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Abstract

We study the closure of a complex subtorus in a toric manifold. If the closure of the com-
plex subtorus is a smooth complex submanifold in the toric manifold, then the subtorus action
on such submanifold is Hamiltonian. In this case, we may think of the embedding of the
submanifold as torus-equivariant. We show that the image of the moment map for the Hamil-
tonian subtorus action on our submanifold coincides with the image of the Delzant polytope of
the ambient toric manifold under the pullback of the inclusion of the tori. The submanifolds
constructed in the present paper are called forus-equivariantly embedded toric manifolds with
respect to the subtorus action.

1. Introduction

Delzant [5] established a one-to-one correspondence between compact symplectic toric
manifolds and certain convex polytopes known as Delzant polytopes. Given a 2n-
dimensional compact symplectic toric manifold X, the image of a moment map for the
Hamiltonian 7"-action on X is a Delzant polytope A in (") = R". Conversely, given a
Delzant polytope A in (t")*, we can construct a compact symplectic toric manifold X whose
moment polytope is A. This construction is called the Delzant construction. From the
Delzant construction, symplectic toric manifolds are canonically equipped with a Kéhler
structure [8, 3]. We can identify the complements of toric divisors in a symplectic toric
manifold X with a complex torus (C*)", whose description allows us to consider complex
coordinates in X.

1.1. Main Results. In this paper, we study complex submanifolds in compact toric man-
ifolds X. From a k-dimensional affine subspace V in t" = R", we first construct a k-
dimensional complex submanifold C(V) in the toric divisor complements M = (C*)" of
the toric manifold X. This construction is inspired by [11], and C(V) = (C*)¥ as Yamamoto
noted there. In fact, C(V) = (C*)* is a complex subtorus of M = (C*)". We then consider the
conditions of V when the (Zariski) closure m is a k-dimensional complex submanifold in
the toric manifold X (Section 4.1). While C(V) is a complex submanifold in M = (C*)" for
arbitrary affine subspace V as Yamamoto showed in [11, Lemma 6.1], (V) may not be a
complex submanifold in X (see Example 4.5 and Section 5).

Suppose that C(V) is a smooth complex submanifold in X. We then discuss the nature
of the submanifolds C(V). Toric manifolds X are naturally equipped with a moment map
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u: X — (")" for the T"-action on them. We can define the injective group homomorphism
iy : T* — T" by the data of V (see Equation 4.6). Because the 7"-action on X and iy : T* —
T" induce the T*-action on C(V), we can determine the moment map /i : W — (" by
M =1i,0ouoli, wherei: C(V) — X is the embedding (see Section 4.3 for detail). We obtain
the following diagram:

X —5— ()
. lﬁ/
(t5)".
We compare the image of the moment map i : C(V) — (t)* for the T*-action on our

complex submanifold C(V) with the image of the moment map u : X — (") for the 7"-
action on the ambient toric manifold.

1
7% R

V) —

Theorem 1.1 (Theorem 4.20). Let iy : TX — T" be an injective group homomorphism
determined by a given affine subspace V in t" = R". Assume that C(V) is a complex sub-
manifold in X. Then the image of u is equal to the image of iy, o, i.e., u(C(V)) = (iy, o p)(X).

We call the complex submanifolds C(V) torus-equivariantly embedded toric manifolds.

1.2. Outline. This paper is organized as follows. In Section 2, we construct a system
of complex coordinate charts on complex manifolds from matrices in SL(n;Z). This con-
struction helps us to consider a system of complex coordinate charts in toric manifolds. In
Section 3, we review Delzant construction and construct a system of the inhomogeneous
coordinate charts on compact toric manifolds using the construction established in Section
2. In Section 4, we give the conditions where the closure C(V) of a complex subtorus C(V)
is a complex submanifold in the ambient toric manifold. Moreover, we consider the moment
maps for the subtorus action on our complex submanifolds and compare them with the mo-
ment maps for the torus action on ambient toric manifolds. In Section 5, we demonstrate
some examples of torus-equivariantly embedded toric manifolds.

Throughout the paper, we express vectors as column vectors.

2. Construction of Coordinate Charts from Matrices in SL(n; 7Z)

This section is about construction of a system of complex coordinate charts from matrices
in the special linear group SL(n;Z). Our idea is similar to the coordinate transformations
for compact toric manifolds by Duistermaat and Pelayo [6], but here we construct a system
of complex coordinate charts in a general situation.

Let A be a set and Q* € SL(n;Z) a matrix corresponding to each A € A and Cl = (! =
(zl,...,z}) € C"} = C" for each 1 € A. We define a matrix D = (QY)™1Q¥(= [df;‘]) for
any A,u € A and a subset Uy, c C' by

Uy =" € C} 1z} # 0if d}f' < O forsomel=1,...,n}.

We introduce an equivalence relation on {U ,}a e -
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DermNiion 2.1. Forzt e U wCCland ' e Uy C CZ, we define a binary relation o~
by

n

@t = ([T T

J=1 J=1

Proposition 2.2. The binary relation ~ defined in Definition 2.1 is an equivalence rela-
tion.

Proof. We check that the binary relation ~ satisfies the definition of equivalence relations.

Since we define D% = (Q*)~! Q“ for A, u € A, we get DY = (OYHY'Q' = E,, where E,, is
the identity matrix. Hence, z! = z!, which means that z! ~ z*.

Since D¥ = (@Y~ Q*, we have D' = (Q*)"'Q* = (D*)~!. Suppose z! ~ 7*, then we
see Z = I_I;le(zf)djlA fori=1,...,n. Fork=1,...,n, we have

/l A

zf‘dﬁ _ Nk _ 2
Zj _Zk-
j=1

11 11/1

Hence we obtain 74 ~ z%.
For A, u,0 € A, we have

T=@Y Q" =@Y Q@) 'Q” = DVD.

Suppose 7t~ 7 7 ~ 7% then fori = 1,...,n we have
n n n HU‘ n
a ar ) &
i A A\ ki
=117 =111 ="
j=1 j=1 \k=1 k=1
Hence we obtain z* ~ 7. O

Proposition 2.3. The quotient space X = | | ep C')/~ is a Hausdorff space.

Proof. Define the projection pr : | |5 €} — X to the quotient space. Take two distinct
points [x] # [y] € X. Let Uy and Uy, be open subsets containing the points [x] and [y]
respectively. Then we can write pr™!(Uyy), pr~! (U},)) as follows:

pr(Up) = |_| Uy pr' (Up) = |_| Uty

AeA AeA

where Ux], U‘ cCh=C"fordeA.

Let B.(x) be an open ball of radius & > 0. We define the map ¢, : C}/~ — C by
@a([z']) = z'. If C’ contains the points x and y, then there exist £, &’ > 0 such that B,(x) N
B (y) = 0. Thus we have pr=! (pr(B(x))) N pr~ (pr(Bx(y))) = 0

If x € C),y € C, (4 # p), then there exists an element o~ € A such that ¢, o t,o;‘(Bg(x) N
Uyw) cU gc], Qg © go;l(Bg,(y) NU,s) C UE;]. Thus we can take sufficiently small g,&” > 0
such that pr-(pr(¢s © ¢7' (Bo(x) N Upa) N pr- (pr(¢ 0 @ (Ber(y) N Uyy))) = 0

Suppose that x € C) \ Uy, y € CZ \ Uy (A4 # p). If there exist g,&" > 0 such that
pr(Bg(x)) N pr(By(y)) # 0, then there exist z, € B.(x) N Uy, and z, € By (y) N Uy, such that
pr(zx) = pr(z,). Since x ¢ U,,, we obtain
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O<|x—2zd<e.

We can retake & smaller than |x — z,| so that pr(B.(x)) N pr(Bs(y)) = 0. Thus we have

pr! (pr(Be(x)) N pr~ (pr(Be (1)) = 0.
Therefore, the quotient space X is a Hausdorff space. m|

Let Uy = {[z'] € X | 2! € C%} c X. Then we see X = | J,c, U, from Proposition 2.2.
We define a map ¢, : Uy — C" by ¢,([z']) = z* for each A € A. The following lemma is
obvious from the construction above.

Lemma 2.4. For all A, € A such that Uy N U, # 0, we have

n n

@1 guowi @ =T 1™ .

j=1 j=1

Dermntion 2.5. The set {(U,, ¢1)}iea 1S a system of complex coordinate charts on X,
whose coordinate transformation is given by Equation 2.1.

3. Toric Manifolds

In this section, we write the inhomogeneous coordinate charts on a toric manifold in
terms of the coordinate charts given in Section 2. We also discuss the complements of toric
divisors, which we call the toric divisor complements.

3.1. Convex Polytopes and Convex Cones. We review the definitions and some of the
facts of convex polytopes and convex cones in R", which are used later.
We first deal with convex polytopes, which are defined as follows:

DeriniTiON 3.1. Let V = {x,..., x5} # 0 be a finite set of elements in R”. The convex
hull A = conv(V) of V is a convex polytope in R". Concretely, A is written as

ViZO,Zr,-: l,x,-eV}.
i=1

If a convex polytope A can be written as Equation 3.1, then we say that A is generated by
V= {xl,...,xs}.

N

A =conv(V) = {Z riX;

i=1

The next lemma is obvious.

Lemma 3.2. Let f : R" — R™ be a linear map. If A C R" is a convex polytope
generated by V = {x1,...,x}, then f(A) C R"™ is also a convex polytope generated by

Vi=1f(x), ..., fxo}

We deal with convex cones, which are defined as follows:

DeriniTion 3.3. A subset C in R” is a (convex polyhedral) cone if there exist elements
U1,...,0s € C such that

(31) C= Rzovl + -4 Rzol)s.

If a cone C can be written as Equation 3.1, then we say that C is generated by {vy, ..., vs}.
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The next lemma is obvious.

Lemma 3.4. Let f : R" — R™ be a linear map. If C C R" is a cone generated by
{v1,...,0s}, then f(C) C R™ is also a cone generated by {f(vy),..., f(vy)}

DeriniTion 3.5. Let C € R” be a cone generated by {vy, ..., vs}. The point 0 = (0,...,0) €
C Cc R"is a vertex of C if C does not contain a nontrivial subspace.

Lemma 3.6. Let C C R" be a cone generated by {vy, . ..,vs}. The cone C does not contain
a nontrivial subspace if and only if the following is satisfied:

3.2) riog+--+ros=0,r,>0=>r=---=r,=0.

Proof. We first show that if C does not contain a nontrivial subspace, then Equation 3.2
holds. We give a proof by showing the contraposition.
Suppose that r, ..., 7, € Ry satisfy 377 | rv; = 0. Suppose further that there exists some

iop € {1,..., s} such that r;, > 0. Then since we can calculate
1 ri
iy = T Zrivi = —Z rvi,
0 i, i#ip 10

W = {rv;, | r € R} C C holds. Indeed, if r > 0, then rv;, € C by the definition of C; if

otherwise, then since from the above calculation we see
i
rvi, = Z(—F)fvi

i#io Fiy

and (—r)rrf" > 0 for any i # iy, rv;, € C. Since W is a nontrivial subspace in R", we obtain
0
the contraposition to the desired result.
We then show that if Equation 3.2 holds, then C does not contain a nontrivial subspace.

Let W # 0 be a subspace contained in C. Since W is a linear space, if w € W then —w € W
holds. Since W C C, there exsit r, ..., 7, 1|,...,r; = 0 such that

S S

w= Z rivi, —W = E riv;.

i=1 i=1

Since w + (—w) = 0, we see that

Z(ri + 1) = 0.
i=1

Since we assume that Equation 3.2 holds, r; + rlf = 0holds forany i = 1,..., s. Furthermore,
since ry,...,rgr,...,ry 2 0,r; =1, =0holds forany i = 1,..., s. This implies that w = 0,
re., W ={0}. m|

From the above lemma, we can use the following definition of a verfex in a cone.

Derinition 3.7. Let C € R” be a cone generated by {vy, ..., vs}. The point 0 = (0,...,0) €
C Cc R"is a vertex of C if Equation 3.2 is satisfied.
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3.2. An Alternative Construction of Toric Manifolds. We briefly review the Delzant
construction [5] in order to construct inhomogeneous coordinate charts on a toric manifold.
Delzant showed that there is a one-to-one correspondence between compact symplectic toric
manifolds and Delzant polytopes, which are moment polytopes for the Hamiltonian torus
action on toric manifolds (see [9, Chapter 1] for detailed explanations about the Delzant
construction). Delzant polytopes are defined as follows:

Derinition 3.8. Delzant polytopes are convex polytopes A in (t")* = R” satisfying the
following three conditions:

e simple; each vertex has n edges,
e rational; the direction vectors vf, ..., v} from any vertex 1 € A are integral vectors,
e smooth; the vectors v, ..., v} chosen as above form a basis of Z",

where A is the set of the vertices in A.

We can define Delzant polytopes in terms of facets in A instead of edges (see [2, Theorem
4] for example).

Derinition 3.9. Delzant polytopes are convex polytopes A in (t")* = R” satisfying the
following three conditions:

e simple; each vertex meets n facets,
e rational; the inward pointing normal vectors uf, R u{} for facets meeting a vertex

A € A are integral vectors,

A
1>

where A is the set of the vertices in A.

e smooth; the vectors u7, ..., uﬁ chosen as above form a basis of Z",

We can see that two ways to define Delzant polytopes are equivalent. Although we can
find a similar result in [4, Proposition 2.2], we give a proof because we shall use the state-
ment repeatedly.

Lemma 3.10. Let v’ll, e, vﬁ be the direction vectors and u/ll, e uﬁ the inward pointing
normal vectors for A € A. Then,

1A
uy
P bl .
[op---0op]] | = En,
!
where E, denotes the identity matrix.
Proof. Let ey,...,e, be the standard basis in R”. Since the direction vectors v’f, e, vﬁ

form a basis of Z", there exists a square matrix B¢ such that
(3.3) E,=le1 e, =[v]--v}BL.

Since the matrix By is the inverse matrix for the matrix [v] - - - v}], we see By [v] - - vt] = E,.
Moreover, the matrix B is in GL(n; Z) from (3.3).
We define the vectors uf, ..., u} € Z" by
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1
u
A .
Bn - .
A
un
By calculating Bj[v| - - - v}], we obtain
)
Ap A A . PR
Bn[vlu.vn] = . [Ul.“vn]
A
un
Croad toad
uiv] v}
oA !
ulv ulv!
S 10
<u1’U1 <I/ll,l}n
10 a1
L <un’vl <M1, Un>

Since Bj[v] - --u}] = E,, we have (u, vj) = 6;; (Kronecker’s delta). We say that

u} € span{vs, ..., v}t ... ul € spanfuf, ... vt )

which means that the vectors uf, ..., u! are inward pointing normal vectors to facets meeting

the vertex A. ]

For A € A, we define an n X n matrix Q' = [vf, - vﬁ] (= [Qf]]) In general det Q' = +1
by the definition, but we assume det Q! = 1 by changing the numbering of vf, v We
also define a matrix D* by D% = (QY)~'Q¥(= [di/lj” ]) for each A,u € A as we defined in
Section 2.

From the construction in Section 2, we obtain a system of complex coordinate charts

{(U,, 1)} 1ea on a toric manifold X associated with a Delzant polytope A.

RemArk 3.11. Azam, Cannizzo, and Lee explained the construction of symplectic toric
manifolds with a system of the inhomogeneous coordinate charts from a data of Delzant
polytopes [2]. In this case, the coordinate transformation of our system of complex co-
ordinate charts {(U,, @)} ea coincides with the one constructed in [2]. Hereafter, we call
{(U,, o)} 1en a system of the inhomogeneous coordinate chart on a toric manifold.

From this section, we write X by a compact toric manifold of complex dimension n, A by
the Delzant polytope of X, A by the set of the vertices in the polytope A.

REmMARK 3.12. The coordinate transformation of the inhomogeneous coordinates also co-
incides with the one in algebraic geometry (see for example [7]). Note that we may have a
fan of toric manifolds X by taking integral vectors inward pointing normal to each facets of
Delzant polytopes of X.

3.3. Toric Divisor Complements. In this section, we construct a diffeomorphism be-
tween the complements of toric divisors in X and (C*)".
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We define U, = {[z'] € U, | z/llzg"'zﬁ # 0} c X for each 1 € A, then we have M =
Uen Ua. We call M be the toric divisor complement. Furthermore, we see U, = U, = M
for 4,0 € A.

DEerINITION 3.13. We define a map ¢, : ¢1(U;) — (C*)" by

$azts .oz = []‘[@;)Qﬁl,...ﬂ@;)@:n],
J=1 j=1

where (0! = [Q]].
Lemma 3.14. Forany L,0 € A, ¢ 0 @) = ¢p5 © @5

Proof. Since we define D7 = (Q7)~' Q*, we see D“4(QY)~' = (Q?)~'. Forany [7'] € U,,
we have

B2 0 @a([2']) =¢a 0 ¢ [

T
j=1

J=1

=¢a [ﬁ(z;’)d.?’l’l, e ﬁ(zlf.f)dﬁ']
J=1 j=1
n n o} n
[l_[ (l_[(ZZ-W] o] (]_[@;’)dﬁ‘]
1 =1 i

Al
Qin

n
i= i=1

(ﬁ(z;’)éﬁi, - ﬁ(z;.f)é;z]
j=1 j=1

=¢, o 900'([20—])- O

N——

From Lemma 3.14, we can define the following map independent of the choice of 1 € A.

DEeriNITION 3.15. We define a map ¢ : M — (C*)' = {(z1,...,2,) | 2122+ -2, # 0} by
¢ =dao e

Next we construct the inverse map ¢ : (C*)" — M, which is actually similar to the
construction of ¢.

DEerINITION 3.16. We define a map ¢, : (C*)* — ¢,(U,) by
~ & A L Y
G2, 20) = [H(Zj)Qﬂ, s ]_[(Zj)Q}"].
=1 j=1
Lemma 3.17. Forany 4,0 € A, ¢7' o 1 = ¢ 0 ¢,

Proof. Since we define D' = (QY)~1Q”, we see Q*D'” = Q. Forany z = (z1,...,2,) €
(C*)", we have

90/_11 ° @A(Z) :()0/—{1 [I_I(ZJ)Q;I e n(zj)Ql;"}
J=1 j=1
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- ﬁ(z,->9fu---,li[<zf~>d"ﬂ

(L] 5

[ jn n dlﬂln' n n d:}f‘
=11 [H(z,)Qﬂ) o] ] []—[@,)Q?f}

|Li=1 \j=1 i=1 \ j=1

- ]_[<z )eh, H(z-)QS"nH

L Jj=1

:SDO' O¢0‘(Z)- O

From Lemma 3.17, we can define the following map independent of the choice of A € A.
DeriNiTioN 3.18. We define a map ¢ : (C*)" — M by ¢ = ¢;' o .

We check that the map ¢ defined in Definition 3.18 is the inverse map of ¢ defined in
Definition 3.15.

Lemma 3.19. ¢ o ¢ = idy, ¢ o ¢ = idicy.

Proof. Since we define ¢ = ¢, 09, and ¢ = ;' od,, we obtain pog = ¢;' 0 06,00, and
pod=giopi0¢;" 0opy = ¢i0di. Wesay that it is sufficient to show that ¢, 0 ¢, = id,
and ¢, o ¢, = i(}(c*)"-

For 7! € ¢,(U,), by similar calculation, we have

bao9a(@ls - o2) =0 []—[(zj)éfl, s ]_[(sz?‘n)
Jj=1

J=1

n n QiA] n n Q?,,
r[ [ﬂ(zj)gﬁ] s ]_[ [n(zj)Q}] ]
=1 \j=1 i=1 \ j=1

[ﬁ(zﬁ)ﬁjl, o ll[(zj:)(sjn]
J=1 j=1

1 2
=(2],.-»2p)-

Thus we obtain ¢, o ¢, = idw(f]ﬂ)‘
For z € (C*)", by similar calculation, we have

b10da(z1,. ... 2) =0, (]_[(Zj)Qfl, o l_[(zj)an}
=1

Jj=1
non o,
l_l[l‘kz )Q,,] ,...,l_l[l_[(zj)Qj‘.]
i=1 \ j=1

=215 5 2n)-

1]

Thus we obtain ¢, o ¢, = idcey. m]
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4. Torus-equivariantly Embedded Toric Manifolds

We construct k-dimensional complex submanifolds W in toric manifolds X associated
to affine subspaces V in R" = t" and examine their fundamental properties.

In Section 4.1, we give the construction of m In Section 4.2, we consider a Hamilton-
ian subtorus action on a toric manifold X. In Section 4.3, we consider the Hamiltonian torus
action on C(V).

4.1. Construction of Torus-equivariantly Embedded Toric Manifolds. First, we will
concentrate on Yamamoto’s construction [11, Lemma 6.1] of complex submanifolds C(V) in
(C*)". Letey,...,e, be the standard basis in R". We write (, ) for the inner product of vectors.
Fixk =1,...,n. Let py,..., px € Z" be primitive vectors which are linearly independent,
and a € R". Then we consider an affine subspace V = Rp; +---+Rpy +a = R* in R", which
may have rational slope. Yamamoto constructed k-dimensional complex manifolds C(V) in
(C*)™. Although we do not give the same statement as the original one, the statement is like
as follows.

Proposition 4.1. Given an affine subspace V = Rp+---+Rpy+a in R", we can construct
a complex submanifold C(V) = (CH* in M = (CHY" by

k
X; = Z(pz, epu; +4ae;),
C(V) = (VI etV e oy =1

k
Y = Z(Pl, ey
=1

where (et V=101 grV=loy e (CH)K,

Note that if k = 0, then C(V) is a point (¢, ..., %) in (C*)". We rewrite the expres-
sion of C(V) in Proposition 4.1 as follows:

Proposition 4.2. Let C(V) be a complex submanifold in M given in Proposition 4.1. There
exists a primitive basis qj+1, . . ., qn € Z" of the orthogonal subspace toV = Rp+- - -+Rpy+a
in R" such that

wi
C(V)=q(",....e") e (C)" |"lgrs1--aqul|| + |—a|=0¢,
wn
where wy = x; + V=1y1,...,w, = x, + V-1y,.
Proof. Hereafter, we calculate angle coordinates y = (yi,...,y,) and v = (vy, ..., ) Up
to 21Z.
From Proposition 4.1, we have
X1 ujp Y1 U1
=[pi-pl| | +a =[p1-- il
Xn Uy Yn Uk

‘We obtain
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w1 X1 + V—1y1 u; + V-1u,
D |ma= : —a=[p1-pil :
X, + V-1y, u, + V=1u;
We can take a basis of primitive vectors g1, ...,q, € Z" of the orthogonal subspace to V.

Multiplying both sides by ‘[gi41 - - - ¢u], We obtain

w1 ]
Tqrsr - qul|| ¢ |—a
w, |
[ Grs [y + V-1v;
= : [p1-- P :
’qn | Up + V—lvk
Gr+1,P1) Grs1,02) =+ (Gk+1s Pk) R
~ (Gks2:P1) (Grs2-P2) -+ {GQks2s Pk) .
: : - : up + V=1y
<qn9 pl) <CIm p2> tte <qna pk> k k
=0. m]

Note that this submanifold C(V) can be regarded as a complex subtorus (C*)* in (C*)".
We will write C(V) explicitly as a submanifold in M. Recall that M = (J,c, U,. Using
the map ¢, : (C*)" — ¢(U,), we obtain
$UC(V)) = (' =" € pa(Un) | '[qus ---qn]«Q*)‘lw” -a) =0},

where 74 = ¢”' means that (2. ..z = (" 1.
Next we take the closure of ¢,(C(V))(C t,D,{(U/l) = C"). Since Qfl = (uf, e;), we have

Z OXg ey = ul,q;)

=1

fori=1,...,nand j=k+1,...,n. Define three subsets I; I7.,1% c{l1,2,...,n} by

A TAj
(4.1) Ii;= {z € n} (ul.q;) >0},
(4.2) I;] =fie n} (u}.q;) <0},
(4.3) 1), =lie n} (u,q;) =0},

forde Aand j=k+1,...,n. Note that I;’j NI, = Ig’j and I, U T, ={1,2,...,n) for
anydeAand j=k+1,...,n
From the expression of éb 1(C(V)), direct calculation gives us
(g1, (@Y w' —a) = (g, (@Y log 2! — a)
= (@Y g log ") = (g1, @)
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(ul, qr)
= t |, log zﬂ> —{a, q1)
(ul,qn)

= log (H(zﬁ)“‘?’qﬂ] ~ (@ q)
J=1

forl=k+1,...,n. We can define C(V) = | en cp}l(Cﬂ(V)) C X by

(4.4) CiV) =" e U fl&)=0forj=k+1,....n},

where fj/l is defined by
(45) f]/l(le) = 1—[ (Z;i)(u‘f"qﬂ _ e(a,qj> 1—[ (Zl{l)_(u’{l’qﬁ
ieIA*J. iel;j
foreach j = k+ 1,...,n. Here, if IL. = (, then Hl-el;'(zf)wf’qﬁ = 1. Similarly, if I;j =0,
g J 5
then H,»d;_(zf)*“?#./) =1.
C,(V)is a zero locus of fk{r] yens ,f,f. Note that if k = 0, then m is a point in X.

ReEmArk 4.3. By the implicit function theorem, C(V) is a complex submanifold in X if

the rank of the Jacobian matrix of £ ..., f4is equal to n — k for any points p € C(V) and

k+1° "
any 4 € A.

We demonstrate some examples for complex submanifolds C(V). Example 4.4 gives an
example for a complex submanifold in X = CP?, while Example 4.5 deals with a subset
in X = CP? which does not become a complex submanifold in CP?. In the following two
examples, define the points A, u, o in (t?)* = R? by

1=(0,0), u=(2,0), oc=1(0,2).

Let A be a polytope defined by the convex hull of the points A, u, 0. From the Delzant
polytope A of CP? we define the inward pointing normal vectors to the facets by

1 0 -1 1 - (0] ,~ [-1
= == - -]
where A = {4, u, o}.

ExampLE 4.4. Let X = CP?, k = 1, V be spanned by p = /[1 1]. We can choose a basis ¢
of the orthogonal subspace to V as g = /[1 — 1]. In this case, the subset C(V) is a complex
submanifold in X. Indeed, we give f4, f*, f by

f/l:Z/ll_Z/zl’ fN:Zg_la f(rzl—zf’
respectively. Since the Jacobian matrices are expressed as
Df'=[1 11, Df* =[01], Df” =[10],

respectively, we see the rank of each matrix is one.
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ExampLE 4.5. Let X = CP?, k = 1, V be spanned by p = /[3 1]. We can choose a basis
q of the orthogonal subspace to V as ¢ = ‘[1 —3]. In this case, the subset C(V) is not a
complex submanifold in X. Indeed, we give f*, f*, f” by

fl=t-@)" =4 -1 fT =G - @),
respectively. Note that (0, 0) ¢ C,(V). Since the Jacobian matrices are expressed as
Dft =11 =3(z3)°], Df* = [24/2 (£}, Df7 = [3:]) - 245,

respectively, we see the rank of Df* and Df* is one. However, the rank of Df” becomes
zero at the point (z{, z7) = (0,0) € Cx(V).

Notice that if we fix a toric manifold X, then we may classify examples of complex
submanifolds m in X in terms of the conditions of V. Other examples for X = CP? are
treated in Section 5.1.

Suppose that C(V) is a complex submanifold in X. Then, there exists a map i : C(V) —
X as an embedding. By the construction of C(V) in this section, if C(V) is a complex
submanifold in X, then there exists an embedding i, : CuV) > @(U)) for each A € A.

4.2. Subtorus Actions on Toric Manifolds. In this section, we consider a subtorus ac-
tion on toric manifolds in order to give a Hamiltonian torus action on a complex submanifold
given in Section 4.1.

First we define a k-dimensional torus action on a complex n-dimensional toric manifold
X. Given an affine subspace V = Rp; + --- + Rpy + a in R", define a map iy : TX — T" by

k k
(4.6) iy(ty,...,t;) = (l_[ t;p”el>’ o l_[ t;l’t,en) )
=1 I=1

Recall that the n-dimensional torus 7" action on ¢,(U,) = C" is given by
T" X pa(Uy) - oa(Uy)
(t=(t1,...,ty), 2" = (Zf,...,zf,)) -tz
for each A € A, where ¢ - 7% is defined by

n
. _{l_ltfl/l”.’l—ltjgjnz/l] [l_lt@/u)/l” l_lt(eu }
i1

This torus action is compatible with the torus action on (C*)", which is given by
T" x (C*)" - @y
(1. )y (2o s ) P (112155 taZn)-
We can describe the k-dimensional torus 7% action on X by
TxgUn = @aUy)
(t=(t1,....t00,2) > iy(t)- 2%,

where
k

4.7 v -2 = ([ ]_[ £ 7]

=1

~

We define the subset J) = {ji,..., jm} C{l,...,n} by
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To=tietl.on) [{proh) = = (pr.v’) = 0)

for A € A. If J, = 0, then we may interpret J, = {ji,..., ju} as m = 0. Note that since the
vectors py, ..., px form a basis of the linear part of V, we see that

max |Jy| < n—k.
AeN

Since our complex manifold X coincides with the one constructed in [2] as compact toric
manifolds, X is equipped with the torus invariant symplectic form w given by Guillemin [8]
(see also [9, Appendix 2]). Moreover, the 7"-action on X is Hamiltonian with respect to
the symplectic form w. We write the moment map for the Hamiltonian 7"-action on X is
u: X — (t")*. The fundamental property of moment maps for Hamiltonian torus actions is
the convexity theorem [1, 10].

REMARK 4.6. The T*-action given in Equation 4.7 is also Hamiltonian with respect to w
and the moment map for the action is given by ij, ou : X — (t*y*.

We study the fixed point set of the T*-action on X.

Lemma 4.7. Consider the T*-action on X defined above. The fixed point set of the T*-
action on ¢(U,) is {z* € g2(Un) 1 2} = 0,i & Ja).

Proof. For simplicity, we give the proof for the case when J, = {i}.
If (p;, vf) =0forl=1,...,k, then we have

k
imwwwwaﬁauwm=&wqarﬁw%mkwﬂ:wwqaﬁamﬂ)
=1

Thus, the point (0, ..., 0, Z;l, 0,...,0) is a fixed point of the T*-action on (UY).
Conversely, if (0,...,0, zf, 0,...,0) is a fixed point of the T*-action on @a(U,), then we
have

k A
ﬁwwarbﬁwﬁauwozm“wadﬁwwm
=1

Since (t1,...,t) € T*, we see that (pl,vf) =0forl=1,...,k.
Note that if J, = (), we see that the fixed point of the Tk-action on Uy is (0,...,0) €
ea(Up). i

Note that the set {z* € ¢ (U)) | zf = 0,i ¢ J,} corresponds to the m-face defined by the
direction vectors vfl,...,vjm in A for ji,...,jm € Jo. If Ty = 0, then the set {z} € ¢ (U)) |
zf =0,i ¢ Jh} =1{@,...,0) € p(U,)} corresponds to the vertex A, which is a O-face in A.

In particular, {z* € ¢ (U,) | Zf =0,i¢ Jy} # 0 for any J,.

4.3. Torus Actions on Torus-equivariantly Embedded Toric Manifolds. After giving
torus actions on C(V), we consider the image of the moment map for the torus action.
Under the following diagram;
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™ X eA(Ux) —— @a(Un)
Tiv Tix Tix
Tk X C\(V) —— CO\(V),

a T*-action on C(V) is defined by
T* x C(V) - V)
(t=(t,....00,2) = iv()-2,
which makes the above diagram commutative.
From Lemma 4.7 and the definition of m the following lemma is obvious.

Lemma 4.8. The fixed point set of the T*-action on C(V) is {z* € (U,) | zf =0,i¢
TN Ca(V).

It is clear that if {z! € ¢,(U,) | zf =0,i¢ Ty} N Cy(V) # 0, then there exists a fixed point
of the T*-action on C(V).

Lemma 4.9. Assume that k > 1. If there exists j = k+ 1,...,n such that (uf, q;> >0 (or
(uf,qj) <0)foralli=1,...,n, then {z* € o (U,) | zf =0,i¢ JpNCuV) =0, ie., there
is no fixed point of the T*-action on Cy(V).

Proof. For simplicity, we assume that there exists j = k+ 1,...,n such that (uf, q;) >0
for all i = 1,...,n. This implies that I:{J ={l1,...,n} and I/?,j = (. As we noted in the
definition of f; 4(z"), we obtain

fjl(Z/l) — l_l (Zl{l)w;‘,qj) — @) 1_[ (Zil)—<u;‘,q/> - ﬁ(ziﬂ)wf,qj) — e
eIy, = i=1
Since %) £ 0, fjfl(zﬂ) = 0 implies that z{z3 - - -z} # 0, i.e.,
(@) =0} Cizizs -z, # 0.
Recall that | 7| < n — k for any A € A. If k > 1, then there exists iy ¢ J, such that
(e U |2 =0,i¢ Ji) c{z} =0},

It is clear that {z]z}---z! # 0} N {Z;}) = 0} = 0, which implies that {z' € ¢,(Uy) | 2! =
0,i¢ JAJNC(V)=0. Since Cy(V) = ;f:kﬂ{f]fl(z/l) = 0}, we obtain the desired result. O

Note that if (uf,qj) > 0 (or (uf,qj) <0O)foralli=1,...,nand some j = k+1,...,n,
then C(V) € @a(U)).

Remark 4.10. If m is a complex submanifold in X, the T*-action on m is actually
Hamiltonian with respect to the symplectic form i*w on m for the inclusioni : C(V) — X.
If u: X — (t")* is the moment map for the 7"-action on X, then we can obtain the moment
map for the T*-action on W byu=ij,opoi: C(V) - (tb*.

We further examine the fixed points of the T*-action on C(V).
Since the map iy : TX — T" is defined by (4.6), we can write the pull back i, s ({") -
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(t* as

(4.8) iy(&) = (p1. &)y (Prs )
Note that this map ij, is a surjective linear map. Hence, we have

iy (X)) = {(p1, &), ... (P E)) | € € (X} € (1.

Since X is a toric manifold, u(X) = A is a Delzant polytope. In this situation, we obtain the
followings:

Corollary 4.11. Let A be a Delzant polytope and iy, : (1")" — (t5Y* be the map defined in
Equation 4.8. Then, i},(A) is a convex polytope.

Proof. As we noted, the map iy, is a linear map. By the definition of Delzant polytopes, A
is a convex polytope. By Lemma 3.2, i},(A) is a convex polytope. m|

Lemma 4.12. Suppose that Jy = {ji,-.., jm}. Let Fy be an m-face of A defined by the

direction vectors v’}l s vj . Then, i},(§) = i},(A) holds for any & € F,.

Proof. Since &, A € F,, we have

m
_ 1
E-A= E o,
I=1

for some a1, ...,q, € R. We calculate

i) = iy() = iy(E = D)

m m
= ((pla Z a’lvj), ey <pk, Z CZIU;?I>)
=1 I=1
= (Z ap1, Uf,% s Z apr, vj.l)]
=1 I=1

=(0,...,0).
Thus we obtain i},(£) = i},(4) for any & € F). ]
By the definition of Delzant polytopes, we can take the direction vectors vf, LLvtezn

from the vertex A of a Delzant polytope A and the vectors vf, ...,ut € Z" can be chosen as a
basis of Z". We define the cone C, by

Cy = Rypv] + -+ + Rypu! € (") = R".

In other words, C, is generated by {vf, e, Uﬁ}. Since the map 7, is linear, by Lemma 3.4,
iy,(Cy) is the cone generated by {i’{,(vf), e i’{,(vﬁ)}. The cone iy,(C;) can be written concretely
by

iv(Ch) = Rooiyy(0]) + -+ - + Raoiy () € ()" = RE,
DeriniTioN 4.13. Let A be a Delzant polytope and A be a vertex in A. The point ij,(1) is a

vertex in the convex polytope i},(A) if 0 = (0,...,0) € i},(Cy) C (t5)* is a vertex in the sense
of Definition 3.7.
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We have the relation between the vectors pi,..., Pr, Qitis- - ->Gns v’ll, e, vﬁ, and u’}, e,
ul,
Lemma 4.14. Foranyl=1,...,kandany j=k+1,...,n,
n
(4.9) D pruiXut g =0
i=1
holds.
Proof. Instead of Equation 4.9, we show the matrix equation
Dy tu/ll
(4.10) b ] e o @] =0
"Pr ity
From Lemma 3.10, we have obtained
pl
tul
4.11) lof - ]|t |=En
)
Since the vectors g1, - . . , g, are taken to be an orthogonal basis of the orthogonal subspace
to V, we have
'P1
(4.12) g @] =0.
'Pr

From Equation 4.11 and Equation 4.12, we calculate

'py tu/ll 'py
. [U/ll “en U}/'lt] [Qk+1 oo qn] = [qk+1 e qn] =0.
"Pr tuf, 'Pr
Hence, we obtain Equation 4.10. O
From Lemma 4.14, we see that
D o vl qp)
i=1
=0

D pe vt a7
Li=1 ]
holds for any j = k + 1,...,n. This is equivalent to the equation:

(p1,v)]

Dwlap| | =0
= (Prs 7))




494 K. YAMAGUCHI

From (4.8), the following equation

(4.13) Dl apiveh =0
i=1
holds for any j = k+ 1,...,n. Since the set J; C {1,...,n} was defined by
Tn=lie{l,....n} [ {pr.v}) = = (prv}) = 0},
Equation 4.13 can be written as
(4.14) >l gpiyeh =0.
g

Note that since |.J,;| < n — k, the number of the terms in the left hand side of Equation 4.14
should be greater than or equal to k.

Lemma 4.15. Fix j = k + 1,...,n. If the point i},(A) is a vertex in the convex polytope
iy/(A), then {<uf, q)}ieg, satisfies either of the following conditions:
(D (uf,qj) = 0 holds for any i ¢ J),
(2) there existi; # i;. ¢ Ju such that (ul/,l/_, qj)(uf,f, gy <0.

Proof. Regarding Equation 4.14 as a linear combination of the vectors f{/(vf) (i ¢ Jy), the
coeflicients (uf, q;) (i ¢ Jy) satisfy at least one of the following cases:
° (u?,qj) > 0 holds for any i ¢ J,,
e (u',q;) <0holds for any i ¢ Jy,
e there existi; # i;. ¢ J, such that <”g’q.i><”f;’ gy <0.

If the point i}, (1) is a vertex in the convex polytope i;{,(A), then by Definition 3.7 and Equation
4.14 the first and second cases can be written as (uf, q;> = 0 holds for any i ¢ J,. ]

To check whether the fixed point set of the T*-action on C,(V) is empty or not, we can
use Lemma 4.15.

Lemma 4.16. Fix j = k + 1,...,n. If the point i},(A) is a vertex in the convex polytope
iy/(A) and if there exist i; # i;. such that (u;’_, qj><uf,, q;) <0, then
J J N

(4.15) (' e a(Uy) | Z?j = Z,/ll =0} c{z' € pa(Uy) | f‘]{l(Z/l) =0}
holds.

Proof. For simplicity, we assume that (ul/.lj .q;) > 0, (uﬁ/ .q;) < 0. This implies that
ij€ I:{J \ Ig,j and i;. €l \ Ig’j. From Equation 4.5, we obtain Equation 4.15. |

As a corollary to Lemma 4.16, if the point i},(4) is a vertex in the convex polytope i},(A)
and if {(uf, q)}ig, satisfies the condition (2) in Lemma 4.15 for a fixed j, then we obtain

(e eeaUn 12t =2 =0i;# ¢ T} € 12 € U | 1) = 0)

fori; # i; ¢ Jy appearing in the statement of the condition (2) in Lemma 4.15.

When {(uf,q Mg, satisfies the condition (1) in Lemma 4.15, we obtain the following
result:
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Proposition 4.17. Assume that the point i},(1) is a vertex in the convex polytope i, (A).
We define a point 7' = (Zf, ..., 2 € C" by setting

e, ieqn,
Z. =
' 0, i¢ gy

If there exists jo = k+1,...,n such that {(uf, qjo)igg, satisfies the condition (1) in Lemma
4.15, then we obtain

ezt epiUy) |z} =0,i¢ T} nCuV),

i.e., the set {z* € o,(U)) | Zfl =0,i ¢ Ty} N Cy(V) is not empty. In particular, there exists a
fixed point of the T*-action on C(V).

Proof. It is clear that 7! € {z! € ¢ (Uy) | zf =0,i ¢ J;}. We show that 3! € Cy(V) =
N2t € U | f1(2h = 0).

Since we assume that the point i},(4) is a vertex in the convex polytope i},(A), {(uf, g tieg,
satisfies either of the condition (1) or the condition (2) in Lemma 4.15 for each fixed j. We
use the result to check that ! € {z! € ¢(U,) | fJf’(z”) = 0} for any .

If {(uf, q)}igg, satisfies the condition (1) in Lemma 4.15 for some j, then i ¢ J, implies
(ul,q;)=0,ie., i€ Iﬁ)’j for such j. By considering the contraposition, I} ,UT ;\ Ig’j c Ju.

~ A g, Al .
We calculate Hielb(zf)“‘i 47 and Hiel;‘j(zf) Wiai) ag

- A - A A A .
H(Z?)(ui,q_,)z 1_[ (Zl{l)(ui,q,)z 1_[ (e<a,vi))<u,.,qj)’

i€}, €T} \1Y, €T} \1Y,

I N I N AN iy .
[[eh o= T] @reo= [] @i =o
i€l ielij\lf{j iel;'j\l(;' i

Moreover, since i € Igj means that (uf, q;> = 0, we obtain

1—[ (e<a,y;l))—<u;l’qj> — l—l(em,u;ﬂ))—(uf,qj)’

€Iy \IY, S5y
| | (e(a,vf))(u;.‘,qﬁ — l_l (e<a,vf))<uf,qj)‘
iez;j\zj{j i€},

As we noted that II]. VI, = {1,...,n}, we can calculate

~ P . .
Hiellj(zl{l)w" qj) Hielij\lgi(éa,v, Yy
N —
ez, GO Tliery o ()07
N
Mgy ()

ez (@)
Aj

1_[ (e<a’v‘,»l>)(uf,q/)

P
zEZM.UIM.

n
- [lewtyio
i=1
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= (@4,

This calculation implies that f]fl(Zﬁ) = 0 for j such that {(uf, q)}igg, satisfies the condition
(1) in Lemma 4.15.

If {Cu},qj)}ieg, does not satisfy the condition (1) in Lemma 4.15 for some j, i.e., if
{(uf, q;)}ieg, satisfies the condition (2) in Lemma 4.15 for some j, then by Lemma 4.16,
there exist i; # i; ¢ J, such that Equation 4.15 holds for such j. By the definition of 7,
et e (U)y | zfj = zf = 0} holds for such j, which implies that 7! € {z! € ¢(U,) |

£ = o).
From the above discussion, 7! € {z! € ¢ (U,) | fjﬂ(zﬂ) =0} holds forany j=k+1,...,n.
By Lemma 4.8, there exists a fixed point of the T*-action on C,(V). |

We consider the case that {<uf, q)}igg, does not satisfy the condition (1) in Lemma 4.15
forany j=k+1,...,n,ie., {<ul4, q)}igg, satisfies the condition (2) in Lemma 4.15 for any
j=k+1,...,n.

Proposition 4.18. Assume that the point iy,(A) is a vertex in the convex polytope iy,(A). If
{(uf, q)}ieg, satisfies the condition (2) in Lemma 4.15 for any j = k + 1,...,n, then there
exists a fixed point of the T*-action on C(V).

Proof. From Lemma 4.16, for any j, there exist i; # i;. ¢ J, such that
(' €U |z, =2p = 0.0 # ;¢ T} < ' € ga(Un) | £z = 0}
holds. Since for any j,
(' € paUn) 12/ =0, forany i ¢ Ju)
cletepuUn g =z =0, i;#i; ¢ T}

holds for some i; # i;. ¢ Jy, we obtain

n

(ZlepUnlz =0i¢ T c (| epUn] £ =0}

j=k+1
Since the right hand side is equal to C,(V), we see that

(2" € U 12} = 0,i ¢ Ja} € Ca(V).
In particular, as we noted that {z* € ¢,(U,) | Zf =0, i ¢ Jy} # 0, we obtain

eUp |z =0, i¢ JpnCa(V) #0.

By Lemma 4.8, there exists a fixed point of the T*-action on C,(V). |

Proposition 4.19. If the point i},(A) is a vertex in the convex polytope i},(A), then there
exists a fixed point of the T*-action on C (V).

Proof. By Lemma 4.15, if the point i},(1) is a vertex in the convex polytope i},(A), then
{(uf, q)}i¢g, satisfies either of the condition (1) or the condition (2) in Lemma 4.15 for each

e



Torus-EQuUIVARIANTLY EMBEDDED TORIC M ANIFOLDS 497

If there exists j such that {(uf, q)}i¢g, satisfies the condition (1) in Lemma 4.15, then by
Proposition 4.17, there exists a fixed point of the T*-action on C,(V). If otherwise, i.e., if
{(uf, q)}ieg, satisfies the condition (2) in Lemma 4.15 for any j, then by Proposition 4.18,

there exists a fixed point of the T*-action on C;(V). ]

By comparing the vertices in z(C(V)) with those in i}, (u(X)), we say more about the image
of the moment map u.

Theorem 4.20. If m is a complex submanifold in X, then we obtain ﬁ(m) = iy, (u(X))
in ().

Proof. Since the map u is the moment map, the image of p is the convex hull of the
images of the fixed points of the T*-action on C(V). We classified the fixed points of the
T*-action on X (Lemma 4.7) and those of the T*-action on m (Lemma 4.8).

Since C(V) € X, we obtain 7(C(V)) C i, (u(X)) = i,(A). In particular, by Lemma 4.12,
if 74 € C1(V) is a fixed point of the T*-action on C,(V), then f(z}) = iy,(1) € ij,(A) for the
vertex A.

Since Proposition 4.19 shows that if ij,(4) is a vertex of ij,(A), then there exists a fixed
point z* of the T*-action on C(V) such that fi(z*) = il ().

Thus, the set of the vertices of ﬁ(m) coincides with the set of the vertices of ij,(A).
Since the map 7 is a moment map for the T*-action on C(V), by the convexity theorem
[1, 10], the image of /i is the convex hull of the images of the fixed points of the 7T*-action
on W Since i},(A) is the convex hull of the images of the vertices of A by i}, we obtain
H(CV)) = i(A). m

We say a submanifold C(V) to be a torus-equivariantly embedded toric manifold in a toric
manifold X.

5. Examples of Torus-equivariantly Embedded Toric Manifolds

We demonstrate examples of C(V) and check whether they are torus-equivariantly em-
bedded toric manifolds or not. When C(V) is smooth, we further draw figures of D(V) :=
u(C(V)) for each example.

5.1. Examples of Torus-equivariantly Embedded Toric Manifolds in CP?. We give
examples for m and check whether W is a complex submanifold in X = CP?.

Delzant polytopes of CP? are isosceles right triangles. As in Example 4.4 and Example
4.5, define the points A, u, o in ()" = R? by

A1=(0,0), u=(2,0), oc=1(0,2).

Let A be a polytope defined by the convex hull of the points 4, u, 0. We define the inward
pointing normal vectors to the facets by

ot - -

where A = {4, u, o}.
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ExampLe 5.1. Let X = CP>, k = 1,and V = Rp + a (a € R?) be an affine subspace
spanned by p = ‘[1 0]. Then, we can choose a basis g of the orthogonal subspace to the
linear part of V as ¢ = ’[0 1]. In this case, C(V) is a complex submanifold in X. Indeed, we

give f4, f*, f7 by

L T e R L QU

respectively. Since the Jacobian matrices are expressed as
Df* =10 1], Df* = [-€% 0], Df” =[1 —el*],

respectively, we see the rank of each matrix is one.
Fig. 5.1 describes D(V) when a = (0, 0). Fig. 5.2 describes D(V) when a = (0, log 2).

Fig. 5.1. D(V) in Example Fig. 5.2. D(V) in Example
5.1 when a = (0,0) 5.1 when a = (0, log 2)

ExampLe 5.2. Let X = CP?, k = 1,and V = Rp + a (a € R?) be an affine subspace
spanned by p = [0 1]. Then, we can choose a basis g of the orthogonal subspace to the
linear part of V as ¢ = ’[1 0]. In this case, C(V) is a complex submanifold in X. Indeed, we

give f4, f*, f7 by
f/l — lel _ e(a,el)’ fu — lel _ e(a,el)zllt’ fo' -1= €<a’el>Zg,
respectively. Since the Jacobian matrices are expressed as
DfY=[1 0], Df* =[-€“ 1], Df7 =[0 —elaer),

respectively, we see the rank of each matrix is one.
Fig. 5.3 describes D(V) when a = (0, 0). Fig. 5.4 describes D(V) when a = (log 2, 0).

Fig. 5.3. D(V) in Example Fig. 5.4. D(V) in Example
5.2 when a = (0, 0) 5.2 when a = (log2,0)
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ExampLE 5.3. Let X = CP?,k = 1,and V = Rp+a (a € R?) be an affine subspace spanned
by p =[1 1]. Then, we can choose a basis ¢ of the orthogonal subspace to the linear part of
Vas g ="'[1 — 1]. In this case, we show in Example 4.4 that C(V) is a complex submanifold
in X for a = 0. By similar calculation, we see that m is a complex submanifold in X for
arbitrary a € R?,

Fig. 5.5 describes D(V) when a = (0, 0). Fig. 5.6 describes D(V) when a = (0, log 2).

Fig. 5.5. D(V) in Example Fig. 5.6. D(V) in Example
5.3 when a = (0,0) 5.3 when a = (0,log2)

ExampLE 5.4. Let X = CP>, k = 1,and V = Rp + a (a € R?) be an affine subspace
spanned by p = ’[1 — 1]. Then, we can choose a basis ¢ of the orthogonal subspace to the
linear part of V as ¢ = ’[1 1]. In this case, C(V) is a complex submanifold in X. Indeed, we

give f4, f, f by

f/l — ZfZé _ e<a,el>+(a,ez>,

= Zle _ e<a,€1)+(a,ez)(zjll)2’
7= e T — )2,

respectively. Note that (0,0) ¢ C,(V). Since the Jacobian matrices are expressed as
Df' =1z .
Df'“ — [_2e<u,el)+(a,ez>z,l11 11,
Df7 =1 _26<a,el>+(a,ez)z<2r]’

respectively, we see the rank of each matrix is one.
Fig. 5.7 describes D(V) when a = (0, 0). Fig. 5.8 describes D(V) when a = (—1log 2, 0).

Fig. 5.7. D(V) in Example Fig. 5.8. D(V) in Example
5.4 when a = (0,0) 5.4 when a = (—1log2,0)
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ExampLE 5.5. Let X = CP>, k = 1,and V = Rp + a (a € R?) be an affine subspace
spanned by p = ’[12]. Then, we can choose a basis ¢ of the orthogonal subspace to the
linear part of V as g = /[2 — 1]. In this case, C(V) is a complex submanifold in X. Indeed,

we give f4, f*, f7 by

f/l — (Zf)z _ eZ(a,m)—(a,ez)Z/Zl’

f” — (lel)Z _ e2<a,e1>—<a,ez>zf1t,

fU' - 1= eZ(a,m}—(u,ez)Z(erg’
respectively. Note that (0, 0) ¢ C(V). Since the Jacobian matrices are expressed as
Dft =278 —eXaen—(ae)]
W_ o 2ae)—a,
Df* =[—e (a.e1)=(a.e2) 222‘]’
DfU’ — _eZ<u,el)7(a,ez>[Zg Z(l)—]’

respectively, we see the rank of each matrix is one.
Fig. 5.9 describes D(V) when a = (0, 0). Fig. 5.10 describes D(V) when a = (0, —log2).

Fig. 5.9. D(V) in Example Fig. 5.10. D(V) in Example
5.5 when a = (0, 0) 5.5 when a = (0, —log2)

ExampLE 5.6. Let X = CP?, k = 1,and V = Rp+a (a € R?) be an affine subspace spanned
by p = '[2 1]. Then, we can choose a basis g of the orthogonal subspace to the linear part
of Vas g = '[1 —2]. In this case, C(V) is a complex submanifold in X. Indeed, we give

S 7 by
f/l — Z/ll _ €<a’el>_2<a’e2>(Z§)2,
fﬂ — Zleg _ e(a,el)*2<a,€2)
fO' — thr _ e(a,el)—Z(a,ez)(ZLIT)2’

respectively. Note that (0,0) ¢ C,(V). Since the Jacobian matrices are expressed as
A _ a,e1)—2a,e
Dft =11 —Delaen)=x 2>Z’21],
Dff =1z 7],
T _ e1)—2{a,
Df7 = [-2el%en2a ez>Zflf 1],

respectively, we see the rank of each matrix is one.
Fig. 5.11 describes D(V) when a = (0, 0). Fig. 5.12 describes D(V) when a = (—1og 2, 0).
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Fig. 5.11. D(V) in Example Fig. 5.12. D(V) in Example
5.6 when a = (0,0) 5.6 when a = (—1log2,0)

In the following examples, we treat C(V) which does not become a complex submanifold
in CP%.

ExampLE 5.7. Let X = CP>, k = 1, and V = Rp + a (a € R?) be an affine subspace
spanned by p = '[1 «] for all integers « greater than or equal to three. Then, we can choose
a basis g of the orthogonal subspace to V as ¢ = '[@ — 1]. In this case, C(V) is not a complex
submanifold in X. Indeed, we give f*, f*, f” by

f/l = (Z/ll)a _ ea<aael>_<aa€2>zg,
f# = (Z*LZ‘)‘Y _ e”<aa€1>—<tl,€2>(zlll)rr—l’
fo' =1- ea(a,€1>—(a,ez>zflr(zz27)oz—l’
respectively. Note that (0,0) ¢ C,(V). Since the Jacobian matrices are expressed as
Dft = [a(zh)*!  —eraen—@e],
Dft =[—(a - 1)e”<as€1>—<a,62>(zllf)a—2 a(zg)ar—l]’
Df’ = _eCY(ﬂ,El)—(a,ez)[(Zg)w—l (@ — I)Z?(Zg)w_z],

respectively, we see the rank of Df* and Df“ is one. However, the rank of Df* becomes
zero when (2}, 25) = (0,0) € C,(V).

ExampLe 5.8. Let X = CP?, k = 1,and V = Rp + a (a € R?) be an affine subspace
spanned by p = "[a 1] for all integers a greater than or equal to three. Then, we can choose

a basis g of the orthogonal subspace to V as ¢ = '[1 — a]. In this case, C(V) is not a complex
submanifold in X. Indeed, we give f4, f*, f by

f/l — lel _ e(a,m)—a(a,eg)(zél)a’
fy — (Z}ll)aflz,;l _ e(a,el)fa(a,ez),
fcr — (Z;’)a—l _ e(a,m)—a(a,ez)(zclr)af’
respectively. Note that (0,0) ¢ C,(V). Since the Jacobian matrices are expressed as
A _ a,e))—ala,e a—

Dft=11 —qelaen—al 2>(Z’21) 1]’

Df* = [(@ = D))" (@),

Df” = [~aelene@ed(zyel (o = 1)),

respectively, we see the rank of Df* and Df? is one. However, the rank of Df” becomes
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zero at the point (z{,z7) = (0,0) € Cx(V).

ExampLE 5.9. Let X = CP>, k = 1,and V = Rp + a (a € R?) be an affine subspace
spanned by p = '[1 — «] for all integers a greater than or equal to two. Then, we can choose
a basis ¢ of the orthogonal subspace to V as g = ‘[@ 1]. In this case, C(V) is not a complex
submanifold in X. Indeed, we give f4, f*, f by

f/l — (Z/ll)ozz/zl _ eoz(a,e])+(a,e2),

fu — (lel)(x _ ea(a,el)+(a,ez>(zlll)a+l,

f(T — Zrlr _ ea(a,el)+(a,e2>(zg)a+l’

respectively. Note that (0,0) ¢ C,(V). Since the Jacobian matrices are expressed as
Df' = [azh) ' @),
Df# =[—(a+ ])e(l<aa€1>+<a»€2>(zlll)a a,(zlzl)tx—l]’
Df7 =[1 —(a+ 1)ew<a,el>+(a,ez>(zg)w]’

respectively, we see the rank of Df* and Df“ is one. However, the rank of Df* becomes
zero at the point (2}, 25) = (0,0) € C, (V).

ExampLE 5.10. Let X = CP?>, k = 1, and V = Rp + a (a € R?) be an affine subspace
spanned by p = ‘[a — 1] for all integers « greater than or equal to three. Then, we can
choose a basis ¢ of the orthogonal subspace to V as ¢ = [1 «]. In this case, C(V) is not a
complex submanifold in X. Indeed, we give f*, f*, f by

f/l — lel(zle a _ e(a,e1>+a<a,ez)
E s 1
f,u - lel _ e(a e )+ala ez)(z,lll)(H ,

fO' — (Z(lr)w _ e(u,el)+<x<u,ez)(zg)(t+l’
respectively. Note that (0,0) ¢ C,(V). Since the Jacobian matrices are expressed as
Df* =1(zy)" azj(x)™'].
Dff = [—(a+ 1)e<a’el>+“<a,€z>(zfli)a 1,
Dfo' — [a,(zrlr)a—l _(a, + 1)e<a,e1>+a(a,e2>(zg)a],

respectively, we see the rank of Df* and Df7 is one. However, the rank of Df” becomes
zero at the point (z{,z7) = (0,0) € C(V).

By similar calculation, we see that C(V) is not a complex submanifold in X if the slope
of V is not the same as treated above.

REMARK 5.11. We can classify all examples for complex submanifolds C(V) in X in terms
of the conditions of V by direct calculation. In particular, when X = CP?, we can show that
C(V) is a complex submanifold in CP? if and only if the linear part of V is spanned by ‘[1 0],
TO 11,711 11, "1 2], "[2 1], or [1 —1].

When X = CP?, we can determine the conditions that C(V) is a one-dimensional complex
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submanifold in X by the linear part of an affine subspace V = Rp + a in R?.

5.2. Other Examples of Torus-equivariantly Embedded Toric Manifolds. We demon-
strate other examples of torus-equivariantly embedded toric manifolds in toric manifolds
other than CP?.

It is well-known that Delzant polytopes of [F; are shown in Fig. 5.13. Define the points A,
i, o, 8 in ()" = R? by

A1=(0,0), u=(2,0), c=(1,1), 6 = (0, 1).

Let A be a polytope defined by the convex hull of the points A, u, o, §. Let A = {4, u, 0, 6}
be a set of the vertices in the Delzant polytope of F;. We define the inward pointing normal
vectors to the facets by

ExampLE 5.12. Let X be a Hirzebruch surface F; of degree one, k = 1, and p = ’[10].
Then, we can choose a basis of the orthogonal subspace to V as ¢ = [0 1]. In this case,
C(V) is a complex submanifold in X. Indeed, we give %, f*, f7, f° by

f/l:Z/]l_ 17 f# :Z};_Zga fU': 1_Z?Zgy f(S:l_Z(]S’
respectively. Note that (0,0) ¢ C,(V). Since the Jacobian matrices are expressed as
Dft=10 11, Df*=[1 11, Df7 =[-z§ -z, Df°=[-1 0],

respectively, we see the rank of each matrix is one.
The image of u lW: C(V) — R? is given in Fig. 5.14.

Fig.5.13. a Delzant polytope Fig. 5.14. u(C(V)) in Exam-
of Fy ple 5.12

Delzant polytopes of CP? are the convex hull of the points:
A1=1(0,0,0), u=(2,0,0), o =1(0,0,2), 6 =(0,2,0).

We can see a Delzant polytope of a blow up of CP? at the point corresponding to & as the
convex hull of the points:

A1=1(0,0,0), u=(2,0,0), o =(0,0,2),
61 =(1,1,0), 6 =(0,1,0), 63 = (0,1, 1).

We define the inward pointing normal vectors to the facets by
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1

0

0

0 1 -1 0 0 -1
uj =|1|,u5 =|0],u3 =|-1 ,uf‘ =[-1 ,ug‘ =10 ,ug‘ =|-1],

0 0 1 -1

1 0 -1

0 -1 ,u?z -1].

0 0 -1

ExampLE 5.13. Let X be a blow up of CP? at the point corresponding to 6, k = 2, p; =
110 — 1] and p, = [0 1 0]. Then, we can choose a basis of the orthogonal subspace to V
as ¢ = '[1 0 1]. In this case, C(V) is a complex submanifold in X. Indeed, we give f”, fH,

f7f0 £ % by
=g -1Lfr=4 - =8 -,
=l =@ = - L = - @)
respectively. Note that (0,0,0) ¢ C,(V), and (0,0, 0) ¢ Cs,(V). Since the Jacobian matrices
are expressed as
Df'=1z40z1,Df* =[0 =22 1],Df” =[0 1 —275],
Df* =101 =221, Df* = [z 2 0L, Df* = [10 - 221,
respectively, we see the rank of each matrix is one.
In Example 5.13, we have to suppose that X is a blow up of CP? at the point corresponding

to the vertex § because C(V) is not a complex submanifold in X = CP? when the linear part
of an affine subspace V is spanned by p; =[1 0 — 1] and p, = [0 1 0].
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