4.1)


−
λ, j =

{
i ∈ {1, 2, . . . , n} 〈uλi , q j〉 ≤ 0

}
,(4.2)


0
λ, j =

{
i ∈ {1, 2, . . . , n} 〈uλi , q j〉 = 0

}
,(4.3)

for λ ∈ Λ and j = k + 1, . . . , n. Note that +λ, j ∩ −λ, j = 0
λ, j and +λ, j ∪ −λ, j = {1, 2, . . . , n} for

any λ ∈ Λ and j = k + 1, . . . , n.
From the expression of φ̂λ(C(V)), direct calculation gives us

〈ql, (Qλ)−1wλ − a〉 = 〈ql, (Qλ)−1 log zλ − a〉
= 〈t(Qλ)−1ql, log zλ〉 − 〈ql, a〉
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=

〈⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈uλ1, ql〉
...

〈uλn, ql〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , log zλ
〉
− 〈a, ql〉

= log

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

(zλj )
〈uλj ,ql〉

⎞⎟⎟⎟⎟⎟⎟⎠ − 〈a, ql〉

for l = k + 1, . . . , n. We can define C(V) =
⋃
λ∈Λ ϕ−1

λ (Cλ(V)) ⊂ X by

(4.4) Cλ(V) =
{
zλ ∈ ϕλ(Uλ) f λj (zλ) = 0 for j = k + 1, . . . , n

}
,

where f λj is defined by

(4.5) f λj (zλ) =
∏
i∈+λ, j

(zλi )〈u
λ
i ,q j〉 − e〈a,q j〉

∏
i∈−λ, j

(zλi )−〈u
λ
i ,q j〉

for each j = k + 1, . . . , n. Here, if +λ, j = ∅, then
∏

i∈+λ, j(z
λ
i )〈uλi ,q j〉 = 1. Similarly, if −λ, j = ∅,

then
∏

i∈−λ, j(z
λ
i )−〈uλi ,q j〉 = 1.

Cλ(V) is a zero locus of f λk+1, . . . , f λn . Note that if k = 0, then C(V) is a point in X.

Remark 4.3. By the implicit function theorem, C(V) is a complex submanifold in X if
the rank of the Jacobian matrix of f λk+1, . . . , f λn is equal to n − k for any points p ∈ C(V) and
any λ ∈ Λ.

We demonstrate some examples for complex submanifolds C(V). Example 4.4 gives an
example for a complex submanifold in X = CP2, while Example 4.5 deals with a subset
in X = CP2 which does not become a complex submanifold in CP2. In the following two
examples, define the points λ, μ, σ in (t2)∗ � R2 by

λ = (0, 0), μ = (2, 0), σ = (0, 2).

Let Δ be a polytope defined by the convex hull of the points λ, μ, σ. From the Delzant
polytope Δ of CP2 we define the inward pointing normal vectors to the facets by

uλ1 =
[
1
0

]
, uλ2 =

[
0
1

]
, uμ1 =

[−1
−1

]
, uμ2 =

[
1
0

]
, uσ1 =

[
0
1

]
, uσ2 =

[−1
−1

]
,

where Λ = {λ, μ, σ}.
Example 4.4. Let X = CP2, k = 1, V be spanned by p = t[1 1]. We can choose a basis q

of the orthogonal subspace to V as q = t[1 − 1]. In this case, the subset C(V) is a complex
submanifold in X. Indeed, we give f λ, f μ, f σ by

f λ = zλ1 − zλ2, f μ = zμ2 − 1, f σ = 1 − zσ1 ,

respectively. Since the Jacobian matrices are expressed as

D f λ = [1 − 1], D f μ = [0 1], D f σ = [1 0],

respectively, we see the rank of each matrix is one.
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Example 4.5. Let X = CP2, k = 1, V be spanned by p = t[3 1]. We can choose a basis
q of the orthogonal subspace to V as q = t[1 − 3]. In this case, the subset C(V) is not a
complex submanifold in X. Indeed, we give f λ, f μ, f σ by

f λ = zλ1 − (zλ2)3, f μ = (zμ1)2zμ2 − 1, f σ = (zσ1 )3 − (zσ2 )2,

respectively. Note that (0, 0) � Cμ(V). Since the Jacobian matrices are expressed as

D f λ = [1 − 3(zλ2)2], D f μ = [2zμ1zμ2 (zμ1)2], D f σ = [3(zσ1 )2 − 2zσ2 ],

respectively, we see the rank of D f λ and D f μ is one. However, the rank of D f σ becomes
zero at the point (zσ1 , z

σ
2 ) = (0, 0) ∈ Cσ(V).

Notice that if we fix a toric manifold X, then we may classify examples of complex
submanifolds C(V) in X in terms of the conditions of V . Other examples for X = CP2 are
treated in Section 5.1.

Suppose that C(V) is a complex submanifold in X. Then, there exists a map i : C(V) →
X as an embedding. By the construction of C(V) in this section, if C(V) is a complex
submanifold in X, then there exists an embedding iλ : Cλ(V)→ ϕλ(Uλ) for each λ ∈ Λ.

4.2. Subtorus Actions on Toric Manifolds.
4.2. Subtorus Actions on Toric Manifolds. In this section, we consider a subtorus ac-

tion on toric manifolds in order to give a Hamiltonian torus action on a complex submanifold
given in Section 4.1.

First we define a k-dimensional torus action on a complex n-dimensional toric manifold
X. Given an affine subspace V = Rp1 + · · · + Rpk + a in Rn, define a map iV : T k → T n by

(4.6) iV(t1, . . . , tk) =

⎛⎜⎜⎜⎜⎜⎜⎝
k∏

l=1

t〈pl,e1〉
l , . . . ,

k∏
l=1

t〈pl,en〉
l

⎞⎟⎟⎟⎟⎟⎟⎠ .
Recall that the n-dimensional torus T n action on ϕλ(Uλ) � Cn is given by

T n × ϕλ(Uλ) → ϕλ(Uλ)
(t = (t1, . . . , tn), zλ = (zλ1, . . . , z

λ
n)) �→ t · zλ

for each λ ∈ Λ, where t · zλ is defined by

t · zλ =
⎛⎜⎜⎜⎜⎜⎜⎝

n∏
j=1

t
Qλj1
j zλ1, . . . ,

n∏
j=1

t
Qλjn
j zλn

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝

n∏
j=1

t〈e j,v
λ
1〉

j zλ1, . . . ,
n∏

j=1

t〈e j,v
λ
n〉

j zλn

⎞⎟⎟⎟⎟⎟⎟⎠ .
This torus action is compatible with the torus action on (C∗)n, which is given by

T n × (C∗)n → (C∗)n

((t1, . . . , tn), (z1, . . . , zn)) �→ (t1z1, . . . , tnzn).

We can describe the k-dimensional torus T k action on X by
T k × ϕλ(Uλ) → ϕλ(Uλ)

(t = (t1, . . . , tk), zλ) �→ iV(t) · zλ,
where

(4.7) iV(t) · zλ =
⎛⎜⎜⎜⎜⎜⎜⎝

k∏
l=1

t〈pl,v
λ
1〉

l zλ1, . . . ,
k∏

l=1

t〈pl,v
λ
n〉

l zλn

⎞⎟⎟⎟⎟⎟⎟⎠ .
We define the subset λ = { j1, . . . , jm} ⊂ {1, . . . , n} by



490 K. Yamaguchi

λ = { j ∈ {1, . . . , n} | 〈p1, v
λ
j 〉 = · · · = 〈pk, v

λ
j 〉 = 0}

for λ ∈ Λ. If λ = ∅, then we may interpret λ = { j1, . . . , jm} as m = 0. Note that since the
vectors p1, . . . , pk form a basis of the linear part of V , we see that

max
λ∈Λ
|λ| ≤ n − k.

Since our complex manifold X coincides with the one constructed in [2] as compact toric
manifolds, X is equipped with the torus invariant symplectic form ω given by Guillemin [8]
(see also [9, Appendix 2]). Moreover, the T n-action on X is Hamiltonian with respect to
the symplectic form ω. We write the moment map for the Hamiltonian T n-action on X is
μ : X → (tn)∗. The fundamental property of moment maps for Hamiltonian torus actions is
the convexity theorem [1, 10].

Remark 4.6. The T k-action given in Equation 4.7 is also Hamiltonian with respect to ω
and the moment map for the action is given by i∗V ◦ μ : X → (tk)∗.

We study the fixed point set of the T k-action on X.

Lemma 4.7. Consider the T k-action on X defined above. The fixed point set of the T k-
action on ϕλ(Uλ) is {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ}.

Proof. For simplicity, we give the proof for the case when λ = {i}.
If 〈pl, v

λ
i 〉 = 0 for l = 1, . . . , k, then we have

iV(t) · (0, . . . , 0, zλi , 0, 0 . . . , 0) =

⎛⎜⎜⎜⎜⎜⎜⎝0, . . . , 0,
k∏

l=1

t〈pl,v
λ
i 〉

l zλi , 0, . . . , 0

⎞⎟⎟⎟⎟⎟⎟⎠ = (0, . . . , 0, zλi , 0, . . . , 0).

Thus, the point (0, . . . , 0, zλi , 0, . . . , 0) is a fixed point of the T k-action on ϕλ(Uλ).
Conversely, if (0, . . . , 0, zλi , 0, . . . , 0) is a fixed point of the T k-action on ϕλ(Uλ), then we

have ⎛⎜⎜⎜⎜⎜⎜⎝0, . . . , 0,
k∏

l=1

t〈pl,v
λ
i 〉

l zλi , 0, . . . , 0

⎞⎟⎟⎟⎟⎟⎟⎠ = (0, . . . , 0, zλi , 0, . . . , 0).

Since (t1, . . . , tk) ∈ T k, we see that 〈pl, v
λ
i 〉 = 0 for l = 1, . . . , k.

Note that if λ = ∅, we see that the fixed point of the T k-action on ϕλ(Uλ) is (0, . . . , 0) ∈
ϕλ(Uλ). �

Note that the set {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} corresponds to the m-face defined by the
direction vectors vλj1 , . . . , v

λ
jm

in Δ for j1, . . . , jm ∈ λ. If λ = ∅, then the set {zλ ∈ ϕλ(Uλ) |
zλi = 0, i � λ} = {(0, . . . , 0) ∈ ϕλ(Uλ)} corresponds to the vertex λ, which is a 0-face in Δ.
In particular, {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} � ∅ for any λ.

4.3. Torus Actions on Torus-equivariantly Embedded Toric Manifolds.
4.3. Torus Actions on Torus-equivariantly Embedded Toric Manifolds. After giving

torus actions on C(V), we consider the image of the moment map for the torus action.
Under the following diagram;
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a T k-action on C(V) is defined by
T k ×Cλ(V) → Cλ(V)

(t = (t1, . . . , tk), zλ) �→ iV(t) · zλ,
which makes the above diagram commutative.

From Lemma 4.7 and the definition of Cλ(V), the following lemma is obvious.

Lemma 4.8. The fixed point set of the T k-action on Cλ(V) is {zλ ∈ ϕλ(Uλ) | zλi = 0, i �
λ} ∩Cλ(V).

It is clear that if {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ∩Cλ(V) � ∅, then there exists a fixed point
of the T k-action on Cλ(V).

Lemma 4.9. Assume that k ≥ 1. If there exists j = k + 1, . . . , n such that 〈uλi , q j〉 > 0 (or
〈uλi , q j〉 < 0) for all i = 1, . . . , n, then {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ∩ Cλ(V) = ∅, i.e., there
is no fixed point of the T k-action on Cλ(V).

Proof. For simplicity, we assume that there exists j = k + 1, . . . , n such that 〈uλi , q j〉 > 0
for all i = 1, . . . , n. This implies that +λ, j = {1, . . . , n} and −λ, j = ∅. As we noted in the
definition of f λj (zλ), we obtain

f λj (zλ) =
∏
i∈+λ, j

(zλi )〈u
λ
i ,q j〉 − e〈a,q j〉

∏
i∈−λ, j

(zλi )−〈u
λ
i ,q j〉 =

n∏
i=1

(zλi )〈u
λ
i ,q j〉 − e〈a,q j〉.

Since e〈a,q j〉 � 0, f λj (zλ) = 0 implies that zλ1zλ2 · · · zλn � 0, i.e.,

{ f λj (zλ) = 0} ⊂ {zλ1zλ2 · · · zλn � 0}.
Recall that |λ| ≤ n − k for any λ ∈ Λ. If k ≥ 1, then there exists i0 � λ such that

{zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ⊂ {zλi0 = 0}.
It is clear that {zλ1zλ2 · · · zλn � 0} ∩ {zλi0 = 0} = ∅, which implies that {zλ ∈ ϕλ(Uλ) | zλi =

0, i � λ} ∩Cλ(V) = ∅. Since Cλ(V) =
⋂n

j=k+1{ f λj (zλ) = 0}, we obtain the desired result. �

Note that if 〈uλi , q j〉 > 0 (or 〈uλi , q j〉 < 0) for all i = 1, . . . , n and some j = k + 1, . . . , n,
then Cλ(V) ⊂ ϕλ(Ǔλ).

Remark 4.10. If C(V) is a complex submanifold in X, the T k-action on C(V) is actually
Hamiltonian with respect to the symplectic form i∗ω on C(V) for the inclusion i : C(V)→ X.
If μ : X → (tn)∗ is the moment map for the T n-action on X, then we can obtain the moment
map for the T k-action on C(V) by μ = i∗V ◦ μ ◦ i : C(V)→ (tk)∗.

We further examine the fixed points of the T k-action on C(V).
Since the map iV : T k → T n is defined by (4.6), we can write the pull back i∗V : (tn)∗ →
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(tk)∗ as

(4.8) i∗V(ξ) = (〈p1, ξ〉, . . . , 〈pk, ξ〉) .
Note that this map i∗V is a surjective linear map. Hence, we have

i∗V(μ(X)) = {(〈p1, ξ〉, . . . , 〈pk, ξ〉) | ξ ∈ μ(X)} ⊂ (tk)∗.

Since X is a toric manifold, μ(X) = Δ is a Delzant polytope. In this situation, we obtain the
followings:

Corollary 4.11. Let Δ be a Delzant polytope and i∗V : (tn)∗ → (tk)∗ be the map defined in
Equation 4.8. Then, i∗V(Δ) is a convex polytope.

Proof. As we noted, the map i∗V is a linear map. By the definition of Delzant polytopes, Δ
is a convex polytope. By Lemma 3.2, i∗V(Δ) is a convex polytope. �

Lemma 4.12. Suppose that λ = { j1, . . . , jm}. Let λ be an m-face of Δ defined by the
direction vectors vλj1 , . . . , v

λ
jm

. Then, i∗V(ξ) = i∗V(λ) holds for any ξ ∈ λ.
Proof. Since ξ, λ ∈ λ, we have

ξ − λ =
m∑

l=1

αlv
λ
jl

for some α1, . . . , αm ∈ R. We calculate

i∗V(ξ) − i∗V(λ) = i∗V(ξ − λ)

=

⎛⎜⎜⎜⎜⎜⎝〈p1,

m∑
l=1

αlv
λ
jl〉, . . . , 〈pk,

m∑
l=1

αlv
λ
jl〉

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
m∑

l=1

αl〈p1, v
λ
jl〉, . . . ,

m∑
l=1

αl〈pk, v
λ
jl〉

⎞⎟⎟⎟⎟⎟⎠
= (0, . . . , 0).

Thus we obtain i∗V(ξ) = i∗V(λ) for any ξ ∈ λ. �

By the definition of Delzant polytopes, we can take the direction vectors vλ1, . . . , v
λ
n ∈ Zn

from the vertex λ of a Delzant polytope Δ and the vectors vλ1, . . . , v
λ
n ∈ Zn can be chosen as a

basis of Zn. We define the cone λ by

λ = R≥0v
λ
1 + · · · + R≥0v

λ
n ⊂ (tn)∗ � Rn.

In other words, λ is generated by {vλ1, . . . , vλn}. Since the map i∗V is linear, by Lemma 3.4,
i∗V(λ) is the cone generated by {i∗V(vλ1), . . . , i∗V(vλn)}. The cone i∗V(λ) can be written concretely
by

i∗V(λ) = R≥0i∗V(vλ1) + · · · + R≥0i∗V(vλn) ⊂ (tk)∗ � Rk.

Definition 4.13. Let Δ be a Delzant polytope and λ be a vertex in Δ. The point i∗V(λ) is a
vertex in the convex polytope i∗V(Δ) if 0 = (0, . . . , 0) ∈ i∗V(λ) ⊂ (tk)∗ is a vertex in the sense
of Definition 3.7.
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We have the relation between the vectors p1, . . . , pk, qk+1, . . . , qn, vλ1, . . . , v
λ
n, and uλ1, . . . ,

uλn.

Lemma 4.14. For any l = 1, . . . , k and any j = k + 1, . . . , n,

(4.9)
n∑

i=1

〈pl, v
λ
i 〉〈uλi , q j〉 = 0

holds.

Proof. Instead of Equation 4.9, we show the matrix equation

(4.10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t p1
...

t pk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
vλ1 · · · vλn

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tuλ1
...

tuλn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
qk+1 · · · qn

]
= 0.

From Lemma 3.10, we have obtained

(4.11)
[
vλ1 · · · vλn

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tuλ1
...

tuλn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = En.

Since the vectors qk+1, . . . , qn are taken to be an orthogonal basis of the orthogonal subspace
to V , we have

(4.12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t p1
...

t pk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
qk+1 · · · qn

]
= 0.

From Equation 4.11 and Equation 4.12, we calculate⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t p1
...

t pk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
vλ1 · · · vλn

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tuλ1
...

tuλn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
qk+1 · · · qn

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t p1
...

t pk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
qk+1 · · · qn

]
= 0.

Hence, we obtain Equation 4.10. �

From Lemma 4.14, we see that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

〈p1, v
λ
i 〉〈uλi , q j〉
...

n∑
i=1

〈pk, v
λ
i 〉〈uλi , q j〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

holds for any j = k + 1, . . . , n. This is equivalent to the equation:

n∑
i=1

〈uλi , q j〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈p1, v

λ
i 〉
...

〈pk, v
λ
i 〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0.
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From (4.8), the following equation

(4.13)
n∑

i=1

〈uλi , q j〉i∗V(vλi ) = 0

holds for any j = k + 1, . . . , n. Since the set λ ⊂ {1, . . . , n} was defined by

λ = {i ∈ {1, . . . , n} | 〈p1, v
λ
i 〉 = · · · = 〈pk, v

λ
i 〉 = 0},

Equation 4.13 can be written as

(4.14)
∑
i�λ

〈uλi , q j〉i∗V(vλi ) = 0.

Note that since |λ| ≤ n − k, the number of the terms in the left hand side of Equation 4.14
should be greater than or equal to k.

Lemma 4.15. Fix j = k + 1, . . . , n. If the point i∗V(λ) is a vertex in the convex polytope
i∗V(Δ), then {〈uλi , q j〉}i�λ satisfies either of the following conditions:

(1) 〈uλi , q j〉 = 0 holds for any i � λ,
(2) there exist i j � i′j � λ such that 〈uλi j

, q j〉〈uλi′j , q j〉 < 0.

Proof. Regarding Equation 4.14 as a linear combination of the vectors i∗V(vλi ) (i � λ), the
coefficients 〈uλi , q j〉 (i � λ) satisfy at least one of the following cases:

• 〈uλi , q j〉 ≥ 0 holds for any i � λ,
• 〈uλi , q j〉 ≤ 0 holds for any i � λ,
• there exist i j � i′j � λ such that 〈uλi j

, q j〉〈uλi′j , q j〉 < 0.

If the point i∗V(λ) is a vertex in the convex polytope i∗V(Δ), then by Definition 3.7 and Equation
4.14 the first and second cases can be written as 〈uλi , q j〉 = 0 holds for any i � λ. �

To check whether the fixed point set of the T k-action on Cλ(V) is empty or not, we can
use Lemma 4.15.

Lemma 4.16. Fix j = k + 1, . . . , n. If the point i∗V(λ) is a vertex in the convex polytope
i∗V(Δ) and if there exist i j � i′j such that 〈uλi j

, q j〉〈uλi′j , q j〉 < 0, then

(4.15) {zλ ∈ ϕλ(Uλ) | zλi j
= zλi′j = 0} ⊂ {zλ ∈ ϕλ(Uλ) | f λj (zλ) = 0}

holds.

Proof. For simplicity, we assume that 〈uλi j
, q j〉 > 0, 〈uλi′j , q j〉 < 0. This implies that

i j ∈ +λ, j \ 0
λ, j and i′j ∈ −λ, j \ 0

λ, j. From Equation 4.5, we obtain Equation 4.15. �

As a corollary to Lemma 4.16, if the point i∗V(λ) is a vertex in the convex polytope i∗V(Δ)
and if {〈uλi , q j〉}i�λ satisfies the condition (2) in Lemma 4.15 for a fixed j, then we obtain

{zλ ∈ ϕλ(Uλ) | zλi j
= zλi′j = 0, i j � i′j � λ} ⊂ {zλ ∈ ϕλ(Uλ) | f λj (zλ) = 0}

for i j � i′j � λ appearing in the statement of the condition (2) in Lemma 4.15.
When {〈uλi , q j〉}i�λ satisfies the condition (1) in Lemma 4.15, we obtain the following

result:
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Proposition 4.17. Assume that the point i∗V(λ) is a vertex in the convex polytope i∗V(Δ).
We define a point z̃λ = (z̃λ1, . . . , z̃

λ
n) ∈ Cn by setting

z̃λi =

⎧⎪⎪⎨⎪⎪⎩
e〈a,vλi 〉, i ∈ λ,
0, i � λ.

If there exists j0 = k+1, . . . , n such that {〈uλi , q j0〉}i�λ satisfies the condition (1) in Lemma
4.15, then we obtain

z̃λ ∈ {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ∩Cλ(V),

i.e., the set {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ∩ Cλ(V) is not empty. In particular, there exists a
fixed point of the T k-action on Cλ(V).

Proof. It is clear that z̃λ ∈ {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ}. We show that z̃λ ∈ Cλ(V) =⋂n
j=k+1{zλ ∈ ϕλ(Uλ) | f λj (zλ) = 0}.
Since we assume that the point i∗V(λ) is a vertex in the convex polytope i∗V(Δ), {〈uλi , q j〉}i�λ

satisfies either of the condition (1) or the condition (2) in Lemma 4.15 for each fixed j. We
use the result to check that z̃λ ∈ {zλ ∈ ϕλ(Uλ) | f λj (zλ) = 0} for any j.

If {〈uλi , q j〉}i�λ satisfies the condition (1) in Lemma 4.15 for some j, then i � λ implies
〈uλi , q j〉 = 0, i.e., i ∈ 0

λ, j for such j. By considering the contraposition, +λ, j∪−λ, j \0
λ, j ⊂ λ.

We calculate
∏

i∈+λ, j(z̃
λ
i )〈uλi ,q j〉 and

∏
i∈−λ, j(z̃

λ
i )−〈uλi ,q j〉 as

∏
i∈+λ, j

(z̃λi )〈u
λ
i ,q j〉 =

∏
i∈+λ, j\0

λ, j

(z̃λi )〈u
λ
i ,q j〉 =

∏
i∈+λ, j\0

λ, j

(e〈a,v
λ
i 〉)〈u

λ
i ,q j〉,

∏
i∈−λ, j

(z̃λi )−〈u
λ
i ,q j〉 =

∏
i∈−λ, j\0

λ, j

(z̃λi )−〈u
λ
i ,q j〉 =

∏
i∈−λ, j\0

λ, j

(e〈a,v
λ
i 〉)−〈u

λ
i ,q j〉 � 0.

Moreover, since i ∈ 0
λ, j means that 〈uλi , q j〉 = 0, we obtain∏

i∈−λ, j\0
λ, j

(e〈a,v
λ
i 〉)−〈u

λ
i ,q j〉 =

∏
i∈−λ, j

(e〈a,v
λ
i 〉)−〈u

λ
i ,q j〉,

∏
i∈+λ, j\0

λ, j

(e〈a,v
λ
i 〉)〈u

λ
i ,q j〉 =

∏
i∈+λ, j

(e〈a,v
λ
i 〉)〈u

λ
i ,q j〉.

As we noted that +λ, j ∪ −λ, j = {1, . . . , n}, we can calculate
∏

i∈+λ, j(z̃
λ
i )〈uλi ,q j〉

∏
i∈−λ, j(z̃

λ
i )−〈uλi ,q j〉 =

∏
i∈+λ, j\0

λ, j
(e〈a,vλi 〉)〈uλi ,q j〉

∏
i∈−λ, j\0

λ, j
(e〈a,vλi 〉)−〈uλi ,q j〉

=

∏
i∈+λ, j(e

〈a,vλi 〉)〈uλi ,q j〉
∏

i∈−λ, j(e
〈a,vλi 〉)−〈uλi ,q j〉

=
∏

i∈+λ, j∪−λ, j
(e〈a,v

λ
i 〉)〈u

λ
i ,q j〉

=

n∏
i=1

(e〈a,v
λ
i 〉)〈u

λ
i ,q j〉
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= e〈a,q j〉.

This calculation implies that f λj (z̃λ) = 0 for j such that {〈uλi , q j〉}i�λ satisfies the condition
(1) in Lemma 4.15.

If {〈uλi , q j〉}i�λ does not satisfy the condition (1) in Lemma 4.15 for some j, i.e., if
{〈uλi , q j〉}i�λ satisfies the condition (2) in Lemma 4.15 for some j, then by Lemma 4.16,
there exist i j � i′j � λ such that Equation 4.15 holds for such j. By the definition of z̃λ,
z̃λ ∈ {zλ ∈ ϕλ(Uλ) | zλi j

= zλi′i = 0} holds for such j, which implies that z̃λ ∈ {zλ ∈ ϕλ(Uλ) |
f λj (zλ) = 0}.

From the above discussion, z̃λ ∈ {zλ ∈ ϕλ(Uλ) | f λj (zλ) = 0} holds for any j = k + 1, . . . , n.

By Lemma 4.8, there exists a fixed point of the T k-action on Cλ(V). �

We consider the case that {〈uλi , q j〉}i�λ does not satisfy the condition (1) in Lemma 4.15
for any j = k + 1, . . . , n, i.e., {〈uλi , q j〉}i�λ satisfies the condition (2) in Lemma 4.15 for any
j = k + 1, . . . , n.

Proposition 4.18. Assume that the point i∗V(λ) is a vertex in the convex polytope i∗V(Δ). If
{〈uλi , q j〉}i�λ satisfies the condition (2) in Lemma 4.15 for any j = k + 1, . . . , n, then there
exists a fixed point of the T k-action on Cλ(V).

Proof. From Lemma 4.16, for any j, there exist i j � i′j � λ such that

{zλ ∈ ϕλ(Uλ) | zλi j
= zλi′j = 0, i j � i′j � λ} ⊂ {zλ ∈ ϕλ(Uλ) | f λj (zλ) = 0}

holds. Since for any j,

{zλ ∈ ϕλ(Uλ) | zλi = 0, for any i � λ}
⊂ {zλ ∈ ϕλ(Uλ) | zλi j

= zλi′j = 0, i j � i′j � λ}
holds for some i j � i′j � λ, we obtain

{zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ⊂
n⋂

j=k+1

{zλ ∈ ϕλ(Uλ) | f λj (zλ) = 0}.

Since the right hand side is equal to Cλ(V), we see that

{zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ⊂ Cλ(V).

In particular, as we noted that {zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} � ∅, we obtain

{zλ ∈ ϕλ(Uλ) | zλi = 0, i � λ} ∩Cλ(V) � ∅.
By Lemma 4.8, there exists a fixed point of the T k-action on Cλ(V). �

Proposition 4.19. If the point i∗V(λ) is a vertex in the convex polytope i∗V(Δ), then there
exists a fixed point of the T k-action on Cλ(V).

Proof. By Lemma 4.15, if the point i∗V(λ) is a vertex in the convex polytope i∗V(Δ), then
{〈uλi , q j〉}i�λ satisfies either of the condition (1) or the condition (2) in Lemma 4.15 for each
j.
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If there exists j such that {〈uλi , q j〉}i�λ satisfies the condition (1) in Lemma 4.15, then by
Proposition 4.17, there exists a fixed point of the T k-action on Cλ(V). If otherwise, i.e., if
{〈uλi , q j〉}i�λ satisfies the condition (2) in Lemma 4.15 for any j, then by Proposition 4.18,
there exists a fixed point of the T k-action on Cλ(V). �

By comparing the vertices in μ(C(V)) with those in i∗V(μ(X)), we say more about the image
of the moment map μ.

Theorem 4.20. If C(V) is a complex submanifold in X, then we obtain μ(C(V)) = i∗V(μ(X))
in (tk)∗.

Proof. Since the map μ is the moment map, the image of μ is the convex hull of the
images of the fixed points of the T k-action on C(V). We classified the fixed points of the
T k-action on X (Lemma 4.7) and those of the T k-action on C(V) (Lemma 4.8).

Since C(V) ⊂ X, we obtain μ(C(V)) ⊂ i∗V(μ(X)) = i∗V(Δ). In particular, by Lemma 4.12,
if zλ ∈ Cλ(V) is a fixed point of the T k-action on Cλ(V), then μ(zλ) = i∗V(λ) ∈ i∗V(Δ) for the
vertex λ.

Since Proposition 4.19 shows that if i∗V(λ) is a vertex of i∗V(Δ), then there exists a fixed
point zλ of the T k-action on Cλ(V) such that μ(zλ) = i∗V(λ).

Thus, the set of the vertices of μ(C(V)) coincides with the set of the vertices of i∗V(Δ).
Since the map μ is a moment map for the T k-action on C(V), by the convexity theorem
[1, 10], the image of μ is the convex hull of the images of the fixed points of the T k-action
on C(V). Since i∗V(Δ) is the convex hull of the images of the vertices of Δ by i∗V , we obtain
μ(C(V)) = i∗V(Δ). �

We say a submanifold C(V) to be a torus-equivariantly embedded toric manifold in a toric
manifold X.

5. Examples of Torus-equivariantly Embedded Toric Manifolds

5. Examples of Torus-equivariantly Embedded Toric Manifolds
We demonstrate examples of C(V) and check whether they are torus-equivariantly em-

bedded toric manifolds or not. When C(V) is smooth, we further draw figures of D(V) :=
μ(C(V)) for each example.

5.1. Examples of Torus-equivariantly Embedded Toric Manifolds in CP2.
5.1. Examples of Torus-equivariantly Embedded Toric Manifolds in CP2. We give

examples for C(V) and check whether C(V) is a complex submanifold in X = CP2.
Delzant polytopes of CP2 are isosceles right triangles. As in Example 4.4 and Example

4.5, define the points λ, μ, σ in (t2)∗ � R2 by

λ = (0, 0), μ = (2, 0), σ = (0, 2).

Let Δ be a polytope defined by the convex hull of the points λ, μ, σ. We define the inward
pointing normal vectors to the facets by

uλ1 =
[
1
0

]
, uλ2 =

[
0
1

]
, uμ1 =

[−1
−1

]
, uμ2 =

[
1
0

]
, uσ1 =

[
0
1

]
, uσ2 =

[−1
−1

]
,

where Λ = {λ, μ, σ}.
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Example 5.1. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[1 0]. Then, we can choose a basis q of the orthogonal subspace to the
linear part of V as q = t[0 1]. In this case, C(V) is a complex submanifold in X. Indeed, we
give f λ, f μ, f σ by

f λ = zλ2 − e〈a,e2〉, f μ = 1 − e〈a,e2〉zμ1, f σ = zσ1 − e〈a,e2〉zσ2 ,

respectively. Since the Jacobian matrices are expressed as

D f λ = [0 1], D f μ = [−e〈a,e2〉 0], D f σ = [1 −e〈a,e2〉],

respectively, we see the rank of each matrix is one.
Fig. 5.1 describes D(V) when a = (0, 0). Fig. 5.2 describes D(V) when a = (0, log 2).

Fig. 5.1. D(V) in Example
5.1 when a = (0, 0)

Fig. 5.2. D(V) in Example
5.1 when a = (0, log 2)

Example 5.2. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[0 1]. Then, we can choose a basis q of the orthogonal subspace to the
linear part of V as q = t[1 0]. In this case, C(V) is a complex submanifold in X. Indeed, we
give f λ, f μ, f σ by

f λ = zλ1 − e〈a,e1〉, f μ = zμ2 − e〈a,e1〉zμ1, f σ = 1 − e〈a,e1〉zσ2 ,

respectively. Since the Jacobian matrices are expressed as

D f λ = [1 0], D f μ = [−e〈a,e1〉 1], D f σ = [0 −e〈a,e1〉],

respectively, we see the rank of each matrix is one.
Fig. 5.3 describes D(V) when a = (0, 0). Fig. 5.4 describes D(V) when a = (log 2, 0).

Fig. 5.3. D(V) in Example
5.2 when a = (0, 0)

Fig. 5.4. D(V) in Example
5.2 when a = (log 2, 0)
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Example 5.3. Let X = CP2, k = 1, and V = Rp+a (a ∈ R2) be an affine subspace spanned
by p = t[1 1]. Then, we can choose a basis q of the orthogonal subspace to the linear part of
V as q = t[1 − 1]. In this case, we show in Example 4.4 that C(V) is a complex submanifold
in X for a = 0. By similar calculation, we see that C(V) is a complex submanifold in X for
arbitrary a ∈ R2.

Fig. 5.5 describes D(V) when a = (0, 0). Fig. 5.6 describes D(V) when a = (0, log 2).

Fig. 5.5. D(V) in Example
5.3 when a = (0, 0)

Fig. 5.6. D(V) in Example
5.3 when a = (0, log 2)

Example 5.4. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[1 − 1]. Then, we can choose a basis q of the orthogonal subspace to the
linear part of V as q = t[1 1]. In this case, C(V) is a complex submanifold in X. Indeed, we
give f λ, f μ, f σ by

f λ = zλ1zλ2 − e〈a,e1〉+〈a,e2〉,

f μ = zμ2 − e〈a,e1〉+〈a,e2〉(zμ1)2,

f σ = e〈a,e1〉+〈a,e2〉(zσ − (zσ2 )2),

respectively. Note that (0, 0) � Cλ(V). Since the Jacobian matrices are expressed as

D f λ = [zλ2 zλ1],

D f μ = [−2e〈a,e1〉+〈a,e2〉zμ1 1],

D f σ = [1 −2e〈a,e1〉+〈a,e2〉zσ2 ],

respectively, we see the rank of each matrix is one.
Fig. 5.7 describes D(V) when a = (0, 0). Fig. 5.8 describes D(V) when a = (− log 2, 0).

Fig. 5.7. D(V) in Example
5.4 when a = (0, 0)

Fig. 5.8. D(V) in Example
5.4 when a = (− log 2, 0)
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Example 5.5. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[1 2]. Then, we can choose a basis q of the orthogonal subspace to the
linear part of V as q = t[2 − 1]. In this case, C(V) is a complex submanifold in X. Indeed,
we give f λ, f μ, f σ by

f λ = (zλ1)2 − e2〈a,e1〉−〈a,e2〉zλ2,

f μ = (zμ2)2 − e2〈a,e1〉−〈a,e2〉zμ1,

f σ = 1 − e2〈a,e1〉−〈a,e2〉zσ1 zσ2 ,

respectively. Note that (0, 0) � Cσ(V). Since the Jacobian matrices are expressed as

D f λ = [2zλ −e2〈a,e1〉−〈a,e2〉],

D f μ = [−e2〈a,e1〉−〈a,e2〉 2zμ2],

D f σ = −e2〈a,e1〉−〈a,e2〉[zσ2 zσ1 ],

respectively, we see the rank of each matrix is one.
Fig. 5.9 describes D(V) when a = (0, 0). Fig. 5.10 describes D(V) when a = (0,− log 2).

Fig. 5.9. D(V) in Example
5.5 when a = (0, 0)

Fig. 5.10. D(V) in Example
5.5 when a = (0,− log 2)

Example 5.6. Let X = CP2, k = 1, and V = Rp+a (a ∈ R2) be an affine subspace spanned
by p = t[2 1]. Then, we can choose a basis q of the orthogonal subspace to the linear part
of V as q = t[1 − 2]. In this case, C(V) is a complex submanifold in X. Indeed, we give
f λ, f μ, f σ by

f λ = zλ1 − e〈a,e1〉−2〈a,e2〉(zλ2)2,

f μ = zμ1zμ2 − e〈a,e1〉−2〈a,e2〉,

f σ = zσ2 − e〈a,e1〉−2〈a,e2〉(zσ1 )2,

respectively. Note that (0, 0) � Cμ(V). Since the Jacobian matrices are expressed as

D f λ = [1 −2e〈a,e1〉−2〈a,e2〉zλ2],

D f μ = [zμ2 zμ1],

D f σ = [−2e〈a,e1〉−2〈a,e2〉zσ1 1],

respectively, we see the rank of each matrix is one.
Fig. 5.11 describes D(V) when a = (0, 0). Fig. 5.12 describes D(V) when a = (− log 2, 0).
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Fig. 5.11. D(V) in Example
5.6 when a = (0, 0)

Fig. 5.12. D(V) in Example
5.6 when a = (− log 2, 0)

In the following examples, we treat C(V) which does not become a complex submanifold
in CP2.

Example 5.7. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[1 α] for all integers α greater than or equal to three. Then, we can choose
a basis q of the orthogonal subspace to V as q = t[α − 1]. In this case, C(V) is not a complex
submanifold in X. Indeed, we give f λ, f μ, f σ by

f λ = (zλ1)α − eα〈a,e1〉−〈a,e2〉zλ2,

f μ = (zμ2)α − eα〈a,e1〉−〈a,e2〉(zμ1)α−1,

f σ = 1 − eα〈a,e1〉−〈a,e2〉zσ1 (zσ2 )α−1,

respectively. Note that (0, 0) � Cσ(V). Since the Jacobian matrices are expressed as

D f λ = [α(zλ1)α−1 −eα〈a,e1〉−〈a,e2〉],

D f μ = [−(α − 1)eα〈a,e1〉−〈a,e2〉(zμ1)α−2 α(zμ2)α−1],

D f σ = −eα〈a,e1〉−〈a,e2〉[(zσ2 )α−1 (α − 1)zσ1 (zσ2 )α−2],

respectively, we see the rank of D f λ and D f σ is one. However, the rank of D f μ becomes
zero when (zμ1, z

μ
2) = (0, 0) ∈ Cμ(V).

Example 5.8. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[α 1] for all integers α greater than or equal to three. Then, we can choose
a basis q of the orthogonal subspace to V as q = t[1 − α]. In this case, C(V) is not a complex
submanifold in X. Indeed, we give f λ, f μ, f σ by

f λ = zλ1 − e〈a,e1〉−α〈a,e2〉(zλ2)α,

f μ = (zμ1)α−1zμ2 − e〈a,e1〉−α〈a,e2〉,

f σ = (zσ2 )α−1 − e〈a,e1〉−α〈a,e2〉(zσ1 )α,

respectively. Note that (0, 0) � Cμ(V). Since the Jacobian matrices are expressed as

D f λ = [1 −αe〈a,e1〉−α〈a,e2〉(zλ2)α−1],

D f μ = [(α − 1)(zμ1)α−2zμ2 (zμ1)α−1],

D f σ = [−αe〈a,e1〉−α〈a,e2〉(zσ1 )α−1 (α − 1)(zσ2 )α−2],

respectively, we see the rank of D f λ and D f σ is one. However, the rank of D f σ becomes
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zero at the point (zσ1 , z
σ
2 ) = (0, 0) ∈ Cσ(V).

Example 5.9. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[1 − α] for all integers α greater than or equal to two. Then, we can choose
a basis q of the orthogonal subspace to V as q = t[α 1]. In this case, C(V) is not a complex
submanifold in X. Indeed, we give f λ, f μ, f σ by

f λ = (zλ1)αzλ2 − eα〈a,e1〉+〈a,e2〉,

f μ = (zμ2)α − eα〈a,e1〉+〈a,e2〉(zμ1)α+1,

f σ = zσ1 − eα〈a,e1〉+〈a,e2〉(zσ2 )α+1,

respectively. Note that (0, 0) � Cλ(V). Since the Jacobian matrices are expressed as

D f λ = [α(zλ1)α−1zλ2 (zλ1)α],

D f μ = [−(α + 1)eα〈a,e1〉+〈a,e2〉(zμ1)α α(zμ2)α−1],

D f σ = [1 −(α + 1)eα〈a,e1〉+〈a,e2〉(zσ2 )α],

respectively, we see the rank of D f λ and D f σ is one. However, the rank of D f μ becomes
zero at the point (zμ1, z

μ
2) = (0, 0) ∈ Cμ(V).

Example 5.10. Let X = CP2, k = 1, and V = Rp + a (a ∈ R2) be an affine subspace
spanned by p = t[α − 1] for all integers α greater than or equal to three. Then, we can
choose a basis q of the orthogonal subspace to V as q = t[1 α]. In this case, C(V) is not a
complex submanifold in X. Indeed, we give f λ, f μ, f σ by

f λ = zλ1(zλ2)α − e〈a,e1〉+α〈a,e2〉,

f μ = zμ2 − e〈a,e1〉+α〈a,e2〉(zμ1)α+1,

f σ = (zσ1 )α − e〈a,e1〉+α〈a,e2〉(zσ2 )α+1,

respectively. Note that (0, 0) � Cλ(V). Since the Jacobian matrices are expressed as

D f λ = [(zλ2)α αzλ1(zλ2)α−1],

D f μ = [−(α + 1)e〈a,e1〉+α〈a,e2〉(zμ1)α 1],

D f σ = [α(zσ1 )α−1 −(α + 1)e〈a,e1〉+α〈a,e2〉(zσ2 )α],

respectively, we see the rank of D f λ and D f σ is one. However, the rank of D f σ becomes
zero at the point (zσ1 , z

σ
2 ) = (0, 0) ∈ Cσ(V).

By similar calculation, we see that C(V) is not a complex submanifold in X if the slope
of V is not the same as treated above.

Remark 5.11. We can classify all examples for complex submanifolds C(V) in X in terms
of the conditions of V by direct calculation. In particular, when X = CP2, we can show that
C(V) is a complex submanifold in CP2 if and only if the linear part of V is spanned by t[1 0],
t[0 1], t[1 1], t[1 2], t[2 1], or t[1 − 1].

When X = CP2, we can determine the conditions that C(V) is a one-dimensional complex
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submanifold in X by the linear part of an affine subspace V = Rp + a in R2.

5.2. Other Examples of Torus-equivariantly Embedded Toric Manifolds.
5.2. Other Examples of Torus-equivariantly Embedded Toric Manifolds. We demon-

strate other examples of torus-equivariantly embedded toric manifolds in toric manifolds
other than CP2.

It is well-known that Delzant polytopes of F1 are shown in Fig. 5.13. Define the points λ,
μ, σ, δ in (t2)∗ � R2 by

λ = (0, 0), μ = (2, 0), σ = (1, 1), δ = (0, 1).

Let Δ be a polytope defined by the convex hull of the points λ, μ, σ, δ. Let Λ = {λ, μ, σ, δ}
be a set of the vertices in the Delzant polytope of F1. We define the inward pointing normal
vectors to the facets by

uλ1 =
[
1
0

]
, uλ2 =

[
0
1

]
, uμ1 =

[
0
1

]
, uμ2 =

[−1
−1

]
,

uσ1 =
[−1
−1

]
, uσ2 =

[
0
−1

]
, uδ1 =

[
0
−1

]
, uδ2 =

[
1
0

]
.

Example 5.12. Let X be a Hirzebruch surface F1 of degree one, k = 1, and p = t[1 0].
Then, we can choose a basis of the orthogonal subspace to V as q = t[0 1]. In this case,
C(V) is a complex submanifold in X. Indeed, we give f λ, f μ, f σ, f δ by

f λ = zλ1 − 1, f μ = zμ1 − zμ2, f σ = 1 − zσ1 zσ2 , f δ = 1 − zδ1,

respectively. Note that (0, 0) � Cσ(V). Since the Jacobian matrices are expressed as

D f λ = [0 1], D f μ = [1 −1], D f σ = [−zσ2 −zσ1 ], D f δ = [−1 0],

respectively, we see the rank of each matrix is one.
The image of μ |C(V): C(V)→ R2 is given in Fig. 5.14.

Fig.5.13. a Delzant polytope
of F1

Fig. 5.14. μ(C(V)) in Exam-
ple 5.12

Delzant polytopes of CP3 are the convex hull of the points:

λ = (0, 0, 0), μ = (2, 0, 0), σ = (0, 0, 2), δ = (0, 2, 0).

We can see a Delzant polytope of a blow up of CP3 at the point corresponding to δ as the
convex hull of the points:

λ = (0, 0, 0), μ = (2, 0, 0), σ = (0, 0, 2),

δ1 = (1, 1, 0), δ2 = (0, 1, 0), δ3 = (0, 1, 1).

We define the inward pointing normal vectors to the facets by
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uλ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uλ2 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uλ3 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , u
μ
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , u
μ
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , u
μ
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

uσ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uσ2 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uσ3 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ13 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

uδ21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ23 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ31 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ32 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , uδ33 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Example 5.13. Let X be a blow up of CP3 at the point corresponding to δ, k = 2, p1 =
t[1 0 − 1] and p2 =

t[0 1 0]. Then, we can choose a basis of the orthogonal subspace to V
as q = t[1 0 1]. In this case, C(V) is a complex submanifold in X. Indeed, we give f λ, f μ,
f σ, f δ1 , f δ2 , f δ3 by

f λ = zλ1zλ3 − 1, f μ = zμ3 − (zμ2)2, f σ = zσ2 − (zσ3 )2,

f δ1 = zδ12 − (zδ13 )2, f δ2 = zδ21 zδ22 − 1, f δ3 = zδ31 − (zδ33 )2,

respectively. Note that (0, 0, 0) � Cλ(V), and (0, 0, 0) � Cδ2 (V). Since the Jacobian matrices
are expressed as

D f λ = [zλ3 0 zλ1],D f μ = [0 − 2zμ2 1],D f σ = [0 1 − 2zσ3 ],

D f δ1 = [0 1 − 2zδ13 ],D f δ2 = [zδ22 zδ21 0],D f δ3 = [1 0 − 2zδ33 ],

respectively, we see the rank of each matrix is one.

In Example 5.13, we have to suppose that X is a blow up ofCP3 at the point corresponding
to the vertex δ because C(V) is not a complex submanifold in X = CP3 when the linear part
of an affine subspace V is spanned by p1 =

t[1 0 − 1] and p2 =
t[0 1 0].
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